mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-15 20:08:29 +00:00
chore: remove AgentOps integration (#3334)
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -21,7 +21,6 @@ crew_tasks_output.json
|
||||
.mypy_cache
|
||||
.ruff_cache
|
||||
.venv
|
||||
agentops.log
|
||||
test_flow.html
|
||||
crewairules.mdc
|
||||
plan.md
|
||||
|
||||
@@ -226,7 +226,6 @@
|
||||
"group": "Observability",
|
||||
"pages": [
|
||||
"en/observability/overview",
|
||||
"en/observability/agentops",
|
||||
"en/observability/arize-phoenix",
|
||||
"en/observability/langdb",
|
||||
"en/observability/langfuse",
|
||||
@@ -566,7 +565,6 @@
|
||||
"group": "Observabilidade",
|
||||
"pages": [
|
||||
"pt-BR/observability/overview",
|
||||
"pt-BR/observability/agentops",
|
||||
"pt-BR/observability/arize-phoenix",
|
||||
"pt-BR/observability/langdb",
|
||||
"pt-BR/observability/langfuse",
|
||||
@@ -914,7 +912,6 @@
|
||||
"group": "오브저버빌리티",
|
||||
"pages": [
|
||||
"ko/observability/overview",
|
||||
"ko/observability/agentops",
|
||||
"ko/observability/arize-phoenix",
|
||||
"ko/observability/langdb",
|
||||
"ko/observability/langfuse",
|
||||
|
||||
@@ -177,14 +177,7 @@ class MyCustomCrew:
|
||||
# Your crew implementation...
|
||||
```
|
||||
|
||||
This is exactly how CrewAI's built-in `agentops_listener` is registered. In the CrewAI codebase, you'll find:
|
||||
|
||||
```python
|
||||
# src/crewai/utilities/events/third_party/__init__.py
|
||||
from .agentops_listener import agentops_listener
|
||||
```
|
||||
|
||||
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
|
||||
This is how third-party event listeners are registered in the CrewAI codebase.
|
||||
|
||||
## Available Event Types
|
||||
|
||||
@@ -280,77 +273,6 @@ The structure of the event object depends on the event type, but all events inhe
|
||||
|
||||
Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` includes `crew_name` and `output` fields.
|
||||
|
||||
## Real-World Example: Integration with AgentOps
|
||||
|
||||
CrewAI includes an example of a third-party integration with [AgentOps](https://github.com/AgentOps-AI/agentops), a monitoring and observability platform for AI agents. Here's how it's implemented:
|
||||
|
||||
```python
|
||||
from typing import Optional
|
||||
|
||||
from crewai.utilities.events import (
|
||||
CrewKickoffCompletedEvent,
|
||||
ToolUsageErrorEvent,
|
||||
ToolUsageStartedEvent,
|
||||
)
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
|
||||
from crewai.utilities.events.task_events import TaskEvaluationEvent
|
||||
|
||||
try:
|
||||
import agentops
|
||||
AGENTOPS_INSTALLED = True
|
||||
except ImportError:
|
||||
AGENTOPS_INSTALLED = False
|
||||
|
||||
class AgentOpsListener(BaseEventListener):
|
||||
tool_event: Optional["agentops.ToolEvent"] = None
|
||||
session: Optional["agentops.Session"] = None
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def setup_listeners(self, crewai_event_bus):
|
||||
if not AGENTOPS_INSTALLED:
|
||||
return
|
||||
|
||||
@crewai_event_bus.on(CrewKickoffStartedEvent)
|
||||
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
|
||||
self.session = agentops.init()
|
||||
for agent in source.agents:
|
||||
if self.session:
|
||||
self.session.create_agent(
|
||||
name=agent.role,
|
||||
agent_id=str(agent.id),
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(CrewKickoffCompletedEvent)
|
||||
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
|
||||
if self.session:
|
||||
self.session.end_session(
|
||||
end_state="Success",
|
||||
end_state_reason="Finished Execution",
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(ToolUsageStartedEvent)
|
||||
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
|
||||
self.tool_event = agentops.ToolEvent(name=event.tool_name)
|
||||
if self.session:
|
||||
self.session.record(self.tool_event)
|
||||
|
||||
@crewai_event_bus.on(ToolUsageErrorEvent)
|
||||
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
|
||||
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
|
||||
```
|
||||
|
||||
This listener initializes an AgentOps session when a Crew starts, registers agents with AgentOps, tracks tool usage, and ends the session when the Crew completes.
|
||||
|
||||
The AgentOps listener is registered in CrewAI's event system through the import in `src/crewai/utilities/events/third_party/__init__.py`:
|
||||
|
||||
```python
|
||||
from .agentops_listener import agentops_listener
|
||||
```
|
||||
|
||||
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
|
||||
|
||||
## Advanced Usage: Scoped Handlers
|
||||
|
||||
|
||||
@@ -1,126 +0,0 @@
|
||||
---
|
||||
title: AgentOps Integration
|
||||
description: Understanding and logging your agent performance with AgentOps.
|
||||
icon: paperclip
|
||||
---
|
||||
|
||||
# Introduction
|
||||
|
||||
Observability is a key aspect of developing and deploying conversational AI agents. It allows developers to understand how their agents are performing,
|
||||
how their agents are interacting with users, and how their agents use external tools and APIs.
