Compare commits
1583 Commits
v0.1.1
...
docs/train
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e08d210bb8 | ||
|
|
34100d290b | ||
|
|
46f8fa59c1 | ||
|
|
4867dced0e | ||
|
|
ed187b495b | ||
|
|
2773996b49 | ||
|
|
95923b78c6 | ||
|
|
7065ad4336 | ||
|
|
d6254918fd | ||
|
|
95e3d6db7a | ||
|
|
d7f8002baa | ||
|
|
d743e12a06 | ||
|
|
6068fe941f | ||
|
|
2a0cefc98b | ||
|
|
a4f65e4870 | ||
|
|
a1b3edd79c | ||
|
|
80b3d9689a | ||
|
|
ec03a53121 | ||
|
|
2fdf3f3a6a | ||
|
|
1d3d7ebf5e | ||
|
|
2c2196f415 | ||
|
|
c9f30b175c | ||
|
|
a17b93a7f8 | ||
|
|
0d3e462791 | ||
|
|
947c9552f0 | ||
|
|
04a03d332f | ||
|
|
992e093610 | ||
|
|
07f8e73958 | ||
|
|
66c2fa1623 | ||
|
|
7a52cc9667 | ||
|
|
8b686fb0c6 | ||
|
|
dc6771ae95 | ||
|
|
e9b1e5a8f6 | ||
|
|
57c787f919 | ||
|
|
a0eadf783b | ||
|
|
251ae00b8b | ||
|
|
a221295394 | ||
|
|
a92211f0ba | ||
|
|
f9481cf10d | ||
|
|
915857541e | ||
|
|
7c162411b7 | ||
|
|
8f4a6cc61c | ||
|
|
7dc86dc79a | ||
|
|
7ce20cfcc6 | ||
|
|
1d9523c98f | ||
|
|
9f1d7d1aa9 | ||
|
|
79b375f6fa | ||
|
|
75752479c2 | ||
|
|
477bc1f09e | ||
|
|
66567bdc2f | ||
|
|
0b31bbe957 | ||
|
|
246cf588cd | ||
|
|
88ed91561f | ||
|
|
9a347ad458 | ||
|
|
34c3075fdb | ||
|
|
498e8dc6e8 | ||
|
|
cb522cf500 | ||
|
|
017acc74f5 | ||
|
|
fab86d197a | ||
|
|
864e9bfb76 | ||
|
|
d3b45d197c | ||
|
|
579153b070 | ||
|
|
b1fdcdfa6e | ||
|
|
18d76a270c | ||
|
|
30541239ad | ||
|
|
9a65573955 | ||
|
|
27623a1d01 | ||
|
|
2593242234 | ||
|
|
2ab6c31544 | ||
|
|
3c55c8a22a | ||
|
|
424433ff58 | ||
|
|
2fd99503ed | ||
|
|
942014962e | ||
|
|
2ab79a7dd5 | ||
|
|
27c449c9c4 | ||
|
|
9737333ffd | ||
|
|
bf248d5118 | ||
|
|
2490e8cd46 | ||
|
|
9b67e5a15f | ||
|
|
6ebb6c9b63 | ||
|
|
53f674be60 | ||
|
|
11717a5213 | ||
|
|
b6d699f764 | ||
|
|
5b15061b87 | ||
|
|
1b6b2b36d9 | ||
|
|
3ada4053bd | ||
|
|
e7a5747c6b | ||
|
|
eec1262d4f | ||
|
|
c6caa763d7 | ||
|
|
08fa3797ca | ||
|
|
bf8fa3232b | ||
|
|
a6e60a5d42 | ||
|
|
7b0f3aabd9 | ||
|
|
f071966951 | ||
|
|
318310bb7a | ||
|
|
34a03f882c | ||
|
|
a0fcc0c8d1 | ||
|
|
748c25451c | ||
|
|
a77dcdd419 | ||
|
|
68f5bdf0d9 | ||
|
|
7f83947020 | ||
|
|
ceb310bcde | ||
|
|
ae57e5723c | ||
|
|
ab39753a75 | ||
|
|
640e1a7bc2 | ||
|
|
e544ff8ba3 | ||
|
|
49c0144154 | ||
|
|
2ab002a5bf | ||
|
|
b7bf15681e | ||
|
|
af9c01f5d3 | ||
|
|
5a12b51ba2 | ||
|
|
576b8ff836 | ||
|
|
b35c3e8024 | ||
|
|
b09796cd3f | ||
|
|
e0b46492fa | ||
|
|
ece13fbda0 | ||
|
|
94a62d84e1 | ||
|
|
cdf8388b18 | ||
|
|
0f861338ef | ||
|
|
4d1aabf620 | ||
|
|
a50fae3a4b | ||
|
|
f6dfec61d6 | ||
|
|
060c486948 | ||
|
|
8b176d0598 | ||
|
|
c96d4a6823 | ||
|
|
59032817c7 | ||
|
|
e9d8a853ea | ||
|
|
463ea2b97f | ||
|
|
ec2903e5ee | ||
|
|
4364585ebc | ||
|
|
0a6b7c655b | ||
|
|
db1e9e9b9a | ||
|
|
d92382b6cf | ||
|
|
7c8f2a1325 | ||
|
|
a40447df29 | ||
|
|
5d6b467042 | ||
|
|
e0ff30c212 | ||
|
|
a5b5c8ab37 | ||
|
|
7f12e98de5 | ||
|
|
99133104dd | ||
|
|
970a63c13c | ||
|
|
06c991d8c3 | ||
|
|
739eb72fd0 | ||
|
|
b0d2e9fe31 | ||
|
|
5c51349a85 | ||
|
|
5b740467cb | ||
|
|
e9d9dd2a79 | ||
|
|
3e74cb4832 | ||
|
|
db3c8a49bd | ||
|
|
8a37b535ed | ||
|
|
e6ac1311e7 | ||
|
|
b0d89698fd | ||
|
|
21d063a46c | ||
|
|
02912a653e | ||
|
|
f1cfba7527 | ||
|
|
3e075cd48d | ||
|
|
e03ec4d60f | ||
|
|
ba740c6157 | ||
|
|
34c813ed79 | ||
|
|
545cc2ffe4 | ||
|
|
47b97d9b7f | ||
|
|
bf8fbb0a44 | ||
|
|
552921cf83 | ||
|
|
372874fb3a | ||
|
|
2bd6b72aae | ||
|
|
f02e0060fa | ||
|
|
66b7628972 | ||
|
|
c045399d6b | ||
|
|
1da2fd2a5c | ||
|
|
e07e11fbe7 | ||
|
|
55ed91e313 | ||
|
|
e676c83d7f | ||
|
|
844d142f2e | ||
|
|
bcc694348e | ||
|
|
dfc4255f2f | ||
|
|
4e0ce9adfe | ||
|
|
42dacb2862 | ||
|
|
22db4aae81 | ||
|
|
7fe193866d | ||
|
|
921423679a | ||
|
|
2460f61d3e | ||
|
|
be24559630 | ||
|
|
2b4a6b2e3d | ||
|
|
beddc72189 | ||
|
|
2d6deee753 | ||
|
|
222912d14b | ||
|
|
d131d4ef96 | ||
|
|
e59627adf2 | ||
|
|
d0855987f8 | ||
|
|
c1672613bc | ||
|
|
9945da7dbe | ||
|
|
31ffa90075 | ||
|
|
169d3233e8 | ||
|
|
b3484c1d0e | ||
|
|
910ed716d9 | ||
|
|
eb6364284f | ||
|
|
e21d54654c | ||
|
|
50b8f83428 | ||
|
|
8d2928e49a | ||
|
|
1ef22131e6 | ||
|
|
227b521f9e | ||
|
|
bef5971598 | ||
|
|
aa6e5b703e | ||
|
|
0b35e40a24 | ||
|
|
49bbf3f234 | ||
|
|
c566747d4a | ||
|
|
3a114463f9 | ||
|
|
b4dfb19a3a | ||
|
|
30ef8ed70b | ||
|
|
e1541b2619 | ||
|
|
7c4889f5c9 | ||
|
|
c403497cf4 | ||
|
|
fed397f745 | ||
|
|
d55e596800 | ||
|
|
f700e014c9 | ||
|
|
4e496d7a20 | ||
|
|
8663c7e1c2 | ||
|
|
cb1a98cabf | ||
|
|
369e6d109c | ||
|
|
2c011631f9 | ||
|
|
d3fc2b4477 | ||
|
|
516d45deaa | ||
|
|
7ad51d9d05 | ||
|
|
e3887ae36e | ||
|
|
e23bc2aaa7 | ||
|
|
7fc405408e | ||
|
|
cac06adc6c | ||
|
|
c8ec03424a | ||
|
|
bfea85d22c | ||
|
|
836e9fc545 | ||
|
|
c3726092fd | ||
|
|
dabf02a90d | ||
|
|
2912c93d77 | ||
|
|
17474a3a0c | ||
|
|
f89c2bfb7e | ||
|
|
2902201bfa | ||
|
|
378dcc79bb | ||
|
|
d348d5f20e | ||
|
|
bc24bc64cd | ||
|
|
015e1a41b2 | ||
|
|
94b1a6cfb8 | ||
|
|
1c2976c4d1 | ||
|
|
25c8155609 | ||
|
|
55b07506c2 | ||
|
|
59f34d900a | ||
|
|
4f6054d439 | ||
|
|
a86a1213c7 | ||
|
|
566935fb94 | ||
|
|
3a66746a99 | ||
|
|
337a6d5719 | ||
|
|
51eb5e9998 | ||
|
|
b2969e9441 | ||
|
|
5b9606e8b6 | ||
|
|
685d20f46c | ||
|
|
9ebf3aa043 | ||
|
|
2e4c97661a | ||
|
|
16eb4df556 | ||
|
|
3d9000495c | ||
|
|
6d0039b117 | ||
|
|
311a078ca6 | ||
|
|
371f19f3cd | ||
|
|
870dffbb89 | ||
|
|
ced3c8f0e0 | ||
|
|
8e555149f7 | ||
|
|
a96a27f064 | ||
|
|
a2f3566cd9 | ||
|
|
e655412aca | ||
|
|
1d91ab5d1b | ||
|
|
37359a34f0 | ||
|
|
6eb4045339 | ||
|
|
aebbc75dea | ||
|
|
bc91e94f03 | ||
|
|
d659151dca | ||
|
|
9dffd42e6d | ||
|
|
88455cd52c | ||
|
|
6a1eb10830 | ||
|
|
10edde100e | ||
|
|
40a441f30e | ||
|
|
ea5ae9086a | ||
|
|
0cd524af86 | ||
|
|
4bff5408d8 | ||
|
|
d2caf11191 | ||
|
|
37979a0ca1 | ||
|
|
c9f47e6a37 | ||
|
|
5780c3147a | ||
|
|
98ccbeb4bd | ||
|
|
fbb156b9de | ||
|
|
b73960cebe | ||
|
|
10328f3db4 | ||
|
|
da42ec7eb9 | ||
|
|
97d4439872 | ||
|
|
c3bb221fb3 | ||
|
|
e68cad380e | ||
|
|
96a78a97f0 | ||
|
|
337d2b634b | ||
|
|
475b704f95 | ||
|
|
b992ee9d6b | ||
|
|
d7fa8464c7 | ||
|
|
918c0589eb | ||
|
|
c9d3eb7ccf | ||
|
|
d216edb022 | ||
|
|
afa8783750 | ||
|
|
a661050464 | ||
|
|
c14f990098 | ||
|
|
26ccaf78ec | ||
|
|
12e98e1f3c | ||
|
|
efe27bd570 | ||
|
|
403ea385d7 | ||
|
|
9b51e1174c | ||
|
|
a3b5413f16 | ||
|
|
bce4bb5c4e | ||
|
|
3f92e217f9 | ||
|
|
b0f9637662 | ||
|
|
63ef3918dd | ||
|
|
3c24350306 | ||
|
|
356d4d9729 | ||
|
|
e290064ecc | ||
|
|
77fa1b18c7 | ||
|
|
08a6a82071 | ||
|
|
625748e462 | ||
|
|
6e209d5d77 | ||
|
|
f845fac4da | ||
|
|
b6c32b014c | ||
|
|
06950921e9 | ||
|
|
fc9da22c38 | ||
|
|
02f790ffcb | ||
|
|
af7983be43 | ||
|
|
a83661fd6e | ||
|
|
e1a73e0c44 | ||
|
|
48983773f5 | ||
|
|
73701fda1e | ||
|
|
3deeba4cab | ||
|
|
e3dde17af0 | ||
|
|
49b8cc95ae | ||
|
|
6145331ee4 | ||
|
|
f1839bc6db | ||
|
|
0b58911153 | ||
|
|
ee78446cc5 | ||
|
|
50fe5080e6 | ||
|
|
e1b8394265 | ||
|
|
c23e8fbb02 | ||
|
|
65aeb85e88 | ||
|
|
6c003e0382 | ||
|
|
6b14ffcffb | ||
|
|
df25703cc2 | ||
|
|
12a815e5db | ||
|
|
102836a2c2 | ||
|
|
d38be25d33 | ||
|
|
ac848f9ff4 | ||
|
|
a25a27c3d3 | ||
|
|
22c8e5f433 | ||
|
|
8df8255f18 | ||
|
|
66124d9afb | ||
|
|
7def3a8acc | ||
|
|
5b7fed2cb6 | ||
|
|
838b3bc09d | ||
|
|
ebb585e494 | ||
|
|
7c67c2c6af | ||
|
|
e4f5c7cdf2 | ||
|
|
f09238e512 | ||
|
|
da5f60e7f3 | ||
|
|
807c13e144 | ||
|
|
3dea3d0183 | ||
|
|
35cb7fcf4d | ||
|
|
d2a9a4a4e4 | ||
|
|
e62e9c7401 | ||
|
|
3c5031e711 | ||
|
|
82e84c0f88 | ||
|
|
2c550dc175 | ||
|
|
bdc92deade | ||
|
|
448d31cad9 | ||
|
|
ed1f009c64 | ||
|
|
bb3829a9ed | ||
|
|
0a116202f0 | ||
|
|
4daa88fa59 | ||
|
|
53067f8b92 | ||
|
|
d3a09c3180 | ||
|
|
4d7aacb5f2 | ||
|
|
6b1cf78e41 | ||
|
|
80f1a88b63 | ||
|
|
32da76a2ca | ||
|
|
b3667a8c09 | ||
|
|
3aa48dcd58 | ||
|
|
03f1d57463 | ||
|
|
4725d0de0d | ||
|
|
b766af75f2 | ||
|
|
b2c8779f4c | ||
|
|
df266bda01 | ||
|
|
eed7919d72 | ||
|
|
1e49d1b592 | ||
|
|
ded7197fcb | ||
|
|
2155acb3a3 | ||
|
|
794574957e | ||
|
|
66b19311a7 | ||
|
|
9fc84fc1ac | ||
|
|
f8f9df6d1d | ||
|
|
6e94edb777 | ||
|
|
5f2ac8c33e | ||
|
|
bbe896d48c | ||
|
|
9298054436 | ||
|
|
90b7937796 | ||
|
|
520933b4c5 | ||
|
|
9ea4fb8c82 | ||
|
|
fe0813e831 | ||
|
|
33cebea15b | ||
|
|
e723e5ca3f | ||
|
|
24f1a19310 | ||
|
|
d0959573dc | ||
|
|
939afd5f82 | ||
|
|
d42e58e199 | ||
|
|
000bab4cf5 | ||
|
|
8df1042180 | ||
|
|
313038882c | ||
|
|
41a670166a | ||
|
|
a77496a217 | ||
|
|
430260c985 | ||
|
|
334b0959b0 | ||
|
|
2b31e26ba5 | ||
|
|
7122a29a20 | ||
|
|
f3ddb430a7 | ||
|
|
435bfca186 | ||
|
|
2ef896bdd5 | ||
|
|
59c6c29706 | ||
|
|
a1f35e768f | ||
|
|
00eede0d5d | ||
|
|
cf1864ce0f | ||
|
|
a3d5c86218 | ||
|
|
60d13bf7e8 | ||
|
|
52e0a84829 | ||
|
|
86825e1769 | ||
|
|
7afc531fbb | ||
|
|
ed0490112b | ||
|
|
66c66e3d84 | ||
|
|
b9b625a70d | ||
|
|
b58253cacc | ||
|
|
fbf8732784 | ||
|
|
8fedbe49cb | ||
|
|
1e8ee247ca | ||
|
|
34d2993456 | ||
|
|
e3c5c174ee | ||
|
|
b4e2db0306 | ||
|
|
9cc759ba32 | ||
|
|
ac9f8b9d5a | ||
|
|
3d4a1e4b18 | ||
|
|
123f302744 | ||
|
|
5bae78639e | ||
|
|
5235442a5b | ||
|
|
c62fb615b1 | ||
|
|
78797c64b0 | ||
|
|
8a7584798b | ||
|
|
b50772a38b | ||
|
|
96a7e8038f | ||
|
|
ec050e5d33 | ||
|
|
e2ce65fc5b | ||
|
|
14503bc43b | ||
|
|
00c2f5043e | ||
|
|
bcd90e26b0 | ||
|
|
4eaa8755eb | ||
|
|
ba66910fbd | ||
|
|
90f1bee602 | ||
|
|
1cb5f57864 | ||
|
|
7dc47adb5c | ||
|
|
ac819bcb6e | ||
|
|
b6d668fc66 | ||
|
|
1b488b6da7 | ||
|
|
d3b398ed52 | ||
|
|
d52fd09602 | ||
|
|
d6800d8957 | ||
|
|
2fd7506ed9 | ||
|
|
161084aff2 | ||
|
|
b145cb3247 | ||
|
|
1adbcf697d | ||
|
|
e51355200a | ||
|
|
47818f4f41 | ||
|
|
9b10fd47b0 | ||
|
|
c408368267 | ||
|
|
90b3145e92 | ||
|
|
fbd0e015d5 | ||
|
|
17e25fb842 | ||
|
|
d6d98ee969 | ||
|
|
e0600e3bb9 | ||
|
|
a79d77dfd7 | ||
|
|
56ec9bc224 | ||
|
|
8eef02739a | ||
|
|
6f4ad532e6 | ||
|
|
74a1de8550 | ||
|
|
e529766391 | ||
|
|
a7f5d574dc | ||
|
|
0cc02d9492 | ||
|
|
fa26f6ebae | ||
|
|
f6c2982619 | ||
|
|
5a8649a97f | ||
|
|
e6100debac | ||
|
|
abee94d056 | ||
|
|
92731544ae | ||
|
|
77c7b7dfa1 | ||
|
|
ea64c29fee | ||
|
|
f4bb040ad8 | ||
|
|
515478473a | ||
|
|
9cf3fadd0f | ||
|
|
89c4b3fe88 | ||
|
|
9e5c599f58 | ||
|
|
a950e67c7d | ||
|
|
de6933b2d2 | ||
|
|
748383d74c | ||
|
|
23b9e10323 | ||
|
|
ddb7958da7 | ||
|
|
477cce321f | ||
|
|
7bed63a693 | ||
|
|
2709a9205a | ||
|
|
d19d7b01ec | ||
|
|
a3ad2c1957 | ||
|
|
c3e7a3ec19 | ||
|
|
cba8c9faec | ||
|
|
bcb7fb27d0 | ||
|
|
c310044bec | ||
|
|
5263df24b6 | ||
|
|
dea6ed7ef0 | ||
|
|
d3a0dad323 | ||
|
|
67bf4aea56 | ||
|
|
8c76bad50f | ||
|
|
e27a15023c | ||
|
|
a836f466f4 | ||
|
|
67f0de1f90 | ||
|
|
c642ebf97e | ||
|
|
a21e310d78 | ||
|
|
aba68da542 | ||
|
|
e254f11933 | ||
|
|
ab2274caf0 | ||
|
|
3e4f112f39 | ||
|
|
cc018bf128 | ||
|
|
46d3e4d4d9 | ||
|
|
627bb3f5f6 | ||
|
|
4a44245de9 | ||
|
|
30d027158a | ||
|
|
3fecde49b6 | ||
|
|
cc129a0bce | ||
|
|
b5779dca12 | ||
|
|
42311d9c7a | ||
|
|
294f2cc3a9 | ||
|
|
3dc442801f | ||
|
|
c12343a8b8 | ||
|
|
835557e648 | ||
|
|
4185ea688f | ||
|
|
0532089246 | ||
|
|
24b155015c | ||
|
|
8ceeec7d36 | ||
|
|
75e68f6fc8 | ||
|
|
3de81cedd6 | ||
|
|
5dc8dd0e8a | ||
|
|
b8d07fee83 | ||
|
|
be8e33daf6 | ||
|
|
efc8323c63 | ||
|
|
831951efc4 | ||
|
|
2131b94ddb | ||
|
|
b3504e768c | ||
|
|
350457b9b8 | ||
|
|
355bf3b48b | ||
|
|
0e94236735 | ||
|
|
673a38c5d9 | ||
|
|
8f57753656 | ||
|
|
a2f839fada | ||
|
|
440883e9e8 | ||
|
|
d3da73136c | ||
|
|
7272fd15ac | ||
|
|
518800239c | ||
|
|
30bd79390a | ||
|
|
d1e2430aac | ||
|
|
bfe2c44f55 | ||
|
|
845951a0db | ||
|
|
c1172a685a | ||
|
|
4bcc3b532d | ||
|
|
ba89e43b62 | ||
|
|
4469461b38 | ||
|
|
a548463fae | ||
|
|
45b802a625 | ||
|
|
ba0965ef87 | ||
|
|
d85898cf29 | ||
|
|
73f328860b | ||
|
|
a0c322a535 | ||
|
|
86f58c95de | ||
|
|
99fe91586d | ||
|
|
0c2d23dfe0 | ||
|
|
2433819c4f | ||
|
|
97fc44c930 | ||
|
|
409892d65f | ||
|
|
62f3df7ed5 | ||
|
|
4cf8913d31 | ||
|
|
82647358b2 | ||
|
|
6cc2f510bf | ||
|
|
9a65abf6b8 | ||
|
|
b3185ad90c | ||
|
|
c887ff1f47 | ||
|
|
22e5d39884 | ||
|
|
9ee6824ccd | ||
|
|
da73865f25 | ||
|
|
627b9f1abb | ||
|
|
1b8001bf98 | ||
|
|
e59e07e4f7 | ||
|
|
ee239b1c06 | ||
|
|
bf459bf983 | ||
|
|
94eaa6740e | ||
|
|
6d7c1b0743 | ||
|
|
6b864ee21d | ||
|
|
1ffa8904db | ||
|
|
ad916abd76 | ||
|
|
9702711094 | ||
|
|
8094754239 | ||
|
|
bc5e303d5f | ||
|
|
ec89e003c8 | ||
|
|
0b0f2d30ab | ||
|
|
1df61aba4c | ||
|
|
da9220fa81 | ||
|
|
da4f356fab | ||
|
|
d932b20c6e | ||
|
|
2f9a2afd9e | ||
|
|
c1df7c410e | ||
|
|
54ebd6cf90 | ||
|
|
6b87d22a70 | ||
|
|
c4f7eaf259 | ||
|
|
236e42d0bc | ||
|
|
8c90db04b5 | ||
|
|
1261ce513f | ||
|
|
b07c51532c | ||
|
|
d763eefc2e | ||
|
|
e01c0a0f4c | ||
|
|
5a7a323f3a | ||
|
|
46be5e8097 | ||
|
|
bc2a86d66a | ||
|
|
11a3d4b840 | ||
|
|
6930b68484 | ||
|
|
c7c0647dd2 | ||
|
|
7b276e6797 | ||
|
|
3daba0c79e | ||
|
|
2c85e8e23a | ||
|
|
b0f1d1fcf0 | ||
|
|
611526596a | ||
|
|
fa373f9660 | ||
|
|
48bb8ef775 | ||
|
|
bbea797b0c | ||
|
|
066ad73423 | ||
|
|
0695c26703 | ||
|
|
4fb3331c6a | ||
|
|
b6c6eea6f5 | ||
|
|
1af95f5146 | ||
|
|
ed3487aa22 | ||
|
|
77af733e44 | ||
|
|
aaf80d1d43 | ||
|
|
9e9b945a46 | ||
|
|
308a8dc925 | ||
|
|
7d9d0ff6f7 | ||
|
|
f8a8e7b2a5 | ||
|
|
3285c1b196 | ||
|
|
4bc23affe0 | ||
|
|
bca56eea48 | ||
|
|
588ad3c4a4 | ||
|
|
c6a6c918e0 | ||
|
|
366bbbbea3 | ||
|
|
293305790d | ||
|
|
8bc09eb054 | ||
|
|
db1b678c3a | ||
|
|
6f32bf52cc | ||
|
|
49d173a02d | ||
|
|
4069b621d5 | ||
|
|
a7147c99c6 | ||
|
|
6fe308202e | ||
|
|
63ecb7395d | ||
|
|
8cf1cd5a62 | ||
|
|
93c0467bba | ||
|
|
8f5f67de41 | ||
|
|
f8ca49d8df | ||
|
|
c119230fd6 | ||
|
|
14a36d3f5e | ||
|
|
fde1ee45f9 | ||
|
|
6774bc2c53 | ||
|
|
94c62263ed | ||
|
|
495c3859af | ||
|
|
3e003f5e32 | ||
|
|
1c8b509d7d | ||
|
|
58af5c08f9 | ||
|
|
55e968c9e0 | ||
|
|
0b9092702b | ||
|
|
8376698534 | ||
|
|
3dc02310b6 | ||
|
|
e70bc94ab6 | ||
|
|
9285ebf8a2 | ||
|
|
4ca785eb15 | ||
|
|
c57cbd8591 | ||
|
|
7fb1289205 | ||
|
|
f02681ae01 | ||
|
|
c725105b1f | ||
|
|
36aa4bcb46 | ||
|
|
b98f8f9fe1 | ||
|
|
bcfcf88e78 | ||
|
|
fd0de3a47e | ||
|
|
c7b9ae02fd | ||
|
|
4afb022572 | ||
|
|
8610faef22 | ||
|
|
6d677541c7 | ||
|
|
49220ec163 | ||
|
|
40a676b7ac | ||
|
|
50bf146d1e | ||
|
|
40d378abfb | ||
|
|
1b09b085a7 | ||
|
|
9f2acfe91f | ||
|
|
e856359e23 | ||
|
|
faa231e278 | ||
|
|
3d44795476 | ||
|
|
f50e709985 | ||
|
|
d70c542547 | ||
|
|
57201fb856 | ||
|
|
9b142e580b | ||
|
|
3878daffd6 | ||
|
|
34954e6f74 | ||
|
|
e66a135d5d | ||
|
|
66698503b8 | ||
|
|
ec2967c362 | ||
|
|
4ae07468f3 | ||
|
|
6193eb13fa | ||
|
|
55cd15bfc6 | ||
|
|
5f46ff8836 | ||
|
|
cdfbd5f62b | ||
|
|
b43f3987ec | ||
|
|
240527d06c | ||
|
|
276cb7b7e8 | ||
|
|
048aa6cbcc | ||
|
|
fa9949b9d0 | ||
|
|
500072d855 | ||
|
|
04bcfa6e2d | ||
|
|
26afee9bed | ||
|
|
f29f4abdd7 | ||
|
|
4589d6fe9d | ||
|
|
201e652fa2 | ||
|
|
8bc07e6071 | ||
|
|
6baaad045a | ||
|
|
74c1703310 | ||
|
|
a921828e51 | ||
|
|
e1fd83e6a7 | ||
|
|
7d68e287cc | ||
|
|
f39a975e20 | ||
|
|
b8a3c29745 | ||
|
|
9cd4ff05c9 | ||
|
|
4687779702 | ||
|
|
8731915330 | ||
|
|
093259389e | ||
|
|
6bcb3d1080 | ||
|
|
71a217b210 | ||
|
|
b98256e434 | ||
|
|
40f81aecf5 | ||
|
|
d1737a96fb | ||
|
|
84f48c465d | ||
|
|
60efcad481 | ||
|
|
53a9f107ca | ||
|
|
6fa2b89831 | ||
|
|
d72ebb9bb8 | ||
|
|
81ae07abdb | ||
|
|
6d20ba70a1 | ||
|
|
67f55bae2c | ||
|
|
9b59de1720 | ||
|
|
798d16a6c6 | ||
|
|
c9152f2af8 | ||
|
|
24b09e97cd | ||
|
|
a6b7295092 | ||
|
|
725d159e44 | ||
|
|
ef21da15e6 | ||
|
|
de5d2eaa9b | ||
|
|
e2badaa4c6 | ||
|
|
916dec2418 | ||
|
|
7f387dd7c3 | ||
|
|
6534a909d6 | ||
|
|
b149bd4149 | ||
|
|
49138c6e37 | ||
|
|
258b22f5bc | ||
|
|
b887c5cf3c | ||
|
|
42871d9ffc | ||
|
|
a7696d5aed | ||
|
|
02718e291b | ||
|
|
76c4f2a2b4 | ||
|
|
fbc6a10f2e | ||
|
|
5d8f8cbc79 | ||
|
|
0dfe3bcb0a | ||
|
|
3f81383285 | ||
|
|
e8a49e7687 | ||
|
|
ed48efb9aa | ||
|
|
c3291b967b | ||
|
|
92e867010c | ||
|
|
5059aef574 | ||
|
|
c50d62b82f | ||
|
|
f46a12b3b4 | ||
|
|
dd0b622826 | ||
|
|
835eb9fbea | ||
|
|
8cb10f9fcc | ||
|
|
30e26c9e35 | ||
|
|
01329a01ab | ||
|
|
0e11b33f6e | ||
|
|
5113bca025 | ||
|
|
71c5972fc7 | ||
|
|
ba55160d6b | ||
|
|
24e973d792 | ||
|
|
96427c1dd2 | ||
|
|
f15d5cbb64 | ||
|
|
c8a5a3e32e | ||
|
|
32fdd11c93 | ||
|
|
7f830b4f43 | ||
|
|
d6c57402cf | ||
|
|
42bea00184 | ||
|
|
5a6b0ff398 | ||
|
|
1b57bc0c75 | ||
|
|
96544009f5 | ||
|
|
44c8765add | ||
|
|
bc31019b67 | ||
|
|
ff16348d4c | ||
|
|
7310f4d85b | ||
|
|
ac331504e9 | ||
|
|
6823f76ff4 | ||
|
|
c3ac3219fe | ||
|
|
104ef7a0c2 | ||
|
|
2bbf8ed8a8 | ||
|
|
5dc6644ac7 | ||
|
|
9c0f97eaf7 | ||
|
|
164e7895bf | ||
|
|
fb46fb9ca3 | ||
|
|
effb7efc37 | ||
|
|
f5098e7e45 | ||
|
|
b15d632308 | ||
|
|
e534efa3e9 | ||
|
|
8001314718 | ||
|
|
e91ac4c5ad | ||
|
|
e19bdcb97d | ||
|
|
b8aa46a767 | ||
|
|
ab79ee32fd | ||
|
|
8d9c49a281 | ||
|
|
e659b60d8b | ||
|
|
7987bfee39 | ||
|
|
b6075f1a97 | ||
|
|
9820a69443 | ||
|
|
753118687d | ||
|
|
35e234ed6e | ||
|
|
2d54b096af | ||
|
|
493f046c03 | ||
|
|
3b6d1838b4 | ||
|
|
769ab940ed | ||
|
|
498a9e6e68 | ||
|
|
699be4887c | ||
|
|
854c58ded7 | ||
|
|
a19a4a5556 | ||
|
|
59e51f18fd | ||
|
|
7d981ba8ce | ||
|
|
6dad33f47c | ||
|
|
18c3925fa3 | ||
|
|
000e2666fb | ||
|
|
91ff331fec | ||
|
|
e3c7c0185d | ||
|
|
405650840e | ||
|
|
1bd188e0d2 | ||
|
|
9de7aa6377 | ||
|
|
d4c0a4248c | ||
|
|
c4167a5517 | ||
|
|
c055c35361 | ||
|
|
a318a226de | ||
|
|
e88cb2fea6 | ||
|
|
0ab072a95e | ||
|
|
5e8322b272 | ||
|
|
5a3b888f43 | ||
|
|
d7473edb41 | ||
|
|
d125c85a2b | ||
|
|
b46e663778 | ||
|
|
2787c9b0ef | ||
|
|
e77442cf34 | ||
|
|
322780a5f3 | ||
|
|
a54d34ea5b | ||
|
|
bc793749a5 | ||
|
|
a9916940ef | ||
|
|
b7f4931de5 | ||
|
|
327b728bef | ||
|
|
a9510eec88 | ||
|
|
d6db557f50 | ||
|
|
5ae56e3f72 | ||
|
|
1c9ebb59b1 | ||
|
|
f520ceeb0d | ||
|
|
0df4d2fd4b | ||
|
|
596491d932 | ||
|
|
72fb109147 | ||
|
|
40b336d2a5 | ||
|
|
5958df71a2 | ||
|
|
26d9af8367 | ||
|
|
cdaf2d41c7 | ||
|
|
d9ee104167 | ||
|
|
0b9eeb7cdb | ||
|
|
9b558ddc51 | ||
|
|
b857afe45b | ||
|
|
1d77c8de10 | ||
|
|
503f3a6372 | ||
|
|
d2fab55561 | ||
|
|
b955416458 | ||
|
|
18a2722e4d | ||
|
|
c7e8d55926 | ||
|
|
48698bf0b7 | ||
|
|
f79b3fc322 | ||
|
|
0b9e753c2f | ||
|
|
5b3f7be1c4 | ||
|
|
f2208f5f8e | ||
|
|
79b5248b83 | ||
|
|
d4791bef28 | ||
|
|
d861cb0d74 | ||
|
|
67f19f79c2 | ||
|
|
5f359b14f7 | ||
|
|
cda1900b14 | ||
|
|
c8c0a89dc6 | ||
|
|
9a10cc15f4 | ||
|
|
345f1eacde | ||
|
|
fa937bf3a7 | ||
|
|
172758020c | ||
|
|
5ff178084e | ||
|
|
c012e0ff8d | ||
|
|
f777c1c2e0 | ||
