docs: major docs updates (#2897)

This commit is contained in:
Tony Kipkemboi
2025-05-23 16:04:37 -04:00
committed by GitHub
parent be24559630
commit 2460f61d3e
111 changed files with 2952 additions and 1362 deletions

View File

@@ -0,0 +1,119 @@
---
title: "Introduction"
description: "Complete reference for the CrewAI Enterprise REST API"
icon: "code"
---
# CrewAI Enterprise API
Welcome to the CrewAI Enterprise API reference. This API allows you to programmatically interact with your deployed crews, enabling integration with your applications, workflows, and services.
## Quick Start
<Steps>
<Step title="Get Your API Credentials">
Navigate to your crew's detail page in the CrewAI Enterprise dashboard and copy your Bearer Token from the Status tab.
</Step>
<Step title="Discover Required Inputs">
Use the `GET /inputs` endpoint to see what parameters your crew expects.
</Step>
<Step title="Start a Crew Execution">
Call `POST /kickoff` with your inputs to start the crew execution and receive a `kickoff_id`.
</Step>
<Step title="Monitor Progress">
Use `GET /status/{kickoff_id}` to check execution status and retrieve results.
</Step>
</Steps>
## Authentication
All API requests require authentication using a Bearer token. Include your token in the `Authorization` header:
```bash
curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
https://your-crew-url.crewai.com/inputs
```
### Token Types
| Token Type | Scope | Use Case |
|:-----------|:--------|:----------|
| **Bearer Token** | Organization-level access | Full crew operations, ideal for server-to-server integration |
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
<Tip>
You can find both token types in the Status tab of your crew's detail page in the CrewAI Enterprise dashboard.
</Tip>
## Base URL
Each deployed crew has its own unique API endpoint:
```
https://your-crew-name.crewai.com
```
Replace `your-crew-name` with your actual crew's URL from the dashboard.
## Typical Workflow
1. **Discovery**: Call `GET /inputs` to understand what your crew needs
2. **Execution**: Submit inputs via `POST /kickoff` to start processing
3. **Monitoring**: Poll `GET /status/{kickoff_id}` until completion
4. **Results**: Extract the final output from the completed response
## Error Handling
The API uses standard HTTP status codes:
| Code | Meaning |
|------|:--------|
| `200` | Success |
| `400` | Bad Request - Invalid input format |
| `401` | Unauthorized - Invalid bearer token |
| `404` | Not Found - Resource doesn't exist |
| `422` | Validation Error - Missing required inputs |
| `500` | Server Error - Contact support |
## Interactive Testing
<Info>
**Why no "Send" button?** Since each CrewAI Enterprise user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
</Info>
Each endpoint page shows you:
- ✅ **Exact request format** with all parameters
- ✅ **Response examples** for success and error cases
- ✅ **Code samples** in multiple languages (cURL, Python, JavaScript, etc.)
- ✅ **Authentication examples** with proper Bearer token format
### **To Test Your Actual API:**
<CardGroup cols={2}>
<Card title="Copy cURL Examples" icon="terminal">
Copy the cURL examples and replace the URL + token with your real values
</Card>
<Card title="Use Postman/Insomnia" icon="play">
Import the examples into your preferred API testing tool
</Card>
</CardGroup>
**Example workflow:**
1. **Copy this cURL example** from any endpoint page
2. **Replace `your-actual-crew-name.crewai.com`** with your real crew URL
3. **Replace the Bearer token** with your real token from the dashboard
4. **Run the request** in your terminal or API client
## Need Help?
<CardGroup cols={2}>
<Card title="Enterprise Support" icon="headset" href="mailto:support@crewai.com">
Get help with API integration and troubleshooting
</Card>
<Card title="Enterprise Dashboard" icon="chart-line" href="https://app.crewai.com">
Manage your crews and view execution logs
</Card>
</CardGroup>

View File

@@ -4,23 +4,136 @@ description: View the latest updates and changes to CrewAI
icon: timeline
---
<Update label="2025-04-30" description="v0.117.1">
<Update label="2024-05-22" description="v0.121.0" tags={["Latest"]}>
## Release Highlights
<Frame>
<img src="/images/releases/v01171.png" />
<img src="/images/releases/v01210.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.117.1">View on GitHub</a>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.121.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Upgraded **crewai-tools** to latest version
- Upgraded **liteLLM** to latest version
- Fixed **Mem0 OSS**
- Fixed encoding error when creating tools
- Fixed failing llama test
- Updated logging configuration for consistency
- Enhanced telemetry initialization and event handling
**New Features & Enhancements**
- Added **markdown attribute** to the Task class
- Added **reasoning attribute** to the Agent class
- Added **inject_date flag** to Agent for automatic date injection
- Implemented **HallucinationGuardrail** (no-op with test coverage)
**Documentation & Guides**
- Added documentation for **StagehandTool** and improved MDX structure
- Added documentation for **MCP integration** and updated enterprise docs
- Documented knowledge events and updated reasoning docs
- Added stop parameter documentation
- Fixed import references in doc examples (before_kickoff, after_kickoff)
- General docs updates and restructuring for clarity
</Update>
<Update label="2025-04-28" description="v0.117.0">
<Update label="2024-05-15" description="v0.120.1">
## Release Highlights
<Frame>
<img src="/images/releases/v01201.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.120.1">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Fixed **interpolation with hyphens**
</Update>
<Update label="2024-05-14" description="v0.120.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01200.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.120.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Enabled **full Ruff rule set** by default for stricter linting
- Addressed race condition in FilteredStream using context managers
- Fixed agent knowledge reset issue
- Refactored agent fetching logic into utility module
**New Features & Enhancements**
- Added support for **loading an Agent directly from a repository**
- Enabled setting an empty context for Task
- Enhanced Agent repository feedback and fixed Tool auto-import behavior
- Introduced direct initialization of knowledge (bypassing knowledge_sources)
**Documentation & Guides**
- Updated security.md for current security practices
- Cleaned up Google setup section for clarity
- Added link to AI Studio when entering Gemini key
- Updated Arize Phoenix observability guide
- Refreshed flow documentation
</Update>
<Update label="2024-05-08" description="v0.119.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01190.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.119.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Improved test reliability by enhancing pytest handling for flaky tests
- Fixed memory reset crash when embedding dimensions mismatch
- Enabled parent flow identification for Crew and LiteAgent
- Prevented telemetry-related crashes when unavailable
- Upgraded **LiteLLM version** for better compatibility
- Fixed llama converter tests by removing skip_external_api
**New Features & Enhancements**
- Introduced **knowledge retrieval prompt re-writing** in Agent for improved tracking and debugging
- Made LLM setup and quickstart guides model-agnostic
**Documentation & Guides**
- Added advanced configuration docs for the RAG tool
- Updated Windows troubleshooting guide
- Refined documentation examples for better clarity
- Fixed typos across docs and config files
</Update>
<Update label="2024-04-28" description="v0.118.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01180.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.118.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Fixed issues with missing prompt or system templates
- Removed global logging configuration to avoid unintended overrides
- Renamed **TaskGuardrail to LLMGuardrail** for improved clarity
- Downgraded litellm to version 1.167.1 for compatibility
- Added missing init.py files to ensure proper module initialization
**New Features & Enhancements**
- Added support for **no-code Guardrail creation** to simplify AI behavior controls
**Documentation & Guides**
- Removed CrewStructuredTool from public documentation to reflect internal usage
- Updated enterprise documentation and YouTube embed for improved onboarding experience
</Update>
<Update label="2024-04-20" description="v0.117.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01170.png" />
@@ -57,7 +170,23 @@ icon: timeline
- Improved SEO, contextual navigation, and error handling for documentation pages.
</Update>
<Update label="2025-04-07" description="v0.114.0">
<Update label="2024-04-25" description="v0.117.1">
## Release Highlights
<Frame>
<img src="/images/releases/v01171.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.117.1">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Upgraded **crewai-tools** to latest version
- Upgraded **liteLLM** to latest version
- Fixed **Mem0 OSS**
</Update>
<Update label="2024-04-07" description="v0.114.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01140.png" />
@@ -91,7 +220,7 @@ icon: timeline
- Guide on using singular agents within Flows.
</Update>
<Update label="2025-03-17" description="v0.108.0">
<Update label="2024-03-17" description="v0.108.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01080.png" />
@@ -120,7 +249,16 @@ icon: timeline
- Added documentation for `ApifyActorsTool`
</Update>
<Update label="2025-03-10" description="v0.105.0">
<Update label="2024-03-10" description="v0.105.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01050.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.105.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Fixed issues with missing template variables and user memory configuration
- Improved async flow support and addressed agent response formatting
@@ -141,7 +279,16 @@ icon: timeline
- Fixed typos in prompts and updated Amazon Bedrock model listings
</Update>
<Update label="2025-02-12" description="v0.102.0">
<Update label="2024-02-12" description="v0.102.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01020.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.102.0">View on GitHub</a>
</div>
**Core Improvements & Fixes**
- Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models
- Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks
@@ -161,7 +308,16 @@ icon: timeline
- Fixed Various Typos & Formatting Issues
</Update>
<Update label="2025-01-28" description="v0.100.0">
<Update label="2024-01-28" description="v0.100.0">
## Release Highlights
<Frame>
<img src="/images/releases/v01000.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.100.0">View on GitHub</a>
</div>
**Features**
- Add Composio docs
- Add SageMaker as a LLM provider
@@ -176,7 +332,16 @@ icon: timeline
- Improve formatting and clarity in CLI and Composio Tool docs
</Update>
<Update label="2025-01-20" description="v0.98.0">
<Update label="2024-01-20" description="v0.98.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0980.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.98.0">View on GitHub</a>
</div>
**Features**
- Conversation crew v1
- Add unique ID to flow states
@@ -197,7 +362,16 @@ icon: timeline
- Fixed typos, nested pydantic model issue, and docling issues
</Update>
<Update label="2025-01-04" description="v0.95.0">
<Update label="2024-01-04" description="v0.95.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0950.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.95.0">View on GitHub</a>
</div>
**New Features**
- Adding Multimodal Abilities to Crew
- Programatic Guardrails
@@ -228,6 +402,14 @@ icon: timeline
</Update>
<Update label="2024-12-05" description="v0.86.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0860.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.86.0">View on GitHub</a>
</div>
**Changes**
- Remove all references to pipeline and pipeline router
- Add Nvidia NIM as provider in Custom LLM
@@ -238,6 +420,14 @@ icon: timeline
</Update>
<Update label="2024-12-04" description="v0.85.0">
## Release Highlights
<Frame>
<img src="/images/releases/v0850.png" />
</Frame>
<div style={{ textAlign: 'center', marginBottom: '1rem' }}>
<a href="https://github.com/crewAIInc/crewAI/releases/tag/0.85.0">View on GitHub</a>
</div>
**Features**
- Added knowledge to agent level
- Feat/remove langchain