|
||||
AgentOps is a product independent of CrewAI that provides a comprehensive observability solution for agents.
|
||||
|
||||
## AgentOps
|
||||
|
||||
[AgentOps](https://agentops.ai/?=crew) provides session replays, metrics, and monitoring for agents.
|
||||
|
||||
At a high level, AgentOps gives you the ability to monitor cost, token usage, latency, agent failures, session-wide statistics, and more.
|
||||
For more info, check out the [AgentOps Repo](https://github.com/AgentOps-AI/agentops).
|
||||
|
||||
### Overview
|
||||
|
||||
AgentOps provides monitoring for agents in development and production.
|
||||
It provides a dashboard for tracking agent performance, session replays, and custom reporting.
|
||||
|
||||
Additionally, AgentOps provides session drilldowns for viewing Crew agent interactions, LLM calls, and tool usage in real-time.
|
||||
This feature is useful for debugging and understanding how agents interact with users as well as other agents.
|
||||
|
||||

|
||||

|
||||

|
||||
|
||||
### Features
|
||||
|
||||
- **LLM Cost Management and Tracking**: Track spend with foundation model providers.
|
||||
- **Replay Analytics**: Watch step-by-step agent execution graphs.
|
||||
- **Recursive Thought Detection**: Identify when agents fall into infinite loops.
|
||||
- **Custom Reporting**: Create custom analytics on agent performance.
|
||||
- **Analytics Dashboard**: Monitor high-level statistics about agents in development and production.
|
||||
- **Public Model Testing**: Test your agents against benchmarks and leaderboards.
|
||||
- **Custom Tests**: Run your agents against domain-specific tests.
|
||||
- **Time Travel Debugging**: Restart your sessions from checkpoints.
|
||||
- **Compliance and Security**: Create audit logs and detect potential threats such as profanity and PII leaks.
|
||||
- **Prompt Injection Detection**: Identify potential code injection and secret leaks.
|
||||
|
||||
### Using AgentOps
|
||||
|
||||
<Steps>
|
||||
<Step title="Create an API Key">
|
||||
Create a user API key here: [Create API Key](https://app.agentops.ai/account)
|
||||
</Step>
|
||||
<Step title="Configure Your Environment">
|
||||
Add your API key to your environment variables:
|
||||
```bash
|
||||
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
|
||||
```
|
||||
</Step>
|
||||
<Step title="Install AgentOps">
|
||||
Install AgentOps with:
|
||||
```bash
|
||||
pip install 'crewai[agentops]'
|
||||
```
|
||||
or
|
||||
```bash
|
||||
pip install agentops
|
||||
```
|
||||
</Step>
|
||||
<Step title="Initialize AgentOps">
|
||||
Before using `Crew` in your script, include these lines:
|
||||
|
||||
```python
|
||||
import agentops
|
||||
agentops.init()
|
||||
```
|
||||
|
||||
This will initiate an AgentOps session as well as automatically track Crew agents. For further info on how to outfit more complex agentic systems,
|
||||
check out the [AgentOps documentation](https://docs.agentops.ai) or join the [Discord](https://discord.gg/j4f3KbeH).
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### Crew + AgentOps Examples
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card
|
||||
title="Job Posting"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting"
|
||||
icon="briefcase"
|
||||
iconType="solid"
|
||||
>
|
||||
Example of a Crew agent that generates job posts.
|
||||
</Card>
|
||||
<Card
|
||||
title="Markdown Validator"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/markdown_validator"
|
||||
icon="markdown"
|
||||
iconType="solid"
|
||||
>
|
||||
Example of a Crew agent that validates Markdown files.
|
||||
</Card>
|
||||
<Card
|
||||
title="Instagram Post"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
|
||||
icon="square-instagram"
|
||||
iconType="brands"
|
||||
>
|
||||
Example of a Crew agent that generates Instagram posts.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### Further Information
|
||||
|
||||
To get started, create an [AgentOps account](https://agentops.ai/?=crew).
|
||||
|
||||
For feature requests or bug reports, please reach out to the AgentOps team on the [AgentOps Repo](https://github.com/AgentOps-AI/agentops).
|
||||
|
||||
#### Extra links
|
||||
|
||||
<a href="https://twitter.com/agentopsai/">🐦 Twitter</a>
|
||||
<span> • </span>
|
||||
<a href="https://discord.gg/JHPt4C7r">📢 Discord</a>
|
||||
<span> • </span>
|
||||
<a href="https://app.agentops.ai/?=crew">🖇️ AgentOps Dashboard</a>
|
||||
<span> • </span>
|
||||
<a href="https://docs.agentops.ai/introduction">📙 Documentation</a>
|
||||
@@ -21,9 +21,6 @@ Observability is crucial for understanding how your CrewAI agents perform, ident
|
||||
### Monitoring & Tracing Platforms
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="AgentOps" icon="paperclip" href="/en/observability/agentops">
|
||||
Session replays, metrics, and monitoring for agent development and production.
|
||||
</Card>
|
||||
|
||||
<Card title="LangDB" icon="database" href="/en/observability/langdb">
|
||||
End-to-end tracing for CrewAI workflows with automatic agent interaction capture.