|
|
782ce22d99 | ||
|
|
f5246039e5 | ||
|
|
4736604b4d | ||
|
|
09cba0135e | ||
|
|
8119edb495 | ||
|
|
17bffb0803 | ||
|
|
cbe139fced | ||
|
|
946d8567fe | ||
|
|
7b5d5bdeef | ||
|
|
a1551bcf2b | ||
|
|
5495825b1d | ||
|
|
6e36f84cc6 | ||
|
|
cddf2d8f7c | ||
|
|
5f17e35c5a | ||
|
|
231a833ad0 | ||
|
|
a870295d42 | ||
|
|
ddda8f6bda | ||
|
|
bf7372fefa | ||
|
|
3451b6fc7a | ||
|
|
dbf2570353 | ||
|
|
d0707fac91 | ||
|
|
35ebdd6022 | ||
|
|
92a77e5cac | ||
|
|
a2922c9ad5 | ||
|
|
9f9b52dd26 | ||
|
|
2482c7ab68 | ||
|
|
7fdabda97e | ||
|
|
7306414de7 | ||
|
|
97d7bfb52a | ||
|
|
9f85a2a011 | ||
|
|
ab47d276db | ||
|
|
44e38b1d5e | ||
|
|
e9fa2bb556 | ||
|
|
183f466ac4 | ||
|
|
cc7b7e2b79 | ||
|
|
a17fa70b1b | ||
|
|
7b63b6f485 | ||
|
|
ed5d81fa1a | ||
|
|
c2d12b2de2 | ||
|
|
8966dc2f2f | ||
|
|
59ab1ef9f4 | ||
|
|
227cca00a2 | ||
|
|
16dab8e583 | ||
|
|
1c97b916d9 | ||
|
|
94b52cfd87 | ||
|
|
82b1db1711 | ||
|
|
638a8f03f0 | ||
|
|
dbce944934 | ||
|
|
f1ad137fb7 | ||
|
|
5eb1cff9b5 | ||
|
|
b074138e39 | ||
|
|
6ca051e5f3 | ||
|
|
fd87d930a7 | ||
|
|
95a9691a8b | ||
|
|
e2d6e2649e | ||
|
|
d3ff1bf01d | ||
|
|
d68b8cf6e4 | ||
|
|
6615ab2fba | ||
|
|
5e83a36009 | ||
|
|
51ee483e9d | ||
|
|
62f5b2fb2e | ||
|
|
6583f31459 | ||
|
|
217f5fc5ac | ||
|
|
297dc93fb4 | ||
|
|
86c6760f58 | ||
|
|
498e96a419 | ||
|
|
c0c59dc932 | ||
|
|
f3b3d321e5 | ||
|
|
67e4433dc2 | ||
|
|
4a7ae8df71 | ||
|
|
09f92122d5 | ||
|
|
8118b7b7d6 | ||
|
|
c93b85ac53 | ||
|
|
6378f6caec | ||
|
|
d824db82a3 | ||
|
|
de6b597eff | ||
|
|
6111d05219 | ||
|
|
f83c91d612 | ||
|
|
c8f360414e | ||
|
|
fa4393d77e | ||
|
|
25c314befc | ||
|
|
2fe79e68cd | ||
|
|
37d05a2365 | ||
|
|
0111d261a4 | ||
|
|
0a23e1dc13 | ||
|
|
ef5ff71346 | ||
|
|
1697b4cacb | ||
|
|
6b4710a8d1 | ||
|
|
6f2a8f08ba | ||
|
|
4e6abf596d | ||
|
|
9018e2ab6a | ||
|
|
99d023c5f3 | ||
|
|
da7d8256eb | ||
|
|
88bffaa0d0 | ||
|
|
1159140d9f | ||
|
|
5ac7050f7a | ||
|
|
8b513de64c | ||
|
|
144e6d203f | ||
|
|
2d2154ed65 | ||
|
|
2d086ab596 | ||
|
|
776c67cc0f | ||
|
|
78ef490646 | ||
|
|
4da5cc9778 | ||
|
|
6930656897 | ||
|
|
349753a013 | ||
|
|
f53a3a00e1 | ||
|
|
e2113fe417 | ||
|
|
f9288295e6 | ||
|
|
fcc57f2fc0 | ||
|
|
5cb6ee9eeb | ||
|
|
b38f0825e7 | ||
|
|
f51e94dede | ||
|
|
47bf93d291 | ||
|
|
41fd1c6124 | ||
|
|
be1b9a3994 | ||
|
|
61a196394b | ||
|
|
5b442e4350 | ||
|
|
c9920b9823 | ||
|
|
2faa2dbddb | ||
|
|
76607062f0 | ||
|
|
a8cac9b7e9 | ||
|
|
dfacc8832f | ||
|
|
93f643f851 | ||
|
|
cbf5d548be | ||
|
|
6946b89e17 | ||
|
|
dc4911b1ca | ||
|
|
6ad218f9a0 | ||
|
|
36efa172ee | ||
|
|
a7a2dfd296 | ||
|
|
7baaeacac3 | ||
|
|
021f2eb8a1 | ||
|
|
cb720143c7 | ||
|
|
731de2ff31 | ||
|
|
24e28da203 | ||
|
|
bde0a3e99c | ||
|
|
0415b9982b | ||
|
|
99ada42d97 | ||
|
|
ee32d36312 | ||
|
|
ef928ee3cb | ||
|
|
c66559345f | ||
|
|
3ad95d50d4 | ||
|
|
bc7f601f84 | ||
|
|
e8cbdb7881 | ||
|
|
b0c2b15a3e | ||
|
|
c0f04bbb37 | ||
|
|
c320fc655e | ||
|
|
ac2815c781 | ||
|
|
dd8a199e99 | ||
|
|
161c4a6856 | ||
|
|
67b04b30bf | ||
|
|
7696b45fc3 | ||
|
|
641921eb6c | ||
|
|
a02d2fb93e | ||
|
|
b93632a53a | ||
|
|
09938641cd | ||
|
|
7acf0b2107 | ||
|
|
4eb4073661 | ||
|
|
7b53457ef3 | ||
|
|
691b094a40 | ||
|
|
68e9e54c88 | ||
|
|
d0d99125c4 | ||
|
|
129000d01f | ||
|
|
47f9d026dd | ||
|
|
b75b0b5552 | ||
|
|
3dd6249f1e | ||
|
|
8451113039 | ||
|
|
a79b216875 | ||
|
|
52217c2f63 | ||
|
|
7edacf6e24 | ||
|
|
58558a1950 | ||
|
|
1607c85ae5 | ||
|
|
a6ff342948 | ||
|
|
d2eb54ebf8 | ||
|
|
a41bd18599 | ||
|
|
bb64c80964 | ||
|
|
2fb56f1f9f | ||
|
|
35676fe2f5 | ||
|
|
81ed6f177e | ||
|
|
4bcd1df6bb | ||
|
|
6fae56dd60 | ||
|
|
430f0e9013 | ||
|
|
d7f080a978 | ||
|
|
5d18f73654 | ||
|
|
57fc079267 | ||
|
|
706f4cd74a | ||
|
|
2e3646cc96 | ||
|
|
844cc515d5 | ||
|
|
f47904134b | ||
|
|
d72b00af3c | ||
|
|
bd053a98c7 | ||
|
|
c18208ca59 | ||
|
|
acbe5af8ce | ||
|
|
c81146505a | ||
|
|
6b9a1d4040 | ||
|
|
508fbd49e9 | ||
|
|
e18a6c6bb8 | ||
|
|
16237ef393 | ||
|
|
5332d02f36 | ||
|
|
7258120a0d | ||
|
|
8b7bc69ba1 | ||
|
|
5a807eb93f | ||
|
|
130682c93b | ||
|
|
02e29e4681 | ||
|
|
6943eb4463 | ||
|
|
939a18a4d2 | ||
|
|
ccbe415315 | ||
|
|
511af98dea | ||
|
|
a9d94112f5 | ||
|
|
1bca6029fe | ||
|
|
c027aa8bf6 | ||
|
|
ce7d86e0df | ||
|
|
5dfaf866c9 | ||
|
|
5b66e87621 | ||
|
|
851dd0f84f | ||
|
|
2188358f13 | ||
|
|
10997dd175 | ||
|
|
da9cc5f097 | ||
|
|
c005ec3f78 | ||
|
|
6018fe5872 | ||
|
|
bf0e70999e | ||
|
|
175d5b3dd6 | ||
|
|
9e61b8325b | ||
|
|
c4d76cde8f | ||
|
|
9c44fd8c4a | ||
|
|
f9f8c8f336 | ||
|
|
0fb3ccb9e9 | ||
|
|
0e5fd0be2c | ||
|
|
1b45daee49 | ||
|
|
9f384e3fc1 | ||
|
|
377f919d42 | ||
|
|
e6445afac5 | ||
|
|
095015d397 | ||
|
|
614183cbb1 | ||
|
|
0bc92a284d | ||
|
|
d3b6640b4a | ||
|
|
a1a48888c3 | ||
|
|
bb622bf747 | ||
|
|
946c56494e | ||
|
|
2a0e21ca76 | ||
|
|
ea893432e8 | ||
|
|
bf40956491 | ||
|
|
48948e1217 | ||
|
|
27412c89dd | ||
|
|
56f1d24e9d | ||
|
|
ab066a11a8 | ||
|
|
e35e81e554 | ||
|
|
551e48da4f | ||
|
|
21ce0aa17e | ||
|
|
2d6f2830e1 | ||
|
|
24ed8a2549 | ||
|
|
a336381849 | ||
|
|
208c3a780c | ||
|
|
1e112fa50a | ||
|
|
38fc5510ed | ||
|
|
1a1f4717aa | ||
|
|
977c6114ba | ||
|
|
27fddae286 | ||
|
|
615ac7f297 | ||
|
|
87d28e896d | ||
|
|
23f10418d7 | ||
|
|
27e7f48a44 | ||
|
|
7fd8850ddb | ||
|
|
7a4d3dd496 | ||
|
|
c1d7936689 | ||
|
|
1ec4da6947 | ||
|
|
8430c2f9af | ||
|
|
7cc6bccdec | ||
|
|
aeba64feaf | ||
|
|
04b4191de5 | ||
|
|
1da7473f26 | ||
|
|
95d13bd033 | ||
|
|
7eb4fcdaf4 | ||
|
|
809b4b227c | ||
|
|
ff51a2da9b | ||
|
|
be83681665 | ||
|
|
2bd30af72b | ||
|
|
d7b021061b | ||
|
|
73647f1669 | ||
|
|
d341cb3d5c | ||
|
|
30438410d6 | ||
|
|
b264ebabc0 | ||
|
|
2edc88e0a1 | ||
|
|
552dda46f8 | ||
|
|
2340a127d6 | ||
|
|
ecde504a79 | ||
|
|
0b781065d2 | ||
|
|
bcb57ce5f9 | ||
|
|
6392a8cdd0 | ||
|
|
34e3dd24b4 | ||
|
|
c303d3730c | ||
|
|
0a53ce17a2 | ||
|
|
7973651e05 | ||
|
|
672b150972 | ||
|
|
d8bcbd7d0a | ||
|
|
ff2f1477bb | ||
|
|
1139073297 | ||
|
|
39deac2747 | ||
|
|
0a35868367 | ||
|
|
608f869789 | ||
|
|
c30bd1a18e | ||
|
|
20a81af95f | ||
|
|
531c70b476 | ||
|
|
dae0aedc99 | ||
|
|
5fde03f4b0 | ||
|
|
48f53b529b | ||
|
|
4d9b0c6138 | ||
|
|
70cabec876 | ||
|
|
60423376cf | ||
|
|
22c646294a | ||
|
|
10b317cf34 | ||
|
|
03f0c44cac | ||
|
|
caa0e5db8d | ||
|
|
b862e464f8 | ||
|
|
3d5257592b | ||
|
|
ff76715cd2 | ||
|
|
cdb0a9c953 | ||
|
|
b0acae81b0 | ||
|
|
afc616d263 | ||
|
|
e066b4dcb1 | ||
|
|
9ea495902e | ||
|
|
d786c367b4 | ||
|
|
a391004432 | ||
|
|
dd97a2674d | ||
|
|
437c4c91bc | ||
|
|
575f1f98b0 | ||
|
|
2ee6ab6332 | ||
|
|
3d862538d2 | ||
|
|
4bd36e0460 | ||
|
|
7fbf0f1988 | ||
|
|
066127013b | ||
|
|
f675208d72 | ||
|
|
36aa69cf66 | ||
|
|
66b77ffd08 | ||
|
|
d2a3e4869a | ||
|
|
a2dc7c7f31 | ||
|
|
55ac69776a | ||
|
|
7a7c9b0076 | ||
|
|
77d40230a8 | ||
|
|
e4556040a8 | ||
|
|
755b3934a4 | ||
|
|
2d77fb72a5 | ||
|
|
106b0df42e | ||
|
|
c31ac4cf7e | ||
|
|
7b309df0c5 | ||
|
|
326f524e7c | ||
|
|
315ad20111 | ||
|
|
b1daf17a61 | ||
|
|
9db99befb6 | ||
|
|
aebc443b62 | ||
|
|
2c0e5586e8 | ||
|
|
25f7557751 | ||
|
|
59ebf7b762 | ||
|
|
1abe9db8e0 | ||
|
|
e4363f9ed8 | ||
|
|
e00b545548 | ||
|
|
1aa32c2036 | ||
|
|
65824ef814 | ||
|
|
d17bc33bfb | ||
|
|
d874ac92b4 | ||
|
|
0362449fe4 | ||
|
|
0d4c062487 | ||
|
|
ec622022f9 | ||
|
|
e9adc3fa4e | ||
|
|
5bc63a321c | ||
|
|
6317380c8d | ||
|
|
a7f007f475 | ||
|
|
fcffc4a898 | ||
|
|
8ed4c66117 | ||
|
|
38486223b2 | ||
|
|
ac5e7d2b1e | ||
|
|
cf4138f385 | ||
|
|
af7803e94b | ||
|
|
10b631bfb4 | ||
|
|
76f1c194dc | ||
|
|
0c9bc95dfc | ||
|
|
6f0d19d916 | ||
|
|
427d3169b6 | ||
|
|
0fc828c816 | ||
|
|
2d97177eff | ||
|
|
33dfcc700b | ||
|
|
09c8193c8f | ||
|
|
4f4128075f | ||
|
|
9ab3e67ba2 | ||
|
|
ed31860071 | ||
|
|
ddb84cc16d | ||
|
|
5b59e450f7 | ||
|
|
a6c3b1f1d4 | ||
|
|
bf6b09b9f5 | ||
|
|
c95eed3fe0 | ||
|
|
9d7cdd56b5 | ||
|
|
0d70302963 | ||
|
|
32a09660b4 | ||
|
|
0612097f81 | ||
|
|
b0c373b6af | ||
|
|
4839cdf261 | ||
|
|
5977c442b1 | ||
|
|
d05dcac16f | ||
|
|
2cdfe459be | ||
|
|
721b27d222 | ||
|
|
be2def3fc8 | ||
|
|
7259dba90d | ||
|
|
ef5bfcb48b | ||
|
|
446baff697 | ||
|
|
bcf701b287 | ||
|
|
22ab99cbd6 | ||
|
|
98ee60e06f | ||
|
|
a3abdb5d19 | ||
|
|
e3ebeb9dde | ||
|
|
646ed4f132 | ||
|
|
128ce91951 | ||
|
|
aa0eb02968 | ||
|
|
637bd885cf | ||
|
|
337afe228f | ||
|
|
4541835487 | ||
|
|
04d9603449 | ||
|
|
671a8d0180 | ||
|
|
3950878690 | ||
|
|
eaac627600 | ||
|
|
35f8919e73 | ||
|
|
cb5a528550 | ||
|
|
1f95d7b982 | ||
|
|
46971ee985 | ||
|
|
e67009ee2e | ||
|
|
9d3da98251 | ||
|
|
b94de6e947 | ||
|
|
f8a1d4f414 | ||
|
|
7deb268de8 | ||
|
|
47b5cbd211 | ||
|
|
a4e9b9ccfe | ||
|
|
99be4f5a61 | ||
|
|
ba28ab1680 | ||
|
|
e51b8aadae | ||
|
|
33354aa07e | ||
|
|
730b71fad8 | ||
|
|
364cf216a0 | ||
|
|
3cb48ac562 | ||
|
|
ea65283023 | ||
|
|
d2003cc32d | ||
|
|
1766e27337 | ||
|
|
442c324243 | ||
|
|
3134711240 | ||
|
|
546fc965f8 | ||
|
|
9ab45d9118 | ||
|
|
b1ae86757b | ||
|
|
42eeec5897 | ||
|
|
c12283bb16 | ||
|
|
b856b21fc6 | ||
|
|
72a0d1edef | ||
|
|
c0a0e01cf6 | ||
|
|
78bf008c36 | ||
|
|
5857c22daf | ||
|
|
5f73ba1371 | ||
|
|
4c09835abc | ||
|
|
0a025901c5 | ||
|
|
9768e4518f | ||
|
|
1f802ccb5a | ||
|
|
e1306a8e6a | ||
|
|
997c906b5f | ||
|
|
2530196cf8 | ||
|
|
340bea3271 | ||
|
|
3df3bba756 | ||
|
|
a9863fe670 | ||
|
|
7b49b4e985 | ||
|
|
577db88f8e | ||
|
|
01a2e650a4 | ||
|
|
cd9f7931c9 | ||
|
|
2b04ae4e4a | ||
|
|
cd0b82e794 | ||
|
|
0ddcffe601 | ||
|
|
712d106a44 | ||
|
|
34c5560cb0 | ||
|
|
dcba1488a6 | ||
|
|
8e4b156f11 | ||
|
|
ab98c3bd28 | ||
|
|
7f98a99e90 | ||
|
|
101b80c234 | ||
|
|
44598babcb | ||
|
|
51edfb4604 | ||
|
|
12d6fa1494 | ||
|
|
99a15ac2ae | ||
|
|
093a9c8174 | ||
|
|
464dfc4e67 | ||
|
|
1c7f9826b4 | ||
|
|
e397a49c23 | ||
|
|
8c925237e7 | ||
|
|
0593d52b91 | ||
|
|
7b7d714109 | ||
|
|
e9aa87f62b | ||
|
|
8f5d735b2f | ||
|
|
e24f4867df | ||
|
|
ef024ca106 | ||
|
|
4c519d9d98 | ||
|
|
94cb96b288 | ||
|
|
108a0d36b7 | ||
|
|
efb097a76b | ||
|
|
af03042852 | ||
|
|
21667bc7e1 | ||
|
|
19b6c15fff | ||
|
|
3ef502024d | ||
|
|
e55cee7372 | ||
|
|
b72eb838c2 | ||
|
|
b21191dd55 | ||
|
|
76b17a8d04 | ||
|
|
e97d1a0cf8 | ||
|
|
c875d887b7 | ||
|
|
44d9cbca81 | ||
|
|
6e399101fd | ||
|
|
e8e3617ba6 | ||
|
|
45fa30c007 | ||
|
|
15768d9c4d | ||
|
|
a1fcaa398c | ||
|
|
871643d98d | ||
|
|
91659d6488 | ||
|
|
0076ea7bff | ||
|
|
e79da7bc05 | ||
|
|
00206a62ab | ||
|
|
d0b0a33be3 | ||
|
|
6ea21e95b6 | ||
|
|
c226dafd0d | ||
|
|
d4c21a23f4 | ||
|
|
b76ae5b921 | ||
|
|
b48e5af9a0 | ||
|
|
d36c2a74cb | ||
|
|
a1e0596450 | ||
|
|
596e243374 | ||
|
|
326ad08ba2 | ||
|
|
f63d4edbb4 | ||
|
|
0057ed6786 | ||
|
|
44b6bcbcaa | ||
|
|
a45c82c5f7 | ||
|
|
98133a4eb6 | ||
|
|
44c2fd223d | ||
|
|
fc249eefda | ||
|
|
1a1eb4e7aa | ||
|
|
723fdc6245 | ||
|
|
43a47b8bdf | ||
|
|
ab5647145f | ||
|
|
856981e0ed | ||
|
|
09bec0e28b | ||
|
|
2f0bf3b325 | ||
|
|
51278424c1 | ||
|
|
bfe26de026 | ||
|
|
db100439cb | ||
|
|
c37f54c86f | ||
|
|
e0262d9712 | ||
|
|
63fb5a22be | ||
|
|
05dda59cf6 | ||
|
|
5628bcca78 | ||
|
|
6042d9a7d8 | ||
|
|
144239394d | ||
|
|
d712ee8451 | ||
|
|
a8c1348235 | ||
|
|
148d9202bf | ||
|
|
44442e6407 | ||
|
|
c78237cb86 | ||
|
|
8fc0f33dd5 | ||
|
|
2010702880 | ||
|
|
29c31a2404 | ||
|
|
cd77981102 | ||
|
|
4f78d1e29c | ||
|
|
5be79454c3 | ||
|
|
d8c14ff31e | ||
|
|
9e1be4ecd2 | ||
|
|
327d5c3a53 | ||
|
|
852ca21e38 | ||
|
|
23a549ac65 | ||
|
|
3e9630afe8 | ||
|
|
2bf924b732 | ||
|
|
3686804f7e | ||
|
|
4b8f99d7a3 | ||
|
|
4d996044e6 | ||
|
|
53a32153a5 | ||
|
|
cbe688adbc | ||
|
|
8e7772c9c3 | ||
|
|
ea7759b322 | ||
|
|
8cc51d5e9e | ||
|
|
fdd36b0766 | ||
|
|
4f22bbf4d4 | ||
|
|
34c1c0d76a | ||
|
|
feafa586ae | ||
|
|
786691e97e | ||
|
|
155368be3b | ||
|
|
a944cfc8d0 | ||
|
|
bc7366b862 | ||
|
|
bb080c47f6 | ||
|
|
402137711c | ||
|
|
002da5a6f5 | ||
|
|
376fee952d | ||
|
|
761f682d44 | ||
|
|
40aea44470 | ||
|
|
8eba7aab89 | ||
|
|
bc54d310f2 | ||
|
|
f102c2e7dd | ||
|
|
1ce9a8540b | ||
|
|
f101dc5592 | ||
|
|
55de63f6fa | ||
|
|
7954f6b51c | ||
|
|
234a2c72b0 | ||
|
|
7a22b03713 | ||
|
|
52d404a267 | ||
|
|
6e086fe574 | ||
|
|
8206eb8915 | ||
|
|
8288f38281 | ||
|
|
99efb33b3f | ||
|
|
57c870e15d | ||
|
|
3f9c4df32d | ||
|
|
6b054651a7 | ||
|
|
fe6bef0af1 | ||
|
|
358e5fa534 | ||
|
|
b5e9173cbb | ||
|
|
14a081b814 | ||
|
|
9a9319eea9 | ||
|
|
05984093f0 | ||
|
|
2c4851bd2e | ||
|
|
c2f403f0eb | ||
|
|
00e584312c | ||
|
|
f6c042e58e | ||
|
|
fddeb0e672 | ||
|
|
f311afaab3 | ||
|
|
0323191436 | ||
|
|
fd4c850df7 | ||
|
|
45ee442b4c | ||
|
|
f887d9bd79 | ||
|
|
d6c60f873a | ||
|
|
ff46652752 | ||
|
|
af9e749edb | ||
|
|
5cc230263c | ||
|
|
3b5515c5c2 | ||
|
|
6adfa6fe07 | ||
|
|
92f192fc5e | ||
|
|
a4e93cea75 | ||
|
|
542a794e64 | ||
|
|
b104d1ee44 | ||
|
|
6716a78aa0 | ||
|
|
03140d3dd5 | ||
|
|
99853e55cd | ||
|
|
f36372c7bc | ||
|
|
6b2234fcef | ||
|
|
b8974c1f91 | ||
|
|
10556d0886 | ||
|
|
d6be9ca0ef | ||
|
|
2aa76dbc3d | ||
|
|
9d0f41f32a | ||
|
|
1e7bda63bc | ||
|
|
d6c35cee0f | ||
|
|
f2c5e838bf | ||
|
|
133fd10324 | ||
|
|
dfddb83d02 | ||
|
|
367e190773 | ||
|
|
db01df68aa | ||
|
|
d1ecbc035e | ||
|
|
d43f2df4f0 | ||
|
|
09812e4249 | ||
|
|
126a38fecc | ||
|
|
290d915f57 | ||
|
|
4cd146cb34 | ||
|
|
d70cfd696d | ||
|
|
f6e166aa5c | ||
|
|
4c3902b018 | ||
|
|
1a8445f2b3 | ||
|
|
0b9ad08155 | ||
|
|
9be65e03d7 | ||
|
|
2ff9ad8a7f | ||
|
|
53f6b0f844 | ||
|
|
da00aa2668 | ||
|
|
7ad5680453 | ||
|
|
96a2b5b236 |
BIN
.cache/plugin/social/0b649b356e60b558dfaafe8bb095862e.png
Normal file
|
After Width: | Height: | Size: 28 KiB |
BIN
.cache/plugin/social/0cce129b2747506603c430fd3fe2b3d6.png
Normal file
|
After Width: | Height: | Size: 36 KiB |
BIN
.cache/plugin/social/0f18d6e26b8551d3f42ef92b0f786024.png
Normal file
|
After Width: | Height: | Size: 37 KiB |
BIN
.cache/plugin/social/14c48b40955d6021b47ae973d9aef723.png
Normal file
|
After Width: | Height: | Size: 27 KiB |
BIN
.cache/plugin/social/17484ad7f45b09a1db146ba3ad3df79a.png
Normal file
|
After Width: | Height: | Size: 42 KiB |
BIN
.cache/plugin/social/1d935acb34360e4768e35ae13479bbf9.png
Normal file
|
After Width: | Height: | Size: 44 KiB |
BIN
.cache/plugin/social/216220c022e734cc7999210b48c9fb59.png
Normal file
|
After Width: | Height: | Size: 45 KiB |
BIN
.cache/plugin/social/246dcba6c47283feac354f5871842fe8.png
Normal file
|
After Width: | Height: | Size: 48 KiB |
BIN
.cache/plugin/social/259ba94ac7e93bd9f968c57ec4a15fe5.png
Normal file
|
After Width: | Height: | Size: 35 KiB |
BIN
.cache/plugin/social/288fd82ce2209be4864d19bd50b21474.png
Normal file
|
After Width: | Height: | Size: 23 KiB |
BIN
.cache/plugin/social/28a844df4871a1cdfcba05fdc87bb3e8.png
Normal file
|
After Width: | Height: | Size: 43 KiB |
BIN
.cache/plugin/social/40770a96ef2fb657a7aa16a9facf702f.png
Normal file
|
After Width: | Height: | Size: 39 KiB |
BIN
.cache/plugin/social/4747e68a5e5c0f0994cdc5b37682a37c.png
Normal file
|
After Width: | Height: | Size: 30 KiB |
BIN
.cache/plugin/social/4809f4ae19b6e78539b900da82d8a1f6.png
Normal file
|
After Width: | Height: | Size: 27 KiB |
BIN
.cache/plugin/social/481b171eb3fe3dec67ca86d2d923f598.png
Normal file
|
After Width: | Height: | Size: 24 KiB |
BIN
.cache/plugin/social/4ae47a8f7da894db700b2f29242cd0c5.png
Normal file
|
After Width: | Height: | Size: 44 KiB |
BIN
.cache/plugin/social/4c1fb3bfd02d6b1317779fe5101058a7.png
Normal file
|
After Width: | Height: | Size: 25 KiB |
BIN
.cache/plugin/social/56e240bc0124af182495bc59877d8d11.png
Normal file
|
After Width: | Height: | Size: 49 KiB |
BIN
.cache/plugin/social/5d2431971fcde0af2c84e4680a4227a7.png
Normal file
|
After Width: | Height: | Size: 18 KiB |
BIN
.cache/plugin/social/69bcd9a2304ea69e1244a7ac510dd98d.png
Normal file
|
After Width: | Height: | Size: 35 KiB |
BIN
.cache/plugin/social/6b49f5ef597c15cabc3df9bac4fbcf44.png
Normal file
|
After Width: | Height: | Size: 34 KiB |
BIN
.cache/plugin/social/7296e2d6c7b2c713ed7b2e4546e3acdb.png
Normal file
|
After Width: | Height: | Size: 42 KiB |
BIN
.cache/plugin/social/805d7c5662a45ca18b52554eecbc34af.png
Normal file
|
After Width: | Height: | Size: 30 KiB |
BIN
.cache/plugin/social/80f1492950494de7a34a1f20f6dd4368.png
Normal file
|
After Width: | Height: | Size: 30 KiB |
BIN
.cache/plugin/social/834ad7f8096fa4c92637b815777bf2bd.png
Normal file
|
After Width: | Height: | Size: 33 KiB |
BIN
.cache/plugin/social/8b089bdf12d22c016f481d654be39eb1.png
Normal file
|
After Width: | Height: | Size: 39 KiB |
BIN
.cache/plugin/social/96f1c198bf51f822eb04a25adf7ca20c.png
Normal file
|
After Width: | Height: | Size: 39 KiB |
BIN
.cache/plugin/social/9f88e9bd3010b149e527e0600c2e438c.png
Normal file
|
After Width: | Height: | Size: 45 KiB |
BIN
.cache/plugin/social/Roboto-Black.ttf
Normal file
BIN
.cache/plugin/social/Roboto-BlackItalic.ttf
Normal file
BIN
.cache/plugin/social/Roboto-Bold.ttf
Normal file
BIN
.cache/plugin/social/Roboto-BoldItalic.ttf
Normal file
BIN
.cache/plugin/social/Roboto-Italic.ttf
Normal file
BIN
.cache/plugin/social/Roboto-Light.ttf
Normal file
BIN
.cache/plugin/social/Roboto-LightItalic.ttf
Normal file
BIN
.cache/plugin/social/Roboto-Medium.ttf
Normal file
BIN
.cache/plugin/social/Roboto-MediumItalic.ttf
Normal file
BIN
.cache/plugin/social/Roboto-Regular.ttf
Normal file
BIN
.cache/plugin/social/Roboto-Thin.ttf
Normal file
BIN
.cache/plugin/social/Roboto-ThinItalic.ttf
Normal file
BIN
.cache/plugin/social/a0c21e9a7250afebc533da92c7050bed.png
Normal file
|
After Width: | Height: | Size: 34 KiB |
BIN
.cache/plugin/social/a19c79f0bc7a3e5ffc6b511a68273e5d.png
Normal file
|
After Width: | Height: | Size: 44 KiB |
BIN
.cache/plugin/social/a1d83c5e1feb928b579ad122a8d3786d.png
Normal file
|
After Width: | Height: | Size: 52 KiB |
BIN
.cache/plugin/social/a3d8476a7b5c6630a5f91aed8c210173.png
Normal file
|
After Width: | Height: | Size: 40 KiB |
BIN
.cache/plugin/social/ac9c4b6558565d4c349355101e95c74a.png
Normal file
|
After Width: | Height: | Size: 29 KiB |
BIN
.cache/plugin/social/b417e4353162a563e70f1350a2777e2c.png
Normal file
|
After Width: | Height: | Size: 40 KiB |
BIN
.cache/plugin/social/b84a1e5d0534be3c31f04a7d4a98b515.png
Normal file
|
After Width: | Height: | Size: 29 KiB |
BIN
.cache/plugin/social/bca675d7c3c82f52ebd329487fb9ade1.png
Normal file
|
After Width: | Height: | Size: 40 KiB |
BIN
.cache/plugin/social/bdf46ef3b5230ebb45ef648933f54fa2.png
Normal file
|
After Width: | Height: | Size: 47 KiB |
BIN
.cache/plugin/social/beacb748aad822c66a972b39186dbef1.png
Normal file
|
After Width: | Height: | Size: 17 KiB |
