mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-11 09:08:31 +00:00
Adding Support to adhoc tool calling using the internal LLM class (#3195)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* Adding Support to adhoc tool calling using the internal LLM class * fix type
This commit is contained in:
@@ -760,7 +760,7 @@ class LLM(BaseLLM):
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
from_task: Optional[Any] = None,
|
||||
from_agent: Optional[Any] = None,
|
||||
) -> str:
|
||||
) -> str | Any:
|
||||
"""Handle a non-streaming response from the LLM.
|
||||
|
||||
Args:
|
||||
@@ -784,13 +784,11 @@ class LLM(BaseLLM):
|
||||
# Convert litellm's context window error to our own exception type
|
||||
# for consistent handling in the rest of the codebase
|
||||
raise LLMContextLengthExceededException(str(e))
|
||||
|
||||
# --- 2) Extract response message and content
|
||||
response_message = cast(Choices, cast(ModelResponse, response).choices)[
|
||||
0
|
||||
].message
|
||||
text_response = response_message.content or ""
|
||||
|
||||
# --- 3) Handle callbacks with usage info
|
||||
if callbacks and len(callbacks) > 0:
|
||||
for callback in callbacks:
|
||||
@@ -803,21 +801,22 @@ class LLM(BaseLLM):
|
||||
start_time=0,
|
||||
end_time=0,
|
||||
)
|
||||
|
||||
# --- 4) Check for tool calls
|
||||
tool_calls = getattr(response_message, "tool_calls", [])
|
||||
|
||||
# --- 5) If no tool calls or no available functions, return the text response directly
|
||||
if not tool_calls or not available_functions:
|
||||
# --- 5) If no tool calls or no available functions, return the text response directly as long as there is a text response
|
||||
if (not tool_calls or not available_functions) and text_response:
|
||||
self._handle_emit_call_events(response=text_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
|
||||
return text_response
|
||||
# --- 6) If there is no text response, no available functions, but there are tool calls, return the tool calls
|
||||
elif tool_calls and not available_functions and not text_response:
|
||||
return tool_calls
|
||||
|
||||
# --- 6) Handle tool calls if present
|
||||
# --- 7) Handle tool calls if present
|
||||
tool_result = self._handle_tool_call(tool_calls, available_functions)
|
||||
if tool_result is not None:
|
||||
return tool_result
|
||||
|
||||
# --- 7) If tool call handling didn't return a result, emit completion event and return text response
|
||||
# --- 8) If tool call handling didn't return a result, emit completion event and return text response
|
||||
self._handle_emit_call_events(response=text_response, call_type=LLMCallType.LLM_CALL, from_task=from_task, from_agent=from_agent, messages=params["messages"])
|
||||
return text_response
|
||||
|
||||
@@ -952,22 +951,18 @@ class LLM(BaseLLM):
|
||||
# --- 3) Convert string messages to proper format if needed
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
# --- 4) Handle O1 model special case (system messages not supported)
|
||||
if "o1" in self.model.lower():
|
||||
for message in messages:
|
||||
if message.get("role") == "system":
|
||||
message["role"] = "assistant"
|
||||
|
||||
# --- 5) Set up callbacks if provided
|
||||
with suppress_warnings():
|
||||
if callbacks and len(callbacks) > 0:
|
||||
self.set_callbacks(callbacks)
|
||||
|
||||
try:
|
||||
# --- 6) Prepare parameters for the completion call
|
||||
params = self._prepare_completion_params(messages, tools)
|
||||
|
||||
# --- 7) Make the completion call and handle response
|
||||
if self.stream:
|
||||
return self._handle_streaming_response(
|
||||
|
||||
Reference in New Issue
Block a user