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 288 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 419 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 263 KiB |
@@ -177,14 +177,7 @@ class MyCustomCrew:
|
||||
# Your crew implementation...
|
||||
```
|
||||
|
||||
이것이 바로 CrewAI의 내장 `agentops_listener`가 등록되는 방식과 동일합니다. CrewAI 코드베이스에서는 다음과 같이 되어 있습니다:
|
||||
|
||||
```python
|
||||
# src/crewai/utilities/events/third_party/__init__.py
|
||||
from .agentops_listener import agentops_listener
|
||||
```
|
||||
|
||||
이렇게 하면 `crewai.utilities.events` 패키지가 임포트될 때 `agentops_listener`가 자동으로 로드됩니다.
|
||||
이것이 CrewAI 코드베이스에서 서드파티 이벤트 리스너가 등록되는 방식입니다.
|
||||
|
||||
## 사용 가능한 이벤트 유형
|
||||
|
||||
@@ -280,77 +273,6 @@ CrewAI는 여러분이 청취할 수 있는 다양한 이벤트를 제공합니
|
||||
|
||||
추가 필드는 이벤트 타입에 따라 다릅니다. 예를 들어, `CrewKickoffCompletedEvent`에는 `crew_name`과 `output` 필드가 포함됩니다.
|
||||
|
||||
## 실제 예시: AgentOps와의 통합
|
||||
|
||||
CrewAI는 AI 에이전트를 위한 모니터링 및 관찰 플랫폼인 [AgentOps](https://github.com/AgentOps-AI/agentops)와의 서드파티 통합 예시를 포함하고 있습니다. 구현 방식은 다음과 같습니다:
|
||||
|
||||
```python
|
||||
from typing import Optional
|
||||
|
||||
from crewai.utilities.events import (
|
||||
CrewKickoffCompletedEvent,
|
||||
ToolUsageErrorEvent,
|
||||
ToolUsageStartedEvent,
|
||||
)
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
|
||||
from crewai.utilities.events.task_events import TaskEvaluationEvent
|
||||
|
||||
try:
|
||||
import agentops
|
||||
AGENTOPS_INSTALLED = True
|
||||
except ImportError:
|
||||
AGENTOPS_INSTALLED = False
|
||||
|
||||
class AgentOpsListener(BaseEventListener):
|
||||
tool_event: Optional["agentops.ToolEvent"] = None
|
||||
session: Optional["agentops.Session"] = None
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def setup_listeners(self, crewai_event_bus):
|
||||
if not AGENTOPS_INSTALLED:
|
||||
return
|
||||
|
||||
@crewai_event_bus.on(CrewKickoffStartedEvent)
|
||||
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
|
||||
self.session = agentops.init()
|
||||
for agent in source.agents:
|
||||
if self.session:
|
||||
self.session.create_agent(
|
||||
name=agent.role,
|
||||
agent_id=str(agent.id),
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(CrewKickoffCompletedEvent)
|
||||
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
|
||||
if self.session:
|
||||
self.session.end_session(
|
||||
end_state="Success",
|
||||
end_state_reason="Finished Execution",
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(ToolUsageStartedEvent)
|
||||
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
|
||||
self.tool_event = agentops.ToolEvent(name=event.tool_name)
|
||||
if self.session:
|
||||
self.session.record(self.tool_event)
|
||||
|
||||
@crewai_event_bus.on(ToolUsageErrorEvent)
|
||||
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
|
||||
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
|
||||
```
|
||||
|
||||
이 listener는 crew가 시작될 때 AgentOps 세션을 초기화하고, agent를 AgentOps에 등록하며, 도구 사용을 추적하고, crew가 완료되면 세션을 종료합니다.
|
||||
|
||||
AgentOps listener는 `src/crewai/utilities/events/third_party/__init__.py` 파일의 import를 통해 CrewAI 이벤트 시스템에 등록됩니다:
|
||||
|
||||
```python
|
||||
from .agentops_listener import agentops_listener
|
||||
```
|
||||
|
||||
이렇게 하면 `crewai.utilities.events` 패키지가 import될 때 `agentops_listener`가 로드되는 것이 보장됩니다.
|
||||
|
||||
## 고급 사용법: Scoped Handlers
|
||||
|
||||
|
||||
@@ -1,124 +0,0 @@
|
||||
---
|
||||
title: AgentOps 통합
|
||||
description: AgentOps를 사용하여 에이전트 성능을 이해하고 로깅하기
|
||||
icon: paperclip
|
||||
---
|
||||
|
||||
# 소개
|
||||
|
||||
Observability는 대화형 AI 에이전트를 개발하고 배포하는 데 있어 핵심적인 요소입니다. 이는 개발자가 에이전트의 성능을 이해하고, 에이전트가 사용자와 어떻게 상호작용하는지, 그리고 에이전트가 외부 도구와 API를 어떻게 사용하는지를 파악할 수 있게 해줍니다.
|
||||
AgentOps는 CrewAI와 독립적인 제품으로, 에이전트를 위한 종합적인 observability 솔루션을 제공합니다.
|
||||
|
||||
## AgentOps
|
||||
|
||||
[AgentOps](https://agentops.ai/?=crew)은 에이전트에 대한 세션 리플레이, 메트릭, 모니터링을 제공합니다.
|
||||
|
||||
AgentOps는 높은 수준에서 비용, 토큰 사용량, 대기 시간, 에이전트 실패, 세션 전체 통계 등 다양한 항목을 모니터링할 수 있는 기능을 제공합니다.