View File

@@ -1,51 +1,362 @@
---
title: Collaboration
description: Exploring the dynamics of agent collaboration within the CrewAI framework, focusing on the newly integrated features for enhanced functionality.
description: How to enable agents to work together, delegate tasks, and communicate effectively within CrewAI teams.
icon: screen-users
---
## Overview
## Overview
Collaboration in CrewAI is fundamental, enabling agents to combine their skills, share information, and assist each other in task execution, embodying a truly cooperative ecosystem.
Collaboration in CrewAI enables agents to work together as a team by delegating tasks and asking questions to leverage each other's expertise. When `allow_delegation=True`, agents automatically gain access to powerful collaboration tools.
- **Information Sharing**: Ensures all agents are well-informed and can contribute effectively by sharing data and findings.
- **Task Assistance**: Allows agents to seek help from peers with the required expertise for specific tasks.
- **Resource Allocation**: Optimizes task execution through the efficient distribution and sharing of resources among agents.
## Quick Start: Enable Collaboration
## Enhanced Attributes for Improved Collaboration
```python
from crewai import Agent, Crew, Task
The `Crew` class has been enriched with several attributes to support advanced functionalities:
# Enable collaboration for agents
researcher = Agent(
role="Research Specialist",
goal="Conduct thorough research on any topic",
backstory="Expert researcher with access to various sources",
allow_delegation=True, # 🔑 Key setting for collaboration
verbose=True
)
| Feature | Description |
|:-------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Language Model Management** (`manager_llm`, `function_calling_llm`) | Manages language models for executing tasks and tools. `manager_llm` is required for hierarchical processes, while `function_calling_llm` is optional with a default value for streamlined interactions. |
| **Custom Manager Agent** (`manager_agent`) | Specifies a custom agent as the manager, replacing the default CrewAI manager. |
| **Process Flow** (`process`) | Defines execution logic (e.g., sequential, hierarchical) for task distribution. |
| **Verbose Logging** (`verbose`) | Provides detailed logging for monitoring and debugging. Accepts integer and boolean values to control verbosity level. |
| **Rate Limiting** (`max_rpm`) | Limits requests per minute to optimize resource usage. Setting guidelines depend on task complexity and load. |
| **Internationalization / Customization** (`prompt_file`) | Supports prompt customization for global usability. [Example of file](https://github.com/joaomdmoura/crewAI/blob/main/src/crewai/translations/en.json) |
| **Callback and Telemetry** (`step_callback`, `task_callback`) | Enables step-wise and task-level execution monitoring and telemetry for performance analytics. |
| **Crew Sharing** (`share_crew`) | Allows sharing crew data with CrewAI for model improvement. Privacy implications and benefits should be considered. |
| **Usage Metrics** (`usage_metrics`) | Logs all LLM usage metrics during task execution for performance insights. |
| **Memory Usage** (`memory`) | Enables memory for storing execution history, aiding in agent learning and task efficiency. |
| **Embedder Configuration** (`embedder`) | Configures the embedder for language understanding and generation, with support for provider customization. |
| **Cache Management** (`cache`) | Specifies whether to cache tool execution results, enhancing performance. |
| **Output Logging** (`output_log_file`) | Defines the file path for logging crew execution output. |
| **Planning Mode** (`planning`) | Enables action planning before task execution. Set `planning=True` to activate. |
| **Replay Feature** (`replay`) | Provides CLI for listing tasks from the last run and replaying from specific tasks, aiding in task management and troubleshooting. |
writer = Agent(
role="Content Writer",
goal="Create engaging content based on research",
backstory="Skilled writer who transforms research into compelling content",
allow_delegation=True, # 🔑 Enables asking questions to other agents
verbose=True
)
## Delegation (Dividing to Conquer)
# Agents can now collaborate automatically
crew = Crew(
agents=[researcher, writer],
tasks=[...],
verbose=True
)
```
Delegation enhances functionality by allowing agents to intelligently assign tasks or seek help, thereby amplifying the crew's overall capability.
## How Agent Collaboration Works
## Implementing Collaboration and Delegation
When `allow_delegation=True`, CrewAI automatically provides agents with two powerful tools:
Setting up a crew involves defining the roles and capabilities of each agent. CrewAI seamlessly manages their interactions, ensuring efficient collaboration and delegation, with enhanced customization and monitoring features to adapt to various operational needs.
### 1. **Delegate Work Tool**
Allows agents to assign tasks to teammates with specific expertise.
## Example Scenario
```python
# Agent automatically gets this tool:
# Delegate work to coworker(task: str, context: str, coworker: str)
```
Consider a crew with a researcher agent tasked with data gathering and a writer agent responsible for compiling reports. The integration of advanced language model management and process flow attributes allows for more sophisticated interactions, such as the writer delegating complex research tasks to the researcher or querying specific information, thereby facilitating a seamless workflow.
### 2. **Ask Question Tool**
Enables agents to ask specific questions to gather information from colleagues.
## Conclusion
```python
# Agent automatically gets this tool:
# Ask question to coworker(question: str, context: str, coworker: str)
```
The integration of advanced attributes and functionalities into the CrewAI framework significantly enriches the agent collaboration ecosystem. These enhancements not only simplify interactions but also offer unprecedented flexibility and control, paving the way for sophisticated AI-driven solutions capable of tackling complex tasks through intelligent collaboration and delegation.
## Collaboration in Action
Here's a complete example showing agents collaborating on a content creation task:
```python
from crewai import Agent, Crew, Task, Process
# Create collaborative agents
researcher = Agent(
role="Research Specialist",
goal="Find accurate, up-to-date information on any topic",
backstory="""You're a meticulous researcher with expertise in finding
reliable sources and fact-checking information across various domains.""",
allow_delegation=True,
verbose=True
)
writer = Agent(
role="Content Writer",
goal="Create engaging, well-structured content",
backstory="""You're a skilled content writer who excels at transforming
research into compelling, readable content for different audiences.""",
allow_delegation=True,
verbose=True
)
editor = Agent(
role="Content Editor",
goal="Ensure content quality and consistency",
backstory="""You're an experienced editor with an eye for detail,
ensuring content meets high standards for clarity and accuracy.""",
allow_delegation=True,
verbose=True
)
# Create a task that encourages collaboration
article_task = Task(
description="""Write a comprehensive 1000-word article about 'The Future of AI in Healthcare'.
The article should include:
- Current AI applications in healthcare
- Emerging trends and technologies
- Potential challenges and ethical considerations
- Expert predictions for the next 5 years
Collaborate with your teammates to ensure accuracy and quality.""",
expected_output="A well-researched, engaging 1000-word article with proper structure and citations",
agent=writer # Writer leads, but can delegate research to researcher
)
# Create collaborative crew
crew = Crew(
agents=[researcher, writer, editor],
tasks=[article_task],
process=Process.sequential,
verbose=True
)
result = crew.kickoff()
```
## Collaboration Patterns
### Pattern 1: Research → Write → Edit
```python
research_task = Task(
description="Research the latest developments in quantum computing",
expected_output="Comprehensive research summary with key findings and sources",
agent=researcher
)
writing_task = Task(
description="Write an article based on the research findings",
expected_output="Engaging 800-word article about quantum computing",
agent=writer,
context=[research_task] # Gets research output as context
)
editing_task = Task(
description="Edit and polish the article for publication",
expected_output="Publication-ready article with improved clarity and flow",
agent=editor,
context=[writing_task] # Gets article draft as context
)
```
### Pattern 2: Collaborative Single Task
```python
collaborative_task = Task(
description="""Create a marketing strategy for a new AI product.
Writer: Focus on messaging and content strategy
Researcher: Provide market analysis and competitor insights
Work together to create a comprehensive strategy.""",
expected_output="Complete marketing strategy with research backing",
agent=writer # Lead agent, but can delegate to researcher
)
```
## Hierarchical Collaboration
For complex projects, use a hierarchical process with a manager agent:
```python
from crewai import Agent, Crew, Task, Process
# Manager agent coordinates the team
manager = Agent(
role="Project Manager",
goal="Coordinate team efforts and ensure project success",
backstory="Experienced project manager skilled at delegation and quality control",
allow_delegation=True,
verbose=True
)
# Specialist agents
researcher = Agent(
role="Researcher",
goal="Provide accurate research and analysis",
backstory="Expert researcher with deep analytical skills",
allow_delegation=False, # Specialists focus on their expertise
verbose=True
)
writer = Agent(
role="Writer",
goal="Create compelling content",
backstory="Skilled writer who creates engaging content",
allow_delegation=False,
verbose=True
)
# Manager-led task
project_task = Task(
description="Create a comprehensive market analysis report with recommendations",
expected_output="Executive summary, detailed analysis, and strategic recommendations",
agent=manager # Manager will delegate to specialists
)
# Hierarchical crew
crew = Crew(
agents=[manager, researcher, writer],
tasks=[project_task],
process=Process.hierarchical, # Manager coordinates everything
manager_llm="gpt-4o", # Specify LLM for manager
verbose=True
)
```
## Best Practices for Collaboration
### 1. **Clear Role Definition**
```python
# ✅ Good: Specific, complementary roles
researcher = Agent(role="Market Research Analyst", ...)
writer = Agent(role="Technical Content Writer", ...)
# ❌ Avoid: Overlapping or vague roles
agent1 = Agent(role="General Assistant", ...)
agent2 = Agent(role="Helper", ...)
```
### 2. **Strategic Delegation Enabling**
```python
# ✅ Enable delegation for coordinators and generalists
lead_agent = Agent(
role="Content Lead",
allow_delegation=True, # Can delegate to specialists
...
)
# ✅ Disable for focused specialists (optional)
specialist_agent = Agent(
role="Data Analyst",
allow_delegation=False, # Focuses on core expertise
...
)
```
### 3. **Context Sharing**
```python
# ✅ Use context parameter for task dependencies
writing_task = Task(
description="Write article based on research",
agent=writer,
context=[research_task], # Shares research results
...
)
```
### 4. **Clear Task Descriptions**
```python
# ✅ Specific, actionable descriptions
Task(
description="""Research competitors in the AI chatbot space.
Focus on: pricing models, key features, target markets.
Provide data in a structured format.""",
...
)
# ❌ Vague descriptions that don't guide collaboration
Task(description="Do some research about chatbots", ...)
```
## Troubleshooting Collaboration
### Issue: Agents Not Collaborating
**Symptoms:** Agents work in isolation, no delegation occurs
```python
# ✅ Solution: Ensure delegation is enabled
agent = Agent(
role="...",
allow_delegation=True, # This is required!
...
)
```
### Issue: Too Much Back-and-Forth
**Symptoms:** Agents ask excessive questions, slow progress
```python
# ✅ Solution: Provide better context and specific roles
Task(
description="""Write a technical blog post about machine learning.
Context: Target audience is software developers with basic ML knowledge.
Length: 1200 words
Include: code examples, practical applications, best practices
If you need specific technical details, delegate research to the researcher.""",
...
)
```
### Issue: Delegation Loops
**Symptoms:** Agents delegate back and forth indefinitely
```python
# ✅ Solution: Clear hierarchy and responsibilities
manager = Agent(role="Manager", allow_delegation=True)
specialist1 = Agent(role="Specialist A", allow_delegation=False) # No re-delegation
specialist2 = Agent(role="Specialist B", allow_delegation=False)
```
## Advanced Collaboration Features
### Custom Collaboration Rules
```python
# Set specific collaboration guidelines in agent backstory
agent = Agent(
role="Senior Developer",
backstory="""You lead development projects and coordinate with team members.
Collaboration guidelines:
- Delegate research tasks to the Research Analyst
- Ask the Designer for UI/UX guidance
- Consult the QA Engineer for testing strategies
- Only escalate blocking issues to the Project Manager""",
allow_delegation=True
)
```
### Monitoring Collaboration
```python
def track_collaboration(output):
"""Track collaboration patterns"""
if "Delegate work to coworker" in output.raw:
print("🤝 Delegation occurred")
if "Ask question to coworker" in output.raw:
print("❓ Question asked")
crew = Crew(
agents=[...],
tasks=[...],
step_callback=track_collaboration, # Monitor collaboration
verbose=True
)
```
## Memory and Learning
Enable agents to remember past collaborations:
```python
agent = Agent(
role="Content Lead",
memory=True, # Remembers past interactions
allow_delegation=True,
verbose=True
)
```
With memory enabled, agents learn from previous collaborations and improve their delegation decisions over time.
## Next Steps
- **Try the examples**: Start with the basic collaboration example
- **Experiment with roles**: Test different agent role combinations
- **Monitor interactions**: Use `verbose=True` to see collaboration in action
- **Optimize task descriptions**: Clear tasks lead to better collaboration
- **Scale up**: Try hierarchical processes for complex projects
Collaboration transforms individual AI agents into powerful teams that can tackle complex, multi-faceted challenges together.

