Lorenze/tracing v1 (#3279)

* initial setup

* feat: enhance CrewKickoffCompletedEvent to include total token usage

- Added total_tokens attribute to CrewKickoffCompletedEvent for better tracking of token usage during crew execution.
- Updated Crew class to emit total token usage upon kickoff completion.
- Removed obsolete context handler and execution context tracker files to streamline event handling.

* cleanup

* remove print statements for loggers

* feat: add CrewAI base URL and improve logging in tracing

- Introduced `CREWAI_BASE_URL` constant for easy access to the CrewAI application URL.
- Replaced print statements with logging in the `TraceSender` class for better error tracking.
- Enhanced the `TraceBatchManager` to provide default values for flow names and removed unnecessary comments.
- Implemented singleton pattern in `TraceCollectionListener` to ensure a single instance is used.
- Added a new test case to verify that the trace listener correctly collects events during crew execution.

* clear

* fix: update datetime serialization in tracing interfaces

- Removed the 'Z' suffix from datetime serialization in TraceSender and TraceEvent to ensure consistent ISO format.
- Added new test cases to validate the functionality of the TraceBatchManager and event collection during crew execution.
- Introduced fixtures to clear event bus listeners before each test to maintain isolation.

* test: enhance tracing tests with mock authentication token

- Added a mock authentication token to the tracing tests to ensure proper setup and event collection.
- Updated test methods to include the mock token, improving isolation and reliability of tests related to the TraceListener and BatchManager.
- Ensured that the tests validate the correct behavior of event collection during crew execution.

* test: refactor tracing tests to improve mock usage

- Moved the mock authentication token patching inside the test class to enhance readability and maintainability.
- Updated test methods to remove unnecessary mock parameters, streamlining the test signatures.
- Ensured that the tests continue to validate the correct behavior of event collection during crew execution while improving isolation.

* test: refactor tracing tests for improved mock usage and consistency

- Moved mock authentication token patching into individual test methods for better clarity and maintainability.
- Corrected the backstory string in the `Agent` instantiation to fix a typo.
- Ensured that all tests validate the correct behavior of event collection during crew execution while enhancing isolation and readability.

* test: add new tracing test for disabled trace listener

- Introduced a new test case to verify that the trace listener does not make HTTP calls when tracing is disabled via environment variables.
- Enhanced existing tests by mocking PlusAPI HTTP calls to avoid authentication and network requests, improving test isolation and reliability.
- Updated the test setup to ensure proper initialization of the trace listener and its components during crew execution.

* refactor: update LLM class to utilize new completion function and improve cost calculation

- Replaced direct calls to `litellm.completion` with a new import for better clarity and maintainability.
- Introduced a new optional attribute `completion_cost` in the LLM class to track the cost of completions.
- Updated the handling of completion responses to ensure accurate cost calculations and improved error handling.
- Removed outdated test cassettes for gemini models to streamline test suite and avoid redundancy.
- Enhanced existing tests to reflect changes in the LLM class and ensure proper functionality.

* test: enhance tracing tests with additional request and response scenarios

- Added new test cases to validate the behavior of the trace listener and batch manager when handling 404 responses from the tracing API.
- Updated existing test cassettes to include detailed request and response structures, ensuring comprehensive coverage of edge cases.
- Improved mock setup to avoid unnecessary network calls and enhance test reliability.
- Ensured that the tests validate the correct behavior of event collection during crew execution, particularly in scenarios where the tracing service is unavailable.

* feat: enable conditional tracing based on environment variable

- Added support for enabling or disabling the trace listener based on the `CREWAI_TRACING_ENABLED` environment variable.
- Updated the `Crew` class to conditionally set up the trace listener only when tracing is enabled, improving performance and resource management.
- Refactored test cases to ensure proper cleanup of event bus listeners before and after each test, enhancing test reliability and isolation.
- Improved mock setup in tracing tests to validate the behavior of the trace listener when tracing is disabled.

* fix: downgrade litellm version from 1.74.9 to 1.74.3

- Updated the `pyproject.toml` and `uv.lock` files to reflect the change in the `litellm` dependency version.
- This downgrade addresses compatibility issues and ensures stability in the project environment.

* refactor: improve tracing test setup by moving mock authentication token patching

- Removed the module-level patch for the authentication token and implemented a fixture to mock the token for all tests in the class, enhancing test isolation and readability.
- Updated the event bus clearing logic to ensure original handlers are restored after tests, improving reliability of the test environment.
- This refactor streamlines the test setup and ensures consistent behavior across tracing tests.

* test: enhance tracing test setup with comprehensive mock authentication

- Expanded the mock authentication token patching to cover all instances where `get_auth_token` is used across different modules, ensuring consistent behavior in tests.
- Introduced a new fixture to reset tracing singleton instances between tests, improving test isolation and reliability.
- This update enhances the overall robustness of the tracing tests by ensuring that all necessary components are properly mocked and reset, leading to more reliable test outcomes.

* just drop the test for now

* refactor: comment out completion-related code in LLM and LLM event classes

- Commented out the `completion` and `completion_cost` imports and their usage in the `LLM` class to prevent potential issues during execution.
- Updated the `LLMCallCompletedEvent` class to comment out the `response_cost` attribute, ensuring consistency with the changes in the LLM class.
- This refactor aims to streamline the code and prepare for future updates without affecting current functionality.

* refactor: update LLM response handling in LiteAgent

- Commented out the `response_cost` attribute in the LLM response handling to align with recent refactoring in the LLM class.
- This change aims to maintain consistency in the codebase and prepare for future updates without affecting current functionality.

* refactor: remove commented-out response cost attributes in LLM and LiteAgent

- Commented out the `response_cost` attribute in both the `LiteAgent` and `LLM` classes to maintain consistency with recent refactoring efforts.
- This change aligns with previous updates aimed at streamlining the codebase and preparing for future enhancements without impacting current functionality.

* bring back litellm upgrade version
This commit is contained in:
Lorenze Jay
2025-08-06 14:05:14 -07:00
committed by GitHub
parent 7dc86dc79a
commit 8f4a6cc61c
22 changed files with 3035 additions and 231 deletions

View File

@@ -17,6 +17,7 @@ class PlusAPI:
ORGANIZATIONS_RESOURCE = "/crewai_plus/api/v1/me/organizations"
CREWS_RESOURCE = "/crewai_plus/api/v1/crews"
AGENTS_RESOURCE = "/crewai_plus/api/v1/agents"
TRACING_RESOURCE = "/crewai_plus/api/v1/tracing"
def __init__(self, api_key: str) -> None:
self.api_key = api_key
@@ -114,3 +115,25 @@ class PlusAPI:
def get_organizations(self) -> requests.Response:
return self._make_request("GET", self.ORGANIZATIONS_RESOURCE)
def send_trace_batch(self, payload) -> requests.Response:
return self._make_request("POST", self.TRACING_RESOURCE, json=payload)
def initialize_trace_batch(self, payload) -> requests.Response:
return self._make_request(
"POST", f"{self.TRACING_RESOURCE}/batches", json=payload
)
def send_trace_events(self, trace_batch_id: str, payload) -> requests.Response:
return self._make_request(
"POST",
f"{self.TRACING_RESOURCE}/batches/{trace_batch_id}/events",
json=payload,
)
def finalize_trace_batch(self, trace_batch_id: str, payload) -> requests.Response:
return self._make_request(
"PATCH",
f"{self.TRACING_RESOURCE}/batches/{trace_batch_id}/finalize",
json=payload,
)

View File

@@ -1,3 +1,4 @@
import os
import asyncio
import json
import re
@@ -72,6 +73,11 @@ from crewai.utilities.events.crew_events import (
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.event_listener import EventListener
from crewai.utilities.events.listeners.tracing.trace_listener import (
TraceCollectionListener,
)
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
@@ -238,6 +244,10 @@ class Crew(FlowTrackable, BaseModel):
default_factory=SecurityConfig,
description="Security configuration for the crew, including fingerprinting.",
)
token_usage: Optional[UsageMetrics] = Field(
default=None,
description="Metrics for the LLM usage during all tasks execution.",
)
@field_validator("id", mode="before")
@classmethod
@@ -269,6 +279,9 @@ class Crew(FlowTrackable, BaseModel):
self._cache_handler = CacheHandler()
event_listener = EventListener()
if os.getenv("CREWAI_TRACING_ENABLED", "false").lower() == "true":
trace_listener = TraceCollectionListener()
trace_listener.setup_listeners(crewai_event_bus)
event_listener.verbose = self.verbose
event_listener.formatter.verbose = self.verbose
self._logger = Logger(verbose=self.verbose)
@@ -1044,11 +1057,13 @@ class Crew(FlowTrackable, BaseModel):
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
token_usage = self.calculate_usage_metrics()
self.token_usage = self.calculate_usage_metrics()
crewai_event_bus.emit(
self,
CrewKickoffCompletedEvent(
crew_name=self.name, output=final_task_output
crew_name=self.name,
output=final_task_output,
total_tokens=self.token_usage.total_tokens,
),
)
return CrewOutput(
@@ -1056,7 +1071,7 @@ class Crew(FlowTrackable, BaseModel):
pydantic=final_task_output.pydantic,
json_dict=final_task_output.json_dict,
tasks_output=task_outputs,
token_usage=token_usage,
token_usage=self.token_usage,
)
def _process_async_tasks(
@@ -1226,7 +1241,6 @@ class Crew(FlowTrackable, BaseModel):
if self.external_memory:
copied_data["external_memory"] = self.external_memory.model_copy(deep=True)
copied_data.pop("agents", None)
copied_data.pop("tasks", None)

View File

@@ -2,6 +2,7 @@ import asyncio
import copy
import inspect
import logging
import os
from typing import (
Any,
Callable,
@@ -32,6 +33,9 @@ from crewai.utilities.events.flow_events import (
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from crewai.utilities.events.listeners.tracing.trace_listener import (
TraceCollectionListener,
)
from crewai.utilities.printer import Printer
logger = logging.getLogger(__name__)
@@ -465,7 +469,9 @@ class Flow(Generic[T], metaclass=FlowMeta):
# Initialize state with initial values
self._state = self._create_initial_state()
if os.getenv("CREWAI_TRACING_ENABLED", "false").lower() == "true":
trace_listener = TraceCollectionListener()
trace_listener.setup_listeners(crewai_event_bus)
# Apply any additional kwargs
if kwargs:
self._initialize_state(kwargs)

View File

@@ -28,7 +28,7 @@ from pydantic import (
InstanceOf,
PrivateAttr,
model_validator,
field_validator
field_validator,
)
from crewai.agents.agent_builder.base_agent import BaseAgent
@@ -210,7 +210,9 @@ class LiteAgent(FlowTrackable, BaseModel):
"""Set up the LLM and other components after initialization."""
self.llm = create_llm(self.llm)
if not isinstance(self.llm, BaseLLM):
raise ValueError(f"Expected LLM instance of type BaseLLM, got {type(self.llm).__name__}")
raise ValueError(
f"Expected LLM instance of type BaseLLM, got {type(self.llm).__name__}"
)
# Initialize callbacks
token_callback = TokenCalcHandler(token_cost_process=self._token_process)
@@ -233,7 +235,9 @@ class LiteAgent(FlowTrackable, BaseModel):
from crewai.tasks.llm_guardrail import LLMGuardrail
if not isinstance(self.llm, BaseLLM):
raise TypeError(f"Guardrail requires LLM instance of type BaseLLM, got {type(self.llm).__name__}")
raise TypeError(
f"Guardrail requires LLM instance of type BaseLLM, got {type(self.llm).__name__}"
)
self._guardrail = LLMGuardrail(description=self.guardrail, llm=self.llm)
@@ -515,7 +519,8 @@ class LiteAgent(FlowTrackable, BaseModel):
enforce_rpm_limit(self.request_within_rpm_limit)
# Emit LLM call started event
llm = cast(LLM, self.llm)
model = llm.model if hasattr(llm, "model") else "unknown"
crewai_event_bus.emit(
self,
event=LLMCallStartedEvent(
@@ -523,6 +528,7 @@ class LiteAgent(FlowTrackable, BaseModel):
tools=None,
callbacks=self._callbacks,
from_agent=self,
model=model,
),
)
@@ -543,6 +549,7 @@ class LiteAgent(FlowTrackable, BaseModel):
response=answer,
call_type=LLMCallType.LLM_CALL,
from_agent=self,
model=model,
),
)
except Exception as e:

View File

@@ -61,6 +61,7 @@ load_dotenv()
litellm.suppress_debug_info = True
class FilteredStream(io.TextIOBase):
_lock = None
@@ -78,7 +79,8 @@ class FilteredStream(io.TextIOBase):
# Skip common noisy LiteLLM banners and any other lines that contain "litellm"
if (
"litellm.info:" in lower_s
or "Consider using a smaller input or implementing a text splitting strategy" in lower_s
or "Consider using a smaller input or implementing a text splitting strategy"
in lower_s
):
return 0
@@ -286,6 +288,8 @@ class AccumulatedToolArgs(BaseModel):
class LLM(BaseLLM):
completion_cost: Optional[float] = None
def __init__(
self,
model: str,
@@ -532,7 +536,11 @@ class LLM(BaseLLM):
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMStreamChunkEvent(chunk=chunk_content, from_task=from_task, from_agent=from_agent),
event=LLMStreamChunkEvent(
chunk=chunk_content,
from_task=from_task,
from_agent=from_agent,
),
)
# --- 4) Fallback to non-streaming if no content received
if not full_response.strip() and chunk_count == 0:
@@ -545,7 +553,11 @@ class LLM(BaseLLM):
"stream_options", None
) # Remove stream_options for non-streaming call
return self._handle_non_streaming_response(
non_streaming_params, callbacks, available_functions, from_task, from_agent
non_streaming_params,
callbacks,
available_functions,
from_task,
from_agent,
)
# --- 5) Handle empty response with chunks
@@ -630,7 +642,13 @@ class LLM(BaseLLM):
# Log token usage if available in streaming mode
self._handle_streaming_callbacks(callbacks, usage_info, last_chunk)
# Emit completion event and return response
self._handle_emit_call_events(response=full_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
self._handle_emit_call_events(
response=full_response,
call_type=LLMCallType.LLM_CALL,
from_task=from_task,
from_agent=from_agent,
messages=params["messages"],
)
return full_response
# --- 9) Handle tool calls if present
@@ -642,7 +660,13 @@ class LLM(BaseLLM):
self._handle_streaming_callbacks(callbacks, usage_info, last_chunk)
# --- 11) Emit completion event and return response
self._handle_emit_call_events(response=full_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
self._handle_emit_call_events(
response=full_response,
call_type=LLMCallType.LLM_CALL,
from_task=from_task,
from_agent=from_agent,
messages=params["messages"],
)
return full_response
except ContextWindowExceededError as e:
@@ -654,14 +678,22 @@ class LLM(BaseLLM):
logging.error(f"Error in streaming response: {str(e)}")
if full_response.strip():
logging.warning(f"Returning partial response despite error: {str(e)}")
self._handle_emit_call_events(response=full_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
self._handle_emit_call_events(
response=full_response,
call_type=LLMCallType.LLM_CALL,
from_task=from_task,
from_agent=from_agent,
messages=params["messages"],
)
return full_response
# Emit failed event and re-raise the exception
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e), from_task=from_task, from_agent=from_agent),
event=LLMCallFailedEvent(
error=str(e), from_task=from_task, from_agent=from_agent
),
)
raise Exception(f"Failed to get streaming response: {str(e)}")
@@ -779,6 +811,7 @@ class LLM(BaseLLM):
# across the codebase. This allows CrewAgentExecutor to handle context
# length issues appropriately.
response = litellm.completion(**params)
except ContextWindowExceededError as e:
# Convert litellm's context window error to our own exception type
# for consistent handling in the rest of the codebase
@@ -805,7 +838,13 @@ class LLM(BaseLLM):
# --- 5) If no tool calls or no available functions, return the text response directly as long as there is a text response
if (not tool_calls or not available_functions) and text_response:
self._handle_emit_call_events(response=text_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
self._handle_emit_call_events(
response=text_response,
call_type=LLMCallType.LLM_CALL,
from_task=from_task,
from_agent=from_agent,
messages=params["messages"],
)
return text_response
# --- 6) If there is no text response, no available functions, but there are tool calls, return the tool calls
elif tool_calls and not available_functions and not text_response:
@@ -816,7 +855,13 @@ class LLM(BaseLLM):
if tool_result is not None:
return tool_result
# --- 8) If tool call handling didn't return a result, emit completion event and return text response
self._handle_emit_call_events(response=text_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
self._handle_emit_call_events(
response=text_response,
call_type=LLMCallType.LLM_CALL,
from_task=from_task,
from_agent=from_agent,
messages=params["messages"],
)
return text_response
def _handle_tool_call(
@@ -873,7 +918,9 @@ class LLM(BaseLLM):
)
# --- 3.3) Emit success event
self._handle_emit_call_events(response=result, call_type=LLMCallType.TOOL_CALL)
self._handle_emit_call_events(
response=result, call_type=LLMCallType.TOOL_CALL
)
return result
except Exception as e:
# --- 3.4) Handle execution errors
@@ -891,7 +938,7 @@ class LLM(BaseLLM):
event=ToolUsageErrorEvent(
tool_name=function_name,
tool_args=function_args,
error=f"Tool execution error: {str(e)}"
error=f"Tool execution error: {str(e)}",
),
)
return None
@@ -941,6 +988,7 @@ class LLM(BaseLLM):
available_functions=available_functions,
from_task=from_task,
from_agent=from_agent,
model=self.model,
),
)
@@ -978,17 +1026,22 @@ class LLM(BaseLLM):
# whether to summarize the content or abort based on the respect_context_window flag
raise
except Exception as e:
unsupported_stop = "Unsupported parameter" in str(e) and "'stop'" in str(e)
unsupported_stop = "Unsupported parameter" in str(
e
) and "'stop'" in str(e)
if unsupported_stop:
if "additional_drop_params" in self.additional_params and isinstance(self.additional_params["additional_drop_params"], list):
if (
"additional_drop_params" in self.additional_params
and isinstance(
self.additional_params["additional_drop_params"], list
)
):
self.additional_params["additional_drop_params"].append("stop")
else:
self.additional_params = {"additional_drop_params": ["stop"]}
logging.info(
"Retrying LLM call without the unsupported 'stop'"
)
logging.info("Retrying LLM call without the unsupported 'stop'")
return self.call(
messages,
@@ -1002,11 +1055,20 @@ class LLM(BaseLLM):
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e), from_task=from_task, from_agent=from_agent),
event=LLMCallFailedEvent(
error=str(e), from_task=from_task, from_agent=from_agent
),
)
raise
def _handle_emit_call_events(self, response: Any, call_type: LLMCallType, from_task: Optional[Any] = None, from_agent: Optional[Any] = None, messages: str | list[dict[str, Any]] | None = None):
def _handle_emit_call_events(
self,
response: Any,
call_type: LLMCallType,
from_task: Optional[Any] = None,
from_agent: Optional[Any] = None,
messages: str | list[dict[str, Any]] | None = None,
):
"""Handle the events for the LLM call.
Args:
@@ -1019,7 +1081,14 @@ class LLM(BaseLLM):
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallCompletedEvent(messages=messages, response=response, call_type=call_type, from_task=from_task, from_agent=from_agent),
event=LLMCallCompletedEvent(
messages=messages,
response=response,
call_type=call_type,
from_task=from_task,
from_agent=from_agent,
model=self.model,
),
)
def _format_messages_for_provider(
@@ -1074,11 +1143,13 @@ class LLM(BaseLLM):
# TODO: Remove this code after merging PR https://github.com/BerriAI/litellm/pull/10917
# Ollama doesn't supports last message to be 'assistant'
if "ollama" in self.model.lower() and messages and messages[-1]["role"] == "assistant":
if (
"ollama" in self.model.lower()
and messages
and messages[-1]["role"] == "assistant"
):
messages = messages.copy()
messages.append(
{"role": "user", "content": ""}
)
messages.append({"role": "user", "content": ""})
return messages
# Handle Anthropic models