BIN
.cache/plugin/social/caa7abb72303dbe5a02ec11e6f1eba6b.png
Normal file
|
After Width: | Height: | Size: 18 KiB |
BIN
.cache/plugin/social/cff5eb5aae0959e143c12945428558bc.png
Normal file
|
After Width: | Height: | Size: 21 KiB |
BIN
.cache/plugin/social/d01b95e8266a0d2c5f825b88d98a97a1.png
Normal file
|
After Width: | Height: | Size: 55 KiB |
BIN
.cache/plugin/social/d7db21df76b132d3ca3ae4313e23f77d.png
Normal file
|
After Width: | Height: | Size: 29 KiB |
BIN
.cache/plugin/social/d87db72302152f8c0953d7105c28a206.png
Normal file
|
After Width: | Height: | Size: 36 KiB |
BIN
.cache/plugin/social/e580fe32a1d3f15fc89057d053ae3e52.png
Normal file
|
After Width: | Height: | Size: 39 KiB |
BIN
.cache/plugin/social/e9111c93e01f7c1dfec7bbab69843076.png
Normal file
|
After Width: | Height: | Size: 28 KiB |
BIN
.cache/plugin/social/ebf70df39c2bfd2c4a89d70846a516ff.png
Normal file
|
After Width: | Height: | Size: 44 KiB |
BIN
.cache/plugin/social/ed5690e7952bdee0372c8d3f1f5d98d7.png
Normal file
|
After Width: | Height: | Size: 39 KiB |
BIN
.cache/plugin/social/f6d08b81ae945faa6c4a436de48d2da6.png
Normal file
|
After Width: | Height: | Size: 28 KiB |
BIN
.cache/plugin/social/f875c8d6b0cd71d9ae38300c82361d77.png
Normal file
|
After Width: | Height: | Size: 37 KiB |
BIN
.cache/plugin/social/fc9a9f44881519178d4000f24000ef9d.png
Normal file
|
After Width: | Height: | Size: 33 KiB |
1429
.cursorrules
Normal file
14
.editorconfig
Normal file
@@ -0,0 +1,14 @@
|
||||
# .editorconfig
|
||||
root = true
|
||||
|
||||
# All files
|
||||
[*]
|
||||
charset = utf-8
|
||||
end_of_line = lf
|
||||
insert_final_newline = true
|
||||
trim_trailing_whitespace = true
|
||||
|
||||
# Python files
|
||||
[*.py]
|
||||
indent_style = space
|
||||
indent_size = 2
|
||||
115
.github/ISSUE_TEMPLATE/bug_report.yml
vendored
Normal file
@@ -0,0 +1,115 @@
|
||||
name: Bug report
|
||||
description: Create a report to help us improve CrewAI
|
||||
title: "[BUG]"
|
||||
labels: ["bug"]
|
||||
assignees: []
|
||||
body:
|
||||
- type: textarea
|
||||
id: description
|
||||
attributes:
|
||||
label: Description
|
||||
description: Provide a clear and concise description of what the bug is.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: steps-to-reproduce
|
||||
attributes:
|
||||
label: Steps to Reproduce
|
||||
description: Provide a step-by-step process to reproduce the behavior.
|
||||
placeholder: |
|
||||
1. Go to '...'
|
||||
2. Click on '....'
|
||||
3. Scroll down to '....'
|
||||
4. See error
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: expected-behavior
|
||||
attributes:
|
||||
label: Expected behavior
|
||||
description: A clear and concise description of what you expected to happen.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: screenshots-code
|
||||
attributes:
|
||||
label: Screenshots/Code snippets
|
||||
description: If applicable, add screenshots or code snippets to help explain your problem.
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: Operating System
|
||||
description: Select the operating system you're using
|
||||
options:
|
||||
- Ubuntu 20.04
|
||||
- Ubuntu 22.04
|
||||
- Ubuntu 24.04
|
||||
- macOS Catalina
|
||||
- macOS Big Sur
|
||||
- macOS Monterey
|
||||
- macOS Ventura
|
||||
- macOS Sonoma
|
||||
- Windows 10
|
||||
- Windows 11
|
||||
- Other (specify in additional context)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: python-version
|
||||
attributes:
|
||||
label: Python Version
|
||||
description: Version of Python your Crew is running on
|
||||
options:
|
||||
- '3.10'
|
||||
- '3.11'
|
||||
- '3.12'
|
||||
validations:
|
||||
required: true
|
||||
- type: input
|
||||
id: crewai-version
|
||||
attributes:
|
||||
label: crewAI Version
|
||||
description: What version of CrewAI are you using
|
||||
validations:
|
||||
required: true
|
||||
- type: input
|
||||
id: crewai-tools-version
|
||||
attributes:
|
||||
label: crewAI Tools Version
|
||||
description: What version of CrewAI Tools are you using
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: virtual-environment
|
||||
attributes:
|
||||
label: Virtual Environment
|
||||
description: What Virtual Environment are you running your crew in.
|
||||
options:
|
||||
- Venv
|
||||
- Conda
|
||||
- Poetry
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: evidence
|
||||
attributes:
|
||||
label: Evidence
|
||||
description: Include relevant information, logs or error messages. These can be screenshots.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: possible-solution
|
||||
attributes:
|
||||
label: Possible Solution
|
||||
description: Have a solution in mind? Please suggest it here, or write "None".
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: additional-context
|
||||
attributes:
|
||||
label: Additional context
|
||||
description: Add any other context about the problem here.
|
||||
validations:
|
||||
required: true
|
||||
1
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1 @@
|
||||
blank_issues_enabled: false
|
||||
65
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
Normal file
@@ -0,0 +1,65 @@
|
||||
name: Feature request
|
||||
description: Suggest a new feature for CrewAI
|
||||
title: "[FEATURE]"
|
||||
labels: ["feature-request"]
|
||||
assignees: []
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this feature request!
|
||||
- type: dropdown
|
||||
id: feature-area
|
||||
attributes:
|
||||
label: Feature Area
|
||||
description: Which area of CrewAI does this feature primarily relate to?
|
||||
options:
|
||||
- Core functionality
|
||||
- Agent capabilities
|
||||
- Task management
|
||||
- Integration with external tools
|
||||
- Performance optimization
|
||||
- Documentation
|
||||
- Other (please specify in additional context)
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: problem
|
||||
attributes:
|
||||
label: Is your feature request related to a an existing bug? Please link it here.
|
||||
description: A link to the bug or NA if not related to an existing bug.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: solution
|
||||
attributes:
|
||||
label: Describe the solution you'd like
|
||||
description: A clear and concise description of what you want to happen.
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: alternatives
|
||||
attributes:
|
||||
label: Describe alternatives you've considered
|
||||
description: A clear and concise description of any alternative solutions or features you've considered.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: context
|
||||
attributes:
|
||||
label: Additional context
|
||||
description: Add any other context, screenshots, or examples about the feature request here.
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: willingness-to-contribute
|
||||
attributes:
|
||||
label: Willingness to Contribute
|
||||
description: Would you be willing to contribute to the implementation of this feature?
|
||||
options:
|
||||
- Yes, I'd be happy to submit a pull request
|
||||
- I could provide more detailed specifications
|
||||
- I can test the feature once it's implemented
|
||||
- No, I'm just suggesting the idea
|
||||
validations:
|
||||
required: true
|
||||
27
.github/security.md
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
## CrewAI Security Vulnerability Reporting Policy
|
||||
|
||||
CrewAI prioritizes the security of our software products, services, and GitHub repositories. To promptly address vulnerabilities, follow these steps for reporting security issues:
|
||||
|
||||
### Reporting Process
|
||||
Do **not** report vulnerabilities via public GitHub issues.
|
||||
|
||||
Email all vulnerability reports directly to:
|
||||
**security@crewai.com**
|
||||
|
||||
### Required Information
|
||||
To help us quickly validate and remediate the issue, your report must include:
|
||||
|
||||
- **Vulnerability Type:** Clearly state the vulnerability type (e.g., SQL injection, XSS, privilege escalation).
|
||||
- **Affected Source Code:** Provide full file paths and direct URLs (branch, tag, or commit).
|
||||
- **Reproduction Steps:** Include detailed, step-by-step instructions. Screenshots are recommended.
|
||||
- **Special Configuration:** Document any special settings or configurations required to reproduce.
|
||||
- **Proof-of-Concept (PoC):** Provide exploit or PoC code (if available).
|
||||
- **Impact Assessment:** Clearly explain the severity and potential exploitation scenarios.
|
||||
|
||||
### Our Response
|
||||
- We will acknowledge receipt of your report promptly via your provided email.
|
||||
- Confirmed vulnerabilities will receive priority remediation based on severity.
|
||||
- Patches will be released as swiftly as possible following verification.
|
||||
|
||||
### Reward Notice
|
||||
Currently, we do not offer a bug bounty program. Rewards, if issued, are discretionary.
|
||||
36
.github/workflows/linter.yml
vendored
Normal file
@@ -0,0 +1,36 @@
|
||||
name: Lint
|
||||
|
||||
on: [pull_request]
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
TARGET_BRANCH: ${{ github.event.pull_request.base.ref }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Fetch Target Branch
|
||||
run: git fetch origin $TARGET_BRANCH --depth=1
|
||||
|
||||
- name: Install Ruff
|
||||
run: pip install ruff
|
||||
|
||||
- name: Get Changed Python Files
|
||||
id: changed-files
|
||||
run: |
|
||||
merge_base=$(git merge-base origin/"$TARGET_BRANCH" HEAD)
|
||||
changed_files=$(git diff --name-only --diff-filter=ACMRTUB "$merge_base" | grep '\.py$' || true)
|
||||
echo "files<<EOF" >> $GITHUB_OUTPUT
|
||||
echo "$changed_files" >> $GITHUB_OUTPUT
|
||||
echo "EOF" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Run Ruff on Changed Files
|
||||
if: ${{ steps.changed-files.outputs.files != '' }}
|
||||
run: |
|
||||
echo "${{ steps.changed-files.outputs.files }}" \
|
||||
| tr ' ' '\n' \
|
||||
| grep -v 'src/crewai/cli/templates/' \
|
||||
| xargs -I{} ruff check "{}"
|
||||
33
.github/workflows/notify-downstream.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
name: Notify Downstream
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
notify-downstream:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Generate GitHub App token
|
||||
id: app-token
|
||||
uses: tibdex/github-app-token@v2
|
||||
with:
|
||||
app_id: ${{ secrets.OSS_SYNC_APP_ID }}
|
||||
private_key: ${{ secrets.OSS_SYNC_APP_PRIVATE_KEY }}
|
||||
|
||||
- name: Notify Repo B
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ steps.app-token.outputs.token }}
|
||||
repository: ${{ secrets.OSS_SYNC_DOWNSTREAM_REPO }}
|
||||
event-type: upstream-commit
|
||||
client-payload: |
|
||||
{
|
||||
"commit_sha": "${{ github.sha }}"
|
||||
}
|
||||
|
||||
23
.github/workflows/security-checker.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: Security Checker
|
||||
|
||||
on: [pull_request]
|
||||
|
||||
jobs:
|
||||
security-check:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11.9"
|
||||
|
||||
- name: Install dependencies
|
||||
run: pip install bandit
|
||||
|
||||
- name: Run Bandit
|
||||
run: bandit -c pyproject.toml -r src/ -ll
|
||||
|
||||
29
.github/workflows/stale.yml
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
name: Mark stale issues and pull requests
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
issues: write
|
||||
pull-requests: write
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: '10 12 * * *'
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
stale:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/stale@v9
|
||||
with:
|
||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
stale-issue-label: 'no-issue-activity'
|
||||
stale-issue-message: 'This issue is stale because it has been open for 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.'
|
||||
close-issue-message: 'This issue was closed because it has been stalled for 5 days with no activity.'
|
||||
days-before-issue-stale: 30
|
||||
days-before-issue-close: 5
|
||||
stale-pr-label: 'no-pr-activity'
|
||||
stale-pr-message: 'This PR is stale because it has been open for 45 days with no activity.'
|
||||
days-before-pr-stale: 45
|
||||
days-before-pr-close: -1
|
||||
operations-per-run: 1200
|
||||
50
.github/workflows/tests.yml
vendored
Normal file
@@ -0,0 +1,50 @@
|
||||
name: Run Tests
|
||||
|
||||
on: [pull_request]
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
env:
|
||||
OPENAI_API_KEY: fake-api-key
|
||||
PYTHONUNBUFFERED: 1
|
||||
|
||||
jobs:
|
||||
tests:
|
||||
name: tests (${{ matrix.python-version }})
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 15
|
||||
strategy:
|
||||
fail-fast: true
|
||||
matrix:
|
||||
python-version: ['3.10', '3.11', '3.12', '3.13']
|
||||
group: [1, 2, 3, 4, 5, 6, 7, 8]
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install uv
|
||||
uses: astral-sh/setup-uv@v3
|
||||
with:
|
||||
enable-cache: true
|
||||
cache-dependency-glob: |
|
||||
**/pyproject.toml
|
||||
**/uv.lock
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
run: uv python install ${{ matrix.python-version }}
|
||||
|
||||
- name: Install the project
|
||||
run: uv sync --dev --all-extras
|
||||
|
||||
- name: Run tests (group ${{ matrix.group }} of 8)
|
||||
run: |
|
||||
uv run pytest \
|
||||
--block-network \
|
||||
--timeout=30 \
|
||||
-vv \
|
||||
--splits 8 \
|
||||
--group ${{ matrix.group }} \
|
||||
--durations=10 \
|
||||
-n auto \
|
||||
--maxfail=3
|
||||
26
.github/workflows/type-checker.yml
vendored
Normal file
@@ -0,0 +1,26 @@
|
||||
name: Run Type Checks
|
||||
|
||||
on: [pull_request]
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
jobs:
|
||||
type-checker:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11.9"
|
||||
|
||||
- name: Install Requirements
|
||||
run: |
|
||||
pip install mypy
|
||||
|
||||
- name: Run type checks
|
||||
run: mypy src
|
||||
27
.gitignore
vendored
@@ -2,5 +2,28 @@
|
||||
.pytest_cache
|
||||
__pycache__
|
||||
dist/
|
||||
*/**/cassettes/*
|
||||
.env
|
||||
lib/
|
||||
.env
|
||||
assets/*
|
||||
.idea
|
||||
test/
|
||||
docs_crew/
|
||||
chroma.sqlite3
|
||||
old_en.json
|
||||
db/
|
||||
test.py
|
||||
rc-tests/*
|
||||
*.pkl
|
||||
temp/*
|
||||
.vscode/*
|
||||
crew_tasks_output.json
|
||||
.codesight
|
||||
.mypy_cache
|
||||
.ruff_cache
|
||||
.venv
|
||||
test_flow.html
|
||||
crewairules.mdc
|
||||
plan.md
|
||||
conceptual_plan.md
|
||||
build_image
|
||||
chromadb-*.lock
|
||||
|
||||
7
.pre-commit-config.yaml
Normal file
@@ -0,0 +1,7 @@
|
||||
repos:
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.8.2
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: ["--fix"]
|
||||
- id: ruff-format
|
||||
4
.ruff.toml
Normal file
@@ -0,0 +1,4 @@
|
||||
exclude = [
|
||||
"templates",
|
||||
"__init__.py",
|
||||
]
|
||||
2
LICENSE
@@ -1,4 +1,4 @@
|
||||
Copyright (c) 2018 The Python Packaging Authority
|
||||
Copyright (c) 2025 crewAI, Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
||||
769
README.md
@@ -1,81 +1,566 @@
|
||||
# CrewAI
|
||||
<p align="center">
|
||||
<a href="https://github.com/crewAIInc/crewAI">
|
||||
<img src="docs/images/crewai_logo.png" width="600px" alt="Open source Multi-AI Agent orchestration framework">
|
||||
</a>
|
||||
</p>
|
||||
<p align="center" style="display: flex; justify-content: center; gap: 20px; align-items: center;">
|
||||
<a href="https://trendshift.io/repositories/11239" target="_blank">
|
||||
<img src="https://trendshift.io/api/badge/repositories/11239" alt="crewAIInc%2FcrewAI | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/>
|
||||
</a>
|
||||
</p>
|
||||
|
||||
🤖 Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
|
||||
<p align="center">
|
||||
<a href="https://crewai.com">Homepage</a>
|
||||
·
|
||||
<a href="https://docs.crewai.com">Docs</a>
|
||||
·
|
||||
<a href="https://app.crewai.com">Start Cloud Trial</a>
|
||||
·
|
||||
<a href="https://blog.crewai.com">Blog</a>
|
||||
·
|
||||
<a href="https://community.crewai.com">Forum</a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://github.com/crewAIInc/crewAI">
|
||||
<img src="https://img.shields.io/github/stars/crewAIInc/crewAI" alt="GitHub Repo stars">
|
||||
</a>
|
||||
<a href="https://github.com/crewAIInc/crewAI/network/members">
|
||||
<img src="https://img.shields.io/github/forks/crewAIInc/crewAI" alt="GitHub forks">
|
||||
</a>
|
||||
<a href="https://github.com/crewAIInc/crewAI/issues">
|
||||
<img src="https://img.shields.io/github/issues/crewAIInc/crewAI" alt="GitHub issues">
|
||||
</a>
|
||||
<a href="https://github.com/crewAIInc/crewAI/pulls">
|
||||
<img src="https://img.shields.io/github/issues-pr/crewAIInc/crewAI" alt="GitHub pull requests">
|
||||
</a>
|
||||
<a href="https://opensource.org/licenses/MIT">
|
||||
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="License: MIT">
|
||||
</a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://pypi.org/project/crewai/">
|
||||
<img src="https://img.shields.io/pypi/v/crewai" alt="PyPI version">
|
||||
</a>
|
||||
<a href="https://pypi.org/project/crewai/">
|
||||
<img src="https://img.shields.io/pypi/dm/crewai" alt="PyPI downloads">
|
||||
</a>
|
||||
<a href="https://twitter.com/crewAIInc">
|
||||
<img src="https://img.shields.io/twitter/follow/crewAIInc?style=social" alt="Twitter Follow">
|
||||
</a>
|
||||
</p>
|
||||
|
||||
### Fast and Flexible Multi-Agent Automation Framework
|
||||
|
||||
> CrewAI is a lean, lightning-fast Python framework built entirely from scratch—completely **independent of LangChain or other agent frameworks**.
|
||||
> It empowers developers with both high-level simplicity and precise low-level control, ideal for creating autonomous AI agents tailored to any scenario.
|
||||
|
||||
- **CrewAI Crews**: Optimize for autonomy and collaborative intelligence.
|
||||
- **CrewAI Flows**: Enable granular, event-driven control, single LLM calls for precise task orchestration and supports Crews natively
|
||||
|
||||
With over 100,000 developers certified through our community courses at [learn.crewai.com](https://learn.crewai.com), CrewAI is rapidly becoming the
|
||||
standard for enterprise-ready AI automation.
|
||||
|
||||
# CrewAI Enterprise Suite
|
||||
|
||||
CrewAI Enterprise Suite is a comprehensive bundle tailored for organizations that require secure, scalable, and easy-to-manage agent-driven automation.