|
||||
더 자세한 내용은 [AgentOps Repo](https://github.com/AgentOps-AI/agentops)를 확인하세요.
|
||||
|
||||
### 개요
|
||||
|
||||
AgentOps는 개발 및 프로덕션 환경에서 에이전트에 대한 모니터링을 제공합니다.
|
||||
에이전트 성능, 세션 리플레이, 맞춤형 리포팅을 추적할 수 있는 대시보드를 제공합니다.
|
||||
|
||||
또한, AgentOps는 Crew 에이전트 상호작용, LLM 호출, 툴 사용을 실시간으로 볼 수 있는 세션 드릴다운 기능을 제공합니다.
|
||||
이 기능은 에이전트가 사용자 및 다른 에이전트와 어떻게 상호작용하는지 디버깅하고 이해하는 데 유용합니다.
|
||||
|
||||

|
||||

|
||||

|
||||
|
||||
### 특징
|
||||
|
||||
- **LLM 비용 관리 및 추적**: 기반 모델 공급자와의 지출을 추적합니다.
|
||||
- **재생 분석**: 단계별 에이전트 실행 그래프를 시청할 수 있습니다.
|
||||
- **재귀적 사고 감지**: 에이전트가 무한 루프에 빠졌는지 식별합니다.
|
||||
- **맞춤형 보고서**: 에이전트 성능에 대한 맞춤형 분석을 생성합니다.
|
||||
- **분석 대시보드**: 개발 및 운영 중인 에이전트에 대한 상위 수준 통계를 모니터링합니다.
|
||||
- **공개 모델 테스트**: 벤치마크 및 리더보드를 통해 에이전트를 테스트할 수 있습니다.
|
||||
- **맞춤형 테스트**: 도메인별 테스트로 에이전트를 실행합니다.
|
||||
- **타임 트래블 디버깅**: 체크포인트에서 세션을 재시작합니다.
|
||||
- **컴플라이언스 및 보안**: 감사 로그를 생성하고 욕설 및 PII 유출과 같은 잠재적 위협을 감지합니다.
|
||||
- **프롬프트 인젝션 감지**: 잠재적 코드 인젝션 및 시크릿 유출을 식별합니다.
|
||||
|
||||
### AgentOps 사용하기
|
||||
|
||||
<Steps>
|
||||
<Step title="API 키 생성">
|
||||
사용자 API 키를 여기서 생성하세요: [API 키 생성](https://app.agentops.ai/account)
|
||||
</Step>
|
||||
<Step title="환경 설정">
|
||||
API 키를 환경 변수에 추가하세요:
|
||||
```bash
|
||||
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
|
||||
```
|
||||
</Step>
|
||||
<Step title="AgentOps 설치">
|
||||
다음 명령어로 AgentOps를 설치하세요:
|
||||
```bash
|
||||
pip install 'crewai[agentops]'
|
||||
```
|
||||
또는
|
||||
```bash
|
||||
pip install agentops
|
||||
```
|
||||
</Step>
|
||||
<Step title="AgentOps 초기화">
|
||||
스크립트에서 `Crew`를 사용하기 전에 다음 코드를 포함하세요:
|
||||
|
||||
```python
|
||||
import agentops
|
||||
agentops.init()
|
||||
```
|
||||
|
||||
이렇게 하면 AgentOps 세션이 시작되고 Crew 에이전트가 자동으로 추적됩니다. 더 복잡한 agentic 시스템을 구성하는 방법에 대한 자세한 정보는 [AgentOps 문서](https://docs.agentops.ai) 또는 [Discord](https://discord.gg/j4f3KbeH)를 참조하세요.
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### Crew + AgentOps 예시
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card
|
||||
title="Job Posting"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting"
|
||||
icon="briefcase"
|
||||
iconType="solid"
|
||||
>
|
||||
채용 공고를 생성하는 Crew agent의 예시입니다.
|
||||
</Card>
|
||||
<Card
|
||||
title="Markdown Validator"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/markdown_validator"
|
||||
icon="markdown"
|
||||
iconType="solid"
|
||||
>
|
||||
Markdown 파일을 검증하는 Crew agent의 예시입니다.
|
||||
</Card>
|
||||
<Card
|
||||
title="Instagram Post"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
|
||||
icon="square-instagram"
|
||||
iconType="brands"
|
||||
>
|
||||
Instagram 게시물을 생성하는 Crew agent의 예시입니다.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### 추가 정보
|
||||
|
||||
시작하려면 [AgentOps 계정](https://agentops.ai/?=crew)을 생성하세요.
|
||||
|
||||
기능 요청이나 버그 보고가 필요하시면 [AgentOps Repo](https://github.com/AgentOps-AI/agentops)에서 AgentOps 팀에 문의해 주세요.
|
||||
|
||||
#### 추가 링크
|
||||
|
||||
<a href="https://twitter.com/agentopsai/">🐦 트위터</a>
|
||||
<span> • </span>
|
||||
<a href="https://discord.gg/JHPt4C7r">📢 디스코드</a>
|
||||
<span> • </span>
|
||||
<a href="https://app.agentops.ai/?=crew">🖇️ AgentOps 대시보드</a>
|
||||
<span> • </span>
|
||||
<a href="https://docs.agentops.ai/introduction">📙 문서화</a>
|
||||
@@ -21,9 +21,6 @@ icon: "face-smile"
|
||||
### 모니터링 & 트레이싱 플랫폼
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="AgentOps" icon="paperclip" href="/ko/observability/agentops">
|
||||
에이전트 개발 및 운영을 위한 세션 리플레이, 메트릭, 모니터링 제공.