View File

@@ -16,3 +16,4 @@ class _NotSpecified:
# Unlike `None`, which might be a valid value from the user, `NOT_SPECIFIED` allows
# us to distinguish between "not passed at all" and "explicitly passed None" or "[]".
NOT_SPECIFIED = _NotSpecified()
CREWAI_BASE_URL = "https://app.crewai.com/"

View File

@@ -47,6 +47,7 @@ class CrewKickoffCompletedEvent(CrewBaseEvent):
output: Any
type: str = "crew_kickoff_completed"
total_tokens: int = 0
class CrewKickoffFailedEvent(CrewBaseEvent):

View File

@@ -0,0 +1,33 @@
import json
from datetime import datetime
from crewai.cli.plus_api import PlusAPI
from crewai.cli.authentication.token import get_auth_token
from pydantic import BaseModel
from .trace_batch_manager import TraceBatch
from logging import getLogger
logger = getLogger(__name__)
class TraceSender(BaseModel):
"""Trace sender for sending trace batches to the backend"""
def send_batch(self, batch: TraceBatch) -> bool:
"""Print trace batch to console"""
try:
payload = batch.to_dict()
def datetime_handler(obj):
if isinstance(obj, datetime):
return obj.isoformat()
serialized_payload = json.loads(
json.dumps(payload, default=datetime_handler)
)
PlusAPI(api_key=get_auth_token()).send_trace_batch(serialized_payload)
return True
except Exception as e:
logger.error(f"Error sending trace batch: {e}")
return False

View File

@@ -0,0 +1,252 @@
import uuid
from datetime import datetime, timezone
from typing import Dict, List, Any, Optional
from dataclasses import dataclass, field
from crewai.utilities.constants import CREWAI_BASE_URL
from crewai.cli.authentication.token import get_auth_token
from crewai.cli.version import get_crewai_version
from crewai.cli.plus_api import PlusAPI
from rich.console import Console
from rich.panel import Panel
from crewai.utilities.events.listeners.tracing.types import TraceEvent
from logging import getLogger
logger = getLogger(__name__)
@dataclass
class TraceBatch:
"""Batch of events to send to backend"""
version: str = field(default_factory=get_crewai_version)
batch_id: str = field(default_factory=lambda: str(uuid.uuid4()))
user_context: Dict[str, str] = field(default_factory=dict)
execution_metadata: Dict[str, Any] = field(default_factory=dict)
events: List[TraceEvent] = field(default_factory=list)
def to_dict(self) -> Dict[str, Any]:
return {
"version": self.version,
"batch_id": self.batch_id,
"user_context": self.user_context,
"execution_metadata": self.execution_metadata,
"events": [event.to_dict() for event in self.events],
}
class TraceBatchManager:
"""Single responsibility: Manage batches and event buffering"""
def __init__(self):
self.plus_api = PlusAPI(api_key=get_auth_token())
self.trace_batch_id: Optional[str] = None # Backend ID
self.current_batch: Optional[TraceBatch] = None
self.event_buffer: List[TraceEvent] = []
self.execution_start_times: Dict[str, datetime] = {}
def initialize_batch(
self, user_context: Dict[str, str], execution_metadata: Dict[str, Any]
) -> TraceBatch:
"""Initialize a new trace batch"""
self.current_batch = TraceBatch(
user_context=user_context, execution_metadata=execution_metadata
)
self.event_buffer.clear()
self.record_start_time("execution")
self._initialize_backend_batch(user_context, execution_metadata)
return self.current_batch
def _initialize_backend_batch(
self, user_context: Dict[str, str], execution_metadata: Dict[str, Any]
):
"""Send batch initialization to backend"""
if not self.plus_api or not self.current_batch:
return
try:
payload = {
"trace_id": self.current_batch.batch_id,
"execution_type": execution_metadata.get("execution_type", "crew"),
"execution_context": {
"crew_fingerprint": execution_metadata.get("crew_fingerprint"),
"crew_name": execution_metadata.get("crew_name", "Unknown Crew"),
"flow_name": execution_metadata.get("flow_name", "Unknown Flow"),
"crewai_version": self.current_batch.version,
"privacy_level": user_context.get("privacy_level", "standard"),
},
"execution_metadata": {
"expected_duration_estimate": execution_metadata.get(
"expected_duration_estimate", 300
),
"agent_count": execution_metadata.get("agent_count", 0),
"task_count": execution_metadata.get("task_count", 0),
"flow_method_count": execution_metadata.get("flow_method_count", 0),
"execution_started_at": datetime.now(timezone.utc).isoformat(),
},
}
response = self.plus_api.initialize_trace_batch(payload)
if response.status_code == 201 or response.status_code == 200:
response_data = response.json()
self.trace_batch_id = response_data["trace_id"]
console = Console()
panel = Panel(
f"✅ Trace batch initialized with session ID: {self.trace_batch_id}",
title="Trace Batch Initialization",
border_style="green",
)
console.print(panel)
else:
logger.error(
f"❌ Failed to initialize trace batch: {response.status_code} - {response.text}"
)
except Exception as e:
logger.error(f"❌ Error initializing trace batch: {str(e)}")
def add_event(self, trace_event: TraceEvent):
"""Add event to buffer"""
self.event_buffer.append(trace_event)
def _send_events_to_backend(self):
"""Send buffered events to backend"""
if not self.plus_api or not self.trace_batch_id or not self.event_buffer:
return
try:
payload = {
"events": [event.to_dict() for event in self.event_buffer],
"batch_metadata": {
"events_count": len(self.event_buffer),
"batch_sequence": 1,
"is_final_batch": False,
},
}
if not self.trace_batch_id:
raise Exception("❌ Trace batch ID not found")
response = self.plus_api.send_trace_events(self.trace_batch_id, payload)
if response.status_code == 200 or response.status_code == 201:
self.event_buffer.clear()
else:
logger.error(
f"❌ Failed to send events: {response.status_code} - {response.text}"
)
except Exception as e:
logger.error(f"❌ Error sending events to backend: {str(e)}")
def finalize_batch(self) -> Optional[TraceBatch]:
"""Finalize batch and return it for sending"""
if not self.current_batch:
return None
if self.event_buffer:
self._send_events_to_backend()
self._finalize_backend_batch()
self.current_batch.events = self.event_buffer.copy()
finalized_batch = self.current_batch
self.current_batch = None
self.event_buffer.clear()
self.trace_batch_id = None
self._cleanup_batch_data()
return finalized_batch
def _finalize_backend_batch(self):
"""Send batch finalization to backend"""
if not self.plus_api or not self.trace_batch_id:
return
try:
total_events = len(self.current_batch.events) if self.current_batch else 0
payload = {
"status": "completed",
"duration_ms": self.calculate_duration("execution"),
"final_event_count": total_events,
}
response = self.plus_api.finalize_trace_batch(self.trace_batch_id, payload)
if response.status_code == 200:
console = Console()
panel = Panel(
f"✅ Trace batch finalized with session ID: {self.trace_batch_id}. View here: {CREWAI_BASE_URL}/crewai_plus/trace_batches/{self.trace_batch_id}",
title="Trace Batch Finalization",
border_style="green",
)
console.print(panel)
else:
logger.error(
f"❌ Failed to finalize trace batch: {response.status_code} - {response.text}"
)
except Exception as e:
logger.error(f"❌ Error finalizing trace batch: {str(e)}")
# TODO: send error to app
def _cleanup_batch_data(self):
"""Clean up batch data after successful finalization to free memory"""
try:
if hasattr(self, "event_buffer") and self.event_buffer:
self.event_buffer.clear()
if hasattr(self, "current_batch") and self.current_batch:
if hasattr(self.current_batch, "events") and self.current_batch.events:
self.current_batch.events.clear()
self.current_batch = None
if hasattr(self, "batch_sequence"):
self.batch_sequence = 0
except Exception as e:
logger.error(f"Warning: Error during cleanup: {str(e)}")
def has_events(self) -> bool:
"""Check if there are events in the buffer"""
return len(self.event_buffer) > 0
def get_event_count(self) -> int:
"""Get number of events in buffer"""
return len(self.event_buffer)
def is_batch_initialized(self) -> bool:
"""Check if batch is initialized"""
return self.current_batch is not None
def record_start_time(self, key: str):
"""Record start time for duration calculation"""
self.execution_start_times[key] = datetime.now(timezone.utc)
def calculate_duration(self, key: str) -> int:
"""Calculate duration in milliseconds from recorded start time"""
start_time = self.execution_start_times.get(key)
if start_time:
duration_ms = int(
(datetime.now(timezone.utc) - start_time).total_seconds() * 1000
)
del self.execution_start_times[key]
return duration_ms
return 0
def get_trace_id(self) -> Optional[str]:
"""Get current trace ID"""
if self.current_batch:
return self.current_batch.user_context.get("trace_id")
return None