|
||||
|
||||
You can try one part of the suite the [Crew Control Plane for free](https://app.crewai.com)
|
||||
|
||||
## Crew Control Plane Key Features:
|
||||
|
||||
- **Tracing & Observability**: Monitor and track your AI agents and workflows in real-time, including metrics, logs, and traces.
|
||||
- **Unified Control Plane**: A centralized platform for managing, monitoring, and scaling your AI agents and workflows.
|
||||
- **Seamless Integrations**: Easily connect with existing enterprise systems, data sources, and cloud infrastructure.
|
||||
- **Advanced Security**: Built-in robust security and compliance measures ensuring safe deployment and management.
|
||||
- **Actionable Insights**: Real-time analytics and reporting to optimize performance and decision-making.
|
||||
- **24/7 Support**: Dedicated enterprise support to ensure uninterrupted operation and quick resolution of issues.
|
||||
- **On-premise and Cloud Deployment Options**: Deploy CrewAI Enterprise on-premise or in the cloud, depending on your security and compliance requirements.
|
||||
|
||||
CrewAI Enterprise is designed for enterprises seeking a powerful, reliable solution to transform complex business processes into efficient,
|
||||
intelligent automations.
|
||||
|
||||
## Table of contents
|
||||
|
||||
- [Why CrewAI?](#why-crewai)
|
||||
- [Getting Started](#getting-started)
|
||||
- [Key Features](#key-features)
|
||||
- [Understanding Flows and Crews](#understanding-flows-and-crews)
|
||||
- [CrewAI vs LangGraph](#how-crewai-compares)
|
||||
- [Examples](#examples)
|
||||
- [Quick Tutorial](#quick-tutorial)
|
||||
- [Write Job Descriptions](#write-job-descriptions)
|
||||
- [Trip Planner](#trip-planner)
|
||||
- [Stock Analysis](#stock-analysis)
|
||||
- [Using Crews and Flows Together](#using-crews-and-flows-together)
|
||||
- [Connecting Your Crew to a Model](#connecting-your-crew-to-a-model)
|
||||
- [How CrewAI Compares](#how-crewai-compares)
|
||||
- [Frequently Asked Questions (FAQ)](#frequently-asked-questions-faq)
|
||||
- [Contribution](#contribution)
|
||||
- [Telemetry](#telemetry)
|
||||
- [License](#license)
|
||||
|
||||
## Why CrewAI?
|
||||
|
||||
The power of AI collaboration has too much to offer.
|
||||
CrewAI is designed to enable AI agents to assume roles, share goals, and operate in a cohesive unit - much like a well-oiled crew. Whether you're building a smart assistant platform, an automated customer service ensemble, or a multi-agent research team, CrewAI provides the backbone for sophisticated multi-agent interactions.
|
||||
<div align="center" style="margin-bottom: 30px;">
|
||||
<img src="docs/images/asset.png" alt="CrewAI Logo" width="100%">
|
||||
</div>
|
||||
|
||||
- 🤖 [Talk with the Docs](https://chat.openai.com/g/g-qqTuUWsBY-crewai-assistant)
|
||||
- 📄 [Documention Wiki](https://github.com/joaomdmoura/CrewAI/wiki)
|
||||
CrewAI unlocks the true potential of multi-agent automation, delivering the best-in-class combination of speed, flexibility, and control with either Crews of AI Agents or Flows of Events:
|
||||
|
||||
- **Standalone Framework**: Built from scratch, independent of LangChain or any other agent framework.
|
||||
- **High Performance**: Optimized for speed and minimal resource usage, enabling faster execution.
|
||||
- **Flexible Low Level Customization**: Complete freedom to customize at both high and low levels - from overall workflows and system architecture to granular agent behaviors, internal prompts, and execution logic.
|
||||
- **Ideal for Every Use Case**: Proven effective for both simple tasks and highly complex, real-world, enterprise-grade scenarios.
|
||||
- **Robust Community**: Backed by a rapidly growing community of over **100,000 certified** developers offering comprehensive support and resources.
|
||||
|
||||
CrewAI empowers developers and enterprises to confidently build intelligent automations, bridging the gap between simplicity, flexibility, and performance.
|
||||
|
||||
## Getting Started
|
||||
|
||||
Setup and run your first CrewAI agents by following this tutorial.
|
||||
|
||||
[](https://www.youtube.com/watch?v=-kSOTtYzgEw "CrewAI Getting Started Tutorial")
|
||||
|
||||
###
|
||||
Learning Resources
|
||||
|
||||
Learn CrewAI through our comprehensive courses:
|
||||
|
||||
- [Multi AI Agent Systems with CrewAI](https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/) - Master the fundamentals of multi-agent systems
|
||||
- [Practical Multi AI Agents and Advanced Use Cases](https://www.deeplearning.ai/short-courses/practical-multi-ai-agents-and-advanced-use-cases-with-crewai/) - Deep dive into advanced implementations
|
||||
|
||||
### Understanding Flows and Crews
|
||||
|
||||
CrewAI offers two powerful, complementary approaches that work seamlessly together to build sophisticated AI applications:
|
||||
|
||||
1. **Crews**: Teams of AI agents with true autonomy and agency, working together to accomplish complex tasks through role-based collaboration. Crews enable:
|
||||
|
||||
- Natural, autonomous decision-making between agents
|
||||
- Dynamic task delegation and collaboration
|
||||
- Specialized roles with defined goals and expertise
|
||||
- Flexible problem-solving approaches
|
||||
2. **Flows**: Production-ready, event-driven workflows that deliver precise control over complex automations. Flows provide:
|
||||
|
||||
- Fine-grained control over execution paths for real-world scenarios
|
||||
- Secure, consistent state management between tasks
|
||||
- Clean integration of AI agents with production Python code
|
||||
- Conditional branching for complex business logic
|
||||
|
||||
The true power of CrewAI emerges when combining Crews and Flows. This synergy allows you to:
|
||||
|
||||
- Build complex, production-grade applications
|
||||
- Balance autonomy with precise control
|
||||
- Handle sophisticated real-world scenarios
|
||||
- Maintain clean, maintainable code structure
|
||||
|
||||
### Getting Started with Installation
|
||||
|
||||
To get started with CrewAI, follow these simple steps:
|
||||
|
||||
1. **Installation**:
|
||||
### 1. Installation
|
||||
|
||||
Ensure you have Python >=3.10 <3.14 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, install CrewAI:
|
||||
|
||||
```shell
|
||||
pip install crewai
|
||||
```
|
||||
|
||||
2. **Setting Up Your Crew**:
|
||||
If you want to install the 'crewai' package along with its optional features that include additional tools for agents, you can do so by using the following command:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew, Process
|
||||
|
||||
# Define your agents with roles and goals
|
||||
researcher = Agent(
|
||||
role='Researcher',
|
||||
goal='Discover new insights',
|
||||
backstory="You're a world class researcher working on a major data science company",
|
||||
verbose=True
|
||||
# llm=OpenAI(temperature=0.7, model_name="gpt-4"). It uses langchain.chat_models, default is GPT4
|
||||
)
|
||||
writer = Agent(
|
||||
role='Writer',
|
||||
goal='Create engaging content',
|
||||
backstory="You're a famous technical writer, specialized on writing data related content",
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create tasks for your agents
|
||||
task1 = Task(description='Investigate the latest AI trends', agent=researcher)
|
||||
task2 = Task(description='Write a blog post on AI advancements', agent=writer)
|
||||
|
||||
# Instantiate your crew with a sequential process
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[task1, task2],
|
||||
verbose=True # Crew verbose more will let you know what tasks are being worked on
|
||||
process=Process.sequential # Sequential process will have tasks executed one after the other and the outcome of the previous one is passed as extra content into this next.
|
||||
)
|
||||
|
||||
# Get your crew to work!
|
||||
result = crew.kickoff()
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
Currently the only supported process is `Process.sequential`, where one task is executed after the other and the outcome of one is passed as extra content into this next.
|
||||
The command above installs the basic package and also adds extra components which require more dependencies to function.
|
||||
|
||||
### Troubleshooting Dependencies
|
||||
|
||||
If you encounter issues during installation or usage, here are some common solutions:
|
||||
|
||||
#### Common Issues
|
||||
|
||||
1. **ModuleNotFoundError: No module named 'tiktoken'**
|
||||
|
||||
- Install tiktoken explicitly: `pip install 'crewai[embeddings]'`
|
||||
- If using embedchain or other tools: `pip install 'crewai[tools]'`
|
||||
2. **Failed building wheel for tiktoken**
|
||||
|
||||
- Ensure Rust compiler is installed (see installation steps above)
|
||||
- For Windows: Verify Visual C++ Build Tools are installed
|
||||
- Try upgrading pip: `pip install --upgrade pip`
|
||||
- If issues persist, use a pre-built wheel: `pip install tiktoken --prefer-binary`
|
||||
|
||||
### 2. Setting Up Your Crew with the YAML Configuration
|
||||
|
||||
To create a new CrewAI project, run the following CLI (Command Line Interface) command:
|
||||
|
||||
```shell
|
||||
crewai create crew <project_name>
|
||||
```
|
||||
|
||||
This command creates a new project folder with the following structure:
|
||||
|
||||
```
|
||||
my_project/
|
||||
├── .gitignore
|
||||
├── pyproject.toml
|
||||
├── README.md
|
||||
├── .env
|
||||
└── src/
|
||||
└── my_project/
|
||||
├── __init__.py
|
||||
├── main.py
|
||||
├── crew.py
|
||||
├── tools/
|
||||
│ ├── custom_tool.py
|
||||
│ └── __init__.py
|
||||
└── config/
|
||||
├── agents.yaml
|
||||
└── tasks.yaml
|
||||
```
|
||||
|
||||
You can now start developing your crew by editing the files in the `src/my_project` folder. The `main.py` file is the entry point of the project, the `crew.py` file is where you define your crew, the `agents.yaml` file is where you define your agents, and the `tasks.yaml` file is where you define your tasks.
|
||||
|
||||
#### To customize your project, you can:
|
||||
|
||||
- Modify `src/my_project/config/agents.yaml` to define your agents.
|
||||
- Modify `src/my_project/config/tasks.yaml` to define your tasks.
|
||||
- Modify `src/my_project/crew.py` to add your own logic, tools, and specific arguments.
|
||||
- Modify `src/my_project/main.py` to add custom inputs for your agents and tasks.
|
||||
- Add your environment variables into the `.env` file.
|
||||
|
||||
#### Example of a simple crew with a sequential process:
|
||||
|
||||
Instantiate your crew:
|
||||
|
||||
```shell
|
||||
crewai create crew latest-ai-development
|
||||
```
|
||||
|
||||
Modify the files as needed to fit your use case:
|
||||
|
||||
**agents.yaml**
|
||||
|
||||
```yaml
|
||||
# src/my_project/config/agents.yaml
|
||||
researcher:
|
||||
role: >
|
||||
{topic} Senior Data Researcher
|
||||
goal: >
|
||||
Uncover cutting-edge developments in {topic}
|
||||
backstory: >
|
||||
You're a seasoned researcher with a knack for uncovering the latest
|
||||
developments in {topic}. Known for your ability to find the most relevant
|
||||
information and present it in a clear and concise manner.
|
||||
|
||||
reporting_analyst:
|
||||
role: >
|
||||
{topic} Reporting Analyst
|
||||
goal: >
|
||||
Create detailed reports based on {topic} data analysis and research findings
|
||||
backstory: >
|
||||
You're a meticulous analyst with a keen eye for detail. You're known for
|
||||
your ability to turn complex data into clear and concise reports, making
|
||||
it easy for others to understand and act on the information you provide.
|
||||
```
|
||||
|
||||
**tasks.yaml**
|
||||
|
||||
```yaml
|
||||
# src/my_project/config/tasks.yaml
|
||||
research_task:
|
||||
description: >
|
||||
Conduct a thorough research about {topic}
|
||||
Make sure you find any interesting and relevant information given
|
||||
the current year is 2025.
|
||||
expected_output: >
|
||||
A list with 10 bullet points of the most relevant information about {topic}
|
||||
agent: researcher
|
||||
|
||||
reporting_task:
|
||||
description: >
|
||||
Review the context you got and expand each topic into a full section for a report.
|
||||
Make sure the report is detailed and contains any and all relevant information.
|
||||
expected_output: >
|
||||
A fully fledge reports with the mains topics, each with a full section of information.
|
||||
Formatted as markdown without '```'
|
||||
agent: reporting_analyst
|
||||
output_file: report.md
|
||||
```
|
||||
|
||||
**crew.py**
|
||||
|
||||
```python
|
||||
# src/my_project/crew.py
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai.project import CrewBase, agent, crew, task
|
||||
from crewai_tools import SerperDevTool
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from typing import List
|
||||
|
||||
@CrewBase
|
||||
class LatestAiDevelopmentCrew():
|
||||
"""LatestAiDevelopment crew"""
|
||||
agents: List[BaseAgent]
|
||||
tasks: List[Task]
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
verbose=True,
|
||||
tools=[SerperDevTool()]
|
||||
)
|
||||
|
||||
@agent
|
||||
def reporting_analyst(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['reporting_analyst'],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@task
|
||||
def research_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['research_task'],
|
||||
)
|
||||
|
||||
@task
|
||||
def reporting_task(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['reporting_task'],
|
||||
output_file='report.md'
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
"""Creates the LatestAiDevelopment crew"""
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically created by the @agent decorator
|
||||
tasks=self.tasks, # Automatically created by the @task decorator
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
```
|
||||
|
||||
**main.py**
|
||||
|
||||
```python
|
||||
#!/usr/bin/env python
|
||||
# src/my_project/main.py
|
||||
import sys
|
||||
from latest_ai_development.crew import LatestAiDevelopmentCrew
|
||||
|
||||
def run():
|
||||
"""
|
||||
Run the crew.
|
||||
"""
|
||||
inputs = {
|
||||
'topic': 'AI Agents'
|
||||
}
|
||||
LatestAiDevelopmentCrew().crew().kickoff(inputs=inputs)
|
||||
```
|
||||
|
||||
### 3. Running Your Crew
|
||||
|
||||
Before running your crew, make sure you have the following keys set as environment variables in your `.env` file:
|
||||
|
||||
- An [OpenAI API key](https://platform.openai.com/account/api-keys) (or other LLM API key): `OPENAI_API_KEY=sk-...`
|
||||
- A [Serper.dev](https://serper.dev/) API key: `SERPER_API_KEY=YOUR_KEY_HERE`
|
||||
|
||||
Lock the dependencies and install them by using the CLI command but first, navigate to your project directory:
|
||||
|
||||
```shell
|
||||
cd my_project
|
||||
crewai install (Optional)
|
||||
```
|
||||
|
||||
To run your crew, execute the following command in the root of your project:
|
||||
|
||||
```bash
|
||||
crewai run
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```bash
|
||||
python src/my_project/main.py
|
||||
```
|
||||
|
||||
If an error happens due to the usage of poetry, please run the following command to update your crewai package:
|
||||
|
||||
```bash
|
||||
crewai update
|
||||
```
|
||||
|
||||
You should see the output in the console and the `report.md` file should be created in the root of your project with the full final report.
|
||||
|
||||
In addition to the sequential process, you can use the hierarchical process, which automatically assigns a manager to the defined crew to properly coordinate the planning and execution of tasks through delegation and validation of results. [See more about the processes here](https://docs.crewai.com/core-concepts/Processes/).
|
||||
|
||||
## Key Features
|
||||
|
||||
- **Role-Based Agent Design**: Customize agents with specific roles, goals, and tools.
|
||||
- **Autonomous Inter-Agent Delegation**: Agents can autonomously delegate tasks and inquire amongst themselves, enhancing problem-solving efficiency.
|
||||
- **Flexible Task Management**: Define tasks with customizable tools and assign them to agents dynamically.
|
||||
- **Processes Driven**: Currently only supports `sequential` task execution but more complex processes like consensual and hierarchical being worked on.
|
||||
CrewAI stands apart as a lean, standalone, high-performance multi-AI Agent framework delivering simplicity, flexibility, and precise control—free from the complexity and limitations found in other agent frameworks.
|
||||
|
||||

|
||||
- **Standalone & Lean**: Completely independent from other frameworks like LangChain, offering faster execution and lighter resource demands.
|
||||
- **Flexible & Precise**: Easily orchestrate autonomous agents through intuitive [Crews](https://docs.crewai.com/concepts/crews) or precise [Flows](https://docs.crewai.com/concepts/flows), achieving perfect balance for your needs.
|
||||
- **Seamless Integration**: Effortlessly combine Crews (autonomy) and Flows (precision) to create complex, real-world automations.
|
||||
- **Deep Customization**: Tailor every aspect—from high-level workflows down to low-level internal prompts and agent behaviors.
|
||||
- **Reliable Performance**: Consistent results across simple tasks and complex, enterprise-level automations.
|
||||
- **Thriving Community**: Backed by robust documentation and over 100,000 certified developers, providing exceptional support and guidance.
|
||||
|
||||
Choose CrewAI to easily build powerful, adaptable, and production-ready AI automations.
|
||||
|
||||
## Examples
|
||||
|
||||
You can test different real life examples of AI crews in the [CrewAI-examples repo](https://github.com/crewAIInc/crewAI-examples?tab=readme-ov-file):
|
||||
|
||||
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/landing_page_generator)
|
||||
- [Having Human input on the execution](https://docs.crewai.com/how-to/Human-Input-on-Execution)
|
||||
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner)
|
||||
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis)
|
||||
|
||||
### Quick Tutorial
|
||||
|
||||
[](https://www.youtube.com/watch?v=tnejrr-0a94 "CrewAI Tutorial")
|
||||
|
||||
### Write Job Descriptions
|
||||
|
||||
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/job-posting) or watch a video below:
|
||||
|
||||
[](https://www.youtube.com/watch?v=u98wEMz-9to "Jobs postings")
|
||||
|
||||
### Trip Planner
|
||||
|
||||
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/trip_planner) or watch a video below:
|
||||
|
||||
[](https://www.youtube.com/watch?v=xis7rWp-hjs "Trip Planner")
|
||||
|
||||
### Stock Analysis
|
||||
|
||||
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/stock_analysis) or watch a video below:
|
||||
|
||||
[](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")
|
||||
|
||||
### Using Crews and Flows Together
|
||||
|
||||
CrewAI's power truly shines when combining Crews with Flows to create sophisticated automation pipelines.
|
||||
CrewAI flows support logical operators like `or_` and `and_` to combine multiple conditions. This can be used with `@start`, `@listen`, or `@router` decorators to create complex triggering conditions.
|
||||
|
||||
- `or_`: Triggers when any of the specified conditions are met.
|
||||
- `and_`Triggers when all of the specified conditions are met.
|
||||
|
||||
Here's how you can orchestrate multiple Crews within a Flow:
|
||||
|
||||
```python
|
||||
from crewai.flow.flow import Flow, listen, start, router, or_
|
||||
from crewai import Crew, Agent, Task, Process
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Define structured state for precise control
|
||||
class MarketState(BaseModel):
|
||||
sentiment: str = "neutral"
|
||||
confidence: float = 0.0
|
||||
recommendations: list = []
|
||||
|
||||
class AdvancedAnalysisFlow(Flow[MarketState]):
|
||||
@start()
|
||||
def fetch_market_data(self):
|
||||
# Demonstrate low-level control with structured state
|
||||
self.state.sentiment = "analyzing"
|
||||
return {"sector": "tech", "timeframe": "1W"} # These parameters match the task description template
|
||||
|
||||
@listen(fetch_market_data)
|
||||
def analyze_with_crew(self, market_data):
|
||||
# Show crew agency through specialized roles
|
||||
analyst = Agent(
|
||||
role="Senior Market Analyst",
|
||||
goal="Conduct deep market analysis with expert insight",
|
||||
backstory="You're a veteran analyst known for identifying subtle market patterns"
|
||||
)
|
||||
researcher = Agent(
|
||||
role="Data Researcher",
|
||||
goal="Gather and validate supporting market data",
|
||||
backstory="You excel at finding and correlating multiple data sources"
|
||||
)
|
||||
|
||||
analysis_task = Task(
|
||||
description="Analyze {sector} sector data for the past {timeframe}",
|
||||
expected_output="Detailed market analysis with confidence score",
|
||||
agent=analyst
|
||||
)
|
||||
research_task = Task(
|
||||
description="Find supporting data to validate the analysis",
|
||||
expected_output="Corroborating evidence and potential contradictions",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# Demonstrate crew autonomy
|
||||
analysis_crew = Crew(
|
||||
agents=[analyst, researcher],
|
||||
tasks=[analysis_task, research_task],
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
return analysis_crew.kickoff(inputs=market_data) # Pass market_data as named inputs
|
||||
|
||||
@router(analyze_with_crew)
|
||||
def determine_next_steps(self):
|
||||
# Show flow control with conditional routing
|
||||
if self.state.confidence > 0.8:
|
||||
return "high_confidence"
|
||||
elif self.state.confidence > 0.5:
|
||||
return "medium_confidence"
|
||||
return "low_confidence"
|
||||
|
||||
@listen("high_confidence")
|
||||
def execute_strategy(self):
|
||||
# Demonstrate complex decision making
|
||||
strategy_crew = Crew(
|
||||
agents=[
|
||||
Agent(role="Strategy Expert",
|
||||
goal="Develop optimal market strategy")
|
||||
],
|
||||
tasks=[
|
||||
Task(description="Create detailed strategy based on analysis",
|
||||
expected_output="Step-by-step action plan")
|
||||
]
|
||||
)
|
||||
return strategy_crew.kickoff()
|
||||
|
||||
@listen(or_("medium_confidence", "low_confidence"))
|
||||
def request_additional_analysis(self):
|
||||
self.state.recommendations.append("Gather more data")
|
||||
return "Additional analysis required"
|
||||
```
|
||||
|
||||
This example demonstrates how to:
|
||||
|
||||
1. Use Python code for basic data operations
|
||||
2. Create and execute Crews as steps in your workflow
|
||||
3. Use Flow decorators to manage the sequence of operations
|
||||
4. Implement conditional branching based on Crew results
|
||||
|
||||
## Connecting Your Crew to a Model
|
||||
|
||||
CrewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
|
||||
|
||||
Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring your agents' connections to models.
|
||||
|
||||
## How CrewAI Compares
|
||||
|
||||
- **Autogen**: While Autogen excels in creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
|
||||
**CrewAI's Advantage**: CrewAI combines autonomous agent intelligence with precise workflow control through its unique Crews and Flows architecture. The framework excels at both high-level orchestration and low-level customization, enabling complex, production-grade systems with granular control.
|
||||
|
||||
- **LangGraph**: While LangGraph provides a foundation for building agent workflows, its approach requires significant boilerplate code and complex state management patterns. The framework's tight coupling with LangChain can limit flexibility when implementing custom agent behaviors or integrating with external systems.
|
||||
|
||||
*P.S. CrewAI demonstrates significant performance advantages over LangGraph, executing 5.76x faster in certain cases like this QA task example ([see comparison](https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/QA%20Agent)) while achieving higher evaluation scores with faster completion times in certain coding tasks, like in this example ([detailed analysis](https://github.com/crewAIInc/crewAI-examples/blob/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/Coding%20Assistant/coding_assistant_eval.ipynb)).*
|
||||
|
||||
- **Autogen**: While Autogen excels at creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
|
||||
- **ChatDev**: ChatDev introduced the idea of processes into the realm of AI agents, but its implementation is quite rigid. Customizations in ChatDev are limited and not geared towards production environments, which can hinder scalability and flexibility in real-world applications.
|
||||
|
||||
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
|
||||
|
||||
## Contribution
|
||||
|
||||
CrewAI is open-source and we welcome contributions. If you're looking to contribute, please:
|
||||
@@ -87,32 +572,206 @@ CrewAI is open-source and we welcome contributions. If you're looking to contrib
|
||||
- We appreciate your input!
|
||||
|
||||
### Installing Dependencies
|
||||
|
||||
```bash
|
||||
poetry lock
|
||||
poetry install
|
||||
uv lock
|
||||
uv sync
|
||||
```
|
||||
|
||||
### Virtual Env
|
||||
|
||||
```bash
|
||||
poetry shell
|
||||
uv venv
|
||||
```
|
||||
|
||||
### Pre-commit hooks
|
||||
|
||||
```bash
|
||||
pre-commit install
|
||||
```
|
||||
|
||||
### Running Tests
|
||||
|
||||
```bash
|
||||
poetry run pytest
|
||||
uv run pytest .
|
||||
```
|
||||
|
||||
### Running static type checks
|
||||
|
||||
```bash
|
||||
uvx mypy src
|
||||
```
|
||||
|
||||
### Packaging
|
||||
|
||||
```bash
|
||||
poetry build
|
||||
uv build
|
||||
```
|
||||
|
||||
### Installing Locally
|
||||
|
||||
```bash
|
||||
pip install dist/*.tar.gz
|
||||
```
|
||||
|
||||
## Telemetry
|
||||
|
||||
CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools.
|
||||
|
||||
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. Users can disable telemetry by setting the environment variable OTEL_SDK_DISABLED to true.
|
||||
|
||||
Data collected includes:
|
||||
|
||||
- Version of CrewAI
|
||||
- So we can understand how many users are using the latest version
|
||||
- Version of Python
|
||||
- So we can decide on what versions to better support
|
||||
- General OS (e.g. number of CPUs, macOS/Windows/Linux)
|
||||
- So we know what OS we should focus on and if we could build specific OS related features
|
||||
- Number of agents and tasks in a crew
|
||||
- So we make sure we are testing internally with similar use cases and educate people on the best practices
|
||||
- Crew Process being used
|
||||
- Understand where we should focus our efforts
|
||||
- If Agents are using memory or allowing delegation
|
||||
- Understand if we improved the features or maybe even drop them
|
||||
- If Tasks are being executed in parallel or sequentially
|
||||
- Understand if we should focus more on parallel execution
|
||||
- Language model being used
|
||||
- Improved support on most used languages
|
||||
- Roles of agents in a crew
|
||||
- Understand high level use cases so we can build better tools, integrations and examples about it
|
||||
- Tools names available
|
||||
- Understand out of the publicly available tools, which ones are being used the most so we can improve them
|
||||
|
||||
Users can opt-in to Further Telemetry, sharing the complete telemetry data by setting the `share_crew` attribute to `True` on their Crews. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share.
|
||||
|
||||
## License
|
||||
CrewAI is released under the MIT License
|
||||
|
||||
CrewAI is released under the [MIT License](https://github.com/crewAIInc/crewAI/blob/main/LICENSE).
|
||||
|
||||
## Frequently Asked Questions (FAQ)
|
||||
|
||||
### General
|
||||
|
||||
- [What exactly is CrewAI?](#q-what-exactly-is-crewai)
|
||||
- [How do I install CrewAI?](#q-how-do-i-install-crewai)
|
||||
- [Does CrewAI depend on LangChain?](#q-does-crewai-depend-on-langchain)
|
||||
- [Is CrewAI open-source?](#q-is-crewai-open-source)
|
||||
- [Does CrewAI collect data from users?](#q-does-crewai-collect-data-from-users)
|
||||
|
||||
### Features and Capabilities
|
||||
|
||||
- [Can CrewAI handle complex use cases?](#q-can-crewai-handle-complex-use-cases)
|
||||
- [Can I use CrewAI with local AI models?](#q-can-i-use-crewai-with-local-ai-models)
|
||||
- [What makes Crews different from Flows?](#q-what-makes-crews-different-from-flows)
|
||||
- [How is CrewAI better than LangChain?](#q-how-is-crewai-better-than-langchain)
|
||||
- [Does CrewAI support fine-tuning or training custom models?](#q-does-crewai-support-fine-tuning-or-training-custom-models)
|
||||
|
||||
### Resources and Community
|
||||
|
||||
- [Where can I find real-world CrewAI examples?](#q-where-can-i-find-real-world-crewai-examples)
|
||||
- [How can I contribute to CrewAI?](#q-how-can-i-contribute-to-crewai)
|
||||
|
||||
### Enterprise Features
|
||||
|
||||
- [What additional features does CrewAI Enterprise offer?](#q-what-additional-features-does-crewai-enterprise-offer)
|
||||
- [Is CrewAI Enterprise available for cloud and on-premise deployments?](#q-is-crewai-enterprise-available-for-cloud-and-on-premise-deployments)
|
||||
- [Can I try CrewAI Enterprise for free?](#q-can-i-try-crewai-enterprise-for-free)
|
||||
|
||||
### Q: What exactly is CrewAI?
|
||||
|
||||
A: CrewAI is a standalone, lean, and fast Python framework built specifically for orchestrating autonomous AI agents. Unlike frameworks like LangChain, CrewAI does not rely on external dependencies, making it leaner, faster, and simpler.