|
||||
</Card>
|
||||
|
||||
<Card title="LangDB" icon="database" href="/ko/observability/langdb">
|
||||
자동 에이전트 상호작용 캡처를 포함한 CrewAI 워크플로의 엔드-투-엔드 트레이싱.
|
||||
|
||||
@@ -177,14 +177,7 @@ class MyCustomCrew:
|
||||
# Sua implementação do crew...
|
||||
```
|
||||
|
||||
É exatamente assim que o `agentops_listener` integrado do CrewAI é registrado. No código-fonte do CrewAI, você encontrará:
|
||||
|
||||
```python
|
||||
# src/crewai/utilities/events/third_party/__init__.py
|
||||
from .agentops_listener import agentops_listener
|
||||
```
|
||||
|
||||
Isso garante que o `agentops_listener` seja carregado quando o pacote `crewai.utilities.events` for importado.
|
||||
É assim que listeners de eventos de terceiros são registrados no código do CrewAI.
|
||||
|
||||
## Tipos de Eventos Disponíveis
|
||||
|
||||
@@ -269,77 +262,6 @@ A estrutura do objeto de evento depende do tipo do evento, mas todos herdam de `
|
||||
|
||||
Campos adicionais variam pelo tipo de evento. Por exemplo, `CrewKickoffCompletedEvent` inclui os campos `crew_name` e `output`.
|
||||
|
||||
## Exemplo Real: Integração com AgentOps
|
||||
|
||||
O CrewAI inclui um exemplo de integração com [AgentOps](https://github.com/AgentOps-AI/agentops), uma plataforma de monitoramento e observabilidade para agentes de IA. Veja como é implementado:
|
||||
|
||||
```python
|
||||
from typing import Optional
|
||||
|
||||
from crewai.utilities.events import (
|
||||
CrewKickoffCompletedEvent,
|
||||
ToolUsageErrorEvent,
|
||||
ToolUsageStartedEvent,
|
||||
)
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
|
||||
from crewai.utilities.events.task_events import TaskEvaluationEvent
|
||||
|
||||
try:
|
||||
import agentops
|
||||
AGENTOPS_INSTALLED = True
|
||||
except ImportError:
|
||||
AGENTOPS_INSTALLED = False
|
||||
|
||||
class AgentOpsListener(BaseEventListener):
|
||||
tool_event: Optional["agentops.ToolEvent"] = None
|
||||
session: Optional["agentops.Session"] = None
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def setup_listeners(self, crewai_event_bus):
|
||||
if not AGENTOPS_INSTALLED:
|
||||
return
|
||||
|
||||
@crewai_event_bus.on(CrewKickoffStartedEvent)
|
||||
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
|
||||
self.session = agentops.init()
|
||||
for agent in source.agents:
|
||||
if self.session:
|
||||
self.session.create_agent(
|
||||
name=agent.role,
|
||||
agent_id=str(agent.id),
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(CrewKickoffCompletedEvent)
|
||||
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
|
||||
if self.session:
|
||||
self.session.end_session(
|
||||
end_state="Success",
|
||||
end_state_reason="Finished Execution",
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(ToolUsageStartedEvent)
|
||||
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
|
||||
self.tool_event = agentops.ToolEvent(name=event.tool_name)
|
||||
if self.session:
|
||||
self.session.record(self.tool_event)
|
||||
|
||||
@crewai_event_bus.on(ToolUsageErrorEvent)
|
||||
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
|
||||
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
|
||||
```
|
||||
|
||||
Esse listener inicializa uma sessão do AgentOps quando um Crew inicia, cadastra agentes no AgentOps, rastreia o uso de ferramentas e finaliza a sessão quando o Crew é concluído.
|
||||
|
||||
O listener AgentOps é registrado no sistema de eventos do CrewAI via importação em `src/crewai/utilities/events/third_party/__init__.py`:
|
||||
|
||||
```python
|
||||
from .agentops_listener import agentops_listener
|
||||
```
|
||||
|
||||
Isso garante que o `agentops_listener` seja carregado quando o pacote `crewai.utilities.events` for importado.
|
||||
|
||||
## Uso Avançado: Handlers Escopados
|
||||
|
||||
|
||||
@@ -1,126 +0,0 @@
|
||||
---
|
||||
title: Integração com AgentOps
|
||||
description: Entendendo e registrando a performance do seu agente com AgentOps.
|
||||
icon: paperclip
|
||||
---
|
||||
|
||||
# Introdução
|
||||
|
||||
Observabilidade é um aspecto fundamental no desenvolvimento e implantação de agentes de IA conversacional. Ela permite que desenvolvedores compreendam como seus agentes estão performando,
|
||||
como eles estão interagindo com os usuários e como utilizam ferramentas externas e APIs.
|
||||
AgentOps é um produto independente do CrewAI que fornece uma solução completa de observabilidade para agentes.
|
||||
|
||||
## AgentOps
|
||||
|
||||
[AgentOps](https://agentops.ai/?=crew) oferece replay de sessões, métricas e monitoramento para agentes.
|
||||
|
||||
Em um alto nível, o AgentOps oferece a capacidade de monitorar custos, uso de tokens, latência, falhas do agente, estatísticas de sessão e muito mais.