View File

@@ -0,0 +1,414 @@
import os
import uuid
from typing import Dict, Any, Optional
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionStartedEvent,
LiteAgentExecutionStartedEvent,
LiteAgentExecutionCompletedEvent,
LiteAgentExecutionErrorEvent,
AgentExecutionErrorEvent,
)
from crewai.utilities.events.listeners.tracing.types import TraceEvent
from crewai.utilities.events.reasoning_events import (
AgentReasoningStartedEvent,
AgentReasoningCompletedEvent,
AgentReasoningFailedEvent,
)
from crewai.utilities.events.crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
)
from crewai.utilities.events.task_events import (
TaskCompletedEvent,
TaskFailedEvent,
TaskStartedEvent,
)
from crewai.utilities.events.tool_usage_events import (
ToolUsageErrorEvent,
ToolUsageFinishedEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
)
from crewai.utilities.events.flow_events import (
FlowCreatedEvent,
FlowStartedEvent,
FlowFinishedEvent,
MethodExecutionStartedEvent,
MethodExecutionFinishedEvent,
MethodExecutionFailedEvent,
FlowPlotEvent,
)
from crewai.utilities.events.llm_guardrail_events import (
LLMGuardrailStartedEvent,
LLMGuardrailCompletedEvent,
)
from crewai.utilities.serialization import to_serializable
from .trace_batch_manager import TraceBatchManager
from crewai.utilities.events.memory_events import (
MemoryQueryStartedEvent,
MemoryQueryCompletedEvent,
MemoryQueryFailedEvent,
MemorySaveStartedEvent,
MemorySaveCompletedEvent,
MemorySaveFailedEvent,
)
from .interfaces import TraceSender
from crewai.cli.authentication.token import get_auth_token
from crewai.cli.version import get_crewai_version
class TraceCollectionListener(BaseEventListener):
"""
Trace collection listener that orchestrates trace collection
"""
trace_enabled: bool = False
complex_events = ["task_started", "llm_call_started", "llm_call_completed"]
_instance = None
_initialized = False
def __new__(cls, batch_manager=None, trace_sender=None):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(
self,
batch_manager: Optional[TraceBatchManager] = None,
trace_sender: Optional[TraceSender] = None,
):
if self._initialized:
return
super().__init__()
self.batch_manager = batch_manager or TraceBatchManager()
self.trace_sender = trace_sender or TraceSender()
self.trace_enabled = self._check_trace_enabled()
self._initialized = True
def _check_trace_enabled(self) -> bool:
"""Check if tracing should be enabled"""
auth_token = get_auth_token()
if not auth_token:
return False
return os.getenv("CREWAI_TRACING_ENABLED", "false").lower() == "true" or bool(
os.getenv("CREWAI_USER_TOKEN")
)
def _get_user_context(self) -> Dict[str, str]:
"""Extract user context for tracing"""
return {
"user_id": os.getenv("CREWAI_USER_ID", "anonymous"),
"organization_id": os.getenv("CREWAI_ORG_ID", ""),
"session_id": str(uuid.uuid4()),
"trace_id": str(uuid.uuid4()),
}
def setup_listeners(self, crewai_event_bus):
"""Setup event listeners - delegates to specific handlers"""
if not self.trace_enabled:
return
self._register_flow_event_handlers(crewai_event_bus)
self._register_context_event_handlers(crewai_event_bus)
self._register_action_event_handlers(crewai_event_bus)
def _register_flow_event_handlers(self, event_bus):
"""Register handlers for flow events"""
@event_bus.on(FlowCreatedEvent)
def on_flow_created(source, event):
pass
@event_bus.on(FlowStartedEvent)
def on_flow_started(source, event):
if not self.batch_manager.is_batch_initialized():
self._initialize_flow_batch(source, event)
self._handle_trace_event("flow_started", source, event)
@event_bus.on(MethodExecutionStartedEvent)
def on_method_started(source, event):
self._handle_trace_event("method_execution_started", source, event)
@event_bus.on(MethodExecutionFinishedEvent)
def on_method_finished(source, event):
self._handle_trace_event("method_execution_finished", source, event)
@event_bus.on(MethodExecutionFailedEvent)
def on_method_failed(source, event):
self._handle_trace_event("method_execution_failed", source, event)
@event_bus.on(FlowFinishedEvent)
def on_flow_finished(source, event):
self._handle_trace_event("flow_finished", source, event)
self._send_batch()
@event_bus.on(FlowPlotEvent)
def on_flow_plot(source, event):
self._handle_action_event("flow_plot", source, event)
def _register_context_event_handlers(self, event_bus):
"""Register handlers for context events (start/end)"""
@event_bus.on(CrewKickoffStartedEvent)
def on_crew_started(source, event):
if not self.batch_manager.is_batch_initialized():
self._initialize_batch(source, event)
self._handle_trace_event("crew_kickoff_started", source, event)
@event_bus.on(CrewKickoffCompletedEvent)
def on_crew_completed(source, event):
self._handle_trace_event("crew_kickoff_completed", source, event)
self._send_batch()
@event_bus.on(CrewKickoffFailedEvent)
def on_crew_failed(source, event):
self._handle_trace_event("crew_kickoff_failed", source, event)
self._send_batch()
@event_bus.on(TaskStartedEvent)
def on_task_started(source, event):
self._handle_trace_event("task_started", source, event)
@event_bus.on(TaskCompletedEvent)
def on_task_completed(source, event):
self._handle_trace_event("task_completed", source, event)
@event_bus.on(TaskFailedEvent)
def on_task_failed(source, event):
self._handle_trace_event("task_failed", source, event)
@event_bus.on(AgentExecutionStartedEvent)
def on_agent_started(source, event):
self._handle_trace_event("agent_execution_started", source, event)
@event_bus.on(AgentExecutionCompletedEvent)
def on_agent_completed(source, event):
self._handle_trace_event("agent_execution_completed", source, event)
@event_bus.on(LiteAgentExecutionStartedEvent)
def on_lite_agent_started(source, event):
self._handle_trace_event("lite_agent_execution_started", source, event)
@event_bus.on(LiteAgentExecutionCompletedEvent)
def on_lite_agent_completed(source, event):
self._handle_trace_event("lite_agent_execution_completed", source, event)
@event_bus.on(LiteAgentExecutionErrorEvent)
def on_lite_agent_error(source, event):
self._handle_trace_event("lite_agent_execution_error", source, event)
@event_bus.on(AgentExecutionErrorEvent)
def on_agent_error(source, event):
self._handle_trace_event("agent_execution_error", source, event)
@event_bus.on(LLMGuardrailStartedEvent)
def on_guardrail_started(source, event):
self._handle_trace_event("llm_guardrail_started", source, event)
@event_bus.on(LLMGuardrailCompletedEvent)
def on_guardrail_completed(source, event):
self._handle_trace_event("llm_guardrail_completed", source, event)
def _register_action_event_handlers(self, event_bus):
"""Register handlers for action events (LLM calls, tool usage, memory)"""
@event_bus.on(LLMCallStartedEvent)
def on_llm_call_started(source, event):
self._handle_action_event("llm_call_started", source, event)
@event_bus.on(LLMCallCompletedEvent)
def on_llm_call_completed(source, event):
self._handle_action_event("llm_call_completed", source, event)
@event_bus.on(LLMCallFailedEvent)
def on_llm_call_failed(source, event):
self._handle_action_event("llm_call_failed", source, event)
@event_bus.on(ToolUsageStartedEvent)
def on_tool_started(source, event):
self._handle_action_event("tool_usage_started", source, event)
@event_bus.on(ToolUsageFinishedEvent)
def on_tool_finished(source, event):
self._handle_action_event("tool_usage_finished", source, event)
@event_bus.on(ToolUsageErrorEvent)
def on_tool_error(source, event):
self._handle_action_event("tool_usage_error", source, event)
@event_bus.on(MemoryQueryStartedEvent)
def on_memory_query_started(source, event):
self._handle_action_event("memory_query_started", source, event)
@event_bus.on(MemoryQueryCompletedEvent)
def on_memory_query_completed(source, event):
self._handle_action_event("memory_query_completed", source, event)
@event_bus.on(MemoryQueryFailedEvent)
def on_memory_query_failed(source, event):
self._handle_action_event("memory_query_failed", source, event)
@event_bus.on(MemorySaveStartedEvent)
def on_memory_save_started(source, event):
self._handle_action_event("memory_save_started", source, event)
@event_bus.on(MemorySaveCompletedEvent)
def on_memory_save_completed(source, event):
self._handle_action_event("memory_save_completed", source, event)
@event_bus.on(MemorySaveFailedEvent)
def on_memory_save_failed(source, event):
self._handle_action_event("memory_save_failed", source, event)
@event_bus.on(AgentReasoningStartedEvent)
def on_agent_reasoning_started(source, event):
self._handle_action_event("agent_reasoning_started", source, event)
@event_bus.on(AgentReasoningCompletedEvent)
def on_agent_reasoning_completed(source, event):
self._handle_action_event("agent_reasoning_completed", source, event)
@event_bus.on(AgentReasoningFailedEvent)
def on_agent_reasoning_failed(source, event):
self._handle_action_event("agent_reasoning_failed", source, event)
def _initialize_batch(self, source: Any, event: Any):
"""Initialize trace batch"""
user_context = self._get_user_context()
execution_metadata = {
"crew_name": getattr(event, "crew_name", "Unknown Crew"),
"execution_start": event.timestamp if hasattr(event, "timestamp") else None,
"crewai_version": get_crewai_version(),
}
self.batch_manager.initialize_batch(user_context, execution_metadata)
def _initialize_flow_batch(self, source: Any, event: Any):
"""Initialize trace batch for Flow execution"""
user_context = self._get_user_context()
execution_metadata = {
"flow_name": getattr(source, "__class__.__name__", "Unknown Flow"),
"execution_start": event.timestamp if hasattr(event, "timestamp") else None,
"crewai_version": get_crewai_version(),
"execution_type": "flow",
}
self.batch_manager.initialize_batch(user_context, execution_metadata)
def _handle_trace_event(self, event_type: str, source: Any, event: Any):
"""Generic handler for context end events"""
trace_event = self._create_trace_event(event_type, source, event)
self.batch_manager.add_event(trace_event)
def _handle_action_event(self, event_type: str, source: Any, event: Any):
"""Generic handler for action events (LLM calls, tool usage)"""
if not self.batch_manager.is_batch_initialized():
user_context = self._get_user_context()
execution_metadata = {
"crew_name": getattr(source, "name", "Unknown Crew"),
"crewai_version": get_crewai_version(),
}
self.batch_manager.initialize_batch(user_context, execution_metadata)
trace_event = self._create_trace_event(event_type, source, event)
self.batch_manager.add_event(trace_event)
def _send_batch(self):
"""Send finalized batch using the configured sender"""
batch = self.batch_manager.finalize_batch()
if batch:
success = self.trace_sender.send_batch(batch)
if not success:
print("⚠️ Failed to send trace batch")
def _create_trace_event(
self, event_type: str, source: Any, event: Any
) -> TraceEvent:
"""Create a trace event"""
trace_event = TraceEvent(
type=event_type,
)
trace_event.event_data = self._build_event_data(event_type, event, source)
return trace_event
def _build_event_data(
self, event_type: str, event: Any, source: Any
) -> Dict[str, Any]:
"""Build event data"""
if event_type not in self.complex_events:
return self._safe_serialize_to_dict(event)
elif event_type == "task_started":
return {
"task_description": event.task.description,
"task_name": event.task.name,
"context": event.context,
"agent": source.agent.role,
}
elif event_type == "llm_call_started":
return {
**self._safe_serialize_to_dict(event),
"messages": self._truncate_messages(event.messages),
}
elif event_type == "llm_call_completed":
return {
**self._safe_serialize_to_dict(event),
"messages": self._truncate_messages(event.messages),
}
else:
return {
"event_type": event_type,
"event": self._safe_serialize_to_dict(event),
"source": source,
}
# TODO: move to utils
def _safe_serialize_to_dict(
self, obj, exclude: set[str] | None = None
) -> Dict[str, Any]:
"""Safely serialize an object to a dictionary for event data."""
try:
serialized = to_serializable(obj, exclude)
if isinstance(serialized, dict):
return serialized
else:
return {"serialized_data": serialized}
except Exception as e:
return {"serialization_error": str(e), "object_type": type(obj).__name__}
# TODO: move to utils
def _truncate_messages(self, messages, max_content_length=200, max_messages=5):
"""Truncate message content and limit number of messages"""
if not messages or not isinstance(messages, list):
return messages
# Limit number of messages
limited_messages = messages[:max_messages]
# Truncate each message content
for msg in limited_messages:
if isinstance(msg, dict) and "content" in msg:
content = msg["content"]
if len(content) > max_content_length:
msg["content"] = content[:max_content_length] + "..."
return limited_messages

View File

@@ -0,0 +1,19 @@
from dataclasses import dataclass, field, asdict
from datetime import datetime, timezone
from typing import Dict, Any
import uuid
@dataclass
class TraceEvent:
"""Individual trace event payload"""
event_id: str = field(default_factory=lambda: str(uuid.uuid4()))
timestamp: str = field(
default_factory=lambda: datetime.now(timezone.utc).isoformat()
)
type: str = ""
event_data: Dict[str, Any] = field(default_factory=dict)
def to_dict(self) -> Dict[str, Any]:
return asdict(self)

View File

@@ -5,6 +5,7 @@ from pydantic import BaseModel
from crewai.utilities.events.base_events import BaseEvent
class LLMEventBase(BaseEvent):
task_name: Optional[str] = None
task_id: Optional[str] = None
@@ -32,6 +33,7 @@ class LLMEventBase(BaseEvent):
self.task_id = task.id
self.task_name = task.name
class LLMCallType(Enum):
"""Type of LLM call being made"""
@@ -48,6 +50,7 @@ class LLMCallStartedEvent(LLMEventBase):
"""
type: str = "llm_call_started"
model: Optional[str] = None
messages: Optional[Union[str, List[Dict[str, Any]]]] = None
tools: Optional[List[dict[str, Any]]] = None
callbacks: Optional[List[Any]] = None
@@ -61,6 +64,8 @@ class LLMCallCompletedEvent(LLMEventBase):
messages: str | list[dict[str, Any]] | None = None
response: Any
call_type: LLMCallType
model: Optional[str] = None
class LLMCallFailedEvent(LLMEventBase):
"""Event emitted when a LLM call fails"""

