Compare commits

...

28 Commits

Author SHA1 Message Date
tonykipkemboi
e08d210bb8 docs(mintlify): remove OpenAPI Endpoints groups; add localized MDX endpoint pages for pt-BR and ko 2025-08-20 11:23:31 -04:00
tonykipkemboi
34100d290b docs(mintlify): add explicit endpoint MDX pages and include in nav; keep OpenAPI auto-gen as fallback 2025-08-20 11:13:05 -04:00
tonykipkemboi
46f8fa59c1 docs(mintlify): use explicit openapi {source, directory} with absolute paths to fix branch deployment routing 2025-08-20 11:07:09 -04:00
tonykipkemboi
4867dced0e docs: fix API Reference OpenAPI sources and redirects; clarify training data usage; add Mermaid diagram; correct CLI usage and notes 2025-08-20 10:51:51 -04:00
Greyson LaLonde
ed187b495b feat: centralize embedding types and create base client (#3246)
feat: add RAG system foundation with generic vector store support

- Add BaseClient protocol for vector stores
- Move BaseRAGStorage to rag/core
- Centralize embedding types in embeddings/types.py
- Remove unused storage models
2025-08-20 09:35:27 -04:00
Wajeeh ul Hassan
2773996b49 fix: revert pin openai<1.100.0 to openai>=1.13.3 (#3364) 2025-08-20 09:16:26 -04:00
Damian Silbergleith
95923b78c6 feat: display task name in verbose output (#3308)
* feat: display task name in verbose output

- Modified event_listener.py to pass task names to the formatter
- Updated console_formatter.py to display task names when available
- Maintains backward compatibility by showing UUID for tasks without names
- Makes verbose output more informative and readable

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* fix: remove unnecessary f-string prefixes in console formatter

Remove extraneous f prefixes from string literals without placeholders
in console_formatter.py to resolve ruff F541 linting errors.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-20 08:43:05 -04:00
Lucas Gomide
7065ad4336 feat: adding additional parameter to Flow' start methods (#3356)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: adding additional parameter to Flow' start methods

When the `crewai_trigger_payload` parameter exists in the input Flow, we will add it in the start Flow methods as parameter

* fix: support crewai_trigger_payload in async Flow start methods
2025-08-19 17:32:19 -04:00
Lorenze Jay
d6254918fd Lorenze/max retry defaults tools (#3362)
* feat: enhance BaseTool and CrewStructuredTool with usage tracking

This commit introduces a mechanism to track the usage count of tools within the CrewAI framework. The `BaseTool` class now includes a `_increment_usage_count` method that updates the current usage count, which is also reflected in the associated `CrewStructuredTool`. Additionally, a new test has been added to ensure that the maximum usage count is respected when invoking tools, enhancing the overall reliability and functionality of the tool system.

* feat: add max usage count feature to tools documentation

This commit introduces a new section in the tools overview documentation that explains the maximum usage count feature for tools within the CrewAI framework. Users can now set a limit on how many times a tool can be used, enhancing control over tool usage. An example of implementing the `FileReadTool` with a maximum usage count is also provided, improving the clarity and usability of the documentation.

* undo field string
2025-08-19 10:44:55 -07:00
Heitor Carvalho
95e3d6db7a fix: add 'tool' section migration when running crewai update (#3341)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-08-19 08:11:30 -04:00
Lorenze Jay
d7f8002baa chore: update crewAI version to 0.165.1 and tools dependency in templates (#3359) (#3359)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-08-19 00:06:31 -03:00
Lorenze Jay
d743e12a06 refactor: streamline tracing condition checks and clean up deprecated warnings (#3358)
This commit simplifies the conditions for enabling tracing in both the Crew and Flow classes by removing the redundant call to `on_first_execution_tracing_confirmation()`. Additionally, it removes deprecated warning filters related to Pydantic in the KnowledgeStorage and RAGStorage classes, improving code clarity and maintainability.
2025-08-18 19:56:00 -07:00
Lorenze Jay
6068fe941f chore: update crewAI version to 0.165.0 and tools dependency to 0.62.1 (#3357) 2025-08-18 18:25:59 -07:00
Lucas Gomide
2a0cefc98b feat: pin openai<1.100.0 due ResponseTextConfigParam import issue (#3355)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-08-18 18:31:18 -04:00
Lucas Gomide
a4f65e4870 chore: renaming inject_trigger_input to allow_crewai_trigger_context (#3353)
* chore: renaming inject_trigger_input to allow_crewai_trigger_context

* test: add missing cassetes
2025-08-18 17:57:21 -04:00
Lorenze Jay
a1b3edd79c Refactor tracing logic to consolidate conditions for enabling tracing… (#3347)
* Refactor tracing logic to consolidate conditions for enabling tracing in Crew class and update TraceBatchManager to handle ephemeral batches more effectively. Added tests for trace listener handling of both ephemeral and authenticated user batches.

* drop print

* linted

* refactor: streamline ephemeral handling in TraceBatchManager

This commit removes the ephemeral parameter from the _send_events_to_backend and _finalize_backend_batch methods, replacing it with internal logic that checks the current batch's ephemeral status. This change simplifies the method signatures and enhances the clarity of the code by directly using the is_current_batch_ephemeral attribute for conditional logic.
2025-08-18 14:16:51 -07:00
Lucas Gomide
80b3d9689a Auto inject crewai_trigger_payload (#3351)
* feat: add props to inject trigger payload

* feat: auto-inject trigger_input in the first crew task
2025-08-18 16:36:08 -04:00
Vini Brasil
ec03a53121 Add example to Tool Repository docs (#3352) 2025-08-18 13:19:35 -07:00
Vini Brasil
2fdf3f3a6a Move Chroma lockfile to db/ (#3342)
This commit fixes an issue where using Chroma would spam lockfiles over
the root path of the crew.
2025-08-18 11:00:50 -07:00
Greyson LaLonde
1d3d7ebf5e fix: convert XMLSearchTool config values to strings for configparser compatibility (#3344) 2025-08-18 13:23:58 -04:00
Gabe Milani
2c2196f415 fix: flaky test with PytestUnraisableExceptionWarning (#3346) 2025-08-18 14:07:51 -03:00
Gabe Milani
c9f30b175c chore: ignore deprecation warning from chromadb (#3328)
* chore: ignore deprecation warning from chromadb

* adding TODO: in the comment
2025-08-18 13:24:11 -03:00
Greyson LaLonde
a17b93a7f8 Mock telemetry in pytest tests (#3340)
* Add telemetry mocking for pytest tests

- Mock telemetry by default for all tests except telemetry-specific tests
- Add @pytest.mark.telemetry marker for real telemetry tests
- Reduce test overhead and improve isolation

* Fix telemetry test isolation

- Properly isolate telemetry tests from mocking environment
- Preserve API keys and other necessary environment variables
- Ensure telemetry tests can run with real telemetry instances
2025-08-18 11:55:30 -04:00
namho kim
0d3e462791 fix: Revised Korean translation and sentence structure improvement (#3337)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-08-18 10:46:13 -04:00
Greyson LaLonde
947c9552f0 chore: remove AgentOps integration (#3334)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-08-17 23:07:41 -04:00
Lorenze Jay
04a03d332f Lorenze/emphemeral tracing (#3323)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* for ephemeral traces

* default false

* simpler and consolidated

* keep raising exception but catch it and continue if its for trace batches

* cleanup

* more cleanup

* not using logger

* refactor: rename TEMP_TRACING_RESOURCE to EPHEMERAL_TRACING_RESOURCE for clarity and consistency in PlusAPI; update related method calls accordingly

* default true

* drop print
2025-08-15 13:37:16 -07:00
Vidit Ostwal
992e093610 Update Docs: Added Mem0 integration with Short Term and Entity Memory (#3293)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* Added Mem0 integration with Short Term and Entity Memory

* Flaky test case of telemetry
2025-08-14 22:50:24 -04:00
Lucas Gomide
07f8e73958 feat: include exchanged agent messages into ExternalMemory metadata (#3290)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-08-14 09:41:09 -04:00
79 changed files with 5424 additions and 1037 deletions

1
.gitignore vendored
View File

@@ -21,7 +21,6 @@ crew_tasks_output.json
.mypy_cache
.ruff_cache
.venv
agentops.log
test_flow.html
crewairules.mdc
plan.md

View File

@@ -226,7 +226,6 @@
"group": "Observability",
"pages": [
"en/observability/overview",
"en/observability/agentops",
"en/observability/arize-phoenix",
"en/observability/langdb",
"en/observability/langfuse",
@@ -342,11 +341,12 @@
"groups": [
{
"group": "Getting Started",
"pages": ["en/api-reference/introduction"]
},
{
"group": "Endpoints",
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.en.yaml"
"pages": [
"en/api-reference/introduction",
"en/api-reference/inputs",
"en/api-reference/kickoff",
"en/api-reference/status"
]
}
]
},
@@ -566,7 +566,6 @@
"group": "Observabilidade",
"pages": [
"pt-BR/observability/overview",
"pt-BR/observability/agentops",
"pt-BR/observability/arize-phoenix",
"pt-BR/observability/langdb",
"pt-BR/observability/langfuse",
@@ -682,11 +681,12 @@
"groups": [
{
"group": "Começando",
"pages": ["pt-BR/api-reference/introduction"]
},
{
"group": "Endpoints",
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.pt-BR.yaml"
"pages": [
"pt-BR/api-reference/introduction",
"pt-BR/api-reference/inputs",
"pt-BR/api-reference/kickoff",
"pt-BR/api-reference/status"
]
}
]
},
@@ -711,7 +711,7 @@
"icon": "globe"
},
{
"anchor": "법정",
"anchor": "포럼",
"href": "https://community.crewai.com",
"icon": "discourse"
},
@@ -721,7 +721,7 @@
"icon": "robot"
},
{
"anchor": "출시",
"anchor": "릴리스",
"href": "https://github.com/crewAIInc/crewAI/releases",
"icon": "tag"
}
@@ -736,22 +736,22 @@
"pages": ["ko/introduction", "ko/installation", "ko/quickstart"]
},
{
"group": "안내서",
"group": "가이드",
"pages": [
{
"group": "전략",
"pages": ["ko/guides/concepts/evaluating-use-cases"]
},
{
"group": "Agents",
"group": "에이전트 (Agents)",
"pages": ["ko/guides/agents/crafting-effective-agents"]
},
{
"group": "Crews",
"group": "크루 (Crews)",
"pages": ["ko/guides/crews/first-crew"]
},
{
"group": "Flows",
"group": "플로우 (Flows)",
"pages": [
"ko/guides/flows/first-flow",
"ko/guides/flows/mastering-flow-state"
@@ -799,7 +799,7 @@
]
},
{
"group": "도구",
"group": "도구 (Tools)",
"pages": [
"ko/tools/overview",
{
@@ -889,7 +889,7 @@
]
},
{
"group": "클라우드 & 저장",
"group": "클라우드 & 스토리지",
"pages": [
"ko/tools/cloud-storage/overview",
"ko/tools/cloud-storage/s3readertool",
@@ -911,10 +911,9 @@
]
},
{
"group": "오브저버빌리티",
"group": "Observability",
"pages": [
"ko/observability/overview",
"ko/observability/agentops",
"ko/observability/arize-phoenix",
"ko/observability/langdb",
"ko/observability/langfuse",
@@ -930,7 +929,7 @@
]
},
{
"group": "익히다",
"group": "학습",
"pages": [
"ko/learn/overview",
"ko/learn/llm-selection-guide",
@@ -954,13 +953,13 @@
]
},
{
"group": "원격측정",
"group": "Telemetry",
"pages": ["ko/telemetry"]
}
]
},
{
"tab": "기업",
"tab": "엔터프라이즈",
"groups": [
{
"group": "시작 안내",
@@ -1000,7 +999,7 @@
]
},
{
"group": "사용 안내서",
"group": "How-To Guides",
"pages": [
"ko/enterprise/guides/build-crew",
"ko/enterprise/guides/deploy-crew",
@@ -1029,11 +1028,12 @@
"groups": [
{
"group": "시작 안내",
"pages": ["ko/api-reference/introduction"]
},
{
"group": "Endpoints",
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.ko.yaml"
"pages": [
"ko/api-reference/introduction",
"ko/api-reference/inputs",
"ko/api-reference/kickoff",
"ko/api-reference/status"
]
}
]
},
@@ -1084,6 +1084,10 @@
"indexing": "all"
},
"redirects": [
{
"source": "/api-reference",
"destination": "/en/api-reference/introduction"
},
{
"source": "/introduction",
"destination": "/en/introduction"
@@ -1136,6 +1140,18 @@
"source": "/api-reference/:path*",
"destination": "/en/api-reference/:path*"
},
{
"source": "/en/api-reference",
"destination": "/en/api-reference/introduction"
},
{
"source": "/pt-BR/api-reference",
"destination": "/pt-BR/api-reference/introduction"
},
{
"source": "/ko/api-reference",
"destination": "/ko/api-reference/introduction"
},
{
"source": "/examples/:path*",
"destination": "/en/examples/:path*"

View File

@@ -0,0 +1,7 @@
---
title: "GET /inputs"
description: "Get required inputs for your crew"
openapi: "/enterprise-api.en.yaml GET /inputs"
---

View File

@@ -0,0 +1,7 @@
---
title: "POST /kickoff"
description: "Start a crew execution"
openapi: "/enterprise-api.en.yaml POST /kickoff"
---

View File

@@ -0,0 +1,7 @@
---
title: "GET /status/{kickoff_id}"
description: "Get execution status"
openapi: "/enterprise-api.en.yaml GET /status/{kickoff_id}"
---

View File

@@ -177,14 +177,7 @@ class MyCustomCrew:
# Your crew implementation...
```
This is exactly how CrewAI's built-in `agentops_listener` is registered. In the CrewAI codebase, you'll find:
```python
# src/crewai/utilities/events/third_party/__init__.py
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
This is how third-party event listeners are registered in the CrewAI codebase.
## Available Event Types
@@ -280,77 +273,6 @@ The structure of the event object depends on the event type, but all events inhe
Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` includes `crew_name` and `output` fields.
## Real-World Example: Integration with AgentOps
CrewAI includes an example of a third-party integration with [AgentOps](https://github.com/AgentOps-AI/agentops), a monitoring and observability platform for AI agents. Here's how it's implemented:
```python
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
```
This listener initializes an AgentOps session when a Crew starts, registers agents with AgentOps, tracks tool usage, and ends the session when the Crew completes.
The AgentOps listener is registered in CrewAI's event system through the import in `src/crewai/utilities/events/third_party/__init__.py`:
```python
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Advanced Usage: Scoped Handlers

View File

@@ -539,16 +539,71 @@ crew = Crew(
)
```
### Mem0 Provider
Short-Term Memory and Entity Memory both supports a tight integration with both Mem0 OSS and Mem0 Client as a provider. Here is how you can use Mem0 as a provider.
```python
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.memory.entity_entity_memory import EntityMemory
mem0_oss_embedder_config = {
"provider": "mem0",
"config": {
"user_id": "john",
"local_mem0_config": {
"vector_store": {"provider": "qdrant","config": {"host": "localhost", "port": 6333}},
"llm": {"provider": "openai","config": {"api_key": "your-api-key", "model": "gpt-4"}},
"embedder": {"provider": "openai","config": {"api_key": "your-api-key", "model": "text-embedding-3-small"}}
},
"infer": True # Optional defaults to True
},
}
mem0_client_embedder_config = {
"provider": "mem0",
"config": {
"user_id": "john",
"org_id": "my_org_id", # Optional
"project_id": "my_project_id", # Optional
"api_key": "custom-api-key" # Optional - overrides env var
"run_id": "my_run_id", # Optional - for short-term memory
"includes": "include1", # Optional
"excludes": "exclude1", # Optional
"infer": True # Optional defaults to True
"custom_categories": new_categories # Optional - custom categories for user memory
},
}
short_term_memory_mem0_oss = ShortTermMemory(embedder_config=mem0_oss_embedder_config) # Short Term Memory with Mem0 OSS
short_term_memory_mem0_client = ShortTermMemory(embedder_config=mem0_client_embedder_config) # Short Term Memory with Mem0 Client
entity_memory_mem0_oss = EntityMemory(embedder_config=mem0_oss_embedder_config) # Entity Memory with Mem0 OSS
entity_memory_mem0_client = EntityMemory(embedder_config=mem0_client_embedder_config) # Short Term Memory with Mem0 Client
crew = Crew(
memory=True,
short_term_memory=short_term_memory_mem0_oss, # or short_term_memory_mem0_client
entity_memory=entity_memory_mem0_oss # or entity_memory_mem0_client
)
```
### Choosing the Right Embedding Provider
| Provider | Best For | Pros | Cons |
|:---------|:----------|:------|:------|
| **OpenAI** | General use, reliability | High quality, well-tested | Cost, requires API key |
| **Ollama** | Privacy, cost savings | Free, local, private | Requires local setup |
| **Google AI** | Google ecosystem | Good performance | Requires Google account |
| **Azure OpenAI** | Enterprise, compliance | Enterprise features | Complex setup |
| **Cohere** | Multilingual content | Great language support | Specialized use case |
| **VoyageAI** | Retrieval tasks | Optimized for search | Newer provider |
When selecting an embedding provider, consider factors like performance, privacy, cost, and integration needs.
Below is a comparison to help you decide:
| Provider | Best For | Pros | Cons |
| -------------- | ------------------------------ | --------------------------------- | ------------------------- |
| **OpenAI** | General use, high reliability | High quality, widely tested | Paid service, API key required |
| **Ollama** | Privacy-focused, cost savings | Free, runs locally, fully private | Requires local installation/setup |
| **Google AI** | Integration in Google ecosystem| Strong performance, good support | Google account required |
| **Azure OpenAI** | Enterprise & compliance needs| Enterprise-grade features, security | More complex setup process |
| **Cohere** | Multilingual content handling | Excellent language support | More niche use cases |
| **VoyageAI** | Information retrieval & search | Optimized for retrieval tasks | Relatively new provider |
| **Mem0** | Per-user personalization | Search-optimized embeddings | Paid service, API key required |
### Environment Variable Configuration

View File

@@ -21,13 +21,17 @@ To use the training feature, follow these steps:
3. Run the following command:
```shell
crewai train -n <n_iterations> <filename> (optional)
crewai train -n <n_iterations> -f <filename.pkl>
```
<Tip>
Replace `<n_iterations>` with the desired number of training iterations and `<filename>` with the appropriate filename ending with `.pkl`.
</Tip>
### Training Your Crew Programmatically
<Note>
If you omit `-f`, the output defaults to `trained_agents_data.pkl` in the current working directory. You can pass an absolute path to control where the file is written.
</Note>
### Training your Crew programmatically
To train your crew programmatically, use the following steps:
@@ -51,19 +55,65 @@ except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
```
### Key Points to Note
## How trained data is used by agents
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
CrewAI uses the training artifacts in two ways: during training to incorporate your human feedback, and after training to guide agents with consolidated suggestions.
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
### Training data flow
Once the training is complete, your agents will be equipped with enhanced capabilities and knowledge, ready to tackle complex tasks and provide more consistent and valuable insights.
```mermaid
flowchart TD
A["Start training<br/>CLI: crewai train -n -f<br/>or Python: crew.train(...)"] --> B["Setup training mode<br/>- task.human_input = true<br/>- disable delegation<br/>- init training_data.pkl + trained file"]
Remember to regularly update and retrain your agents to ensure they stay up-to-date with the latest information and advancements in the field.
subgraph "Iterations"
direction LR
C["Iteration i<br/>initial_output"] --> D["User human_feedback"]
D --> E["improved_output"]
E --> F["Append to training_data.pkl<br/>by agent_id and iteration"]
end
Happy training with CrewAI! 🚀
B --> C
F --> G{"More iterations?"}
G -- "Yes" --> C
G -- "No" --> H["Evaluate per agent<br/>aggregate iterations"]
H --> I["Consolidate<br/>suggestions[] + quality + final_summary"]
I --> J["Save by agent role to trained file<br/>(default: trained_agents_data.pkl)"]
J --> K["Normal (non-training) runs"]
K --> L["Auto-load suggestions<br/>from trained_agents_data.pkl"]
L --> M["Append to prompt<br/>for consistent improvements"]
```
### During training runs
- On each iteration, the system records for every agent:
- `initial_output`: the agents first answer
- `human_feedback`: your inline feedback when prompted
- `improved_output`: the agents follow-up answer after feedback
- This data is stored in a working file named `training_data.pkl` keyed by the agents internal ID and iteration.
- While training is active, the agent automatically appends your prior human feedback to its prompt to enforce those instructions on subsequent attempts within the training session.
Training is interactive: tasks set `human_input = true`, so running in a non-interactive environment will block on user input.
### After training completes
- When `train(...)` finishes, CrewAI evaluates the collected training data per agent and produces a consolidated result containing:
- `suggestions`: clear, actionable instructions distilled from your feedback and the difference between initial/improved outputs
- `quality`: a 010 score capturing improvement
- `final_summary`: a step-by-step set of action items for future tasks
- These consolidated results are saved to the filename you pass to `train(...)` (default via CLI is `trained_agents_data.pkl`). Entries are keyed by the agents `role` so they can be applied across sessions.
- During normal (non-training) execution, each agent automatically loads its consolidated `suggestions` and appends them to the task prompt as mandatory instructions. This gives you consistent improvements without changing your agent definitions.
### File summary
- `training_data.pkl` (ephemeral, per-session):
- Structure: `agent_id -> { iteration_number: { initial_output, human_feedback, improved_output } }`
- Purpose: capture raw data and human feedback during training
- Location: saved in the current working directory (CWD)
- `trained_agents_data.pkl` (or your custom filename):
- Structure: `agent_role -> { suggestions: string[], quality: number, final_summary: string }`
- Purpose: persist consolidated guidance for future runs
- Location: written to the CWD by default; use `-f` to set a custom (including absolute) path
## Small Language Model Considerations
@@ -129,3 +179,18 @@ Happy training with CrewAI! 🚀
</Warning>
</Tab>
</Tabs>
### Key Points to Note
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
- Trained guidance is applied at prompt time; it does not modify your Python/YAML agent configuration.
- Agents automatically load trained suggestions from a file named `trained_agents_data.pkl` located in the current working directory. If you trained to a different filename, either rename it to `trained_agents_data.pkl` before running, or adjust the loader in code.
- You can change the output filename when calling `crewai train` with `-f/--filename`. Absolute paths are supported if you want to save outside the CWD.
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
Once the training is complete, your agents will be equipped with enhanced capabilities and knowledge, ready to tackle complex tasks and provide more consistent and valuable insights.
Remember to regularly update and retrain your agents to ensure they stay up-to-date with the latest information and advancements in the field.

View File

@@ -35,6 +35,22 @@ crewai tool install <tool-name>
This installs the tool and adds it to `pyproject.toml`.
You can use the tool by importing it and adding it to your agents:
```python
from your_tool.tool import YourTool
custom_tool = YourTool()
researcher = Agent(
role='Market Research Analyst',
goal='Provide up-to-date market analysis of the AI industry',
backstory='An expert analyst with a keen eye for market trends.',
tools=[custom_tool],
verbose=True
)
```
## Creating and Publishing Tools
To create a new tool project:

View File

@@ -1,126 +0,0 @@
---
title: AgentOps Integration
description: Understanding and logging your agent performance with AgentOps.
icon: paperclip
---
# Introduction
Observability is a key aspect of developing and deploying conversational AI agents. It allows developers to understand how their agents are performing,
how their agents are interacting with users, and how their agents use external tools and APIs.
AgentOps is a product independent of CrewAI that provides a comprehensive observability solution for agents.
## AgentOps
[AgentOps](https://agentops.ai/?=crew) provides session replays, metrics, and monitoring for agents.
At a high level, AgentOps gives you the ability to monitor cost, token usage, latency, agent failures, session-wide statistics, and more.
For more info, check out the [AgentOps Repo](https://github.com/AgentOps-AI/agentops).
### Overview
AgentOps provides monitoring for agents in development and production.
It provides a dashboard for tracking agent performance, session replays, and custom reporting.
Additionally, AgentOps provides session drilldowns for viewing Crew agent interactions, LLM calls, and tool usage in real-time.
This feature is useful for debugging and understanding how agents interact with users as well as other agents.
![Overview of a select series of agent session runs](/images/agentops-overview.png)
![Overview of session drilldowns for examining agent runs](/images/agentops-session.png)
![Viewing a step-by-step agent replay execution graph](/images/agentops-replay.png)
### Features
- **LLM Cost Management and Tracking**: Track spend with foundation model providers.
- **Replay Analytics**: Watch step-by-step agent execution graphs.
- **Recursive Thought Detection**: Identify when agents fall into infinite loops.
- **Custom Reporting**: Create custom analytics on agent performance.
- **Analytics Dashboard**: Monitor high-level statistics about agents in development and production.
- **Public Model Testing**: Test your agents against benchmarks and leaderboards.
- **Custom Tests**: Run your agents against domain-specific tests.
- **Time Travel Debugging**: Restart your sessions from checkpoints.
- **Compliance and Security**: Create audit logs and detect potential threats such as profanity and PII leaks.
- **Prompt Injection Detection**: Identify potential code injection and secret leaks.
### Using AgentOps
<Steps>
<Step title="Create an API Key">
Create a user API key here: [Create API Key](https://app.agentops.ai/account)
</Step>
<Step title="Configure Your Environment">
Add your API key to your environment variables:
```bash
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
```
</Step>
<Step title="Install AgentOps">
Install AgentOps with:
```bash
pip install 'crewai[agentops]'
```
or
```bash
pip install agentops
```
</Step>
<Step title="Initialize AgentOps">
Before using `Crew` in your script, include these lines:
```python
import agentops
agentops.init()
```
This will initiate an AgentOps session as well as automatically track Crew agents. For further info on how to outfit more complex agentic systems,
check out the [AgentOps documentation](https://docs.agentops.ai) or join the [Discord](https://discord.gg/j4f3KbeH).
</Step>
</Steps>
### Crew + AgentOps Examples
<CardGroup cols={3}>
<Card
title="Job Posting"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting"
icon="briefcase"
iconType="solid"
>
Example of a Crew agent that generates job posts.
</Card>
<Card
title="Markdown Validator"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/markdown_validator"
icon="markdown"
iconType="solid"
>
Example of a Crew agent that validates Markdown files.
</Card>
<Card
title="Instagram Post"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
icon="square-instagram"
iconType="brands"
>
Example of a Crew agent that generates Instagram posts.
</Card>
</CardGroup>
### Further Information
To get started, create an [AgentOps account](https://agentops.ai/?=crew).
For feature requests or bug reports, please reach out to the AgentOps team on the [AgentOps Repo](https://github.com/AgentOps-AI/agentops).
#### Extra links
<a href="https://twitter.com/agentopsai/">🐦 Twitter</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://discord.gg/JHPt4C7r">📢 Discord</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://app.agentops.ai/?=crew">🖇️ AgentOps Dashboard</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://docs.agentops.ai/introduction">📙 Documentation</a>

View File

@@ -21,9 +21,6 @@ Observability is crucial for understanding how your CrewAI agents perform, ident
### Monitoring & Tracing Platforms
<CardGroup cols={2}>
<Card title="AgentOps" icon="paperclip" href="/en/observability/agentops">
Session replays, metrics, and monitoring for agent development and production.
</Card>
<Card title="LangDB" icon="database" href="/en/observability/langdb">
End-to-end tracing for CrewAI workflows with automatic agent interaction capture.

View File

@@ -117,4 +117,19 @@ agent = Agent(
)
```
## **Max Usage Count**
You can set a maximum usage count for a tool to prevent it from being used more than a certain number of times.
By default, the max usage count is unlimited.
```python
from crewai_tools import FileReadTool
tool = FileReadTool(max_usage_count=5, ...)
```
Ready to explore? Pick a category above to discover tools that fit your use case!

Binary file not shown.