|
||||
Para mais informações, confira o [Repositório do AgentOps](https://github.com/AgentOps-AI/agentops).
|
||||
|
||||
### Visão Geral
|
||||
|
||||
AgentOps fornece monitoramento para agentes em desenvolvimento e produção.
|
||||
Disponibiliza um dashboard para acompanhamento de performance dos agentes, replay de sessões e relatórios personalizados.
|
||||
|
||||
Além disso, o AgentOps traz análises detalhadas das sessões para visualizar interações do agente Crew, chamadas LLM e uso de ferramentas em tempo real.
|
||||
Esse recurso é útil para depuração e entendimento de como os agentes interagem com usuários e entre si.
|
||||
|
||||

|
||||

|
||||

|
||||
|
||||
### Funcionalidades
|
||||
|
||||
- **Gerenciamento e Rastreamento de Custos de LLM**: Acompanhe gastos com provedores de modelos fundamentais.
|
||||
- **Análises de Replay**: Assista gráficos de execução do agente, passo a passo.
|
||||
- **Detecção de Pensamento Recursivo**: Identifique quando agentes entram em loops infinitos.
|
||||
- **Relatórios Personalizados**: Crie análises customizadas sobre a performance dos agentes.
|
||||
- **Dashboard Analítico**: Monitore estatísticas gerais de agentes em desenvolvimento e produção.
|
||||
- **Teste de Modelos Públicos**: Teste seus agentes em benchmarks e rankings.
|
||||
- **Testes Personalizados**: Execute seus agentes em testes específicos de domínio.
|
||||
- **Depuração com Viagem no Tempo**: Reinicie suas sessões a partir de checkpoints.
|
||||
- **Conformidade e Segurança**: Crie registros de auditoria e detecte possíveis ameaças como uso de palavrões e vazamento de dados pessoais.
|
||||
- **Detecção de Prompt Injection**: Identifique possíveis injeções de código e vazamentos de segredos.
|
||||
|
||||
### Utilizando o AgentOps
|
||||
|
||||
<Steps>
|
||||
<Step title="Crie uma Chave de API">
|
||||
Crie uma chave de API de usuário aqui: [Create API Key](https://app.agentops.ai/account)
|
||||
</Step>
|
||||
<Step title="Configure seu Ambiente">
|
||||
Adicione sua chave API nas variáveis de ambiente:
|
||||
```bash
|
||||
AGENTOPS_API_KEY=<YOUR_AGENTOPS_API_KEY>
|
||||
```
|
||||
</Step>
|
||||
<Step title="Instale o AgentOps">
|
||||
Instale o AgentOps com:
|
||||
```bash
|
||||
pip install 'crewai[agentops]'
|
||||
```
|
||||
ou
|
||||
```bash
|
||||
pip install agentops
|
||||
```
|
||||
</Step>
|
||||
<Step title="Inicialize o AgentOps">
|
||||
Antes de utilizar o `Crew` no seu script, inclua estas linhas:
|
||||
|
||||
```python
|
||||
import agentops
|
||||
agentops.init()
|
||||
```
|
||||
|
||||
Isso irá iniciar uma sessão do AgentOps e também rastrear automaticamente os agentes Crew. Para mais detalhes sobre como adaptar sistemas de agentes mais complexos,
|
||||
confira a [documentação do AgentOps](https://docs.agentops.ai) ou participe do [Discord](https://discord.gg/j4f3KbeH).
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### Exemplos de Crew + AgentOps
|
||||
|
||||
<CardGroup cols={3}>
|
||||
<Card
|
||||
title="Vaga de Emprego"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/job-posting"
|
||||
icon="briefcase"
|
||||
iconType="solid"
|
||||
>
|
||||
Exemplo de um agente Crew que gera vagas de emprego.
|
||||
</Card>
|
||||
<Card
|
||||
title="Validador de Markdown"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/markdown_validator"
|
||||
icon="markdown"
|
||||
iconType="solid"
|
||||
>
|
||||
Exemplo de um agente Crew que valida arquivos Markdown.
|
||||
</Card>
|
||||
<Card
|
||||
title="Post no Instagram"
|
||||
color="#F3A78B"
|
||||
href="https://github.com/joaomdmoura/crewAI-examples/tree/main/instagram_post"
|
||||
icon="square-instagram"
|
||||
iconType="brands"
|
||||
>
|
||||
Exemplo de um agente Crew que gera posts para Instagram.
|
||||
</Card>
|
||||
</CardGroup>
|
||||
|
||||
### Mais Informações
|
||||
|
||||
Para começar, crie uma [conta AgentOps](https://agentops.ai/?=crew).
|
||||
|
||||
Para sugestões de funcionalidades ou relatos de bugs, entre em contato com o time do AgentOps pelo [Repositório do AgentOps](https://github.com/AgentOps-AI/agentops).