View File

@@ -0,0 +1,470 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '825'
content-type:
- application/json
cookie:
- __cf_bm=ePO5hy0kEoADCuKcboFy1iS1qckCE5KCpifQaXnlomM-1754508545-1.0.1.1-ieWfjcdIxQIXGfaMizvmgTvZPRFehqDXliegaOT7EO.kt7KSSFGmNDcC35_D9hOhE.fJ5K302uX0snQF3nLaapds2dqgGbNcsyFPOKNvAdI;
_cfuvid=NaXWifUGChHp6Ap1mvfMrNzmO4HdzddrqXkSR9T.hYo-1754508545647-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFLBbpwwEL3zFSOflwqykE25RZWiRuq9hzZCEzOAE+NxbbPbJtp/rwyb
hU1bqRck5s17fm9mXhMAoRpRgZA9BjlYnX7K6dq/jNkXaV9uyx/9vfx617Ed9mP+uRObyODHJ5Lh
jfVB8mA1BcVmhqUjDBRV811ZlNlNWVxPwMAN6UjrbEgLTgdlVHqVXRVptkvzmxO7ZyXJiwq+JQAA
r9M3+jQN/RQVZJu3ykDeY0eiOjcBCMc6VgR6r3xAE8RmASWbQGayfg+GDyDRQKf2BAhdtA1o/IEc
wHdzpwxquJ3+K+hJa4YDO92sBR21o8cYyoxarwA0hgPGoUxRHk7I8Wxec2cdP/p3VNEqo3xfO0LP
Jhr1ga2Y0GMC8DANabzILazjwYY68DNNz+XlbtYTy25W6PYEBg6oV/XdabSXenVDAZX2qzELibKn
ZqEuO8GxUbwCklXqP938TXtOrkz3P/ILICXZQE1tHTVKXiZe2hzF0/1X23nKk2Hhye2VpDoocnET
DbU46vmghP/lAw11q0xHzjo1X1Vr622BZYH0cStFckx+AwAA//8DAMHQtj5jAwAA
headers:
CF-RAY:
- 96b0f0f0ac9e7ad9-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 06 Aug 2025 19:29:07 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '653'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '667'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999830'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3f500b79ab1a400ea9e26d0f12e890bb
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '797'
content-type:
- application/json
cookie:
- __cf_bm=f59gEPi_nA3TTxtjbKaSQpvkTwezaAqOvqfxiGzRnVQ-1754508546-1.0.1.1-JrSaytxVIQSVE00I.vyGj7d4HJbbMV6R9fWPJbkDKu0Y8ueMRzTwTUnfz0YzP5nsZX5oxoE6WlmFxOuz0rRuq9YhZZsO_TbaFBOFk1jGK9U;
_cfuvid=3D66v3.J_RcVoYy9dlF.jHwq1zTIm842xynZxzSy1Wc-1754508546352-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '200.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFLBatwwEL37K6Y622V3Y8eJb6FQ2kIPoS0EmmAm8tirRNYISc52Cfvv
RfZm7bQp9GLwvHlP783McwIgVCMqEHKLQfZWZx/WdB42Nw9Xtux3dPMNr89/fPm+f7zct9dfRRoZ
fP9AMryw3kvuraag2EywdISBouq6LPJidVHk5Qj03JCOtM6GLOesV0Zlm9Umz1Zltr44sresJHlR
wc8EAOB5/EafpqFfooJV+lLpyXvsSFSnJgDhWMeKQO+VD2iCSGdQsglkRuufwfAOJBro1BMBQhdt
Axq/Iwdwaz4qgxquxv8KPpHWnMKOnW7eLSUdtYPHGMsMWi8ANIYDxrGMYe6OyOFkX3NnHd/7P6ii
VUb5be0IPZto1Qe2YkQPCcDdOKbhVXJhHfc21IEfaXxuXZSTnpi3s0SPYOCAelEvN+kbenVDAZX2
i0ELiXJLzUydt4JDo3gBJIvUf7t5S3tKrkz3P/IzICXZQE1tHTVKvk48tzmKx/uvttOUR8PCk3tS
kuqgyMVNNNTioKeTEn7vA/V1q0xHzjo13VVr67Mcixzp8kyK5JD8BgAA//8DAB06pnJlAwAA
headers:
CF-RAY:
- 96b0f0f54d6aeb2c-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 06 Aug 2025 19:29:08 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '809'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '823'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_806f7071fb664da48953f5b216b56d9a
status:
code: 200
message: OK
- request:
body: '{"trace_id": "eb9e0ee1-15ed-4044-b84b-f17e493a1e28", "execution_type":
"crew", "execution_context": {"crew_fingerprint": null, "crew_name": "crew",
"flow_name": "Unknown Flow", "crewai_version": "0.152.0", "privacy_level": "standard"},
"execution_metadata": {"expected_duration_estimate": 300, "agent_count": 0,
"task_count": 0, "flow_method_count": 0, "execution_started_at": "2025-08-06T19:30:52.210701+00:00"}}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '413'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.152.0
X-Crewai-Organization-Id:
- d3a3d10c-35db-423f-a7a4-c026030ba64d
X-Crewai-Version:
- 0.152.0
method: POST
uri: https://app.crewai.com/crewai_plus/api/v1/tracing/batches
response:
body:
string: "<!DOCTYPE html>\n<html>\n<head>\n <title>The page you were looking
for doesn't exist (404)</title>\n <meta name=\"viewport\" content=\"width=device-width,initial-scale=1\">\n
\ <style>\n .rails-default-error-page {\n background-color: #EFEFEF;\n
\ color: #2E2F30;\n text-align: center;\n font-family: arial, sans-serif;\n
\ margin: 0;\n }\n\n .rails-default-error-page div.dialog {\n width:
95%;\n max-width: 33em;\n margin: 4em auto 0;\n }\n\n .rails-default-error-page
div.dialog > div {\n border: 1px solid #CCC;\n border-right-color: #999;\n
\ border-left-color: #999;\n border-bottom-color: #BBB;\n border-top:
#B00100 solid 4px;\n border-top-left-radius: 9px;\n border-top-right-radius:
9px;\n background-color: white;\n padding: 7px 12% 0;\n box-shadow:
0 3px 8px rgba(50, 50, 50, 0.17);\n }\n\n .rails-default-error-page h1 {\n
\ font-size: 100%;\n color: #730E15;\n line-height: 1.5em;\n }\n\n
\ .rails-default-error-page div.dialog > p {\n margin: 0 0 1em;\n padding:
1em;\n background-color: #F7F7F7;\n border: 1px solid #CCC;\n border-right-color:
#999;\n border-left-color: #999;\n border-bottom-color: #999;\n border-bottom-left-radius:
4px;\n border-bottom-right-radius: 4px;\n border-top-color: #DADADA;\n
\ color: #666;\n box-shadow: 0 3px 8px rgba(50, 50, 50, 0.17);\n }\n
\ </style>\n</head>\n\n<body class=\"rails-default-error-page\">\n <!-- This
file lives in public/404.html -->\n <div class=\"dialog\">\n <div>\n <h1>The
page you were looking for doesn't exist.</h1>\n <p>You may have mistyped
the address or the page may have moved.</p>\n </div>\n <p>If you are
the application owner check the logs for more information.</p>\n </div>\n</body>\n</html>\n"
headers:
Connection:
- keep-alive
Content-Length:
- '1722'
Content-Type:
- text/html; charset=UTF-8
Date:
- Wed, 06 Aug 2025 19:30:52 GMT
strict-transport-security:
- max-age=63072000; includeSubDomains
x-request-id:
- bec0cf39-af9c-4955-b600-607187a7b10b
x-runtime:
- '0.005352'
status:
code: 404
message: Not Found
- request:
body: '{"version": "0.152.0", "batch_id": "eb9e0ee1-15ed-4044-b84b-f17e493a1e28",
"user_context": {"user_id": "anonymous", "organization_id": "", "session_id":
"e7e7a716-e64b-490b-96db-5c5367042114", "trace_id": "54e95e1f-cd41-4ece-9e5e-21984d635e6a"},
"execution_metadata": {"crew_name": "crew", "execution_start": "2025-08-06T19:30:52.209750+00:00",
"crewai_version": "0.152.0"}, "events": [{"event_id": "98b2a833-63fc-457c-a2e0-6ce228a8214c",
"timestamp": "2025-08-06T19:30:52.328066+00:00", "type": "crew_kickoff_started",
"event_data": {"timestamp": "2025-08-06T19:30:52.209750+00:00", "type": "crew_kickoff_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"crew_name": "crew", "crew": null, "inputs": null}}, {"event_id": "4abf563c-d35f-4a09-867d-75c1c54b3fed",
"timestamp": "2025-08-06T19:30:52.328113+00:00", "type": "crew_kickoff_started",
"event_data": {"timestamp": "2025-08-06T19:30:52.209750+00:00", "type": "crew_kickoff_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"crew_name": "crew", "crew": null, "inputs": null}}, {"event_id": "60bdc932-6b56-4f1d-bcc2-5b3b57c8dc94",
"timestamp": "2025-08-06T19:30:52.330079+00:00", "type": "task_started", "event_data":
{"task_description": "Say hello to the world", "task_name": null, "context":
"", "agent": "Test Agent"}}, {"event_id": "97761b9f-d132-47e7-8857-5fdda8c80b65",
"timestamp": "2025-08-06T19:30:52.330089+00:00", "type": "task_started", "event_data":
{"task_description": "Say hello to the world", "task_name": null, "context":
"", "agent": "Test Agent"}}, {"event_id": "cdaa47c1-448f-476e-9761-14a25f26c481",
"timestamp": "2025-08-06T19:30:52.330477+00:00", "type": "agent_execution_started",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionStartedEvent"}}, {"event_id": "7aa43738-3903-44cf-8416-d47542469537",
"timestamp": "2025-08-06T19:30:52.330612+00:00", "type": "agent_execution_started",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionStartedEvent"}}, {"event_id": "6eb42795-be95-4f1c-b70f-385c59483e43",
"timestamp": "2025-08-06T19:30:52.330751+00:00", "type": "llm_call_started",
"event_data": {"timestamp": "2025-08-06T19:30:52.330725+00:00", "type": "llm_call_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "1bfe4b49-ba6a-464d-9b6a-ca2eb8e965d8", "agent_id":
"5d6dbe70-71fc-42e2-ba0d-61b460542dad", "agent_role": "Test Agent", "model":
"gpt-4o-mini", "messages": [{"role": "system", "content": "You are Test Agent.
Test backstory\nYour personal goal is: Test goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\n..."}, {"role": "user", "content": "\nCurrent Task:
Say hello to the world\n\nThis is the expected criteria for your final answer:
hello world\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is ..."}], "tools": null, "callbacks": ["<crewai.utilities.token_counter_callback.TokenCalcHandler
object at 0x11bd10a10>"], "available_functions": null}}, {"event_id": "679e3211-ef91-45c0-9d4a-e5118e653dbd",
"timestamp": "2025-08-06T19:30:52.330798+00:00", "type": "llm_call_started",
"event_data": {"timestamp": "2025-08-06T19:30:52.330725+00:00", "type": "llm_call_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "1bfe4b49-ba6a-464d-9b6a-ca2eb8e965d8", "agent_id":
"5d6dbe70-71fc-42e2-ba0d-61b460542dad", "agent_role": "Test Agent", "model":
"gpt-4o-mini", "messages": [{"role": "system", "content": "You are Test Agent.
Test backstory\nYour personal goal is: Test goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\n..."}, {"role": "user", "content": "\nCurrent Task:
Say hello to the world\n\nThis is the expected criteria for your final answer:
hello world\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is ..."}], "tools": null, "callbacks": ["<crewai.utilities.token_counter_callback.TokenCalcHandler
object at 0x11bd10a10>"], "available_functions": null}}, {"event_id": "911c67ea-125b-4adf-87a5-4a9265575f93",
"timestamp": "2025-08-06T19:30:52.335757+00:00", "type": "llm_call_completed",
"event_data": {"timestamp": "2025-08-06T19:30:52.335728+00:00", "type": "llm_call_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "1bfe4b49-ba6a-464d-9b6a-ca2eb8e965d8", "agent_id":
"5d6dbe70-71fc-42e2-ba0d-61b460542dad", "agent_role": "Test Agent", "messages":
[{"role": "system", "content": "You are Test Agent. Test backstory\nYour personal
goal is: Test goal\nTo give my best complete final answer to the task respond
using the exact following format:\n\nThought: I now can give a great answer\n..."},
{"role": "user", "content": "\nCurrent Task: Say hello to the world\n\nThis
is the expected criteria for your final answer: hello world\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is ..."}], "response": "I now can give a great answer \nFinal Answer: hello
world", "call_type": "<LLMCallType.LLM_CALL: ''llm_call''>", "response_cost":
3.255e-05, "model": "gpt-4o-mini"}}, {"event_id": "1c93586f-82b9-4999-adda-78c8010b59f6",
"timestamp": "2025-08-06T19:30:52.335800+00:00", "type": "llm_call_completed",
"event_data": {"timestamp": "2025-08-06T19:30:52.335728+00:00", "type": "llm_call_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "1bfe4b49-ba6a-464d-9b6a-ca2eb8e965d8", "agent_id":
"5d6dbe70-71fc-42e2-ba0d-61b460542dad", "agent_role": "Test Agent", "messages":
[{"role": "system", "content": "You are Test Agent. Test backstory\nYour personal
goal is: Test goal\nTo give my best complete final answer to the task respond
using the exact following format:\n\nThought: I now can give a great answer\n..."},
{"role": "user", "content": "\nCurrent Task: Say hello to the world\n\nThis
is the expected criteria for your final answer: hello world\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is ..."}], "response": "I now can give a great answer \nFinal Answer: hello
world", "call_type": "<LLMCallType.LLM_CALL: ''llm_call''>", "response_cost":
3.255e-05, "model": "gpt-4o-mini"}}, {"event_id": "eb9d53af-ce39-4241-ab93-e40545a1ee78",
"timestamp": "2025-08-06T19:30:52.335904+00:00", "type": "agent_execution_completed",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionCompletedEvent"}}, {"event_id": "dc71f5f8-5762-4e44-ac60-aa20b033c9f9",
"timestamp": "2025-08-06T19:30:52.335989+00:00", "type": "agent_execution_completed",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionCompletedEvent"}}, {"event_id": "84da8fb8-9247-4718-bc85-a69033c9261f",
"timestamp": "2025-08-06T19:30:52.336082+00:00", "type": "task_completed", "event_data":
{"serialization_error": "Circular reference detected (id repeated)", "object_type":
"TaskCompletedEvent"}}, {"event_id": "c1a23877-2b87-40be-98a1-a3b2630c8657",
"timestamp": "2025-08-06T19:30:52.336107+00:00", "type": "task_completed", "event_data":
{"serialization_error": "Circular reference detected (id repeated)", "object_type":
"TaskCompletedEvent"}}, {"event_id": "c77587d7-68d6-4600-b98a-74fe58af41fc",
"timestamp": "2025-08-06T19:30:52.337164+00:00", "type": "crew_kickoff_completed",
"event_data": {"timestamp": "2025-08-06T19:30:52.337145+00:00", "type": "crew_kickoff_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"crew_name": "crew", "crew": null, "output": {"description": "Say hello to the
world", "name": null, "expected_output": "hello world", "summary": "Say hello
to the world...", "raw": "hello world", "pydantic": null, "json_dict": null,
"agent": "Test Agent", "output_format": "raw"}, "total_tokens": 170}}]}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '8300'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.152.0
X-Crewai-Organization-Id:
- d3a3d10c-35db-423f-a7a4-c026030ba64d
X-Crewai-Version:
- 0.152.0
method: POST
uri: https://app.crewai.com/crewai_plus/api/v1/tracing
response:
body:
string: "<!DOCTYPE html>\n<html>\n<head>\n <title>The page you were looking
for doesn't exist (404)</title>\n <meta name=\"viewport\" content=\"width=device-width,initial-scale=1\">\n
\ <style>\n .rails-default-error-page {\n background-color: #EFEFEF;\n
\ color: #2E2F30;\n text-align: center;\n font-family: arial, sans-serif;\n
\ margin: 0;\n }\n\n .rails-default-error-page div.dialog {\n width:
95%;\n max-width: 33em;\n margin: 4em auto 0;\n }\n\n .rails-default-error-page
div.dialog > div {\n border: 1px solid #CCC;\n border-right-color: #999;\n
\ border-left-color: #999;\n border-bottom-color: #BBB;\n border-top:
#B00100 solid 4px;\n border-top-left-radius: 9px;\n border-top-right-radius:
9px;\n background-color: white;\n padding: 7px 12% 0;\n box-shadow:
0 3px 8px rgba(50, 50, 50, 0.17);\n }\n\n .rails-default-error-page h1 {\n
\ font-size: 100%;\n color: #730E15;\n line-height: 1.5em;\n }\n\n
\ .rails-default-error-page div.dialog > p {\n margin: 0 0 1em;\n padding:
1em;\n background-color: #F7F7F7;\n border: 1px solid #CCC;\n border-right-color:
#999;\n border-left-color: #999;\n border-bottom-color: #999;\n border-bottom-left-radius:
4px;\n border-bottom-right-radius: 4px;\n border-top-color: #DADADA;\n
\ color: #666;\n box-shadow: 0 3px 8px rgba(50, 50, 50, 0.17);\n }\n
\ </style>\n</head>\n\n<body class=\"rails-default-error-page\">\n <!-- This
file lives in public/404.html -->\n <div class=\"dialog\">\n <div>\n <h1>The
page you were looking for doesn't exist.</h1>\n <p>You may have mistyped
the address or the page may have moved.</p>\n </div>\n <p>If you are
the application owner check the logs for more information.</p>\n </div>\n</body>\n</html>\n"
headers:
Connection:
- keep-alive
Content-Length:
- '1722'
Content-Type:
- text/html; charset=UTF-8
Date:
- Wed, 06 Aug 2025 19:30:52 GMT
strict-transport-security:
- max-age=63072000; includeSubDomains
x-request-id:
- 78674bcb-6c8a-4eaf-8577-5cb27cac4089
x-runtime:
- '0.006009'
status:
code: 404
message: Not Found
version: 1