|
||||
|
||||
### Q: How do I install CrewAI?
|
||||
|
||||
A: Install CrewAI using pip:
|
||||
|
||||
```shell
|
||||
pip install crewai
|
||||
```
|
||||
|
||||
For additional tools, use:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
### Q: Does CrewAI depend on LangChain?
|
||||
|
||||
A: No. CrewAI is built entirely from the ground up, with no dependencies on LangChain or other agent frameworks. This ensures a lean, fast, and flexible experience.
|
||||
|
||||
### Q: Can CrewAI handle complex use cases?
|
||||
|
||||
A: Yes. CrewAI excels at both simple and highly complex real-world scenarios, offering deep customization options at both high and low levels, from internal prompts to sophisticated workflow orchestration.
|
||||
|
||||
### Q: Can I use CrewAI with local AI models?
|
||||
|
||||
A: Absolutely! CrewAI supports various language models, including local ones. Tools like Ollama and LM Studio allow seamless integration. Check the [LLM Connections documentation](https://docs.crewai.com/how-to/LLM-Connections/) for more details.
|
||||
|
||||
### Q: What makes Crews different from Flows?
|
||||
|
||||
A: Crews provide autonomous agent collaboration, ideal for tasks requiring flexible decision-making and dynamic interaction. Flows offer precise, event-driven control, ideal for managing detailed execution paths and secure state management. You can seamlessly combine both for maximum effectiveness.
|
||||
|
||||
### Q: How is CrewAI better than LangChain?
|
||||
|
||||
A: CrewAI provides simpler, more intuitive APIs, faster execution speeds, more reliable and consistent results, robust documentation, and an active community—addressing common criticisms and limitations associated with LangChain.
|
||||
|
||||
### Q: Is CrewAI open-source?
|
||||
|
||||
A: Yes, CrewAI is open-source and actively encourages community contributions and collaboration.
|
||||
|
||||
### Q: Does CrewAI collect data from users?
|
||||
|
||||
A: CrewAI collects anonymous telemetry data strictly for improvement purposes. Sensitive data such as prompts, tasks, or API responses are never collected unless explicitly enabled by the user.
|
||||
|
||||
### Q: Where can I find real-world CrewAI examples?
|
||||
|
||||
A: Check out practical examples in the [CrewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), covering use cases like trip planners, stock analysis, and job postings.
|
||||
|
||||
### Q: How can I contribute to CrewAI?
|
||||
|
||||
A: Contributions are warmly welcomed! Fork the repository, create your branch, implement your changes, and submit a pull request. See the Contribution section of the README for detailed guidelines.
|
||||
|
||||
### Q: What additional features does CrewAI Enterprise offer?
|
||||
|
||||
A: CrewAI Enterprise provides advanced features such as a unified control plane, real-time observability, secure integrations, advanced security, actionable insights, and dedicated 24/7 enterprise support.
|
||||
|
||||
### Q: Is CrewAI Enterprise available for cloud and on-premise deployments?
|
||||
|
||||
A: Yes, CrewAI Enterprise supports both cloud-based and on-premise deployment options, allowing enterprises to meet their specific security and compliance requirements.
|
||||
|
||||
### Q: Can I try CrewAI Enterprise for free?
|
||||
|
||||
A: Yes, you can explore part of the CrewAI Enterprise Suite by accessing the [Crew Control Plane](https://app.crewai.com) for free.
|
||||
|
||||
### Q: Does CrewAI support fine-tuning or training custom models?
|
||||
|
||||
A: Yes, CrewAI can integrate with custom-trained or fine-tuned models, allowing you to enhance your agents with domain-specific knowledge and accuracy.
|
||||
|
||||
### Q: Can CrewAI agents interact with external tools and APIs?
|
||||
|
||||
A: Absolutely! CrewAI agents can easily integrate with external tools, APIs, and databases, empowering them to leverage real-world data and resources.
|
||||
|
||||
### Q: Is CrewAI suitable for production environments?
|
||||
|
||||
A: Yes, CrewAI is explicitly designed with production-grade standards, ensuring reliability, stability, and scalability for enterprise deployments.
|
||||
|
||||
### Q: How scalable is CrewAI?
|
||||
|
||||
A: CrewAI is highly scalable, supporting simple automations and large-scale enterprise workflows involving numerous agents and complex tasks simultaneously.
|
||||
|
||||
### Q: Does CrewAI offer debugging and monitoring tools?
|
||||
|
||||
A: Yes, CrewAI Enterprise includes advanced debugging, tracing, and real-time observability features, simplifying the management and troubleshooting of your automations.
|
||||
|
||||
### Q: What programming languages does CrewAI support?
|
||||
|
||||
A: CrewAI is primarily Python-based but easily integrates with services and APIs written in any programming language through its flexible API integration capabilities.
|
||||
|
||||
### Q: Does CrewAI offer educational resources for beginners?
|
||||
|
||||
A: Yes, CrewAI provides extensive beginner-friendly tutorials, courses, and documentation through learn.crewai.com, supporting developers at all skill levels.
|
||||
|
||||
### Q: Can CrewAI automate human-in-the-loop workflows?
|
||||
|
||||
A: Yes, CrewAI fully supports human-in-the-loop workflows, allowing seamless collaboration between human experts and AI agents for enhanced decision-making.
|
||||
|
||||
|
Before Width: | Height: | Size: 431 KiB |
@@ -1463,11 +1463,11 @@
|
||||
"locked": false,
|
||||
"fontSize": 20,
|
||||
"fontFamily": 3,
|
||||
"text": "Agents have the inert ability of\nreach out to another to delegate\nwork or ask questions.",
|
||||
"text": "Agents have the innate ability of\nreach out to another to delegate\nwork or ask questions.",
|
||||
"textAlign": "right",
|
||||
"verticalAlign": "top",
|
||||
"containerId": null,
|
||||
"originalText": "Agents have the inert ability of\nreach out to another to delegate\nwork or ask questions.",
|
||||
"originalText": "Agents have the innate ability of\nreach out to another to delegate\nwork or ask questions.",
|
||||
"lineHeight": 1.2,
|
||||
"baseline": 68
|
||||
},
|
||||
@@ -1734,4 +1734,4 @@
|
||||
"viewBackgroundColor": "#ffffff"
|
||||
},
|
||||
"files": {}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,4 +0,0 @@
|
||||
from .task import Task
|
||||
from .crew import Crew
|
||||
from .agent import Agent
|
||||
from .process import Process
|
||||
@@ -1,99 +0,0 @@
|
||||
"""Generic agent."""
|
||||
|
||||
from typing import List, Any, Optional
|
||||
from pydantic.v1 import BaseModel, Field, root_validator
|
||||
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.chat_models import ChatOpenAI as OpenAI
|
||||
from langchain.tools.render import render_text_description
|
||||
from langchain.agents.format_scratchpad import format_log_to_str
|
||||
from langchain.agents.output_parsers import ReActSingleInputOutputParser
|
||||
from langchain.memory import ConversationSummaryMemory
|
||||
|
||||
from .prompts import Prompts
|
||||
|
||||
class Agent(BaseModel):
|
||||
"""Generic agent implementation."""
|
||||
agent_executor: AgentExecutor = None
|
||||
role: str = Field(description="Role of the agent")
|
||||
goal: str = Field(description="Objective of the agent")
|
||||
backstory: str = Field(description="Backstory of the agent")
|
||||
llm: Optional[OpenAI] = Field(description="LLM that will run the agent")
|
||||
verbose: bool = Field(
|
||||
description="Verbose mode for the Agent Execution",
|
||||
default=False
|
||||
)
|
||||
allow_delegation: bool = Field(
|
||||
description="Allow delegation of tasks to agents",
|
||||
default=True
|
||||
)
|
||||
tools: List[Any] = Field(
|
||||
description="Tools at agents disposal",
|
||||
default=[]
|
||||
)
|
||||
|
||||
@root_validator(pre=True)
|
||||
def check_llm(_cls, values):
|
||||
if not values.get('llm'):
|
||||
values['llm'] = OpenAI(
|
||||
temperature=0.7,
|
||||
model_name="gpt-4"
|
||||
)
|
||||
return values
|
||||
|
||||
def __init__(self, **data):
|
||||
super().__init__(**data)
|
||||
execution_prompt = Prompts.TASK_EXECUTION_PROMPT.partial(
|
||||
goal=self.goal,
|
||||
role=self.role,
|
||||
backstory=self.backstory,
|
||||
)
|
||||
|
||||
llm_with_bind = self.llm.bind(stop=["\nObservation"])
|
||||
inner_agent = {
|
||||
"input": lambda x: x["input"],
|
||||
"tools": lambda x: x["tools"],
|
||||
"tool_names": lambda x: x["tool_names"],
|
||||
"chat_history": lambda x: x["chat_history"],
|
||||
"agent_scratchpad": lambda x: format_log_to_str(x['intermediate_steps']),
|
||||
} | execution_prompt | llm_with_bind | ReActSingleInputOutputParser()
|
||||
|
||||
summary_memory = ConversationSummaryMemory(
|
||||
llm=self.llm,
|
||||
memory_key='chat_history',
|
||||
input_key="input"
|
||||
)
|
||||
|
||||
self.agent_executor = AgentExecutor(
|
||||
agent=inner_agent,
|
||||
tools=self.tools,
|
||||
memory=summary_memory,
|
||||
verbose=self.verbose,
|
||||
handle_parsing_errors=True,
|
||||
)
|
||||
|
||||
def execute_task(self, task: str, context: str = None, tools: List[Any] = None) -> str:
|
||||
"""
|
||||
Execute a task with the agent.
|
||||
Parameters:
|
||||
task (str): Task to execute
|
||||
Returns:
|
||||
output (str): Output of the agent
|
||||
"""
|
||||
if context:
|
||||
task = "\n".join([
|
||||
task,
|
||||
"\nThis is the context you are working with:",
|
||||
context
|
||||
])
|
||||
|
||||
tools = tools or self.tools
|
||||
self.agent_executor.tools = tools
|
||||
return self.agent_executor.invoke({
|
||||
"input": task,
|
||||
"tool_names": self.__tools_names(tools),
|
||||
"tools": render_text_description(tools),
|
||||
})['output']
|
||||
|
||||
def __tools_names(self, tools) -> str:
|
||||
return ", ".join([t.name for t in tools])
|
||||
@@ -1,5 +0,0 @@
|
||||
from pydantic.v1 import BaseModel, Field
|
||||
|
||||
class AgentVote(BaseModel):
|
||||
task: str = Field(description="Task to be executed by the agent")
|
||||
agent_vote: str = Field(description="Agent that will execute the task")
|
||||
@@ -1,86 +0,0 @@
|
||||
import json
|
||||
from typing import List, Optional
|
||||
from pydantic.v1 import BaseModel, Field, Json, root_validator
|
||||
|
||||
from .process import Process
|
||||
from .agent import Agent
|
||||
from .task import Task
|
||||
from .tools.agent_tools import AgentTools
|
||||
|
||||
class Crew(BaseModel):
|
||||
"""
|
||||
Class that represents a group of agents, how they should work together and
|
||||
their tasks.
|
||||
"""
|
||||
config: Optional[Json] = Field(description="Configuration of the crew.")
|
||||
tasks: Optional[List[Task]] = Field(description="List of tasks")
|
||||
agents: Optional[List[Agent]] = Field(description="List of agents in this crew.")
|
||||
process: Process = Field(
|
||||
description="Process that the crew will follow.",
|
||||
default=Process.sequential
|
||||
)
|
||||
verbose: bool = Field(
|
||||
description="Verbose mode for the Agent Execution",
|
||||
default=False
|
||||
)
|
||||
|
||||
@root_validator(pre=True)
|
||||
def check_config(_cls, values):
|
||||
if (
|
||||
not values.get('config')
|
||||
and (
|
||||
not values.get('agents') and not values.get('tasks')
|
||||
)
|
||||
):
|
||||
raise ValueError('Either agents and task need to be set or config.')
|
||||
|
||||
if values.get('config'):
|
||||
config = json.loads(values.get('config'))
|
||||
if not config.get('agents') or not config.get('tasks'):
|
||||
raise ValueError('Config should have agents and tasks.')
|
||||
|
||||
values['agents'] = [Agent(**agent) for agent in config['agents']]
|
||||
|
||||
tasks = []
|
||||
for task in config['tasks']:
|
||||
task_agent = [agt for agt in values['agents'] if agt.role == task['agent']][0]
|
||||
del task['agent']
|
||||
tasks.append(Task(**task, agent=task_agent))
|
||||
|
||||
values['tasks'] = tasks
|
||||
return values
|
||||
|
||||
def kickoff(self) -> str:
|
||||
"""
|
||||
Kickoff the crew to work on it's tasks.
|
||||
Returns:
|
||||
output (List[str]): Output of the crew for each task.
|
||||
"""
|
||||
if self.process == Process.sequential:
|
||||
return self.__sequential_loop()
|
||||
|
||||
def __sequential_loop(self) -> str:
|
||||
"""
|
||||
Loop that executes the sequential process.
|
||||
Returns:
|
||||
output (str): Output of the crew.
|
||||
"""
|
||||
task_outcome = None
|
||||
for task in self.tasks:
|
||||
# Add delegation tools to the task if the agent allows it
|
||||
if task.agent.allow_delegation:
|
||||
tools = AgentTools(agents=self.agents).tools()
|
||||
task.tools += tools
|
||||
|
||||
self.__log(f"\nWorking Agent: {task.agent.role}")
|
||||
self.__log(f"Starting Task: {task.description} ...")
|
||||
|
||||
task_outcome = task.execute(task_outcome)
|
||||
|
||||
self.__log(f"Task output: {task_outcome}")
|
||||
|
||||
return task_outcome
|
||||
|
||||
def __log(self, message):
|
||||
if self.verbose:
|
||||
print(message)
|
||||
@@ -1,9 +0,0 @@
|
||||
from enum import Enum
|
||||
|
||||
class Process(str, Enum):
|
||||
"""
|
||||
Class representing the different processes that can be used to tackle tasks
|
||||
"""
|
||||
sequential = 'sequential'
|
||||
# TODO: consensual = 'consensual'
|
||||
# TODO: hierarchical = 'hierarchical'
|
||||
@@ -1,71 +0,0 @@
|
||||
"""Prompts for generic agent."""
|
||||
|
||||
from textwrap import dedent
|
||||
from typing import ClassVar
|
||||
from pydantic.v1 import BaseModel
|
||||
from langchain.prompts import PromptTemplate
|
||||
|
||||
class Prompts(BaseModel):
|
||||
"""Prompts for generic agent."""
|
||||
|
||||
TASK_SLICE: ClassVar[str] = dedent("""\
|
||||
Begin! This is VERY important to you, your job depends on it!
|
||||
|
||||
Current Task: {input}
|
||||
{agent_scratchpad}
|
||||
""")
|
||||
|
||||
MEMORY_SLICE: ClassVar[str] = dedent("""\
|
||||
This is the summary of your work so far:
|
||||
{chat_history}
|
||||
""")
|
||||
|
||||
ROLE_PLAYING_SLICE: ClassVar[str] = dedent("""\
|
||||
You are {role}.
|
||||
{backstory}
|
||||
|
||||
Your personal goal is: {goal}
|
||||
""")
|
||||
|
||||
TOOLS_SLICE: ClassVar[str] = dedent("""\
|
||||
TOOLS:
|
||||
------
|
||||
|
||||
You have access to the following tools:
|
||||
|
||||
{tools}
|
||||
|
||||
To use a tool, please use the following format:
|
||||
|
||||
```
|
||||
Thought: Do I need to use a tool? Yes
|
||||
Action: the action to take, should be one of [{tool_names}]
|
||||
Action Input: the input to the action
|
||||
Observation: the result of the action
|
||||
```
|
||||
|
||||
When you have a response for your task, or if you do not need to use a tool, you MUST use the format:
|
||||
|
||||
```
|
||||
Thought: Do I need to use a tool? No
|
||||
Final Answer: [your response here]
|
||||
```
|
||||
""")
|
||||
|
||||
VOTING_SLICE: ClassVar[str] = dedent("""\
|
||||
You are working on a crew with your co-workers and need to decide who will execute the task.
|
||||
|
||||
These are tyour format instructions:
|
||||
{format_instructions}
|
||||
|
||||
These are your co-workers and their roles:
|
||||
{coworkers}
|
||||
""")
|
||||
|
||||
TASK_EXECUTION_PROMPT: ClassVar[str] = PromptTemplate.from_template(
|
||||
ROLE_PLAYING_SLICE + TOOLS_SLICE + MEMORY_SLICE + TASK_SLICE
|
||||
)
|
||||
|
||||
CONSENSUNS_VOTING_PROMPT: ClassVar[str] = PromptTemplate.from_template(
|
||||
ROLE_PLAYING_SLICE + VOTING_SLICE + TASK_SLICE
|
||||
)
|
||||
@@ -1,42 +0,0 @@
|
||||
from typing import List, Optional
|
||||
from pydantic.v1 import BaseModel, Field, root_validator
|
||||
|
||||
from langchain.tools import Tool
|
||||
|
||||
from .agent import Agent
|
||||
|
||||
class Task(BaseModel):
|
||||
"""
|
||||
Class that represent a task to be executed.
|
||||
"""
|
||||
|
||||
description: str = Field(description="Description of the actual task.")
|
||||
agent: Optional[Agent] = Field(
|
||||
description="Agent responsible for the task.",
|
||||
default=None
|
||||
)
|
||||
tools: Optional[List[Tool]] = Field(
|
||||
description="Tools the agent are limited to use for this task.",
|
||||
default=[]
|
||||
)
|
||||
|
||||
@root_validator(pre=False)
|
||||
def _set_tools(_cls, values):
|
||||
if (values.get('agent')) and not (values.get('tools')):
|
||||
values['tools'] = values.get('agent').tools
|
||||
return values
|
||||
|
||||
def execute(self, context: str = None) -> str:
|
||||
"""
|
||||
Execute the task.
|
||||
Returns:
|
||||
output (str): Output of the task.
|
||||
"""
|
||||
if self.agent:
|
||||
return self.agent.execute_task(
|
||||
task = self.description,
|
||||
context = context,
|
||||
tools = self.tools
|
||||
)
|
||||
else:
|
||||
raise Exception(f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, either consensual or hierarchical.")
|
||||
@@ -1,57 +0,0 @@
|
||||
from typing import List, Any
|
||||
from pydantic.v1 import BaseModel, Field
|
||||
from textwrap import dedent
|
||||
from langchain.tools import Tool
|
||||
|
||||
from ..agent import Agent
|
||||
|
||||
class AgentTools(BaseModel):
|
||||
"""Tools for generic agent."""
|
||||
agents: List[Agent] = Field(description="List of agents in this crew.")
|
||||
|
||||
def tools(self):
|
||||
return [
|
||||
Tool.from_function(
|
||||
func=self.delegate_work,
|
||||
name="Delegate Work to Co-Worker",
|
||||
description=dedent(f"""Useful to delegate a specific task to one of the
|
||||
following co-workers: [{', '.join([agent.role for agent in self.agents])}].
|
||||
The input to this tool should be a pipe (|) separated text of length
|
||||
three, representing the role you want to delegate it to, the task and
|
||||
information necessary. For example, `coworker|task|information`.
|
||||
""")
|
||||
),
|
||||
Tool.from_function(
|
||||
func=self.ask_question,
|
||||
name="Ask Question to Co-Worker",
|
||||
description=dedent(f"""Useful to ask a question, opinion or take from on
|
||||
of the following co-workers: [{', '.join([agent.role for agent in self.agents])}].
|
||||
The input to this tool should be a pipe (|) separated text of length
|
||||
three, representing the role you want to ask it to, the question and
|
||||
information necessary. For example, `coworker|question|information`.
|
||||
""")
|
||||
),
|
||||
]
|
||||
|
||||
def delegate_work(self, command):
|
||||
"""Useful to delegate a specific task to a coworker."""
|
||||
return self.__execute(command)
|
||||
|
||||
def ask_question(self, command):
|
||||
"""Useful to ask a question, opinion or take from a coworker."""
|
||||
return self.__execute(command)
|
||||
|
||||
def __execute(self, command):
|
||||
"""Execute the command."""
|
||||
agent, task, information = command.split("|")
|
||||
if not agent or not task or not information:
|
||||
return "Error executing tool. Missing 3 pipe (|) separated values."
|
||||
|
||||
agent = [available_agent for available_agent in self.agents if available_agent.role == agent]
|
||||
|
||||
if len(agent) == 0:
|
||||
return "Error executing tool. Co-worker not found, double check the co-worker."
|
||||
|
||||
agent = agent[0]
|
||||
result = agent.execute_task(task, information)
|
||||
return result
|
||||
18
docs/common-room-tracking.js
Normal file
@@ -0,0 +1,18 @@
|
||||
(function() {
|
||||
if (typeof window === 'undefined') return;
|
||||
if (typeof window.signals !== 'undefined') return;
|
||||
var script = document.createElement('script');
|
||||
script.src = 'https://cdn.cr-relay.com/v1/site/883520f4-c431-44be-80e7-e123a1ee7a2b/signals.js';
|
||||
script.async = true;
|
||||
window.signals = Object.assign(
|
||||
[],
|
||||
['page', 'identify', 'form'].reduce(function (acc, method){
|
||||
acc[method] = function () {
|
||||
signals.push([method, arguments]);
|
||||
return signals;
|
||||
};
|
||||
return acc;
|
||||
}, {})
|
||||
);
|
||||
document.head.appendChild(script);
|
||||
})();
|
||||
1175
docs/docs.json
Normal file
7
docs/en/api-reference/inputs.mdx
Normal file
@@ -0,0 +1,7 @@
|
||||
---
|
||||
title: "GET /inputs"
|
||||
description: "Get required inputs for your crew"
|
||||
openapi: "/enterprise-api.en.yaml GET /inputs"
|
||||
---
|
||||
|
||||
|
||||
119
docs/en/api-reference/introduction.mdx
Normal file
@@ -0,0 +1,119 @@
|
||||
---
|
||||
title: "Introduction"
|
||||
description: "Complete reference for the CrewAI Enterprise REST API"
|
||||
icon: "code"
|
||||
---
|
||||
|
||||
# CrewAI Enterprise API
|
||||
|
||||
Welcome to the CrewAI Enterprise API reference. This API allows you to programmatically interact with your deployed crews, enabling integration with your applications, workflows, and services.
|
||||
|
||||
## Quick Start
|
||||
|
||||
<Steps>
|
||||
<Step title="Get Your API Credentials">
|
||||
Navigate to your crew's detail page in the CrewAI Enterprise dashboard and copy your Bearer Token from the Status tab.
|
||||
</Step>
|
||||
|
||||
<Step title="Discover Required Inputs">
|
||||
Use the `GET /inputs` endpoint to see what parameters your crew expects.
|
||||
</Step>
|
||||
|
||||
<Step title="Start a Crew Execution">
|
||||
Call `POST /kickoff` with your inputs to start the crew execution and receive a `kickoff_id`.
|
||||
</Step>
|
||||
|
||||
<Step title="Monitor Progress">
|
||||
Use `GET /status/{kickoff_id}` to check execution status and retrieve results.
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
## Authentication
|
||||
|
||||
All API requests require authentication using a Bearer token. Include your token in the `Authorization` header:
|
||||
|
||||
```bash
|
||||
curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
|
||||
https://your-crew-url.crewai.com/inputs
|
||||
```
|
||||
|
||||
### Token Types
|
||||
|
||||
| Token Type | Scope | Use Case |
|
||||
|:-----------|:--------|:----------|
|
||||
| **Bearer Token** | Organization-level access | Full crew operations, ideal for server-to-server integration |
|
||||
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
|
||||
|
||||
<Tip>
|
||||
You can find both token types in the Status tab of your crew's detail page in the CrewAI Enterprise dashboard.
|
||||
</Tip>
|
||||
|
||||
## Base URL
|
||||
|
||||
Each deployed crew has its own unique API endpoint:
|
||||
|
||||
```
|
||||
https://your-crew-name.crewai.com
|
||||
```
|
||||
|
||||
Replace `your-crew-name` with your actual crew's URL from the dashboard.
|
||||
|
||||
## Typical Workflow
|
||||
|
||||
1. **Discovery**: Call `GET /inputs` to understand what your crew needs
|
||||
2. **Execution**: Submit inputs via `POST /kickoff` to start processing
|
||||
3. **Monitoring**: Poll `GET /status/{kickoff_id}` until completion
|
||||
4. **Results**: Extract the final output from the completed response
|
||||
|
||||
## Error Handling
|
||||
|
||||
The API uses standard HTTP status codes:
|
||||
|
||||
| Code | Meaning |
|
||||
|------|:--------|
|
||||
| `200` | Success |
|
||||
| `400` | Bad Request - Invalid input format |
|
||||
| `401` | Unauthorized - Invalid bearer token |
|
||||
| `404` | Not Found - Resource doesn't exist |
|
||||
| `422` | Validation Error - Missing required inputs |
|
||||
| `500` | Server Error - Contact support |
|
||||
|
||||
## Interactive Testing
|
||||
|
||||
<Info>
|
||||
**Why no "Send" button?** Since each CrewAI Enterprise user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
|
||||
</Info>
|
||||
|
||||
Each endpoint page shows you:
|
||||
- ✅ **Exact request format** with all parameters
|
||||
- ✅ **Response examples** for success and error cases
|
||||
- ✅ **Code samples** in multiple languages (cURL, Python, JavaScript, etc.)
|
||||
- ✅ **Authentication examples** with proper Bearer token format
|
||||
|
||||
### **To Test Your Actual API:**
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Copy cURL Examples" icon="terminal">
|
||||
Copy the cURL examples and replace the URL + token with your real values
|
||||
</Card>
|
||||
<Card title="Use Postman/Insomnia" icon="play">
|
||||
Import the examples into your preferred API testing tool
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
**Example workflow:**
|
||||
1. **Copy this cURL example** from any endpoint page
|
||||
2. **Replace `your-actual-crew-name.crewai.com`** with your real crew URL
|
||||
3. **Replace the Bearer token** with your real token from the dashboard
|
||||
4. **Run the request** in your terminal or API client
|
||||
|
||||
## Need Help?
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="Enterprise Support" icon="headset" href="mailto:support@crewai.com">
|
||||
Get help with API integration and troubleshooting
|
||||
</Card>
|
||||
<Card title="Enterprise Dashboard" icon="chart-line" href="https://app.crewai.com">
|
||||
Manage your crews and view execution logs
|
||||
</Card>
|
||||
</CardGroup>
|
||||
7
docs/en/api-reference/kickoff.mdx
Normal file
@@ -0,0 +1,7 @@
|
||||
---
|
||||
title: "POST /kickoff"
|
||||
description: "Start a crew execution"
|
||||
openapi: "/enterprise-api.en.yaml POST /kickoff"
|
||||
---
|
||||
|
||||
|
||||
7
docs/en/api-reference/status.mdx
Normal file
@@ -0,0 +1,7 @@
|
||||
---
|
||||
title: "GET /status/{kickoff_id}"
|
||||
description: "Get execution status"
|
||||
openapi: "/enterprise-api.en.yaml GET /status/{kickoff_id}"
|
||||
---
|
||||
|
||||
|
||||
690
docs/en/concepts/agents.mdx
Normal file
@@ -0,0 +1,690 @@
|
||||
---
|
||||
title: Agents
|
||||
description: Detailed guide on creating and managing agents within the CrewAI framework.
|
||||
icon: robot
|
||||
---
|
||||
|
||||
## Overview of an Agent
|
||||
|
||||
In the CrewAI framework, an `Agent` is an autonomous unit that can:
|
||||
- Perform specific tasks
|
||||
- Make decisions based on its role and goal
|
||||
- Use tools to accomplish objectives
|
||||
- Communicate and collaborate with other agents
|
||||
- Maintain memory of interactions
|
||||
- Delegate tasks when allowed
|
||||
|
||||
<Tip>
|
||||
Think of an agent as a specialized team member with specific skills, expertise, and responsibilities. For example, a `Researcher` agent might excel at gathering and analyzing information, while a `Writer` agent might be better at creating content.