View File

@@ -7,7 +7,7 @@
"light": "#F3A78B",
"dark": "#C94C3C"
},
"favicon": "favicon.svg",
"favicon": "images/favicon.svg",
"contextual": {
"options": ["copy", "view", "chatgpt", "claude"]
},
@@ -82,70 +82,113 @@
"concepts/event-listener"
]
},
{
"group": "Tools",
"pages": [
"tools/aimindtool",
"tools/apifyactorstool",
"tools/bedrockinvokeagenttool",
"tools/bedrockkbretriever",
"tools/bravesearchtool",
"tools/browserbaseloadtool",
"tools/codedocssearchtool",
"tools/codeinterpretertool",
"tools/composiotool",
"tools/csvsearchtool",
"tools/dalletool",
"tools/directorysearchtool",
"tools/directoryreadtool",
"tools/docxsearchtool",
"tools/exasearchtool",
"tools/filereadtool",
"tools/filewritetool",
"tools/firecrawlcrawlwebsitetool",
"tools/firecrawlscrapewebsitetool",
"tools/firecrawlsearchtool",
"tools/githubsearchtool",
"tools/hyperbrowserloadtool",
"tools/linkupsearchtool",
"tools/llamaindextool",
"tools/langchaintool",
"tools/serperdevtool",
"tools/s3readertool",
"tools/s3writertool",
"tools/scrapegraphscrapetool",
"tools/scrapeelementfromwebsitetool",
"tools/jsonsearchtool",
"tools/mdxsearchtool",
"tools/mysqltool",
"tools/multiontool",
"tools/nl2sqltool",
"tools/patronustools",
"tools/pdfsearchtool",
"tools/pgsearchtool",
"tools/qdrantvectorsearchtool",
"tools/ragtool",
"tools/scrapewebsitetool",
"tools/scrapflyscrapetool",
"tools/seleniumscrapingtool",
"tools/snowflakesearchtool",
"tools/spidertool",
"tools/stagehandtool",
"tools/txtsearchtool",
"tools/visiontool",
"tools/weaviatevectorsearchtool",
"tools/websitesearchtool",
"tools/xmlsearchtool",
"tools/youtubechannelsearchtool",
"tools/youtubevideosearchtool"
]
},
{
"group": "MCP Integration",
"pages": [
"mcp/crewai-mcp-integration"
]
},
{
"group": "Tools",
"pages": [
"tools/overview",
{
"group": "File & Document",
"pages": [
"tools/file-document/overview",
"tools/file-document/filereadtool",
"tools/file-document/filewritetool",
"tools/file-document/pdfsearchtool",
"tools/file-document/docxsearchtool",
"tools/file-document/mdxsearchtool",
"tools/file-document/xmlsearchtool",
"tools/file-document/txtsearchtool",
"tools/file-document/jsonsearchtool",
"tools/file-document/csvsearchtool",
"tools/file-document/directorysearchtool",
"tools/file-document/directoryreadtool"
]
},
{
"group": "Web Scraping & Browsing",
"pages": [
"tools/web-scraping/overview",
"tools/web-scraping/scrapewebsitetool",
"tools/web-scraping/scrapeelementfromwebsitetool",
"tools/web-scraping/scrapflyscrapetool",
"tools/web-scraping/seleniumscrapingtool",
"tools/web-scraping/scrapegraphscrapetool",
"tools/web-scraping/spidertool",
"tools/web-scraping/browserbaseloadtool",
"tools/web-scraping/hyperbrowserloadtool",
"tools/web-scraping/stagehandtool",
"tools/web-scraping/firecrawlcrawlwebsitetool",
"tools/web-scraping/firecrawlscrapewebsitetool",
"tools/web-scraping/firecrawlsearchtool"
]
},
{
"group": "Search & Research",
"pages": [
"tools/search-research/overview",
"tools/search-research/serperdevtool",
"tools/search-research/bravesearchtool",
"tools/search-research/exasearchtool",
"tools/search-research/linkupsearchtool",
"tools/search-research/githubsearchtool",
"tools/search-research/websitesearchtool",
"tools/search-research/codedocssearchtool",
"tools/search-research/youtubechannelsearchtool",
"tools/search-research/youtubevideosearchtool"
]
},
{
"group": "Database & Data",
"pages": [
"tools/database-data/overview",
"tools/database-data/mysqltool",
"tools/database-data/pgsearchtool",
"tools/database-data/snowflakesearchtool",
"tools/database-data/nl2sqltool",
"tools/database-data/qdrantvectorsearchtool",
"tools/database-data/weaviatevectorsearchtool"
]
},
{
"group": "AI & Machine Learning",
"pages": [
"tools/ai-ml/overview",
"tools/ai-ml/dalletool",
"tools/ai-ml/visiontool",
"tools/ai-ml/aimindtool",
"tools/ai-ml/llamaindextool",
"tools/ai-ml/langchaintool",
"tools/ai-ml/ragtool",
"tools/ai-ml/codeinterpretertool",
"tools/ai-ml/patronustools"
]
},
{
"group": "Cloud & Storage",
"pages": [
"tools/cloud-storage/overview",
"tools/cloud-storage/s3readertool",
"tools/cloud-storage/s3writertool",
"tools/cloud-storage/bedrockinvokeagenttool",
"tools/cloud-storage/bedrockkbretriever"
]
},
{
"group": "Automation & Integration",
"pages": [
"tools/automation/overview",
"tools/automation/apifyactorstool",
"tools/automation/composiotool",
"tools/automation/multiontool"
]
}
]
},
{
"group": "Agent Monitoring & Observability",
"pages": [
@@ -169,15 +212,18 @@
"how-to/custom-llm",
"how-to/custom-manager-agent",
"how-to/customizing-agents",
"how-to/dalle-image-generation",
"how-to/force-tool-output-as-result",
"how-to/hierarchical-process",
"how-to/human-in-the-loop",
"how-to/human-input-on-execution",
"how-to/kickoff-async",
"how-to/kickoff-for-each",
"how-to/llm-connections",
"how-to/multimodal-agents",
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/sequential-process"
"how-to/sequential-process",
"how-to/using-annotations"
]
},
{
@@ -197,17 +243,6 @@
"enterprise/introduction"
]
},
{
"group": "How-To Guides",
"pages": [
"enterprise/guides/build-crew",
"enterprise/guides/deploy-crew",
"enterprise/guides/kickoff-crew",
"enterprise/guides/update-crew",
"enterprise/guides/use-crew-api",
"enterprise/guides/enable-crew-studio"
]
},
{
"group": "Features",
"pages": [
@@ -217,6 +252,24 @@
"enterprise/features/hallucination-guardrail"
]
},
{
"group": "How-To Guides",
"pages": [
"enterprise/guides/build-crew",
"enterprise/guides/deploy-crew",
"enterprise/guides/kickoff-crew",
"enterprise/guides/update-crew",
"enterprise/guides/enable-crew-studio",
"enterprise/guides/azure-openai-setup",
"enterprise/guides/hubspot-trigger",
"enterprise/guides/react-component-export",
"enterprise/guides/salesforce-trigger",
"enterprise/guides/slack-trigger",
"enterprise/guides/team-management",
"enterprise/guides/webhook-automation",
"enterprise/guides/zapier-trigger"
]
},
{
"group": "Resources",
"pages": [
@@ -225,6 +278,21 @@
}
]
},
{
"tab": "API Reference",
"groups": [
{
"group": "Getting Started",
"pages": [
"api-reference/introduction"
]
},
{
"group": "Endpoints",
"openapi": "enterprise-api.yaml"
}
]
},
{
"tab": "Examples",
"groups": [
@@ -260,6 +328,11 @@
"href": "https://community.crewai.com",
"icon": "discourse"
},
{
"anchor": "Crew GPT",
"href": "https://chatgpt.com/g/g-qqTuUWsBY-crewai-assistant",
"icon": "robot"
},
{
"anchor": "Get Help",
"href": "mailto:support@crewai.com",
@@ -269,8 +342,8 @@
}
},
"logo": {
"light": "crew_only_logo.png",
"dark": "crew_only_logo.png"
"light": "images/crew_only_logo.png",
"dark": "images/crew_only_logo.png"
},
"appearance": {
"default": "dark",
@@ -291,6 +364,16 @@
"search": {
"prompt": "Search CrewAI docs"
},
"api": {
"baseUrl": "https://your-actual-crew-name.crewai.com",
"auth": {
"method": "bearer",
"name": "Authorization"
},
"playground": {
"mode": "simple"
}
},
"seo": {
"indexing": "all"
},

434
docs/enterprise-api.yaml Normal file
View File

@@ -0,0 +1,434 @@
openapi: 3.0.3
info:
title: CrewAI Enterprise API
description: |
REST API for interacting with your deployed CrewAI crews on CrewAI Enterprise.
## Getting Started
1. **Find your crew URL**: Get your unique crew URL from the CrewAI Enterprise dashboard
2. **Copy examples**: Use the code examples from each endpoint page as templates
3. **Replace placeholders**: Update URLs and tokens with your actual values
4. **Test with your tools**: Use cURL, Postman, or your preferred API client
## Authentication
All API requests require a bearer token for authentication. There are two types of tokens:
- **Bearer Token**: Organization-level token for full crew operations
- **User Bearer Token**: User-scoped token for individual access with limited permissions
You can find your bearer tokens in the Status tab of your crew's detail page in the CrewAI Enterprise dashboard.
## Reference Documentation
This documentation provides comprehensive examples for each endpoint:
- **Request formats** with all required and optional parameters
- **Response examples** for success and error scenarios
- **Code samples** in multiple programming languages
- **Authentication patterns** with proper Bearer token usage
Copy the examples and customize them with your actual crew URL and authentication tokens.
## Workflow
1. **Discover inputs** using `GET /inputs`
2. **Start execution** using `POST /kickoff`
3. **Monitor progress** using `GET /status/{kickoff_id}`
version: 1.0.0
contact:
name: CrewAI Support
email: support@crewai.com
url: https://crewai.com
servers:
- url: https://your-actual-crew-name.crewai.com
description: Replace with your actual deployed crew URL from the CrewAI Enterprise dashboard
- url: https://my-travel-crew.crewai.com
description: Example travel planning crew (replace with your URL)
- url: https://content-creation-crew.crewai.com
description: Example content creation crew (replace with your URL)
- url: https://research-assistant-crew.crewai.com
description: Example research assistant crew (replace with your URL)
security:
- BearerAuth: []
paths:
/inputs:
get:
summary: Get Required Inputs
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Retrieves the list of all required input parameters that your crew expects for execution.
Use this endpoint to discover what inputs you need to provide when starting a crew execution.
operationId: getRequiredInputs
responses:
'200':
description: Successfully retrieved required inputs
content:
application/json:
schema:
type: object
properties:
inputs:
type: array
items:
type: string
description: Array of required input parameter names
example: ["budget", "interests", "duration", "age"]
examples:
travel_crew:
summary: Travel planning crew inputs
value:
inputs: ["budget", "interests", "duration", "age"]
outreach_crew:
summary: Outreach crew inputs
value:
inputs: ["name", "title", "company", "industry", "our_product", "linkedin_url"]
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
$ref: '#/components/responses/NotFoundError'
'500':
$ref: '#/components/responses/ServerError'
/kickoff:
post:
summary: Start Crew Execution
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Initiates a new crew execution with the provided inputs. Returns a kickoff ID that can be used
to track the execution progress and retrieve results.
Crew executions can take anywhere from seconds to minutes depending on their complexity.
Consider using webhooks for real-time notifications or implement polling with the status endpoint.
operationId: startCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- inputs
properties:
inputs:
type: object
description: Key-value pairs of all required inputs for your crew
additionalProperties:
type: string
example:
budget: "1000 USD"
interests: "games, tech, ai, relaxing hikes, amazing food"
duration: "7 days"
age: "35"
meta:
type: object
description: Additional metadata to pass to the crew
additionalProperties: true
example:
requestId: "user-request-12345"
source: "mobile-app"
taskWebhookUrl:
type: string
format: uri
description: Callback URL executed after each task completion
example: "https://your-server.com/webhooks/task"
stepWebhookUrl:
type: string
format: uri
description: Callback URL executed after each agent thought/action
example: "https://your-server.com/webhooks/step"
crewWebhookUrl:
type: string
format: uri
description: Callback URL executed when the crew execution completes
example: "https://your-server.com/webhooks/crew"
examples:
travel_planning:
summary: Travel planning crew
value:
inputs:
budget: "1000 USD"
interests: "games, tech, ai, relaxing hikes, amazing food"
duration: "7 days"
age: "35"
meta:
requestId: "travel-req-123"
source: "web-app"
outreach_campaign:
summary: Outreach crew with webhooks
value:
inputs:
name: "John Smith"
title: "CTO"
company: "TechCorp"
industry: "Software"
our_product: "AI Development Platform"
linkedin_url: "https://linkedin.com/in/johnsmith"
taskWebhookUrl: "https://api.example.com/webhooks/task"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
responses:
'200':
description: Crew execution started successfully
content:
application/json:
schema:
type: object
properties:
kickoff_id:
type: string
format: uuid
description: Unique identifier for tracking this execution
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
'400':
description: Invalid request body or missing required inputs
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
'401':
$ref: '#/components/responses/UnauthorizedError'
'422':
description: Validation error - ensure all required inputs are provided
content:
application/json:
schema:
$ref: '#/components/schemas/ValidationError'
'500':
$ref: '#/components/responses/ServerError'
/status/{kickoff_id}:
get:
summary: Get Execution Status
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Retrieves the current status and results of a crew execution using its kickoff ID.
The response structure varies depending on the execution state:
- **running**: Execution in progress with current task info
- **completed**: Execution finished with full results
- **error**: Execution failed with error details
operationId: getExecutionStatus
parameters:
- name: kickoff_id
in: path
required: true
description: The kickoff ID returned from the /kickoff endpoint
schema:
type: string
format: uuid
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
responses:
'200':
description: Successfully retrieved execution status
content:
application/json:
schema:
oneOf:
- $ref: '#/components/schemas/ExecutionRunning'
- $ref: '#/components/schemas/ExecutionCompleted'
- $ref: '#/components/schemas/ExecutionError'
examples:
running:
summary: Execution in progress
value:
status: "running"
current_task: "research_task"
progress:
completed_tasks: 1
total_tasks: 3
completed:
summary: Execution completed successfully
value:
status: "completed"
result:
output: "Comprehensive travel itinerary for 7 days in Japan focusing on tech culture..."
tasks:
- task_id: "research_task"
output: "Research findings on tech destinations in Japan..."
agent: "Travel Researcher"
execution_time: 45.2
- task_id: "planning_task"
output: "7-day detailed itinerary with activities and recommendations..."
agent: "Trip Planner"
execution_time: 62.8
execution_time: 108.5
error:
summary: Execution failed
value:
status: "error"
error: "Task execution failed: Invalid API key for external service"
execution_time: 23.1
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Kickoff ID not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Execution not found"
message: "No execution found with ID: abcd1234-5678-90ef-ghij-klmnopqrstuv"
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:
type: http
scheme: bearer
description: |
**📋 Reference Documentation** - *The tokens shown in examples are placeholders for reference only.*
Use your actual Bearer Token or User Bearer Token from the CrewAI Enterprise dashboard for real API calls.
**Bearer Token**: Organization-level access for full crew operations
**User Bearer Token**: User-scoped access with limited permissions
schemas:
ExecutionRunning:
type: object
properties:
status:
type: string
enum: ["running"]
example: "running"
current_task:
type: string
description: Name of the currently executing task
example: "research_task"
progress:
type: object
properties:
completed_tasks:
type: integer
description: Number of completed tasks
example: 1
total_tasks:
type: integer
description: Total number of tasks in the crew
example: 3
ExecutionCompleted:
type: object
properties:
status:
type: string
enum: ["completed"]
example: "completed"
result:
type: object
properties:
output:
type: string
description: Final output from the crew execution
example: "Comprehensive travel itinerary..."
tasks:
type: array
items:
$ref: '#/components/schemas/TaskResult'
execution_time:
type: number
description: Total execution time in seconds
example: 108.5
ExecutionError:
type: object
properties:
status:
type: string
enum: ["error"]
example: "error"
error:
type: string
description: Error message describing what went wrong
example: "Task execution failed: Invalid API key"
execution_time:
type: number
description: Time until error occurred in seconds
example: 23.1
TaskResult:
type: object
properties:
task_id:
type: string
description: Unique identifier for the task
example: "research_task"
output:
type: string
description: Output generated by this task
example: "Research findings..."
agent:
type: string
description: Name of the agent that executed this task
example: "Travel Researcher"
execution_time:
type: number
description: Time taken to execute this task in seconds
example: 45.2
Error:
type: object
properties:
error:
type: string
description: Error type or title
example: "Authentication Error"
message:
type: string
description: Detailed error message
example: "Invalid bearer token provided"
ValidationError:
type: object
properties:
error:
type: string
example: "Validation Error"
message:
type: string
example: "Missing required inputs"
details:
type: object
properties:
missing_inputs:
type: array
items:
type: string
example: ["budget", "interests"]
responses:
UnauthorizedError:
description: Authentication failed - check your bearer token
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Unauthorized"
message: "Invalid or missing bearer token"
NotFoundError:
description: Resource not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Not Found"
message: "The requested resource was not found"
ServerError:
description: Internal server error
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Internal Server Error"
message: "An unexpected error occurred"