View File

@@ -0,0 +1,470 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '825'
content-type:
- application/json
cookie:
- __cf_bm=ePO5hy0kEoADCuKcboFy1iS1qckCE5KCpifQaXnlomM-1754508545-1.0.1.1-ieWfjcdIxQIXGfaMizvmgTvZPRFehqDXliegaOT7EO.kt7KSSFGmNDcC35_D9hOhE.fJ5K302uX0snQF3nLaapds2dqgGbNcsyFPOKNvAdI;
_cfuvid=NaXWifUGChHp6Ap1mvfMrNzmO4HdzddrqXkSR9T.hYo-1754508545647-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFJNa9wwEL37Vww6x8Wbtbu7voXQQC+lh0Jb2mAm0thWI0tCkuOWsP+9
SN6svf2AXAyeN+/pvZl5zgCYFKwGxnsMfLAqv93Q22mP+O7z9OlwUIW4LT7S+LX68nj3YWJXkWEe
fhAPL6w33AxWUZBGzzB3hIGi6mZXlVWxr6oiAYMRpCKtsyEvTT5ILfPr4rrMi12+2Z/YvZGcPKvh
WwYA8Jy+0acW9JPVkLRSZSDvsSNWn5sAmDMqVhh6L31AHdjVAnKjA+lk/T1oMwFHDZ18IkDoom1A
7SdyAN/1ndSo4Cb919CTUgYm45RYCzpqR48xlB6VWgGotQkYh5Ki3J+Q49m8Mp115sH/QWWt1NL3
jSP0RkejPhjLEnrMAO7TkMaL3Mw6M9jQBPNI6blNtZv12LKbFbo9gcEEVKv67jTaS71GUECp/GrM
jCPvSSzUZSc4CmlWQLZK/bebf2nPyaXuXiO/AJyTDSQa60hIfpl4aXMUT/d/becpJ8PMk3uSnJog
ycVNCGpxVPNBMf/LBxqaVuqOnHVyvqrWNtsSqxLpsOUsO2a/AQAA//8DAD59q5pjAwAA
headers:
CF-RAY:
- 96b0f1059ae17ad9-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 06 Aug 2025 19:29:10 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '521'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '537'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_c94c2a416aee4c93bae1f801c8ae3e72
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '797'
content-type:
- application/json
cookie:
- __cf_bm=f59gEPi_nA3TTxtjbKaSQpvkTwezaAqOvqfxiGzRnVQ-1754508546-1.0.1.1-JrSaytxVIQSVE00I.vyGj7d4HJbbMV6R9fWPJbkDKu0Y8ueMRzTwTUnfz0YzP5nsZX5oxoE6WlmFxOuz0rRuq9YhZZsO_TbaFBOFk1jGK9U;
_cfuvid=3D66v3.J_RcVoYy9dlF.jHwq1zTIm842xynZxzSy1Wc-1754508546352-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '200.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFJNa9wwEL37Vww6x2U/7GzqW2j6BYVSaE5tMBN5bKuVNYok7zaE/e9F
2u3a2ybQi8Hz5j29NzNPGYBQjahAyB6DHKzO3yzpcnf74f3nh6+rx/bT9saa2+u343D55eGmFBeR
wfc/SIY/rFeSB6spKDYHWDrCQFF1uSmLcnFVlosEDNyQjrTOhrzgfFBG5avFqsgXm3x5dWT3rCR5
UcG3DADgKX2jT9PQL1FB0kqVgbzHjkR1agIQjnWsCPRe+YAmiIsJlGwCmWT9IxjegUQDndoSIHTR
NqDxO3IA3807ZVDDdfqvoCetGXbsdDMXdNSOHmMoM2o9A9AYDhiHkqLcHZH9ybzmzjq+939RRauM
8n3tCD2baNQHtiKh+wzgLg1pPMstrOPBhjrwT0rPLcvNQU9Mu5mh6yMYOKCe1TfH0Z7r1Q0FVNrP
xiwkyp6aiTrtBMdG8QzIZqn/dfOc9iG5Mt3/yE+AlGQDNbV11Ch5nnhqcxRP96W205STYeHJbZWk
OihycRMNtTjqw0EJ/+gDDXWrTEfOOnW4qtbW6wLLAun1Wopsn/0GAAD//wMASJr3q2MDAAA=
headers:
CF-RAY:
- 96b0f109ae7aeb2c-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 06 Aug 2025 19:29:11 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '499'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '511'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999830'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_dece4be9f37c4d64b324ab36d1ed9cf4
status:
code: 200
message: OK
- request:
body: '{"trace_id": "ff5ac8a9-dec2-4b73-8928-3dd06d12051f", "execution_type":
"crew", "execution_context": {"crew_fingerprint": null, "crew_name": "crew",
"flow_name": "Unknown Flow", "crewai_version": "0.152.0", "privacy_level": "standard"},
"execution_metadata": {"expected_duration_estimate": 300, "agent_count": 0,
"task_count": 0, "flow_method_count": 0, "execution_started_at": "2025-08-06T19:30:51.727534+00:00"}}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '413'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.152.0
X-Crewai-Organization-Id:
- d3a3d10c-35db-423f-a7a4-c026030ba64d
X-Crewai-Version:
- 0.152.0
method: POST
uri: https://app.crewai.com/crewai_plus/api/v1/tracing/batches
response:
body:
string: "<!DOCTYPE html>\n<html>\n<head>\n <title>The page you were looking
for doesn't exist (404)</title>\n <meta name=\"viewport\" content=\"width=device-width,initial-scale=1\">\n
\ <style>\n .rails-default-error-page {\n background-color: #EFEFEF;\n
\ color: #2E2F30;\n text-align: center;\n font-family: arial, sans-serif;\n
\ margin: 0;\n }\n\n .rails-default-error-page div.dialog {\n width:
95%;\n max-width: 33em;\n margin: 4em auto 0;\n }\n\n .rails-default-error-page
div.dialog > div {\n border: 1px solid #CCC;\n border-right-color: #999;\n
\ border-left-color: #999;\n border-bottom-color: #BBB;\n border-top:
#B00100 solid 4px;\n border-top-left-radius: 9px;\n border-top-right-radius:
9px;\n background-color: white;\n padding: 7px 12% 0;\n box-shadow:
0 3px 8px rgba(50, 50, 50, 0.17);\n }\n\n .rails-default-error-page h1 {\n
\ font-size: 100%;\n color: #730E15;\n line-height: 1.5em;\n }\n\n
\ .rails-default-error-page div.dialog > p {\n margin: 0 0 1em;\n padding:
1em;\n background-color: #F7F7F7;\n border: 1px solid #CCC;\n border-right-color:
#999;\n border-left-color: #999;\n border-bottom-color: #999;\n border-bottom-left-radius:
4px;\n border-bottom-right-radius: 4px;\n border-top-color: #DADADA;\n
\ color: #666;\n box-shadow: 0 3px 8px rgba(50, 50, 50, 0.17);\n }\n
\ </style>\n</head>\n\n<body class=\"rails-default-error-page\">\n <!-- This
file lives in public/404.html -->\n <div class=\"dialog\">\n <div>\n <h1>The
page you were looking for doesn't exist.</h1>\n <p>You may have mistyped
the address or the page may have moved.</p>\n </div>\n <p>If you are
the application owner check the logs for more information.</p>\n </div>\n</body>\n</html>\n"
headers:
Connection:
- keep-alive
Content-Length:
- '1722'
Content-Type:
- text/html; charset=UTF-8
Date:
- Wed, 06 Aug 2025 19:30:51 GMT
strict-transport-security:
- max-age=63072000; includeSubDomains
x-request-id:
- 0b6a5ff5-789e-4c0d-a10b-316fecc0e905
x-runtime:
- '0.005528'
status:
code: 404
message: Not Found
- request:
body: '{"version": "0.152.0", "batch_id": "ff5ac8a9-dec2-4b73-8928-3dd06d12051f",
"user_context": {"user_id": "anonymous", "organization_id": "", "session_id":
"aabc00e7-d423-4385-8b83-0468c03ae47b", "trace_id": "0a0586da-135c-4080-a352-dbe47bb2ac86"},
"execution_metadata": {"crew_name": "crew", "execution_start": "2025-08-06T19:30:51.726805+00:00",
"crewai_version": "0.152.0"}, "events": [{"event_id": "211eb90d-fb76-4ee5-bee7-62cc2f1d9aa8",
"timestamp": "2025-08-06T19:30:51.842887+00:00", "type": "crew_kickoff_started",
"event_data": {"timestamp": "2025-08-06T19:30:51.726805+00:00", "type": "crew_kickoff_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"crew_name": "crew", "crew": null, "inputs": null}}, {"event_id": "713e4dbd-887f-4481-a6c8-554b637848e2",
"timestamp": "2025-08-06T19:30:51.842982+00:00", "type": "crew_kickoff_started",
"event_data": {"timestamp": "2025-08-06T19:30:51.726805+00:00", "type": "crew_kickoff_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"crew_name": "crew", "crew": null, "inputs": null}}, {"event_id": "b920108c-c6fe-40d7-baa3-29c23d76a8e1",
"timestamp": "2025-08-06T19:30:51.844489+00:00", "type": "task_started", "event_data":
{"task_description": "Say hello to the world", "task_name": null, "context":
"", "agent": "Test Agent"}}, {"event_id": "96180117-d060-49ab-8327-712f230653f2",
"timestamp": "2025-08-06T19:30:51.844512+00:00", "type": "task_started", "event_data":
{"task_description": "Say hello to the world", "task_name": null, "context":
"", "agent": "Test Agent"}}, {"event_id": "82baa39d-d1ae-44f8-8f35-40646fdec793",
"timestamp": "2025-08-06T19:30:51.845195+00:00", "type": "agent_execution_started",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionStartedEvent"}}, {"event_id": "c34d2e12-6671-4593-a45d-8742704f6ace",
"timestamp": "2025-08-06T19:30:51.845868+00:00", "type": "agent_execution_started",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionStartedEvent"}}, {"event_id": "87d12818-f0b4-46d0-8ecc-e46afaf8eddb",
"timestamp": "2025-08-06T19:30:51.846100+00:00", "type": "llm_call_started",
"event_data": {"timestamp": "2025-08-06T19:30:51.846006+00:00", "type": "llm_call_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "7f026c34-8c77-4710-8ecb-9d4c830b9eb4", "agent_id":
"bd02dc4e-982e-481c-9358-2b4a7ac73831", "agent_role": "Test Agent", "model":
"gpt-4o-mini", "messages": [{"role": "system", "content": "You are Test Agent.
Test backstory\nYour personal goal is: Test goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\n..."}, {"role": "user", "content": "\nCurrent Task:
Say hello to the world\n\nThis is the expected criteria for your final answer:
hello world\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is ..."}], "tools": null, "callbacks": ["<crewai.utilities.token_counter_callback.TokenCalcHandler
object at 0x11bd13470>"], "available_functions": null}}, {"event_id": "bbfd4480-87aa-4a56-b988-2dcc9e142c20",
"timestamp": "2025-08-06T19:30:51.846155+00:00", "type": "llm_call_started",
"event_data": {"timestamp": "2025-08-06T19:30:51.846006+00:00", "type": "llm_call_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "7f026c34-8c77-4710-8ecb-9d4c830b9eb4", "agent_id":
"bd02dc4e-982e-481c-9358-2b4a7ac73831", "agent_role": "Test Agent", "model":
"gpt-4o-mini", "messages": [{"role": "system", "content": "You are Test Agent.
Test backstory\nYour personal goal is: Test goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\n..."}, {"role": "user", "content": "\nCurrent Task:
Say hello to the world\n\nThis is the expected criteria for your final answer:
hello world\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is ..."}], "tools": null, "callbacks": ["<crewai.utilities.token_counter_callback.TokenCalcHandler
object at 0x11bd13470>"], "available_functions": null}}, {"event_id": "25a17ec7-b2ee-4eeb-bdf5-27efffed961c",
"timestamp": "2025-08-06T19:30:52.018207+00:00", "type": "llm_call_completed",
"event_data": {"timestamp": "2025-08-06T19:30:52.017914+00:00", "type": "llm_call_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "7f026c34-8c77-4710-8ecb-9d4c830b9eb4", "agent_id":
"bd02dc4e-982e-481c-9358-2b4a7ac73831", "agent_role": "Test Agent", "messages":
[{"role": "system", "content": "You are Test Agent. Test backstory\nYour personal
goal is: Test goal\nTo give my best complete final answer to the task respond
using the exact following format:\n\nThought: I now can give a great answer\n..."},
{"role": "user", "content": "\nCurrent Task: Say hello to the world\n\nThis
is the expected criteria for your final answer: hello world\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is ..."}], "response": "I now can give a great answer \nFinal Answer: hello
world", "call_type": "<LLMCallType.LLM_CALL: ''llm_call''>", "response_cost":
3.135e-05, "model": "gpt-4o-mini"}}, {"event_id": "0ccb9b70-c5ad-4f7f-b3ee-ecfd62c2d7cc",
"timestamp": "2025-08-06T19:30:52.018273+00:00", "type": "llm_call_completed",
"event_data": {"timestamp": "2025-08-06T19:30:52.017914+00:00", "type": "llm_call_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "7f026c34-8c77-4710-8ecb-9d4c830b9eb4", "agent_id":
"bd02dc4e-982e-481c-9358-2b4a7ac73831", "agent_role": "Test Agent", "messages":
[{"role": "system", "content": "You are Test Agent. Test backstory\nYour personal
goal is: Test goal\nTo give my best complete final answer to the task respond
using the exact following format:\n\nThought: I now can give a great answer\n..."},
{"role": "user", "content": "\nCurrent Task: Say hello to the world\n\nThis
is the expected criteria for your final answer: hello world\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is ..."}], "response": "I now can give a great answer \nFinal Answer: hello
world", "call_type": "<LLMCallType.LLM_CALL: ''llm_call''>", "response_cost":
3.135e-05, "model": "gpt-4o-mini"}}, {"event_id": "d7f4440b-8f9f-4e29-a946-6d10f4bdfc3c",
"timestamp": "2025-08-06T19:30:52.018559+00:00", "type": "agent_execution_completed",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionCompletedEvent"}}, {"event_id": "072195c3-54df-4cba-9068-b9a25bbb8d7c",
"timestamp": "2025-08-06T19:30:52.018669+00:00", "type": "agent_execution_completed",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionCompletedEvent"}}, {"event_id": "0b6f9e85-32c9-4c62-9049-6890953e2143",
"timestamp": "2025-08-06T19:30:52.018838+00:00", "type": "task_completed", "event_data":
{"serialization_error": "Circular reference detected (id repeated)", "object_type":
"TaskCompletedEvent"}}, {"event_id": "5ff20fcb-ec10-40ac-bb90-9568aa4eb1de",
"timestamp": "2025-08-06T19:30:52.018867+00:00", "type": "task_completed", "event_data":
{"serialization_error": "Circular reference detected (id repeated)", "object_type":
"TaskCompletedEvent"}}, {"event_id": "c5a36300-3911-4d75-a660-d133a7a4be94",
"timestamp": "2025-08-06T19:30:52.020135+00:00", "type": "crew_kickoff_completed",
"event_data": {"timestamp": "2025-08-06T19:30:52.020115+00:00", "type": "crew_kickoff_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"crew_name": "crew", "crew": null, "output": {"description": "Say hello to the
world", "name": null, "expected_output": "hello world", "summary": "Say hello
to the world...", "raw": "hello world", "pydantic": null, "json_dict": null,
"agent": "Test Agent", "output_format": "raw"}, "total_tokens": 170}}]}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '8300'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.152.0
X-Crewai-Organization-Id:
- d3a3d10c-35db-423f-a7a4-c026030ba64d
X-Crewai-Version:
- 0.152.0
method: POST
uri: https://app.crewai.com/crewai_plus/api/v1/tracing
response:
body:
string: "<!DOCTYPE html>\n<html>\n<head>\n <title>The page you were looking
for doesn't exist (404)</title>\n <meta name=\"viewport\" content=\"width=device-width,initial-scale=1\">\n
\ <style>\n .rails-default-error-page {\n background-color: #EFEFEF;\n
\ color: #2E2F30;\n text-align: center;\n font-family: arial, sans-serif;\n
\ margin: 0;\n }\n\n .rails-default-error-page div.dialog {\n width:
95%;\n max-width: 33em;\n margin: 4em auto 0;\n }\n\n .rails-default-error-page
div.dialog > div {\n border: 1px solid #CCC;\n border-right-color: #999;\n
\ border-left-color: #999;\n border-bottom-color: #BBB;\n border-top:
#B00100 solid 4px;\n border-top-left-radius: 9px;\n border-top-right-radius:
9px;\n background-color: white;\n padding: 7px 12% 0;\n box-shadow:
0 3px 8px rgba(50, 50, 50, 0.17);\n }\n\n .rails-default-error-page h1 {\n
\ font-size: 100%;\n color: #730E15;\n line-height: 1.5em;\n }\n\n
\ .rails-default-error-page div.dialog > p {\n margin: 0 0 1em;\n padding:
1em;\n background-color: #F7F7F7;\n border: 1px solid #CCC;\n border-right-color:
#999;\n border-left-color: #999;\n border-bottom-color: #999;\n border-bottom-left-radius:
4px;\n border-bottom-right-radius: 4px;\n border-top-color: #DADADA;\n
\ color: #666;\n box-shadow: 0 3px 8px rgba(50, 50, 50, 0.17);\n }\n
\ </style>\n</head>\n\n<body class=\"rails-default-error-page\">\n <!-- This
file lives in public/404.html -->\n <div class=\"dialog\">\n <div>\n <h1>The
page you were looking for doesn't exist.</h1>\n <p>You may have mistyped
the address or the page may have moved.</p>\n </div>\n <p>If you are
the application owner check the logs for more information.</p>\n </div>\n</body>\n</html>\n"
headers:
Connection:
- keep-alive
Content-Length:
- '1722'
Content-Type:
- text/html; charset=UTF-8
Date:
- Wed, 06 Aug 2025 19:30:52 GMT
strict-transport-security:
- max-age=63072000; includeSubDomains
x-request-id:
- 9edcdee4-f720-431e-9d6d-2dbc1a7bb8fe
x-runtime:
- '0.005504'
status:
code: 404
message: Not Found
version: 1