Before

Width:  |  Height:  |  Size: 288 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 419 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 263 KiB

View File

@@ -0,0 +1,7 @@
---
title: "GET /inputs"
description: "크루가 필요로 하는 입력 확인"
openapi: "/enterprise-api.ko.yaml GET /inputs"
---

View File

@@ -0,0 +1,7 @@
---
title: "POST /kickoff"
description: "크루 실행 시작"
openapi: "/enterprise-api.ko.yaml POST /kickoff"
---

View File

@@ -0,0 +1,7 @@
---
title: "GET /status/{kickoff_id}"
description: "실행 상태 조회"
openapi: "/enterprise-api.ko.yaml GET /status/{kickoff_id}"
---

View File

@@ -177,14 +177,7 @@ class MyCustomCrew:
# Your crew implementation...
```
이것이 바로 CrewAI의 내장 `agentops_listener`가 등록되는 방식과 동일합니다. CrewAI 코드베이스에서는 다음과 같이 되어 있습니다:
```python
# src/crewai/utilities/events/third_party/__init__.py
from .agentops_listener import agentops_listener
```
이렇게 하면 `crewai.utilities.events` 패키지가 임포트될 때 `agentops_listener`가 자동으로 로드됩니다.
이것이 CrewAI 코드베이스에서 서드파티 이벤트 리스너가 등록되는 방식입니다.
## 사용 가능한 이벤트 유형
@@ -280,77 +273,6 @@ CrewAI는 여러분이 청취할 수 있는 다양한 이벤트를 제공합니
추가 필드는 이벤트 타입에 따라 다릅니다. 예를 들어, `CrewKickoffCompletedEvent`에는 `crew_name`과 `output` 필드가 포함됩니다.
## 실제 예시: AgentOps와의 통합
CrewAI는 AI 에이전트를 위한 모니터링 및 관찰 플랫폼인 [AgentOps](https://github.com/AgentOps-AI/agentops)와의 서드파티 통합 예시를 포함하고 있습니다. 구현 방식은 다음과 같습니다:
```python
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
```
이 listener는 crew가 시작될 때 AgentOps 세션을 초기화하고, agent를 AgentOps에 등록하며, 도구 사용을 추적하고, crew가 완료되면 세션을 종료합니다.
AgentOps listener는 `src/crewai/utilities/events/third_party/__init__.py` 파일의 import를 통해 CrewAI 이벤트 시스템에 등록됩니다:
```python
from .agentops_listener import agentops_listener
```
이렇게 하면 `crewai.utilities.events` 패키지가 import될 때 `agentops_listener`가 로드되는 것이 보장됩니다.
## 고급 사용법: Scoped Handlers

View File

@@ -1,65 +1,65 @@
---
title: 소개
description: 함께 협력하여 복잡한 작업을 해결하는 AI 에이전트 팀 구축
description: 함께 협력하여 복잡한 작업을 해결하는 AI agent 팀 구축
icon: handshake
---
# CrewAI란 무엇인가?
**CrewAI는 완전히 독립적으로, LangChain이나 기타 agent 프레임워크에 의존하지 않고 처음부터 스크래치로 개발된 가볍고 매우 빠른 Python 프레임워크입니다.**
**CrewAI는 LangChain이나 기타 agent 프레임워크에 의존하지 않고, 완전히 독립적으로 처음부터 스크래치로 개발된 가볍고 매우 빠른 Python 프레임워크입니다.**
CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공하여, 어떤 시나리오에도 맞춤화된 자율 AI agent를 만드는 데 이상적입니다:
- **[CrewAI Crews](/ko/guides/crews/first-crew)**: 자율성과 협업 지능을 극대화하여, 각 agent가 특정 역할, 도구, 목표를 가진 AI 팀을 만들 수 있습니다.
- **[CrewAI Flows](/ko/guides/flows/first-flow)**: 세밀한 이벤트 기반 제어와 단일 LLM 호출을 통한 정확한 작업 오케스트레이션을 가능하게 하며 Crews 네이티브로 지원합니다.
- **[CrewAI Flows](/ko/guides/flows/first-flow)**: 이벤트 기반의 세밀한 제어와 단일 LLM 호출을 통한 정확한 작업 orchestration을 지원하며, Crews 네이티브로 통합됩니다.
10만 명이 넘는 개발자가 커뮤니티 과정을 통해 인증을 받았으며, CrewAI는 기업용 AI 자동화의 표준으로 빠르게 자리잡고 있습니다.
## 크루 작동 방식
## Crew의 작동 방식
<Note>
회사가 비즈니스 목표를 달성하기 위해 여러 부서(영업, 엔지니어링, 마케팅 등)가 리더십 아래에서 함께 일하는 것처럼, CrewAI는 복잡한 작업을 달성하기 위해 전문화된 역할의 AI 에이전트들이 협력하는 조직을 만들 수 있도록 도와줍니다.
회사가 비즈니스 목표를 달성하기 위해 여러 부서(영업, 엔지니어링, 마케팅 등)가 리더십 아래에서 함께 일하는 것처럼, CrewAI는 복잡한 작업을 달성하기 위해 전문화된 역할의 AI agent들이 협력하는 조직을 만들 수 있도록 도와줍니다.
</Note>
<Frame caption="CrewAI 프레임워크 개요">
<Frame caption="CrewAI Framework Overview">
<img src="/images/crews.png" alt="CrewAI Framework Overview" />
</Frame>
| 구성 요소 | 설명 | 주요 특징 |
|:--------------|:---------------------:|:----------|
| **크루** | 최상위 조직 | • AI 에이전트 팀 관리<br/>• 워크플로우 감독<br/>• 협업 보장<br/>• 결과 전달 |
| **AI 에이전트** | 전문 팀원 | • 특정 역할 보유(연구원, 작가 등)<br/>• 지정된 도구 사용<br/>• 작업 위임 가능<br/>• 자율적 의사결정 가능 |
| **프로세스** | 워크플로우 관리 시스템 | • 협업 패턴 정의<br/>• 작업 할당 제어<br/>• 상호작용 관리<br/>• 효율적 실행 보장 |
| **작업** | 개별 할당 | • 명확한 목표 보유<br/>• 특정 도구 사용<br/>• 더 큰 프로세스에 기여<br/>• 실행 가능한 결과 도출 |
| 구성 요소 | 설명 | 주요 특징 |
|:----------|:----:|:----------|
| **Crew** | 최상위 조직 | • AI agent 팀 관리<br/>• workflow 감독<br/>• 협업 보장<br/>• 결과 전달 |
| **AI agents** | 전문 팀원 | • 특정 역할 보유(Researcher, Writer 등)<br/>• 지정된 도구 사용<br/>• 작업 위임 가능<br/>• 자율적 의사결정 가능 |
| **Process** | workflow 관리 시스템 | • 협업 패턴 정의<br/>• 작업 할당 제어<br/>• 상호작용 관리<br/>• 효율적 실행 보장 |
| **Task** | 개별 할당 | • 명확한 목표 보유<br/>• 특정 도구 사용<br/>• 더 큰 프로세스에 기여<br/>• 실행 가능한 결과 도출 |
### 어떻게 모두 함께 작동하는가
### 전체 구조의 동작 방식
1. **Crew**가 전체 운영을 조직합니다
2. **AI Agents**가 자신들의 전문 작업을 수행합니다
2. **AI agents**가 자신들의 전문 작업을 수행합니다
3. **Process**가 원활한 협업을 보장합니다
4. **Tasks**가 완료되어 목표를 달성합니다
## 주요 기능
<CardGroup cols={2}>
<Card title="역할 기반 에이전트" icon="users">
연구원, 분석가, 작가 등 다양한 역할, 전문성, 목표를 가진 전문 에이전트를 생성할 수 있습니다
<Card title="역할 기반 agent" icon="users">
Researcher, Analyst, Writer 등 다양한 역할 전문성, 목표를 가진 agent를 생성할 수 있습니다
</Card>
<Card title="유연한 도구" icon="screwdriver-wrench">
에이전트에게 외부 서비스 및 데이터 소스와 상호작용할 수 있는 맞춤형 도구와 API를 제공합니다
agent에게 외부 서비스 및 데이터 소스와 상호작용할 수 있는 맞춤형 도구와 API를 제공합니다
</Card>
<Card title="지능형 협업" icon="people-arrows">
에이전트가 함께 작업하며, 인사이트를 공유하고 작업을 조율하여 복잡한 목표를 달성합니다
agent들이 함께 작업하며, 인사이트를 공유하고 작업을 조율하여 복잡한 목표를 달성합니다
</Card>
<Card title="작업 관리" icon="list-check">
순차적 또는 병렬 워크플로우를 정의할 수 있으며, 에이전트가 작업 의존성을 자동으로 처리합니다
순차적 또는 병렬 workflow를 정의할 수 있으며, agent가 작업 의존성을 자동으로 처리합니다
</Card>
</CardGroup>
## 플로우의 작동 원리
## Flow의 작동 원리
<Note>
crew 자율 협업에 탁월한 반면, 플로우는 구조화된 자동화를 제공하여 워크플로우 실행에 대한 세밀한 제어를 제공합니다. 플로우는 조건부 로직, 반복문, 동적 상태 관리를 정확하게 처리하면서 작업이 신뢰성 있게, 안전하게, 효율적으로 실행되도록 보장합니다. 플로우crew와 원활하게 통합되어 높은 자율성과 엄격한 제어의 균형을 이룰 수 있게 해줍니다.
Crew 자율 협업에 탁월하다면, Flow는 구조화된 자동화를 제공하여 workflow 실행에 대한 세밀한 제어를 제공합니다. Flow는 조건부 로직, 반복문, 동적 상태 관리를 정확하게 처리하면서 작업이 신뢰성 있게, 안전하게, 효율적으로 실행되도록 보장합니다. FlowCrew와 원활하게 통합되어 높은 자율성과 엄격한 제어의 균형을 이룰 수 있게 해줍니다.
</Note>
<Frame caption="CrewAI Framework Overview">
@@ -68,41 +68,41 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
| 구성 요소 | 설명 | 주요 기능 |
|:----------|:-----------:|:------------|
| **Flow** | 구조화된 워크플로우 오케스트레이션 | • 실행 경로 관리<br/>• 상태 전환 처리<br/>• 작업 순서 제어<br/>• 신뢰성 있는 실행 보장 |
| **Events** | 워크플로우 액션 트리거 | • 특정 프로세스 시작<br/>• 동적 응답 가능<br/>• 조건부 분기 지원<br/>• 실시간 적응 허용 |
| **States** | 워크플로우 실행 컨텍스트 | • 실행 데이터 유지<br/>• 데이터 영속성 지원<br/>• 재개 가능성 보장<br/>• 실행 무결성 확보 |
| **Crew Support** | 워크플로우 자동화 강화 | • 필요할 때 agency 삽입<br/>• 구조화된 워크플로우 보완<br/>• 자동화와 인텔리전스의 균형<br/>• 적응적 의사결정 지원 |
| **Flow** | 구조화된 workflow orchestration | • 실행 경로 관리<br/>• 상태 전환 처리<br/>• 작업 순서 제어<br/>• 신뢰성 있는 실행 보장 |
| **Events** | workflow 액션 트리거 | • 특정 프로세스 시작<br/>• 동적 응답 가능<br/>• 조건부 분기 지원<br/>• 실시간 적응 허용 |
| **States** | workflow 실행 컨텍스트 | • 실행 데이터 유지<br/>• 데이터 영속성 지원<br/>• 재개 가능성 보장<br/>• 실행 무결성 확보 |
| **Crew Support** | workflow 자동화 강화 | • 필요할 때 agency 삽입<br/>• 구조화된 workflow 보완<br/>• 자동화와 인텔리전스의 균형<br/>• 적응적 의사결정 지원 |
### 주요 기능
<CardGroup cols={2}>
<Card title="이벤트 기반 오케스트레이션" icon="bolt">
이벤트에 동적으로 반응하여 정밀한 실행 경로 정의
<Card title="이벤트 기반 orchestration" icon="bolt">
이벤트에 동적으로 반응하여 정밀한 실행 경로 정의합니다
</Card>
<Card title="세밀한 제어" icon="sliders">
워크플로우 상태와 조건부 실행을 안전하고 효율적으로 관리
workflow 상태와 조건부 실행을 안전하고 효율적으로 관리합니다
</Card>
<Card title="네이티브 Crew 통합" icon="puzzle-piece">
Crews와 손쉽게 결합하여 자율성과 지능 강화
Crews와 손쉽게 결합하여 자율성과 지능 강화합니다
</Card>
<Card title="결정론적 실행" icon="route">
명시적 제어 흐름과 오류 처리로 예측 가능한 결과 보장
명시적 제어 흐름과 오류 처리로 예측 가능한 결과 보장합니다
</Card>
</CardGroup>
## 크루(Crews)와 플로우(Flows)를 언제 사용할까
## CrewFlow를 언제 사용할까
<Note>
[크루](/ko/guides/crews/first-crew)와 [플로우](/ko/guides/flows/first-flow)를 언제 사용할지 이해하는 것은 CrewAI의 잠재력을 애플리케이션에서 극대화하는 데 핵심적입니다.
[Crew](/ko/guides/crews/first-crew)와 [Flow](/ko/guides/flows/first-flow)를 언제 사용할지 이해하는 것은 CrewAI의 잠재력을 애플리케이션에서 극대화하는 데 핵심적입니다.
</Note>
| 사용 사례 | 권장 접근 방식 | 이유 |
|:---------|:---------------------|:-----|
| **개방형 연구** | [크루](/ko/guides/crews/first-crew) | 과제가 창의적 사고, 탐색, 적응이 필요할 때 |
| **콘텐츠 생성** | [크루](/ko/guides/crews/first-crew) | 기사, 보고서, 마케팅 자료 등 협업형 생성 |
| **의사결정 워크플로우** | [플로우](/ko/guides/flows/first-flow) | 예측 가능하고 감사 가능한 의사결정 경로 및 정밀 제어가 필요할 때 |
| **API 오케스트레이션** | [플로우](/ko/guides/flows/first-flow) | 특정 순서로 여러 외부 서비스에 신뢰성 있게 통합할 때 |
| **하이브리드 애플리케이션** | 혼합 접근 방식 | [플로우](/ko/guides/flows/first-flow)로 전체 프로세스를 오케스트레이션하고, [크루](/ko/guides/crews/first-crew)로 복잡한 하위 작업을 처리 |
| **개방형 연구** | [Crew](/ko/guides/crews/first-crew) | 창의적 사고, 탐색, 적응이 필요한 작업에 적합 |
| **콘텐츠 생성** | [Crew](/ko/guides/crews/first-crew) | 기사, 보고서, 마케팅 자료 등 협업형 생성에 적합 |
| **의사결정 workflow** | [Flow](/ko/guides/flows/first-flow) | 예측 가능하고 감사 가능한 의사결정 경로 및 정밀 제어가 필요할 때 |
| **API orchestration** | [Flow](/ko/guides/flows/first-flow) | 특정 순서로 여러 외부 서비스에 신뢰성 있게 통합할 때 |
| **하이브리드 애플리케이션** | 혼합 접근 방식 | [Flow](/ko/guides/flows/first-flow)로 전체 프로세스를 orchestration하고, [Crew](/ko/guides/crews/first-crew)로 복잡한 하위 작업을 처리 |
### 의사결정 프레임워크
@@ -112,8 +112,8 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
## CrewAI를 선택해야 하는 이유?
- 🧠 **자율적 운영**: 에이전트가 자신의 역할과 사용 가능한 도구를 바탕으로 지능적인 결정을 내립니다
- 📝 **자연스러운 상호작용**: 에이전트가 인간 팀원처럼 소통하고 협업합니다
- 🧠 **자율적 운영**: agent가 자신의 역할과 사용 가능한 도구를 바탕으로 지능적인 결정을 내립니다
- 📝 **자연스러운 상호작용**: agent가 인간 팀원처럼 소통하고 협업합니다
- 🛠️ **확장 가능한 설계**: 새로운 도구, 역할, 기능을 쉽게 추가할 수 있습니다
- 🚀 **프로덕션 준비 완료**: 실제 환경에서의 신뢰성과 확장성을 고려하여 구축되었습니다
- 🔒 **보안 중심**: 엔터프라이즈 보안 요구 사항을 고려하여 설계되었습니다
@@ -134,7 +134,7 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
icon="diagram-project"
href="/ko/guides/flows/first-flow"
>
실행을 정밀하게 제어할 수 있는 구조화된, 이벤트 기반 워크플로우를 만드는 방법을 배워보세요.
실행을 정밀하게 제어할 수 있는 구조화된, 이벤트 기반 workflow를 만드는 방법을 배워보세요.
</Card>
</CardGroup>
@@ -151,7 +151,7 @@ CrewAI는 고수준의 간편함과 정밀한 저수준 제어를 모두 제공
icon="bolt"
href="ko/quickstart"
>
빠른 시작 가이드를 따라 첫 번째 CrewAI 에이전트를 만들고 직접 경험해 보세요.
빠른 시작 가이드를 따라 첫 번째 CrewAI agent를 만들고 직접 경험해 보세요.
</Card>
<Card
title="커뮤니티 가입하기"

View File

@@ -1,124 +0,0 @@
---
title: AgentOps 통합
description: AgentOps를 사용하여 에이전트 성능을 이해하고 로깅하기
icon: paperclip
---
# 소개
Observability는 대화형 AI 에이전트를 개발하고 배포하는 데 있어 핵심적인 요소입니다. 이는 개발자가 에이전트의 성능을 이해하고, 에이전트가 사용자와 어떻게 상호작용하는지, 그리고 에이전트가 외부 도구와 API를 어떻게 사용하는지를 파악할 수 있게 해줍니다.
AgentOps는 CrewAI와 독립적인 제품으로, 에이전트를 위한 종합적인 observability 솔루션을 제공합니다.
## AgentOps
[AgentOps](https://agentops.ai/?=crew)은 에이전트에 대한 세션 리플레이, 메트릭, 모니터링을 제공합니다.
AgentOps는 높은 수준에서 비용, 토큰 사용량, 대기 시간, 에이전트 실패, 세션 전체 통계 등 다양한 항목을 모니터링할 수 있는 기능을 제공합니다.
더 자세한 내용은 [AgentOps Repo](https://github.com/AgentOps-AI/agentops)를 확인하세요.
### 개요
AgentOps는 개발 및 프로덕션 환경에서 에이전트에 대한 모니터링을 제공합니다.
에이전트 성능, 세션 리플레이, 맞춤형 리포팅을 추적할 수 있는 대시보드를 제공합니다.
또한, AgentOps는 Crew 에이전트 상호작용, LLM 호출, 툴 사용을 실시간으로 볼 수 있는 세션 드릴다운 기능을 제공합니다.
이 기능은 에이전트가 사용자 및 다른 에이전트와 어떻게 상호작용하는지 디버깅하고 이해하는 데 유용합니다.
![선택된 에이전트 세션 실행 시리즈의 개요](/images/agentops-overview.png)
![에이전트 실행을 조사하기 위한 세션 드릴다운 개요](/images/agentops-session.png)
![단계별 에이전트 리플레이 실행 그래프 보기](/images/agentops-replay.png)
### 특징
- **LLM 비용 관리 및 추적**: 기반 모델 공급자와의 지출을 추적합니다.
- **재생 분석**: 단계별 에이전트 실행 그래프를 시청할 수 있습니다.
- **재귀적 사고 감지**: 에이전트가 무한 루프에 빠졌는지 식별합니다.
- **맞춤형 보고서**: 에이전트 성능에 대한 맞춤형 분석을 생성합니다.
- **분석 대시보드**: 개발 및 운영 중인 에이전트에 대한 상위 수준 통계를 모니터링합니다.
- **공개 모델 테스트**: 벤치마크 및 리더보드를 통해 에이전트를 테스트할 수 있습니다.
- **맞춤형 테스트**: 도메인별 테스트로 에이전트를 실행합니다.
- **타임 트래블 디버깅**: 체크포인트에서 세션을 재시작합니다.
- **컴플라이언스 및 보안**: 감사 로그를 생성하고 욕설 및 PII 유출과 같은 잠재적 위협을 감지합니다.
- **프롬프트 인젝션 감지**: 잠재적 코드 인젝션 및 시크릿 유출을 식별합니다.
### AgentOps 사용하기
<Steps>
<Step title="API 키 생성">
사용자 API 키를 여기서 생성하세요: [API 키 생성](https://app.agentops.ai/account)
</Step>
<Step title="환경 설정">
API 키를 환경 변수에 추가하세요:
```bash
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
```
</Step>
<Step title="AgentOps 설치">
다음 명령어로 AgentOps를 설치하세요:
```bash
pip install 'crewai[agentops]'
```
또는
```bash
pip install agentops
```
</Step>
<Step title="AgentOps 초기화">
스크립트에서 `Crew`를 사용하기 전에 다음 코드를 포함하세요:
```python
import agentops
agentops.init()
```
이렇게 하면 AgentOps 세션이 시작되고 Crew 에이전트가 자동으로 추적됩니다. 더 복잡한 agentic 시스템을 구성하는 방법에 대한 자세한 정보는 [AgentOps 문서](https://docs.agentops.ai) 또는 [Discord](https://discord.gg/j4f3KbeH)를 참조하세요.
</Step>
</Steps>
### Crew + AgentOps 예시
<CardGroup cols={3}>
<Card
title="Job Posting"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting"
icon="briefcase"
iconType="solid"
>
채용 공고를 생성하는 Crew agent의 예시입니다.
</Card>
<Card
title="Markdown Validator"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/markdown_validator"
icon="markdown"
iconType="solid"
>
Markdown 파일을 검증하는 Crew agent의 예시입니다.
</Card>
<Card
title="Instagram Post"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
icon="square-instagram"
iconType="brands"
>
Instagram 게시물을 생성하는 Crew agent의 예시입니다.
</Card>
</CardGroup>
### 추가 정보
시작하려면 [AgentOps 계정](https://agentops.ai/?=crew)을 생성하세요.
기능 요청이나 버그 보고가 필요하시면 [AgentOps Repo](https://github.com/AgentOps-AI/agentops)에서 AgentOps 팀에 문의해 주세요.
#### 추가 링크
<a href="https://twitter.com/agentopsai/">🐦 트위터</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://discord.gg/JHPt4C7r">📢 디스코드</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://app.agentops.ai/?=crew">🖇️ AgentOps 대시보드</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://docs.agentops.ai/introduction">📙 문서화</a>

View File

@@ -21,9 +21,6 @@ icon: "face-smile"
### 모니터링 & 트레이싱 플랫폼
<CardGroup cols={2}>
<Card title="AgentOps" icon="paperclip" href="/ko/observability/agentops">
에이전트 개발 및 운영을 위한 세션 리플레이, 메트릭, 모니터링 제공.
</Card>
<Card title="LangDB" icon="database" href="/ko/observability/langdb">
자동 에이전트 상호작용 캡처를 포함한 CrewAI 워크플로의 엔드-투-엔드 트레이싱.

View File

@@ -0,0 +1,7 @@
---
title: "GET /inputs"
description: "Obter entradas necessárias para sua crew"
openapi: "/enterprise-api.pt-BR.yaml GET /inputs"
---

View File

@@ -0,0 +1,7 @@
---
title: "POST /kickoff"
description: "Iniciar a execução da crew"
openapi: "/enterprise-api.pt-BR.yaml POST /kickoff"
---

View File

@@ -0,0 +1,7 @@
---
title: "GET /status/{kickoff_id}"
description: "Obter o status da execução"
openapi: "/enterprise-api.pt-BR.yaml GET /status/{kickoff_id}"
---

View File

@@ -177,14 +177,7 @@ class MyCustomCrew:
# Sua implementação do crew...
```
É exatamente assim que o `agentops_listener` integrado do CrewAI é registrado. No código-fonte do CrewAI, você encontrará:
```python
# src/crewai/utilities/events/third_party/__init__.py
from .agentops_listener import agentops_listener
```
Isso garante que o `agentops_listener` seja carregado quando o pacote `crewai.utilities.events` for importado.
É assim que listeners de eventos de terceiros são registrados no código do CrewAI.
## Tipos de Eventos Disponíveis
@@ -269,77 +262,6 @@ A estrutura do objeto de evento depende do tipo do evento, mas todos herdam de `
Campos adicionais variam pelo tipo de evento. Por exemplo, `CrewKickoffCompletedEvent` inclui os campos `crew_name` e `output`.
## Exemplo Real: Integração com AgentOps
O CrewAI inclui um exemplo de integração com [AgentOps](https://github.com/AgentOps-AI/agentops), uma plataforma de monitoramento e observabilidade para agentes de IA. Veja como é implementado:
```python
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
```
Esse listener inicializa uma sessão do AgentOps quando um Crew inicia, cadastra agentes no AgentOps, rastreia o uso de ferramentas e finaliza a sessão quando o Crew é concluído.
O listener AgentOps é registrado no sistema de eventos do CrewAI via importação em `src/crewai/utilities/events/third_party/__init__.py`:
```python
from .agentops_listener import agentops_listener
```
Isso garante que o `agentops_listener` seja carregado quando o pacote `crewai.utilities.events` for importado.
## Uso Avançado: Handlers Escopados

View File

@@ -1,126 +0,0 @@
---
title: Integração com AgentOps
description: Entendendo e registrando a performance do seu agente com AgentOps.
icon: paperclip
---
# Introdução
Observabilidade é um aspecto fundamental no desenvolvimento e implantação de agentes de IA conversacional. Ela permite que desenvolvedores compreendam como seus agentes estão performando,
como eles estão interagindo com os usuários e como utilizam ferramentas externas e APIs.
AgentOps é um produto independente do CrewAI que fornece uma solução completa de observabilidade para agentes.
## AgentOps
[AgentOps](https://agentops.ai/?=crew) oferece replay de sessões, métricas e monitoramento para agentes.
Em um alto nível, o AgentOps oferece a capacidade de monitorar custos, uso de tokens, latência, falhas do agente, estatísticas de sessão e muito mais.
Para mais informações, confira o [Repositório do AgentOps](https://github.com/AgentOps-AI/agentops).
### Visão Geral
AgentOps fornece monitoramento para agentes em desenvolvimento e produção.
Disponibiliza um dashboard para acompanhamento de performance dos agentes, replay de sessões e relatórios personalizados.
Além disso, o AgentOps traz análises detalhadas das sessões para visualizar interações do agente Crew, chamadas LLM e uso de ferramentas em tempo real.
Esse recurso é útil para depuração e entendimento de como os agentes interagem com usuários e entre si.
![Visão geral de uma série selecionada de execuções de sessões do agente](/images/agentops-overview.png)
![Visão geral das análises detalhadas de sessões para examinar execuções de agentes](/images/agentops-session.png)
![Visualizando um gráfico de execução passo a passo do replay do agente](/images/agentops-replay.png)
### Funcionalidades
- **Gerenciamento e Rastreamento de Custos de LLM**: Acompanhe gastos com provedores de modelos fundamentais.
- **Análises de Replay**: Assista gráficos de execução do agente, passo a passo.
- **Detecção de Pensamento Recursivo**: Identifique quando agentes entram em loops infinitos.
- **Relatórios Personalizados**: Crie análises customizadas sobre a performance dos agentes.
- **Dashboard Analítico**: Monitore estatísticas gerais de agentes em desenvolvimento e produção.
- **Teste de Modelos Públicos**: Teste seus agentes em benchmarks e rankings.
- **Testes Personalizados**: Execute seus agentes em testes específicos de domínio.
- **Depuração com Viagem no Tempo**: Reinicie suas sessões a partir de checkpoints.
- **Conformidade e Segurança**: Crie registros de auditoria e detecte possíveis ameaças como uso de palavrões e vazamento de dados pessoais.
- **Detecção de Prompt Injection**: Identifique possíveis injeções de código e vazamentos de segredos.
### Utilizando o AgentOps
<Steps>
<Step title="Crie uma Chave de API">
Crie uma chave de API de usuário aqui: [Create API Key](https://app.agentops.ai/account)
</Step>
<Step title="Configure seu Ambiente">
Adicione sua chave API nas variáveis de ambiente:
```bash
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
```
</Step>
<Step title="Instale o AgentOps">
Instale o AgentOps com:
```bash
pip install 'crewai[agentops]'
```
ou
```bash
pip install agentops
```
</Step>
<Step title="Inicialize o AgentOps">
Antes de utilizar o `Crew` no seu script, inclua estas linhas:
```python
import agentops
agentops.init()
```
Isso irá iniciar uma sessão do AgentOps e também rastrear automaticamente os agentes Crew. Para mais detalhes sobre como adaptar sistemas de agentes mais complexos,
confira a [documentação do AgentOps](https://docs.agentops.ai) ou participe do [Discord](https://discord.gg/j4f3KbeH).
</Step>
</Steps>
### Exemplos de Crew + AgentOps
<CardGroup cols={3}>
<Card
title="Vaga de Emprego"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting"
icon="briefcase"
iconType="solid"
>
Exemplo de um agente Crew que gera vagas de emprego.
</Card>
<Card
title="Validador de Markdown"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/markdown_validator"
icon="markdown"
iconType="solid"
>
Exemplo de um agente Crew que valida arquivos Markdown.
</Card>
<Card
title="Post no Instagram"
color="#F3A78B"
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
icon="square-instagram"
iconType="brands"
>
Exemplo de um agente Crew que gera posts para Instagram.
</Card>
</CardGroup>
### Mais Informações
Para começar, crie uma [conta AgentOps](https://agentops.ai/?=crew).
Para sugestões de funcionalidades ou relatos de bugs, entre em contato com o time do AgentOps pelo [Repositório do AgentOps](https://github.com/AgentOps-AI/agentops).
#### Links Extras
<a href="https://twitter.com/agentopsai/">🐦 Twitter</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://discord.gg/JHPt4C7r">📢 Discord</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://app.agentops.ai/?=crew">🖇️ Dashboard AgentOps</a>
<span>&nbsp;&nbsp;•&nbsp;&nbsp;</span>
<a href="https://docs.agentops.ai/introduction">📙 Documentação</a>

View File

@@ -21,9 +21,6 @@ A observabilidade é fundamental para entender como seus agentes CrewAI estão d
### Plataformas de Monitoramento e Rastreamento
<CardGroup cols={2}>
<Card title="AgentOps" icon="paperclip" href="/pt-BR/observability/agentops">
Replays de sessões, métricas e monitoramento para desenvolvimento e produção de agentes.
</Card>
<Card title="LangDB" icon="database" href="/pt-BR/observability/langdb">
Rastreamento ponta a ponta para fluxos de trabalho CrewAI com captura automática de interações de agentes.