View File

@@ -0,0 +1,51 @@
---
title: "Azure OpenAI Setup"
description: "Configure Azure OpenAI with Crew Studio for enterprise LLM connections"
icon: "microsoft"
---
This guide walks you through connecting Azure OpenAI with Crew Studio for seamless enterprise AI operations.
## Setup Process
<Steps>
<Step title="Access Azure OpenAI Studio">
1. In Azure, go to `Azure AI Services > select your deployment > open Azure OpenAI Studio`.
2. On the left menu, click `Deployments`. If you don't have one, create a deployment with your desired model.
3. Once created, select your deployment and locate the `Target URI` and `Key` on the right side of the page. Keep this page open, as you'll need this information.
<Frame>
<img src="/images/enterprise/azure-openai-studio.png" alt="Azure OpenAI Studio" />
</Frame>
</Step>
<Step title="Configure CrewAI Enterprise Connection">
4. In another tab, open `CrewAI Enterprise > LLM Connections`. Name your LLM Connection, select Azure as the provider, and choose the same model you selected in Azure.
5. On the same page, add environment variables from step 3:
- One named `AZURE_DEPLOYMENT_TARGET_URL` (using the Target URI). The URL should look like this: https://your-deployment.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview
- Another named `AZURE_API_KEY` (using the Key).
6. Click `Add Connection` to save your LLM Connection.
</Step>
<Step title="Set Default Configuration">
7. In `CrewAI Enterprise > Settings > Defaults > Crew Studio LLM Settings`, set the new LLM Connection and model as defaults.
</Step>
<Step title="Configure Network Access">
8. Ensure network access settings:
- In Azure, go to `Azure OpenAI > select your deployment`.
- Navigate to `Resource Management > Networking`.
- Ensure that `Allow access from all networks` is enabled. If this setting is restricted, CrewAI may be blocked from accessing your Azure OpenAI endpoint.
</Step>
</Steps>
## Verification
You're all set! Crew Studio will now use your Azure OpenAI connection. Test the connection by creating a simple crew or task to ensure everything is working properly.
## Troubleshooting
If you encounter issues:
- Verify the Target URI format matches the expected pattern
- Check that the API key is correct and has proper permissions
- Ensure network access is configured to allow CrewAI connections
- Confirm the deployment model matches what you've configured in CrewAI

View File

@@ -1,41 +1,41 @@
---
title: "Deploy Crew"
description: "Deploy your local CrewAI project to the Enterprise platform"
icon: "cloud-arrow-up"
description: "Deploying a Crew on CrewAI Enterprise"
icon: "rocket"
---
## Overview
This guide will walk you through the process of deploying your locally developed CrewAI project to the CrewAI Enterprise platform,
transforming it into a production-ready API endpoint.
## Option 1: CLI Deployment
<iframe
width="100%"
height="400"
src="https://www.youtube.com/embed/3EqSV-CYDZA"
title="Deploying a Crew to CrewAI Enterprise"
frameborder="0"
style={{ borderRadius: '10px' }}
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen
></iframe>
### Prerequisites
Before starting the deployment process, make sure you have:
- A CrewAI project built locally ([follow our quickstart guide](/quickstart) if you haven't created one yet)
- Your code pushed to a GitHub repository
- The latest version of the CrewAI CLI installed (`uv tool install crewai`)
<Note>
For a quick reference project, you can clone our example repository at [github.com/tonykipkemboi/crewai-latest-ai-development](https://github.com/tonykipkemboi/crewai-latest-ai-development).
After creating a crew locally or through Crew Studio, the next step is deploying it to the CrewAI Enterprise platform. This guide covers multiple deployment methods to help you choose the best approach for your workflow.
</Note>
## Prerequisites
<CardGroup cols={2}>
<Card title="Crew Ready for Deployment" icon="users">
You should have a working crew either built locally or created through Crew Studio
</Card>
<Card title="GitHub Repository" icon="github">
Your crew code should be in a GitHub repository (for GitHub integration method)
</Card>
</CardGroup>
## Option 1: Deploy Using CrewAI CLI
The CLI provides the fastest way to deploy locally developed crews to the Enterprise platform.
<Steps>
<Step title="Install CrewAI CLI">
If you haven't already, install the CrewAI CLI:
```bash
pip install crewai[tools]
```
<Tip>
The CLI comes with the main CrewAI package, but the `[tools]` extra ensures you have all deployment dependencies.
</Tip>
</Step>
<Step title="Authenticate with the Enterprise Platform">
First, you need to authenticate your CLI with the CrewAI Enterprise platform:
@@ -189,6 +189,62 @@ You can also deploy your crews directly through the CrewAI Enterprise web interf
</Steps>
## ⚠️ Environment Variable Security Requirements
<Warning>
**Important**: CrewAI Enterprise has security restrictions on environment variable names that can cause deployment failures if not followed.
</Warning>
### Blocked Environment Variable Patterns
For security reasons, the following environment variable naming patterns are **automatically filtered** and will cause deployment issues:
**Blocked Patterns:**
- Variables ending with `_TOKEN` (e.g., `MY_API_TOKEN`)
- Variables ending with `_PASSWORD` (e.g., `DB_PASSWORD`)
- Variables ending with `_SECRET` (e.g., `API_SECRET`)
- Variables ending with `_KEY` in certain contexts
**Specific Blocked Variables:**
- `GITHUB_USER`, `GITHUB_TOKEN`
- `AWS_REGION`, `AWS_DEFAULT_REGION`
- Various internal CrewAI system variables
### Allowed Exceptions
Some variables are explicitly allowed despite matching blocked patterns:
- `AZURE_AD_TOKEN`
- `AZURE_OPENAI_AD_TOKEN`
- `ENTERPRISE_ACTION_TOKEN`
- `CREWAI_ENTEPRISE_TOOLS_TOKEN`
### How to Fix Naming Issues
If your deployment fails due to environment variable restrictions:
```bash
# ❌ These will cause deployment failures
OPENAI_TOKEN=sk-...
DATABASE_PASSWORD=mypassword
API_SECRET=secret123
# ✅ Use these naming patterns instead
OPENAI_API_KEY=sk-...
DATABASE_CREDENTIALS=mypassword
API_CONFIG=secret123
```
### Best Practices
1. **Use standard naming conventions**: `PROVIDER_API_KEY` instead of `PROVIDER_TOKEN`
2. **Test locally first**: Ensure your crew works with the renamed variables
3. **Update your code**: Change any references to the old variable names
4. **Document changes**: Keep track of renamed variables for your team
<Tip>
If you encounter deployment failures with cryptic environment variable errors, check your variable names against these patterns first.
</Tip>
### Interact with Your Deployed Crew
Once deployment is complete, you can access your crew through:

View File

@@ -0,0 +1,53 @@
---
title: "HubSpot Trigger"
description: "Trigger CrewAI crews directly from HubSpot Workflows"
icon: "hubspot"
---
This guide provides a step-by-step process to set up HubSpot triggers for CrewAI Enterprise, enabling you to initiate crews directly from HubSpot Workflows.
## Prerequisites
- A CrewAI Enterprise account
- A HubSpot account with the [HubSpot Workflows](https://knowledge.hubspot.com/workflows/create-workflows) feature
## Setup Steps
<Steps>
<Step title="Connect your HubSpot account with CrewAI Enterprise">
- Log in to your `CrewAI Enterprise account > Triggers`
- Select `HubSpot` from the list of available triggers
- Choose the HubSpot account you want to connect with CrewAI Enterprise
- Follow the on-screen prompts to authorize CrewAI Enterprise access to your HubSpot account
- A confirmation message will appear once HubSpot is successfully connected with CrewAI Enterprise
</Step>
<Step title="Create a HubSpot Workflow">
- Log in to your `HubSpot account > Automations > Workflows > New workflow`
- Select the workflow type that fits your needs (e.g., Start from scratch)
- In the workflow builder, click the Plus (+) icon to add a new action.
- Choose `Integrated apps > CrewAI > Kickoff a Crew`.
- Select the Crew you want to initiate.
- Click `Save` to add the action to your workflow
<Frame>
<img src="/images/enterprise/hubspot-workflow-1.png" alt="HubSpot Workflow 1" />
</Frame>
</Step>
<Step title="Use Crew results with other actions">
- After the Kickoff a Crew step, click the Plus (+) icon to add a new action.
- For example, to send an internal email notification, choose `Communications > Send internal email notification`
- In the Body field, click `Insert data`, select `View properties or action outputs from > Action outputs > Crew Result` to include Crew data in the email
<Frame>
<img src="/images/enterprise/hubspot-workflow-2.png" alt="HubSpot Workflow 2" />
</Frame>
- Configure any additional actions as needed
- Review your workflow steps to ensure everything is set up correctly
- Activate the workflow
<Frame>
<img src="/images/enterprise/hubspot-workflow-3.png" alt="HubSpot Workflow 3" />
</Frame>
</Step>
</Steps>
## Additional Resources
For more detailed information on available actions and customization options, refer to the [HubSpot Workflows Documentation](https://knowledge.hubspot.com/workflows/create-workflows).

View File

@@ -0,0 +1,103 @@
---
title: "React Component Export"
description: "Learn how to export and integrate CrewAI Enterprise React components into your applications"
icon: "react"
---
This guide explains how to export CrewAI Enterprise crews as React components and integrate them into your own applications.
## Exporting a React Component
<Steps>
<Step title="Export the Component">
Click on the ellipsis (three dots on the right of your deployed crew) and select the export option and save the file locally. We will be using `CrewLead.jsx` for our example.
<Frame>
<img src="/images/enterprise/export-react-component.png" alt="Export React Component" />
</Frame>
</Step>
</Steps>
## Setting Up Your React Environment
To run this React component locally, you'll need to set up a React development environment and integrate this component into a React project.
<Steps>
<Step title="Install Node.js">
- Download and install Node.js from the official website: https://nodejs.org/
- Choose the LTS (Long Term Support) version for stability.
</Step>
<Step title="Create a new React project">
- Open Command Prompt or PowerShell
- Navigate to the directory where you want to create your project
- Run the following command to create a new React project:
```bash
npx create-react-app my-crew-app
```
- Change into the project directory:
```bash
cd my-crew-app
```
</Step>
<Step title="Install necessary dependencies">
```bash
npm install react-dom
```
</Step>
<Step title="Create the CrewLead component">
- Move the downloaded file `CrewLead.jsx` into the `src` folder of your project,
</Step>
<Step title="Modify your App.js to use the CrewLead component">
- Open `src/App.js`
- Replace its contents with something like this:
```jsx
import React from 'react';
import CrewLead from './CrewLead';
function App() {
return (
<div className="App">
<CrewLead baseUrl="YOUR_API_BASE_URL" bearerToken="YOUR_BEARER_TOKEN" />
</div>
);
}
export default App;
```
- Replace `YOUR_API_BASE_URL` and `YOUR_BEARER_TOKEN` with the actual values for your API.
</Step>
<Step title="Start the development server">
- In your project directory, run:
```bash
npm start
```
- This will start the development server, and your default web browser should open automatically to http://localhost:3000, where you'll see your React app running.
</Step>
</Steps>
## Customization
You can then customise the `CrewLead.jsx` to add color, title etc
<Frame>
<img src="/images/enterprise/customise-react-component.png" alt="Customise React Component" />
</Frame>
<Frame>
<img src="/images/enterprise/customise-react-component-2.png" alt="Customise React Component" />
</Frame>
## Next Steps
- Customize the component styling to match your application's design
- Add additional props for configuration
- Integrate with your application's state management
- Add error handling and loading states

View File

@@ -0,0 +1,44 @@
---
title: "Salesforce Trigger"
description: "Trigger CrewAI crews from Salesforce workflows for CRM automation"
icon: "salesforce"
---
CrewAI Enterprise can be triggered from Salesforce to automate customer relationship management workflows and enhance your sales operations.
## Overview
Salesforce is a leading customer relationship management (CRM) platform that helps businesses streamline their sales, service, and marketing operations. By setting up CrewAI triggers from Salesforce, you can:
- Automate lead scoring and qualification
- Generate personalized sales materials
- Enhance customer service with AI-powered responses
- Streamline data analysis and reporting
## Demo
<Frame>
<iframe width="100%" height="400" src="https://www.youtube.com/embed/oJunVqjjfu4" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
</Frame>
## Getting Started
To set up Salesforce triggers:
1. **Contact Support**: Reach out to CrewAI Enterprise support for assistance with Salesforce trigger setup
2. **Review Requirements**: Ensure you have the necessary Salesforce permissions and API access
3. **Configure Connection**: Work with the support team to establish the connection between CrewAI and your Salesforce instance
4. **Test Triggers**: Verify the triggers work correctly with your specific use cases
## Use Cases
Common Salesforce + CrewAI trigger scenarios include:
- **Lead Processing**: Automatically analyze and score incoming leads
- **Proposal Generation**: Create customized proposals based on opportunity data
- **Customer Insights**: Generate analysis reports from customer interaction history
- **Follow-up Automation**: Create personalized follow-up messages and recommendations
## Next Steps
For detailed setup instructions and advanced configuration options, please contact CrewAI Enterprise support who can provide tailored guidance for your specific Salesforce environment and business needs.