|
||||
|
||||
#### Links Extras
|
||||
|
||||
<a href="https://twitter.com/agentopsai/">🐦 Twitter</a>
|
||||
<span> • </span>
|
||||
<a href="https://discord.gg/JHPt4C7r">📢 Discord</a>
|
||||
<span> • </span>
|
||||
<a href="https://app.agentops.ai/?=crew">🖇️ Dashboard AgentOps</a>
|
||||
<span> • </span>
|
||||
<a href="https://docs.agentops.ai/introduction">📙 Documentação</a>
|
||||
@@ -21,9 +21,6 @@ A observabilidade é fundamental para entender como seus agentes CrewAI estão d
|
||||
### Plataformas de Monitoramento e Rastreamento
|
||||
|
||||
<CardGroup cols={2}>
|
||||
<Card title="AgentOps" icon="paperclip" href="/pt-BR/observability/agentops">
|
||||
Replays de sessões, métricas e monitoramento para desenvolvimento e produção de agentes.
|
||||
</Card>
|
||||
|
||||
<Card title="LangDB" icon="database" href="/pt-BR/observability/langdb">
|
||||
Rastreamento ponta a ponta para fluxos de trabalho CrewAI com captura automática de interações de agentes.
|
||||
|
||||
@@ -52,7 +52,6 @@ tools = ["crewai-tools~=0.62.0"]
|
||||
embeddings = [
|
||||
"tiktoken~=0.8.0"
|
||||
]
|
||||
agentops = ["agentops==0.3.18"]
|
||||
pdfplumber = [
|
||||
"pdfplumber>=0.11.4",
|
||||
]
|
||||
|
||||
@@ -67,11 +67,9 @@ from .memory_events import (
|
||||
|
||||
# events
|
||||
from .event_listener import EventListener
|
||||
from .third_party.agentops_listener import agentops_listener
|
||||
|
||||
__all__ = [
|
||||
"EventListener",
|
||||
"agentops_listener",
|
||||
"CrewAIEventsBus",
|
||||
"crewai_event_bus",
|
||||
"AgentExecutionStartedEvent",
|
||||
@@ -105,7 +103,6 @@ __all__ = [
|
||||
"MemoryRetrievalStartedEvent",
|
||||
"MemoryRetrievalCompletedEvent",
|
||||
"EventListener",
|
||||
"agentops_listener",
|
||||
"CrewKickoffStartedEvent",
|
||||
"CrewKickoffCompletedEvent",
|
||||
"CrewKickoffFailedEvent",
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
from .agentops_listener import agentops_listener
|
||||
|
||||
@@ -1,67 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
from crewai.utilities.events import (
|
||||
CrewKickoffCompletedEvent,
|
||||
ToolUsageErrorEvent,
|
||||
ToolUsageStartedEvent,
|
||||
)
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
|
||||
from crewai.utilities.events.task_events import TaskEvaluationEvent
|
||||
|
||||
try:
|
||||
import agentops
|
||||
|
||||
AGENTOPS_INSTALLED = True
|
||||
except ImportError:
|
||||
AGENTOPS_INSTALLED = False
|
||||
|
||||
|
||||
class AgentOpsListener(BaseEventListener):
|
||||
tool_event: Optional["agentops.ToolEvent"] = None
|
||||
session: Optional["agentops.Session"] = None
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def setup_listeners(self, crewai_event_bus):
|
||||
if not AGENTOPS_INSTALLED:
|
||||
return
|
||||
|
||||
@crewai_event_bus.on(CrewKickoffStartedEvent)
|
||||
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
|
||||
self.session = agentops.init()
|
||||
for agent in source.agents:
|
||||
if self.session:
|
||||
self.session.create_agent(
|
||||
name=agent.role,
|
||||
agent_id=str(agent.id),
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(CrewKickoffCompletedEvent)
|
||||
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
|
||||
if self.session:
|
||||
self.session.end_session(
|
||||
end_state="Success",
|
||||
end_state_reason="Finished Execution",
|
||||
)
|
||||
|
||||
@crewai_event_bus.on(ToolUsageStartedEvent)
|
||||
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
|
||||
self.tool_event = agentops.ToolEvent(name=event.tool_name)
|
||||
if self.session:
|
||||
self.session.record(self.tool_event)
|
||||
|
||||
@crewai_event_bus.on(ToolUsageErrorEvent)
|
||||
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
|
||||
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
|
||||
|
||||
@crewai_event_bus.on(TaskEvaluationEvent)
|
||||
def on_task_evaluation(source, event: TaskEvaluationEvent):
|
||||
if self.session:
|
||||
self.session.create_agent(
|
||||
name="Task Evaluator", agent_id=str(source.original_agent.id)
|
||||
)
|
||||
|
||||
|
||||
agentops_listener = AgentOpsListener()
|
||||
45
uv.lock
generated
45
uv.lock
generated
@@ -34,22 +34,6 @@ resolution-markers = [
|
||||
"(python_full_version < '3.11' and platform_machine != 'aarch64' and platform_python_implementation == 'PyPy' and sys_platform == 'linux') or (python_full_version < '3.11' and platform_python_implementation == 'PyPy' and sys_platform != 'darwin' and sys_platform != 'linux')",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "agentops"
|
||||
version = "0.3.18"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "packaging" },
|
||||
{ name = "psutil" },
|
||||
{ name = "pyyaml" },
|
||||
{ name = "requests" },
|
||||