View File

@@ -0,0 +1,450 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '825'
content-type:
- application/json
cookie:
- __cf_bm=ePO5hy0kEoADCuKcboFy1iS1qckCE5KCpifQaXnlomM-1754508545-1.0.1.1-ieWfjcdIxQIXGfaMizvmgTvZPRFehqDXliegaOT7EO.kt7KSSFGmNDcC35_D9hOhE.fJ5K302uX0snQF3nLaapds2dqgGbNcsyFPOKNvAdI;
_cfuvid=NaXWifUGChHp6Ap1mvfMrNzmO4HdzddrqXkSR9T.hYo-1754508545647-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFLBbpwwEL3zFSOfl2oJ0N1ySypV6aG3ntpGaGIGcGI8lm2yjaL998qw
Wdi2kXJBYt685/dm5iUBEKoRFQjZY5CD1ennjD6ON/5Hrr4dysxu8/72++NNd/twXT4PYhMZfP9A
MryyPkgerKag2MywdISBomq2K4tyuy+L/QQM3JCOtM6GtOB0UEalV9urIt3u0mx/YvesJHlRwc8E
AOBl+kafpqHfooLt5rUykPfYkajOTQDCsY4Vgd4rH9AEsVlAySaQmax/BcMHkGigU08ECF20DWj8
gRzAL/NFGdRwPf1X0JPWDAd2ulkLOmpHjzGUGbVeAWgMB4xDmaLcnZDj2bzmzjq+939RRauM8n3t
CD2baNQHtmJCjwnA3TSk8SK3sI4HG+rAjzQ9l5W7WU8su1mh+QkMHFCv6rvTaC/16oYCKu1XYxYS
ZU/NQl12gmOjeAUkq9T/uvmf9pxcme498gsgJdlATW0dNUpeJl7aHMXTfavtPOXJsPDknpSkOihy
cRMNtTjq+aCEf/aBhrpVpiNnnZqvqrV1XmBZIH3KpUiOyR8AAAD//wMAErrW9WMDAAA=
headers:
CF-RAY:
- 96b0f0fb5c067ad9-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 06 Aug 2025 19:29:09 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '628'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '657'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_a0daca00035c423daf0e9df208720180
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '797'
content-type:
- application/json
cookie:
- __cf_bm=f59gEPi_nA3TTxtjbKaSQpvkTwezaAqOvqfxiGzRnVQ-1754508546-1.0.1.1-JrSaytxVIQSVE00I.vyGj7d4HJbbMV6R9fWPJbkDKu0Y8ueMRzTwTUnfz0YzP5nsZX5oxoE6WlmFxOuz0rRuq9YhZZsO_TbaFBOFk1jGK9U;
_cfuvid=3D66v3.J_RcVoYy9dlF.jHwq1zTIm842xynZxzSy1Wc-1754508546352-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '200.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFLLjtswDLz7Kwid4yLZ2HXiW7FA0R567KXtwmAk2tZWlgSJTlos8u+F
nGzs9AH0YsAczmiG5EsGILQSNQjZI8vBm/xxQ2+Pnz89n8Lj7gvvP3BArNb94cClqsQqMdzhmSS/
st5IN3hDrJ29wDIQMiXVTVUW5XpXFvsJGJwik2id57xw+aCtzh/WD0W+rvLN7srunZYURQ1fMwCA
l+mbfFpFP0QN69VrZaAYsSNR35oARHAmVQTGqCOjZbGaQeksk52sfwTrTiDRQqePBAhdsg1o44kC
wDf7Xls08G76r6EnYxycXDBqKRioHSOmUHY0ZgGgtY4xDWWK8nRFzjfzxnU+uEP8jSpabXXsm0AY
nU1GIzsvJvScATxNQxrvcgsf3OC5Yfedpuc2ZXXRE/NuFuj2CrJjNIt6dR3tvV6jiFGbuBizkCh7
UjN13gmOSrsFkC1S/+nmb9qX5Np2/yM/A1KSZ1KND6S0vE88twVKp/uvttuUJ8MiUjhqSQ1rCmkT
iloczeWgRPwZmYam1baj4IO+XFXrm22BZYG030qRnbNfAAAA//8DAOX6h6tjAwAA
headers:
CF-RAY:
- 96b0f101793aeb2c-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 06 Aug 2025 19:29:09 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '541'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '557'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_df70f95325b14817a692f23cf9cca880
status:
code: 200
message: OK
- request:
body: '{"trace_id": "2487456d-e03a-4eae-92a1-e9779e8f06a1", "execution_type":
"crew", "execution_context": {"crew_fingerprint": null, "crew_name": "Unknown
Crew", "flow_name": "Unknown Flow", "crewai_version": "0.152.0", "privacy_level":
"standard"}, "execution_metadata": {"expected_duration_estimate": 300, "agent_count":
0, "task_count": 0, "flow_method_count": 0, "execution_started_at": "2025-08-06T19:30:52.475039+00:00"}}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '421'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.152.0
X-Crewai-Organization-Id:
- d3a3d10c-35db-423f-a7a4-c026030ba64d
X-Crewai-Version:
- 0.152.0
method: POST
uri: https://app.crewai.com/crewai_plus/api/v1/tracing/batches
response:
body:
string: "<!DOCTYPE html>\n<html>\n<head>\n <title>The page you were looking
for doesn't exist (404)</title>\n <meta name=\"viewport\" content=\"width=device-width,initial-scale=1\">\n
\ <style>\n .rails-default-error-page {\n background-color: #EFEFEF;\n
\ color: #2E2F30;\n text-align: center;\n font-family: arial, sans-serif;\n
\ margin: 0;\n }\n\n .rails-default-error-page div.dialog {\n width:
95%;\n max-width: 33em;\n margin: 4em auto 0;\n }\n\n .rails-default-error-page
div.dialog > div {\n border: 1px solid #CCC;\n border-right-color: #999;\n
\ border-left-color: #999;\n border-bottom-color: #BBB;\n border-top:
#B00100 solid 4px;\n border-top-left-radius: 9px;\n border-top-right-radius:
9px;\n background-color: white;\n padding: 7px 12% 0;\n box-shadow:
0 3px 8px rgba(50, 50, 50, 0.17);\n }\n\n .rails-default-error-page h1 {\n
\ font-size: 100%;\n color: #730E15;\n line-height: 1.5em;\n }\n\n
\ .rails-default-error-page div.dialog > p {\n margin: 0 0 1em;\n padding:
1em;\n background-color: #F7F7F7;\n border: 1px solid #CCC;\n border-right-color:
#999;\n border-left-color: #999;\n border-bottom-color: #999;\n border-bottom-left-radius:
4px;\n border-bottom-right-radius: 4px;\n border-top-color: #DADADA;\n
\ color: #666;\n box-shadow: 0 3px 8px rgba(50, 50, 50, 0.17);\n }\n
\ </style>\n</head>\n\n<body class=\"rails-default-error-page\">\n <!-- This
file lives in public/404.html -->\n <div class=\"dialog\">\n <div>\n <h1>The
page you were looking for doesn't exist.</h1>\n <p>You may have mistyped
the address or the page may have moved.</p>\n </div>\n <p>If you are
the application owner check the logs for more information.</p>\n </div>\n</body>\n</html>\n"
headers:
Connection:
- keep-alive
Content-Length:
- '1722'
Content-Type:
- text/html; charset=UTF-8
Date:
- Wed, 06 Aug 2025 19:30:52 GMT
strict-transport-security:
- max-age=63072000; includeSubDomains
x-request-id:
- 3640ddcd-56a3-48cc-9a5a-110ebe34ac80
x-runtime:
- '0.007004'
status:
code: 404
message: Not Found
- request:
body: '{"version": "0.152.0", "batch_id": "2487456d-e03a-4eae-92a1-e9779e8f06a1",
"user_context": {"user_id": "anonymous", "organization_id": "", "session_id":
"57ab4cf7-915a-4d4e-b01d-3791f418dd39", "trace_id": "c780f111-40df-4c4b-ae88-b09c0f7e3276"},
"execution_metadata": {"crew_name": "Unknown Crew", "crewai_version": "0.152.0"},
"events": [{"event_id": "55b93497-f7f7-4c2e-baf9-eeec358cf90f", "timestamp":
"2025-08-06T19:30:52.588780+00:00", "type": "llm_call_started", "event_data":
{"timestamp": "2025-08-06T19:30:52.473897+00:00", "type": "llm_call_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "020f12f8-4bcf-4e49-9bf9-d8fee70eaf6a", "agent_id":
"126a2971-a630-405c-a0d9-72d2c46e8074", "agent_role": "Test Agent", "model":
"gpt-4o-mini", "messages": [{"role": "system", "content": "You are Test Agent.
Test backstory\nYour personal goal is: Test goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\n..."}, {"role": "user", "content": "\nCurrent Task:
Say hello to the world\n\nThis is the expected criteria for your final answer:
hello world\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is ..."}], "tools": null, "callbacks": ["<crewai.utilities.token_counter_callback.TokenCalcHandler
object at 0x11c5860f0>"], "available_functions": null}}, {"event_id": "967e03f5-fc65-477f-a1ba-4614acbd0527",
"timestamp": "2025-08-06T19:30:52.588932+00:00", "type": "llm_call_started",
"event_data": {"timestamp": "2025-08-06T19:30:52.473897+00:00", "type": "llm_call_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "020f12f8-4bcf-4e49-9bf9-d8fee70eaf6a", "agent_id":
"126a2971-a630-405c-a0d9-72d2c46e8074", "agent_role": "Test Agent", "model":
"gpt-4o-mini", "messages": [{"role": "system", "content": "You are Test Agent.
Test backstory\nYour personal goal is: Test goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\n..."}, {"role": "user", "content": "\nCurrent Task:
Say hello to the world\n\nThis is the expected criteria for your final answer:
hello world\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is ..."}], "tools": null, "callbacks": ["<crewai.utilities.token_counter_callback.TokenCalcHandler
object at 0x11c5860f0>"], "available_functions": null}}, {"event_id": "f67f33c0-f9ac-450e-987e-bb48880b9b69",
"timestamp": "2025-08-06T19:30:52.597813+00:00", "type": "llm_call_completed",
"event_data": {"timestamp": "2025-08-06T19:30:52.597748+00:00", "type": "llm_call_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "020f12f8-4bcf-4e49-9bf9-d8fee70eaf6a", "agent_id":
"126a2971-a630-405c-a0d9-72d2c46e8074", "agent_role": "Test Agent", "messages":
[{"role": "system", "content": "You are Test Agent. Test backstory\nYour personal
goal is: Test goal\nTo give my best complete final answer to the task respond
using the exact following format:\n\nThought: I now can give a great answer\n..."},
{"role": "user", "content": "\nCurrent Task: Say hello to the world\n\nThis
is the expected criteria for your final answer: hello world\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is ..."}], "response": "I now can give a great answer \nFinal Answer: hello
world", "call_type": "<LLMCallType.LLM_CALL: ''llm_call''>", "response_cost":
3.135e-05, "model": "gpt-4o-mini"}}, {"event_id": "0868106f-9491-4214-9674-4f9c5621875b",
"timestamp": "2025-08-06T19:30:52.597885+00:00", "type": "llm_call_completed",
"event_data": {"timestamp": "2025-08-06T19:30:52.597748+00:00", "type": "llm_call_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "020f12f8-4bcf-4e49-9bf9-d8fee70eaf6a", "agent_id":
"126a2971-a630-405c-a0d9-72d2c46e8074", "agent_role": "Test Agent", "messages":
[{"role": "system", "content": "You are Test Agent. Test backstory\nYour personal
goal is: Test goal\nTo give my best complete final answer to the task respond
using the exact following format:\n\nThought: I now can give a great answer\n..."},
{"role": "user", "content": "\nCurrent Task: Say hello to the world\n\nThis
is the expected criteria for your final answer: hello world\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is ..."}], "response": "I now can give a great answer \nFinal Answer: hello
world", "call_type": "<LLMCallType.LLM_CALL: ''llm_call''>", "response_cost":
3.135e-05, "model": "gpt-4o-mini"}}, {"event_id": "4b68fa53-1829-4201-bfa2-9364dbd8fc51",
"timestamp": "2025-08-06T19:30:52.598054+00:00", "type": "agent_execution_completed",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionCompletedEvent"}}, {"event_id": "264a2a9a-c234-45f2-8021-5e4b1b7c4c98",
"timestamp": "2025-08-06T19:30:52.598224+00:00", "type": "agent_execution_completed",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionCompletedEvent"}}, {"event_id": "b8b7f244-e2c0-4cac-9411-0efab7b9936a",
"timestamp": "2025-08-06T19:30:52.598372+00:00", "type": "task_completed", "event_data":
{"serialization_error": "Circular reference detected (id repeated)", "object_type":
"TaskCompletedEvent"}}, {"event_id": "c15489a3-31af-48bb-8f32-cb3c3f46f7b9",
"timestamp": "2025-08-06T19:30:52.598416+00:00", "type": "task_completed", "event_data":
{"serialization_error": "Circular reference detected (id repeated)", "object_type":
"TaskCompletedEvent"}}, {"event_id": "6806c6bd-1399-4261-aa23-5b6166c2ab31",
"timestamp": "2025-08-06T19:30:52.601018+00:00", "type": "crew_kickoff_completed",
"event_data": {"timestamp": "2025-08-06T19:30:52.600994+00:00", "type": "crew_kickoff_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"crew_name": "crew", "crew": null, "output": {"description": "Say hello to the
world", "name": null, "expected_output": "hello world", "summary": "Say hello
to the world...", "raw": "hello world", "pydantic": null, "json_dict": null,
"agent": "Test Agent", "output_format": "raw"}, "total_tokens": 170}}]}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '6503'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.152.0
X-Crewai-Organization-Id:
- d3a3d10c-35db-423f-a7a4-c026030ba64d
X-Crewai-Version:
- 0.152.0
method: POST
uri: https://app.crewai.com/crewai_plus/api/v1/tracing
response:
body:
string: "<!DOCTYPE html>\n<html>\n<head>\n <title>The page you were looking
for doesn't exist (404)</title>\n <meta name=\"viewport\" content=\"width=device-width,initial-scale=1\">\n
\ <style>\n .rails-default-error-page {\n background-color: #EFEFEF;\n
\ color: #2E2F30;\n text-align: center;\n font-family: arial, sans-serif;\n
\ margin: 0;\n }\n\n .rails-default-error-page div.dialog {\n width:
95%;\n max-width: 33em;\n margin: 4em auto 0;\n }\n\n .rails-default-error-page
div.dialog > div {\n border: 1px solid #CCC;\n border-right-color: #999;\n
\ border-left-color: #999;\n border-bottom-color: #BBB;\n border-top:
#B00100 solid 4px;\n border-top-left-radius: 9px;\n border-top-right-radius:
9px;\n background-color: white;\n padding: 7px 12% 0;\n box-shadow:
0 3px 8px rgba(50, 50, 50, 0.17);\n }\n\n .rails-default-error-page h1 {\n
\ font-size: 100%;\n color: #730E15;\n line-height: 1.5em;\n }\n\n
\ .rails-default-error-page div.dialog > p {\n margin: 0 0 1em;\n padding:
1em;\n background-color: #F7F7F7;\n border: 1px solid #CCC;\n border-right-color:
#999;\n border-left-color: #999;\n border-bottom-color: #999;\n border-bottom-left-radius:
4px;\n border-bottom-right-radius: 4px;\n border-top-color: #DADADA;\n
\ color: #666;\n box-shadow: 0 3px 8px rgba(50, 50, 50, 0.17);\n }\n
\ </style>\n</head>\n\n<body class=\"rails-default-error-page\">\n <!-- This
file lives in public/404.html -->\n <div class=\"dialog\">\n <div>\n <h1>The
page you were looking for doesn't exist.</h1>\n <p>You may have mistyped
the address or the page may have moved.</p>\n </div>\n <p>If you are
the application owner check the logs for more information.</p>\n </div>\n</body>\n</html>\n"
headers:
Connection:
- keep-alive
Content-Length:
- '1722'
Content-Type:
- text/html; charset=UTF-8
Date:
- Wed, 06 Aug 2025 19:30:52 GMT
strict-transport-security:
- max-age=63072000; includeSubDomains
x-request-id:
- 50885aa8-a8e2-4a5a-87f7-6d0e2f2f80f9
x-runtime:
- '0.006464'
status:
code: 404
message: Not Found
version: 1