View File

@@ -48,11 +48,10 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools~=0.62.0"]
tools = ["crewai-tools~=0.62.1"]
embeddings = [
"tiktoken~=0.8.0"
]
agentops = ["agentops==0.3.18"]
pdfplumber = [
"pdfplumber>=0.11.4",
]
@@ -99,6 +98,11 @@ exclude = ["cli/templates"]
[tool.bandit]
exclude_dirs = ["src/crewai/cli/templates"]
[tool.pytest.ini_options]
markers = [
"telemetry: mark test as a telemetry test (don't mock telemetry)",
]
# PyTorch index configuration, since torch 2.5.0 is not compatible with python 3.13
[[tool.uv.index]]
name = "pytorch-nightly"

View File

@@ -54,7 +54,7 @@ def _track_install_async():
_track_install_async()
__version__ = "0.159.0"
__version__ = "0.165.1"
__all__ = [
"Agent",
"Crew",

View File

@@ -1,5 +1,5 @@
import time
from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, Dict, List
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
@@ -21,6 +21,7 @@ class CrewAgentExecutorMixin:
task: "Task"
iterations: int
max_iter: int
messages: List[Dict[str, str]]
_i18n: I18N
_printer: Printer = Printer()
@@ -62,6 +63,7 @@ class CrewAgentExecutorMixin:
value=output.text,
metadata={
"description": self.task.description,
"messages": self.messages,
},
agent=self.agent.role,
)
@@ -127,7 +129,6 @@ class CrewAgentExecutorMixin:
def _ask_human_input(self, final_answer: str) -> str:
"""Prompt human input with mode-appropriate messaging."""
event_listener.formatter.pause_live_updates()
try:
self._printer.print(
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"

View File

@@ -1,9 +1,13 @@
from .utils import TokenManager
class AuthError(Exception):
pass
def get_auth_token() -> str:
"""Get the authentication token."""
access_token = TokenManager().get_token()
if not access_token:
raise Exception("No token found, make sure you are logged in")
raise AuthError("No token found, make sure you are logged in")
return access_token

View File

@@ -18,6 +18,7 @@ class PlusAPI:
CREWS_RESOURCE = "/crewai_plus/api/v1/crews"
AGENTS_RESOURCE = "/crewai_plus/api/v1/agents"
TRACING_RESOURCE = "/crewai_plus/api/v1/tracing"
EPHEMERAL_TRACING_RESOURCE = "/crewai_plus/api/v1/tracing/ephemeral"
def __init__(self, api_key: str) -> None:
self.api_key = api_key
@@ -124,6 +125,11 @@ class PlusAPI:
"POST", f"{self.TRACING_RESOURCE}/batches", json=payload
)
def initialize_ephemeral_trace_batch(self, payload) -> requests.Response:
return self._make_request(
"POST", f"{self.EPHEMERAL_TRACING_RESOURCE}/batches", json=payload
)
def send_trace_events(self, trace_batch_id: str, payload) -> requests.Response:
return self._make_request(
"POST",
@@ -131,9 +137,27 @@ class PlusAPI:
json=payload,
)
def send_ephemeral_trace_events(
self, trace_batch_id: str, payload
) -> requests.Response:
return self._make_request(
"POST",
f"{self.EPHEMERAL_TRACING_RESOURCE}/batches/{trace_batch_id}/events",
json=payload,
)
def finalize_trace_batch(self, trace_batch_id: str, payload) -> requests.Response:
return self._make_request(
"PATCH",
f"{self.TRACING_RESOURCE}/batches/{trace_batch_id}/finalize",
json=payload,
)
def finalize_ephemeral_trace_batch(
self, trace_batch_id: str, payload
) -> requests.Response:
return self._make_request(
"PATCH",
f"{self.EPHEMERAL_TRACING_RESOURCE}/batches/{trace_batch_id}/finalize",
json=payload,
)

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.159.0,<1.0.0"
"crewai[tools]>=0.165.1,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.159.0,<1.0.0",
"crewai[tools]>=0.165.1,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.159.0"
"crewai[tools]>=0.165.1"
]
[tool.crewai]

View File

@@ -44,8 +44,9 @@ def migrate_pyproject(input_file, output_file):
]
new_pyproject["project"]["requires-python"] = poetry_data.get("python")
else:
# If it's already in the new format, just copy the project section
# If it's already in the new format, just copy the project and tool sections
new_pyproject["project"] = pyproject_data.get("project", {})
new_pyproject["tool"] = pyproject_data.get("tool", {})
# Migrate or copy dependencies
if "dependencies" in new_pyproject["project"]:

View File

@@ -77,7 +77,9 @@ from crewai.utilities.events.listeners.tracing.trace_listener import (
)
from crewai.utilities.events.listeners.tracing.utils import is_tracing_enabled
from crewai.utilities.events.listeners.tracing.utils import (
is_tracing_enabled,
)
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
@@ -283,8 +285,9 @@ class Crew(FlowTrackable, BaseModel):
self._cache_handler = CacheHandler()
event_listener = EventListener()
if is_tracing_enabled() or self.tracing:
trace_listener = TraceCollectionListener(tracing=self.tracing)
trace_listener = TraceCollectionListener()
trace_listener.setup_listeners(crewai_event_bus)
event_listener.verbose = self.verbose
event_listener.formatter.verbose = self.verbose
@@ -633,6 +636,7 @@ class Crew(FlowTrackable, BaseModel):
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
self._set_allow_crewai_trigger_context_for_first_task()
i18n = I18N(prompt_file=self.prompt_file)
@@ -1502,3 +1506,18 @@ class Crew(FlowTrackable, BaseModel):
"""Reset crew and agent knowledge storage."""
for ks in knowledges:
ks.reset()
def _set_allow_crewai_trigger_context_for_first_task(self):
crewai_trigger_payload = self._inputs and self._inputs.get(
"crewai_trigger_payload"
)
able_to_inject = (
self.tasks and self.tasks[0].allow_crewai_trigger_context is None
)
if (
self.process == Process.sequential
and crewai_trigger_payload
and able_to_inject
):
self.tasks[0].allow_crewai_trigger_context = True

View File

@@ -38,7 +38,9 @@ from crewai.utilities.events.flow_events import (
from crewai.utilities.events.listeners.tracing.trace_listener import (
TraceCollectionListener,
)
from crewai.utilities.events.listeners.tracing.utils import is_tracing_enabled
from crewai.utilities.events.listeners.tracing.utils import (
is_tracing_enabled,
)
from crewai.utilities.printer import Printer
logger = logging.getLogger(__name__)
@@ -476,8 +478,8 @@ class Flow(Generic[T], metaclass=FlowMeta):
# Initialize state with initial values
self._state = self._create_initial_state()
self.tracing = tracing
if is_tracing_enabled() or tracing:
trace_listener = TraceCollectionListener(tracing=tracing)
if is_tracing_enabled() or self.tracing:
trace_listener = TraceCollectionListener()
trace_listener.setup_listeners(crewai_event_bus)
# Apply any additional kwargs
if kwargs:
@@ -911,17 +913,52 @@ class Flow(Generic[T], metaclass=FlowMeta):
- Triggers execution of any listeners waiting on this start method
- Part of the flow's initialization sequence
- Skips execution if method was already completed (e.g., after reload)
- Automatically injects crewai_trigger_payload if available in flow inputs
"""
if start_method_name in self._completed_methods:
last_output = self._method_outputs[-1] if self._method_outputs else None
await self._execute_listeners(start_method_name, last_output)
return
method = self._methods[start_method_name]
enhanced_method = self._inject_trigger_payload_for_start_method(method)
result = await self._execute_method(
start_method_name, self._methods[start_method_name]
start_method_name, enhanced_method
)
await self._execute_listeners(start_method_name, result)
def _inject_trigger_payload_for_start_method(self, original_method: Callable) -> Callable:
def prepare_kwargs(*args, **kwargs):
inputs = baggage.get_baggage("flow_inputs") or {}
trigger_payload = inputs.get("crewai_trigger_payload")
sig = inspect.signature(original_method)
accepts_trigger_payload = "crewai_trigger_payload" in sig.parameters
if trigger_payload is not None and accepts_trigger_payload:
kwargs["crewai_trigger_payload"] = trigger_payload
elif trigger_payload is not None:
self._log_flow_event(
f"Trigger payload available but {original_method.__name__} doesn't accept crewai_trigger_payload parameter",
color="yellow"
)
return args, kwargs
if asyncio.iscoroutinefunction(original_method):
async def enhanced_method(*args, **kwargs):
args, kwargs = prepare_kwargs(*args, **kwargs)
return await original_method(*args, **kwargs)
else:
def enhanced_method(*args, **kwargs):
args, kwargs = prepare_kwargs(*args, **kwargs)
return original_method(*args, **kwargs)
enhanced_method.__name__ = original_method.__name__
enhanced_method.__doc__ = original_method.__doc__
return enhanced_method
async def _execute_method(
self, method_name: str, method: Callable, *args: Any, **kwargs: Any
) -> Any:

View File

@@ -11,6 +11,7 @@ import chromadb.errors
from chromadb.api import ClientAPI
from chromadb.api.types import OneOrMany
from chromadb.config import Settings
import warnings
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
from crewai.rag.embeddings.configurator import EmbeddingConfigurator
@@ -85,6 +86,14 @@ class KnowledgeStorage(BaseKnowledgeStorage):
raise Exception("Collection not initialized")
def initialize_knowledge_storage(self):
# Suppress deprecation warnings from chromadb, which are not relevant to us
# TODO: Remove this once we upgrade chromadb to at least 1.0.8.
warnings.filterwarnings(
"ignore",
message=r".*'model_fields'.*is deprecated.*",
module=r"^chromadb(\.|$)",
)
self.app = create_persistent_client(
path=os.path.join(db_storage_path(), "knowledge"),
settings=Settings(allow_reset=True),

View File

@@ -12,6 +12,7 @@ from crewai.rag.embeddings.configurator import EmbeddingConfigurator
from crewai.utilities.chromadb import create_persistent_client
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
from crewai.utilities.paths import db_storage_path
import warnings
@contextlib.contextmanager
@@ -62,6 +63,14 @@ class RAGStorage(BaseRAGStorage):
def _initialize_app(self):
from chromadb.config import Settings
# Suppress deprecation warnings from chromadb, which are not relevant to us
# TODO: Remove this once we upgrade chromadb to at least 1.0.8.
warnings.filterwarnings(
"ignore",
message=r".*'model_fields'.*is deprecated.*",
module=r"^chromadb(\.|$)",
)
self._set_embedder_config()
self.app = create_persistent_client(

View File

@@ -0,0 +1 @@
"""Core abstract base classes and protocols for RAG systems."""

View File

@@ -0,0 +1,433 @@
"""Protocol for vector database client implementations."""
from abc import abstractmethod
from typing import Any, Protocol, runtime_checkable, TypedDict, Annotated
from typing_extensions import Unpack, Required
from crewai.rag.types import (
EmbeddingFunction,
BaseRecord,
SearchResult,
)
class BaseCollectionParams(TypedDict):
"""Base parameters for collection operations.
Attributes:
collection_name: The name of the collection/index to operate on.
"""
collection_name: Required[
Annotated[
str,
"Name of the collection/index. Implementations may have specific constraints (e.g., character limits, allowed characters, case sensitivity).",
]
]
class BaseCollectionAddParams(BaseCollectionParams):
"""Parameters for adding documents to a collection.
Extends BaseCollectionParams with document-specific fields.
Attributes:
collection_name: The name of the collection to add documents to.
documents: List of BaseRecord dictionaries containing document data.
"""
documents: list[BaseRecord]
class BaseCollectionSearchParams(BaseCollectionParams, total=False):
"""Parameters for searching within a collection.
Extends BaseCollectionParams with search-specific optional fields.
All fields except collection_name and query are optional.
Attributes:
query: The text query to search for (required).
limit: Maximum number of results to return.
metadata_filter: Filter results by metadata fields.
score_threshold: Minimum similarity score for results (0-1).
"""
query: Required[str]
limit: int
metadata_filter: dict[str, Any]
score_threshold: float
@runtime_checkable
class BaseClient(Protocol):
"""Protocol for vector store client implementations.
This protocol defines the interface that all vector store client implementations
must follow. It provides a consistent API for storing and retrieving
documents with their vector embeddings across different vector database
backends (e.g., Qdrant, ChromaDB, Weaviate). Implementing classes should
handle connection management, data persistence, and vector similarity
search operations specific to their backend.
Implementation Guidelines:
Implementations should accept BaseClientParams in their constructor to allow
passing pre-configured client instances:
class MyVectorClient:
def __init__(self, client: Any | None = None, **kwargs):
if client:
self.client = client
else:
self.client = self._create_default_client(**kwargs)
Notes:
This protocol replaces the former BaseRAGStorage abstraction,
providing a cleaner interface for vector store operations.
Attributes:
embedding_function: Callable that takes a list of text strings
and returns a list of embedding vectors. Implementations
should always provide a default embedding function.
client: The underlying vector database client instance. This could be
passed via BaseClientParams during initialization or created internally.
"""
client: Any
embedding_function: EmbeddingFunction
@abstractmethod
def create_collection(self, **kwargs: Unpack[BaseCollectionParams]) -> None:
"""Create a new collection/index in the vector database.
Keyword Args:
collection_name: The name of the collection to create. Must be unique within
the vector database instance.
Raises:
ValueError: If collection name already exists.
ConnectionError: If unable to connect to the vector database backend.
"""
...
@abstractmethod
async def acreate_collection(self, **kwargs: Unpack[BaseCollectionParams]) -> None:
"""Create a new collection/index in the vector database asynchronously.
Keyword Args:
collection_name: The name of the collection to create. Must be unique within
the vector database instance.
Raises:
ValueError: If collection name already exists.
ConnectionError: If unable to connect to the vector database backend.
"""
...
@abstractmethod
def get_or_create_collection(self, **kwargs: Unpack[BaseCollectionParams]) -> Any:
"""Get an existing collection or create it if it doesn't exist.
This method provides a convenient way to ensure a collection exists
without having to check for its existence first.
Keyword Args:
collection_name: The name of the collection to get or create.
Returns:
A collection object whose type depends on the backend implementation.
This could be a collection reference, ID, or client object.
Raises:
ValueError: If unable to create the collection.
ConnectionError: If unable to connect to the vector database backend.
"""
...
@abstractmethod
async def aget_or_create_collection(
self, **kwargs: Unpack[BaseCollectionParams]
) -> Any:
"""Get an existing collection or create it if it doesn't exist asynchronously.
Keyword Args:
collection_name: The name of the collection to get or create.
Returns:
A collection object whose type depends on the backend implementation.
Raises:
ValueError: If unable to create the collection.
ConnectionError: If unable to connect to the vector database backend.
"""
...
@abstractmethod
def add_documents(self, **kwargs: Unpack[BaseCollectionAddParams]) -> None:
"""Add documents with their embeddings to a collection.
This method performs an upsert operation - if a document with the same ID
already exists, it will be updated with the new content and metadata.
Implementations should handle embedding generation internally based on
the configured embedding function.
Keyword Args:
collection_name: The name of the collection to add documents to.
documents: List of BaseRecord dicts containing:
- content: The text content (required)
- doc_id: Optional unique identifier (auto-generated from content hash if missing)
- metadata: Optional metadata dictionary
Embeddings will be generated automatically.
Raises:
ValueError: If collection doesn't exist or documents list is empty.
TypeError: If documents are not BaseRecord dict instances.
ConnectionError: If unable to connect to the vector database backend.
Example:
>>> from crewai.rag.chromadb.client import ChromaDBClient
>>> from crewai.rag.types import BaseRecord
>>> client = ChromaDBClient()
>>>
>>> records: list[BaseRecord] = [
... {
... "content": "Machine learning basics",
... "metadata": {"source": "file3", "topic": "ML"}
... },
... {
... "doc_id": "custom_id",
... "content": "Deep learning fundamentals",
... "metadata": {"source": "file4", "topic": "DL"}
... }
... ]
>>> client.add_documents(collection_name="my_docs", documents=records)
>>>
>>> records_with_id: list[BaseRecord] = [
... {
... "doc_id": "nlp_001",
... "content": "Advanced NLP techniques",
... "metadata": {"source": "file5", "topic": "NLP"}
... }
... ]
>>> client.add_documents(collection_name="my_docs", documents=records_with_id)
"""
...
@abstractmethod
async def aadd_documents(self, **kwargs: Unpack[BaseCollectionAddParams]) -> None:
"""Add documents with their embeddings to a collection asynchronously.
Implementations should handle embedding generation internally based on
the configured embedding function.
Keyword Args:
collection_name: The name of the collection to add documents to.
documents: List of BaseRecord dicts containing:
- content: The text content (required)
- doc_id: Optional unique identifier (auto-generated from content hash if missing)
- metadata: Optional metadata dictionary
Embeddings will be generated automatically.
Raises:
ValueError: If collection doesn't exist or documents list is empty.
TypeError: If documents are not BaseRecord dict instances.
ConnectionError: If unable to connect to the vector database backend.
Example:
>>> import asyncio
>>> from crewai.rag.chromadb.client import ChromaDBClient
>>> from crewai.rag.types import BaseRecord
>>>
>>> async def add_documents():
... client = ChromaDBClient()
...
... records: list[BaseRecord] = [
... {
... "doc_id": "doc2",
... "content": "Async operations in Python",
... "metadata": {"source": "file2", "topic": "async"}
... }
... ]
... await client.aadd_documents(collection_name="my_docs", documents=records)
...
>>> asyncio.run(add_documents())
"""
...
@abstractmethod
def search(
self, **kwargs: Unpack[BaseCollectionSearchParams]
) -> list[SearchResult]:
"""Search for similar documents using a query.
Performs a vector similarity search to find the most similar documents
to the provided query.
Keyword Args:
collection_name: The name of the collection to search in.
query: The text query to search for. The implementation handles
embedding generation internally.
limit: Maximum number of results to return. Defaults to 10.
metadata_filter: Optional metadata filter to apply to the search. The exact
format depends on the backend, but typically supports equality
and range queries on metadata fields.
score_threshold: Optional minimum similarity score threshold. Only
results with scores >= this threshold will be returned. The
score interpretation depends on the distance metric used.
Returns:
A list of SearchResult dictionaries ordered by similarity score in
descending order. Each result contains:
- id: Document ID
- content: Document text content
- metadata: Document metadata
- score: Similarity score (0-1, higher is better)
Raises:
ValueError: If collection doesn't exist.
ConnectionError: If unable to connect to the vector database backend.
Example:
>>> from crewai.rag.chromadb.client import ChromaDBClient
>>> client = ChromaDBClient()
>>>
>>> results = client.search(
... collection_name="my_docs",
... query="What is machine learning?",
... limit=5,
... metadata_filter={"source": "file1"},
... score_threshold=0.7
... )
>>> for result in results:
... print(f"{result['id']}: {result['score']:.2f}")
"""
...
@abstractmethod
async def asearch(
self, **kwargs: Unpack[BaseCollectionSearchParams]
) -> list[SearchResult]:
"""Search for similar documents using a query asynchronously.
Keyword Args:
collection_name: The name of the collection to search in.
query: The text query to search for. The implementation handles
embedding generation internally.
limit: Maximum number of results to return. Defaults to 10.
metadata_filter: Optional metadata filter to apply to the search.
score_threshold: Optional minimum similarity score threshold.
Returns:
A list of SearchResult dictionaries ordered by similarity score.
Raises:
ValueError: If collection doesn't exist.
ConnectionError: If unable to connect to the vector database backend.
Example:
>>> import asyncio
>>> from crewai.rag.chromadb.client import ChromaDBClient
>>>
>>> async def search_documents():
... client = ChromaDBClient()
... results = await client.asearch(
... collection_name="my_docs",
... query="Python programming best practices",
... limit=5,
... metadata_filter={"source": "file1"},
... score_threshold=0.7
... )
... for result in results:
... print(f"{result['id']}: {result['score']:.2f}")
...
>>> asyncio.run(search_documents())
"""
...
@abstractmethod
def delete_collection(self, **kwargs: Unpack[BaseCollectionParams]) -> None:
"""Delete a collection and all its data.
This operation is irreversible and will permanently remove all documents,
embeddings, and metadata associated with the collection.
Keyword Args:
collection_name: The name of the collection to delete.
Raises:
ValueError: If the collection doesn't exist.
ConnectionError: If unable to connect to the vector database backend.
Example:
>>> from crewai.rag.chromadb.client import ChromaDBClient
>>> client = ChromaDBClient()
>>> client.delete_collection(collection_name="old_docs")
>>> print("Collection 'old_docs' deleted successfully")
"""
...
@abstractmethod
async def adelete_collection(self, **kwargs: Unpack[BaseCollectionParams]) -> None:
"""Delete a collection and all its data asynchronously.
Keyword Args:
collection_name: The name of the collection to delete.
Raises:
ValueError: If the collection doesn't exist.
ConnectionError: If unable to connect to the vector database backend.
Example:
>>> import asyncio
>>> from crewai.rag.chromadb.client import ChromaDBClient
>>>
>>> async def delete_old_collection():
... client = ChromaDBClient()
... await client.adelete_collection(collection_name="old_docs")
... print("Collection 'old_docs' deleted successfully")
...
>>> asyncio.run(delete_old_collection())
"""
...
@abstractmethod
def reset(self) -> None:
"""Reset the vector database by deleting all collections and data.
This method provides a way to completely clear the vector database,
removing all collections and their contents. Use with caution as
this operation is irreversible.
Raises:
ConnectionError: If unable to connect to the vector database backend.
PermissionError: If the operation is not allowed by the backend.
Example:
>>> from crewai.rag.chromadb.client import ChromaDBClient
>>> client = ChromaDBClient()
>>> client.reset()
>>> print("Vector database completely reset - all data deleted")
"""
...
@abstractmethod
async def areset(self) -> None:
"""Reset the vector database by deleting all collections and data asynchronously.
Raises:
ConnectionError: If unable to connect to the vector database backend.
PermissionError: If the operation is not allowed by the backend.
Example:
>>> import asyncio
>>> from crewai.rag.chromadb.client import ChromaDBClient
>>>
>>> async def reset_database():
... client = ChromaDBClient()
... await client.areset()
... print("Vector database completely reset - all data deleted")
...
>>> asyncio.run(reset_database())
"""
...

View File

@@ -0,0 +1,30 @@
"""Base provider protocol for vector database client creation."""
from abc import ABC
from typing import Any, Protocol, runtime_checkable, Union
from pydantic import BaseModel, Field
from crewai.rag.types import EmbeddingFunction
from crewai.rag.embeddings.types import EmbeddingOptions
class BaseProviderOptions(BaseModel, ABC):
"""Base configuration for all provider options."""
client_type: str = Field(..., description="Type of client to create")
embedding_config: Union[EmbeddingOptions, EmbeddingFunction, None] = Field(
default=None,
description="Embedding configuration - either options for built-in providers or a custom function",
)
options: Any = Field(
default=None, description="Additional provider-specific options"
)
@runtime_checkable
class BaseProvider(Protocol):
"""Protocol for vector database client providers."""
def __call__(self, options: BaseProviderOptions) -> Any:
"""Create and return a configured client instance."""
...

View File

@@ -0,0 +1,148 @@
"""Minimal embedding function factory for CrewAI."""
import os
from chromadb import EmbeddingFunction
from chromadb.utils.embedding_functions.amazon_bedrock_embedding_function import (
AmazonBedrockEmbeddingFunction,
)
from chromadb.utils.embedding_functions.cohere_embedding_function import (
CohereEmbeddingFunction,
)
from chromadb.utils.embedding_functions.google_embedding_function import (
GooglePalmEmbeddingFunction,
GoogleGenerativeAiEmbeddingFunction,
GoogleVertexEmbeddingFunction,
)
from chromadb.utils.embedding_functions.huggingface_embedding_function import (
HuggingFaceEmbeddingFunction,
)
from chromadb.utils.embedding_functions.instructor_embedding_function import (
InstructorEmbeddingFunction,
)
from chromadb.utils.embedding_functions.jina_embedding_function import (
JinaEmbeddingFunction,
)
from chromadb.utils.embedding_functions.ollama_embedding_function import (
OllamaEmbeddingFunction,
)
from chromadb.utils.embedding_functions.onnx_mini_lm_l6_v2 import ONNXMiniLM_L6_V2
from chromadb.utils.embedding_functions.open_clip_embedding_function import (
OpenCLIPEmbeddingFunction,
)
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
from chromadb.utils.embedding_functions.roboflow_embedding_function import (
RoboflowEmbeddingFunction,
)
from chromadb.utils.embedding_functions.sentence_transformer_embedding_function import (
SentenceTransformerEmbeddingFunction,
)
from chromadb.utils.embedding_functions.text2vec_embedding_function import (
Text2VecEmbeddingFunction,
)
from crewai.rag.embeddings.types import EmbeddingOptions
def get_embedding_function(
config: EmbeddingOptions | dict | None = None,
) -> EmbeddingFunction:
"""Get embedding function - delegates to ChromaDB.
Args:
config: Optional configuration - either an EmbeddingOptions object or a dict with:
- provider: The embedding provider to use (default: "openai")
- Any other provider-specific parameters
Returns:
EmbeddingFunction instance ready for use with ChromaDB
Supported providers:
- openai: OpenAI embeddings (default)
- cohere: Cohere embeddings
- ollama: Ollama local embeddings
- huggingface: HuggingFace embeddings
- sentence-transformer: Local sentence transformers
- instructor: Instructor embeddings for specialized tasks
- google-palm: Google PaLM embeddings
- google-generativeai: Google Generative AI embeddings
- google-vertex: Google Vertex AI embeddings
- amazon-bedrock: AWS Bedrock embeddings
- jina: Jina AI embeddings
- roboflow: Roboflow embeddings for vision tasks
- openclip: OpenCLIP embeddings for multimodal tasks
- text2vec: Text2Vec embeddings
- onnx: ONNX MiniLM-L6-v2 (no API key needed, included with ChromaDB)
Examples:
# Use default OpenAI with retry logic
>>> embedder = get_embedding_function()
# Use Cohere with dict
>>> embedder = get_embedding_function({
... "provider": "cohere",
... "api_key": "your-key",
... "model_name": "embed-english-v3.0"
... })
# Use with EmbeddingOptions
>>> embedder = get_embedding_function(
... EmbeddingOptions(provider="sentence-transformer", model_name="all-MiniLM-L6-v2")
... )
# Use local sentence transformers (no API key needed)
>>> embedder = get_embedding_function({
... "provider": "sentence-transformer",
... "model_name": "all-MiniLM-L6-v2"
... })
# Use Ollama for local embeddings
>>> embedder = get_embedding_function({
... "provider": "ollama",
... "model_name": "nomic-embed-text"
... })
# Use ONNX (no API key needed)
>>> embedder = get_embedding_function({
... "provider": "onnx"
... })
"""
if config is None:
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
# Handle EmbeddingOptions object
if isinstance(config, EmbeddingOptions):
config_dict = config.model_dump(exclude_none=True)
else:
config_dict = config.copy()
provider = config_dict.pop("provider", "openai")
embedding_functions = {
"openai": OpenAIEmbeddingFunction,
"cohere": CohereEmbeddingFunction,
"ollama": OllamaEmbeddingFunction,
"huggingface": HuggingFaceEmbeddingFunction,
"sentence-transformer": SentenceTransformerEmbeddingFunction,
"instructor": InstructorEmbeddingFunction,
"google-palm": GooglePalmEmbeddingFunction,
"google-generativeai": GoogleGenerativeAiEmbeddingFunction,
"google-vertex": GoogleVertexEmbeddingFunction,
"amazon-bedrock": AmazonBedrockEmbeddingFunction,
"jina": JinaEmbeddingFunction,
"roboflow": RoboflowEmbeddingFunction,
"openclip": OpenCLIPEmbeddingFunction,
"text2vec": Text2VecEmbeddingFunction,
"onnx": ONNXMiniLM_L6_V2,
}
if provider not in embedding_functions:
raise ValueError(
f"Unsupported provider: {provider}. "
f"Available providers: {list(embedding_functions.keys())}"
)
return embedding_functions[provider](**config_dict)

View File

@@ -0,0 +1,62 @@
"""Type definitions for the embeddings module."""
from typing import Literal
from pydantic import BaseModel, Field, SecretStr
from crewai.rag.types import EmbeddingFunction
EmbeddingProvider = Literal[
"openai",
"cohere",
"ollama",
"huggingface",
"sentence-transformer",
"instructor",
"google-palm",
"google-generativeai",
"google-vertex",
"amazon-bedrock",
"jina",
"roboflow",
"openclip",
"text2vec",
"onnx",
]
"""Supported embedding providers.
These correspond to the embedding functions available in ChromaDB's
embedding_functions module. Each provider has specific requirements
and configuration options.
"""
class EmbeddingOptions(BaseModel):
"""Configuration options for embedding providers.
Generic attributes that can be passed to get_embedding_function
to configure various embedding providers.
"""
provider: EmbeddingProvider = Field(
..., description="Embedding provider name (e.g., 'openai', 'cohere', 'onnx')"
)
model_name: str | None = Field(
default=None, description="Model name for the embedding provider"
)
api_key: SecretStr | None = Field(
default=None, description="API key for the embedding provider"
)
class EmbeddingConfig(BaseModel):
"""Configuration wrapper for embedding functions.
Accepts either a pre-configured EmbeddingFunction or EmbeddingOptions
to create one. This provides flexibility in how embeddings are configured.
Attributes:
function: Either a callable EmbeddingFunction or EmbeddingOptions to create one
"""
function: EmbeddingFunction | EmbeddingOptions

50
src/crewai/rag/types.py Normal file
View File

@@ -0,0 +1,50 @@
"""Type definitions for RAG (Retrieval-Augmented Generation) systems."""
from collections.abc import Callable, Mapping
from typing import TypeAlias, TypedDict, Any
from typing_extensions import Required
class BaseRecord(TypedDict, total=False):
"""A typed dictionary representing a document record.
Attributes:
doc_id: Optional unique identifier for the document. If not provided,
a content-based ID will be generated using SHA256 hash.
content: The text content of the document (required)
metadata: Optional metadata associated with the document
"""
doc_id: str
content: Required[str]
metadata: (
Mapping[str, str | int | float | bool]
| list[Mapping[str, str | int | float | bool]]
)
DenseVector: TypeAlias = list[float]
IntVector: TypeAlias = list[int]
EmbeddingFunction: TypeAlias = Callable[..., Any]
class SearchResult(TypedDict):
"""Standard search result format for vector store queries.
This provides a consistent interface for search results across different
vector store implementations. Each implementation should convert their
native result format to this standard format.
Attributes:
id: Unique identifier of the document
content: The text content of the document
metadata: Optional metadata associated with the document
score: Similarity score (higher is better, typically between 0 and 1)
"""
id: str
content: str
metadata: dict[str, Any]
score: float

View File

@@ -72,6 +72,10 @@ class Task(BaseModel):
output_pydantic: Pydantic model for task output.
security_config: Security configuration including fingerprinting.
tools: List of tools/resources limited for task execution.
allow_crewai_trigger_context: Optional flag to control crewai_trigger_payload injection.
None (default): Auto-inject for first task only.
True: Always inject trigger payload for this task.
False: Never inject trigger payload, even for first task.
"""
__hash__ = object.__hash__ # type: ignore
@@ -163,6 +167,10 @@ class Task(BaseModel):
end_time: Optional[datetime.datetime] = Field(
default=None, description="End time of the task execution"
)
allow_crewai_trigger_context: Optional[bool] = Field(
default=None,
description="Whether this task should append 'Trigger Payload: {crewai_trigger_payload}' to the task description when crewai_trigger_payload exists in crew inputs.",
)
model_config = {"arbitrary_types_allowed": True}
@field_validator("guardrail")
@@ -548,12 +556,23 @@ class Task(BaseModel):
str: The formatted prompt string containing the task description,
expected output, and optional markdown formatting instructions.
"""
tasks_slices = [self.description]
description = self.description
should_inject = self.allow_crewai_trigger_context
if should_inject and self.agent:
crew = getattr(self.agent, 'crew', None)
if crew and hasattr(crew, '_inputs') and crew._inputs:
trigger_payload = crew._inputs.get("crewai_trigger_payload")
if trigger_payload is not None:
description += f"\n\nTrigger Payload: {trigger_payload}"
tasks_slices = [description]
output = self.i18n.slice("expected_output").format(
expected_output=self.expected_output
)
tasks_slices = [self.description, output]
tasks_slices = [description, output]
if self.markdown:
markdown_instruction = """Your final answer MUST be formatted in Markdown syntax.