View File

@@ -0,0 +1,61 @@
---
title: "Slack Trigger"
description: "Trigger CrewAI crews directly from Slack using slash commands"
icon: "slack"
---
This guide explains how to start a crew directly from Slack using CrewAI triggers.
## Prerequisites
- CrewAI Slack trigger installed and connected to your Slack workspace
- At least one crew configured in CrewAI
## Setup Steps
<Steps>
<Step title="Ensure the CrewAI Slack trigger is set up">
In the CrewAI dashboard, navigate to the **Triggers** section.
<Frame>
<img src="/images/enterprise/slack-integration.png" alt="CrewAI Slack Integration" />
</Frame>
Verify that Slack is listed and is connected.
</Step>
<Step title="Open your Slack channel">
- Navigate to the channel where you want to kickoff the crew.
- Type the slash command "**/kickoff**" to initiate the crew kickoff process.
- You should see a "**Kickoff crew**" appear as you type:
<Frame>
<img src="/images/enterprise/kickoff-slack-crew.png" alt="Kickoff crew" />
</Frame>
- Press Enter or select the "**Kickoff crew**" option. A dialog box titled "**Kickoff an AI Crew**" will appear.
</Step>
<Step title="Select the crew you want to start">
- In the dropdown menu labeled "**Select of the crews online:**", choose the crew you want to start.
- In the example below, "**prep-for-meeting**" is selected:
<Frame>
<img src="/images/enterprise/kickoff-slack-crew-dropdown.png" alt="Kickoff crew dropdown" />
</Frame>
- If your crew requires any inputs, click the "**Add Inputs**" button to provide them.
<Note>
The "**Add Inputs**" button is shown in the example above but is not yet clicked.
</Note>
</Step>
<Step title="Click Kickoff and wait for the crew to complete">
- Once you've selected the crew and added any necessary inputs, click "**Kickoff**" to start the crew.
<Frame>
<img src="/images/enterprise/kickoff-slack-crew-kickoff.png" alt="Kickoff crew" />
</Frame>
- The crew will start executing and you will see the results in the Slack channel.
<Frame>
<img src="/images/enterprise/kickoff-slack-crew-results.png" alt="Kickoff crew results" />
</Frame>
</Step>
</Steps>
## Tips
- Make sure you have the necessary permissions to use the `/kickoff` command in your Slack workspace.
- If you don't see your desired crew in the dropdown, ensure it's properly configured and online in CrewAI.

View File

@@ -0,0 +1,87 @@
---
title: "Team Management"
description: "Learn how to invite and manage team members in your CrewAI Enterprise organization"
icon: "users"
---
As an administrator of a CrewAI Enterprise account, you can easily invite new team members to join your organization. This guide will walk you through the process step-by-step.
## Inviting Team Members
<Steps>
<Step title="Access the Settings Page">
- Log in to your CrewAI Enterprise account
- Look for the gear icon (⚙️) in the top right corner of the dashboard
- Click on the gear icon to access the **Settings** page:
<Frame>
<img src="/images/enterprise/settings-page.png" alt="Settings Page" />
</Frame>
</Step>
<Step title="Navigate to the Members Section">
- On the Settings page, you'll see a `Members` tab
- Click on the `Members` tab to access the **Members** page:
<Frame>
<img src="/images/enterprise/members-tab.png" alt="Members Tab" />
</Frame>
</Step>
<Step title="Invite New Members">
- In the Members section, you'll see a list of current members (including yourself)
- Locate the `Email` input field
- Enter the email address of the person you want to invite
- Click the `Invite` button to send the invitation
</Step>
<Step title="Repeat as Needed">
- You can repeat this process to invite multiple team members
- Each invited member will receive an email invitation to join your organization
</Step>
</Steps>
## Adding Roles
You can add roles to your team members to control their access to different parts of the platform.
<Steps>
<Step title="Access the Settings Page">
- Log in to your CrewAI Enterprise account
- Look for the gear icon (⚙️) in the top right corner of the dashboard
- Click on the gear icon to access the **Settings** page:
<Frame>
<img src="/images/enterprise/settings-page.png" alt="Settings Page" />
</Frame>
</Step>
<Step title="Navigate to the Members Section">
- On the Settings page, you'll see a `Roles` tab
- Click on the `Roles` tab to access the **Roles** page.
<Frame>
<img src="/images/enterprise/roles-tab.png" alt="Roles Tab" />
</Frame>
- Click on the `Add Role` button to add a new role.
- Enter the details and permissions of the role and click the `Create Role` button to create the role.
<Frame>
<img src="/images/enterprise/add-role-modal.png" alt="Add Role Modal" />
</Frame>
</Step>
<Step title="Add Roles to Members">
- In the Members section, you'll see a list of current members (including yourself)
<Frame>
<img src="/images/enterprise/member-accepted-invitation.png" alt="Member Accepted Invitation" />
</Frame>
- Once the member has accepted the invitation, you can add a role to them.
- Navigate back to `Roles` tab
- Go to the member you want to add a role to and under the `Role` column, click on the dropdown
- Select the role you want to add to the member
- Click the `Update` button to save the role
<Frame>
<img src="/images/enterprise/assign-role.png" alt="Add Role to Member" />
</Frame>
</Step>
</Steps>
## Important Notes
- **Admin Privileges**: Only users with administrative privileges can invite new members
- **Email Accuracy**: Ensure you have the correct email addresses for your team members
- **Invitation Acceptance**: Invited members will need to accept the invitation to join your organization
- **Email Notifications**: You may want to inform your team members to check their email (including spam folders) for the invitation
By following these steps, you can easily expand your team and collaborate more effectively within your CrewAI Enterprise organization.

View File

@@ -1,319 +0,0 @@
---
title: "Trigger Deployed Crew API"
description: "Using your deployed crew's API on CrewAI Enterprise"
icon: "arrow-up-right-from-square"
---
Once you have deployed your crew to CrewAI Enterprise, it automatically becomes available as a REST API. This guide explains how to interact with your crew programmatically.
## API Basics
Your deployed crew exposes several endpoints that allow you to:
1. Discover required inputs
2. Start crew executions
3. Monitor execution status
4. Receive results
### Authentication
All API requests require a bearer token for authentication, which is generated when you deploy your crew:
```bash
curl -H "Authorization: Bearer YOUR_CREW_TOKEN" https://your-crew-url.crewai.com/...
```
<Tip>
You can find your bearer token in the Status tab of your crew's detail page in the CrewAI Enterprise dashboard.
</Tip>
<Frame>
![Bearer Token](/images/enterprise/bearer-token.png)
</Frame>
## Available Endpoints
Your crew API provides three main endpoints:
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/inputs` | GET | Lists all required inputs for crew execution |
| `/kickoff` | POST | Starts a crew execution with provided inputs |
| `/status/{kickoff_id}` | GET | Retrieves the status and results of an execution |
## GET /inputs
The inputs endpoint allows you to discover what parameters your crew requires:
```bash
curl -X GET \
-H "Authorization: Bearer YOUR_CREW_TOKEN" \
https://your-crew-url.crewai.com/inputs
```
### Response
```json
{
"inputs": ["budget", "interests", "duration", "age"]
}
```
This response indicates that your crew expects four input parameters: `budget`, `interests`, `duration`, and `age`.
## POST /kickoff
The kickoff endpoint starts a new crew execution:
```bash
curl -X POST \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_CREW_TOKEN" \
-d '{
"inputs": {
"budget": "1000 USD",
"interests": "games, tech, ai, relaxing hikes, amazing food",
"duration": "7 days",
"age": "35"
}
}' \
https://your-crew-url.crewai.com/kickoff
```
### Request Parameters
| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| `inputs` | Object | Yes | Key-value pairs of all required inputs |
| `meta` | Object | No | Additional metadata to pass to the crew |
| `taskWebhookUrl` | String | No | Callback URL executed after each task |
| `stepWebhookUrl` | String | No | Callback URL executed after each agent thought |
| `crewWebhookUrl` | String | No | Callback URL executed when the crew finishes |
### Example with Webhooks
```json
{
"inputs": {
"budget": "1000 USD",
"interests": "games, tech, ai, relaxing hikes, amazing food",
"duration": "7 days",
"age": "35"
},
"meta": {
"requestId": "user-request-12345",
"source": "mobile-app"
},
"taskWebhookUrl": "https://your-server.com/webhooks/task",
"stepWebhookUrl": "https://your-server.com/webhooks/step",
"crewWebhookUrl": "https://your-server.com/webhooks/crew"
}
```
### Response
```json
{
"kickoff_id": "abcd1234-5678-90ef-ghij-klmnopqrstuv"
}
```
The `kickoff_id` is used to track and retrieve the execution results.
## GET /status/{kickoff_id}
The status endpoint allows you to check the progress and results of a crew execution:
```bash
curl -X GET \
-H "Authorization: Bearer YOUR_CREW_TOKEN" \
https://your-crew-url.crewai.com/status/abcd1234-5678-90ef-ghij-klmnopqrstuv
```
### Response Structure
The response structure will vary depending on the execution state:
#### In Progress
```json
{
"status": "running",
"current_task": "research_task",
"progress": {
"completed_tasks": 0,
"total_tasks": 2
}
}
```
#### Completed
```json
{
"status": "completed",
"result": {
"output": "Comprehensive travel itinerary...",
"tasks": [
{
"task_id": "research_task",
"output": "Research findings...",
"agent": "Researcher",
"execution_time": 45.2
},
{
"task_id": "planning_task",
"output": "7-day itinerary plan...",
"agent": "Trip Planner",
"execution_time": 62.8
}
]
},
"execution_time": 108.5
}
```
## Webhook Integration
When you provide webhook URLs in your kickoff request, the system will make POST requests to those URLs at specific points in the execution:
### taskWebhookUrl
Called when each task completes:
```json
{
"kickoff_id": "abcd1234-5678-90ef-ghij-klmnopqrstuv",
"task_id": "research_task",
"status": "completed",
"output": "Research findings...",
"agent": "Researcher",
"execution_time": 45.2
}
```
### stepWebhookUrl
Called after each agent thought or action:
```json
{
"kickoff_id": "abcd1234-5678-90ef-ghij-klmnopqrstuv",
"task_id": "research_task",
"agent": "Researcher",
"step_type": "thought",
"content": "I should first search for popular destinations that match these interests..."
}
```
### crewWebhookUrl
Called when the entire crew execution completes:
```json
{
"kickoff_id": "abcd1234-5678-90ef-ghij-klmnopqrstuv",
"status": "completed",
"result": {
"output": "Comprehensive travel itinerary...",
"tasks": [
{
"task_id": "research_task",
"output": "Research findings...",
"agent": "Researcher",
"execution_time": 45.2
},
{
"task_id": "planning_task",
"output": "7-day itinerary plan...",
"agent": "Trip Planner",
"execution_time": 62.8
}
]
},
"execution_time": 108.5,
"meta": {
"requestId": "user-request-12345",
"source": "mobile-app"
}
}
```
## Best Practices
### Handling Long-Running Executions
Crew executions can take anywhere from seconds to minutes depending on their complexity. Consider these approaches:
1. **Webhooks (Recommended)**: Set up webhook endpoints to receive notifications when the execution completes
2. **Polling**: Implement a polling mechanism with exponential backoff
3. **Client-Side Timeout**: Set appropriate timeouts for your API requests
### Error Handling
The API may return various error codes:
| Code | Description | Recommended Action |
|------|-------------|-------------------|
| 401 | Unauthorized | Check your bearer token |
| 404 | Not Found | Verify your crew URL and kickoff_id |
| 422 | Validation Error | Ensure all required inputs are provided |
| 500 | Server Error | Contact support with the error details |
### Sample Code
Here's a complete Python example for interacting with your crew API:
```python
import requests
import time
# Configuration
CREW_URL = "https://your-crew-url.crewai.com"
BEARER_TOKEN = "your-crew-token"
HEADERS = {
"Authorization": f"Bearer {BEARER_TOKEN}",
"Content-Type": "application/json"
}
# 1. Get required inputs
response = requests.get(f"{CREW_URL}/inputs", headers=HEADERS)
required_inputs = response.json()["inputs"]
print(f"Required inputs: {required_inputs}")
# 2. Start crew execution
payload = {
"inputs": {
"budget": "1000 USD",
"interests": "games, tech, ai, relaxing hikes, amazing food",
"duration": "7 days",
"age": "35"
}
}
response = requests.post(f"{CREW_URL}/kickoff", headers=HEADERS, json=payload)
kickoff_id = response.json()["kickoff_id"]
print(f"Execution started with ID: {kickoff_id}")
# 3. Poll for results
MAX_RETRIES = 30
POLL_INTERVAL = 10 # seconds
for i in range(MAX_RETRIES):
print(f"Checking status (attempt {i+1}/{MAX_RETRIES})...")
response = requests.get(f"{CREW_URL}/status/{kickoff_id}", headers=HEADERS)
data = response.json()
if data["status"] == "completed":
print("Execution completed!")
print(f"Result: {data['result']['output']}")
break
elif data["status"] == "error":
print(f"Execution failed: {data.get('error', 'Unknown error')}")
break
else:
print(f"Status: {data['status']}, waiting {POLL_INTERVAL} seconds...")
time.sleep(POLL_INTERVAL)
```
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with API integration or troubleshooting.
</Card>