|
||||
</Tip>
|
||||
|
||||
<Note type="info" title="Enterprise Enhancement: Visual Agent Builder">
|
||||
CrewAI Enterprise includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
|
||||
|
||||

|
||||
|
||||
The Visual Agent Builder enables:
|
||||
- Intuitive agent configuration with form-based interfaces
|
||||
- Real-time testing and validation
|
||||
- Template library with pre-configured agent types
|
||||
- Easy customization of agent attributes and behaviors
|
||||
</Note>
|
||||
|
||||
## Agent Attributes
|
||||
|
||||
| Attribute | Parameter | Type | Description |
|
||||
| :-------------------------------------- | :----------------------- | :---------------------------- | :------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Role** | `role` | `str` | Defines the agent's function and expertise within the crew. |
|
||||
| **Goal** | `goal` | `str` | The individual objective that guides the agent's decision-making. |
|
||||
| **Backstory** | `backstory` | `str` | Provides context and personality to the agent, enriching interactions. |
|
||||
| **LLM** _(optional)_ | `llm` | `Union[str, LLM, Any]` | Language model that powers the agent. Defaults to the model specified in `OPENAI_MODEL_NAME` or "gpt-4". |
|
||||
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | Capabilities or functions available to the agent. Defaults to an empty list. |
|
||||
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | `Optional[Any]` | Language model for tool calling, overrides crew's LLM if specified. |
|
||||
| **Max Iterations** _(optional)_ | `max_iter` | `int` | Maximum iterations before the agent must provide its best answer. Default is 20. |
|
||||
| **Max RPM** _(optional)_ | `max_rpm` | `Optional[int]` | Maximum requests per minute to avoid rate limits. |
|
||||
| **Max Execution Time** _(optional)_ | `max_execution_time` | `Optional[int]` | Maximum time (in seconds) for task execution. |
|
||||
| **Verbose** _(optional)_ | `verbose` | `bool` | Enable detailed execution logs for debugging. Default is False. |
|
||||
| **Allow Delegation** _(optional)_ | `allow_delegation` | `bool` | Allow the agent to delegate tasks to other agents. Default is False. |
|
||||
| **Step Callback** _(optional)_ | `step_callback` | `Optional[Any]` | Function called after each agent step, overrides crew callback. |
|
||||
| **Cache** _(optional)_ | `cache` | `bool` | Enable caching for tool usage. Default is True. |
|
||||
| **System Template** _(optional)_ | `system_template` | `Optional[str]` | Custom system prompt template for the agent. |
|
||||
| **Prompt Template** _(optional)_ | `prompt_template` | `Optional[str]` | Custom prompt template for the agent. |
|
||||
| **Response Template** _(optional)_ | `response_template` | `Optional[str]` | Custom response template for the agent. |
|
||||
| **Allow Code Execution** _(optional)_ | `allow_code_execution` | `Optional[bool]` | Enable code execution for the agent. Default is False. |
|
||||
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
|
||||
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
|
||||
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
|
||||
| **Multimodal** _(optional)_ | `multimodal` | `bool` | Whether the agent supports multimodal capabilities. Default is False. |
|
||||
| **Inject Date** _(optional)_ | `inject_date` | `bool` | Whether to automatically inject the current date into tasks. Default is False. |
|
||||
| **Date Format** _(optional)_ | `date_format` | `str` | Format string for date when inject_date is enabled. Default is "%Y-%m-%d" (ISO format). |
|
||||
| **Reasoning** _(optional)_ | `reasoning` | `bool` | Whether the agent should reflect and create a plan before executing a task. Default is False. |
|
||||
| **Max Reasoning Attempts** _(optional)_ | `max_reasoning_attempts` | `Optional[int]` | Maximum number of reasoning attempts before executing the task. If None, will try until ready. |
|
||||
| **Embedder** _(optional)_ | `embedder` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
|
||||
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
|
||||
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
|
||||
|
||||
## Creating Agents
|
||||
|
||||
There are two ways to create agents in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
|
||||
|
||||
### YAML Configuration (Recommended)
|
||||
|
||||
Using YAML configuration provides a cleaner, more maintainable way to define agents. We strongly recommend using this approach in your CrewAI projects.
|
||||
|
||||
After creating your CrewAI project as outlined in the [Installation](/en/installation) section, navigate to the `src/latest_ai_development/config/agents.yaml` file and modify the template to match your requirements.
|
||||
|
||||
<Note>
|
||||
Variables in your YAML files (like `{topic}`) will be replaced with values from your inputs when running the crew:
|
||||
```python Code
|
||||
crew.kickoff(inputs={'topic': 'AI Agents'})
|
||||
```
|
||||
</Note>
|
||||
|
||||
Here's an example of how to configure agents using YAML:
|
||||
|
||||
```yaml agents.yaml
|
||||
# src/latest_ai_development/config/agents.yaml
|
||||
researcher:
|
||||
role: >
|
||||
{topic} Senior Data Researcher
|
||||
goal: >
|
||||
Uncover cutting-edge developments in {topic}
|
||||
backstory: >
|
||||
You're a seasoned researcher with a knack for uncovering the latest
|
||||
developments in {topic}. Known for your ability to find the most relevant
|
||||
information and present it in a clear and concise manner.
|
||||
|
||||
reporting_analyst:
|
||||
role: >
|
||||
{topic} Reporting Analyst
|
||||
goal: >
|
||||
Create detailed reports based on {topic} data analysis and research findings
|
||||
backstory: >
|
||||
You're a meticulous analyst with a keen eye for detail. You're known for
|
||||
your ability to turn complex data into clear and concise reports, making
|
||||
it easy for others to understand and act on the information you provide.
|
||||
```
|
||||
|
||||
To use this YAML configuration in your code, create a crew class that inherits from `CrewBase`:
|
||||
|
||||
```python Code
|
||||
# src/latest_ai_development/crew.py
|
||||
from crewai import Agent, Crew, Process
|
||||
from crewai.project import CrewBase, agent, crew
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
@CrewBase
|
||||
class LatestAiDevelopmentCrew():
|
||||
"""LatestAiDevelopment crew"""
|
||||
|
||||
agents_config = "config/agents.yaml"
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'], # type: ignore[index]
|
||||
verbose=True,
|
||||
tools=[SerperDevTool()]
|
||||
)
|
||||
|
||||
@agent
|
||||
def reporting_analyst(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['reporting_analyst'], # type: ignore[index]
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
<Note>
|
||||
The names you use in your YAML files (`agents.yaml`) should match the method names in your Python code.
|
||||
</Note>
|
||||
|
||||
### Direct Code Definition
|
||||
|
||||
You can create agents directly in code by instantiating the `Agent` class. Here's a comprehensive example showing all available parameters:
|
||||
|
||||
```python Code
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
# Create an agent with all available parameters
|
||||
agent = Agent(
|
||||
role="Senior Data Scientist",
|
||||
goal="Analyze and interpret complex datasets to provide actionable insights",
|
||||
backstory="With over 10 years of experience in data science and machine learning, "
|
||||
"you excel at finding patterns in complex datasets.",
|
||||
llm="gpt-4", # Default: OPENAI_MODEL_NAME or "gpt-4"
|
||||
function_calling_llm=None, # Optional: Separate LLM for tool calling
|
||||
verbose=False, # Default: False
|
||||
allow_delegation=False, # Default: False
|
||||
max_iter=20, # Default: 20 iterations
|
||||
max_rpm=None, # Optional: Rate limit for API calls
|
||||
max_execution_time=None, # Optional: Maximum execution time in seconds
|
||||
max_retry_limit=2, # Default: 2 retries on error
|
||||
allow_code_execution=False, # Default: False
|
||||
code_execution_mode="safe", # Default: "safe" (options: "safe", "unsafe")
|
||||
respect_context_window=True, # Default: True
|
||||
use_system_prompt=True, # Default: True
|
||||
multimodal=False, # Default: False
|
||||
inject_date=False, # Default: False
|
||||
date_format="%Y-%m-%d", # Default: ISO format
|
||||
reasoning=False, # Default: False
|
||||
max_reasoning_attempts=None, # Default: None
|
||||
tools=[SerperDevTool()], # Optional: List of tools
|
||||
knowledge_sources=None, # Optional: List of knowledge sources
|
||||
embedder=None, # Optional: Custom embedder configuration
|
||||
system_template=None, # Optional: Custom system prompt template
|
||||
prompt_template=None, # Optional: Custom prompt template
|
||||
response_template=None, # Optional: Custom response template
|
||||
step_callback=None, # Optional: Callback function for monitoring
|
||||
)
|
||||
```
|
||||
|
||||
Let's break down some key parameter combinations for common use cases:
|
||||
|
||||
#### Basic Research Agent
|
||||
```python Code
|
||||
research_agent = Agent(
|
||||
role="Research Analyst",
|
||||
goal="Find and summarize information about specific topics",
|
||||
backstory="You are an experienced researcher with attention to detail",
|
||||
tools=[SerperDevTool()],
|
||||
verbose=True # Enable logging for debugging
|
||||
)
|
||||
```
|
||||
|
||||
#### Code Development Agent
|
||||
```python Code
|
||||
dev_agent = Agent(
|
||||
role="Senior Python Developer",
|
||||
goal="Write and debug Python code",
|
||||
backstory="Expert Python developer with 10 years of experience",
|
||||
allow_code_execution=True,
|
||||
code_execution_mode="safe", # Uses Docker for safety
|
||||
max_execution_time=300, # 5-minute timeout
|
||||
max_retry_limit=3 # More retries for complex code tasks
|
||||
)
|
||||
```
|
||||
|
||||
#### Long-Running Analysis Agent
|
||||
```python Code
|
||||
analysis_agent = Agent(
|
||||
role="Data Analyst",
|
||||
goal="Perform deep analysis of large datasets",
|
||||
backstory="Specialized in big data analysis and pattern recognition",
|
||||
memory=True,
|
||||
respect_context_window=True,
|
||||
max_rpm=10, # Limit API calls
|
||||
function_calling_llm="gpt-4o-mini" # Cheaper model for tool calls
|
||||
)
|
||||
```
|
||||
|
||||
#### Custom Template Agent
|
||||
```python Code
|
||||
custom_agent = Agent(
|
||||
role="Customer Service Representative",
|
||||
goal="Assist customers with their inquiries",
|
||||
backstory="Experienced in customer support with a focus on satisfaction",
|
||||
system_template="""<|start_header_id|>system<|end_header_id|>
|
||||
{{ .System }}<|eot_id|>""",
|
||||
prompt_template="""<|start_header_id|>user<|end_header_id|>
|
||||
{{ .Prompt }}<|eot_id|>""",
|
||||
response_template="""<|start_header_id|>assistant<|end_header_id|>
|
||||
{{ .Response }}<|eot_id|>""",
|
||||
)
|
||||
```
|
||||
|
||||
#### Date-Aware Agent with Reasoning
|
||||
```python Code
|
||||
strategic_agent = Agent(
|
||||
role="Market Analyst",
|
||||
goal="Track market movements with precise date references and strategic planning",
|
||||
backstory="Expert in time-sensitive financial analysis and strategic reporting",
|
||||
inject_date=True, # Automatically inject current date into tasks
|
||||
date_format="%B %d, %Y", # Format as "May 21, 2025"
|
||||
reasoning=True, # Enable strategic planning
|
||||
max_reasoning_attempts=2, # Limit planning iterations
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
#### Reasoning Agent
|
||||
```python Code
|
||||
reasoning_agent = Agent(
|
||||
role="Strategic Planner",
|
||||
goal="Analyze complex problems and create detailed execution plans",
|
||||
backstory="Expert strategic planner who methodically breaks down complex challenges",
|
||||
reasoning=True, # Enable reasoning and planning
|
||||
max_reasoning_attempts=3, # Limit reasoning attempts
|
||||
max_iter=30, # Allow more iterations for complex planning
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
#### Multimodal Agent
|
||||
```python Code
|
||||
multimodal_agent = Agent(
|
||||
role="Visual Content Analyst",
|
||||
goal="Analyze and process both text and visual content",
|
||||
backstory="Specialized in multimodal analysis combining text and image understanding",
|
||||
multimodal=True, # Enable multimodal capabilities
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
### Parameter Details
|
||||
|
||||
#### Critical Parameters
|
||||
- `role`, `goal`, and `backstory` are required and shape the agent's behavior
|
||||
- `llm` determines the language model used (default: OpenAI's GPT-4)
|
||||
|
||||
#### Memory and Context
|
||||
- `memory`: Enable to maintain conversation history
|
||||
- `respect_context_window`: Prevents token limit issues
|
||||
- `knowledge_sources`: Add domain-specific knowledge bases
|
||||
|
||||
#### Execution Control
|
||||
- `max_iter`: Maximum attempts before giving best answer
|
||||
- `max_execution_time`: Timeout in seconds
|
||||
- `max_rpm`: Rate limiting for API calls
|
||||
- `max_retry_limit`: Retries on error
|
||||
|
||||
#### Code Execution
|
||||
- `allow_code_execution`: Must be True to run code
|
||||
- `code_execution_mode`:
|
||||
- `"safe"`: Uses Docker (recommended for production)
|
||||
- `"unsafe"`: Direct execution (use only in trusted environments)
|
||||
|
||||
<Note>
|
||||
This runs a default Docker image. If you want to configure the docker image, the checkout the Code Interpreter Tool in the tools section.
|
||||
Add the code interpreter tool as a tool in the agent as a tool parameter.
|
||||
</Note>
|
||||
|
||||
#### Advanced Features
|
||||
- `multimodal`: Enable multimodal capabilities for processing text and visual content
|
||||
- `reasoning`: Enable agent to reflect and create plans before executing tasks
|
||||
- `inject_date`: Automatically inject current date into task descriptions
|
||||
|
||||
#### Templates
|
||||
- `system_template`: Defines agent's core behavior
|
||||
- `prompt_template`: Structures input format
|
||||
- `response_template`: Formats agent responses
|
||||
|
||||
<Note>
|
||||
When using custom templates, ensure that both `system_template` and `prompt_template` are defined. The `response_template` is optional but recommended for consistent output formatting.
|
||||
</Note>
|
||||
|
||||
<Note>
|
||||
When using custom templates, you can use variables like `{role}`, `{goal}`, and `{backstory}` in your templates. These will be automatically populated during execution.
|
||||
</Note>
|
||||
|
||||
## Agent Tools
|
||||
|
||||
Agents can be equipped with various tools to enhance their capabilities. CrewAI supports tools from:
|
||||
- [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools)
|
||||
- [LangChain Tools](https://python.langchain.com/docs/integrations/tools)
|
||||
|
||||
Here's how to add tools to an agent:
|
||||
|
||||
```python Code
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerperDevTool, WikipediaTools
|
||||
|
||||
# Create tools
|
||||
search_tool = SerperDevTool()
|
||||
wiki_tool = WikipediaTools()
|
||||
|
||||
# Add tools to agent
|
||||
researcher = Agent(
|
||||
role="AI Technology Researcher",
|
||||
goal="Research the latest AI developments",
|
||||
tools=[search_tool, wiki_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Agent Memory and Context
|
||||
|
||||
Agents can maintain memory of their interactions and use context from previous tasks. This is particularly useful for complex workflows where information needs to be retained across multiple tasks.
|
||||
|
||||
```python Code
|
||||
from crewai import Agent
|
||||
|
||||
analyst = Agent(
|
||||
role="Data Analyst",
|
||||
goal="Analyze and remember complex data patterns",
|
||||
memory=True, # Enable memory
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
<Note>
|
||||
When `memory` is enabled, the agent will maintain context across multiple interactions, improving its ability to handle complex, multi-step tasks.
|
||||
</Note>
|
||||
|
||||
## Context Window Management
|
||||
|
||||
CrewAI includes sophisticated automatic context window management to handle situations where conversations exceed the language model's token limits. This powerful feature is controlled by the `respect_context_window` parameter.
|
||||
|
||||
### How Context Window Management Works
|
||||
|
||||
When an agent's conversation history grows too large for the LLM's context window, CrewAI automatically detects this situation and can either:
|
||||
|
||||
1. **Automatically summarize content** (when `respect_context_window=True`)
|
||||
2. **Stop execution with an error** (when `respect_context_window=False`)
|
||||
|
||||
### Automatic Context Handling (`respect_context_window=True`)
|
||||
|
||||
This is the **default and recommended setting** for most use cases. When enabled, CrewAI will:
|
||||
|
||||
```python Code
|
||||
# Agent with automatic context management (default)
|
||||
smart_agent = Agent(
|
||||
role="Research Analyst",
|
||||
goal="Analyze large documents and datasets",
|
||||
backstory="Expert at processing extensive information",
|
||||
respect_context_window=True, # 🔑 Default: auto-handle context limits
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
**What happens when context limits are exceeded:**
|
||||
- ⚠️ **Warning message**: `"Context length exceeded. Summarizing content to fit the model context window."`
|
||||
- 🔄 **Automatic summarization**: CrewAI intelligently summarizes the conversation history
|
||||
- ✅ **Continued execution**: Task execution continues seamlessly with the summarized context
|
||||
- 📝 **Preserved information**: Key information is retained while reducing token count
|
||||
|
||||
### Strict Context Limits (`respect_context_window=False`)
|
||||
|
||||
When you need precise control and prefer execution to stop rather than lose any information:
|
||||
|
||||
```python Code
|
||||
# Agent with strict context limits
|
||||
strict_agent = Agent(
|
||||
role="Legal Document Reviewer",
|
||||
goal="Provide precise legal analysis without information loss",
|
||||
backstory="Legal expert requiring complete context for accurate analysis",
|
||||
respect_context_window=False, # ❌ Stop execution on context limit
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
**What happens when context limits are exceeded:**
|
||||
- ❌ **Error message**: `"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools."`
|
||||
- 🛑 **Execution stops**: Task execution halts immediately
|
||||
- 🔧 **Manual intervention required**: You need to modify your approach
|
||||
|
||||
### Choosing the Right Setting
|
||||
|
||||
#### Use `respect_context_window=True` (Default) when:
|
||||
- **Processing large documents** that might exceed context limits
|
||||
- **Long-running conversations** where some summarization is acceptable
|
||||
- **Research tasks** where general context is more important than exact details
|
||||
- **Prototyping and development** where you want robust execution
|
||||
|
||||
```python Code
|
||||
# Perfect for document processing
|
||||
document_processor = Agent(
|
||||
role="Document Analyst",
|
||||
goal="Extract insights from large research papers",
|
||||
backstory="Expert at analyzing extensive documentation",
|
||||
respect_context_window=True, # Handle large documents gracefully
|
||||
max_iter=50, # Allow more iterations for complex analysis
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
#### Use `respect_context_window=False` when:
|
||||
- **Precision is critical** and information loss is unacceptable
|
||||
- **Legal or medical tasks** requiring complete context
|
||||
- **Code review** where missing details could introduce bugs
|
||||
- **Financial analysis** where accuracy is paramount
|
||||
|
||||
```python Code
|
||||
# Perfect for precision tasks
|
||||
precision_agent = Agent(
|
||||
role="Code Security Auditor",
|
||||
goal="Identify security vulnerabilities in code",
|
||||
backstory="Security expert requiring complete code context",
|
||||
respect_context_window=False, # Prefer failure over incomplete analysis
|
||||
max_retry_limit=1, # Fail fast on context issues
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
### Alternative Approaches for Large Data
|
||||
|
||||
When dealing with very large datasets, consider these strategies:
|
||||
|
||||
#### 1. Use RAG Tools
|
||||
```python Code
|
||||
from crewai_tools import RagTool
|
||||
|
||||
# Create RAG tool for large document processing
|
||||
rag_tool = RagTool()
|
||||
|
||||
rag_agent = Agent(
|
||||
role="Research Assistant",
|
||||
goal="Query large knowledge bases efficiently",
|
||||
backstory="Expert at using RAG tools for information retrieval",
|
||||
tools=[rag_tool], # Use RAG instead of large context windows
|
||||
respect_context_window=True,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
#### 2. Use Knowledge Sources
|
||||
```python Code
|
||||
# Use knowledge sources instead of large prompts
|
||||
knowledge_agent = Agent(
|
||||
role="Knowledge Expert",
|
||||
goal="Answer questions using curated knowledge",
|
||||
backstory="Expert at leveraging structured knowledge sources",
|
||||
knowledge_sources=[your_knowledge_sources], # Pre-processed knowledge
|
||||
respect_context_window=True,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
### Context Window Best Practices
|
||||
|
||||
1. **Monitor Context Usage**: Enable `verbose=True` to see context management in action
|
||||
2. **Design for Efficiency**: Structure tasks to minimize context accumulation
|
||||
3. **Use Appropriate Models**: Choose LLMs with context windows suitable for your tasks
|
||||
4. **Test Both Settings**: Try both `True` and `False` to see which works better for your use case
|
||||
5. **Combine with RAG**: Use RAG tools for very large datasets instead of relying solely on context windows
|
||||
|
||||
### Troubleshooting Context Issues
|
||||
|
||||
**If you're getting context limit errors:**
|
||||
```python Code
|
||||
# Quick fix: Enable automatic handling
|
||||
agent.respect_context_window = True
|
||||
|
||||
# Better solution: Use RAG tools for large data
|
||||
from crewai_tools import RagTool
|
||||
agent.tools = [RagTool()]
|
||||
|
||||
# Alternative: Break tasks into smaller pieces
|
||||
# Or use knowledge sources instead of large prompts
|
||||
```
|
||||
|
||||
**If automatic summarization loses important information:**
|
||||
```python Code
|
||||
# Disable auto-summarization and use RAG instead
|
||||
agent = Agent(
|
||||
role="Detailed Analyst",
|
||||
goal="Maintain complete information accuracy",
|
||||
backstory="Expert requiring full context",
|
||||
respect_context_window=False, # No summarization
|
||||
tools=[RagTool()], # Use RAG for large data
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
<Note>
|
||||
The context window management feature works automatically in the background. You don't need to call any special functions - just set `respect_context_window` to your preferred behavior and CrewAI handles the rest!
|
||||
</Note>
|
||||
|
||||
## Direct Agent Interaction with `kickoff()`
|
||||
|
||||
Agents can be used directly without going through a task or crew workflow using the `kickoff()` method. This provides a simpler way to interact with an agent when you don't need the full crew orchestration capabilities.
|
||||
|
||||
### How `kickoff()` Works
|
||||
|
||||
The `kickoff()` method allows you to send messages directly to an agent and get a response, similar to how you would interact with an LLM but with all the agent's capabilities (tools, reasoning, etc.).
|
||||
|
||||
```python Code
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
# Create an agent
|
||||
researcher = Agent(
|
||||
role="AI Technology Researcher",
|
||||
goal="Research the latest AI developments",
|
||||
tools=[SerperDevTool()],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Use kickoff() to interact directly with the agent
|
||||
result = researcher.kickoff("What are the latest developments in language models?")
|
||||
|
||||
# Access the raw response
|
||||
print(result.raw)
|
||||
```
|
||||
|
||||
### Parameters and Return Values
|
||||
|
||||
| Parameter | Type | Description |
|
||||
| :---------------- | :---------------------------------- | :------------------------------------------------------------------------ |
|
||||
| `messages` | `Union[str, List[Dict[str, str]]]` | Either a string query or a list of message dictionaries with role/content |
|
||||
| `response_format` | `Optional[Type[Any]]` | Optional Pydantic model for structured output |
|
||||
|
||||
The method returns a `LiteAgentOutput` object with the following properties:
|
||||
|
||||
- `raw`: String containing the raw output text
|
||||
- `pydantic`: Parsed Pydantic model (if a `response_format` was provided)
|
||||
- `agent_role`: Role of the agent that produced the output
|
||||
- `usage_metrics`: Token usage metrics for the execution
|
||||
|
||||
### Structured Output
|
||||
|
||||
You can get structured output by providing a Pydantic model as the `response_format`:
|
||||
|
||||
```python Code
|
||||
from pydantic import BaseModel
|
||||
from typing import List
|
||||
|
||||
class ResearchFindings(BaseModel):
|
||||
main_points: List[str]
|
||||
key_technologies: List[str]
|
||||
future_predictions: str
|
||||
|
||||
# Get structured output
|
||||
result = researcher.kickoff(
|
||||
"Summarize the latest developments in AI for 2025",
|
||||
response_format=ResearchFindings
|
||||
)
|
||||
|
||||
# Access structured data
|
||||
print(result.pydantic.main_points)
|
||||
print(result.pydantic.future_predictions)
|
||||
```
|
||||
|
||||
### Multiple Messages
|
||||
|
||||
You can also provide a conversation history as a list of message dictionaries:
|
||||
|
||||
```python Code
|
||||
messages = [
|
||||
{"role": "user", "content": "I need information about large language models"},
|
||||
{"role": "assistant", "content": "I'd be happy to help with that! What specifically would you like to know?"},
|
||||
{"role": "user", "content": "What are the latest developments in 2025?"}
|
||||
]
|
||||
|
||||
result = researcher.kickoff(messages)
|
||||
```
|
||||
|
||||
### Async Support
|
||||
|
||||
An asynchronous version is available via `kickoff_async()` with the same parameters:
|
||||
|
||||
```python Code
|
||||
import asyncio
|
||||
|
||||
async def main():
|
||||
result = await researcher.kickoff_async("What are the latest developments in AI?")
|
||||
print(result.raw)
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
<Note>
|
||||
The `kickoff()` method uses a `LiteAgent` internally, which provides a simpler execution flow while preserving all of the agent's configuration (role, goal, backstory, tools, etc.).
|
||||
</Note>
|
||||
|
||||
## Important Considerations and Best Practices
|
||||
|
||||
### Security and Code Execution
|
||||
- When using `allow_code_execution`, be cautious with user input and always validate it
|
||||
- Use `code_execution_mode: "safe"` (Docker) in production environments
|
||||
- Consider setting appropriate `max_execution_time` limits to prevent infinite loops
|
||||
|
||||
### Performance Optimization
|
||||
- Use `respect_context_window: true` to prevent token limit issues
|
||||
- Set appropriate `max_rpm` to avoid rate limiting
|
||||
- Enable `cache: true` to improve performance for repetitive tasks
|
||||
- Adjust `max_iter` and `max_retry_limit` based on task complexity
|
||||
|
||||
### Memory and Context Management
|
||||
- Leverage `knowledge_sources` for domain-specific information
|
||||
- Configure `embedder` when using custom embedding models
|
||||
- Use custom templates (`system_template`, `prompt_template`, `response_template`) for fine-grained control over agent behavior
|
||||
|
||||
### Advanced Features
|
||||
- Enable `reasoning: true` for agents that need to plan and reflect before executing complex tasks
|
||||
- Set appropriate `max_reasoning_attempts` to control planning iterations (None for unlimited attempts)
|
||||
- Use `inject_date: true` to provide agents with current date awareness for time-sensitive tasks
|
||||
- Customize the date format with `date_format` using standard Python datetime format codes
|
||||
- Enable `multimodal: true` for agents that need to process both text and visual content
|
||||
|
||||
### Agent Collaboration
|
||||
- Enable `allow_delegation: true` when agents need to work together
|
||||
- Use `step_callback` to monitor and log agent interactions
|
||||
- Consider using different LLMs for different purposes:
|
||||
- Main `llm` for complex reasoning
|
||||
- `function_calling_llm` for efficient tool usage
|
||||
|
||||
### Date Awareness and Reasoning
|
||||
- Use `inject_date: true` to provide agents with current date awareness for time-sensitive tasks
|
||||
- Customize the date format with `date_format` using standard Python datetime format codes
|
||||
- Valid format codes include: %Y (year), %m (month), %d (day), %B (full month name), etc.