View File

@@ -0,0 +1,433 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '825'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFJdb9QwEHzPr1j8nKDkmvTavBUQnw8goQoJqKKts8kZHK9lOy1Q3X9H
Tq6XFIrES6Ts7IxndvcuARCqFTUIucMgB6uz5wWduvz8g3nx/tnny3d4MRabX6flW9O9qj6KNDL4
+hvJcM96KnmwmoJiM8PSEQaKqsW2Kqv8rCqrCRi4JR1pvQ1ZydmgjMo2+abM8m1WnB3YO1aSvKjh
SwIAcDd9o0/T0g9RQ57eVwbyHnsS9bEJQDjWsSLQe+UDmiDSBZRsApnJ+hswfAsSDfTqhgChj7YB
jb8lB/DVvFQGNVxM/zW8Jq05hU/sdPtkLemoGz3GWGbUegWgMRwwjmUKc3VA9kf7mnvr+Nr/QRWd
MsrvGkfo2USrPrAVE7pPAK6mMY0PkgvreLChCfydpueKajvriWU7a/QABg6oV/XtJn1Er2kpoNJ+
NWghUe6oXajLVnBsFa+AZJX6bzePac/Jlen/R34BpCQbqG2so1bJh4mXNkfxeP/VdpzyZFh4cjdK
UhMUubiJljoc9XxSwv/0gYamU6YnZ52a76qzzUmJVYl0fiJFsk9+AwAA//8DABLzfQllAwAA
headers:
CF-RAY:
- 96b0f0e62d177ad9-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 06 Aug 2025 19:29:05 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=ePO5hy0kEoADCuKcboFy1iS1qckCE5KCpifQaXnlomM-1754508545-1.0.1.1-ieWfjcdIxQIXGfaMizvmgTvZPRFehqDXliegaOT7EO.kt7KSSFGmNDcC35_D9hOhE.fJ5K302uX0snQF3nLaapds2dqgGbNcsyFPOKNvAdI;
path=/; expires=Wed, 06-Aug-25 19:59:05 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=NaXWifUGChHp6Ap1mvfMrNzmO4HdzddrqXkSR9T.hYo-1754508545647-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '526'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '568'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_0e70b38c85e144d289fbdf89082cf16e
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '797'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '200.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFJdj9MwEHzPr1j8nKC0TejRN4TE3YmTQIAEEpyiPWeTujheYztX0Kn/
HTnpNbkPJF4iZWdnPLO7dwmAULXYgJBbDLKzOnu7oFdu//nLr8v8Ij//1jdXq93Xjx8+7a7OzXuR
Rgbf7EiGe9ZLyZ3VFBSbEZaOMFBUXazLoszPyqIcgI5r0pHW2pAVnHXKqGyZL4ssX2eLsyN7y0qS
Fxv4ngAA3A3f6NPU9FtsIE/vKx15jy2JzakJQDjWsSLQe+UDmiDSCZRsApnB+iUY3oNEA626JUBo
o21A4/fkAH6Yd8qghjfD/wYuSGtOYc9O1y/mko6a3mOMZXqtZwAawwHjWIYw10fkcLKvubWOb/wj
qmiUUX5bOULPJlr1ga0Y0EMCcD2MqX+QXFjHnQ1V4J80PLco16OemLYzR49g4IB6Vl8v02f0qpoC
Ku1ngxYS5ZbqiTptBfta8QxIZqmfunlOe0yuTPs/8hMgJdlAdWUd1Uo+TDy1OYrH+6+205QHw8KT
u1WSqqDIxU3U1GCvx5MS/o8P1FWNMi0569R4V42tVgWWBdLrlRTJIfkLAAD//wMAE4F9LmUDAAA=
headers:
CF-RAY:
- 96b0f0eadf69eb2c-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 06 Aug 2025 19:29:06 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=f59gEPi_nA3TTxtjbKaSQpvkTwezaAqOvqfxiGzRnVQ-1754508546-1.0.1.1-JrSaytxVIQSVE00I.vyGj7d4HJbbMV6R9fWPJbkDKu0Y8ueMRzTwTUnfz0YzP5nsZX5oxoE6WlmFxOuz0rRuq9YhZZsO_TbaFBOFk1jGK9U;
path=/; expires=Wed, 06-Aug-25 19:59:06 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=3D66v3.J_RcVoYy9dlF.jHwq1zTIm842xynZxzSy1Wc-1754508546352-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '504'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '527'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999830'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_32abf5c6f27e42579bc84b0bfcc9c4b4
status:
code: 200
message: OK
- request:
body: '{"trace_id": "e3677f76-4763-4f55-94b2-f38707f353c3", "execution_type":
"crew", "execution_context": {"crew_fingerprint": null, "crew_name": "crew",
"flow_name": "Unknown Flow", "crewai_version": "0.152.0", "privacy_level": "standard"},
"execution_metadata": {"expected_duration_estimate": 300, "agent_count": 0,
"task_count": 0, "flow_method_count": 0, "execution_started_at": "2025-08-06T19:30:52.778875+00:00"}}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '413'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.152.0
X-Crewai-Organization-Id:
- d3a3d10c-35db-423f-a7a4-c026030ba64d
X-Crewai-Version:
- 0.152.0
method: POST
uri: https://app.crewai.com/crewai_plus/api/v1/tracing/batches
response:
body:
string: "<!DOCTYPE html>\n<html>\n<head>\n <title>The page you were looking
for doesn't exist (404)</title>\n <meta name=\"viewport\" content=\"width=device-width,initial-scale=1\">\n
\ <style>\n .rails-default-error-page {\n background-color: #EFEFEF;\n
\ color: #2E2F30;\n text-align: center;\n font-family: arial, sans-serif;\n
\ margin: 0;\n }\n\n .rails-default-error-page div.dialog {\n width:
95%;\n max-width: 33em;\n margin: 4em auto 0;\n }\n\n .rails-default-error-page
div.dialog > div {\n border: 1px solid #CCC;\n border-right-color: #999;\n
\ border-left-color: #999;\n border-bottom-color: #BBB;\n border-top:
#B00100 solid 4px;\n border-top-left-radius: 9px;\n border-top-right-radius:
9px;\n background-color: white;\n padding: 7px 12% 0;\n box-shadow:
0 3px 8px rgba(50, 50, 50, 0.17);\n }\n\n .rails-default-error-page h1 {\n
\ font-size: 100%;\n color: #730E15;\n line-height: 1.5em;\n }\n\n
\ .rails-default-error-page div.dialog > p {\n margin: 0 0 1em;\n padding:
1em;\n background-color: #F7F7F7;\n border: 1px solid #CCC;\n border-right-color:
#999;\n border-left-color: #999;\n border-bottom-color: #999;\n border-bottom-left-radius:
4px;\n border-bottom-right-radius: 4px;\n border-top-color: #DADADA;\n
\ color: #666;\n box-shadow: 0 3px 8px rgba(50, 50, 50, 0.17);\n }\n
\ </style>\n</head>\n\n<body class=\"rails-default-error-page\">\n <!-- This
file lives in public/404.html -->\n <div class=\"dialog\">\n <div>\n <h1>The
page you were looking for doesn't exist.</h1>\n <p>You may have mistyped
the address or the page may have moved.</p>\n </div>\n <p>If you are
the application owner check the logs for more information.</p>\n </div>\n</body>\n</html>\n"
headers:
Connection:
- keep-alive
Content-Length:
- '1722'
Content-Type:
- text/html; charset=UTF-8
Date:
- Wed, 06 Aug 2025 19:30:52 GMT
strict-transport-security:
- max-age=63072000; includeSubDomains
x-request-id:
- 8c9c1556-d30f-4736-b62c-5a41150e859f
x-runtime:
- '0.005329'
status:
code: 404
message: Not Found
- request:
body: '{"version": "0.152.0", "batch_id": "e3677f76-4763-4f55-94b2-f38707f353c3",
"user_context": {"user_id": "anonymous", "organization_id": "", "session_id":
"eb96086e-c3b3-4757-a118-328be61c9aad", "trace_id": "90245ff6-bd46-4e0e-83da-b12edd241b0e"},
"execution_metadata": {"crew_name": "crew", "execution_start": "2025-08-06T19:30:52.777333+00:00",
"crewai_version": "0.152.0"}, "events": [{"event_id": "d5c81b9a-b8a9-4638-ab50-aa91792b95c8",
"timestamp": "2025-08-06T19:30:52.909777+00:00", "type": "crew_kickoff_started",
"event_data": {"timestamp": "2025-08-06T19:30:52.777333+00:00", "type": "crew_kickoff_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"crew_name": "crew", "crew": null, "inputs": null}}, {"event_id": "a5bd314d-f9eb-471f-b3c4-e176e6ec62f9",
"timestamp": "2025-08-06T19:30:52.911914+00:00", "type": "task_started", "event_data":
{"task_description": "Say hello to the world", "task_name": null, "context":
"", "agent": "Test Agent"}}, {"event_id": "ce0e41d9-90a9-4585-8dc3-c04ee02232bc",
"timestamp": "2025-08-06T19:30:52.912403+00:00", "type": "agent_execution_started",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionStartedEvent"}}, {"event_id": "d7c3546e-fe60-4c8a-9e4a-a510fa631a8b",
"timestamp": "2025-08-06T19:30:52.912693+00:00", "type": "llm_call_started",
"event_data": {"timestamp": "2025-08-06T19:30:52.912657+00:00", "type": "llm_call_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "e4abe414-b25d-44ea-8a0d-4998d7e55ed3", "agent_id":
"91a39492-d0c8-4994-b8b4-acdd256a2e96", "agent_role": "Test Agent", "model":
"gpt-4o-mini", "messages": [{"role": "system", "content": "You are Test Agent.
Test backstory\nYour personal goal is: Test goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\n..."}, {"role": "user", "content": "\nCurrent Task:
Say hello to the world\n\nThis is the expected criteria for your final answer:
hello world\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is ..."}], "tools": null, "callbacks": ["<crewai.utilities.token_counter_callback.TokenCalcHandler
object at 0x11c5b5e50>"], "available_functions": null}}, {"event_id": "6ed9e994-3e66-4653-97e0-a9e8e8c1d978",
"timestamp": "2025-08-06T19:30:52.919664+00:00", "type": "llm_call_completed",
"event_data": {"timestamp": "2025-08-06T19:30:52.919623+00:00", "type": "llm_call_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_name": null, "task_id": "e4abe414-b25d-44ea-8a0d-4998d7e55ed3", "agent_id":
"91a39492-d0c8-4994-b8b4-acdd256a2e96", "agent_role": "Test Agent", "messages":
[{"role": "system", "content": "You are Test Agent. Test backstory\nYour personal
goal is: Test goal\nTo give my best complete final answer to the task respond
using the exact following format:\n\nThought: I now can give a great answer\n..."},
{"role": "user", "content": "\nCurrent Task: Say hello to the world\n\nThis
is the expected criteria for your final answer: hello world\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is ..."}], "response": "I now can give a great answer \nFinal Answer: Hello,
World!", "call_type": "<LLMCallType.LLM_CALL: ''llm_call''>", "response_cost":
3.255e-05, "model": "gpt-4o-mini"}}, {"event_id": "2f03d7fe-2faf-4d6b-a9e1-d3cb9e87ef10",
"timestamp": "2025-08-06T19:30:52.919798+00:00", "type": "agent_execution_completed",
"event_data": {"serialization_error": "Circular reference detected (id repeated)",
"object_type": "AgentExecutionCompletedEvent"}}, {"event_id": "c2ed7fa8-0361-406f-8a0f-4cf0f580dbee",
"timestamp": "2025-08-06T19:30:52.919953+00:00", "type": "task_completed", "event_data":
{"serialization_error": "Circular reference detected (id repeated)", "object_type":
"TaskCompletedEvent"}}, {"event_id": "727d1ea2-4f7b-4d12-b491-42a27f3c3123",
"timestamp": "2025-08-06T19:30:52.921547+00:00", "type": "crew_kickoff_completed",
"event_data": {"timestamp": "2025-08-06T19:30:52.921522+00:00", "type": "crew_kickoff_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"crew_name": "crew", "crew": null, "output": {"description": "Say hello to the
world", "name": null, "expected_output": "hello world", "summary": "Say hello
to the world...", "raw": "Hello, World!", "pydantic": null, "json_dict": null,
"agent": "Test Agent", "output_format": "raw"}, "total_tokens": 172}}]}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '4656'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.152.0
X-Crewai-Organization-Id:
- d3a3d10c-35db-423f-a7a4-c026030ba64d
X-Crewai-Version:
- 0.152.0
method: POST
uri: https://app.crewai.com/crewai_plus/api/v1/tracing
response:
body:
string: "<!DOCTYPE html>\n<html>\n<head>\n <title>The page you were looking
for doesn't exist (404)</title>\n <meta name=\"viewport\" content=\"width=device-width,initial-scale=1\">\n
\ <style>\n .rails-default-error-page {\n background-color: #EFEFEF;\n
\ color: #2E2F30;\n text-align: center;\n font-family: arial, sans-serif;\n
\ margin: 0;\n }\n\n .rails-default-error-page div.dialog {\n width:
95%;\n max-width: 33em;\n margin: 4em auto 0;\n }\n\n .rails-default-error-page
div.dialog > div {\n border: 1px solid #CCC;\n border-right-color: #999;\n
\ border-left-color: #999;\n border-bottom-color: #BBB;\n border-top:
#B00100 solid 4px;\n border-top-left-radius: 9px;\n border-top-right-radius:
9px;\n background-color: white;\n padding: 7px 12% 0;\n box-shadow:
0 3px 8px rgba(50, 50, 50, 0.17);\n }\n\n .rails-default-error-page h1 {\n
\ font-size: 100%;\n color: #730E15;\n line-height: 1.5em;\n }\n\n
\ .rails-default-error-page div.dialog > p {\n margin: 0 0 1em;\n padding:
1em;\n background-color: #F7F7F7;\n border: 1px solid #CCC;\n border-right-color:
#999;\n border-left-color: #999;\n border-bottom-color: #999;\n border-bottom-left-radius:
4px;\n border-bottom-right-radius: 4px;\n border-top-color: #DADADA;\n
\ color: #666;\n box-shadow: 0 3px 8px rgba(50, 50, 50, 0.17);\n }\n
\ </style>\n</head>\n\n<body class=\"rails-default-error-page\">\n <!-- This
file lives in public/404.html -->\n <div class=\"dialog\">\n <div>\n <h1>The
page you were looking for doesn't exist.</h1>\n <p>You may have mistyped
the address or the page may have moved.</p>\n </div>\n <p>If you are
the application owner check the logs for more information.</p>\n </div>\n</body>\n</html>\n"
headers:
Connection:
- keep-alive
Content-Length:
- '1722'
Content-Type:
- text/html; charset=UTF-8
Date:
- Wed, 06 Aug 2025 19:30:53 GMT
strict-transport-security:
- max-age=63072000; includeSubDomains
x-request-id:
- 3b16d4bb-ba79-4a32-a776-26bbdf8d0a68
x-runtime:
- '0.005566'
status:
code: 404
message: Not Found
version: 1

View File

@@ -1,59 +0,0 @@
interactions:
- request:
body: '{"contents": [{"role": "user", "parts": [{"text": "What is the capital
of France?"}]}], "generationConfig": {"stop_sequences": []}}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '131'
content-type:
- application/json
host:
- generativelanguage.googleapis.com
user-agent:
- litellm/1.60.2
method: POST
uri: https://generativelanguage.googleapis.com/v1beta/models/gemma-3-12b-it:generateContent
response:
body:
string: !!binary |
H4sIAAAAAAAC/2WRTWvDMAyG7/kVwpdBSEvX7jB23QfsMFa2MAZbD2qipGaOFWwFWkr/+5ykaVPq
gGP0SvLrR/sIQGVoc52jkFcP8BMiAPtubzW2QlaCMIRCsEYn59x+7UfnkCK0bYtUuiHIsNaCBriA
F4c2I9Ae4niJTvs4nv7a/nuVGw9oPIOEIoOuJC+QadmBtkNlsAoIpeF1aJgFZ+SgYAfBUQIF+o1m
m0CJXhxbrnZJV5E1RhpHUzUyeTidV8n5aY4Ntb4rzskM6YchQRXaar/5IPRs27TP9H2pTqq2OW1D
eBYNF3StVeOxpDcSDJDxhFLVjqtaUv4j+8hNB/m+7zUayYW8mB914QD0QrqbJVdd/VO4U5vxqEZT
DE9EE+h2Y3r+TtUIg1yYGjB0/1V0BNIz+iLndQ+jpKrCyWJyO19PtKjoEP0DlZtdIF8CAAA=
headers:
Alt-Svc:
- h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
Content-Encoding:
- gzip
Content-Type:
- application/json; charset=UTF-8
Date:
- Tue, 22 Apr 2025 14:25:39 GMT
Server:
- scaffolding on HTTPServer2
Server-Timing:
- gfet4t7; dur=3835
Transfer-Encoding:
- chunked
Vary:
- Origin
- X-Origin
- Referer
X-Content-Type-Options:
- nosniff
X-Frame-Options:
- SAMEORIGIN
X-XSS-Protection:
- '0'
status:
code: 200
message: OK
version: 1

View File

@@ -1,60 +0,0 @@
interactions:
- request:
body: '{"contents": [{"role": "user", "parts": [{"text": "What is the capital
of France?"}]}], "generationConfig": {"stop_sequences": []}}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '131'
content-type:
- application/json
host:
- generativelanguage.googleapis.com
user-agent:
- litellm/1.60.2
method: POST
uri: https://generativelanguage.googleapis.com/v1beta/models/gemma-3-1b-it:generateContent
response:
body:
string: !!binary |
H4sIAAAAAAAC/2VRy07DQAy85yusPUZtBSoIxJWHxAFRQYSQKAc3cVqL7DrKuqKlqsRv8Ht8CZuk
aVOxh314xuP1eBMBmBRdxhkqeXMFbyECsGn2GhOn5DQAXSgES6z0wG3XpncPFKVVnWSSBUGKJSsW
IDncVehSAvYQxxOs2MfxCKZu6u719/vHA0Iq1ooDyz6UTqlUDi9doELDr1M1aMbiinXcSQ9gtlTg
VqOGJc855VAztAZWvMInZ1SsoaJU5o6/KANxNDK9X2/39/fBoddKCqobsRLyO/q2I5icHfvFE6EX
V9Oek8eJ2aPsMlqF8EnUFWikzdLjnB5IMbiOe29NWYktNZEPcteybFy/bLV6MzqCxxc7XCXYcASd
nQ/+qfqbUJOL/ux6Yw0tYsG6buZ2+5qYng169KnOhuZ8j3aGtB69UOW5NWNO1uJwPDydDVlNtI3+
AD6XWQdvAgAA
headers:
Alt-Svc:
- h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
Content-Encoding:
- gzip
Content-Type:
- application/json; charset=UTF-8
Date:
- Tue, 22 Apr 2025 14:25:32 GMT
Server:
- scaffolding on HTTPServer2
Server-Timing:
- gfet4t7; dur=1535
Transfer-Encoding:
- chunked
Vary:
- Origin
- X-Origin
- Referer
X-Content-Type-Options:
- nosniff
X-Frame-Options:
- SAMEORIGIN
X-XSS-Protection:
- '0'
status:
code: 200
message: OK
version: 1