View File

@@ -0,0 +1,121 @@
---
title: "Webhook Automation"
description: "Automate CrewAI Enterprise workflows using webhooks with platforms like ActivePieces, Zapier, and Make.com"
icon: "webhook"
---
CrewAI Enterprise allows you to automate your workflow using webhooks. This article will guide you through the process of setting up and using webhooks to kickoff your crew execution, with a focus on integration with ActivePieces, a workflow automation platform similar to Zapier and Make.com.
## Setting Up Webhooks
<Steps>
<Step title="Accessing the Kickoff Interface">
- Navigate to the CrewAI Enterprise dashboard
- Look for the `/kickoff` section, which is used to start the crew execution
<Frame>
<img src="/images/enterprise/kickoff-interface.png" alt="Kickoff Interface" />
</Frame>
</Step>
<Step title="Configuring the JSON Content">
In the JSON Content section, you'll need to provide the following information:
- **inputs**: A JSON object containing:
- `company`: The name of the company (e.g., "tesla")
- `product_name`: The name of the product (e.g., "crewai")
- `form_response`: The type of response (e.g., "financial")
- `icp_description`: A brief description of the Ideal Customer Profile
- `product_description`: A short description of the product
- `taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`: URLs for various webhook endpoints (ActivePieces, Zapier, Make.com or another compatible platform)
</Step>
<Step title="Integrating with ActivePieces">
In this example we will be using ActivePieces. You can use other platforms such as Zapier and Make.com
To integrate with ActivePieces:
1. Set up a new flow in ActivePieces
2. Add a trigger (e.g., `Every Day` schedule)
<Frame>
<img src="/images/enterprise/activepieces-trigger.png" alt="ActivePieces Trigger" />
</Frame>
3. Add an HTTP action step
- Set the action to `Send HTTP request`
- Use `POST` as the method
- Set the URL to your CrewAI Enterprise kickoff endpoint
- Add necessary headers (e.g., `Bearer Token`)
<Frame>
<img src="/images/enterprise/activepieces-headers.png" alt="ActivePieces Headers" />
</Frame>
- In the body, include the JSON content as configured in step 2
<Frame>
<img src="/images/enterprise/activepieces-body.png" alt="ActivePieces Body" />
</Frame>
- The crew will then kickoff at the pre-defined time.
</Step>
<Step title="Setting Up the Webhook">
1. Create a new flow in ActivePieces and name it
<Frame>
<img src="/images/enterprise/activepieces-flow.png" alt="ActivePieces Flow" />
</Frame>
2. Add a webhook step as the trigger:
- Select `Catch Webhook` as the trigger type
- This will generate a unique URL that will receive HTTP requests and trigger your flow
<Frame>
<img src="/images/enterprise/activepieces-webhook.png" alt="ActivePieces Webhook" />
</Frame>
- Configure the email to use crew webhook body text
<Frame>
<img src="/images/enterprise/activepieces-email.png" alt="ActivePieces Email" />
</Frame>
</Step>
</Steps>
## Webhook Output Examples
<Tabs>
<Tab title="Step Webhook">
`stepWebhookUrl` - Callback that will be executed upon each agent inner thought
```json
{
"action": "**Preliminary Research Report on the Financial Industry for crewai Enterprise Solution**\n1. Industry Overview and Trends\nThe financial industry in ....\nConclusion:\nThe financial industry presents a fertile ground for implementing AI solutions like crewai, particularly in areas such as digital customer engagement, risk management, and regulatory compliance. Further engagement with the lead is recommended to better tailor the crewai solution to their specific needs and scale.",
"task_id": "97eba64f-958c-40a0-b61c-625fe635a3c0"
}
```
</Tab>
<Tab title="Task Webhook">
`taskWebhookUrl` - Callback that will be executed upon the end of each task
```json
{
"description": "Using the information gathered from the lead's data, conduct preliminary research on the lead's industry, company background, and potential use cases for crewai. Focus on finding relevant data that can aid in scoring the lead and planning a strategy to pitch them crewai.The financial industry presents a fertile ground for implementing AI solutions like crewai, particularly in areas such as digital customer engagement, risk management, and regulatory compliance. Further engagement with the lead is recommended to better tailor the crewai solution to their specific needs and scale.",
"task_id": "97eba64f-958c-40a0-b61c-625fe635a3c0"
}
```
</Tab>
<Tab title="Crew Webhook">
`crewWebhookUrl` - Callback that will be executed upon the end of the crew execution
```json
{
"task_id": "97eba64f-958c-40a0-b61c-625fe635a3c0",
"result": {
"lead_score": "Customer service enhancement, and compliance are particularly relevant.",
"talking_points": [
"Highlight how crewai's AI solutions can transform customer service with automated, personalized experiences and 24/7 support, improving both customer satisfaction and operational efficiency.",
"Discuss crewai's potential to help the institution achieve its sustainability goals through better data analysis and decision-making, contributing to responsible investing and green initiatives.",
"Emphasize crewai's ability to enhance compliance with evolving regulations through efficient data processing and reporting, reducing the risk of non-compliance penalties.",
"Stress the adaptability of crewai to support both extensive multinational operations and smaller, targeted projects, ensuring the solution grows with the institution's needs."
]
}
}
```
</Tab>
</Tabs>

View File

@@ -0,0 +1,103 @@
---
title: "Zapier Trigger"
description: "Trigger CrewAI crews from Zapier workflows to automate cross-app workflows"
icon: "bolt"
---
This guide will walk you through the process of setting up Zapier triggers for CrewAI Enterprise, allowing you to automate workflows between CrewAI Enterprise and other applications.
## Prerequisites
- A CrewAI Enterprise account
- A Zapier account
- A Slack account (for this specific example)
## Step-by-Step Setup
<Steps>
<Step title="Set Up the Slack Trigger">
- In Zapier, create a new Zap.
<Frame>
<img src="/images/enterprise/zapier-1.png" alt="Zapier 1" />
</Frame>
</Step>
<Step title="Choose Slack as your trigger app">
<Frame>
<img src="/images/enterprise/zapier-2.png" alt="Zapier 2" />
</Frame>
- Select `New Pushed Message` as the Trigger Event.
- Connect your Slack account if you haven't already.
</Step>
<Step title="Configure the CrewAI Enterprise Action">
- Add a new action step to your Zap.
- Choose CrewAI+ as your action app and Kickoff as the Action Event
<Frame>
<img src="/images/enterprise/zapier-3.png" alt="Zapier 5" />
</Frame>
</Step>
<Step title="Connect your CrewAI Enterprise account">
- Connect your CrewAI Enterprise account.
- Select the appropriate Crew for your workflow.
<Frame>
<img src="/images/enterprise/zapier-4.png" alt="Zapier 6" />
</Frame>
- Configure the inputs for the Crew using the data from the Slack message.
</Step>
<Step title="Format the CrewAI Enterprise Output">
- Add another action step to format the text output from CrewAI Enterprise.
- Use Zapier's formatting tools to convert the Markdown output to HTML.
<Frame>
<img src="/images/enterprise/zapier-5.png" alt="Zapier 8" />
</Frame>
<Frame>
<img src="/images/enterprise/zapier-6.png" alt="Zapier 9" />
</Frame>
</Step>
<Step title="Send the Output via Email">
- Add a final action step to send the formatted output via email.
- Choose your preferred email service (e.g., Gmail, Outlook).
- Configure the email details, including recipient, subject, and body.
- Insert the formatted CrewAI Enterprise output into the email body.
<Frame>
<img src="/images/enterprise/zapier-7.png" alt="Zapier 7" />
</Frame>
</Step>
<Step title="Kick Off the crew from Slack">
- Enter the text in your Slack channel
<Frame>
<img src="/images/enterprise/zapier-7b.png" alt="Zapier 10" />
</Frame>
- Select the 3 ellipsis button and then chose Push to Zapier
<Frame>
<img src="/images/enterprise/zapier-8.png" alt="Zapier 11" />
</Frame>
</Step>
<Step title="Select the crew and then Push to Kick Off">
<Frame>
<img src="/images/enterprise/zapier-9.png" alt="Zapier 12" />
</Frame>
</Step>
</Steps>
## Tips for Success
- Ensure that your CrewAI Enterprise inputs are correctly mapped from the Slack message.
- Test your Zap thoroughly before turning it on to catch any potential issues.
- Consider adding error handling steps to manage potential failures in the workflow.
By following these steps, you'll have successfully set up Zapier triggers for CrewAI Enterprise, allowing for automated workflows triggered by Slack messages and resulting in email notifications with CrewAI Enterprise output.

File diff suppressed because it is too large Load Diff

View File

@@ -11,7 +11,7 @@ When building AI applications with CrewAI, one of the most important decisions y
At the heart of this decision is understanding the relationship between **complexity** and **precision** in your application:
<Frame caption="Complexity vs. Precision Matrix for CrewAI Applications">
<img src="../..//complexity_precision.png" alt="Complexity vs. Precision Matrix" />
<img src="../../images/complexity_precision.png" alt="Complexity vs. Precision Matrix" />
</Frame>
This matrix helps visualize how different approaches align with varying requirements for complexity and precision. Let's explore what each quadrant means and how it guides your architectural choices.

View File

@@ -54,7 +54,7 @@ This will generate a project with the basic structure needed for your crew. The
- A main script to run the crew
<Frame caption="CrewAI Framework Overview">
<img src="../../crews.png" alt="CrewAI Framework Overview" />
<img src="../../images/crews.png" alt="CrewAI Framework Overview" />
</Frame>

View File

@@ -59,7 +59,7 @@ cd guide_creator_flow
This will generate a project with the basic structure needed for your flow.
<Frame caption="CrewAI Framework Overview">
<img src="../../flows.png" alt="CrewAI Framework Overview" />
<img src="../../images/flows.png" alt="CrewAI Framework Overview" />
</Frame>
## Step 2: Understanding the Project Structure

View File

@@ -0,0 +1,73 @@
---
title: "Image Generation with DALL-E"
description: "Learn how to use DALL-E for AI-powered image generation in your CrewAI projects"
icon: "image"
---
CrewAI supports integration with OpenAI's DALL-E, allowing your AI agents to generate images as part of their tasks. This guide will walk you through how to set up and use the DALL-E tool in your CrewAI projects.
## Prerequisites
- crewAI installed (latest version)
- OpenAI API key with access to DALL-E
## Setting Up the DALL-E Tool
<Steps>
<Step title="Import the DALL-E tool">
```python
from crewai_tools import DallETool
```
</Step>
<Step title="Add the DALL-E tool to your agent configuration">
```python
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
tools=[SerperDevTool(), DallETool()], # Add DallETool to the list of tools
allow_delegation=False,
verbose=True
)
```
</Step>
</Steps>
## Using the DALL-E Tool
Once you've added the DALL-E tool to your agent, it can generate images based on text prompts. The tool will return a URL to the generated image, which can be used in the agent's output or passed to other agents for further processing.
### Example Agent Configuration
```yaml
role: >
LinkedIn Profile Senior Data Researcher
goal: >
Uncover detailed LinkedIn profiles based on provided name {name} and domain {domain}
Generate a Dall-e image based on domain {domain}
backstory: >
You're a seasoned researcher with a knack for uncovering the most relevant LinkedIn profiles.
Known for your ability to navigate LinkedIn efficiently, you excel at gathering and presenting
professional information clearly and concisely.
```
### Expected Output
The agent with the DALL-E tool will be able to generate the image and provide a URL in its response. You can then download the image.
<Frame>
<img src="/images/enterprise/dall-e-image.png" alt="DALL-E Image" />
</Frame>
## Best Practices
1. **Be specific in your image generation prompts** to get the best results.
2. **Consider generation time** - Image generation can take some time, so factor this into your task planning.
3. **Follow usage policies** - Always comply with OpenAI's usage policies when generating images.
## Troubleshooting
1. **Check API access** - Ensure your OpenAI API key has access to DALL-E.
2. **Version compatibility** - Check that you're using the latest version of crewAI and crewai-tools.
3. **Tool configuration** - Verify that the DALL-E tool is correctly added to the agent's tool list.

View File

@@ -0,0 +1,78 @@
---
title: "Human-in-the-Loop (HITL) Workflows"
description: "Learn how to implement Human-in-the-Loop workflows in CrewAI for enhanced decision-making"
icon: "user-check"
---
Human-in-the-Loop (HITL) is a powerful approach that combines artificial intelligence with human expertise to enhance decision-making and improve task outcomes. This guide shows you how to implement HITL within CrewAI.
## Setting Up HITL Workflows
<Steps>
<Step title="Configure Your Task">
Set up your task with human input enabled:
<Frame>
<img src="/images/enterprise/crew-human-input.png" alt="Crew Human Input" />
</Frame>
</Step>
<Step title="Provide Webhook URL">
When kicking off your crew, include a webhook URL for human input:
<Frame>
<img src="/images/enterprise/crew-webhook-url.png" alt="Crew Webhook URL" />
</Frame>
</Step>
<Step title="Receive Webhook Notification">
Once the crew completes the task requiring human input, you'll receive a webhook notification containing:
- Execution ID
- Task ID
- Task output
</Step>
<Step title="Review Task Output">
The system will pause in the `Pending Human Input` state. Review the task output carefully.
</Step>
<Step title="Submit Human Feedback">
Call the resume endpoint of your crew with the following information:
<Frame>
<img src="/images/enterprise/crew-resume-endpoint.png" alt="Crew Resume Endpoint" />
</Frame>
<Warning>
**Feedback Impact on Task Execution**:
It's crucial to exercise care when providing feedback, as the entire feedback content will be incorporated as additional context for further task executions.
</Warning>
This means:
- All information in your feedback becomes part of the task's context.
- Irrelevant details may negatively influence it.
- Concise, relevant feedback helps maintain task focus and efficiency.
- Always review your feedback carefully before submission to ensure it contains only pertinent information that will positively guide the task's execution.
</Step>
<Step title="Handle Negative Feedback">
If you provide negative feedback:
- The crew will retry the task with added context from your feedback.
- You'll receive another webhook notification for further review.
- Repeat steps 4-6 until satisfied.
</Step>
<Step title="Execution Continuation">
When you submit positive feedback, the execution will proceed to the next steps.
</Step>
</Steps>
## Best Practices
- **Be Specific**: Provide clear, actionable feedback that directly addresses the task at hand
- **Stay Relevant**: Only include information that will help improve the task execution
- **Be Timely**: Respond to HITL prompts promptly to avoid workflow delays
- **Review Carefully**: Double-check your feedback before submitting to ensure accuracy
## Common Use Cases
HITL workflows are particularly valuable for:
- Quality assurance and validation
- Complex decision-making scenarios
- Sensitive or high-stakes operations
- Creative tasks requiring human judgment
- Compliance and regulatory reviews