|
||||
- Invalid date formats will be logged as warnings and will not modify the task description
|
||||
- Enable `reasoning: true` for complex tasks that benefit from upfront planning and reflection
|
||||
|
||||
### Model Compatibility
|
||||
- Set `use_system_prompt: false` for older models that don't support system messages
|
||||
- Ensure your chosen `llm` supports the features you need (like function calling)
|
||||
|
||||
## Troubleshooting Common Issues
|
||||
|
||||
1. **Rate Limiting**: If you're hitting API rate limits:
|
||||
- Implement appropriate `max_rpm`
|
||||
- Use caching for repetitive operations
|
||||
- Consider batching requests
|
||||
|
||||
2. **Context Window Errors**: If you're exceeding context limits:
|
||||
- Enable `respect_context_window`
|
||||
- Use more efficient prompts
|
||||
- Clear agent memory periodically
|
||||
|
||||
3. **Code Execution Issues**: If code execution fails:
|
||||
- Verify Docker is installed for safe mode
|
||||
- Check execution permissions
|
||||
- Review code sandbox settings
|
||||
|
||||
4. **Memory Issues**: If agent responses seem inconsistent:
|
||||
- Check knowledge source configuration
|
||||
- Review conversation history management
|
||||
|
||||
Remember that agents are most effective when configured according to their specific use case. Take time to understand your requirements and adjust these parameters accordingly.
|
||||
390
docs/en/concepts/cli.mdx
Normal file
@@ -0,0 +1,390 @@
|
||||
---
|
||||
title: CLI
|
||||
description: Learn how to use the CrewAI CLI to interact with CrewAI.
|
||||
icon: terminal
|
||||
---
|
||||
|
||||
<Warning>Since release 0.140.0, CrewAI Enterprise started a process of migrating their login provider. As such, the authentication flow via CLI was updated. Users that use Google to login, or that created their account after July 3rd, 2025 will be unable to log in with older versions of the `crewai` library.</Warning>
|
||||
|
||||
## Overview
|
||||
|
||||
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews & flows.
|
||||
|
||||
## Installation
|
||||
|
||||
To use the CrewAI CLI, make sure you have CrewAI installed:
|
||||
|
||||
```shell Terminal
|
||||
pip install crewai
|
||||
```
|
||||
|
||||
## Basic Usage
|
||||
|
||||
The basic structure of a CrewAI CLI command is:
|
||||
|
||||
```shell Terminal
|
||||
crewai [COMMAND] [OPTIONS] [ARGUMENTS]
|
||||
```
|
||||
|
||||
## Available Commands
|
||||
|
||||
### 1. Create
|
||||
|
||||
Create a new crew or flow.
|
||||
|
||||
```shell Terminal
|
||||
crewai create [OPTIONS] TYPE NAME
|
||||
```
|
||||
|
||||
- `TYPE`: Choose between "crew" or "flow"
|
||||
- `NAME`: Name of the crew or flow
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
crewai create crew my_new_crew
|
||||
crewai create flow my_new_flow
|
||||
```
|
||||
|
||||
### 2. Version
|
||||
|
||||
Show the installed version of CrewAI.
|
||||
|
||||
```shell Terminal
|
||||
crewai version [OPTIONS]
|
||||
```
|
||||
|
||||
- `--tools`: (Optional) Show the installed version of CrewAI tools
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
crewai version
|
||||
crewai version --tools
|
||||
```
|
||||
|
||||
### 3. Train
|
||||
|
||||
Train the crew for a specified number of iterations.
|
||||
|
||||
```shell Terminal
|
||||
crewai train [OPTIONS]
|
||||
```
|
||||
|
||||
- `-n, --n_iterations INTEGER`: Number of iterations to train the crew (default: 5)
|
||||
- `-f, --filename TEXT`: Path to a custom file for training (default: "trained_agents_data.pkl")
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
crewai train -n 10 -f my_training_data.pkl
|
||||
```
|
||||
|
||||
### 4. Replay
|
||||
|
||||
Replay the crew execution from a specific task.
|
||||
|
||||
```shell Terminal
|
||||
crewai replay [OPTIONS]
|
||||
```
|
||||
|
||||
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
crewai replay -t task_123456
|
||||
```
|
||||
|
||||
### 5. Log-tasks-outputs
|
||||
|
||||
Retrieve your latest crew.kickoff() task outputs.
|
||||
|
||||
```shell Terminal
|
||||
crewai log-tasks-outputs
|
||||
```
|
||||
|
||||
### 6. Reset-memories
|
||||
|
||||
Reset the crew memories (long, short, entity, latest_crew_kickoff_outputs).
|
||||
|
||||
```shell Terminal
|
||||
crewai reset-memories [OPTIONS]
|
||||
```
|
||||
|
||||
- `-l, --long`: Reset LONG TERM memory
|
||||
- `-s, --short`: Reset SHORT TERM memory
|
||||
- `-e, --entities`: Reset ENTITIES memory
|
||||
- `-k, --kickoff-outputs`: Reset LATEST KICKOFF TASK OUTPUTS
|
||||
- `-kn, --knowledge`: Reset KNOWLEDGE storage
|
||||
- `-akn, --agent-knowledge`: Reset AGENT KNOWLEDGE storage
|
||||
- `-a, --all`: Reset ALL memories
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
crewai reset-memories --long --short
|
||||
crewai reset-memories --all
|
||||
```
|
||||
|
||||
### 7. Test
|
||||
|
||||
Test the crew and evaluate the results.
|
||||
|
||||
```shell Terminal
|
||||
crewai test [OPTIONS]
|
||||
```
|
||||
|
||||
- `-n, --n_iterations INTEGER`: Number of iterations to test the crew (default: 3)
|
||||
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
|
||||
|
||||
Example:
|
||||
```shell Terminal
|
||||
crewai test -n 5 -m gpt-3.5-turbo
|
||||
```
|
||||
|
||||
### 8. Run
|
||||
|
||||
Run the crew or flow.
|
||||
|
||||
```shell Terminal
|
||||
crewai run
|
||||
```
|
||||
|
||||
<Note>
|
||||
Starting from version 0.103.0, the `crewai run` command can be used to run both standard crews and flows. For flows, it automatically detects the type from pyproject.toml and runs the appropriate command. This is now the recommended way to run both crews and flows.
|
||||
</Note>
|
||||
|
||||
<Note>
|
||||
Make sure to run these commands from the directory where your CrewAI project is set up.
|
||||
Some commands may require additional configuration or setup within your project structure.
|
||||
</Note>
|
||||
|
||||
### 9. Chat
|
||||
|
||||
Starting in version `0.98.0`, when you run the `crewai chat` command, you start an interactive session with your crew. The AI assistant will guide you by asking for necessary inputs to execute the crew. Once all inputs are provided, the crew will execute its tasks.
|
||||
|
||||
After receiving the results, you can continue interacting with the assistant for further instructions or questions.
|
||||
|
||||
```shell Terminal
|
||||
crewai chat
|
||||
```
|
||||
<Note>
|
||||
Ensure you execute these commands from your CrewAI project's root directory.
|
||||
</Note>
|
||||
<Note>
|
||||
IMPORTANT: Set the `chat_llm` property in your `crew.py` file to enable this command.
|
||||
|
||||
```python
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=self.agents,
|
||||
tasks=self.tasks,
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
chat_llm="gpt-4o", # LLM for chat orchestration
|
||||
)
|
||||
```
|
||||
</Note>
|
||||
|
||||
### 10. Deploy
|
||||
|
||||
Deploy the crew or flow to [CrewAI Enterprise](https://app.crewai.com).
|
||||
|
||||
- **Authentication**: You need to be authenticated to deploy to CrewAI Enterprise.
|
||||
You can login or create an account with:
|
||||
```shell Terminal
|
||||
crewai login
|
||||
```
|
||||
|
||||
- **Create a deployment**: Once you are authenticated, you can create a deployment for your crew or flow from the root of your localproject.
|
||||
```shell Terminal
|
||||
crewai deploy create
|
||||
```
|
||||
- Reads your local project configuration.
|
||||
- Prompts you to confirm the environment variables (like `OPENAI_API_KEY`, `SERPER_API_KEY`) found locally. These will be securely stored with the deployment on the Enterprise platform. Ensure your sensitive keys are correctly configured locally (e.g., in a `.env` file) before running this.
|
||||
|
||||
### 11. Organization Management
|
||||
|
||||
Manage your CrewAI Enterprise organizations.
|
||||
|
||||
```shell Terminal
|
||||
crewai org [COMMAND] [OPTIONS]
|
||||
```
|
||||
|
||||
#### Commands:
|
||||
|
||||
- `list`: List all organizations you belong to
|
||||
```shell Terminal
|
||||
crewai org list
|
||||
```
|
||||
|
||||
- `current`: Display your currently active organization
|
||||
```shell Terminal
|
||||
crewai org current
|
||||
```
|
||||
|
||||
- `switch`: Switch to a specific organization
|
||||
```shell Terminal
|
||||
crewai org switch <organization_id>
|
||||
```
|
||||
|
||||
<Note>
|
||||
You must be authenticated to CrewAI Enterprise to use these organization management commands.
|
||||
</Note>
|
||||
|
||||
- **Create a deployment** (continued):
|
||||
- Links the deployment to the corresponding remote GitHub repository (it usually detects this automatically).
|
||||
|
||||
- **Deploy the Crew**: Once you are authenticated, you can deploy your crew or flow to CrewAI Enterprise.
|
||||
```shell Terminal
|
||||
crewai deploy push
|
||||
```
|
||||
- Initiates the deployment process on the CrewAI Enterprise platform.
|
||||
- Upon successful initiation, it will output the Deployment created successfully! message along with the Deployment Name and a unique Deployment ID (UUID).
|
||||
|
||||
- **Deployment Status**: You can check the status of your deployment with:
|
||||
```shell Terminal
|
||||
crewai deploy status
|
||||
```
|
||||
This fetches the latest deployment status of your most recent deployment attempt (e.g., `Building Images for Crew`, `Deploy Enqueued`, `Online`).
|
||||
|
||||
- **Deployment Logs**: You can check the logs of your deployment with:
|
||||
```shell Terminal
|
||||
crewai deploy logs
|
||||
```
|
||||
This streams the deployment logs to your terminal.
|
||||
|
||||
- **List deployments**: You can list all your deployments with:
|
||||
```shell Terminal
|
||||
crewai deploy list
|
||||
```
|
||||
This lists all your deployments.
|
||||
|
||||
- **Delete a deployment**: You can delete a deployment with:
|
||||
```shell Terminal
|
||||
crewai deploy remove
|
||||
```
|
||||
This deletes the deployment from the CrewAI Enterprise platform.
|
||||
|
||||
- **Help Command**: You can get help with the CLI with:
|
||||
```shell Terminal
|
||||
crewai deploy --help
|
||||
```
|
||||
This shows the help message for the CrewAI Deploy CLI.
|
||||
|
||||
Watch this video tutorial for a step-by-step demonstration of deploying your crew to [CrewAI Enterprise](http://app.crewai.com) using the CLI.
|
||||
|
||||
<iframe
|
||||
width="100%"
|
||||
height="400"
|
||||
src="https://www.youtube.com/embed/3EqSV-CYDZA"
|
||||
title="CrewAI Deployment Guide"
|
||||
frameborder="0"
|
||||
style={{ borderRadius: '10px' }}
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
|
||||
allowfullscreen
|
||||
></iframe>
|
||||
|
||||
### 11. API Keys
|
||||
|
||||
When running ```crewai create crew``` command, the CLI will show you a list of available LLM providers to choose from, followed by model selection for your chosen provider.
|
||||
|
||||
Once you've selected an LLM provider and model, you will be prompted for API keys.
|
||||
|
||||
#### Available LLM Providers
|
||||
|
||||
Here's a list of the most popular LLM providers suggested by the CLI:
|
||||
|
||||
* OpenAI
|
||||
* Groq
|
||||
* Anthropic
|
||||
* Google Gemini
|
||||
* SambaNova
|
||||
|
||||
When you select a provider, the CLI will then show you available models for that provider and prompt you to enter your API key.
|
||||
|
||||
#### Other Options
|
||||
|
||||
If you select "other", you will be able to select from a list of LiteLLM supported providers.
|
||||
|
||||
When you select a provider, the CLI will prompt you to enter the Key name and the API key.
|
||||
|
||||
See the following link for each provider's key name:
|
||||
|
||||
* [LiteLLM Providers](https://docs.litellm.ai/docs/providers)
|
||||
|
||||
### 12. Configuration Management
|
||||
|
||||
Manage CLI configuration settings for CrewAI.
|
||||
|
||||
```shell Terminal
|
||||
crewai config [COMMAND] [OPTIONS]
|
||||
```
|
||||
|
||||
#### Commands:
|
||||
|
||||
- `list`: Display all CLI configuration parameters
|
||||
```shell Terminal
|
||||
crewai config list
|
||||
```
|
||||
|
||||
- `set`: Set a CLI configuration parameter
|
||||
```shell Terminal
|
||||
crewai config set <key> <value>
|
||||
```
|
||||
|
||||
- `reset`: Reset all CLI configuration parameters to default values
|
||||
```shell Terminal
|
||||
crewai config reset
|
||||
```
|
||||
|
||||
#### Available Configuration Parameters
|
||||
|
||||
- `enterprise_base_url`: Base URL of the CrewAI Enterprise instance
|
||||
- `oauth2_provider`: OAuth2 provider used for authentication (e.g., workos, okta, auth0)
|
||||
- `oauth2_audience`: OAuth2 audience value, typically used to identify the target API or resource
|
||||
- `oauth2_client_id`: OAuth2 client ID issued by the provider, used during authentication requests
|
||||
- `oauth2_domain`: OAuth2 provider's domain (e.g., your-org.auth0.com) used for issuing tokens
|
||||
|
||||
#### Examples
|
||||
|
||||
Display current configuration:
|
||||
```shell Terminal
|
||||
crewai config list
|
||||
```
|
||||
|
||||
Example output:
|
||||
```
|
||||
CrewAI CLI Configuration
|
||||
┏━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ Setting ┃ Value ┃ Description ┃
|
||||
┡━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ enterprise_base_url│ https://app.crewai.com │ Base URL of the CrewAI Enterprise instance │
|
||||
│ org_name │ Not set │ Name of the currently active organization │
|
||||
│ org_uuid │ Not set │ UUID of the currently active organization │
|
||||
│ oauth2_provider │ workos │ OAuth2 provider used for authentication (e.g., workos, okta, auth0). │
|
||||
│ oauth2_audience │ client_01YYY │ OAuth2 audience value, typically used to identify the target API or resource. │
|
||||
│ oauth2_client_id │ client_01XXX │ OAuth2 client ID issued by the provider, used during authentication requests. │
|
||||
│ oauth2_domain │ login.crewai.com │ OAuth2 provider's domain (e.g., your-org.auth0.com) used for issuing tokens. │
|
||||
```
|
||||
|
||||
Set the enterprise base URL:
|
||||
```shell Terminal
|
||||
crewai config set enterprise_base_url https://my-enterprise.crewai.com
|
||||
```
|
||||
|
||||
Set OAuth2 provider:
|
||||
```shell Terminal
|
||||
crewai config set oauth2_provider auth0
|
||||
```
|
||||
|
||||
Set OAuth2 domain:
|
||||
```shell Terminal
|
||||
crewai config set oauth2_domain my-company.auth0.com
|
||||
```
|
||||
|
||||
Reset all configuration to defaults:
|
||||
```shell Terminal
|
||||
crewai config reset
|
||||
```
|
||||
|
||||
<Note>
|
||||
Configuration settings are stored in `~/.config/crewai/settings.json`. Some settings like organization name and UUID are read-only and managed through authentication and organization commands. Tool repository related settings are hidden and cannot be set directly by users.
|
||||
</Note>
|
||||
362
docs/en/concepts/collaboration.mdx
Normal file
@@ -0,0 +1,362 @@
|
||||
---
|
||||
title: Collaboration
|
||||
description: How to enable agents to work together, delegate tasks, and communicate effectively within CrewAI teams.
|
||||
icon: screen-users
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Collaboration in CrewAI enables agents to work together as a team by delegating tasks and asking questions to leverage each other's expertise. When `allow_delegation=True`, agents automatically gain access to powerful collaboration tools.
|
||||
|
||||
## Quick Start: Enable Collaboration
|
||||
|
||||
```python
|
||||
from crewai import Agent, Crew, Task
|
||||
|
||||
# Enable collaboration for agents
|
||||
researcher = Agent(
|
||||
role="Research Specialist",
|
||||
goal="Conduct thorough research on any topic",
|
||||
backstory="Expert researcher with access to various sources",
|
||||
allow_delegation=True, # 🔑 Key setting for collaboration
|
||||
verbose=True
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role="Content Writer",
|
||||
goal="Create engaging content based on research",
|
||||
backstory="Skilled writer who transforms research into compelling content",
|
||||
allow_delegation=True, # 🔑 Enables asking questions to other agents
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Agents can now collaborate automatically
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[...],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## How Agent Collaboration Works
|
||||
|
||||
When `allow_delegation=True`, CrewAI automatically provides agents with two powerful tools:
|
||||
|
||||
### 1. **Delegate Work Tool**
|
||||
Allows agents to assign tasks to teammates with specific expertise.
|
||||
|
||||
```python
|
||||
# Agent automatically gets this tool:
|
||||
# Delegate work to coworker(task: str, context: str, coworker: str)
|
||||
```
|
||||
|
||||
### 2. **Ask Question Tool**
|
||||
Enables agents to ask specific questions to gather information from colleagues.
|
||||
|
||||
```python
|
||||
# Agent automatically gets this tool:
|
||||
# Ask question to coworker(question: str, context: str, coworker: str)
|
||||
```
|
||||
|
||||
## Collaboration in Action
|
||||
|
||||
Here's a complete example showing agents collaborating on a content creation task:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Crew, Task, Process
|
||||
|
||||
# Create collaborative agents
|
||||
researcher = Agent(
|
||||
role="Research Specialist",
|
||||
goal="Find accurate, up-to-date information on any topic",
|
||||
backstory="""You're a meticulous researcher with expertise in finding
|
||||
reliable sources and fact-checking information across various domains.""",
|
||||
allow_delegation=True,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role="Content Writer",
|
||||
goal="Create engaging, well-structured content",
|
||||
backstory="""You're a skilled content writer who excels at transforming
|
||||
research into compelling, readable content for different audiences.""",
|
||||
allow_delegation=True,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
editor = Agent(
|
||||
role="Content Editor",
|
||||
goal="Ensure content quality and consistency",
|
||||
backstory="""You're an experienced editor with an eye for detail,
|
||||
ensuring content meets high standards for clarity and accuracy.""",
|
||||
allow_delegation=True,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create a task that encourages collaboration
|
||||
article_task = Task(
|
||||
description="""Write a comprehensive 1000-word article about 'The Future of AI in Healthcare'.
|
||||
|
||||
The article should include:
|
||||
- Current AI applications in healthcare
|
||||
- Emerging trends and technologies
|
||||
- Potential challenges and ethical considerations
|
||||
- Expert predictions for the next 5 years
|
||||
|
||||
Collaborate with your teammates to ensure accuracy and quality.""",
|
||||
expected_output="A well-researched, engaging 1000-word article with proper structure and citations",
|
||||
agent=writer # Writer leads, but can delegate research to researcher
|
||||
)
|
||||
|
||||
# Create collaborative crew
|
||||
crew = Crew(
|
||||
agents=[researcher, writer, editor],
|
||||
tasks=[article_task],
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Collaboration Patterns
|
||||
|
||||
### Pattern 1: Research → Write → Edit
|
||||
```python
|
||||
research_task = Task(
|
||||
description="Research the latest developments in quantum computing",
|
||||
expected_output="Comprehensive research summary with key findings and sources",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
writing_task = Task(
|
||||
description="Write an article based on the research findings",
|
||||
expected_output="Engaging 800-word article about quantum computing",
|
||||
agent=writer,
|
||||
context=[research_task] # Gets research output as context
|
||||
)
|
||||
|
||||
editing_task = Task(
|
||||
description="Edit and polish the article for publication",
|
||||
expected_output="Publication-ready article with improved clarity and flow",
|
||||
agent=editor,
|
||||
context=[writing_task] # Gets article draft as context
|
||||
)
|
||||
```
|
||||
|
||||
### Pattern 2: Collaborative Single Task
|
||||
```python
|
||||
collaborative_task = Task(
|
||||
description="""Create a marketing strategy for a new AI product.
|
||||
|
||||
Writer: Focus on messaging and content strategy
|
||||
Researcher: Provide market analysis and competitor insights
|
||||
|
||||
Work together to create a comprehensive strategy.""",
|
||||
expected_output="Complete marketing strategy with research backing",
|
||||
agent=writer # Lead agent, but can delegate to researcher
|
||||
)
|
||||
```
|
||||
|
||||
## Hierarchical Collaboration
|
||||
|
||||
For complex projects, use a hierarchical process with a manager agent:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Crew, Task, Process
|
||||
|
||||
# Manager agent coordinates the team
|
||||
manager = Agent(
|
||||
role="Project Manager",
|
||||
goal="Coordinate team efforts and ensure project success",
|
||||
backstory="Experienced project manager skilled at delegation and quality control",
|
||||
allow_delegation=True,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Specialist agents
|
||||
researcher = Agent(
|
||||
role="Researcher",
|
||||
goal="Provide accurate research and analysis",
|
||||
backstory="Expert researcher with deep analytical skills",
|
||||
allow_delegation=False, # Specialists focus on their expertise
|
||||
verbose=True
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role="Writer",
|
||||
goal="Create compelling content",
|
||||
backstory="Skilled writer who creates engaging content",
|
||||
allow_delegation=False,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Manager-led task
|
||||
project_task = Task(
|
||||
description="Create a comprehensive market analysis report with recommendations",
|
||||
expected_output="Executive summary, detailed analysis, and strategic recommendations",
|
||||
agent=manager # Manager will delegate to specialists
|
||||
)
|
||||
|
||||
# Hierarchical crew
|
||||
crew = Crew(
|
||||
agents=[manager, researcher, writer],
|
||||
tasks=[project_task],
|
||||
process=Process.hierarchical, # Manager coordinates everything
|
||||
manager_llm="gpt-4o", # Specify LLM for manager
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Best Practices for Collaboration
|
||||
|
||||
### 1. **Clear Role Definition**
|
||||
```python
|
||||
# ✅ Good: Specific, complementary roles
|
||||
researcher = Agent(role="Market Research Analyst", ...)
|
||||
writer = Agent(role="Technical Content Writer", ...)
|
||||
|
||||
# ❌ Avoid: Overlapping or vague roles
|
||||
agent1 = Agent(role="General Assistant", ...)
|
||||
agent2 = Agent(role="Helper", ...)
|
||||
```
|
||||
|
||||
### 2. **Strategic Delegation Enabling**
|
||||
```python
|
||||
# ✅ Enable delegation for coordinators and generalists
|
||||
lead_agent = Agent(
|
||||
role="Content Lead",
|
||||
allow_delegation=True, # Can delegate to specialists
|
||||
...
|
||||
)
|
||||
|
||||
# ✅ Disable for focused specialists (optional)
|
||||
specialist_agent = Agent(
|
||||
role="Data Analyst",
|
||||
allow_delegation=False, # Focuses on core expertise
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
### 3. **Context Sharing**
|
||||
```python
|
||||
# ✅ Use context parameter for task dependencies
|
||||
writing_task = Task(
|
||||
description="Write article based on research",
|
||||
agent=writer,
|
||||
context=[research_task], # Shares research results
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
### 4. **Clear Task Descriptions**
|
||||
```python
|
||||
# ✅ Specific, actionable descriptions
|
||||
Task(
|
||||
description="""Research competitors in the AI chatbot space.
|
||||
Focus on: pricing models, key features, target markets.
|
||||
Provide data in a structured format.""",
|
||||
...
|
||||
)
|
||||
|
||||
# ❌ Vague descriptions that don't guide collaboration
|
||||
Task(description="Do some research about chatbots", ...)
|
||||
```
|
||||
|
||||
## Troubleshooting Collaboration
|
||||
|
||||
### Issue: Agents Not Collaborating
|
||||
**Symptoms:** Agents work in isolation, no delegation occurs
|
||||
```python
|
||||
# ✅ Solution: Ensure delegation is enabled
|
||||
agent = Agent(
|
||||
role="...",
|
||||
allow_delegation=True, # This is required!
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
### Issue: Too Much Back-and-Forth
|
||||
**Symptoms:** Agents ask excessive questions, slow progress
|
||||
```python
|
||||
# ✅ Solution: Provide better context and specific roles
|
||||
Task(
|
||||
description="""Write a technical blog post about machine learning.
|
||||
|
||||
Context: Target audience is software developers with basic ML knowledge.
|
||||
Length: 1200 words
|
||||
Include: code examples, practical applications, best practices
|
||||
|
||||
If you need specific technical details, delegate research to the researcher.""",
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
### Issue: Delegation Loops
|
||||
**Symptoms:** Agents delegate back and forth indefinitely
|
||||
```python
|
||||
# ✅ Solution: Clear hierarchy and responsibilities
|
||||
manager = Agent(role="Manager", allow_delegation=True)
|
||||
specialist1 = Agent(role="Specialist A", allow_delegation=False) # No re-delegation
|
||||
specialist2 = Agent(role="Specialist B", allow_delegation=False)
|
||||
```
|
||||
|
||||
## Advanced Collaboration Features
|
||||
|
||||
### Custom Collaboration Rules
|
||||
```python
|
||||
# Set specific collaboration guidelines in agent backstory
|
||||
agent = Agent(
|
||||
role="Senior Developer",
|
||||
backstory="""You lead development projects and coordinate with team members.
|
||||
|
||||
Collaboration guidelines:
|
||||
- Delegate research tasks to the Research Analyst
|
||||
- Ask the Designer for UI/UX guidance
|
||||
- Consult the QA Engineer for testing strategies
|
||||
- Only escalate blocking issues to the Project Manager""",
|
||||
allow_delegation=True
|
||||
)
|
||||
```
|
||||
|
||||
### Monitoring Collaboration
|
||||
```python
|
||||
def track_collaboration(output):
|
||||
"""Track collaboration patterns"""
|
||||
if "Delegate work to coworker" in output.raw:
|
||||
print("🤝 Delegation occurred")
|
||||
if "Ask question to coworker" in output.raw:
|
||||
print("❓ Question asked")
|
||||
|
||||
crew = Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
step_callback=track_collaboration, # Monitor collaboration
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Memory and Learning
|
||||
|
||||
Enable agents to remember past collaborations:
|
||||
|
||||
```python
|
||||
agent = Agent(
|
||||
role="Content Lead",
|
||||
memory=True, # Remembers past interactions
|
||||
allow_delegation=True,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
With memory enabled, agents learn from previous collaborations and improve their delegation decisions over time.
|
||||
|
||||
## Next Steps
|
||||
|
||||
- **Try the examples**: Start with the basic collaboration example
|
||||
- **Experiment with roles**: Test different agent role combinations
|
||||
- **Monitor interactions**: Use `verbose=True` to see collaboration in action
|
||||
- **Optimize task descriptions**: Clear tasks lead to better collaboration
|
||||
- **Scale up**: Try hierarchical processes for complex projects
|
||||
|
||||
Collaboration transforms individual AI agents into powerful teams that can tackle complex, multi-faceted challenges together.
|
||||
368
docs/en/concepts/crews.mdx
Normal file
@@ -0,0 +1,368 @@
|
||||
---
|
||||
title: Crews
|
||||
description: Understanding and utilizing crews in the crewAI framework with comprehensive attributes and functionalities.
|
||||
icon: people-group
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
A crew in crewAI represents a collaborative group of agents working together to achieve a set of tasks. Each crew defines the strategy for task execution, agent collaboration, and the overall workflow.
|
||||
|
||||
## Crew Attributes
|
||||
|
||||
| Attribute | Parameters | Description |
|
||||
| :------------------------------------ | :--------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| **Tasks** | `tasks` | A list of tasks assigned to the crew. |
|
||||
| **Agents** | `agents` | A list of agents that are part of the crew. |
|
||||
| **Process** _(optional)_ | `process` | The process flow (e.g., sequential, hierarchical) the crew follows. Default is `sequential`. |
|
||||
| **Verbose** _(optional)_ | `verbose` | The verbosity level for logging during execution. Defaults to `False`. |
|
||||
| **Manager LLM** _(optional)_ | `manager_llm` | The language model used by the manager agent in a hierarchical process. **Required when using a hierarchical process.** |
|
||||
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | If passed, the crew will use this LLM to do function calling for tools for all agents in the crew. Each agent can have its own LLM, which overrides the crew's LLM for function calling. |
|
||||
| **Config** _(optional)_ | `config` | Optional configuration settings for the crew, in `Json` or `Dict[str, Any]` format. |
|
||||
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. |
|
||||
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). | |
|
||||
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
|
||||
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
|
||||
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
|
||||
| **Task Callback** _(optional)_ | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
|
||||
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
|
||||
| **Output Log File** _(optional)_ | `output_log_file` | Set to True to save logs as logs.txt in the current directory or provide a file path. Logs will be in JSON format if the filename ends in .json, otherwise .txt. Defaults to `None`. |
|
||||
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
|
||||
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
|
||||
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
|
||||
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
|
||||
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | Knowledge sources available at the crew level, accessible to all the agents. |
|
||||
|
||||
<Tip>
|
||||
**Crew Max RPM**: The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
|
||||
</Tip>
|
||||
|
||||
## Creating Crews
|
||||
|
||||
There are two ways to create crews in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
|
||||
|
||||
### YAML Configuration (Recommended)
|
||||
|
||||
Using YAML configuration provides a cleaner, more maintainable way to define crews and is consistent with how agents and tasks are defined in CrewAI projects.