View File

@@ -14,12 +14,14 @@ from pydantic import BaseModel as PydanticBaseModel
from crewai.tools.structured_tool import CrewStructuredTool
class EnvVar(BaseModel):
name: str
description: str
required: bool = True
default: Optional[str] = None
class BaseTool(BaseModel, ABC):
class _ArgsSchemaPlaceholder(PydanticBaseModel):
pass
@@ -108,7 +110,7 @@ class BaseTool(BaseModel, ABC):
def to_structured_tool(self) -> CrewStructuredTool:
"""Convert this tool to a CrewStructuredTool instance."""
self._set_args_schema()
return CrewStructuredTool(
structured_tool = CrewStructuredTool(
name=self.name,
description=self.description,
args_schema=self.args_schema,
@@ -117,6 +119,8 @@ class BaseTool(BaseModel, ABC):
max_usage_count=self.max_usage_count,
current_usage_count=self.current_usage_count,
)
structured_tool._original_tool = self
return structured_tool
@classmethod
def from_langchain(cls, tool: Any) -> "BaseTool":
@@ -276,7 +280,9 @@ def to_langchain(
return [t.to_structured_tool() if isinstance(t, BaseTool) else t for t in tools]
def tool(*args, result_as_answer: bool = False, max_usage_count: int | None = None) -> Callable:
def tool(
*args, result_as_answer: bool = False, max_usage_count: int | None = None
) -> Callable:
"""
Decorator to create a tool from a function.

View File

@@ -10,6 +10,11 @@ from pydantic import BaseModel, Field, create_model
from crewai.utilities.logger import Logger
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from crewai.tools.base_tool import BaseTool
class CrewStructuredTool:
"""A structured tool that can operate on any number of inputs.
@@ -18,6 +23,8 @@ class CrewStructuredTool:
that integrates better with CrewAI's ecosystem.
"""
_original_tool: BaseTool | None = None
def __init__(
self,
name: str,
@@ -47,6 +54,7 @@ class CrewStructuredTool:
self.result_as_answer = result_as_answer
self.max_usage_count = max_usage_count
self.current_usage_count = current_usage_count
self._original_tool = None
# Validate the function signature matches the schema
self._validate_function_signature()
@@ -219,6 +227,8 @@ class CrewStructuredTool:
"""
parsed_args = self._parse_args(input)
self._increment_usage_count()
if inspect.iscoroutinefunction(self.func):
return await self.func(**parsed_args, **kwargs)
else:
@@ -242,6 +252,8 @@ class CrewStructuredTool:
"""Main method for tool execution."""
parsed_args = self._parse_args(input)
self._increment_usage_count()
if inspect.iscoroutinefunction(self.func):
result = asyncio.run(self.func(**parsed_args, **kwargs))
return result
@@ -253,6 +265,12 @@ class CrewStructuredTool:
return result
def _increment_usage_count(self) -> None:
"""Increment the usage count."""
self.current_usage_count += 1
if self._original_tool is not None:
self._original_tool.current_usage_count = self.current_usage_count
@property
def args(self) -> dict:
"""Get the tool's input arguments schema."""

View File

@@ -1,9 +1,10 @@
import os
import re
import portalocker
from chromadb import PersistentClient
from hashlib import md5
from typing import Optional
from crewai.utilities.paths import db_storage_path
MIN_COLLECTION_LENGTH = 3
MAX_COLLECTION_LENGTH = 63
@@ -27,7 +28,9 @@ def is_ipv4_pattern(name: str) -> bool:
return bool(IPV4_PATTERN.match(name))
def sanitize_collection_name(name: Optional[str], max_collection_length: int = MAX_COLLECTION_LENGTH) -> str:
def sanitize_collection_name(
name: Optional[str], max_collection_length: int = MAX_COLLECTION_LENGTH
) -> str:
"""
Sanitize a collection name to meet ChromaDB requirements:
1. 3-63 characters long
@@ -72,7 +75,8 @@ def create_persistent_client(path: str, **kwargs):
concurrent creations. Works for both multi-threads and multi-processes
environments.
"""
lockfile = f"chromadb-{md5(path.encode(), usedforsecurity=False).hexdigest()}.lock"
lock_id = md5(path.encode(), usedforsecurity=False).hexdigest()
lockfile = os.path.join(db_storage_path(), f"chromadb-{lock_id}.lock")
with portalocker.Lock(lockfile):
client = PersistentClient(path=path, **kwargs)

View File

@@ -67,11 +67,9 @@ from .memory_events import (
# events
from .event_listener import EventListener
from .third_party.agentops_listener import agentops_listener
__all__ = [
"EventListener",
"agentops_listener",
"CrewAIEventsBus",
"crewai_event_bus",
"AgentExecutionStartedEvent",
@@ -105,7 +103,6 @@ __all__ = [
"MemoryRetrievalStartedEvent",
"MemoryRetrievalCompletedEvent",
"EventListener",
"agentops_listener",
"CrewKickoffStartedEvent",
"CrewKickoffCompletedEvent",
"CrewKickoffFailedEvent",

View File

@@ -161,8 +161,10 @@ class EventListener(BaseEventListener):
def on_task_started(source, event: TaskStartedEvent):
span = self._telemetry.task_started(crew=source.agent.crew, task=source)
self.execution_spans[source] = span
# Pass both task ID and task name (if set)
task_name = source.name if hasattr(source, 'name') and source.name else None
self.formatter.create_task_branch(
self.formatter.current_crew_tree, source.id
self.formatter.current_crew_tree, source.id, task_name
)
@crewai_event_bus.on(TaskCompletedEvent)
@@ -173,11 +175,14 @@ class EventListener(BaseEventListener):
self._telemetry.task_ended(span, source, source.agent.crew)
self.execution_spans[source] = None
# Pass task name if it exists
task_name = source.name if hasattr(source, 'name') and source.name else None
self.formatter.update_task_status(
self.formatter.current_crew_tree,
source.id,
source.agent.role,
"completed",
task_name
)
@crewai_event_bus.on(TaskFailedEvent)
@@ -188,11 +193,14 @@ class EventListener(BaseEventListener):
self._telemetry.task_ended(span, source, source.agent.crew)
self.execution_spans[source] = None
# Pass task name if it exists
task_name = source.name if hasattr(source, 'name') and source.name else None
self.formatter.update_task_status(
self.formatter.current_crew_tree,
source.id,
source.agent.role,
"failed",
task_name
)
# ----------- AGENT EVENTS -----------

View File

@@ -4,7 +4,7 @@ from typing import Dict, List, Any, Optional
from dataclasses import dataclass, field
from crewai.utilities.constants import CREWAI_BASE_URL
from crewai.cli.authentication.token import get_auth_token
from crewai.cli.authentication.token import AuthError, get_auth_token
from crewai.cli.version import get_crewai_version
from crewai.cli.plus_api import PlusAPI
@@ -40,30 +40,42 @@ class TraceBatch:
class TraceBatchManager:
"""Single responsibility: Manage batches and event buffering"""
is_current_batch_ephemeral: bool = False
def __init__(self):
self.plus_api = PlusAPI(api_key=get_auth_token())
try:
self.plus_api = PlusAPI(api_key=get_auth_token())
except AuthError:
self.plus_api = PlusAPI(api_key="")
self.trace_batch_id: Optional[str] = None # Backend ID
self.current_batch: Optional[TraceBatch] = None
self.event_buffer: List[TraceEvent] = []
self.execution_start_times: Dict[str, datetime] = {}
def initialize_batch(
self, user_context: Dict[str, str], execution_metadata: Dict[str, Any]
self,
user_context: Dict[str, str],
execution_metadata: Dict[str, Any],
use_ephemeral: bool = False,
) -> TraceBatch:
"""Initialize a new trace batch"""
self.current_batch = TraceBatch(
user_context=user_context, execution_metadata=execution_metadata
)
self.event_buffer.clear()
self.is_current_batch_ephemeral = use_ephemeral
self.record_start_time("execution")
self._initialize_backend_batch(user_context, execution_metadata)
self._initialize_backend_batch(user_context, execution_metadata, use_ephemeral)
return self.current_batch
def _initialize_backend_batch(
self, user_context: Dict[str, str], execution_metadata: Dict[str, Any]
self,
user_context: Dict[str, str],
execution_metadata: Dict[str, Any],
use_ephemeral: bool = False,
):
"""Send batch initialization to backend"""
@@ -74,6 +86,7 @@ class TraceBatchManager:
payload = {
"trace_id": self.current_batch.batch_id,
"execution_type": execution_metadata.get("execution_type", "crew"),
"user_identifier": execution_metadata.get("user_context", None),
"execution_context": {
"crew_fingerprint": execution_metadata.get("crew_fingerprint"),
"crew_name": execution_metadata.get("crew_name", None),
@@ -91,12 +104,22 @@ class TraceBatchManager:
"execution_started_at": datetime.now(timezone.utc).isoformat(),
},
}
if use_ephemeral:
payload["ephemeral_trace_id"] = self.current_batch.batch_id
response = self.plus_api.initialize_trace_batch(payload)
response = (
self.plus_api.initialize_ephemeral_trace_batch(payload)
if use_ephemeral
else self.plus_api.initialize_trace_batch(payload)
)
if response.status_code == 201 or response.status_code == 200:
response_data = response.json()
self.trace_batch_id = response_data["trace_id"]
self.trace_batch_id = (
response_data["trace_id"]
if not use_ephemeral
else response_data["ephemeral_trace_id"]
)
console = Console()
panel = Panel(
f"✅ Trace batch initialized with session ID: {self.trace_batch_id}",
@@ -134,7 +157,11 @@ class TraceBatchManager:
if not self.trace_batch_id:
raise Exception("❌ Trace batch ID not found")
response = self.plus_api.send_trace_events(self.trace_batch_id, payload)
response = (
self.plus_api.send_ephemeral_trace_events(self.trace_batch_id, payload)
if self.is_current_batch_ephemeral
else self.plus_api.send_trace_events(self.trace_batch_id, payload)
)
if response.status_code == 200 or response.status_code == 201:
self.event_buffer.clear()
@@ -153,7 +180,6 @@ class TraceBatchManager:
if self.event_buffer:
self._send_events_to_backend()
self._finalize_backend_batch()
self.current_batch.events = self.event_buffer.copy()
@@ -163,6 +189,7 @@ class TraceBatchManager:
self.current_batch = None
self.event_buffer.clear()
self.trace_batch_id = None
self.is_current_batch_ephemeral = False
self._cleanup_batch_data()
@@ -182,12 +209,24 @@ class TraceBatchManager:
"final_event_count": total_events,
}
response = self.plus_api.finalize_trace_batch(self.trace_batch_id, payload)
response = (
self.plus_api.finalize_ephemeral_trace_batch(
self.trace_batch_id, payload
)
if self.is_current_batch_ephemeral
else self.plus_api.finalize_trace_batch(self.trace_batch_id, payload)
)
if response.status_code == 200:
access_code = response.json().get("access_code", None)
console = Console()
return_link = (
f"{CREWAI_BASE_URL}/crewai_plus/trace_batches/{self.trace_batch_id}"
if not self.is_current_batch_ephemeral and access_code is None
else f"{CREWAI_BASE_URL}/crewai_plus/ephemeral_trace_batches/{self.trace_batch_id}?access_code={access_code}"
)
panel = Panel(
f"✅ Trace batch finalized with session ID: {self.trace_batch_id}. View here: {CREWAI_BASE_URL}/crewai_plus/trace_batches/{self.trace_batch_id}",
f"✅ Trace batch finalized with session ID: {self.trace_batch_id}. View here: {return_link} {f', Access Code: {access_code}' if access_code else ''}",
title="Trace Batch Finalization",
border_style="green",
)

View File

@@ -13,7 +13,6 @@ from crewai.utilities.events.agent_events import (
AgentExecutionErrorEvent,
)
from crewai.utilities.events.listeners.tracing.types import TraceEvent
from crewai.utilities.events.listeners.tracing.utils import is_tracing_enabled
from crewai.utilities.events.reasoning_events import (
AgentReasoningStartedEvent,
AgentReasoningCompletedEvent,
@@ -67,7 +66,7 @@ from crewai.utilities.events.memory_events import (
MemorySaveFailedEvent,
)
from crewai.cli.authentication.token import get_auth_token
from crewai.cli.authentication.token import AuthError, get_auth_token
from crewai.cli.version import get_crewai_version
@@ -76,13 +75,12 @@ class TraceCollectionListener(BaseEventListener):
Trace collection listener that orchestrates trace collection
"""
trace_enabled: Optional[bool] = False
complex_events = ["task_started", "llm_call_started", "llm_call_completed"]
_instance = None
_initialized = False
def __new__(cls, batch_manager=None, tracing: Optional[bool] = False):
def __new__(cls, batch_manager=None):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
@@ -90,25 +88,22 @@ class TraceCollectionListener(BaseEventListener):
def __init__(
self,
batch_manager: Optional[TraceBatchManager] = None,
tracing: Optional[bool] = False,
):
if self._initialized:
return
super().__init__()
self.batch_manager = batch_manager or TraceBatchManager()
self.tracing = tracing or False
self.trace_enabled = self._check_trace_enabled()
self._initialized = True
def _check_trace_enabled(self) -> bool:
def _check_authenticated(self) -> bool:
"""Check if tracing should be enabled"""
auth_token = get_auth_token()
if not auth_token:
try:
res = bool(get_auth_token())
return res
except AuthError:
return False
return is_tracing_enabled() or self.tracing
def _get_user_context(self) -> Dict[str, str]:
"""Extract user context for tracing"""
return {
@@ -120,8 +115,6 @@ class TraceCollectionListener(BaseEventListener):
def setup_listeners(self, crewai_event_bus):
"""Setup event listeners - delegates to specific handlers"""
if not self.trace_enabled:
return
self._register_flow_event_handlers(crewai_event_bus)
self._register_context_event_handlers(crewai_event_bus)
@@ -167,7 +160,7 @@ class TraceCollectionListener(BaseEventListener):
@event_bus.on(CrewKickoffStartedEvent)
def on_crew_started(source, event):
if not self.batch_manager.is_batch_initialized():
self._initialize_batch(source, event)
self._initialize_crew_batch(source, event)
self._handle_trace_event("crew_kickoff_started", source, event)
@event_bus.on(CrewKickoffCompletedEvent)
@@ -287,7 +280,7 @@ class TraceCollectionListener(BaseEventListener):
def on_agent_reasoning_failed(source, event):
self._handle_action_event("agent_reasoning_failed", source, event)
def _initialize_batch(self, source: Any, event: Any):
def _initialize_crew_batch(self, source: Any, event: Any):
"""Initialize trace batch"""
user_context = self._get_user_context()
execution_metadata = {
@@ -296,7 +289,7 @@ class TraceCollectionListener(BaseEventListener):
"crewai_version": get_crewai_version(),
}
self.batch_manager.initialize_batch(user_context, execution_metadata)
self._initialize_batch(user_context, execution_metadata)
def _initialize_flow_batch(self, source: Any, event: Any):
"""Initialize trace batch for Flow execution"""
@@ -308,7 +301,20 @@ class TraceCollectionListener(BaseEventListener):
"execution_type": "flow",
}
self.batch_manager.initialize_batch(user_context, execution_metadata)
self._initialize_batch(user_context, execution_metadata)
def _initialize_batch(
self, user_context: Dict[str, str], execution_metadata: Dict[str, Any]
):
"""Initialize trace batch if ephemeral"""
if not self._check_authenticated():
self.batch_manager.initialize_batch(
user_context, execution_metadata, use_ephemeral=True
)
else:
self.batch_manager.initialize_batch(
user_context, execution_metadata, use_ephemeral=False
)
def _handle_trace_event(self, event_type: str, source: Any, event: Any):
"""Generic handler for context end events"""

View File

@@ -1,5 +1,153 @@
import os
import platform
import uuid
import hashlib
import subprocess
import getpass
from pathlib import Path
from datetime import datetime
import re
import json
import click
from crewai.utilities.paths import db_storage_path
def is_tracing_enabled() -> bool:
return os.getenv("CREWAI_TRACING_ENABLED", "false").lower() == "true"
def on_first_execution_tracing_confirmation() -> bool:
if _is_test_environment():
return False
if is_first_execution():
mark_first_execution_done()
return click.confirm(
"This is the first execution of CrewAI. Do you want to enable tracing?",
default=True,
show_default=True,
)
return False
def _is_test_environment() -> bool:
"""Detect if we're running in a test environment."""
return os.environ.get("CREWAI_TESTING", "").lower() == "true"
def _get_machine_id() -> str:
"""Stable, privacy-preserving machine fingerprint (cross-platform)."""
parts = []
try:
mac = ":".join(
["{:02x}".format((uuid.getnode() >> b) & 0xFF) for b in range(0, 12, 2)][
::-1
]
)
parts.append(mac)
except Exception:
pass
sysname = platform.system()
parts.append(sysname)
try:
if sysname == "Darwin":
res = subprocess.run(
["system_profiler", "SPHardwareDataType"],
capture_output=True,
text=True,
timeout=2,
)
m = re.search(r"Hardware UUID:\s*([A-Fa-f0-9\-]+)", res.stdout)
if m:
parts.append(m.group(1))
elif sysname == "Linux":
try:
parts.append(Path("/etc/machine-id").read_text().strip())
except Exception:
parts.append(Path("/sys/class/dmi/id/product_uuid").read_text().strip())
elif sysname == "Windows":
res = subprocess.run(
["wmic", "csproduct", "get", "UUID"],
capture_output=True,
text=True,
timeout=2,
)
lines = [line.strip() for line in res.stdout.splitlines() if line.strip()]
if len(lines) >= 2:
parts.append(lines[1])
except Exception:
pass
return hashlib.sha256("".join(parts).encode()).hexdigest()
def _user_data_file() -> Path:
base = Path(db_storage_path())
base.mkdir(parents=True, exist_ok=True)
return base / ".crewai_user.json"
def _load_user_data() -> dict:
p = _user_data_file()
if p.exists():
try:
return json.loads(p.read_text())
except Exception:
pass
return {}
def _save_user_data(data: dict) -> None:
try:
p = _user_data_file()
p.write_text(json.dumps(data, indent=2))
except Exception:
pass
def get_user_id() -> str:
"""Stable, anonymized user identifier with caching."""
data = _load_user_data()
if "user_id" in data:
return data["user_id"]
try:
username = getpass.getuser()
except Exception:
username = "unknown"
seed = f"{username}|{_get_machine_id()}"
uid = hashlib.sha256(seed.encode()).hexdigest()
data["user_id"] = uid
_save_user_data(data)
return uid
def is_first_execution() -> bool:
"""True if this is the first execution for this user."""
data = _load_user_data()
return not data.get("first_execution_done", False)
def mark_first_execution_done() -> None:
"""Mark that the first execution has been completed."""
data = _load_user_data()
if data.get("first_execution_done", False):
return
data.update(
{
"first_execution_done": True,
"first_execution_at": datetime.now().timestamp(),
"user_id": get_user_id(),
"machine_id": _get_machine_id(),
}
)
_save_user_data(data)

View File

@@ -1 +0,0 @@
from .agentops_listener import agentops_listener

View File

@@ -1,67 +0,0 @@
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
@crewai_event_bus.on(TaskEvaluationEvent)
def on_task_evaluation(source, event: TaskEvaluationEvent):
if self.session:
self.session.create_agent(
name="Task Evaluator", agent_id=str(source.original_agent.id)
)
agentops_listener = AgentOpsListener()

View File

@@ -220,14 +220,22 @@ class ConsoleFormatter:
return tree
def create_task_branch(
self, crew_tree: Optional[Tree], task_id: str
self, crew_tree: Optional[Tree], task_id: str, task_name: Optional[str] = None
) -> Optional[Tree]:
"""Create and initialize a task branch."""
if not self.verbose:
return None
task_content = Text()
task_content.append(f"📋 Task: {task_id}", style="yellow bold")
# Display task name if available, otherwise just the ID
if task_name:
task_content.append("📋 Task: ", style="yellow bold")
task_content.append(f"{task_name}", style="yellow bold")
task_content.append(f" (ID: {task_id})", style="yellow dim")
else:
task_content.append(f"📋 Task: {task_id}", style="yellow bold")
task_content.append("\nStatus: ", style="white")
task_content.append("Executing Task...", style="yellow dim")
@@ -251,6 +259,7 @@ class ConsoleFormatter:
task_id: str,
agent_role: str,
status: str = "completed",
task_name: Optional[str] = None,
) -> None:
"""Update task status in the tree."""
if not self.verbose or crew_tree is None:
@@ -270,8 +279,13 @@ class ConsoleFormatter:
if str(task_id) in str(branch.label):
# Build label without introducing stray blank lines
task_content = Text()
# First line: Task ID
task_content.append(f"📋 Task: {task_id}", style=f"{style} bold")
# First line: Task ID/name
if task_name:
task_content.append("📋 Task: ", style=f"{style} bold")
task_content.append(f"{task_name}", style=f"{style} bold")
task_content.append(f" (ID: {task_id})", style=f"{style} dim")
else:
task_content.append(f"📋 Task: {task_id}", style=f"{style} bold")
# Second line: Assigned to
task_content.append("\nAssigned to: ", style="white")
@@ -285,8 +299,9 @@ class ConsoleFormatter:
break
# Show status panel
display_name = task_name if task_name else str(task_id)
content = self.create_status_content(
f"Task {status.title()}", str(task_id), style, Agent=agent_role
f"Task {status.title()}", display_name, style, Agent=agent_role
)
self.print_panel(content, panel_title, style)

View File

@@ -21,7 +21,7 @@ from crewai.utilities import RPMController
from crewai.utilities.errors import AgentRepositoryError
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.tool_usage_events import ToolUsageFinishedEvent
from crewai.process import Process
def test_agent_llm_creation_with_env_vars():
# Store original environment variables
@@ -1209,6 +1209,181 @@ Thought:<|eot_id|>
assert mock_format_prompt.return_value == expected_prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_allow_crewai_trigger_context():
from crewai import Crew
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory"
)
task = Task(
description="Analyze the data",
expected_output="Analysis report",
agent=agent,
allow_crewai_trigger_context=True
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff({"crewai_trigger_payload": "Important context data"})
prompt = task.prompt()
assert "Analyze the data" in prompt
assert "Trigger Payload: Important context data" in prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_without_allow_crewai_trigger_context():
from crewai import Crew
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory"
)
task = Task(
description="Analyze the data",
expected_output="Analysis report",
agent=agent,
allow_crewai_trigger_context=False
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff({"crewai_trigger_payload": "Important context data"})
prompt = task.prompt()
assert "Analyze the data" in prompt
assert "Trigger Payload:" not in prompt
assert "Important context data" not in prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_allow_crewai_trigger_context_no_payload():
from crewai import Crew
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory"
)
task = Task(
description="Analyze the data",
expected_output="Analysis report",
agent=agent,
allow_crewai_trigger_context=True
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff({"other_input": "other data"})
prompt = task.prompt()
assert "Analyze the data" in prompt
assert "Trigger Payload:" not in prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_do_not_allow_crewai_trigger_context_for_first_task_hierarchical():
from crewai import Crew
agent1 = Agent(role="First Agent", goal="First goal", backstory="First backstory")
agent2 = Agent(role="Second Agent", goal="Second goal", backstory="Second backstory")
first_task = Task(
description="Process initial data",
expected_output="Initial analysis",
agent=agent1,
)
crew = Crew(
agents=[agent1, agent2],
tasks=[first_task],
process=Process.hierarchical,
manager_llm="gpt-4o"
)
crew.kickoff({"crewai_trigger_payload": "Initial context data"})
first_prompt = first_task.prompt()
assert "Process initial data" in first_prompt
assert "Trigger Payload: Initial context data" not in first_prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_first_task_auto_inject_trigger():
from crewai import Crew
agent1 = Agent(role="First Agent", goal="First goal", backstory="First backstory")
agent2 = Agent(role="Second Agent", goal="Second goal", backstory="Second backstory")
first_task = Task(
description="Process initial data",
expected_output="Initial analysis",
agent=agent1,
)
second_task = Task(
description="Process secondary data",
expected_output="Secondary analysis",
agent=agent2,
)
crew = Crew(
agents=[agent1, agent2],
tasks=[first_task, second_task]
)
crew.kickoff({"crewai_trigger_payload": "Initial context data"})
first_prompt = first_task.prompt()
assert "Process initial data" in first_prompt
assert "Trigger Payload: Initial context data" in first_prompt
second_prompt = second_task.prompt()
assert "Process secondary data" in second_prompt
assert "Trigger Payload:" not in second_prompt
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ensure_first_task_allow_crewai_trigger_context_is_false_does_not_inject():
from crewai import Crew
agent1 = Agent(role="First Agent", goal="First goal", backstory="First backstory")
agent2 = Agent(role="Second Agent", goal="Second goal", backstory="Second backstory")
first_task = Task(
description="Process initial data",
expected_output="Initial analysis",
agent=agent1,
allow_crewai_trigger_context=False
)
second_task = Task(
description="Process secondary data",
expected_output="Secondary analysis",
agent=agent2,
allow_crewai_trigger_context=True
)
crew = Crew(
agents=[agent1, agent2],
tasks=[first_task, second_task]
)
crew.kickoff({"crewai_trigger_payload": "Context data"})
first_prompt = first_task.prompt()
assert "Trigger Payload: Context data" not in first_prompt
second_prompt = second_task.prompt()
assert "Trigger Payload: Context data" in second_prompt
@patch("crewai.agent.CrewTrainingHandler")
def test_agent_training_handler(crew_training_handler):
task_prompt = "What is 1 + 1?"
@@ -1896,7 +2071,7 @@ def test_agent_with_knowledge_sources_generate_search_query():
assert "red" in result.raw.lower()
@pytest.mark.vcr(record_mode='none', filter_headers=["authorization"])
@pytest.mark.vcr(record_mode="none", filter_headers=["authorization"])
def test_agent_with_knowledge_with_no_crewai_knowledge():
mock_knowledge = MagicMock(spec=Knowledge)
@@ -1904,8 +2079,11 @@ def test_agent_with_knowledge_with_no_crewai_knowledge():
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="openrouter/openai/gpt-4o-mini",api_key=os.getenv('OPENROUTER_API_KEY')),
knowledge=mock_knowledge
llm=LLM(
model="openrouter/openai/gpt-4o-mini",
api_key=os.getenv("OPENROUTER_API_KEY"),
),
knowledge=mock_knowledge,
)
# Create a task that requires the agent to use the knowledge
@@ -1920,7 +2098,7 @@ def test_agent_with_knowledge_with_no_crewai_knowledge():
mock_knowledge.query.assert_called_once()
@pytest.mark.vcr(record_mode='none', filter_headers=["authorization"])
@pytest.mark.vcr(record_mode="none", filter_headers=["authorization"])
def test_agent_with_only_crewai_knowledge():
mock_knowledge = MagicMock(spec=Knowledge)
@@ -1928,33 +2106,10 @@ def test_agent_with_only_crewai_knowledge():
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="openrouter/openai/gpt-4o-mini",api_key=os.getenv('OPENROUTER_API_KEY'))
)
# Create a task that requires the agent to use the knowledge
task = Task(
description="What is Vidit's favorite color?",
expected_output="Vidit's favorclearite color.",
agent=agent
)
crew = Crew(agents=[agent], tasks=[task],knowledge=mock_knowledge)
crew.kickoff()
mock_knowledge.query.assert_called_once()
@pytest.mark.vcr(record_mode='none', filter_headers=["authorization"])
def test_agent_knowledege_with_crewai_knowledge():
crew_knowledge = MagicMock(spec=Knowledge)
agent_knowledge = MagicMock(spec=Knowledge)
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="openrouter/openai/gpt-4o-mini",api_key=os.getenv('OPENROUTER_API_KEY')),
knowledge=agent_knowledge
llm=LLM(
model="openrouter/openai/gpt-4o-mini",
api_key=os.getenv("OPENROUTER_API_KEY"),
),
)
# Create a task that requires the agent to use the knowledge
@@ -1964,7 +2119,35 @@ def test_agent_knowledege_with_crewai_knowledge():
agent=agent,
)
crew = Crew(agents=[agent],tasks=[task],knowledge=crew_knowledge)
crew = Crew(agents=[agent], tasks=[task], knowledge=mock_knowledge)
crew.kickoff()
mock_knowledge.query.assert_called_once()
@pytest.mark.vcr(record_mode="none", filter_headers=["authorization"])
def test_agent_knowledege_with_crewai_knowledge():
crew_knowledge = MagicMock(spec=Knowledge)
agent_knowledge = MagicMock(spec=Knowledge)
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(
model="openrouter/openai/gpt-4o-mini",
api_key=os.getenv("OPENROUTER_API_KEY"),
),
knowledge=agent_knowledge,
)
# Create a task that requires the agent to use the knowledge
task = Task(
description="What is Vidit's favorite color?",
expected_output="Vidit's favorclearite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], knowledge=crew_knowledge)
crew.kickoff()
agent_knowledge.query.assert_called_once()
crew_knowledge.query.assert_called_once()
@@ -2164,7 +2347,12 @@ def mock_get_auth_token():
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
from crewai_tools import SerperDevTool, XMLSearchTool, CSVSearchTool, EnterpriseActionTool
from crewai_tools import (
SerperDevTool,
XMLSearchTool,
CSVSearchTool,
EnterpriseActionTool,
)
mock_get_response = MagicMock()
mock_get_response.status_code = 200
@@ -2173,12 +2361,23 @@ def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
"goal": "test goal",
"backstory": "test backstory",
"tools": [
{"module": "crewai_tools", "name": "SerperDevTool", "init_params": {"n_results": 30}},
{"module": "crewai_tools", "name": "XMLSearchTool", "init_params": {"summarize": True}},
{
"module": "crewai_tools",
"name": "SerperDevTool",
"init_params": {"n_results": "30"},
},
{
"module": "crewai_tools",
"name": "XMLSearchTool",
"init_params": {"summarize": "true"},
},
{"module": "crewai_tools", "name": "CSVSearchTool", "init_params": {}},
# using a tools that returns a list of BaseTools
{"module": "crewai_tools", "name": "CrewaiEnterpriseTools", "init_params": {"actions_list": [], "enterprise_token": "test_key"}},
{
"module": "crewai_tools",
"name": "CrewaiEnterpriseTools",
"init_params": {"actions_list": [], "enterprise_token": "test_key"},
},
],
}
mock_get_agent.return_value = mock_get_response
@@ -2221,7 +2420,9 @@ def test_agent_from_repository_override_attributes(mock_get_agent, mock_get_auth
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"tools": [{"name": "SerperDevTool", "module": "crewai_tools", "init_params": {}}],
"tools": [
{"name": "SerperDevTool", "module": "crewai_tools", "init_params": {}}
],
}
mock_get_agent.return_value = mock_get_response
agent = Agent(from_repository="test_agent", role="Custom Role")