View File

@@ -0,0 +1,141 @@
---
title: "Using Annotations in crew.py"
description: "Learn how to use annotations to properly structure agents, tasks, and components in CrewAI"
icon: "at"
---
This guide explains how to use annotations to properly reference **agents**, **tasks**, and other components in the `crew.py` file.
## Introduction
Annotations in the CrewAI framework are used to decorate classes and methods, providing metadata and functionality to various components of your crew. These annotations help in organizing and structuring your code, making it more readable and maintainable.
## Available Annotations
The CrewAI framework provides the following annotations:
- `@CrewBase`: Used to decorate the main crew class.
- `@agent`: Decorates methods that define and return Agent objects.
- `@task`: Decorates methods that define and return Task objects.
- `@crew`: Decorates the method that creates and returns the Crew object.
- `@llm`: Decorates methods that initialize and return Language Model objects.
- `@tool`: Decorates methods that initialize and return Tool objects.
- `@callback`: Used for defining callback methods.
- `@output_json`: Used for methods that output JSON data.
- `@output_pydantic`: Used for methods that output Pydantic models.
- `@cache_handler`: Used for defining cache handling methods.
## Usage Examples
Let's go through examples of how to use these annotations:
### 1. Crew Base Class
```python
@CrewBase
class LinkedinProfileCrew():
"""LinkedinProfile crew"""
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
```
The `@CrewBase` annotation is used to decorate the main crew class. This class typically contains configurations and methods for creating agents, tasks, and the crew itself.
### 2. Tool Definition
```python
@tool
def myLinkedInProfileTool(self):
return LinkedInProfileTool()
```
The `@tool` annotation is used to decorate methods that return tool objects. These tools can be used by agents to perform specific tasks.
### 3. LLM Definition
```python
@llm
def groq_llm(self):
api_key = os.getenv('api_key')
return ChatGroq(api_key=api_key, temperature=0, model_name="mixtral-8x7b-32768")
```
The `@llm` annotation is used to decorate methods that initialize and return Language Model objects. These LLMs are used by agents for natural language processing tasks.
### 4. Agent Definition
```python
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher']
)
```
The `@agent` annotation is used to decorate methods that define and return Agent objects.
### 5. Task Definition
```python
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_linkedin_task'],
agent=self.researcher()
)
```
The `@task` annotation is used to decorate methods that define and return Task objects. These methods specify the task configuration and the agent responsible for the task.
### 6. Crew Creation
```python
@crew
def crew(self) -> Crew:
"""Creates the LinkedinProfile crew"""
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True
)
```
The `@crew` annotation is used to decorate the method that creates and returns the `Crew` object. This method assembles all the components (agents and tasks) into a functional crew.
## YAML Configuration
The agent configurations are typically stored in a YAML file. Here's an example of how the `agents.yaml` file might look for the researcher agent:
```yaml
researcher:
role: >
LinkedIn Profile Senior Data Researcher
goal: >
Uncover detailed LinkedIn profiles based on provided name {name} and domain {domain}
Generate a Dall-E image based on domain {domain}
backstory: >
You're a seasoned researcher with a knack for uncovering the most relevant LinkedIn profiles.
Known for your ability to navigate LinkedIn efficiently, you excel at gathering and presenting
professional information clearly and concisely.
allow_delegation: False
verbose: True
llm: groq_llm
tools:
- myLinkedInProfileTool
- mySerperDevTool
- myDallETool
```
This YAML configuration corresponds to the researcher agent defined in the `LinkedinProfileCrew` class. The configuration specifies the agent's role, goal, backstory, and other properties such as the LLM and tools it uses.
Note how the `llm` and `tools` in the YAML file correspond to the methods decorated with `@llm` and `@tool` in the Python class.
## Best Practices
- **Consistent Naming**: Use clear and consistent naming conventions for your methods. For example, agent methods could be named after their roles (e.g., researcher, reporting_analyst).
- **Environment Variables**: Use environment variables for sensitive information like API keys.
- **Flexibility**: Design your crew to be flexible by allowing easy addition or removal of agents and tasks.
- **YAML-Code Correspondence**: Ensure that the names and structures in your YAML files correspond correctly to the decorated methods in your Python code.
By following these guidelines and properly using annotations, you can create well-structured and maintainable crews using the CrewAI framework.

View File

Before

Width:  |  Height:  |  Size: 66 KiB

After

Width:  |  Height:  |  Size: 66 KiB

View File

Before

Width:  |  Height:  |  Size: 16 KiB

After

Width:  |  Height:  |  Size: 16 KiB

View File

Before

Width:  |  Height:  |  Size: 427 KiB

After

Width:  |  Height:  |  Size: 427 KiB

View File

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

View File

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

View File

Before

Width:  |  Height:  |  Size: 29 KiB

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 559 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 676 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.5 KiB

After

Width:  |  Height:  |  Size: 880 KiB

View File

Before

Width:  |  Height:  |  Size: 885 B

After

Width:  |  Height:  |  Size: 885 B

View File

Before

Width:  |  Height:  |  Size: 27 KiB

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

View File

@@ -23,7 +23,7 @@ With over 100,000 developers certified through our community courses, CrewAI is
</Note>
<Frame caption="CrewAI Framework Overview">
<img src="crews.png" alt="CrewAI Framework Overview" />
<img src="images/crews.png" alt="CrewAI Framework Overview" />
</Frame>
| Component | Description | Key Features |
@@ -64,7 +64,7 @@ With over 100,000 developers certified through our community courses, CrewAI is
</Note>
<Frame caption="CrewAI Framework Overview">
<img src="flows.png" alt="CrewAI Framework Overview" />
<img src="images/flows.png" alt="CrewAI Framework Overview" />
</Frame>
| Component | Description | Key Features |

View File

@@ -15,6 +15,20 @@ We will also be integrating **Streamable HTTP** transport in the near future.
Streamable HTTP is designed for efficient, bi-directional communication over a single HTTP connection.
</Info>
## Video Tutorial
Watch this video tutorial for a comprehensive guide on MCP integration with CrewAI:
<iframe
width="100%"
height="400"
src="https://www.youtube.com/embed/TpQ45lAZh48"
title="CrewAI MCP Integration Guide"
frameborder="0"
style={{ borderRadius: '10px' }}
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen
></iframe>
## Installation
Before you start using MCP with `crewai-tools`, you need to install the `mcp` extra `crewai-tools` dependency with the following command:

View File

@@ -0,0 +1,66 @@
---
title: "Overview"
description: "Leverage AI services, generate images, process vision, and build intelligent systems"
icon: "face-smile"
---
These tools integrate with AI and machine learning services to enhance your agents with advanced capabilities like image generation, vision processing, and intelligent code execution.
## **Available Tools**
<CardGroup cols={2}>
<Card title="DALL-E Tool" icon="image" href="/tools/ai-ml/dalletool">
Generate AI images using OpenAI's DALL-E model.
</Card>
<Card title="Vision Tool" icon="eye" href="/tools/ai-ml/visiontool">
Process and analyze images with computer vision capabilities.
</Card>
<Card title="AI Mind Tool" icon="brain" href="/tools/ai-ml/aimindtool">
Advanced AI reasoning and decision-making capabilities.
</Card>
<Card title="LlamaIndex Tool" icon="llama" href="/tools/ai-ml/llamaindextool">
Build knowledge bases and retrieval systems with LlamaIndex.
</Card>
<Card title="LangChain Tool" icon="link" href="/tools/ai-ml/langchaintool">
Integrate with LangChain for complex AI workflows.
</Card>
<Card title="RAG Tool" icon="database" href="/tools/ai-ml/ragtool">
Implement Retrieval-Augmented Generation systems.
</Card>
<Card title="Code Interpreter Tool" icon="code" href="/tools/ai-ml/codeinterpretertool">
Execute Python code and perform data analysis.
</Card>
<Card title="Patronus Tools" icon="shield" href="/tools/ai-ml/patronustools">
AI safety and content moderation capabilities.
</Card>
</CardGroup>
## **Common Use Cases**
- **Content Generation**: Create images, text, and multimedia content
- **Data Analysis**: Execute code and analyze complex datasets
- **Knowledge Systems**: Build RAG systems and intelligent databases
- **Computer Vision**: Process and understand visual content
- **AI Safety**: Implement content moderation and safety checks
```python
from crewai_tools import DallETool, VisionTool, CodeInterpreterTool
# Create AI tools
image_generator = DallETool()
vision_processor = VisionTool()
code_executor = CodeInterpreterTool()
# Add to your agent
agent = Agent(
role="AI Specialist",
tools=[image_generator, vision_processor, code_executor],
goal="Create and analyze content using AI capabilities"
)

View File

@@ -4,9 +4,7 @@ description: The `MultiOnTool` empowers CrewAI agents with the capability to nav
icon: globe
---
# `MultiOnTool`
## Description
## Overview
The `MultiOnTool` is designed to wrap [MultiOn's](https://docs.multion.ai/welcome) web browsing capabilities, enabling CrewAI agents to control web browsers using natural language instructions. This tool facilitates seamless web browsing, making it an essential asset for projects requiring dynamic web data interaction and automation of web-based tasks.

View File

@@ -0,0 +1,55 @@
---
title: "Overview"
description: "Automate workflows and integrate with external platforms and services"
icon: "face-smile"
---
These tools enable your agents to automate workflows, integrate with external platforms, and connect with various third-party services for enhanced functionality.
## **Available Tools**
<CardGroup cols={2}>
<Card title="Apify Actor Tool" icon="spider" href="/tools/automation/apifyactorstool">
Run Apify actors for web scraping and automation tasks.
</Card>
<Card title="Composio Tool" icon="puzzle-piece" href="/tools/automation/composiotool">
Integrate with hundreds of apps and services through Composio.
</Card>
<Card title="Multion Tool" icon="window-restore" href="/tools/automation/multiontool">
Automate browser interactions and web-based workflows.
</Card>
</CardGroup>
## **Common Use Cases**
- **Workflow Automation**: Automate repetitive tasks and processes
- **API Integration**: Connect with external APIs and services
- **Data Synchronization**: Sync data between different platforms
- **Process Orchestration**: Coordinate complex multi-step workflows
- **Third-party Services**: Leverage external tools and platforms
```python
from crewai_tools import ApifyActorTool, ComposioTool, MultiOnTool
# Create automation tools
apify_automation = ApifyActorTool()
platform_integration = ComposioTool()
browser_automation = MultiOnTool()
# Add to your agent
agent = Agent(
role="Automation Specialist",
tools=[apify_automation, platform_integration, browser_automation],
goal="Automate workflows and integrate systems"
)
```
## **Integration Benefits**
- **Efficiency**: Reduce manual work through automation
- **Scalability**: Handle increased workloads automatically
- **Reliability**: Consistent execution of workflows
- **Connectivity**: Bridge different systems and platforms
- **Productivity**: Focus on high-value tasks while automation handles routine work

View File

@@ -0,0 +1,50 @@
---
title: "Overview"
description: "Interact with cloud services, storage systems, and cloud-based AI platforms"
icon: "face-smile"
---
These tools enable your agents to interact with cloud services, access cloud storage, and leverage cloud-based AI platforms for scalable operations.
## **Available Tools**
<CardGroup cols={2}>
<Card title="S3 Reader Tool" icon="cloud" href="/tools/cloud-storage/s3readertool">
Read files and data from Amazon S3 buckets.
</Card>
<Card title="S3 Writer Tool" icon="cloud-arrow-up" href="/tools/cloud-storage/s3writertool">
Write and upload files to Amazon S3 storage.
</Card>
<Card title="Bedrock Invoke Agent" icon="aws" href="/tools/cloud-storage/bedrockinvokeagenttool">
Invoke Amazon Bedrock agents for AI-powered tasks.
</Card>
<Card title="Bedrock KB Retriever" icon="database" href="/tools/cloud-storage/bedrockkbretriever">
Retrieve information from Amazon Bedrock knowledge bases.
</Card>
</CardGroup>
## **Common Use Cases**
- **File Storage**: Store and retrieve files from cloud storage systems
- **Data Backup**: Backup important data to cloud storage
- **AI Services**: Access cloud-based AI models and services
- **Knowledge Retrieval**: Query cloud-hosted knowledge bases
- **Scalable Operations**: Leverage cloud infrastructure for processing
```python
from crewai_tools import S3ReaderTool, S3WriterTool, BedrockInvokeAgentTool
# Create cloud tools
s3_reader = S3ReaderTool()
s3_writer = S3WriterTool()
bedrock_agent = BedrockInvokeAgentTool()
# Add to your agent
agent = Agent(
role="Cloud Operations Specialist",
tools=[s3_reader, s3_writer, bedrock_agent],
goal="Manage cloud resources and AI services"
)

View File

@@ -4,9 +4,7 @@ description: The `MySQLSearchTool` is designed to search MySQL databases and ret
icon: database
---
# `MySQLSearchTool`
## Description
## Overview
This tool is designed to facilitate semantic searches within MySQL database tables. Leveraging the RAG (Retrieve and Generate) technology,
the MySQLSearchTool provides users with an efficient means of querying database table content, specifically tailored for MySQL databases.