|
||||
|
||||
After creating your CrewAI project as outlined in the [Installation](/en/installation) section, you can define your crew in a class that inherits from `CrewBase` and uses decorators to define agents, tasks, and the crew itself.
|
||||
|
||||
#### Example Crew Class with Decorators
|
||||
|
||||
```python code
|
||||
from crewai import Agent, Crew, Task, Process
|
||||
from crewai.project import CrewBase, agent, task, crew, before_kickoff, after_kickoff
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from typing import List
|
||||
|
||||
@CrewBase
|
||||
class YourCrewName:
|
||||
"""Description of your crew"""
|
||||
|
||||
agents: List[BaseAgent]
|
||||
tasks: List[Task]
|
||||
|
||||
# Paths to your YAML configuration files
|
||||
# To see an example agent and task defined in YAML, checkout the following:
|
||||
# - Task: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
|
||||
# - Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
|
||||
agents_config = 'config/agents.yaml'
|
||||
tasks_config = 'config/tasks.yaml'
|
||||
|
||||
@before_kickoff
|
||||
def prepare_inputs(self, inputs):
|
||||
# Modify inputs before the crew starts
|
||||
inputs['additional_data'] = "Some extra information"
|
||||
return inputs
|
||||
|
||||
@after_kickoff
|
||||
def process_output(self, output):
|
||||
# Modify output after the crew finishes
|
||||
output.raw += "\nProcessed after kickoff."
|
||||
return output
|
||||
|
||||
@agent
|
||||
def agent_one(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['agent_one'], # type: ignore[index]
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@agent
|
||||
def agent_two(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['agent_two'], # type: ignore[index]
|
||||
verbose=True
|
||||
)
|
||||
|
||||
@task
|
||||
def task_one(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['task_one'] # type: ignore[index]
|
||||
)
|
||||
|
||||
@task
|
||||
def task_two(self) -> Task:
|
||||
return Task(
|
||||
config=self.tasks_config['task_two'] # type: ignore[index]
|
||||
)
|
||||
|
||||
@crew
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=self.agents, # Automatically collected by the @agent decorator
|
||||
tasks=self.tasks, # Automatically collected by the @task decorator.
|
||||
process=Process.sequential,
|
||||
verbose=True,
|
||||
)
|
||||
```
|
||||
|
||||
How to run the above code:
|
||||
|
||||
```python code
|
||||
YourCrewName().crew().kickoff(inputs={"any": "input here"})
|
||||
```
|
||||
|
||||
<Note>
|
||||
Tasks will be executed in the order they are defined.
|
||||
</Note>
|
||||
|
||||
The `CrewBase` class, along with these decorators, automates the collection of agents and tasks, reducing the need for manual management.
|
||||
|
||||
#### Decorators overview from `annotations.py`
|
||||
|
||||
CrewAI provides several decorators in the `annotations.py` file that are used to mark methods within your crew class for special handling:
|
||||
|
||||
- `@CrewBase`: Marks the class as a crew base class.
|
||||
- `@agent`: Denotes a method that returns an `Agent` object.
|
||||
- `@task`: Denotes a method that returns a `Task` object.
|
||||
- `@crew`: Denotes the method that returns the `Crew` object.
|
||||
- `@before_kickoff`: (Optional) Marks a method to be executed before the crew starts.
|
||||
- `@after_kickoff`: (Optional) Marks a method to be executed after the crew finishes.
|
||||
|
||||
These decorators help in organizing your crew's structure and automatically collecting agents and tasks without manually listing them.
|
||||
|
||||
### Direct Code Definition (Alternative)
|
||||
|
||||
Alternatively, you can define the crew directly in code without using YAML configuration files.
|
||||
|
||||
```python code
|
||||
from crewai import Agent, Crew, Task, Process
|
||||
from crewai_tools import YourCustomTool
|
||||
|
||||
class YourCrewName:
|
||||
def agent_one(self) -> Agent:
|
||||
return Agent(
|
||||
role="Data Analyst",
|
||||
goal="Analyze data trends in the market",
|
||||
backstory="An experienced data analyst with a background in economics",
|
||||
verbose=True,
|
||||
tools=[YourCustomTool()]
|
||||
)
|
||||
|
||||
def agent_two(self) -> Agent:
|
||||
return Agent(
|
||||
role="Market Researcher",
|
||||
goal="Gather information on market dynamics",
|
||||
backstory="A diligent researcher with a keen eye for detail",
|
||||
verbose=True
|
||||
)
|
||||
|
||||
def task_one(self) -> Task:
|
||||
return Task(
|
||||
description="Collect recent market data and identify trends.",
|
||||
expected_output="A report summarizing key trends in the market.",
|
||||
agent=self.agent_one()
|
||||
)
|
||||
|
||||
def task_two(self) -> Task:
|
||||
return Task(
|
||||
description="Research factors affecting market dynamics.",
|
||||
expected_output="An analysis of factors influencing the market.",
|
||||
agent=self.agent_two()
|
||||
)
|
||||
|
||||
def crew(self) -> Crew:
|
||||
return Crew(
|
||||
agents=[self.agent_one(), self.agent_two()],
|
||||
tasks=[self.task_one(), self.task_two()],
|
||||
process=Process.sequential,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
How to run the above code:
|
||||
|
||||
```python code
|
||||
YourCrewName().crew().kickoff(inputs={})
|
||||
```
|
||||
|
||||
In this example:
|
||||
|
||||
- Agents and tasks are defined directly within the class without decorators.
|
||||
- We manually create and manage the list of agents and tasks.
|
||||
- This approach provides more control but can be less maintainable for larger projects.
|
||||
|
||||
## Crew Output
|
||||
|
||||
The output of a crew in the CrewAI framework is encapsulated within the `CrewOutput` class.
|
||||
This class provides a structured way to access results of the crew's execution, including various formats such as raw strings, JSON, and Pydantic models.
|
||||
The `CrewOutput` includes the results from the final task output, token usage, and individual task outputs.
|
||||
|
||||
### Crew Output Attributes
|
||||
|
||||
| Attribute | Parameters | Type | Description |
|
||||
| :--------------- | :------------- | :------------------------- | :--------------------------------------------------------------------------------------------------- |
|
||||
| **Raw** | `raw` | `str` | The raw output of the crew. This is the default format for the output. |
|
||||
| **Pydantic** | `pydantic` | `Optional[BaseModel]` | A Pydantic model object representing the structured output of the crew. |
|
||||
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the crew. |
|
||||
| **Tasks Output** | `tasks_output` | `List[TaskOutput]` | A list of `TaskOutput` objects, each representing the output of a task in the crew. |
|
||||
| **Token Usage** | `token_usage` | `Dict[str, Any]` | A summary of token usage, providing insights into the language model's performance during execution. |
|
||||
|
||||
### Crew Output Methods and Properties
|
||||
|
||||
| Method/Property | Description |
|
||||
| :-------------- | :------------------------------------------------------------------------------------------------ |
|
||||
| **json** | Returns the JSON string representation of the crew output if the output format is JSON. |
|
||||
| **to_dict** | Converts the JSON and Pydantic outputs to a dictionary. |
|
||||
| \***\*str\*\*** | Returns the string representation of the crew output, prioritizing Pydantic, then JSON, then raw. |
|
||||
|
||||
### Accessing Crew Outputs
|
||||
|
||||
Once a crew has been executed, its output can be accessed through the `output` attribute of the `Crew` object. The `CrewOutput` class provides various ways to interact with and present this output.
|
||||
|
||||
#### Example
|
||||
|
||||
```python Code
|
||||
# Example crew execution
|
||||
crew = Crew(
|
||||
agents=[research_agent, writer_agent],
|
||||
tasks=[research_task, write_article_task],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
crew_output = crew.kickoff()
|
||||
|
||||
# Accessing the crew output
|
||||
print(f"Raw Output: {crew_output.raw}")
|
||||
if crew_output.json_dict:
|
||||
print(f"JSON Output: {json.dumps(crew_output.json_dict, indent=2)}")
|
||||
if crew_output.pydantic:
|
||||
print(f"Pydantic Output: {crew_output.pydantic}")
|
||||
print(f"Tasks Output: {crew_output.tasks_output}")
|
||||
print(f"Token Usage: {crew_output.token_usage}")
|
||||
```
|
||||
|
||||
## Accessing Crew Logs
|
||||
|
||||
You can see real time log of the crew execution, by setting `output_log_file` as a `True(Boolean)` or a `file_name(str)`. Supports logging of events as both `file_name.txt` and `file_name.json`.
|
||||
In case of `True(Boolean)` will save as `logs.txt`.
|
||||
|
||||
In case of `output_log_file` is set as `False(Boolean)` or `None`, the logs will not be populated.
|
||||
|
||||
```python Code
|
||||
# Save crew logs
|
||||
crew = Crew(output_log_file = True) # Logs will be saved as logs.txt
|
||||
crew = Crew(output_log_file = file_name) # Logs will be saved as file_name.txt
|
||||
crew = Crew(output_log_file = file_name.txt) # Logs will be saved as file_name.txt
|
||||
crew = Crew(output_log_file = file_name.json) # Logs will be saved as file_name.json
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Memory Utilization
|
||||
|
||||
Crews can utilize memory (short-term, long-term, and entity memory) to enhance their execution and learning over time. This feature allows crews to store and recall execution memories, aiding in decision-making and task execution strategies.
|
||||
|
||||
## Cache Utilization
|
||||
|
||||
Caches can be employed to store the results of tools' execution, making the process more efficient by reducing the need to re-execute identical tasks.
|
||||
|
||||
## Crew Usage Metrics
|
||||
|
||||
After the crew execution, you can access the `usage_metrics` attribute to view the language model (LLM) usage metrics for all tasks executed by the crew. This provides insights into operational efficiency and areas for improvement.
|
||||
|
||||
```python Code
|
||||
# Access the crew's usage metrics
|
||||
crew = Crew(agents=[agent1, agent2], tasks=[task1, task2])
|
||||
crew.kickoff()
|
||||
print(crew.usage_metrics)
|
||||
```
|
||||
|
||||
## Crew Execution Process
|
||||
|
||||
- **Sequential Process**: Tasks are executed one after another, allowing for a linear flow of work.
|
||||
- **Hierarchical Process**: A manager agent coordinates the crew, delegating tasks and validating outcomes before proceeding. **Note**: A `manager_llm` or `manager_agent` is required for this process and it's essential for validating the process flow.
|
||||
|
||||
### Kicking Off a Crew
|
||||
|
||||
Once your crew is assembled, initiate the workflow with the `kickoff()` method. This starts the execution process according to the defined process flow.
|
||||
|
||||
```python Code
|
||||
# Start the crew's task execution
|
||||
result = my_crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
### Different Ways to Kick Off a Crew
|
||||
|
||||
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
|
||||
|
||||
- `kickoff()`: Starts the execution process according to the defined process flow.
|
||||
- `kickoff_for_each()`: Executes tasks sequentially for each provided input event or item in the collection.
|
||||
- `kickoff_async()`: Initiates the workflow asynchronously.
|
||||
- `kickoff_for_each_async()`: Executes tasks concurrently for each provided input event or item, leveraging asynchronous processing.
|
||||
|
||||
```python Code
|
||||
# Start the crew's task execution
|
||||
result = my_crew.kickoff()
|
||||
print(result)
|
||||
|
||||
# Example of using kickoff_for_each
|
||||
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
|
||||
results = my_crew.kickoff_for_each(inputs=inputs_array)
|
||||
for result in results:
|
||||
print(result)
|
||||
|
||||
# Example of using kickoff_async
|
||||
inputs = {'topic': 'AI in healthcare'}
|
||||
async_result = await my_crew.kickoff_async(inputs=inputs)
|
||||
print(async_result)
|
||||
|
||||
# Example of using kickoff_for_each_async
|
||||
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
|
||||
async_results = await my_crew.kickoff_for_each_async(inputs=inputs_array)
|
||||
for async_result in async_results:
|
||||
print(async_result)
|
||||
```
|
||||
|
||||
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs.
|
||||
|
||||
### Replaying from a Specific Task
|
||||
|
||||
You can now replay from a specific task using our CLI command `replay`.
|
||||
|
||||
The replay feature in CrewAI allows you to replay from a specific task using the command-line interface (CLI). By running the command `crewai replay -t <task_id>`, you can specify the `task_id` for the replay process.
|
||||
|
||||
Kickoffs will now save the latest kickoffs returned task outputs locally for you to be able to replay from.
|
||||
|
||||
### Replaying from a Specific Task Using the CLI
|
||||
|
||||
To use the replay feature, follow these steps:
|
||||
|
||||
1. Open your terminal or command prompt.
|
||||
2. Navigate to the directory where your CrewAI project is located.
|
||||
3. Run the following command:
|
||||
|
||||
To view the latest kickoff task IDs, use:
|
||||
|
||||
```shell
|
||||
crewai log-tasks-outputs
|
||||
```
|
||||
|
||||
Then, to replay from a specific task, use:
|
||||
|
||||
```shell
|
||||
crewai replay -t <task_id>
|
||||
```
|
||||
|
||||
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.
|
||||
312
docs/en/concepts/event-listener.mdx
Normal file
@@ -0,0 +1,312 @@
|
||||
---
|
||||
title: 'Event Listeners'
|
||||
description: 'Tap into CrewAI events to build custom integrations and monitoring'
|
||||
icon: spinner
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
CrewAI provides a powerful event system that allows you to listen for and react to various events that occur during the execution of your Crew. This feature enables you to build custom integrations, monitoring solutions, logging systems, or any other functionality that needs to be triggered based on CrewAI's internal events.
|
||||
|
||||
## How It Works
|
||||
|
||||
CrewAI uses an event bus architecture to emit events throughout the execution lifecycle. The event system is built on the following components:
|
||||
|
||||
1. **CrewAIEventsBus**: A singleton event bus that manages event registration and emission
|
||||
2. **BaseEvent**: Base class for all events in the system
|
||||
3. **BaseEventListener**: Abstract base class for creating custom event listeners
|
||||
|
||||
When specific actions occur in CrewAI (like a Crew starting execution, an Agent completing a task, or a tool being used), the system emits corresponding events. You can register handlers for these events to execute custom code when they occur.
|
||||
|
||||
<Note type="info" title="Enterprise Enhancement: Prompt Tracing">
|
||||
CrewAI Enterprise provides a built-in Prompt Tracing feature that leverages the event system to track, store, and visualize all prompts, completions, and associated metadata. This provides powerful debugging capabilities and transparency into your agent operations.
|
||||
|
||||

|
||||
|
||||
With Prompt Tracing you can:
|
||||
- View the complete history of all prompts sent to your LLM
|
||||
- Track token usage and costs
|
||||
- Debug agent reasoning failures
|
||||
- Share prompt sequences with your team
|
||||
- Compare different prompt strategies
|
||||
- Export traces for compliance and auditing
|
||||
</Note>
|
||||
|
||||
## Creating a Custom Event Listener
|
||||
|
||||
To create a custom event listener, you need to:
|
||||
|
||||
1. Create a class that inherits from `BaseEventListener`
|
||||
2. Implement the `setup_listeners` method
|
||||
3. Register handlers for the events you're interested in
|
||||
4. Create an instance of your listener in the appropriate file
|
||||
|
||||
Here's a simple example of a custom event listener class:
|
||||
|
||||
```python
|
||||
from crewai.utilities.events import (
|
||||
CrewKickoffStartedEvent,
|
||||
CrewKickoffCompletedEvent,
|
||||
AgentExecutionCompletedEvent,
|
||||
)
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
|
||||
class MyCustomListener(BaseEventListener):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def setup_listeners(self, crewai_event_bus):
|
||||
@crewai_event_bus.on(CrewKickoffStartedEvent)
|
||||
def on_crew_started(source, event):
|
||||
print(f"Crew '{event.crew_name}' has started execution!")
|
||||
|
||||
@crewai_event_bus.on(CrewKickoffCompletedEvent)
|
||||
def on_crew_completed(source, event):
|
||||
print(f"Crew '{event.crew_name}' has completed execution!")
|
||||
print(f"Output: {event.output}")
|
||||
|
||||
@crewai_event_bus.on(AgentExecutionCompletedEvent)
|
||||
def on_agent_execution_completed(source, event):
|
||||
print(f"Agent '{event.agent.role}' completed task")
|
||||
print(f"Output: {event.output}")
|
||||
```
|
||||
|
||||
## Properly Registering Your Listener
|
||||
|
||||
Simply defining your listener class isn't enough. You need to create an instance of it and ensure it's imported in your application. This ensures that:
|
||||
|
||||
1. The event handlers are registered with the event bus
|
||||
2. The listener instance remains in memory (not garbage collected)
|
||||
3. The listener is active when events are emitted
|
||||
|
||||
### Option 1: Import and Instantiate in Your Crew or Flow Implementation
|
||||
|
||||
The most important thing is to create an instance of your listener in the file where your Crew or Flow is defined and executed:
|
||||
|
||||
#### For Crew-based Applications
|
||||
|
||||
Create and import your listener at the top of your Crew implementation file:
|
||||
|
||||
```python
|
||||
# In your crew.py file
|
||||
from crewai import Agent, Crew, Task
|
||||
from my_listeners import MyCustomListener
|
||||
|
||||
# Create an instance of your listener
|
||||
my_listener = MyCustomListener()
|
||||
|
||||
class MyCustomCrew:
|
||||
# Your crew implementation...
|
||||
|
||||
def crew(self):
|
||||
return Crew(
|
||||
agents=[...],
|
||||
tasks=[...],
|
||||
# ...
|
||||
)
|
||||
```
|
||||
|
||||
#### For Flow-based Applications
|
||||
|
||||
Create and import your listener at the top of your Flow implementation file:
|
||||
|
||||
```python
|
||||
# In your main.py or flow.py file
|
||||
from crewai.flow import Flow, listen, start
|
||||
from my_listeners import MyCustomListener
|
||||
|
||||
# Create an instance of your listener
|
||||
my_listener = MyCustomListener()
|
||||
|
||||
class MyCustomFlow(Flow):
|
||||
# Your flow implementation...
|
||||
|
||||
@start()
|
||||
def first_step(self):
|
||||
# ...
|
||||
```
|
||||
|
||||
This ensures that your listener is loaded and active when your Crew or Flow is executed.
|
||||
|
||||
### Option 2: Create a Package for Your Listeners
|
||||
|
||||
For a more structured approach, especially if you have multiple listeners:
|
||||
|
||||
1. Create a package for your listeners:
|
||||
|
||||
```
|
||||
my_project/
|
||||
├── listeners/
|
||||
│ ├── __init__.py
|
||||
│ ├── my_custom_listener.py
|
||||
│ └── another_listener.py
|
||||
```
|
||||
|
||||
2. In `my_custom_listener.py`, define your listener class and create an instance:
|
||||
|
||||
```python
|
||||
# my_custom_listener.py
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
# ... import events ...
|
||||
|
||||
class MyCustomListener(BaseEventListener):
|
||||
# ... implementation ...
|
||||
|
||||
# Create an instance of your listener
|
||||
my_custom_listener = MyCustomListener()
|
||||
```
|
||||
|
||||
3. In `__init__.py`, import the listener instances to ensure they're loaded:
|
||||
|
||||
```python
|
||||
# __init__.py
|
||||
from .my_custom_listener import my_custom_listener
|
||||
from .another_listener import another_listener
|
||||
|
||||
# Optionally export them if you need to access them elsewhere
|
||||
__all__ = ['my_custom_listener', 'another_listener']
|
||||
```
|
||||
|
||||
4. Import your listeners package in your Crew or Flow file:
|
||||
|
||||
```python
|
||||
# In your crew.py or flow.py file
|
||||
import my_project.listeners # This loads all your listeners
|
||||
|
||||
class MyCustomCrew:
|
||||
# Your crew implementation...
|
||||
```
|
||||
|
||||
This is how third-party event listeners are registered in the CrewAI codebase.
|
||||
|
||||
## Available Event Types
|
||||
|
||||
CrewAI provides a wide range of events that you can listen for:
|
||||
|
||||
### Crew Events
|
||||
|
||||
- **CrewKickoffStartedEvent**: Emitted when a Crew starts execution
|
||||
- **CrewKickoffCompletedEvent**: Emitted when a Crew completes execution
|
||||
- **CrewKickoffFailedEvent**: Emitted when a Crew fails to complete execution
|
||||
- **CrewTestStartedEvent**: Emitted when a Crew starts testing
|
||||
- **CrewTestCompletedEvent**: Emitted when a Crew completes testing
|
||||
- **CrewTestFailedEvent**: Emitted when a Crew fails to complete testing
|
||||
- **CrewTrainStartedEvent**: Emitted when a Crew starts training
|
||||
- **CrewTrainCompletedEvent**: Emitted when a Crew completes training
|
||||
- **CrewTrainFailedEvent**: Emitted when a Crew fails to complete training
|
||||
|
||||
### Agent Events
|
||||
|
||||
- **AgentExecutionStartedEvent**: Emitted when an Agent starts executing a task
|
||||
- **AgentExecutionCompletedEvent**: Emitted when an Agent completes executing a task
|
||||
- **AgentExecutionErrorEvent**: Emitted when an Agent encounters an error during execution
|
||||
|
||||
### Task Events
|
||||
|
||||
- **TaskStartedEvent**: Emitted when a Task starts execution
|
||||
- **TaskCompletedEvent**: Emitted when a Task completes execution
|
||||
- **TaskFailedEvent**: Emitted when a Task fails to complete execution
|
||||
- **TaskEvaluationEvent**: Emitted when a Task is evaluated
|
||||
|
||||
### Tool Usage Events
|
||||
|
||||
- **ToolUsageStartedEvent**: Emitted when a tool execution is started
|
||||
- **ToolUsageFinishedEvent**: Emitted when a tool execution is completed
|
||||
- **ToolUsageErrorEvent**: Emitted when a tool execution encounters an error
|
||||
- **ToolValidateInputErrorEvent**: Emitted when a tool input validation encounters an error
|
||||
- **ToolExecutionErrorEvent**: Emitted when a tool execution encounters an error
|
||||
- **ToolSelectionErrorEvent**: Emitted when there's an error selecting a tool
|
||||
|
||||
### Knowledge Events
|
||||
|
||||
- **KnowledgeRetrievalStartedEvent**: Emitted when a knowledge retrieval is started
|
||||
- **KnowledgeRetrievalCompletedEvent**: Emitted when a knowledge retrieval is completed
|
||||
- **KnowledgeQueryStartedEvent**: Emitted when a knowledge query is started
|
||||
- **KnowledgeQueryCompletedEvent**: Emitted when a knowledge query is completed
|
||||
- **KnowledgeQueryFailedEvent**: Emitted when a knowledge query fails
|
||||
- **KnowledgeSearchQueryFailedEvent**: Emitted when a knowledge search query fails
|
||||
|
||||
### LLM Guardrail Events
|
||||
|
||||
- **LLMGuardrailStartedEvent**: Emitted when a guardrail validation starts. Contains details about the guardrail being applied and retry count.
|
||||
- **LLMGuardrailCompletedEvent**: Emitted when a guardrail validation completes. Contains details about validation success/failure, results, and error messages if any.
|
||||
|
||||
### Flow Events
|
||||
|
||||
- **FlowCreatedEvent**: Emitted when a Flow is created
|
||||
- **FlowStartedEvent**: Emitted when a Flow starts execution
|
||||
- **FlowFinishedEvent**: Emitted when a Flow completes execution
|
||||
- **FlowPlotEvent**: Emitted when a Flow is plotted
|
||||
- **MethodExecutionStartedEvent**: Emitted when a Flow method starts execution
|
||||
- **MethodExecutionFinishedEvent**: Emitted when a Flow method completes execution
|
||||
- **MethodExecutionFailedEvent**: Emitted when a Flow method fails to complete execution
|
||||
|
||||
### LLM Events
|
||||
|
||||
- **LLMCallStartedEvent**: Emitted when an LLM call starts
|
||||
- **LLMCallCompletedEvent**: Emitted when an LLM call completes
|
||||
- **LLMCallFailedEvent**: Emitted when an LLM call fails
|
||||
- **LLMStreamChunkEvent**: Emitted for each chunk received during streaming LLM responses
|
||||
|
||||
### Memory Events
|
||||
|
||||
- **MemoryQueryStartedEvent**: Emitted when a memory query is started. Contains the query, limit, and optional score threshold.
|
||||
- **MemoryQueryCompletedEvent**: Emitted when a memory query is completed successfully. Contains the query, results, limit, score threshold, and query execution time.
|
||||
- **MemoryQueryFailedEvent**: Emitted when a memory query fails. Contains the query, limit, score threshold, and error message.
|
||||
- **MemorySaveStartedEvent**: Emitted when a memory save operation is started. Contains the value to be saved, metadata, and optional agent role.
|
||||
- **MemorySaveCompletedEvent**: Emitted when a memory save operation is completed successfully. Contains the saved value, metadata, agent role, and save execution time.
|
||||
- **MemorySaveFailedEvent**: Emitted when a memory save operation fails. Contains the value, metadata, agent role, and error message.
|
||||
- **MemoryRetrievalStartedEvent**: Emitted when memory retrieval for a task prompt starts. Contains the optional task ID.
|
||||
- **MemoryRetrievalCompletedEvent**: Emitted when memory retrieval for a task prompt completes successfully. Contains the task ID, memory content, and retrieval execution time.
|
||||
|
||||
## Event Handler Structure
|
||||
|
||||
Each event handler receives two parameters:
|
||||
|
||||
1. **source**: The object that emitted the event
|
||||
2. **event**: The event instance, containing event-specific data
|
||||
|
||||
The structure of the event object depends on the event type, but all events inherit from `BaseEvent` and include:
|
||||
|
||||
- **timestamp**: The time when the event was emitted
|
||||
- **type**: A string identifier for the event type
|
||||
|
||||
Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` includes `crew_name` and `output` fields.
|
||||
|
||||
|
||||
## Advanced Usage: Scoped Handlers
|
||||
|
||||
For temporary event handling (useful for testing or specific operations), you can use the `scoped_handlers` context manager:
|
||||
|
||||
```python
|
||||
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
|
||||
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
@crewai_event_bus.on(CrewKickoffStartedEvent)
|
||||
def temp_handler(source, event):
|
||||
print("This handler only exists within this context")
|
||||
|
||||
# Do something that emits events
|
||||
|
||||
# Outside the context, the temporary handler is removed
|
||||
```
|
||||
|
||||
## Use Cases
|
||||
|
||||
Event listeners can be used for a variety of purposes:
|
||||
|
||||
1. **Logging and Monitoring**: Track the execution of your Crew and log important events
|
||||
2. **Analytics**: Collect data about your Crew's performance and behavior
|
||||
3. **Debugging**: Set up temporary listeners to debug specific issues
|
||||
4. **Integration**: Connect CrewAI with external systems like monitoring platforms, databases, or notification services
|
||||
5. **Custom Behavior**: Trigger custom actions based on specific events
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Keep Handlers Light**: Event handlers should be lightweight and avoid blocking operations
|
||||
2. **Error Handling**: Include proper error handling in your event handlers to prevent exceptions from affecting the main execution
|
||||
3. **Cleanup**: If your listener allocates resources, ensure they're properly cleaned up
|
||||
4. **Selective Listening**: Only listen for events you actually need to handle
|
||||
5. **Testing**: Test your event listeners in isolation to ensure they behave as expected
|
||||
|
||||
By leveraging CrewAI's event system, you can extend its functionality and integrate it seamlessly with your existing infrastructure.
|
||||