View File

@@ -0,0 +1,126 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '825'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFJdi9swEHz3r1j0HBc7ZydXvx1HC0evhT6UUtrDKNLa1lXWqpJ8aTjy
34vsXOz0A/pi8M7OaGZ3nxMApiSrgImOB9Fbnd4Why/v79HeePeD37/Zfdx8evf5+rY4fNjdPbJV
ZNDuEUV4Yb0S1FuNQZGZYOGQB4yq+bYsr7J1nhcj0JNEHWmtDWlBaa+MStfZukizbZpfn9gdKYGe
VfA1AQB4Hr/Rp5H4k1WQrV4qPXrPW2TVuQmAOdKxwrj3ygduAlvNoCAT0IzW78DQHgQ30KonBA5t
tA3c+D06gG/mrTJcw834X0GHWhPsyWm5FHTYDJ7HUGbQegFwYyjwOJQxysMJOZ7Na2qto53/jcoa
ZZTvaofck4lGfSDLRvSYADyMQxoucjPrqLehDvQdx+fycjvpsXk3C/TqBAYKXC/q29NoL/VqiYEr
7RdjZoKLDuVMnXfCB6loASSL1H+6+Zv2lFyZ9n/kZ0AItAFlbR1KJS4Tz20O4+n+q+085dEw8+ie
lMA6KHRxExIbPujpoJg/+IB93SjTorNOTVfV2LrcZLzZYFm+Zskx+QUAAP//AwB1vYZ+YwMAAA==
headers:
CF-RAY:
- 96fc9f29dea3cf1f-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 15 Aug 2025 23:55:15 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=oA9oTa3cE0ZaEUDRf0hCpnarSAQKzrVUhl6qDS4j09w-1755302115-1.0.1.1-gUUDl4ZqvBQkg7244DTwOmSiDUT2z_AiQu0P1xUaABjaufSpZuIlI5G0H7OSnW.ldypvpxjj45NGWesJ62M_2U7r20tHz_gMmDFw6D5ZiNc;
path=/; expires=Sat, 16-Aug-25 00:25:15 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=ICenEGMmOE5jaOjwD30bAOwrF8.XRbSIKTBl1EyWs0o-1755302115700-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '735'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '753'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999830'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_212fde9d945a462ba0d89ea856131dce
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,123 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Say hello to
the world\n\nThis is the expected criteria for your final answer: hello world\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '825'
content-type:
- application/json
cookie:
- __cf_bm=oA9oTa3cE0ZaEUDRf0hCpnarSAQKzrVUhl6qDS4j09w-1755302115-1.0.1.1-gUUDl4ZqvBQkg7244DTwOmSiDUT2z_AiQu0P1xUaABjaufSpZuIlI5G0H7OSnW.ldypvpxjj45NGWesJ62M_2U7r20tHz_gMmDFw6D5ZiNc;
_cfuvid=ICenEGMmOE5jaOjwD30bAOwrF8.XRbSIKTBl1EyWs0o-1755302115700-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFLLbtswELzrKxY8W4VkW3ajW1GgQA7JJUGLog0EmlxJrCkuQ1J2g8D/
XlByLLkPoBcB2tkZzuzuawLAlGQlMNHyIDqr04/rl6/3z+6hu8vq/cOX5936cRPE3i8Px88rtogM
2v1AEd5Y7wR1VmNQZEZYOOQBo2q+LYpVtszzYgA6kqgjrbEhXVPaKaPSZbZcp9k2zd+f2S0pgZ6V
8C0BAHgdvtGnkfiTlZAt3iodes8bZOWlCYA50rHCuPfKB24CW0ygIBPQDNZvwdARBDfQqAMChyba
Bm78ER3Ad/NJGa7hw/BfQotaExzJaTkXdFj3nsdQptd6BnBjKPA4lCHK0xk5Xcxraqyjnf+Nympl
lG8rh9yTiUZ9IMsG9JQAPA1D6q9yM+uos6EKtMfhubzYjnps2s0MXZ3BQIHrWX17Hu21XiUxcKX9
bMxMcNGinKjTTngvFc2AZJb6Tzd/0x6TK9P8j/wECIE2oKysQ6nEdeKpzWE83X+1XaY8GGYe3UEJ
rIJCFzchsea9Hg+K+RcfsKtqZRp01qnxqmpbFZuM1xssihuWnJJfAAAA//8DAFSowWRjAwAA
headers:
CF-RAY:
- 96fc9f301bf7cf1f-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 15 Aug 2025 23:55:16 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '685'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '711'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3f0ec42447374a76a22a4cdb9f336279
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,501 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: First Agent\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolutely everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: First Agent\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolutely
everything you know, don''t reference things but instead explain them.\n\nIMPORTANT:
Use the following format in your response:\n\n```\nThought: you should always
think about what to do\nAction: the action to take, only one name of [Delegate
work to coworker, Ask question to coworker], just the name, exactly as it''s
written.\nAction Input: the input to the action, just a simple JSON object,
enclosed in curly braces, using \" to wrap keys and values.\nObservation: the
result of the action\n```\n\nOnce all necessary information is gathered, return
the following format:\n\n```\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n```"}, {"role": "user", "content":
"\nCurrent Task: Process initial data\n\nThis is the expected criteria for your
final answer: Initial analysis\nyou MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '2921'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFTJbtswEL37KwY824aT2E7qWxcUSE9Fa6CHujDG5EiahhoK5MiOG+Tf
C0re0qZAL4LAN2+WN8vTAMCwMwswtkK1deNH7+dXd5+0lTl/mZYPzd1mOvHNuzhffvt6szTDzAib
n2T1yBrbUDeelIP0sI2EStnr1e1sNptNbmZvOqAOjnymlY2OpmF0PbmejiZ3o8n8QKwCW0pmAd8H
AABP3TenKI4ezQImw+NLTSlhSWZxMgIwMfj8YjAlToqiZngGbRAl6bJeVqEtK13APQiRAw3gyFOJ
SqAVgWJ6gFBAE4OllFjK7pmFldGDQ8XMyW8fOSaFtyWJ5ieS1EaCHUGFWwIErULMwQDFAVrbxhwE
Bf0+cRrDPezY+xxpy66LXsOOtQL0vgsglFPAuAdHiuxTDnNQPNtz6tOloiCrvCW/H69kJW9tbsgC
PhwL24X40HPzH8WjCdxL0+oCnlYmO1qZBazM577yFyWvzBBWvYyP2pstj2KxbIPfUuor+/WqYon0
JEwkS7wlN4ZlroDF+tZRAusJ5cjOrCFYVCpD5M4pKxQhnvQbAjsS5WKfQZQ9aCRxCUKEBlUpShp2
0qe2rvHgJPsuWBxLmXICBGVAD9xJe+hbTiRCK45inqRsmydiV6GecoPsI6eX+u7K/lQwS+Ky0gSa
CRYFNgQu4k6giKEG1vFRzkM3Oj0vpmllni+nN1LRJszLI633FwCKBMXcyG5vfhyQ59Om+FA2MWzS
H1RTsHCq1pEwBclbkTQ0pkOfBwA/uo1sXyyZaWKoG11reKAu3PzquvdnzjfgjF7dTA+oBkV/Bm6n
8+ErDteHCb9YamPRVuTO1PMFwNZxuAAGF2X/nc5rvvvSWcr/cX8GrKVGya2bSI7ty5LPZpHyjfyX
2UnmLmGTKG7Z0lqZYm6FowJb358vk/ZJqV4XLCXFJnJ/w4pmPZ1vimJCE3tnBs+D3wAAAP//AwBY
9uEVzAUAAA==
headers:
CF-RAY:
- 97144bd22eb41abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:52:42 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=dCMuu_IT8i5kyJB9_ugQhudGYphCvJlfXMZwJgOuB8Y-1755550362-1.0.1.1-VyrRrYT2JzvUYUjT9T5uCe31rJR0Q_FicsTyAJZYdj0j8anm6ZdVD7QhtUW0OjVK_8F82E4cVt8Uf5shMfmUm3Gf.EMuBA1AgSAUrzsHEy4;
path=/; expires=Mon, 18-Aug-25 21:22:42 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=YeODa6MF5ug3OZUV6ob1dSrBKCM8BXbKkS77TIihYoE-1755550362828-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '3236'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '3253'
x-ratelimit-limit-project-tokens:
- '30000000'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-project-tokens:
- '29999308'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999308'
x-ratelimit-reset-project-tokens:
- 1ms
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- req_08aa9de2797d4fee93003bdc7fc19156
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are First Agent. First
backstory\nYour personal goal is: First goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Process initial data\n\nThis is the expected criteria for your final answer:
Your best answer to your coworker asking you this, accounting for the context
shared.\nyou MUST return the actual complete content as the final answer, not
a summary.\n\nThis is the context you''re working with:\nThe task involves analyzing
the initial data set we have received. This includes cleaning the data, categorizing
it for analysis, identifying any trends or patterns, and summarizing the findings.
The goal is to have a clear understanding of what the data indicates and any
initial insights that can be drawn from it.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1262'
content-type:
- application/json
cookie:
- __cf_bm=dCMuu_IT8i5kyJB9_ugQhudGYphCvJlfXMZwJgOuB8Y-1755550362-1.0.1.1-VyrRrYT2JzvUYUjT9T5uCe31rJR0Q_FicsTyAJZYdj0j8anm6ZdVD7QhtUW0OjVK_8F82E4cVt8Uf5shMfmUm3Gf.EMuBA1AgSAUrzsHEy4;
_cfuvid=YeODa6MF5ug3OZUV6ob1dSrBKCM8BXbKkS77TIihYoE-1755550362828-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFbfbxRHDH7PX+HuE6DLKSEkQN6AChUhoUpFULVBkTPj3XUzO96MZ+9y
RfzvlWfubi+USn3Jj/HaY3+f/Y2/HgE07JtLaFyP2Q1jOH5zcfriwx+v36RP3affN+9buetUT27o
4uMvp5+bhXnIzV/k8s5r6WQYA2WWWM0uEWayqKfPz8/Pz0/OLs6KYRBPwdy6MR8/k+OBIx8/PXn6
7Pjk+fHpi613L+xIm0v48wgA4Gv5aXlGT/fNJZwsdicDqWJHzeX+I4AmSbCTBlVZM8bcLGajk5gp
ltTfQZQ1OIzQ8YoAobO0AaOuKQFcxbccMcCr8v8lfBQYkzhShdwTcOTMGMBjRlDKQG1LLvOKwmYB
a4I1hwCthCBrUFpRwgC3tAHNNCpkAYo6JbJPXSCMC3CYqZPEf9MCMGLY1D886DQMaOcgU4KWo+fY
KRjsiXqKWm5dXsWreLqEJ09+tpzeWFCO3ZMnl3AVAeAY3nLSPCeXaMW0LtVYFVZEKwkGVuXYLYCj
k2gYUswLkASUkkSSSYFiTky63EX+vA3ZY/SBdiFghWEihZsNEOeeEvAwTtksuacBblDJg0TQKSWZ
SlkVUEmQaJCVHSRykrzCuqdEEMkowGTllqtfec/WehgOgTfiPSZvoO1wdRhghYnxJtAhA/sq3QYe
0bJbLqrFLscQIIhDuwEiDqSAiUBHCoF8wU5xIFjj5nEh4OlMwI7O4nxAwwe6P2BhZn3PBHDMAokC
rTBmUOoGitn6DnN1QvalF0qbKM9EfOxZgeNKwooUuiTTuAd1FLYoe9SdDIP96jGhy5RYMztdgE6u
B1TwNEiXcOzLaeaBYKTE4rV0A8ZNaeiRUitpwOhsKjw7zJIUHr3/9Z0+tjINsFbcVFpCYoHpzGD6
mCj60uG/Ys6UIrzzFDO37L7H7DPnvuBTZoWq1wydLxXOoG5zAgRPGTkUhwqVEc/1mg1ky0BLsLGm
oMtDJEuwLZxQC9CMuSCFAbJIqN4r1gnDlutyxxSdrMj6ONTDnkcLmHuOe6aX+8kJIreAucKsZNO1
T3kBTtIuDjihtmXH1hJVH4wJ5S4W4GIGmXJgStuGGXADie4mNhqmVOcwrkgzdyViIeSZEfLbVmis
zrdbmXmgH99NmSkQB9POKlEbkPahRq17dv0ORhcmT3AjuYc7Q8uQXFnTKHd9rkDeTRjzzjJQTuwe
UrK7SXuZggeKDkedAuY6P9aRW1a3LDP5RYEoSrbR3zNdweNhDNt+U0s/96S0L2D5ncBhUAEvbrKJ
LFEDDyXd2b1OWxXuriPNNgGoRVx3BCRSwuR64PaBpF3F1xvYvadVJ5XqmzHDHiWDxLCBHsvDZTOR
YIqeUtG9MmctrI39A00po2lyPOVax5hkxZ4AXRFQw2bPRWmd8jhO9omRGuk+11SWlYoHD9A8YFWA
KdmZWm9IYA+tCXzt4HarHriXbqD7MUiqZkngybGyxOMBb62a+tpaT2gdKNNeKVmNSWwZMQW8iu9a
2Mi0xSVu4G6yNi/UWP7k9wS4gGkvNKaG9vmIKVcSWXev/QLGQKgEgTIMBLdR1j8drhSJ2knR1po4
hXBgwGgdV663ZebL1vJtv74E6cYkN/qda9NyZO2vrWkk2qqiWcamWL8dAXwpa9L0YPNpxiTDmK+z
3FK57unZ8xqvmbez2Xr2cmfNkjHMhouzZ4sfBLyuMqoHm1bj0PXkZ9d5LcPJsxwYjg7K/nc6P4pd
S+fY/Z/ws8E5GjP56zGRZ/ew5PmzRNYw//XZHuaScGN9zI6uM1MyKjy1OIW6Uza60UzDdcuxozQm
rotlO16fX5xge0Hn5y+bo29H/wAAAP//AwCE+a2iZgsAAA==
headers:
CF-RAY:
- 97144be7eaa81abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:52:47 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '4424'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '4473'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999717'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999717'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5bf23819c1214732aa87a90207bc0d31
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Crew Manager. You
are a seasoned manager with a knack for getting the best out of your team.\nYou
are also known for your ability to delegate work to the right people, and to
ask the right questions to get the best out of your team.\nEven though you don''t
perform tasks by yourself, you have a lot of experience in the field, which
allows you to properly evaluate the work of your team members.\nYour personal
goal is: Manage the team to complete the task in the best way possible.\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: Delegate work to coworker\nTool Arguments:
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
''str''}}\nTool Description: Delegate a specific task to one of the following
coworkers: First Agent\nThe input to this tool should be the coworker, the task
you want them to do, and ALL necessary context to execute the task, they know
nothing about the task, so share absolutely everything you know, don''t reference
things but instead explain them.\nTool Name: Ask question to coworker\nTool
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
of the following coworkers: First Agent\nThe input to this tool should be the
coworker, the question you have for them, and ALL necessary context to ask the
question properly, they know nothing about the question, so share absolutely
everything you know, don''t reference things but instead explain them.\n\nIMPORTANT:
Use the following format in your response:\n\n```\nThought: you should always
think about what to do\nAction: the action to take, only one name of [Delegate
work to coworker, Ask question to coworker], just the name, exactly as it''s
written.\nAction Input: the input to the action, just a simple JSON object,
enclosed in curly braces, using \" to wrap keys and values.\nObservation: the
result of the action\n```\n\nOnce all necessary information is gathered, return
the following format:\n\n```\nThought: I now know the final answer\nFinal Answer:
the final answer to the original input question\n```"}, {"role": "user", "content":
"\nCurrent Task: Process initial data\n\nThis is the expected criteria for your
final answer: Initial analysis\nyou MUST return the actual complete content
as the final answer, not a summary.\n\nBegin! This is VERY important to you,
use the tools available and give your best Final Answer, your job depends on
it!\n\nThought:"}, {"role": "assistant", "content": "Thought: I need to delegate
the task of processing the initial data to the First Agent to ensure we have
a thorough and accurate analysis. I will provide them with all the necessary
details to complete this task effectively.\n\nAction: Delegate work to coworker\nAction
Input: {\"task\": \"Process initial data\", \"context\": \"The task involves
analyzing the initial data set we have received. This includes cleaning the
data, categorizing it for analysis, identifying any trends or patterns, and
summarizing the findings. The goal is to have a clear understanding of what
the data indicates and any initial insights that can be drawn from it.\", \"coworker\":
\"First Agent\"}\nObservation: To process the initial data set effectively,
we will follow several key steps to ensure we clean, categorize, analyze, and
summarize our findings comprehensively.\n\n1. **Data Cleaning**: \n - First,
we will review the dataset for missing, inconsistent, or erroneous entries.
\n - We will handle missing values by either imputing them based on surrounding
data or removing records where necessary.\n - Additionally, we will standardize
categorical variables to ensure consistency (e.g., ensuring all location names
are spelled the same way).\n\n2. **Data Categorization**: \n - Next, we will
categorize the data into relevant segments that will aid our analysis. \n -
This involves grouping data points based on common characteristics, such as
demographics, time periods, or any key performance indicators (KPIs) we are
focusing on.\n\n3. **Trend and Pattern Identification**: \n - With the cleaned
and categorized data, we will perform a detailed analysis to identify trends
and patterns.\n - This will involve using statistical tools and visualizations
to uncover relationships within the data. We will look at time series analysis,
correlation coefficients, and any significant outliers that may require further
investigation.\n\n4. **Summarizing Findings**: \n - Finally, we will compile
a summary of our findings which will include both qualitative insights and quantitative
metrics.\n - This summary should encapsulate the key trends identified, any
notable patterns, and implications of these findings.\n - We will also document
any limitations of the data and suggest areas for further research if necessary.\n\nBy
completing these steps, we will not only have a clear understanding of what
the data indicates but also provide actionable insights that can guide our next
steps. This comprehensive analysis will serve as a solid foundation for any
additional exploration or decision-making initiatives related to our project.
\n\nIf you have any questions or need further clarification on any part of this
process, please let me know!"}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '5714'
content-type:
- application/json
cookie:
- __cf_bm=dCMuu_IT8i5kyJB9_ugQhudGYphCvJlfXMZwJgOuB8Y-1755550362-1.0.1.1-VyrRrYT2JzvUYUjT9T5uCe31rJR0Q_FicsTyAJZYdj0j8anm6ZdVD7QhtUW0OjVK_8F82E4cVt8Uf5shMfmUm3Gf.EMuBA1AgSAUrzsHEy4;
_cfuvid=YeODa6MF5ug3OZUV6ob1dSrBKCM8BXbKkS77TIihYoE-1755550362828-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFbbbhw3DH33VxDzlATrxTq+pX5LUwQJChRBayRA68ChJc4Ma404ETW7
3gT594LS3pymQF/2IooUeQ55pK9HAA375goa12N2wxiOX12cvPj9t/dv4sOf79z1m8vFKvbdl+fy
YfXlvTQz85C7v8nlrdfcyTAGyiyxml0izGRRTy7Pz8/PF6cXl8UwiKdgbt2Yj8/k+Pni+dnx4sXx
4mLj2As70uYK/joCAPhaPi3F6OmhuYLFbLsykCp21FztNgE0SYKtNKjKmjHmZrY3OomZYsn606dP
N/G6l6nr8xW8hSgruLeP3BO0HDEARl1Ruomvy7+X5d8VXAuMSRyplq0cOTMG8JgRlDJQ25LLvKSw
nsGKYMUhQCshyAqUlpQwwD2tQTONClmAok6JbKsLhHEGDjN1kvgLzQAjhnX94UGnYUBbB5mSJek5
dgqGfaKeopZT5zfxJp7M4dmzXyynVxaUY/fs2RXcRAA4htecNO+TS7RkqoVbFVZEKwkGVuXYzYCj
k2hoUswzkASUkkSSSYFiTkw630b+sAnZY/SBtiFgiWEihbs1EOeeEvAwTtksuacB7lDJg0TQKSWZ
SlkVUEmQaJClLSRykrzCqqdEEMkowGTllqNfes/WfxgOgbcW8Ji8gbbF1WGAJSbGu0CHDOyqdGt4
QvNuPqsWOxxDgCAO7QSIOJACJgIdKQTyBTvFgWCF66eFgOd7ArZ0FucDGn6jhwMW9qzvmACOWSBR
oCXGDErdQDFb32GuTsi+9EJpE+U9Edc9K3BcSliSQpdkGnegjsIWZYe6k2Gwrx4TukyJNbPTGejk
ekAFT4N0Cce+rGYeCEZKLF5LN2Bcl4YeKbWSBozOpsKzwyxJ4cmv797qUyvTAGvFTaUlJBaYTg2m
60TRlw5/hzlTivDWU8zcsvsesw+c+4JPmRWqXnvofKlwD+omJ0DwlJFDcahQGfFcj1lDtgy0BBtr
Cjo/RLIE28AJtQDNmAtSGCCLhOq9ZJ0wbLguZ0zRyZKsj0Nd7Hm0gLnnuGN6vpucIHIPmCvMSjZd
u5Rn4CRt44ATalt2bC2x0QfuYgEtZpApB6a0aZYB15Do88RGwZTqDMYlaeauRCtknBkZf2xExmp8
vZGYR9rx3YSZ+nAgwI08rUHaR/pUBCRMZajvJPfw2RAy9JbWKMpdnyt4nyeMeWsZKCd2j2nYnqC9
TMEDRYejTgFznRnrwg2TG2aZ/Kw0aJRs475jtwLGwxg2PaaWdu5JaZf4/DtRw6ACXtxkU1iiBh5K
unv3OmFVrLuONFvXoxZB3QKfSAmT64HbRzJ2E39ew/YirdqoVO+JPdxRMkgMa+hxaaDbHCSYoqdU
tK7MVgsrY/1AR8o4mgRPudYxJlmyJ0BXRNOw2XFRWsZhhG6yLUZmpIdcU5lXKh5dOvuhqqJLydbU
ekICe2hN1GvXthvFwJ1cAz2MQVI1SwJPjpUlHg94b9XUG9Z6QusQmd5KyWpMYq8QU71ynx/e9Yna
SdGeGnEK4cCA0ZqhkGavjI8by7fduyJINya50+9cm5Yja39rfEq0N4RmGZti/XYE8LG8X6ZHT5Jm
TDKM+TbLPZXjTk5OX9SAzf7JtDefXv60sWbJGA78zk8uZz8IeVt1TQ8eQY1D15Pf++5fTDh5lgPD
0UHh/87nR7Fr8Ry7/xN+b3COxkz+dkzk2T2ueb8tkbH5X9t2QJeEG2sydnSbmZKR4anFKdTnXqNr
zTTcthw7SmPi+uZrx9uzi7u2XdDCvWiOvh39AwAA//8DAIF0yI38CgAA
headers:
CF-RAY:
- 97144c04e89a1abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:52:50 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2974'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '2999'
x-ratelimit-limit-project-tokens:
- '30000000'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-project-tokens:
- '29998628'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29998627'
x-ratelimit-reset-project-tokens:
- 2ms
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 2ms
x-request-id:
- req_c0cd67fc9b9342a7bd649b1458724745
status:
code: 200
message: OK
version: 1