{ name = "termcolor" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/c5/52/46bb2f29b9e5f2e1d8b124296b7794934a9048de635d9e7d6a95e791ad7b/agentops-0.3.18.tar.gz", hash = "sha256:4d509754df7be52579597cc9f53939c5218131a0379463e0ff6f6f40cde9fcc4", size = 55394, upload-time = "2024-11-19T19:06:21.306Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/97/8d/bd4cad95dad722dc2d3e4179feab1058ef846828c0e15e51e8bfaea373ee/agentops-0.3.18-py3-none-any.whl", hash = "sha256:8b48d8a1662f276653430fd541c77fa4f9a15a43e881b518ff88ea56925afcf7", size = 58032, upload-time = "2024-11-19T19:06:19.068Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "aiohappyeyeballs"
|
||||
version = "2.6.1"
|
||||
@@ -744,9 +728,6 @@ dependencies = [
|
||||
]
|
||||
|
||||
[package.optional-dependencies]
|
||||
agentops = [
|
||||
{ name = "agentops" },
|
||||
]
|
||||
aisuite = [
|
||||
{ name = "aisuite" },
|
||||
]
|
||||
@@ -792,7 +773,6 @@ dev = [
|
||||
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "agentops", marker = "extra == 'agentops'", specifier = "==0.3.18" },
|
||||
{ name = "aisuite", marker = "extra == 'aisuite'", specifier = ">=0.1.10" },
|
||||
{ name = "appdirs", specifier = ">=1.4.4" },
|
||||
{ name = "blinker", specifier = ">=1.9.0" },
|
||||
@@ -828,7 +808,7 @@ requires-dist = [
|
||||
{ name = "tomli-w", specifier = ">=1.1.0" },
|
||||
{ name = "uv", specifier = ">=0.4.25" },
|
||||
]
|
||||
provides-extras = ["agentops", "aisuite", "docling", "embeddings", "mem0", "openpyxl", "pandas", "pdfplumber", "tools"]
|
||||
provides-extras = ["aisuite", "docling", "embeddings", "mem0", "openpyxl", "pandas", "pdfplumber", "tools"]
|
||||
|
||||
[package.metadata.requires-dev]
|
||||
dev = [
|
||||
@@ -4013,20 +3993,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/7e/cc/7e77861000a0691aeea8f4566e5d3aa716f2b1dece4a24439437e41d3d25/protobuf-5.29.5-py3-none-any.whl", hash = "sha256:6cf42630262c59b2d8de33954443d94b746c952b01434fc58a417fdbd2e84bd5", size = 172823, upload-time = "2025-05-28T23:51:58.157Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "psutil"
|
||||
version = "5.9.8"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/90/c7/6dc0a455d111f68ee43f27793971cf03fe29b6ef972042549db29eec39a2/psutil-5.9.8.tar.gz", hash = "sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c", size = 503247, upload-time = "2024-01-19T20:47:09.517Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/e7/e3/07ae864a636d70a8a6f58da27cb1179192f1140d5d1da10886ade9405797/psutil-5.9.8-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81", size = 248702, upload-time = "2024-01-19T20:47:36.303Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/b3/bd/28c5f553667116b2598b9cc55908ec435cb7f77a34f2bff3e3ca765b0f78/psutil-5.9.8-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421", size = 285242, upload-time = "2024-01-19T20:47:39.65Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/c5/4f/0e22aaa246f96d6ac87fe5ebb9c5a693fbe8877f537a1022527c47ca43c5/psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4", size = 288191, upload-time = "2024-01-19T20:47:43.078Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/6e/f5/2aa3a4acdc1e5940b59d421742356f133185667dd190b166dbcfcf5d7b43/psutil-5.9.8-cp37-abi3-win32.whl", hash = "sha256:bc56c2a1b0d15aa3eaa5a60c9f3f8e3e565303b465dbf57a1b730e7a2b9844e0", size = 251252, upload-time = "2024-01-19T20:47:52.88Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/93/52/3e39d26feae7df0aa0fd510b14012c3678b36ed068f7d78b8d8784d61f0e/psutil-5.9.8-cp37-abi3-win_amd64.whl", hash = "sha256:8db4c1b57507eef143a15a6884ca10f7c73876cdf5d51e713151c1236a0e68cf", size = 255090, upload-time = "2024-01-19T20:47:56.019Z" },
|
||||
{ url = "https://files.pythonhosted.org/packages/05/33/2d74d588408caedd065c2497bdb5ef83ce6082db01289a1e1147f6639802/psutil-5.9.8-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:d16bbddf0693323b8c6123dd804100241da461e41d6e332fb0ba6058f630f8c8", size = 249898, upload-time = "2024-01-19T20:47:59.238Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ptyprocess"
|
||||
version = "0.7.0"
|
||||
@@ -5502,15 +5468,6 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/e5/30/643397144bfbfec6f6ef821f36f33e57d35946c44a2352d3c9f0ae847619/tenacity-9.1.2-py3-none-any.whl", hash = "sha256:f77bf36710d8b73a50b2dd155c97b870017ad21afe6ab300326b0371b3b05138", size = 28248, upload-time = "2025-04-02T08:25:07.678Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "termcolor"
|
||||
version = "2.4.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/10/56/d7d66a84f96d804155f6ff2873d065368b25a07222a6fd51c4f24ef6d764/termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a", size = 12664, upload-time = "2023-12-01T11:04:51.66Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/d9/5f/8c716e47b3a50cbd7c146f45881e11d9414def768b7cd9c5e6650ec2a80a/termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63", size = 7719, upload-time = "2023-12-01T11:04:50.019Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tifffile"
|
||||
version = "2025.5.10"
|
||||
|
||||
Reference in New Issue
Block a user