View File

@@ -6,7 +6,7 @@ interactions:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
@@ -16,19 +16,19 @@ interactions:
host:
- generativelanguage.googleapis.com
user-agent:
- litellm/1.60.2
- litellm/1.74.9
method: POST
uri: https://generativelanguage.googleapis.com/v1beta/models/gemma-3-27b-it:generateContent
response:
body:
string: !!binary |
H4sIAAAAAAAC/2VRXUvDMBR976+45EUo3RDnUHwTnSA4HFpEcHuI7e16aZqU5NZNxv67abtuHTbQ
hHPu5zm7AEAkUqeUSkYn7uDLIwC79t9wRjNq9kQPebCSlk+x3bcbvH0I47ZJEnGOkMiKWCowGTxZ
qRMEchCGC2nJheEYlnqpn/nCQaHNRkNmLJDvSwkoP1kpbeFAUYHAvtiMsgwVxGaDNmqRF1P/WIR5
7bAuI/ApLXxvE0gRYkumrHL0hIMNKtXcxA4y6XIyOoKkJkcau8ykVlxbHDczNUcM1tof36voJIY1
CptNS5Oi6sP3fYDISJPL31A6o5uw9/h1IY4s6RS3Hr4M+gZtaVE7ucY5svS2yKP4orJ+F45NgfrB
1K0tt12tgYln9PX0wLPxFpxR00n0r6p79D1JDc0d+O5XlIr4tzV29hmLgQx8NlQvQ3uvgoMgnUYf
aB11YqyxLOVoMrq6+R4Ri2Af/AEDrXcbkQIAAA==
H4sIAAAAAAAC/21RwWrbQBC96yuGvRSMFYp7aOktxAnY1MQ0ahtIfJhII3vwalfZGdUpxv/elRQ5
CkQL2uXNm7f75h0TAJOjK7hAJTHf4SEiAMfu39a8U3IaCwMUwRqDvnH77zg6R4rSS9tksh1BjjUr
WvAl3AR0OQELTCZrDCyTyQU8uke30E8Ce+cPDkofgOO9nIONL6sw7AUs7wk0il1zWZKFzB8oTDvk
h2/+BoJVI9RUU4gtHXwZcigIssC+qncUCwIHsrbdWQVKlB17N4W8YWFHfWfeWG0CXbRvapcZ2Tqd
z5vp2zCCt9Q6rXxBdqCfBoIp2bHsfhKKdy3tLrtdm3OVXUEvEf6cDBd00qYR3NKKFGMseB6+qUP0
opnfk7vyTRfLt17LqI8j/rAyapJ5lGQ7zm4Ua3SAlvVfl9v1fWZGLvWd8uCy2zfJq99+BL8pCPde
t1RVmH5JZ1+fUtZOzgSS2juhRdEylvgnw+VTMU/T5bPKmos7nV3+Mskp+Q+x/LCbmwIAAA==
headers:
Alt-Svc:
- h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
@@ -37,11 +37,11 @@ interactions:
Content-Type:
- application/json; charset=UTF-8
Date:
- Tue, 22 Apr 2025 14:25:41 GMT
- Wed, 06 Aug 2025 18:55:33 GMT
Server:
- scaffolding on HTTPServer2
Server-Timing:
- gfet4t7; dur=2447
- gfet4t7; dur=1529
Transfer-Encoding:
- chunked
Vary:

View File

@@ -1,60 +0,0 @@
interactions:
- request:
body: '{"contents": [{"role": "user", "parts": [{"text": "What is the capital
of France?"}]}], "generationConfig": {"stop_sequences": []}}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '131'
content-type:
- application/json
host:
- generativelanguage.googleapis.com
user-agent:
- litellm/1.60.2
method: POST
uri: https://generativelanguage.googleapis.com/v1beta/models/gemma-3-4b-it:generateContent
response:
body:
string: !!binary |
H4sIAAAAAAAC/2WRzUrDQBDH73mKYY+lLUKLiBcPfoAHsWhQwXqYJtNk6WYn7E6woRQ8+wR68t18
Ah/BbWraFPeQXeb/z3z8ZhUBqARtqlMU8uoUnkMEYNV8NxpbIStBaEMhWKKTvXd7Vp13sAgtNz+p
OCdIsNSCBngOVw5tQqA99HoTdNr3ekOY2qm9lu+3Tw8ImeFZ8CahKDmYs4NQrA9z9Llm24cMvTi2
XNQQ2oakMlI5GsLP18d7k+mRK5NCzRUYvSAQhoXl12CuJdc2g4IdAc64Emg6OFOdzte790t/P69j
Q5thCk7JtPZ1a1BzbbXP7wg9243tPr6dqJ2qbUrLED6K2gJNalV5zOiGBAN53PFVpeOilJgXZM+5
asifbHN19nQgj1pdOFA+kMbH/X9Z/UWoqU13f53VhhHRaKmb3V0+xaqDQQ6aajE090v0B2TL6IGc
11sYGRUFDkaD8WygRUXr6BcxmBLccwIAAA==
headers:
Alt-Svc:
- h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
Content-Encoding:
- gzip
Content-Type:
- application/json; charset=UTF-8
Date:
- Tue, 22 Apr 2025 14:25:35 GMT
Server:
- scaffolding on HTTPServer2
Server-Timing:
- gfet4t7; dur=2349
Transfer-Encoding:
- chunked
Vary:
- Origin
- X-Origin
- Referer
X-Content-Type-Options:
- nosniff
X-Frame-Options:
- SAMEORIGIN
X-XSS-Protection:
- '0'
status:
code: 200
message: OK
version: 1

View File

@@ -282,9 +282,6 @@ def test_gemini_models(model):
@pytest.mark.parametrize(
"model",
[
"gemini/gemma-3-1b-it",
"gemini/gemma-3-4b-it",
"gemini/gemma-3-12b-it",
"gemini/gemma-3-27b-it",
],
)
@@ -377,6 +374,7 @@ def get_weather_tool_schema():
},
}
def test_context_window_exceeded_error_handling():
"""Test that litellm.ContextWindowExceededError is converted to LLMContextLengthExceededException."""
from litellm.exceptions import ContextWindowExceededError
@@ -392,7 +390,7 @@ def test_context_window_exceeded_error_handling():
mock_completion.side_effect = ContextWindowExceededError(
"This model's maximum context length is 8192 tokens. However, your messages resulted in 10000 tokens.",
model="gpt-4",
llm_provider="openai"
llm_provider="openai",
)
with pytest.raises(LLMContextLengthExceededException) as excinfo:
@@ -407,7 +405,7 @@ def test_context_window_exceeded_error_handling():
mock_completion.side_effect = ContextWindowExceededError(
"This model's maximum context length is 8192 tokens. However, your messages resulted in 10000 tokens.",
model="gpt-4",
llm_provider="openai"
llm_provider="openai",
)
with pytest.raises(LLMContextLengthExceededException) as excinfo:
@@ -598,6 +596,7 @@ def test_handle_streaming_tool_calls(get_weather_tool_schema, mock_emit):
expected_final_chunk_result=expected_final_chunk_result,
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_handle_streaming_tool_calls_with_error(get_weather_tool_schema, mock_emit):
def get_weather_error(location):
@@ -609,9 +608,7 @@ def test_handle_streaming_tool_calls_with_error(get_weather_tool_schema, mock_em
{"role": "user", "content": "What is the weather in New York?"},
],
tools=[get_weather_tool_schema],
available_functions={
"get_weather": get_weather_error
},
available_functions={"get_weather": get_weather_error},
)
assert response == ""
expected_final_chunk_result = '{"location":"New York, NY"}'
@@ -676,8 +673,11 @@ def test_llm_call_when_stop_is_unsupported(caplog):
assert isinstance(result, str)
assert "Paris" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_when_stop_is_unsupported_when_additional_drop_params_is_provided(caplog):
def test_llm_call_when_stop_is_unsupported_when_additional_drop_params_is_provided(
caplog,
):
llm = LLM(model="o1-mini", stop=["stop"], additional_drop_params=["another_param"])
with caplog.at_level(logging.INFO):
result = llm.call("What is the capital of France?")
@@ -690,6 +690,7 @@ def test_llm_call_when_stop_is_unsupported_when_additional_drop_params_is_provid
def ollama_llm():
return LLM(model="ollama/llama3.2:3b")
def test_ollama_appends_dummy_user_message_when_last_is_assistant(ollama_llm):
original_messages = [
{"role": "user", "content": "Hi there"},

View File

@@ -0,0 +1,313 @@
import os
import pytest
from unittest.mock import patch, MagicMock
# Remove the module-level patch
from crewai import Agent, Task, Crew
from crewai.utilities.events.listeners.tracing.trace_listener import (
TraceCollectionListener,
)
from crewai.utilities.events.listeners.tracing.trace_batch_manager import (
TraceBatchManager,
)
from crewai.utilities.events.listeners.tracing.types import TraceEvent
class TestTraceListenerSetup:
"""Test TraceListener is properly setup and collecting events"""
@pytest.fixture(autouse=True)
def mock_auth_token(self):
"""Mock authentication token for all tests in this class"""
# Need to patch all the places where get_auth_token is imported/used
with (
patch(
"crewai.cli.authentication.token.get_auth_token",
return_value="mock_token_12345",
),
patch(
"crewai.utilities.events.listeners.tracing.trace_listener.get_auth_token",
return_value="mock_token_12345",
),
patch(
"crewai.utilities.events.listeners.tracing.trace_batch_manager.get_auth_token",
return_value="mock_token_12345",
),
patch(
"crewai.utilities.events.listeners.tracing.interfaces.get_auth_token",
return_value="mock_token_12345",
),
):
yield
@pytest.fixture(autouse=True)
def clear_event_bus(self):
"""Clear event bus listeners before and after each test"""
from crewai.utilities.events import crewai_event_bus
# Store original handlers
original_handlers = crewai_event_bus._handlers.copy()
# Clear for test
crewai_event_bus._handlers.clear()
yield
# Restore original state
crewai_event_bus._handlers.clear()
crewai_event_bus._handlers.update(original_handlers)
@pytest.fixture(autouse=True)
def reset_tracing_singletons(self):
"""Reset tracing singleton instances between tests"""
# Reset TraceCollectionListener singleton
if hasattr(TraceCollectionListener, "_instance"):
TraceCollectionListener._instance = None
TraceCollectionListener._initialized = False
yield
# Clean up after test
if hasattr(TraceCollectionListener, "_instance"):
TraceCollectionListener._instance = None
TraceCollectionListener._initialized = False
@pytest.fixture(autouse=True)
def mock_plus_api_calls(self):
"""Mock all PlusAPI HTTP calls to avoid network requests"""
with (
patch("requests.post") as mock_post,
patch("requests.get") as mock_get,
patch("requests.put") as mock_put,
patch("requests.delete") as mock_delete,
patch.object(TraceBatchManager, "initialize_batch", return_value=None),
patch.object(
TraceBatchManager, "_finalize_backend_batch", return_value=True
),
patch.object(TraceBatchManager, "_cleanup_batch_data", return_value=True),
):
mock_response = MagicMock()
mock_response.status_code = 200
mock_response.json.return_value = {
"id": "mock_trace_batch_id",
"status": "success",
"message": "Batch created successfully",
}
mock_response.raise_for_status.return_value = None
mock_post.return_value = mock_response
mock_get.return_value = mock_response
mock_put.return_value = mock_response
mock_delete.return_value = mock_response
yield {
"post": mock_post,
"get": mock_get,
"put": mock_put,
"delete": mock_delete,
}
@pytest.mark.vcr(filter_headers=["authorization"])
def test_trace_listener_collects_crew_events(self):
"""Test that trace listener properly collects events from crew execution"""
with patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}):
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], verbose=True)
trace_listener = TraceCollectionListener()
from crewai.utilities.events import crewai_event_bus
trace_listener.setup_listeners(crewai_event_bus)
with patch.object(
trace_listener.batch_manager,
"initialize_batch",
return_value=None,
) as initialize_mock:
crew.kickoff()
assert initialize_mock.call_count >= 1
call_args = initialize_mock.call_args_list[0]
assert len(call_args[0]) == 2 # user_context, execution_metadata
_, execution_metadata = call_args[0]
assert isinstance(execution_metadata, dict)
assert "crew_name" in execution_metadata
@pytest.mark.vcr(filter_headers=["authorization"])
def test_batch_manager_finalizes_batch_clears_buffer(self):
"""Test that batch manager properly finalizes batch and clears buffer"""
with patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}):
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], verbose=True)
from crewai.utilities.events import crewai_event_bus
trace_listener = None
for handler_list in crewai_event_bus._handlers.values():
for handler in handler_list:
if hasattr(handler, "__self__") and isinstance(
handler.__self__, TraceCollectionListener
):
trace_listener = handler.__self__
break
if trace_listener:
break
if not trace_listener:
pytest.skip(
"No trace listener found - tracing may not be properly enabled"
)
with patch.object(
trace_listener.batch_manager,
"finalize_batch",
wraps=trace_listener.batch_manager.finalize_batch,
) as finalize_mock:
crew.kickoff()
assert finalize_mock.call_count >= 1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_events_collection_batch_manager(self, mock_plus_api_calls):
"""Test that trace listener properly collects events from crew execution"""
with patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}):
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], verbose=True)
from crewai.utilities.events import crewai_event_bus
# Create and setup trace listener explicitly
trace_listener = TraceCollectionListener()
trace_listener.setup_listeners(crewai_event_bus)
with patch.object(
trace_listener.batch_manager,
"add_event",
wraps=trace_listener.batch_manager.add_event,
) as add_event_mock:
crew.kickoff()
assert add_event_mock.call_count >= 2
completion_events = [
call.args[0]
for call in add_event_mock.call_args_list
if call.args[0].type == "crew_kickoff_completed"
]
assert len(completion_events) >= 1
# Verify the first completion event has proper structure
completion_event = completion_events[0]
assert "crew_name" in completion_event.event_data
assert completion_event.event_data["crew_name"] == "crew"
# Verify all events have proper structure
for call in add_event_mock.call_args_list:
event = call.args[0]
assert isinstance(event, TraceEvent)
assert hasattr(event, "event_data")
assert hasattr(event, "type")
@pytest.mark.vcr(filter_headers=["authorization"])
def test_trace_listener_disabled_when_env_false(self):
"""Test that trace listener doesn't make HTTP calls when tracing is disabled"""
with patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "false"}):
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], verbose=True)
result = crew.kickoff()
assert result is not None
from crewai.utilities.events import crewai_event_bus
trace_handlers = []
for handlers in crewai_event_bus._handlers.values():
for handler in handlers:
if hasattr(handler, "__self__") and isinstance(
handler.__self__, TraceCollectionListener
):
trace_handlers.append(handler)
elif hasattr(handler, "__name__") and any(
trace_name in handler.__name__
for trace_name in [
"on_crew_started",
"on_crew_completed",
"on_flow_started",
]
):
trace_handlers.append(handler)
assert len(trace_handlers) == 0, (
f"Found {len(trace_handlers)} trace handlers when tracing should be disabled"
)
def test_trace_listener_setup_correctly(self):
"""Test that trace listener is set up correctly when enabled"""
with patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}):
trace_listener = TraceCollectionListener()
assert trace_listener.trace_enabled is True
assert trace_listener.batch_manager is not None
assert trace_listener.trace_sender is not None
# Helper method to ensure cleanup
def teardown_method(self):
"""Cleanup after each test method"""
from crewai.utilities.events import crewai_event_bus
crewai_event_bus._handlers.clear()
@classmethod
def teardown_class(cls):
"""Final cleanup after all tests in this class"""
from crewai.utilities.events import crewai_event_bus
crewai_event_bus._handlers.clear()