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,296 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are First Agent. First
backstory\nYour personal goal is: First goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Process initial data\n\nThis is the expected criteria for your final answer:
Initial analysis\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '831'
content-type:
- application/json
cookie:
- _cfuvid=PslIVDqXn7jd_NXBGdSU5kVFvzwCchKPRVe9LpQVdQA-1736351415895-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFVNbxw3DL37VxBzyWV3YTtZ2/EtLerCQNH2kCAFmmDBlTgzjDXURKR2
vQny3wtpNp7Nx6EXr0eUqPceH6nPZwAN++YWGtejuWEMy1+vLm6Gi93rF9f4x+/h7V26/zi8fPv3
xT/34c1vzaKciNsP5OzrqZWLwxjIOMoUdonQqGS9uF6v1+vz5zc3NTBET6Ec60ZbvojLgYWXl+eX
L5bn18uLm+PpPrIjbW7h3zMAgM/1b8Epnh6bWzhffF0ZSBU7am6fNgE0KYay0qAqq6FYs5iDLoqR
VOj3IHEPDgU63hEgdAU2oOieEsA7uWPBAK/q9y287glY2BgDoGA4KCvEFqwn8GgILLsYdqSgtKOE
AVxiY4cB1GjUFdxxUlvAnmDIasCexLg91Awac3L0TcIFkGhOLB1Yj1bWD4CJIFFg3AYCFF8+aIdi
YLGenErDuznXmGJZWsFf4ugEroKLIZAz8hXUSKmNaQCEsdwwsGA6AD1i+a8Ut1zhenIP0MYE6FxO
6A4VxdEBJKS6gBDjQ4Fdt8kBBlYt3zsMueBK4FldohHFMenqnbyTP+lx0sahURcTfzrFKhZhIBSW
rs0BlLqBxHQBOI7hUHJvUdmBGhrrpPpA1kevBbXmYcCa8oEO0BJaTqVQ2fWAWjMvYCDP5bfwKUZd
weuetci3Y08KLMpdbzqhqdhYLfE2V3GqDCRWKm8kniq304JWnq+857IfQzgsYMeaMfCnqu8MqGe1
2CUcdAHb+AhjiIVsTKAOzShNK9UNx2YrNLdUY1k8peL86o4pdc+jVohjPS8Ke7aeZQZXDK50RATI
XqGnMALLk1OrFROJL1iyBaakk15jLF1VWyMRVtYuiqMklfRdTtZTGmKiWmNUJdW5vsUobApZccuB
7VBuRe8TTcapHTKS45YdfMykk1xo0KP47xuFDTBwd+R42gPPFLqIQVfwy9R2JH6qEOsPzV2R7jkE
6LHOBxcIE8QdpR3T/rSyzxS0CNNZP6m8J3wovUC6gC6zL9hyseIek1coQgDL0tNofRkchVF3NEFp
Gv8hq1WLgxB58lWiNhffTpIde5ejrOBNMB7QqDiqUmljFo+TzeZhpWST5mrY0WnGumXqmjFFV4FX
Hp4cK0dZDlg7etKojpfV6VhN1GbFMtolh3ASQJFoE7Ey0N8fI1+eRniI3ZjiVr872rQsrP2muClK
GddqcWxq9MsZwPv6VORvpn8zpjiMtrH4QPW6i/V6ytfML9QcvXx+fYxaNAxz4PnLy8VPEm48GXLQ
k9emceh68vPR+WnC7DmeBM5OaP8I52e5J+os3f9JPweco9HIb8ZEnt23lOdtiT7Uyf/zbU8yV8CN
Fsc72hhTKqXw1GIO07va6EGNhk3L0lEaE0+Paztu1lfn2F7Rev2yOfty9h8AAAD//wMAaw+BEmoI
AAA=
headers:
CF-RAY:
- 97144c8758cd1abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:12 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM;
path=/; expires=Mon, 18-Aug-25 21:23:12 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '4008'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '4027'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999825'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999825'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_f287350aa2ac4662b9a5e01e85cc221f
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Second Agent. Second
backstory\nYour personal goal is: Second goal\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Process secondary data\n\nTrigger Payload: Context data\n\nThis is the expected
criteria for your final answer: Secondary analysis\nyou MUST return the actual
complete content as the final answer, not a summary.\n\nThis is the context
you''re working with:\nThe initial analysis of the data involves several critical
steps. First, we must identify the sources of the data, ensuring that they are
reliable and relevant to the objectives of the project. Once the data is collected,
we perform a preliminary examination to check for accuracy and completeness,
looking for any missing values or discrepancies.\n\nNext, we categorize the
data into meaningful segments, applying basic statistical methods to summarize
key features such as mean, median, and mode. This provides insights into the
distribution and central tendencies of the data.\n\nAdditionally, visualizations
such as histograms, box plots, or scatter plots are created to better understand
relationships and patterns within the data. These visual aids help in identifying
trends, outliers, and potential areas of concern.\n\nFurthermore, we assess
the data for its usability in addressing the specific questions at hand, ensuring
that it aligns with the project''s goals. By the end of this initial analysis,
we will have a clear overview of the data''s strengths and weaknesses, guiding
us towards more in-depth investigations or adjustments needed for future data
collection. Ultimately, this foundational analysis sets the stage for future
analytical processes and decision-making initiatives.\n\nBegin! This is VERY
important to you, use the tools available and give your best Final Answer, your
job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '2214'
content-type:
- application/json
cookie:
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
__cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFZNbxw5Dr37VxB9yaVt2JlpO/EtM0Awe5hd7GIWGGAzMGiJVcVYJSmk
1O3OIP99QKn6w94c5lLoFiWKfHx84p8XACv2q3tYuQmLm3O4/Pn25t2XX/9T7z7+evP77vdNdP++
peH6brz95W1ere1EevxMrhxOXbk050CFU+xmJ4SFzOvN3Waz2Vz/8P5tM8zJU7BjYy6XP6bLmSNf
vr1+++Pl9d3lzbvl9JTYka7u4X8XAAB/tq/FGT09r+7hen1YmUkVR1rdHzcBrCQFW1mhKmvBWFbr
k9GlWCi20P8BMe3AYYSRtwQIo4UNGHVHAvApfuSIAT60//fw20TAkQtjAIwY9soKaYAyEXgsCBy3
KWxJQWlLggGccGGHAbRQ1iv4yKJlDTuCuWoB9hQLD/vmQVMVRy8croGiVuE4Qpmw2PoeUAiEAuNj
IMDo7Q9tMRYoqZ3speHtyVeWZEtX8NvEehalk1o48td+AYET8vzIgcvejhK6aQlrDahKqoedM5Up
+RTSyKRQlTwMSToKLoVgAaS4bvG5FAeW+VUWgccIOy5T8yekhOImQJ716lP8FP8VHZ0hqwe35Bt+
mWRIMgNCNjBmjih7oGe0X3a3oeEmck8tMHSuCrr9ElAjK0VSXTCZCaN9C7saUtWwh5DSk8Xcjsc9
zNzT32KopGvwNQd2WAgoFmFbMgRYnVDG6AyYlq9LNXjQJ9pZmjUUvYKfA2E8gNkybMCwghYcqeUr
1RnT7P4jDTgWGsXqwxFSlYWH1DH7Jz13dllYYxL+eg5hLKnlyXEcagClcaZY1KLeojQ+LREbxTJJ
4UidVnbTsURfKqkhfMBucdRRxxDSTlvQdjPmDpKZ0gCPqOwsxcLaG6MTSe0SrfOMLeYn2sNAWKqQ
XsFPe3AYXA1YTvTDuIaZPONCMtOVlvqIHFuNWn9wVB6noj37hgVrEX6sPVpjg5UPAxSKnnrZXrTg
bmJrAxJrGVRAGFKNvudkec5JaOHU88t6fPCebRuGsO91abIIW9aKgb82HwpajfgKE2tJo+Csa3hM
z5BDKtrTU4elkPQlA4tCdezNWW+f0H1NnLUdyG1/1NZiHI/5WM1IDyEAslfIAfeAsOWCAUw7jVwH
bWqQC0Vv/K4lMMkSU06mo00MhbCh5lJ0JFYSo4EdrS1ao61koXKiY0ONY6lsUhX2DbCPVcpEYraG
Vxed46E3JjW4CBRHQO/lTJQ0k+OB3Ymh1lUTRv9a+ZowHJvbpMgYfJKjRTDfKIwJQ0f0TFYNf+tI
ajEKQeoAi3HNoJ+u4EOXjJPzuRmFvlQWWnARokbVctanx3dAIPM2lRed3psGc5aEbmqY/dSfD7IQ
h64hrx+phuWOQ4AJ2ztnbBWaKKq9e2lLsmXanfP+jSmRUBzL1NPfET6ZYNKh7Wv0JPa6egOyeR8r
+yW1HYrXQ5EvPeUyGfxWl3GhvUHvP1ctXYYikV+ekaFa679+TYCGIYmp539D4RkLWVe1hE8def40
K5XOna6pZ57PsMySXEurZenJsXKKlzM+db01JFvV10BzTjuShdaNLFauwB4GwZl2SZ6sqo+Vg4ea
TWDUoPcUtvalTNKVyApKzzkkOWrjsUPPhxWhoSrawBRrCGcGjDF1yW1j0h+L5dtxMAppzJIe9dXR
1cCRdXqwjk3RhiAtKa+a9dsFwB9tAKsvZqpVljTn8lDSE7Xrfni/6f5Wp7nvzPrudrGWVDCcDHfv
btbfcfjgqSAHPZvhVg7dRP509DTwYfWczgwXZ2n/fzjf891T5zj+Hfcng3OUC/mHbEOSe5nyaZvQ
5zakfH/bEeYW8MoeFXb0UJjESuFpwBr6tLrSvRaaHwaOo2kn95F1yA+b22scbmmzeb+6+HbxFwAA
AP//AwAAHGphwAsAAA==
headers:
CF-RAY:
- 97144ca1b97b1abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:21 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '8604'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '8628'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999482'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999485'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_545a8ffcdf954433b9059a5b35dddf20
status:
code: 200
message: OK
version: 1