View File

@@ -4,9 +4,8 @@ description: The `NL2SQLTool` is designed to convert natural language to SQL que
icon: language
---
# `NL2SQLTool`
## Overview
## Description
This tool is used to convert natural language to SQL queries. When passed to the agent it will generate queries and then use them to interact with the database.

View File

@@ -0,0 +1,57 @@
---
title: "Overview"
description: "Connect to databases, vector stores, and data warehouses for comprehensive data access"
icon: "face-smile"
---
These tools enable your agents to interact with various database systems, from traditional SQL databases to modern vector stores and data warehouses.
## **Available Tools**
<CardGroup cols={2}>
<Card title="MySQL Tool" icon="database" href="/tools/database-data/mysqltool">
Connect to and query MySQL databases with SQL operations.
</Card>
<Card title="PostgreSQL Search" icon="elephant" href="/tools/database-data/pgsearchtool">
Search and query PostgreSQL databases efficiently.
</Card>
<Card title="Snowflake Search" icon="snowflake" href="/tools/database-data/snowflakesearchtool">
Access Snowflake data warehouse for analytics and reporting.
</Card>
<Card title="NL2SQL Tool" icon="language" href="/tools/database-data/nl2sqltool">
Convert natural language queries to SQL statements automatically.
</Card>
<Card title="Qdrant Vector Search" icon="vector-square" href="/tools/database-data/qdrantvectorsearchtool">
Search vector embeddings using Qdrant vector database.
</Card>
<Card title="Weaviate Vector Search" icon="network-wired" href="/tools/database-data/weaviatevectorsearchtool">
Perform semantic search with Weaviate vector database.
</Card>
</CardGroup>
## **Common Use Cases**
- **Data Analysis**: Query databases for business intelligence and reporting
- **Vector Search**: Find similar content using semantic embeddings
- **ETL Operations**: Extract, transform, and load data between systems
- **Real-time Analytics**: Access live data for decision making
```python
from crewai_tools import MySQLTool, QdrantVectorSearchTool, NL2SQLTool
# Create database tools
mysql_db = MySQLTool()
vector_search = QdrantVectorSearchTool()
nl_to_sql = NL2SQLTool()
# Add to your agent
agent = Agent(
role="Data Analyst",
tools=[mysql_db, vector_search, nl_to_sql],
goal="Extract insights from various data sources"
)

View File

@@ -1,10 +1,10 @@
---
title: PG RAG Search
description: The `PGSearchTool` is designed to search PostgreSQL databases and return the most relevant results.
icon: database
icon: elephant
---
# `PGSearchTool`
## Overview
<Note>
The PGSearchTool is currently under development. This document outlines the intended functionality and interface.

View File

@@ -1,10 +1,10 @@
---
title: 'Qdrant Vector Search Tool'
description: 'Semantic search capabilities for CrewAI agents using Qdrant vector database'
icon: magnifying-glass-plus
icon: vector-square
---
# `QdrantVectorSearchTool`
## Overview
The Qdrant Vector Search Tool enables semantic search capabilities in your CrewAI agents by leveraging [Qdrant](https://qdrant.tech/), a vector similarity search engine. This tool allows your agents to search through documents stored in a Qdrant collection using semantic similarity.

View File

@@ -1,12 +1,11 @@
---
title: Weaviate Vector Search
description: The `WeaviateVectorSearchTool` is designed to search a Weaviate vector database for semantically similar documents.
icon: database
icon: network-wired
---
# `WeaviateVectorSearchTool`
## Overview
## Description
The `WeaviateVectorSearchTool` is specifically crafted for conducting semantic searches within documents stored in a Weaviate vector database. This tool allows you to find semantically similar documents to a given query, leveraging the power of vector embeddings for more accurate and contextually relevant search results.

View File

@@ -4,14 +4,12 @@ description: The `FileReadTool` is designed to read files from the local file sy
icon: folders
---
# `FileReadTool`
## Overview
<Note>
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
</Note>
## Description
The FileReadTool conceptually represents a suite of functionalities within the crewai_tools package aimed at facilitating file reading and content retrieval.
This suite includes tools for processing batch text files, reading runtime configuration files, and importing data for analytics.
It supports a variety of text-based file formats such as `.txt`, `.csv`, `.json`, and more. Depending on the file type, the suite offers specialized functionality,

View File

@@ -0,0 +1,88 @@
---
title: "Overview"
description: "Read, write, and search through various file formats with CrewAI's document processing tools"
icon: "face-smile"
---
These tools enable your agents to work with various file formats and document types. From reading PDFs to processing JSON data, these tools handle all your document processing needs.
## **Available Tools**
<CardGroup cols={2}>
<Card title="File Read Tool" icon="folders" href="/tools/file-document/filereadtool">
Read content from any file type including text, markdown, and more.
</Card>
<Card title="File Write Tool" icon="file-pen" href="/tools/file-document/filewritetool">
Write content to files, create new documents, and save processed data.
</Card>
<Card title="PDF Search Tool" icon="file-pdf" href="/tools/file-document/pdfsearchtool">
Search and extract text content from PDF documents efficiently.
</Card>
<Card title="DOCX Search Tool" icon="file-word" href="/tools/file-document/docxsearchtool">
Search through Microsoft Word documents and extract relevant content.
</Card>
<Card title="JSON Search Tool" icon="brackets-curly" href="/tools/file-document/jsonsearchtool">
Parse and search through JSON files with advanced query capabilities.
</Card>
<Card title="CSV Search Tool" icon="table" href="/tools/file-document/csvsearchtool">
Process and search through CSV files, extract specific rows and columns.
</Card>
<Card title="XML Search Tool" icon="code" href="/tools/file-document/xmlsearchtool">
Parse XML files and search for specific elements and attributes.
</Card>
<Card title="MDX Search Tool" icon="markdown" href="/tools/file-document/mdxsearchtool">
Search through MDX files and extract content from documentation.
</Card>
<Card title="TXT Search Tool" icon="file-lines" href="/tools/file-document/txtsearchtool">
Search through plain text files with pattern matching capabilities.
</Card>
<Card title="Directory Search Tool" icon="folder-open" href="/tools/file-document/directorysearchtool">
Search for files and folders within directory structures.
</Card>
<Card title="Directory Read Tool" icon="folder" href="/tools/file-document/directoryreadtool">
Read and list directory contents, file structures, and metadata.
</Card>
</CardGroup>
## **Common Use Cases**
- **Document Processing**: Extract and analyze content from various file formats
- **Data Import**: Read structured data from CSV, JSON, and XML files
- **Content Search**: Find specific information within large document collections
- **File Management**: Organize and manipulate files and directories
- **Data Export**: Save processed results to various file formats
## **Quick Start Example**
```python
from crewai_tools import FileReadTool, PDFSearchTool, JSONSearchTool
# Create tools
file_reader = FileReadTool()
pdf_searcher = PDFSearchTool()
json_processor = JSONSearchTool()
# Add to your agent
agent = Agent(
role="Document Analyst",
tools=[file_reader, pdf_searcher, json_processor],
goal="Process and analyze various document types"
)
```
## **Tips for Document Processing**
- **File Permissions**: Ensure your agent has proper read/write permissions
- **Large Files**: Consider chunking for very large documents
- **Format Support**: Check tool documentation for supported file formats
- **Error Handling**: Implement proper error handling for corrupted or inaccessible files

View File

@@ -4,14 +4,12 @@ description: The `TXTSearchTool` is designed to perform a RAG (Retrieval-Augment
icon: file-lines
---
# `TXTSearchTool`
## Overview
<Note>
We are still working on improving tools, so there might be unexpected behavior or changes in the future.
</Note>
## Description
This tool is used to perform a RAG (Retrieval-Augmented Generation) search within the content of a text file.
It allows for semantic searching of a query within a specified text file's content,
making it an invaluable resource for quickly extracting information or finding specific sections of text based on the query provided.

120
docs/tools/overview.mdx Normal file
View File

@@ -0,0 +1,120 @@
---
title: "Tools Overview"
description: "Discover CrewAI's extensive library of 40+ tools to supercharge your AI agents"
icon: "toolbox"
---
CrewAI provides an extensive library of pre-built tools to enhance your agents' capabilities. From file processing to web scraping, database queries to AI services - we've got you covered.
## **Tool Categories**
<CardGroup cols={2}>
<Card
title="File & Document"
icon="file-check"
href="/tools/file-document/overview"
color="#3B82F6"
>
Read, write, and search through various file formats including PDF, DOCX, JSON, CSV, and more. Perfect for document processing workflows.
</Card>
<Card
title="Web Scraping & Browsing"
icon="globe"
href="/tools/web-scraping/overview"
color="#10B981"
>
Extract data from websites, automate browser interactions, and scrape content at scale with tools like Firecrawl, Selenium, and more.
</Card>
<Card
title="Search & Research"
icon="magnifying-glass"
href="/tools/search-research/overview"
color="#F59E0B"
>
Perform web searches, find code repositories, research YouTube content, and discover information across the internet.
</Card>
<Card
title="Database & Data"
icon="database"
href="/tools/database-data/overview"
color="#8B5CF6"
>
Connect to SQL databases, vector stores, and data warehouses. Query MySQL, PostgreSQL, Snowflake, Qdrant, and Weaviate.
</Card>
<Card
title="AI & Machine Learning"
icon="brain"
href="/tools/ai-ml/overview"
color="#EF4444"
>
Generate images with DALL-E, process vision tasks, integrate with LangChain, build RAG systems, and leverage code interpreters.
</Card>
<Card
title="Cloud & Storage"
icon="cloud"
href="/tools/cloud-storage/overview"
color="#06B6D4"
>
Interact with cloud services including AWS S3, Amazon Bedrock, and other cloud storage and AI services.
</Card>
<Card
title="Automation & Integration"
icon="bolt"
href="/tools/automation/overview"
color="#84CC16"
>
Automate workflows with Apify, Composio, and other integration platforms to connect your agents with external services.
</Card>
</CardGroup>
## **Quick Access**
Need a specific tool? Here are some popular choices:
<CardGroup cols={3}>
<Card title="RAG Tool" icon="image" href="/tools/ai-ml/ragtool">
Implement Retrieval-Augmented Generation
</Card>
<Card title="Serper Dev" icon="book-atlas" href="/tools/search-research/serperdevtool">
Google search API
</Card>
<Card title="File Read" icon="file" href="/tools/file-document/filereadtool">
Read any file type
</Card>
<Card title="Scrape Website" icon="globe" href="/tools/web-scraping/scrapewebsitetool">
Extract web content
</Card>
<Card title="Code Interpreter" icon="code" href="/tools/ai-ml/codeinterpretertool">
Execute Python code
</Card>
<Card title="S3 Reader" icon="cloud" href="/tools/cloud-storage/s3readertool">
Access AWS S3 files
</Card>
</CardGroup>
## **Getting Started**
To use any tool in your CrewAI project:
1. **Import** the tool in your crew configuration
2. **Add** it to your agent's tools list
3. **Configure** any required API keys or settings
```python
from crewai_tools import FileReadTool, SerperDevTool
# Add tools to your agent
agent = Agent(
role="Research Analyst",
tools=[FileReadTool(), SerperDevTool()],
# ... other configuration
)
```
Ready to explore? Pick a category above to discover tools that fit your use case!

View File

@@ -0,0 +1,71 @@
---
title: "Overview"
description: "Perform web searches, find repositories, and research information across the internet"
icon: "face-smile"
---
These tools enable your agents to search the web, research topics, and find information across various platforms including search engines, GitHub, and YouTube.
## **Available Tools**
<CardGroup cols={2}>
<Card title="Serper Dev Tool" icon="google" href="/tools/search-research/serperdevtool">
Google search API integration for comprehensive web search capabilities.
</Card>
<Card title="Brave Search Tool" icon="shield" href="/tools/search-research/bravesearchtool">
Privacy-focused search with Brave's independent search index.
</Card>
<Card title="Exa Search Tool" icon="magnifying-glass" href="/tools/search-research/exasearchtool">
AI-powered search for finding specific and relevant content.
</Card>
<Card title="LinkUp Search Tool" icon="link" href="/tools/search-research/linkupsearchtool">
Real-time web search with fresh content indexing.
</Card>
<Card title="GitHub Search Tool" icon="github" href="/tools/search-research/githubsearchtool">
Search GitHub repositories, code, issues, and documentation.
</Card>
<Card title="Website Search Tool" icon="globe" href="/tools/search-research/websitesearchtool">
Search within specific websites and domains.
</Card>
<Card title="Code Docs Search Tool" icon="code" href="/tools/search-research/codedocssearchtool">
Search through code documentation and technical resources.
</Card>
<Card title="YouTube Channel Search" icon="youtube" href="/tools/search-research/youtubechannelsearchtool">
Search YouTube channels for specific content and creators.
</Card>
<Card title="YouTube Video Search" icon="play" href="/tools/search-research/youtubevideosearchtool">
Find and analyze YouTube videos by topic, keyword, or criteria.
</Card>
</CardGroup>
## **Common Use Cases**
- **Market Research**: Search for industry trends and competitor analysis
- **Content Discovery**: Find relevant articles, videos, and resources
- **Code Research**: Search repositories and documentation for solutions
- **Lead Generation**: Research companies and individuals
- **Academic Research**: Find scholarly articles and technical papers
```python
from crewai_tools import SerperDevTool, GitHubSearchTool, YoutubeVideoSearchTool
# Create research tools
web_search = SerperDevTool()
code_search = GitHubSearchTool()
video_research = YoutubeVideoSearchTool()
# Add to your agent
agent = Agent(
role="Research Analyst",
tools=[web_search, code_search, video_research],
goal="Gather comprehensive information on any topic"
)
```

Some files were not shown because too many files have changed in this diff Show More