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,845 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Iterating Agent. You
are an agent that iterates a given number of times\nYour personal goal is: Call
the iterating tool 5 times\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: iterating_tool\nTool
Arguments: {''input_text'': {''description'': None, ''type'': ''str''}}\nTool
Description: A tool that iterates a given number of times\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [iterating_tool],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple JSON object, enclosed in curly braces, using \" to wrap keys and
values.\nObservation: the result of the action\n```\n\nOnce all necessary information
is gathered, return the following format:\n\n```\nThought: I now know the final
answer\nFinal Answer: the final answer to the original input question\n```"},
{"role": "user", "content": "\nCurrent Task: Call the iterating tool 5 times\n\nThis
is the expected criteria for your final answer: A list of the iterations\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1452'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//hFPRjtMwEHzPV6z83J5ySVvu8nYCIZ1ACKSCEOSUOs4mMefYlr2Boqr/
jpy0TQ7uxIsV7exMZmftQwTAZMUyYKLlJDqrlq837zbXn/flx6/fVPIp/fI+3ZbaxVv568ObR7YI
DFP+QEFn1pUwnVVI0ugRFg45YVC9frVeb5I0WacD0JkKVaA1lpYrs0ziZLWMb5bx5kRsjRToWQbf
IwCAw3AGi7rCPcsgXpwrHXrPG2TZpQmAOaNChXHvpSeuiS0mUBhNqAfXu90u19vW9E1LGdyDRqyA
DAiuFFCLIAkdJ6kbIGPGUi2dJyDZ4VWu70SYNpv6itB3rsO9tj1lcMiZDF8F4Z5ylkHO3g4qJ5rR
OTvOLTqse89DQrpXagZwrQ0NjCGchxNyvMShTGOdKf1fVFZLLX1bOOTe6DC6J2PZgB4jgIch9v5J
ksw601kqyDzi8Lvk9nbUY9OiJzRdn0AyxNWsnq4Wz+gVFRKXys8WxwQXLVYTddoy7ytpZkA0m/pf
N89pj5OPG/qv/AQIgZawKqzDSoqnE09tDsM7eKntkvJgmHl0P6XAgiS6sIkKa96r8Yoy/9sTdkUt
dYPOOjne09oWq01Z1zHG4oZFx+gPAAAA//8DAHvlcCKwAwAA
headers:
CF-RAY:
- 971b3f72effa6897-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 19 Aug 2025 17:07:35 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=6OZC5kPO9TEmVSACP2sSOZK9ZEZ5I4T_VUlfmzsoY9Y-1755623255-1.0.1.1-ek3SaNBOhXmCg7K3J7LIsE0aCrnK5YfSumHDT6nc8Df1Zh3bzMLHLDqTUwtqiG8SwxiIFXeGP4.Vt2sx9b3FCkxoyrqNpgrBL5DAffAGHm8;
path=/; expires=Tue, 19-Aug-25 17:37:35 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=R_H7SrOF3QFEWePZfvxzuyKWZAt5ulsNbP28.6DC9wM-1755623255760-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '2564'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '2751'
x-ratelimit-limit-project-tokens:
- '30000000'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-project-tokens:
- '29999674'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999674'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_d654df1116aa42ca8ee7d10b4b424303
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Iterating Agent. You
are an agent that iterates a given number of times\nYour personal goal is: Call
the iterating tool 5 times\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: iterating_tool\nTool
Arguments: {''input_text'': {''description'': None, ''type'': ''str''}}\nTool
Description: A tool that iterates a given number of times\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [iterating_tool],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple JSON object, enclosed in curly braces, using \" to wrap keys and
values.\nObservation: the result of the action\n```\n\nOnce all necessary information
is gathered, return the following format:\n\n```\nThought: I now know the final
answer\nFinal Answer: the final answer to the original input question\n```"},
{"role": "user", "content": "\nCurrent Task: Call the iterating tool 5 times\n\nThis
is the expected criteria for your final answer: A list of the iterations\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}, {"role": "assistant", "content":
"```\nThought: I need to call the iterating tool the first time.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"First iteration\"}\nObservation: Iteration 0: First
iteration"}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1673'
content-type:
- application/json
cookie:
- __cf_bm=6OZC5kPO9TEmVSACP2sSOZK9ZEZ5I4T_VUlfmzsoY9Y-1755623255-1.0.1.1-ek3SaNBOhXmCg7K3J7LIsE0aCrnK5YfSumHDT6nc8Df1Zh3bzMLHLDqTUwtqiG8SwxiIFXeGP4.Vt2sx9b3FCkxoyrqNpgrBL5DAffAGHm8;
_cfuvid=R_H7SrOF3QFEWePZfvxzuyKWZAt5ulsNbP28.6DC9wM-1755623255760-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4RTTW/bMAy9+1cQOidFlg8v8G1LB6zosbvNhaNItK3NFjWJ7loE+e+D7CR2uw67
CAIf3xP5SB0TAGG0yECoWrJqXTPfpffp2tWqu93u7m+Xu+3Dl6/m96+X+pB+VmIWGXT4gYovrBtF
rWuQDdkBVh4lY1T98HGzSZer5SbtgZY0NpFWOZ6vab5cLNfzxXa+SM/EmozCIDL4ngAAHPszlmg1
PosMFrNLpMUQZIUiuyYBCE9NjAgZggksLYvZCCqyjLaver/f5/ZbTV1VcwZ3UMsnhHMXqIFrhNL4
wGAYvYyNgbQaLEaQwHlS52tMDajIaiCLN7n9pGJ6dmHaqmCi5hKHO+s6zuCYCxNvBeMz5yKDXDwM
KtcXc3GaVu+x7IKM5tmuaSaAtJa4Z/S+PZ6R09Wphirn6RDeUEVprAl14VEGstGVwOREj54SgMd+
It0rk4Xz1DoumH5i/9xqvRn0xLgDE3R7BplYNtP4avaOXqGRpWnCZKZCSVWjHqnjAshOG5oAyaTr
v6t5T3vofBjRf+VHQCl0jLpwHrVRrzse0zzGL/KvtKvLfcEioH8yCgs26OMkNJaya4btFeElMLZF
aWyF3nkzrHDpinV6KMsFLtRWJKfkDwAAAP//AwAMYddzywMAAA==
headers:
CF-RAY:
- 971b3f84cf146897-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 19 Aug 2025 17:07:38 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1900'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '2551'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999629'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_f4181fe581264993ac5c6deba4f1c287
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Iterating Agent. You
are an agent that iterates a given number of times\nYour personal goal is: Call
the iterating tool 5 times\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: iterating_tool\nTool
Arguments: {''input_text'': {''description'': None, ''type'': ''str''}}\nTool
Description: A tool that iterates a given number of times\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [iterating_tool],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple JSON object, enclosed in curly braces, using \" to wrap keys and
values.\nObservation: the result of the action\n```\n\nOnce all necessary information
is gathered, return the following format:\n\n```\nThought: I now know the final
answer\nFinal Answer: the final answer to the original input question\n```"},
{"role": "user", "content": "\nCurrent Task: Call the iterating tool 5 times\n\nThis
is the expected criteria for your final answer: A list of the iterations\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}, {"role": "assistant", "content":
"```\nThought: I need to call the iterating tool the first time.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"First iteration\"}\nObservation: Iteration 0: First
iteration"}, {"role": "assistant", "content": "```\nThought: I have completed
the first iteration and need to proceed to the second one.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"Second iteration\"}\nObservation: Iteration 0: Second
iteration"}], "model": "gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1922'
content-type:
- application/json
cookie:
- __cf_bm=6OZC5kPO9TEmVSACP2sSOZK9ZEZ5I4T_VUlfmzsoY9Y-1755623255-1.0.1.1-ek3SaNBOhXmCg7K3J7LIsE0aCrnK5YfSumHDT6nc8Df1Zh3bzMLHLDqTUwtqiG8SwxiIFXeGP4.Vt2sx9b3FCkxoyrqNpgrBL5DAffAGHm8;
_cfuvid=R_H7SrOF3QFEWePZfvxzuyKWZAt5ulsNbP28.6DC9wM-1755623255760-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//hFNNb9swDL37VxA6J0XmfCz1bRswNBh2GXrYsBSOItG2ElsUJLrIUOS/
D7KT2N067CIIfHxP5CP1kgAIo0UGQlWSVePq6afVl9Xq9HAI3z6uj8eHz6os9OGrvt98T9sfYhIZ
tD+g4ivrTlHjamRDtoeVR8kYVd+9Xy5X6TxdrjugIY11pJWOpwuaprN0MZ2tp7PVhViRURhEBj8T
AICX7owlWo0nkcFsco00GIIsUWS3JADhqY4RIUMwgaVlMRlARZbRdlXvdrutfayoLSvOYAOVfEa4
dIEauEIIqMhqMIxexs5AWg0WI0rgPKnLNeZyZbwGsni3tR9UzM6uRFvmTFRf47CxruUMXrbCxFvO
eOKtyGArHjuR23tbcR4X77Fog4ze2bauR4C0lrhjdLY9XZDzzaiaSudpH/6gisJYE6rcowxkoymB
yYkOPScAT91A2lceC+epcZwzHbF7bn6/6PXEsAIjdH0BmVjWQ3wxTydv6OUaWZo6jEYqlFQV6oE6
zF+22tAISEZd/13NW9p95/2E/is/AEqhY9S586iNet3xkOYx/pB/pd1c7goWAf2zUZizQR8nobGQ
bd0vrwi/AmOTF8aW6J03/QYXLl+s9kUxw5lai+Sc/AYAAP//AwDpY7tZygMAAA==
headers:
CF-RAY:
- 971b3f958e746897-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 19 Aug 2025 17:07:39 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '890'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '906'
x-ratelimit-limit-project-tokens:
- '30000000'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-project-tokens:
- '29999577'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999577'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_b3632e88268747218e4cc4cc08d87bca
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Iterating Agent. You
are an agent that iterates a given number of times\nYour personal goal is: Call
the iterating tool 5 times\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: iterating_tool\nTool
Arguments: {''input_text'': {''description'': None, ''type'': ''str''}}\nTool
Description: A tool that iterates a given number of times\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [iterating_tool],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple JSON object, enclosed in curly braces, using \" to wrap keys and
values.\nObservation: the result of the action\n```\n\nOnce all necessary information
is gathered, return the following format:\n\n```\nThought: I now know the final
answer\nFinal Answer: the final answer to the original input question\n```"},
{"role": "user", "content": "\nCurrent Task: Call the iterating tool 5 times\n\nThis
is the expected criteria for your final answer: A list of the iterations\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}, {"role": "assistant", "content":
"```\nThought: I need to call the iterating tool the first time.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"First iteration\"}\nObservation: Iteration 0: First
iteration"}, {"role": "assistant", "content": "```\nThought: I have completed
the first iteration and need to proceed to the second one.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"Second iteration\"}\nObservation: Iteration 0: Second
iteration"}, {"role": "assistant", "content": "```\nThought: I have completed
the second iteration and need to proceed to the third one.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"Third iteration\"}\nObservation: Iteration 0: Third
iteration\n\n\nYou ONLY have access to the following tools, and should NEVER
make up tools that are not listed here:\n\nTool Name: iterating_tool\nTool Arguments:
{''input_text'': {''description'': None, ''type'': ''str''}}\nTool Description:
A tool that iterates a given number of times\n\nIMPORTANT: Use the following
format in your response:\n\n```\nThought: you should always think about what
to do\nAction: the action to take, only one name of [iterating_tool], just the
name, exactly as it''s written.\nAction Input: the input to the action, just
a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
the result of the action\n```\n\nOnce all necessary information is gathered,
return the following format:\n\n```\nThought: I now know the final answer\nFinal
Answer: the final answer to the original input question\n```"}], "model": "gpt-4o",
"stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '3018'
content-type:
- application/json
cookie:
- __cf_bm=6OZC5kPO9TEmVSACP2sSOZK9ZEZ5I4T_VUlfmzsoY9Y-1755623255-1.0.1.1-ek3SaNBOhXmCg7K3J7LIsE0aCrnK5YfSumHDT6nc8Df1Zh3bzMLHLDqTUwtqiG8SwxiIFXeGP4.Vt2sx9b3FCkxoyrqNpgrBL5DAffAGHm8;
_cfuvid=R_H7SrOF3QFEWePZfvxzuyKWZAt5ulsNbP28.6DC9wM-1755623255760-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//hFPBbtswDL37Kwidk8JzErfxbdgwtNh1GwrMhaPItK3MFgWJLloE+fdB
dhK7W4ddBIGP74l8pI4RgNClyECoRrLqbLv8lH5Nb8k9Hu7T5PP37f361R1Wj1us6IeVYhEYtD+g
4gvrRlFnW2RNZoSVQ8kYVD/cbjZpsko22wHoqMQ20GrLyzUtkzhZL+O7ZZyeiQ1phV5k8DMCADgO
ZyjRlPgiMogXl0iH3ssaRXZNAhCO2hAR0nvtWRoWiwlUZBjNUPVut8vNt4b6uuEMHqCRzwjnLrAE
bhC40a4EzehkaAykKcFgAAmsI3W+htSKescNkMGb3HxUIT27ME1dMFF7icODsT1ncMyFDreC8YVz
kUEuvowq1xdzcZpX77DqvQzmmb5tZ4A0hnhgDL49nZHT1amWauto7/+gikob7ZvCofRkgiueyYoB
PUUAT8NE+jcmC+uos1ww/cLhuTRJRz0x7cCEru7OIBPLdsZK14t39IoSWerWz2YqlFQNlhN1WgDZ
l5pmQDTr+u9q3tMeOx9H9F/5CVAKLWNZWIelVm87ntIchi/yr7Sry0PBwqN71goL1ujCJEqsZN+O
2yv8q2fsikqbGp11elzhyhbrdF9VMcbqTkSn6DcAAAD//wMACjMtRssDAAA=
headers:
CF-RAY:
- 971b3f9bbef86897-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 19 Aug 2025 17:07:40 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1182'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '1208'
x-ratelimit-limit-project-tokens:
- '30000000'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-project-tokens:
- '29999320'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999320'
x-ratelimit-reset-project-tokens:
- 1ms
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- req_7fc641fabc634f29ae085ef176071402
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Iterating Agent. You
are an agent that iterates a given number of times\nYour personal goal is: Call
the iterating tool 5 times\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: iterating_tool\nTool
Arguments: {''input_text'': {''description'': None, ''type'': ''str''}}\nTool
Description: A tool that iterates a given number of times\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [iterating_tool],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple JSON object, enclosed in curly braces, using \" to wrap keys and
values.\nObservation: the result of the action\n```\n\nOnce all necessary information
is gathered, return the following format:\n\n```\nThought: I now know the final
answer\nFinal Answer: the final answer to the original input question\n```"},
{"role": "user", "content": "\nCurrent Task: Call the iterating tool 5 times\n\nThis
is the expected criteria for your final answer: A list of the iterations\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}, {"role": "assistant", "content":
"```\nThought: I need to call the iterating tool the first time.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"First iteration\"}\nObservation: Iteration 0: First
iteration"}, {"role": "assistant", "content": "```\nThought: I have completed
the first iteration and need to proceed to the second one.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"Second iteration\"}\nObservation: Iteration 0: Second
iteration"}, {"role": "assistant", "content": "```\nThought: I have completed
the second iteration and need to proceed to the third one.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"Third iteration\"}\nObservation: Iteration 0: Third
iteration\n\n\nYou ONLY have access to the following tools, and should NEVER
make up tools that are not listed here:\n\nTool Name: iterating_tool\nTool Arguments:
{''input_text'': {''description'': None, ''type'': ''str''}}\nTool Description:
A tool that iterates a given number of times\n\nIMPORTANT: Use the following
format in your response:\n\n```\nThought: you should always think about what
to do\nAction: the action to take, only one name of [iterating_tool], just the
name, exactly as it''s written.\nAction Input: the input to the action, just
a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
the result of the action\n```\n\nOnce all necessary information is gathered,
return the following format:\n\n```\nThought: I now know the final answer\nFinal
Answer: the final answer to the original input question\n```"}, {"role": "assistant",
"content": "```\nThought: I have completed the third iteration and need to proceed
to the fourth one.\nAction: iterating_tool\nAction Input: {\"input_text\": \"Fourth
iteration\"}\nObservation: Iteration 0: Fourth iteration"}], "model": "gpt-4o",
"stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '3267'
content-type:
- application/json
cookie:
- __cf_bm=6OZC5kPO9TEmVSACP2sSOZK9ZEZ5I4T_VUlfmzsoY9Y-1755623255-1.0.1.1-ek3SaNBOhXmCg7K3J7LIsE0aCrnK5YfSumHDT6nc8Df1Zh3bzMLHLDqTUwtqiG8SwxiIFXeGP4.Vt2sx9b3FCkxoyrqNpgrBL5DAffAGHm8;
_cfuvid=R_H7SrOF3QFEWePZfvxzuyKWZAt5ulsNbP28.6DC9wM-1755623255760-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4RTTW/bMAy9+1cQOieFmyZO5ts2bECxDwztgB3mwlFk2tZmi4JEFx2C/PdBchKn
W4ddBIGP74l8pPYJgNCVyEGoVrLqbTd/m33INvJ+0NnnT/ff3tTZR72483eSv7xLScwCg3Y/UPGJ
daWotx2yJjPCyqFkDKrX69UqW9wssjQCPVXYBVpjeb6k+SJdLOfpZp5mR2JLWqEXOXxPAAD28Qwl
mgqfRA5RJkZ69F42KPJzEoBw1IWIkN5rz9KwmE2gIsNoYtXb7bYwX1sampZzuIVWPiIcu8AKuEWo
aXDcgmZ0MnQG0lRgMKAE1pE6XmOurrkFMnhVmNcqZOcnomlKJupOcbg1duAc9oXQ4VYyPnEhcijE
+yhyfq8Qh8viHdaDl8E7M3TdBSCNIY6MaNvDETmcjeqosY52/g+qqLXRvi0dSk8mmOKZrIjoIQF4
iAMZnnksrKPecsn0E+Nz2Xo16olpBSb05tURZGLZTfH19XL2gl5ZIUvd+YuRCiVVi9VEneYvh0rT
BZBcdP13NS9pj52PE/qv/AQohZaxKq3DSqvnHU9pDsMP+Vfa2eVYsPDoHrXCkjW6MIkKazl04/IK
/8sz9mWtTYPOOj1ucG3LZbar6xRTtRHJIfkNAAD//wMANy12ZMoDAAA=
headers:
CF-RAY:
- 971b3fa3ea2f6897-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 19 Aug 2025 17:07:41 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '780'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '878'
x-ratelimit-limit-project-tokens:
- '30000000'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-project-tokens:
- '29999268'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999268'
x-ratelimit-reset-project-tokens:
- 1ms
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- req_603a6c645bac468888838d21c64db11f
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Iterating Agent. You
are an agent that iterates a given number of times\nYour personal goal is: Call
the iterating tool 5 times\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: iterating_tool\nTool
Arguments: {''input_text'': {''description'': None, ''type'': ''str''}}\nTool
Description: A tool that iterates a given number of times\n\nIMPORTANT: Use
the following format in your response:\n\n```\nThought: you should always think
about what to do\nAction: the action to take, only one name of [iterating_tool],
just the name, exactly as it''s written.\nAction Input: the input to the action,
just a simple JSON object, enclosed in curly braces, using \" to wrap keys and
values.\nObservation: the result of the action\n```\n\nOnce all necessary information
is gathered, return the following format:\n\n```\nThought: I now know the final
answer\nFinal Answer: the final answer to the original input question\n```"},
{"role": "user", "content": "\nCurrent Task: Call the iterating tool 5 times\n\nThis
is the expected criteria for your final answer: A list of the iterations\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}, {"role": "assistant", "content":
"```\nThought: I need to call the iterating tool the first time.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"First iteration\"}\nObservation: Iteration 0: First
iteration"}, {"role": "assistant", "content": "```\nThought: I have completed
the first iteration and need to proceed to the second one.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"Second iteration\"}\nObservation: Iteration 0: Second
iteration"}, {"role": "assistant", "content": "```\nThought: I have completed
the second iteration and need to proceed to the third one.\nAction: iterating_tool\nAction
Input: {\"input_text\": \"Third iteration\"}\nObservation: Iteration 0: Third
iteration\n\n\nYou ONLY have access to the following tools, and should NEVER
make up tools that are not listed here:\n\nTool Name: iterating_tool\nTool Arguments:
{''input_text'': {''description'': None, ''type'': ''str''}}\nTool Description:
A tool that iterates a given number of times\n\nIMPORTANT: Use the following
format in your response:\n\n```\nThought: you should always think about what
to do\nAction: the action to take, only one name of [iterating_tool], just the
name, exactly as it''s written.\nAction Input: the input to the action, just
a simple JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
the result of the action\n```\n\nOnce all necessary information is gathered,
return the following format:\n\n```\nThought: I now know the final answer\nFinal
Answer: the final answer to the original input question\n```"}, {"role": "assistant",
"content": "```\nThought: I have completed the third iteration and need to proceed
to the fourth one.\nAction: iterating_tool\nAction Input: {\"input_text\": \"Fourth
iteration\"}\nObservation: Iteration 0: Fourth iteration"}, {"role": "assistant",
"content": "```\nThought: I have completed the fourth iteration and need to
proceed to the fifth one.\nAction: iterating_tool\nAction Input: {\"input_text\":
\"Fifth iteration\"}\nObservation: Iteration 0: Fifth iteration"}], "model":
"gpt-4o", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '3514'
content-type:
- application/json
cookie:
- __cf_bm=6OZC5kPO9TEmVSACP2sSOZK9ZEZ5I4T_VUlfmzsoY9Y-1755623255-1.0.1.1-ek3SaNBOhXmCg7K3J7LIsE0aCrnK5YfSumHDT6nc8Df1Zh3bzMLHLDqTUwtqiG8SwxiIFXeGP4.Vt2sx9b3FCkxoyrqNpgrBL5DAffAGHm8;
_cfuvid=R_H7SrOF3QFEWePZfvxzuyKWZAt5ulsNbP28.6DC9wM-1755623255760-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xTy26jMBTd8xVXXpOK0IRE7KqRInVazaZZTROBY1/AU2NT26QzqvLvI0MSSNuJ
ZsPC58E99/EeABDBSQqEVdSxupGTb8lDcne7pt8Xb/r14XX5tJiufiT1z8f944smoVfo3S9k7qS6
YbpuJDqhVQ8zg9Shd50u5vMkvo2TuANqzVF6Wdm4yUxP4iieTaLlJEqOwkoLhpak8BwAALx3X1+i
4vibpBCFp5caraUlkvRMAiBGS/9CqLXCOqocCQeQaeVQdVXneb5R60q3ZeVSuIeK7hGOKZADlRLm
IBwa6kPZm41aCUUl3Cn7hiaF5w25P6EQpbASxrpBsCEhfGA8IdOKX6WsK2GuM1a6Na66ThHFJWO7
UXmej/tgsGgt9WNQrZQjgCqlXZ/YT2B7RA7nnktdNkbv7AcpKYQStsoMUquV7691uiEdeggAtt1s
24txkcbounGZ0y/Y/W4Rz3s/MmzTgM6TI+i0o3KkWk7DL/wyjo4KaUfbQRhlFfJBOqwSbbnQIyAY
pf5czVfefXKhyv+xHwDGsHHIs8YgF+wy8UAz6I/tX7Rzl7uCiUWzFwwzJ9D4SXAsaCv7OyD2j3VY
Z4VQJZrGiP4YiiabJbuiiDBiSxIcgr8AAAD//wMAnPTcwxUEAAA=
headers:
CF-RAY:
- 971b3faa6ba46897-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 19 Aug 2025 17:07:43 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1392'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '1841'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999217'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- req_19dc255cec9d4763be7d5f597c80e936
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,228 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nTrigger
Payload: Important context data\n\nThis is the expected criteria for your final
answer: Analysis report\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '865'
content-type:
- application/json
cookie:
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
__cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: 'upstream connect error or disconnect/reset before headers. reset reason:
connection termination'
headers:
CF-RAY:
- 97144cd97d521abc-GRU
Connection:
- keep-alive
Content-Length:
- '95'
Content-Type:
- text/plain
Date:
- Mon, 18 Aug 2025 20:53:22 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
X-Content-Type-Options:
- nosniff
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
status:
code: 503
message: Service Unavailable
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nTrigger
Payload: Important context data\n\nThis is the expected criteria for your final
answer: Analysis report\nyou MUST return the actual complete content as the
final answer, not a summary.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '865'
content-type:
- application/json
cookie:
- _cfuvid=FFe5KuJ6P4BUXOoz57aqNdKwRoz64NOw_EhuSGirJWc-1755550392539-0.0.1.1-604800000;
__cf_bm=VDTNVbhdzLyVi3fpAyOvoFppI0NEm6YkT9eWIm1wnrs-1755550392-1.0.1.1-vfYBbcAz.yp6ATfVycTWX6tFDJ.1yb_ghwed7t5GOMhNlsFeYYNGz4uupfWMnhc4QLK4UNXIeZGeGKJ.me4S240xKk6FUEu3F5tEAvhPnCM
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '1'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xXTW8cNxK961cUBtBFmBEkRfKHbrLiAI6xcBLvYRe7gVFDVneXxSZbLPaMx0H+
e1Bkf42kLPZiWM1hseq9V6/IP04AVmxXt7AyDSbTdm5z/+ry7cW/Ht99vfmIPz/uPt73b0MMP3/6
d/fxx3erte4I269k0rjr3IS2c5Q4+LJsImEijXr5+ubm5ubi+uIqL7TBktNtdZc212HTsufN1cXV
9ebi9ebyzbC7CWxIVrfwnxMAgD/yv5qnt/RtdQsX6/FLSyJY0+p2+hHAKganX1YowpLQp9V6XjTB
J/I59Q/gwx4Meqh5R4BQa9qAXvYUAf7rf2KPDu7y37f64ezszqM7CAv8Rl2I6exMP+vCB59isL1R
EMrXfzYEXR+7IAShgtSwQMy7gAVSgC6GHVs9WPGL1JCXnMh4Ri/sa0gNQc76WwKLCcd9FtjnxRS5
rilChwcX0J7DuwPQN1Rsh+0dxcSefIIdRsatIwH0FtiST1wd8u8ieSvrozyR25ypJcc7irBD1+tu
YC9cN0kgNZgyhOyrEFuwZFg4+E2LDxq1i8GQCMl5gelHLeDTjuKOaT/jpHUJJa1TORMFTFMNvUBL
KbIRMME5MoksBM0FQToyXLHR8jjYNZBXIJV2XwPqchKQ3jSAAoJadcV1H0nWYHpJoaUI5GusqSWf
1hmT0FFEZREdUFWxYfLmcA4f6bBAj71xvaVbreryHM7OPufwWt7t2Rn8I/jUuMPxoSBU6zlkYXtQ
ZFQuYDBRHSJniK401P2Y2vsptRxzwCGS0+ZSXqYi2CeKmMUn6yE5BWFPW+FEsGPhJGuQYBgdtGQZ
QQOXDVp3RWS3aB5AedRcftBcPi3QeD+hoelMnRCqI8xGuuYkcEcRa4JI0gUvBIlbWkPVu4qd0ywg
YqIhj0gS+mgI0LlgctSldsZji3YW0P9CUTNHb6isAcAGVFyFhNw67C0r4AIIXRBO2m9Z+UVU2iwO
JUEV+giPPcZEUdaw59QA+vwjdE6Li4SlsS9vTrUTI+3I93Sej2y4bkjSpitJDZ2gfAtgpLHxmKxK
85dBCncZgPGvd+vc9pG3fcoNGuDVxWm2kpDQlbLOhzo/E0qGP0s00wp7igRhKxR3ZMcaQLj22jXo
04CMdPxAYPuop/x6vQZM5dQisiY4tpgF24YcOfPxd1JdgH//vMcmeUgT9oDgQxoMZQCU/TPR9p32
y9XNafZJjCWt7GuRdtkjigMU7BeHqawg+GPZdw5T1jg0KIBOAkQW8nrIDxen61Ekiob0Ru2r6h20
GB8ofzTYdsi1n8Cf6jzuoSwJdIo5Jpaq9OeQVAVvbk4HUkxo2+Chi8iidhHi5A6PPTpOhyyMqduV
UTaUafgfXbpg4s7PU+VJv84elznRwQDc6owpGLJ/qVP3DZsGGtzN1GVW3mpRkSp16nH6UFXpXzvy
JPl49jvyKcQDtOgHrkYs714yi4LJwu0ee1bHLAlYGhOoYmjh+g00oY95cF1dl/+vc0c6nVmaFflG
fULPVaNaINt3efA9HVtq/j+pLnw9OE+xFhPaLfsMZSlszKR01hFrC11KX9ck4/iclSVJ4a21MnWJ
CbjJGL1qZ0/OFeHk6Y+xpgTYWyVRRbGBpR4WXJao6qt7PU0xrVCSDlNvoQ3lyKyGNIpsnP2H526U
TW5ByzOVS05msqaF28jkxNlVM+i9V6HrVMOOEzr+nnt3sh2NMOMz2FVH+DB0/8jVfdDJI4t7GMvi
TuUtRTFB57HC50l1o+oKPrHv87VqR5JG8c/sUFWFOJJmo/LyErmKpUbmVqtSnak0WmSfsFzJFLij
HtRbqsVos2ZHDb6I6zl8njHIiTgaOmYYcMPFbM/OAflsrprNVi+T2n/PAJ7R56HR6hj2ed7Zp06g
kao+9ZEGsH8jNS/ytsycsTfelwYbxEn2Jfc8orBoYyAyJxG6xC1/JztOVk17OHkD9wNb0AbPKeRA
5pkNpzBdcVX6WCKPyl7UlmN+yLznMsk0PrhQH/KGLaWUbee5bekRI7WF12dmmZHKIvyba/5w2R4a
TaAw/eSeHaDu9bFQ0J/pHC/cOidHaU/X/vGGw22HJqkMxw4ywEo46rJkFQw3m26+Rp0v302Rql5Q
326+d26xgF5neGZfX2y/Dyt/Tm80F+ouhq082bqq2LM0X2K2B32PSQrdKq/+eQLwe34L9kfPu5Wa
QZe+pPBA+bjLV1cl3mp+gs6rN9NqvjHNC6+vrtcvBPxiKSE7WTwnVwZNQ3beOr891XHDYuFkUfbz
dF6KXUpnX/8/4ecFY6hLZL90kSyb45Lnn0X6ml9LL//sBP4CAAD//4IGM9jBStAsEV+SmVoEioqU
1LTE0hxIx1mpuLK4JDU3Pi0zLz21qKAoE9J7TiuINzVMSbIwSUxLTFLiquUCAAAA//8DANr6751L
EAAA
headers:
CF-RAY:
- 97144ce12be51abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:29 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '6350'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '6385'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999820'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999820'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_633dd1e17cb44249af3d9408f3d3c21b
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,156 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nThis
is the expected criteria for your final answer: Analysis report\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '822'
content-type:
- application/json
cookie:
- _cfuvid=wu1mwFBixM_Cn8wLLh.nRacWi8OMVBrEyBNuF_Htz6I-1743463498282-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//fFfbjhtHDn33VxAC5mXQEmY8lh3Mm9e3DHa9NpzZC3YdBFQ31V2Z6mKn
WCVZCfLvC7JKLY2d7IsAdXfxcnh4yPrtCcDCdYtbWLQDpnac/PLV8+vv/n1P7+7yx+f/eeOHXQ7/
/P6uf0fxYfqwaPQEb36mNh1PrVoeJ0/JcSiv20iYSK1ev1iv1+urmxc39mLkjrwe66e0fMbL0QW3
fHr19Nny6sXy+rt6emDXkixu4b9PAAB+s1+NM3T0ZXELV83xyUgi2NPidv4IYBHZ65MFijhJGNKi
Ob1sOSQKFvodBN5DiwF6tyNA6DVswCB7igCfw1sX0MNL+38Ln8PncHn5MqA/iBP4RBPHdHlZHl+v
4C6kyF1uFYbLSz1/PziBaN/BFEkoJAEERSvSQEHM7dEgbyENBB0m/cR7ahN1wDuK9tyjJPglY0wU
V3A/EPSMvpxycjLjBBJDR9GMWzS48QQuiOuHJA24jkJy2wOkSKGTBjB04MKW4wgdtU4ch+WIDy70
MEVuSYQEthxhm1OOBJIiJuodyapk/3QFrzXsDzuKO0f7Y/o1G6FUknZqaMw+uckTTBhxpERRwIXW
504dCnp15vocSRposyQeKUJHI/cRp8G10mhYijS0GgdHRzWLno4foYfOSYpukxWCFfyVDrDD6BSM
Ctev1FXPdKuJLOHy8gfz/7b4v7y8hXtO6GtYkXYUMjWAO4rYE6SIQQrIsEOvr3JwSUDYd6ti8dUx
hddnKajllz010FPoKDbguUU1U/KYcmwHFAVkQwPuHMdq7WPN/NWcuZr6SFHLh6HVmkcWgc5ttxQp
PAbpBPTIksyXJ2XWxFP2GI/ISnX37hzQ12eAqteC1fStb8WZs+LVOw5HltyUIrx1QQOQQpIT5vfG
RrX7OQAsq3UXVEyEOtgc4Hp9YUTCSJ2yXPtiirQzZ7U3Gti7NABC4GTEl8k9EHQ5atZ6YmDvOjyA
EAqHVfGmZP3TqgJ6YYgsZFFcXTSAqUBRAhlcP1A8sRX3GCmQiCGcMPakX44YHyhpHC2OE7q+YvP/
aHIKb4puxHg4edmgELQcVOZMPxTZnesyegHsqYOn6+XNswawbTkHc6xt/OzqwnTDmF2pZr2snt7S
iJ5mJwKc04StRf/o+eYAT68uwAXTKPQeZCIrbbX0IXgXCGTgabLWzrGnrtG+T65VtvkD4Mihhxw3
GE62G8tEGyL0gCCD2yZIvMfYKbF7p4FT6LGnkUKaMfyqOQ7nfTFD+UaVNXJwrQCNpDEBStFYwq5U
p56vVLq5uqi1AxkwqphW9EwXar7f80hFhTB2FOZWAsE9oEqr4eFCVZPNAdYXpmXjVDNVLtNei3Oi
ykltLRx1rYIv1NfcrVmMy1rOo9NvCS8grg9u61oMyR9gwyzKykeSa2VdX8yQPhKAuzpDZizf488c
j9WjkKx2JBO1Dr0/GE4Dwd85psFkRuH5F0mCV4ySGiXHXltIo9QeknQUWVVGiqaJNcdPOaIHVDlo
YD847W1r8cbOoKcOckg4TdTBxDrmHfrGRkcwFBUQDso6WF/M0jJX5CvaBaLO+mXuX84pErZDFbRn
K/hELY8jhc4CPdO093P9fij1O6iyvQmD6eSRw6cq03bLMUn1pU8OnEP/1eQrhJwoWrGdDrC60JSx
EXlkC2QF/0hOPwBhrQWM1DmEyWPShijj/NRBj4pmiqILRKXPWQDzFgE9poFUhreRx3lx+aYT33Kb
TdM/EeoaIZWQf9gpwDqydDaopmoTxqPK0479riwkZGOtJVM8jTWrZKzgVQ0bNjl0vi4vpRc4gq2k
1k5nnVLBUieRtDeSkiFRJEl/3AFvvkwYpM6/17Qjz5MqVO3RVhEOsNWsC9kgzqyFiQKlSmm4Cy45
THQaBZDQea6jTfcB/yhbK/CR1bqv+awvooVPlVibWHigy2ZLp+HCqv5Zx6Qtau85uMQKteZxp9v7
aCTSkW17gC1uVY7qEqh+HogmnY/tg6E/YOhNMOeRVLeVEm7VzLJnruBvVAesbV9J+ZyYvRnGnHjE
RGcMm/u/NKEbyR++XlBrJ66t/K3PMi/fH8pQaow+p+247L4qpmdiCH3kvTbWDK9Gb0oDkX7JznrB
jdZEiXT463daxr8cADsu+q2e4lEQVFhn5S5RcOwxuF9LTnrvOFbtOEDPVqnmJE8zuILJybYsJmVP
1FVaUVNgbOEfWffzs8xmNbUMK1zPV/BysmH95ahYRot0XI47La3KkfM+z9JZBkWx9KeredWh8/X8
cJ7Yqvh7T2ngjj33B8hShfb87qMYWRVq6Sz08xuVUNxpsHql2nKuEozeOGXmsq7WegPsjtVpc7SV
2GPopMWpqlB29kW93hSACyvbwdGOSvVy0vndwUZ7W/uh3ILdjmR1fsWMtM2Ces0N2fuzFxh0JzXj
ern9sb75fb7Oeu6nyBv56uhi64KT4ado0qVXV0k8Lezt708AfrRrc350E16UteKnxA9k7q7X62Jv
UW7r/wMAAP//jFi9DoIhDNx5DGaHbxDi9zSEtEVr/CHANzj47gYwFiOD85XLHSXAtcoQ1Jr9G23/
GgEOy7qbEDqkelvlIXlr8HAilKUS0/2GfB8ANdj+lTPj7tb5dvyHXgAAioXQxUTI8G1ZyhKdW9ie
l322uQnW9dgxkCtMqbYCKfjt0mcMOj9yoasLXF/umLgPGkJ0xi4+WDJm1eqpXgAAAP//AwCGkEKG
dhEAAA==
headers:
CF-RAY:
- 97144c27cad01abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:07 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=gumItH7ZRtD4GgE2NL8KJd5b0g0ukzMySphsV0ru1LE-1755550387-1.0.1.1-iwCn2q9kDpJVTaZu1Swtv1kYCiM39NBeviV1R9awG4XHHMKnojkbu6T7jh_Z3UxfNbluVCsI6RMKj.2rEPp1IcH63gHUQdJfHF71CdCZ3Uc;
path=/; expires=Mon, 18-Aug-25 21:23:07 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=d7iU8FXLKWOoICtn52jYIApBpBp20kALP6yQjOvXHvQ-1755550387858-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '14516'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '14596'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999830'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3c1af5f5590a4b76b33f3fbf7d3a3288
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,154 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: Analyze the data\n\nThis
is the expected criteria for your final answer: Analysis report\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '822'
content-type:
- application/json
cookie:
- _cfuvid=aoRHJvKio8gVXmGaYpzTzdGuWwkBsDAyAKAVwm6QUbE-1743465392324-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.93.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.93.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.12
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFddcxu3Dn3Pr8BoJi8eSWM5luP6zbFbN7d1m0n81nQyEAntIuaSe0lQ
itLpf++A+6G1rztzX+zVcgEeAAeH4F+vAGZsZ1cwMzWKaVq3uLlY/XD5n7uffzvLFw+r28tV+nT3
7vdV/hDuf8bZXC3C5isZGayWJjStI+Hgu2UTCYXU6+rter1en56vTstCEyw5NataWZyHRcOeF2en
Z+eL07eL1WVvXQc2lGZX8McrAIC/yl/F6S19m11B8VXeNJQSVjS7Gj8CmMXg9M0MU+Ik6GU2Py6a
4IV8gf4efNiDQQ8V7wgQKoUN6NOeIsBn/xN7dHBdfl/BZ//Zn5xce3SHxAk+UhuinJx0r1dLeO8l
BpuNpuHk5EodPNScIJYPAblJIAFQHXwnkJqgjWHHlixYFIREAuwhREtRv6RvEtEINISefbXNDtgn
rmpJIDVKgc5+G2IDSSIKVWzAkuHEwadlh+xsCbfq/ZaSidw+QUfdxiZ4zVSCsIUmO+HWEewwMm4c
pTmwNy5b9hVssoAPAo4bFrKKMqGjBFuuctRvTU4SGopgqQlVxLZmk+ZQ0fADXY8ZFcoc0FsQbigJ
Nm2BIBF9wpLHtIQf0dRAXuJBkyM9Zs1VpDZSIi8JELLn/2aa2s4BnQt7hb0NETTMpo1Uk0+l3EMh
wxbaHE2NqURINe44RAg7UqPUkuEtk4WWIgfbZ/XNEu5J6mCDC9VhktDRLSe10EDJQi6+k6BwkpKD
plgnSNnUgAnsUJ4dHb/TfIYYyZVcjb67pEWqIiUtNZS20h2UX8lQFGQPg12quU2wIdkT+WNde17s
OGV0/L3bQkJwCTASoEsBsrDj712h2bnc0Qwe6QASydtUkLQoQnFk3PkSfmKvfEl9Yj77BZycfCpM
eSh2/QKA5uwJhSDVYa+J58rzlg16gdzuMdpuy64wMk11V5k57FlqaAkfe4/BmByj5sXm8q8Oji0e
IBGmQq774KVeBL9o9AGqGPZSg8aYAHcUsSILq/Xr3rfuWnNVU5J+i0hG+9UqN2/JULOhuBwCvhl6
4XbSC2Pk17CJhI827L1y8MXGgUg7Qtf3u27f4NcQWQ4T2lKCPUVdsgQbbRPLO7ZZ7UoAZ+vFm/M5
oDEhexka4vz0dem2IOie9dy1tayP6Nzh2NJJg8xxg14Jgkl1QyJvcq8EF1OHJT3zgsVg2RNVpIKv
oI20pUjeUMHRdqqp8JTOG3YshzGHd1PhGMR3zOFHqkaYgzRAylVFSSZJ+y1EqfdaNQUOIcuxNYPU
FLWZNPS+zthXd8IHjcwTRneAs/VrOBD2EqFPSyhKb0J2FjYEKNO8CMaK9LnB+EglFwabFrnyCRxm
b+qOQAWvIhyjf6CmDREdvO+F/8ge/0TBJvVTNS1qU4d9n4PSExORq0OOCdBx5buA9Zi02mIbVSpK
qftkPsif0RSPErI6gw/3pfPfwIf7+ZBw9Rxa4Ub5pIo+lLcJhVcQ4pHl5CusqCGvZx4LoyrfoCDr
JdxMdO9Z2adLJtB2y4bLKdCTjUaihcRFUF9WwhEZOtDU7ViYOkXryr8LLjc0cmKyl6b8dHm57guv
muCGg5mAtWiCSnA9Uceq03YbYsEJNvKuFEk36qO+WMJHMqFpyNsO7hP5fBhodD86vBloNNLiHSbl
tJ+qyDg1zEGQXYhPqDhMDqVcpjuoQnfQFt1QCdFGyO3z9m/wAAcmZyHlTRm0GB1EkjycBQr7d2UE
fyf4JME8wq+0I3fEe8c76jZjS166k7bLvpI2/YtylyKx1zlT431O7Tlg28bQRu7YoBs73RjQfs1J
mkKXVA/9WpRTAjREAm3QAVFDsdQUMuRYUXpZkX781qJPx5kK4EaHKUsFtcYVe4nSk14FbphiRk2a
A0vJ5YZgQ56UYtpBAdjvtK2qEgQ37DC+XDgtjLcUe1UraltKpPOZcJOduujUrCfbW20xnevS04Hw
eKh2s2mCTlV0ZHhh/NyiUb1W991Up8NsP4EuGnwsULwtfCfYZsmRjiLT49VOKXCEfQ45QRM8S4iD
MVpspev3sJ3GvRnZjoKLsoc/gtyzc5pUE3PJKHtokL3ORkWDQ9OSdAKBdodesBp78XIJ121LKig0
sHUxvPoG11dwS9pMZKEba8os9VAGq2ffvruCO+VLR9qbGlUC3g/DlCL5hQ7jxPTM+OZqOmfCu3Fi
UGn9NJknx3tJ0Yv+OPqXeXerZzlCDJucBLYh93pTnB5vEq1D74cahJYi9mLJjZKDui5ScewpHWKF
vp8kl9NLV6RtTqgXP5+dmyyg96GrbLnu/dmv/D1e8Fyo2hg26ZnpbMueU/0lFjnQy1yS0M7K6t+v
AP4sF8n85G44U71v5YuERyrbrdbrzt/seH89rl6s3vSrZaA5Lry9uJy/4PCLLYRIk7vozKAe7UfT
48UVs+UwWXg1Cft/4bzkuwudffX/uD8uGEOtkP3S/gMAAP//KkpNyUxG9TJCWVEqqH+PSxk8mMEO
VipOLSrLTE6NL8lMLQJFRUpqWmJpDqTXrVRcWVySmhuflpmXnlpUUJQJ6XqnFcSbmhkkppmlmppa
KnHVcgEAAAD//wMABbo03YgQAAA=
headers:
CF-RAY:
- 97144d0daeb11abc-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Aug 2025 20:53:43 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=UW4fV15_S2h9VQ58d_nhU200TOxc3Tjdd_QFUBY6B80-1755550423-1.0.1.1-.oSX43E.zjFk61gbEHMacZh5c8ndmynl75bstCvKcohtwVY6oLpdBWnO2lTUFXpzvGaGsbuYt55OUo_Hmi228z97Nm4cDdOT84lhfStAcms;
path=/; expires=Mon, 18-Aug-25 21:23:43 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=dg9d3YnyfwVQNRGWo64PZ6mtqIOlYEozligD5ggvZFc-1755550423708-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '13654'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '13673'
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_169cd22058fb418f90f12e041c0880a9
status:
code: 200
message: OK
version: 1

View File

@@ -2,6 +2,7 @@
import os
import tempfile
from pathlib import Path
from unittest.mock import Mock, patch
import pytest
from dotenv import load_dotenv
@@ -34,14 +35,130 @@ def setup_test_environment():
f"Test storage directory {storage_dir} is not writable: {e}"
)
# Set environment variable to point to the test storage directory
os.environ["CREWAI_STORAGE_DIR"] = str(storage_dir)
os.environ["CREWAI_TESTING"] = "true"
yield
os.environ.pop("CREWAI_TESTING", None)
# Cleanup is handled automatically when tempfile context exits
def pytest_configure(config):
config.addinivalue_line(
"markers", "telemetry: mark test as a telemetry test (don't mock telemetry)"
)
@pytest.fixture(autouse=True)
def auto_mock_telemetry(request):
if request.node.get_closest_marker("telemetry"):
telemetry_env = {
key: value
for key, value in os.environ.items()
if key not in ["CREWAI_DISABLE_TELEMETRY", "OTEL_SDK_DISABLED"]
}
with patch.dict(os.environ, telemetry_env, clear=True):
yield
return
if "telemetry" in str(request.fspath):
telemetry_env = {
key: value
for key, value in os.environ.items()
if key not in ["CREWAI_DISABLE_TELEMETRY", "OTEL_SDK_DISABLED"]
}
with patch.dict(os.environ, telemetry_env, clear=True):
yield
return
with patch.dict(
os.environ, {"CREWAI_DISABLE_TELEMETRY": "true", "OTEL_SDK_DISABLED": "true"}
):
with patch("crewai.telemetry.Telemetry") as mock_telemetry_class:
mock_instance = create_mock_telemetry_instance()
mock_telemetry_class.return_value = mock_instance
with (
patch(
"crewai.utilities.events.event_listener.Telemetry",
mock_telemetry_class,
),
patch("crewai.tools.tool_usage.Telemetry", mock_telemetry_class),
patch("crewai.cli.command.Telemetry", mock_telemetry_class),
patch("crewai.cli.create_flow.Telemetry", mock_telemetry_class),
):
yield mock_instance
def create_mock_telemetry_instance():
mock_instance = Mock()
mock_instance.ready = False
mock_instance.trace_set = False
mock_instance._initialized = True
mock_instance._is_telemetry_disabled.return_value = True
mock_instance._should_execute_telemetry.return_value = False
telemetry_methods = [
"set_tracer",
"crew_creation",
"task_started",
"task_ended",
"tool_usage",
"tool_repeated_usage",
"tool_usage_error",
"crew_execution_span",
"end_crew",
"flow_creation_span",
"flow_execution_span",
"individual_test_result_span",
"test_execution_span",
"deploy_signup_error_span",
"start_deployment_span",
"create_crew_deployment_span",
"get_crew_logs_span",
"remove_crew_span",
"flow_plotting_span",
"_add_attribute",
"_safe_telemetry_operation",
]
for method in telemetry_methods:
setattr(mock_instance, method, Mock(return_value=None))
mock_instance.task_started.return_value = None
return mock_instance
@pytest.fixture
def mock_opentelemetry_components():
with (
patch("opentelemetry.trace.get_tracer") as mock_get_tracer,
patch("opentelemetry.trace.set_tracer_provider") as mock_set_provider,
patch("opentelemetry.baggage.set_baggage") as mock_set_baggage,
patch("opentelemetry.baggage.get_baggage") as mock_get_baggage,
patch("opentelemetry.context.attach") as mock_attach,
patch("opentelemetry.context.detach") as mock_detach,
):
mock_tracer = Mock()
mock_span = Mock()
mock_tracer.start_span.return_value = mock_span
mock_get_tracer.return_value = mock_tracer
yield {
"get_tracer": mock_get_tracer,
"set_tracer_provider": mock_set_provider,
"tracer": mock_tracer,
"span": mock_span,
"set_baggage": mock_set_baggage,
"get_baggage": mock_get_baggage,
"attach": mock_attach,
"detach": mock_detach,
}
@pytest.fixture(scope="module")
def vcr_config(request) -> dict:
return {

View File

@@ -1,5 +1,4 @@
"""Test Agent creation and execution basic functionality."""
import hashlib
import json
from concurrent.futures import Future
@@ -51,7 +50,7 @@ from crewai.utilities.events.memory_events import (
MemoryRetrievalStartedEvent,
MemoryRetrievalCompletedEvent,
)
from crewai.memory.external.external_memory import ExternalMemory
@pytest.fixture
def ceo():
@@ -312,7 +311,6 @@ def test_crew_creation(researcher, writer):
@pytest.mark.vcr(filter_headers=["authorization"])
def test_sync_task_execution(researcher, writer):
from unittest.mock import patch
tasks = [
Task(
@@ -961,7 +959,6 @@ def test_cache_hitting_between_agents(researcher, writer, ceo):
@pytest.mark.vcr(filter_headers=["authorization"])
def test_api_calls_throttling(capsys):
from unittest.mock import patch
from crewai.tools import tool
@@ -1396,7 +1393,6 @@ def test_kickoff_for_each_invalid_input():
def test_kickoff_for_each_error_handling():
"""Tests error handling in kickoff_for_each when kickoff raises an error."""
from unittest.mock import patch
inputs = [
{"topic": "dog"},
@@ -1433,7 +1429,6 @@ def test_kickoff_for_each_error_handling():
@pytest.mark.asyncio
async def test_kickoff_async_basic_functionality_and_output():
"""Tests the basic functionality and output of kickoff_async."""
from unittest.mock import patch
inputs = {"topic": "dog"}
@@ -1540,7 +1535,6 @@ async def test_async_kickoff_for_each_async_empty_input():
def test_set_agents_step_callback():
from unittest.mock import patch
researcher_agent = Agent(
role="Researcher",
@@ -1570,7 +1564,6 @@ def test_set_agents_step_callback():
def test_dont_set_agents_step_callback_if_already_set():
from unittest.mock import patch
def agent_callback(_):
pass
@@ -2035,7 +2028,6 @@ def test_crew_inputs_interpolate_both_agents_and_tasks():
def test_crew_inputs_interpolate_both_agents_and_tasks_diff():
from unittest.mock import patch
agent = Agent(
role="{topic} Researcher",
@@ -2068,7 +2060,6 @@ def test_crew_inputs_interpolate_both_agents_and_tasks_diff():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_does_not_interpolate_without_inputs():
from unittest.mock import patch
agent = Agent(
role="{topic} Researcher",
@@ -2203,7 +2194,6 @@ def test_task_same_callback_both_on_task_and_crew():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tools_with_custom_caching():
from unittest.mock import patch
from crewai.tools import tool
@@ -2484,7 +2474,6 @@ def test_multiple_conditional_tasks(researcher, writer):
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2583,7 +2572,6 @@ def test_memory_events_are_emitted():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory_with_long_term_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2614,7 +2602,6 @@ def test_using_contextual_memory_with_long_term_memory():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_warning_long_term_memory_without_entity_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2651,7 +2638,6 @@ def test_warning_long_term_memory_without_entity_memory():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_long_term_memory_with_memory_flag():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2686,7 +2672,6 @@ def test_long_term_memory_with_memory_flag():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory_with_short_term_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2717,7 +2702,6 @@ def test_using_contextual_memory_with_short_term_memory():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_disabled_memory_using_contextual_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
@@ -2845,7 +2829,6 @@ def test_crew_output_file_validation_failures():
def test_manager_agent(researcher, writer):
from unittest.mock import patch
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
@@ -4752,3 +4735,43 @@ def test_default_crew_name(researcher, writer):
],
)
assert crew.name == "crew"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_ensure_exchanged_messages_are_propagated_to_external_memory():
external_memory = ExternalMemory(storage=MagicMock())
math_researcher = Agent(
role="Researcher",
goal="You research about math.",
backstory="You're an expert in research and you love to learn new things.",
allow_delegation=False,
)
task1 = Task(
description="Research a topic to teach a kid aged 6 about math.",
expected_output="A topic, explanation, angle, and examples.",
agent=math_researcher,
)
crew = Crew(
agents=[math_researcher],
tasks=[task1],
external_memory=external_memory,
)
with patch.object(
ExternalMemory, "save", return_value=None
) as external_memory_save:
crew.kickoff()
expected_messages = [
{'role': 'system', 'content': "You are Researcher. You're an expert in research and you love to learn new things.\nYour personal goal is: You research about math.\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{'role': 'user', 'content': '\nCurrent Task: Research a topic to teach a kid aged 6 about math.\n\nThis is the expected criteria for your final answer: A topic, explanation, angle, and examples.\nyou MUST return the actual complete content as the final answer, not a summary.\n\n# Useful context: \nExternal memories:\n\n\nBegin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!\n\nThought:'},
{'role': 'assistant', 'content': 'I now can give a great answer \nFinal Answer: \n\n**Topic: Understanding Shapes (Geometry)**\n\n**Explanation:** \nShapes are everywhere around us! They are the special forms that we can see in everyday objects. Teaching a 6-year-old about shapes is not only fun but also a way to help them think about the world around them and develop their spatial awareness. We will focus on basic shapes: circle, square, triangle, and rectangle. Understanding these shapes helps kids recognize and describe their environment.\n\n**Angle:** \nLets make learning about shapes an adventure! We can turn it into a treasure hunt where the child has to find objects around the house or outside that match the shapes we learn. This hands-on approach helps make the learning stick!\n\n**Examples:** \n1. **Circle:** \n - Explanation: A circle is round and has no corners. It looks like a wheel or a cookie! \n - Activity: Find objects that are circles, such as a clock, a dinner plate, or a ball. Draw a big circle on a paper and then try to draw smaller circles inside it.\n\n2. **Square:** \n - Explanation: A square has four equal sides and four corners. It looks like a box! \n - Activity: Look for squares in books, in windows, or in building blocks. Try to build a tall tower using square blocks!\n\n3. **Triangle:** \n - Explanation: A triangle has three sides and three corners. It looks like a slice of pizza or a roof! \n - Activity: Use crayons to draw a big triangle and then find things that are shaped like a triangle, like a slice of cheese or a traffic sign.\n\n4. **Rectangle:** \n - Explanation: A rectangle has four sides but only opposite sides are equal. Its like a stretched square! \n - Activity: Search for rectangles, such as a book cover or a door. You can cut out rectangles from colored paper and create a collage!\n\nBy relating the shapes to fun activities and using real-world examples, we not only make learning more enjoyable but also help the child better remember and understand the concept of shapes in math. This foundation forms the basis of their future learning in geometry!'}
]
external_memory_save.assert_called_once_with(
value=ANY,
metadata={"description": ANY, "messages": expected_messages},
agent=ANY,
)

View File

@@ -497,6 +497,131 @@ def test_unstructured_flow_event_emission():
assert isinstance(received_events[6].timestamp, datetime)
def test_flow_trigger_payload_injection():
captured_payload = []
class TriggerFlow(Flow):
@start()
def start_method(self, crewai_trigger_payload=None):
captured_payload.append(crewai_trigger_payload)
return "started"
@listen(start_method)
def second_method(self):
captured_payload.append("no_parameter")
return "finished"
flow = TriggerFlow()
test_payload = "This is important trigger data"
flow.kickoff(inputs={"crewai_trigger_payload": test_payload})
assert captured_payload == [test_payload, "no_parameter"]
def test_flow_trigger_payload_injection_multiple_starts():
captured_payloads = []
class MultiStartFlow(Flow):
@start()
def start_method_1(self, crewai_trigger_payload=None):
captured_payloads.append(("start_1", crewai_trigger_payload))
return "start_1_done"
@start()
def start_method_2(self, crewai_trigger_payload=None):
captured_payloads.append(("start_2", crewai_trigger_payload))
return "start_2_done"
flow = MultiStartFlow()
test_payload = "Multiple start trigger data"
flow.kickoff(inputs={"crewai_trigger_payload": test_payload})
assert captured_payloads == [("start_1", test_payload), ("start_2", test_payload)]
def test_flow_without_trigger_payload():
captured_payload = []
class NormalFlow(Flow):
@start()
def start_method(self, crewai_trigger_payload=None):
captured_payload.append(crewai_trigger_payload)
return "no_trigger"
flow = NormalFlow()
flow.kickoff(inputs={"other_data": "some value"})
assert captured_payload[0] is None
def test_flow_trigger_payload_with_structured_state():
class TriggerState(BaseModel):
id: str = "test"
message: str = ""
class StructuredFlow(Flow[TriggerState]):
@start()
def start_method(self, crewai_trigger_payload=None):
return crewai_trigger_payload
flow = StructuredFlow()
test_payload = "Structured state trigger data"
result = flow.kickoff(inputs={"crewai_trigger_payload": test_payload})
assert result == test_payload
def test_flow_start_method_without_trigger_parameter():
execution_order = []
class FlowWithoutParameter(Flow):
@start()
def start_without_param(self):
execution_order.append("start_executed")
return "started"
@listen(start_without_param)
def second_method(self):
execution_order.append("second_executed")
return "finished"
flow = FlowWithoutParameter()
result = flow.kickoff(inputs={"crewai_trigger_payload": "some data"})
assert execution_order == ["start_executed", "second_executed"]
assert result == "finished"
def test_async_flow_with_trigger_payload():
captured_payload = []
class AsyncTriggerFlow(Flow):
@start()
async def async_start_method(self, crewai_trigger_payload=None):
captured_payload.append(crewai_trigger_payload)
await asyncio.sleep(0.01)
return "async_started"
@listen(async_start_method)
async def async_second_method(self, result):
captured_payload.append(result)
await asyncio.sleep(0.01)
return "async_finished"
flow = AsyncTriggerFlow()
test_payload = "Async trigger data"
result = asyncio.run(flow.kickoff_async(inputs={"crewai_trigger_payload": test_payload}))
assert captured_payload == [test_payload, "async_started"]
assert result == "async_finished"
def test_structured_flow_event_emission():
"""Test that the correct events are emitted during structured flow
execution with all fields validated."""

View File

@@ -39,6 +39,7 @@ def test_short_term_memory_search_events(short_term_memory):
events = defaultdict(list)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(MemoryQueryStartedEvent)
def on_search_started(source, event):
events["MemoryQueryStartedEvent"].append(event)
@@ -59,33 +60,34 @@ def test_short_term_memory_search_events(short_term_memory):
assert len(events["MemoryQueryFailedEvent"]) == 0
assert dict(events["MemoryQueryStartedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_query_started',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'query': 'test value',
'limit': 3,
'score_threshold': 0.35
"timestamp": ANY,
"type": "memory_query_started",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"query": "test value",
"limit": 3,
"score_threshold": 0.35,
}
assert dict(events["MemoryQueryCompletedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_query_completed',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'query': 'test value',
'results': [],
'limit': 3,
'score_threshold': 0.35,
'query_time_ms': ANY
"timestamp": ANY,
"type": "memory_query_completed",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"query": "test value",
"results": [],
"limit": 3,
"score_threshold": 0.35,
"query_time_ms": ANY,
}
def test_short_term_memory_save_events(short_term_memory):
events = defaultdict(list)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(MemorySaveStartedEvent)
def on_save_started(source, event):
events["MemorySaveStartedEvent"].append(event)
@@ -105,28 +107,29 @@ def test_short_term_memory_save_events(short_term_memory):
assert len(events["MemorySaveFailedEvent"]) == 0
assert dict(events["MemorySaveStartedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_save_started',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'value': 'test value',
'metadata': {'task': 'test_task'},
'agent_role': "test_agent"
"timestamp": ANY,
"type": "memory_save_started",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"value": "test value",
"metadata": {"task": "test_task"},
"agent_role": "test_agent",
}
assert dict(events["MemorySaveCompletedEvent"][0]) == {
'timestamp': ANY,
'type': 'memory_save_completed',
'source_fingerprint': None,
'source_type': 'short_term_memory',
'fingerprint_metadata': None,
'value': 'test value',
'metadata': {'task': 'test_task', 'agent': 'test_agent'},
'agent_role': "test_agent",
'save_time_ms': ANY
"timestamp": ANY,
"type": "memory_save_completed",
"source_fingerprint": None,
"source_type": "short_term_memory",
"fingerprint_metadata": None,
"value": "test value",
"metadata": {"task": "test_task", "agent": "test_agent"},
"agent_role": "test_agent",
"save_time_ms": ANY,
}
def test_save_and_search(short_term_memory):
memory = ShortTermMemoryItem(
data="""test value test value test value test value test value test value

View File

@@ -1,4 +1,5 @@
import os
import threading
from unittest.mock import patch
import pytest
@@ -11,12 +12,16 @@ from opentelemetry import trace
@pytest.fixture(autouse=True)
def cleanup_telemetry():
"""Automatically clean up Telemetry singleton between tests."""
Telemetry._instance = None
if hasattr(Telemetry, "_lock"):
Telemetry._lock = threading.Lock()
yield
Telemetry._instance = None
if hasattr(Telemetry, "_lock"):
Telemetry._lock = threading.Lock()
@pytest.mark.telemetry
@pytest.mark.parametrize(
"env_var,value,expected_ready",
[
@@ -36,6 +41,7 @@ def test_telemetry_environment_variables(env_var, value, expected_ready):
assert telemetry.ready is expected_ready
@pytest.mark.telemetry
def test_telemetry_enabled_by_default():
"""Test that telemetry is enabled by default."""
with patch.dict(os.environ, {}, clear=True):
@@ -44,6 +50,7 @@ def test_telemetry_enabled_by_default():
assert telemetry.ready is True
@pytest.mark.telemetry
@patch("crewai.telemetry.telemetry.logger.error")
@patch(
"opentelemetry.exporter.otlp.proto.http.trace_exporter.OTLPSpanExporter.export",
@@ -76,6 +83,7 @@ def test_telemetry_fails_due_connect_timeout(export_mock, logger_mock):
logger_mock.assert_called_once_with(error)
@pytest.mark.telemetry
def test_telemetry_singleton_pattern():
"""Test that Telemetry uses the singleton pattern correctly."""
Telemetry._instance = None

View File

@@ -14,14 +14,18 @@ def cleanup_telemetry():
Telemetry._instance = None
@pytest.mark.parametrize("env_var,value,expected_ready", [
("OTEL_SDK_DISABLED", "true", False),
("OTEL_SDK_DISABLED", "TRUE", False),
("CREWAI_DISABLE_TELEMETRY", "true", False),
("CREWAI_DISABLE_TELEMETRY", "TRUE", False),
("OTEL_SDK_DISABLED", "false", True),
("CREWAI_DISABLE_TELEMETRY", "false", True),
])
@pytest.mark.telemetry
@pytest.mark.parametrize(
"env_var,value,expected_ready",
[
("OTEL_SDK_DISABLED", "true", False),
("OTEL_SDK_DISABLED", "TRUE", False),
("CREWAI_DISABLE_TELEMETRY", "true", False),
("CREWAI_DISABLE_TELEMETRY", "TRUE", False),
("OTEL_SDK_DISABLED", "false", True),
("CREWAI_DISABLE_TELEMETRY", "false", True),
],
)
def test_telemetry_environment_variables(env_var, value, expected_ready):
"""Test telemetry state with different environment variable configurations."""
with patch.dict(os.environ, {env_var: value}):
@@ -30,6 +34,7 @@ def test_telemetry_environment_variables(env_var, value, expected_ready):
assert telemetry.ready is expected_ready
@pytest.mark.telemetry
def test_telemetry_enabled_by_default():
"""Test that telemetry is enabled by default."""
with patch.dict(os.environ, {}, clear=True):
@@ -38,57 +43,60 @@ def test_telemetry_enabled_by_default():
assert telemetry.ready is True
@pytest.mark.telemetry
def test_telemetry_disable_after_singleton_creation():
"""Test that telemetry operations are disabled when env var is set after singleton creation."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry = Telemetry()
assert telemetry.ready is True
mock_operation = MagicMock()
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_called_once()
mock_operation.reset_mock()
os.environ['CREWAI_DISABLE_TELEMETRY'] = 'true'
os.environ["CREWAI_DISABLE_TELEMETRY"] = "true"
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()
@pytest.mark.telemetry
def test_telemetry_disable_with_multiple_instances():
"""Test that multiple telemetry instances respect dynamically changed env vars."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry1 = Telemetry()
assert telemetry1.ready is True
os.environ['CREWAI_DISABLE_TELEMETRY'] = 'true'
os.environ["CREWAI_DISABLE_TELEMETRY"] = "true"
telemetry2 = Telemetry()
assert telemetry2 is telemetry1
assert telemetry2.ready is True
mock_operation = MagicMock()
telemetry2._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()
@pytest.mark.telemetry
def test_telemetry_otel_sdk_disabled_after_creation():
"""Test that OTEL_SDK_DISABLED also works when set after singleton creation."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry = Telemetry()
assert telemetry.ready is True
mock_operation = MagicMock()
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_called_once()
mock_operation.reset_mock()
os.environ['OTEL_SDK_DISABLED'] = 'true'
os.environ["OTEL_SDK_DISABLED"] = "true"
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()

View File

@@ -1,9 +1,12 @@
import asyncio
import inspect
import unittest
from typing import Any, Callable, Dict, List
from typing import Callable
from unittest.mock import patch
import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.task import Task
from crewai.tools import BaseTool, tool
@@ -111,25 +114,26 @@ def test_result_as_answer_in_tool_decorator():
def my_tool_with_result_as_answer(question: str) -> str:
"""This tool will return its result as the final answer."""
return question
assert my_tool_with_result_as_answer.result_as_answer is True
converted_tool = my_tool_with_result_as_answer.to_structured_tool()
assert converted_tool.result_as_answer is True
@tool("Tool with default result_as_answer")
def my_tool_with_default(question: str) -> str:
"""This tool uses the default result_as_answer value."""
return question
assert my_tool_with_default.result_as_answer is False
converted_tool = my_tool_with_default.to_structured_tool()
assert converted_tool.result_as_answer is False
class SyncTool(BaseTool):
"""Test implementation with a synchronous _run method"""
name: str = "sync_tool"
description: str = "A synchronous tool for testing"
@@ -140,6 +144,7 @@ class SyncTool(BaseTool):
class AsyncTool(BaseTool):
"""Test implementation with an asynchronous _run method"""
name: str = "async_tool"
description: str = "An asynchronous tool for testing"
@@ -174,7 +179,7 @@ def test_run_calls_asyncio_run_for_async_tools():
"""Test that asyncio.run is called when using async tools."""
async_tool = AsyncTool()
with patch('asyncio.run') as mock_run:
with patch("asyncio.run") as mock_run:
mock_run.return_value = "Processed test asynchronously"
async_result = async_tool.run(input_text="test")
@@ -186,9 +191,43 @@ def test_run_does_not_call_asyncio_run_for_sync_tools():
"""Test that asyncio.run is NOT called when using sync tools."""
sync_tool = SyncTool()
with patch('asyncio.run') as mock_run:
with patch("asyncio.run") as mock_run:
sync_result = sync_tool.run(input_text="test")
mock_run.assert_not_called()
assert sync_result == "Processed test synchronously"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_max_usage_count_is_respected():
class IteratingTool(BaseTool):
name: str = "iterating_tool"
description: str = "A tool that iterates a given number of times"
def _run(self, input_text: str):
return f"Iteration {input_text}"
tool = IteratingTool(max_usage_count=5)
agent = Agent(
role="Iterating Agent",
goal="Call the iterating tool 5 times",
backstory="You are an agent that iterates a given number of times",
tools=[tool],
)
task = Task(
description="Call the iterating tool 5 times",
expected_output="A list of the iterations",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
)
crew.kickoff()
assert tool.max_usage_count == 5
assert tool.current_usage_count == 5

View File

@@ -2,8 +2,9 @@ import os
import pytest
from unittest.mock import patch, MagicMock
# Remove the module-level patch
from crewai import Agent, Task, Crew
from crewai.flow.flow import Flow, start
from crewai.utilities.events.listeners.tracing.trace_listener import (
TraceCollectionListener,
)
@@ -284,29 +285,110 @@ class TestTraceListenerSetup:
f"Found {len(trace_handlers)} trace handlers when tracing should be disabled"
)
def test_trace_listener_setup_correctly(self):
def test_trace_listener_setup_correctly_for_crew(self):
"""Test that trace listener is set up correctly when enabled"""
with patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}):
trace_listener = TraceCollectionListener()
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
with patch.object(
TraceCollectionListener, "setup_listeners"
) as mock_listener_setup:
Crew(agents=[agent], tasks=[task], verbose=True)
assert mock_listener_setup.call_count >= 1
assert trace_listener.trace_enabled is True
assert trace_listener.batch_manager is not None
def test_trace_listener_setup_correctly_for_flow(self):
"""Test that trace listener is set up correctly when enabled"""
with patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}):
class FlowExample(Flow):
@start()
def start(self):
pass
with patch.object(
TraceCollectionListener, "setup_listeners"
) as mock_listener_setup:
FlowExample()
assert mock_listener_setup.call_count >= 1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_trace_listener_setup_correctly_with_tracing_flag(self):
"""Test that trace listener is set up correctly when enabled"""
agent = Agent(role="Test Agent", goal="Test goal", backstory="Test backstory")
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], verbose=True, tracing=True)
crew.kickoff()
trace_listener = TraceCollectionListener(tracing=True)
assert trace_listener.trace_enabled is True
assert trace_listener.batch_manager is not None
def test_trace_listener_ephemeral_batch(self):
"""Test that trace listener properly handles ephemeral batches"""
with (
patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}),
patch(
"crewai.utilities.events.listeners.tracing.trace_listener.TraceCollectionListener._check_authenticated",
return_value=False,
),
):
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], tracing=True)
with patch.object(TraceBatchManager, "initialize_batch") as mock_initialize:
crew.kickoff()
assert mock_initialize.call_count >= 1
assert mock_initialize.call_args_list[0][1]["use_ephemeral"] is True
@pytest.mark.vcr(filter_headers=["authorization"])
def test_trace_listener_with_authenticated_user(self):
"""Test that trace listener properly handles authenticated batches"""
with (
patch.dict(os.environ, {"CREWAI_TRACING_ENABLED": "true"}),
patch(
"crewai.utilities.events.listeners.tracing.trace_batch_manager.PlusAPI"
) as mock_plus_api_class,
):
mock_plus_api_instance = MagicMock()
mock_plus_api_class.return_value = mock_plus_api_instance
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
llm="gpt-4o-mini",
)
task = Task(
description="Say hello to the world",
expected_output="hello world",
agent=agent,
)
with (
patch.object(TraceBatchManager, "initialize_batch") as mock_initialize,
patch.object(
TraceBatchManager, "finalize_batch"
) as mock_finalize_backend_batch,
):
crew = Crew(agents=[agent], tasks=[task], tracing=True)
crew.kickoff()
mock_plus_api_class.assert_called_with(api_key="mock_token_12345")
assert mock_initialize.call_count >= 1
mock_finalize_backend_batch.assert_called_with()
assert mock_finalize_backend_batch.call_count >= 1
# Helper method to ensure cleanup
def teardown_method(self):

55
uv.lock generated
View File

@@ -1,5 +1,5 @@
version = 1
revision = 2
revision = 3
requires-python = ">=3.10, <3.14"
resolution-markers = [
"python_full_version >= '3.13' and platform_python_implementation == 'PyPy' and sys_platform == 'darwin'",
@@ -34,22 +34,6 @@ resolution-markers = [
"(python_full_version < '3.11' and platform_machine != 'aarch64' and platform_python_implementation == 'PyPy' and sys_platform == 'linux') or (python_full_version < '3.11' and platform_python_implementation == 'PyPy' and sys_platform != 'darwin' and sys_platform != 'linux')",
]
[[package]]
name = "agentops"
version = "0.3.18"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "packaging" },
{ name = "psutil" },
{ name = "pyyaml" },
{ name = "requests" },
{ name = "termcolor" },
]
sdist = { url = "https://files.pythonhosted.org/packages/c5/52/46bb2f29b9e5f2e1d8b124296b7794934a9048de635d9e7d6a95e791ad7b/agentops-0.3.18.tar.gz", hash = "sha256:4d509754df7be52579597cc9f53939c5218131a0379463e0ff6f6f40cde9fcc4", size = 55394, upload-time = "2024-11-19T19:06:21.306Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/97/8d/bd4cad95dad722dc2d3e4179feab1058ef846828c0e15e51e8bfaea373ee/agentops-0.3.18-py3-none-any.whl", hash = "sha256:8b48d8a1662f276653430fd541c77fa4f9a15a43e881b518ff88ea56925afcf7", size = 58032, upload-time = "2024-11-19T19:06:19.068Z" },
]
[[package]]
name = "aiohappyeyeballs"
version = "2.6.1"
@@ -744,9 +728,6 @@ dependencies = [
]
[package.optional-dependencies]
agentops = [
{ name = "agentops" },
]
aisuite = [
{ name = "aisuite" },
]
@@ -792,13 +773,12 @@ dev = [
[package.metadata]
requires-dist = [
{ name = "agentops", marker = "extra == 'agentops'", specifier = "==0.3.18" },
{ name = "aisuite", marker = "extra == 'aisuite'", specifier = ">=0.1.10" },
{ name = "appdirs", specifier = ">=1.4.4" },
{ name = "blinker", specifier = ">=1.9.0" },
{ name = "chromadb", specifier = ">=0.5.23" },
{ name = "click", specifier = ">=8.1.7" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = "~=0.62.0" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = "~=0.62.1" },
{ name = "docling", marker = "extra == 'docling'", specifier = ">=2.12.0" },
{ name = "instructor", specifier = ">=1.3.3" },
{ name = "json-repair", specifier = "==0.25.2" },
@@ -828,7 +808,7 @@ requires-dist = [
{ name = "tomli-w", specifier = ">=1.1.0" },
{ name = "uv", specifier = ">=0.4.25" },
]
provides-extras = ["agentops", "aisuite", "docling", "embeddings", "mem0", "openpyxl", "pandas", "pdfplumber", "tools"]
provides-extras = ["aisuite", "docling", "embeddings", "mem0", "openpyxl", "pandas", "pdfplumber", "tools"]
[package.metadata.requires-dev]
dev = [
@@ -850,7 +830,7 @@ dev = [
[[package]]
name = "crewai-tools"
version = "0.62.0"
version = "0.62.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "chromadb" },
@@ -868,9 +848,9 @@ dependencies = [
{ name = "stagehand" },
{ name = "tiktoken" },
]
sdist = { url = "https://files.pythonhosted.org/packages/e9/24/0287edbaa33c52b5541a564d92d3324d4839a76a4b023540c0fd5c7ee330/crewai_tools-0.62.0.tar.gz", hash = "sha256:71a24c173677f108516e1cde286e476e9aeb60da78d911bec0f15caa3c6af15a", size = 1059534, upload-time = "2025-08-13T21:13:49.879Z" }
sdist = { url = "https://files.pythonhosted.org/packages/e3/4b/23cd61a07105b54be8d1185e3b861b1bb2ac6050264acc060d91b22da171/crewai_tools-0.62.1.tar.gz", hash = "sha256:1819d09189e815a28f6744b6cffde703b9e9e438ef5f066c5b4dcdd75cc3c6ad", size = 1059792, upload-time = "2025-08-19T01:08:02.567Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a9/16/cf26f4eaf1edc2f62d0c9cb1ec97f573f8d7401663da047c52b3ce4c4628/crewai_tools-0.62.0-py3-none-any.whl", hash = "sha256:b5e7035563cb00601431286b1c56933966acea1f220052cd33e1d4ee35590017", size = 677008, upload-time = "2025-08-13T21:13:46.903Z" },
{ url = "https://files.pythonhosted.org/packages/34/87/a6e8d5dff4718795d806cd54bdb1cb94c637d93951d00e87c0b55d431870/crewai_tools-0.62.1-py3-none-any.whl", hash = "sha256:d8333315c8bf35bdb939b22e5b555acf9357ae676b992832f96f63de21670871", size = 677041, upload-time = "2025-08-19T01:08:00.891Z" },
]
[[package]]
@@ -4013,20 +3993,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/7e/cc/7e77861000a0691aeea8f4566e5d3aa716f2b1dece4a24439437e41d3d25/protobuf-5.29.5-py3-none-any.whl", hash = "sha256:6cf42630262c59b2d8de33954443d94b746c952b01434fc58a417fdbd2e84bd5", size = 172823, upload-time = "2025-05-28T23:51:58.157Z" },
]
[[package]]
name = "psutil"
version = "5.9.8"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/90/c7/6dc0a455d111f68ee43f27793971cf03fe29b6ef972042549db29eec39a2/psutil-5.9.8.tar.gz", hash = "sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c", size = 503247, upload-time = "2024-01-19T20:47:09.517Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/e7/e3/07ae864a636d70a8a6f58da27cb1179192f1140d5d1da10886ade9405797/psutil-5.9.8-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81", size = 248702, upload-time = "2024-01-19T20:47:36.303Z" },
{ url = "https://files.pythonhosted.org/packages/b3/bd/28c5f553667116b2598b9cc55908ec435cb7f77a34f2bff3e3ca765b0f78/psutil-5.9.8-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421", size = 285242, upload-time = "2024-01-19T20:47:39.65Z" },
{ url = "https://files.pythonhosted.org/packages/c5/4f/0e22aaa246f96d6ac87fe5ebb9c5a693fbe8877f537a1022527c47ca43c5/psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4", size = 288191, upload-time = "2024-01-19T20:47:43.078Z" },
{ url = "https://files.pythonhosted.org/packages/6e/f5/2aa3a4acdc1e5940b59d421742356f133185667dd190b166dbcfcf5d7b43/psutil-5.9.8-cp37-abi3-win32.whl", hash = "sha256:bc56c2a1b0d15aa3eaa5a60c9f3f8e3e565303b465dbf57a1b730e7a2b9844e0", size = 251252, upload-time = "2024-01-19T20:47:52.88Z" },
{ url = "https://files.pythonhosted.org/packages/93/52/3e39d26feae7df0aa0fd510b14012c3678b36ed068f7d78b8d8784d61f0e/psutil-5.9.8-cp37-abi3-win_amd64.whl", hash = "sha256:8db4c1b57507eef143a15a6884ca10f7c73876cdf5d51e713151c1236a0e68cf", size = 255090, upload-time = "2024-01-19T20:47:56.019Z" },
{ url = "https://files.pythonhosted.org/packages/05/33/2d74d588408caedd065c2497bdb5ef83ce6082db01289a1e1147f6639802/psutil-5.9.8-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:d16bbddf0693323b8c6123dd804100241da461e41d6e332fb0ba6058f630f8c8", size = 249898, upload-time = "2024-01-19T20:47:59.238Z" },
]
[[package]]
name = "ptyprocess"
version = "0.7.0"
@@ -5502,15 +5468,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/e5/30/643397144bfbfec6f6ef821f36f33e57d35946c44a2352d3c9f0ae847619/tenacity-9.1.2-py3-none-any.whl", hash = "sha256:f77bf36710d8b73a50b2dd155c97b870017ad21afe6ab300326b0371b3b05138", size = 28248, upload-time = "2025-04-02T08:25:07.678Z" },
]
[[package]]
name = "termcolor"
version = "2.4.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/10/56/d7d66a84f96d804155f6ff2873d065368b25a07222a6fd51c4f24ef6d764/termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a", size = 12664, upload-time = "2023-12-01T11:04:51.66Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/d9/5f/8c716e47b3a50cbd7c146f45881e11d9414def768b7cd9c5e6650ec2a80a/termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63", size = 7719, upload-time = "2023-12-01T11:04:50.019Z" },
]
[[package]]
name = "tifffile"
version = "2025.5.10"