Compare commits

...

4 Commits

11 changed files with 172 additions and 25 deletions

View File

@@ -341,11 +341,12 @@
"groups": [
{
"group": "Getting Started",
"pages": ["en/api-reference/introduction"]
},
{
"group": "Endpoints",
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.en.yaml"
"pages": [
"en/api-reference/introduction",
"en/api-reference/inputs",
"en/api-reference/kickoff",
"en/api-reference/status"
]
}
]
},
@@ -680,11 +681,12 @@
"groups": [
{
"group": "Começando",
"pages": ["pt-BR/api-reference/introduction"]
},
{
"group": "Endpoints",
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.pt-BR.yaml"
"pages": [
"pt-BR/api-reference/introduction",
"pt-BR/api-reference/inputs",
"pt-BR/api-reference/kickoff",
"pt-BR/api-reference/status"
]
}
]
},
@@ -1026,11 +1028,12 @@
"groups": [
{
"group": "시작 안내",
"pages": ["ko/api-reference/introduction"]
},
{
"group": "Endpoints",
"openapi": "https://raw.githubusercontent.com/crewAIInc/crewAI/main/docs/enterprise-api.ko.yaml"
"pages": [
"ko/api-reference/introduction",
"ko/api-reference/inputs",
"ko/api-reference/kickoff",
"ko/api-reference/status"
]
}
]
},
@@ -1081,6 +1084,10 @@
"indexing": "all"
},
"redirects": [
{
"source": "/api-reference",
"destination": "/en/api-reference/introduction"
},
{
"source": "/introduction",
"destination": "/en/introduction"
@@ -1133,6 +1140,18 @@
"source": "/api-reference/:path*",
"destination": "/en/api-reference/:path*"
},
{
"source": "/en/api-reference",
"destination": "/en/api-reference/introduction"
},
{
"source": "/pt-BR/api-reference",
"destination": "/pt-BR/api-reference/introduction"
},
{
"source": "/ko/api-reference",
"destination": "/ko/api-reference/introduction"
},
{
"source": "/examples/:path*",
"destination": "/en/examples/:path*"

View File

@@ -0,0 +1,7 @@
---
title: "GET /inputs"
description: "Get required inputs for your crew"
openapi: "/enterprise-api.en.yaml GET /inputs"
---

View File

@@ -0,0 +1,7 @@
---
title: "POST /kickoff"
description: "Start a crew execution"
openapi: "/enterprise-api.en.yaml POST /kickoff"
---

View File

@@ -0,0 +1,7 @@
---
title: "GET /status/{kickoff_id}"
description: "Get execution status"
openapi: "/enterprise-api.en.yaml GET /status/{kickoff_id}"
---

View File

@@ -21,13 +21,17 @@ To use the training feature, follow these steps:
3. Run the following command:
```shell
crewai train -n <n_iterations> <filename> (optional)
crewai train -n <n_iterations> -f <filename.pkl>
```
<Tip>
Replace `<n_iterations>` with the desired number of training iterations and `<filename>` with the appropriate filename ending with `.pkl`.
</Tip>
### Training Your Crew Programmatically
<Note>
If you omit `-f`, the output defaults to `trained_agents_data.pkl` in the current working directory. You can pass an absolute path to control where the file is written.
</Note>
### Training your Crew programmatically
To train your crew programmatically, use the following steps:
@@ -51,19 +55,65 @@ except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
```
### Key Points to Note
## How trained data is used by agents
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
CrewAI uses the training artifacts in two ways: during training to incorporate your human feedback, and after training to guide agents with consolidated suggestions.
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
### Training data flow
Once the training is complete, your agents will be equipped with enhanced capabilities and knowledge, ready to tackle complex tasks and provide more consistent and valuable insights.
```mermaid
flowchart TD
A["Start training<br/>CLI: crewai train -n -f<br/>or Python: crew.train(...)"] --> B["Setup training mode<br/>- task.human_input = true<br/>- disable delegation<br/>- init training_data.pkl + trained file"]
Remember to regularly update and retrain your agents to ensure they stay up-to-date with the latest information and advancements in the field.
subgraph "Iterations"
direction LR
C["Iteration i<br/>initial_output"] --> D["User human_feedback"]
D --> E["improved_output"]
E --> F["Append to training_data.pkl<br/>by agent_id and iteration"]
end
Happy training with CrewAI! 🚀
B --> C
F --> G{"More iterations?"}
G -- "Yes" --> C
G -- "No" --> H["Evaluate per agent<br/>aggregate iterations"]
H --> I["Consolidate<br/>suggestions[] + quality + final_summary"]
I --> J["Save by agent role to trained file<br/>(default: trained_agents_data.pkl)"]
J --> K["Normal (non-training) runs"]
K --> L["Auto-load suggestions<br/>from trained_agents_data.pkl"]
L --> M["Append to prompt<br/>for consistent improvements"]
```
### During training runs
- On each iteration, the system records for every agent:
- `initial_output`: the agents first answer
- `human_feedback`: your inline feedback when prompted
- `improved_output`: the agents follow-up answer after feedback
- This data is stored in a working file named `training_data.pkl` keyed by the agents internal ID and iteration.
- While training is active, the agent automatically appends your prior human feedback to its prompt to enforce those instructions on subsequent attempts within the training session.
Training is interactive: tasks set `human_input = true`, so running in a non-interactive environment will block on user input.
### After training completes
- When `train(...)` finishes, CrewAI evaluates the collected training data per agent and produces a consolidated result containing:
- `suggestions`: clear, actionable instructions distilled from your feedback and the difference between initial/improved outputs
- `quality`: a 010 score capturing improvement
- `final_summary`: a step-by-step set of action items for future tasks
- These consolidated results are saved to the filename you pass to `train(...)` (default via CLI is `trained_agents_data.pkl`). Entries are keyed by the agents `role` so they can be applied across sessions.
- During normal (non-training) execution, each agent automatically loads its consolidated `suggestions` and appends them to the task prompt as mandatory instructions. This gives you consistent improvements without changing your agent definitions.
### File summary
- `training_data.pkl` (ephemeral, per-session):
- Structure: `agent_id -> { iteration_number: { initial_output, human_feedback, improved_output } }`
- Purpose: capture raw data and human feedback during training
- Location: saved in the current working directory (CWD)
- `trained_agents_data.pkl` (or your custom filename):
- Structure: `agent_role -> { suggestions: string[], quality: number, final_summary: string }`
- Purpose: persist consolidated guidance for future runs
- Location: written to the CWD by default; use `-f` to set a custom (including absolute) path
## Small Language Model Considerations
@@ -129,3 +179,18 @@ Happy training with CrewAI! 🚀
</Warning>
</Tab>
</Tabs>
### Key Points to Note
- **Positive Integer Requirement:** Ensure that the number of iterations (`n_iterations`) is a positive integer. The code will raise a `ValueError` if this condition is not met.
- **Filename Requirement:** Ensure that the filename ends with `.pkl`. The code will raise a `ValueError` if this condition is not met.
- **Error Handling:** The code handles subprocess errors and unexpected exceptions, providing error messages to the user.
- Trained guidance is applied at prompt time; it does not modify your Python/YAML agent configuration.
- Agents automatically load trained suggestions from a file named `trained_agents_data.pkl` located in the current working directory. If you trained to a different filename, either rename it to `trained_agents_data.pkl` before running, or adjust the loader in code.
- You can change the output filename when calling `crewai train` with `-f/--filename`. Absolute paths are supported if you want to save outside the CWD.
It is important to note that the training process may take some time, depending on the complexity of your agents and will also require your feedback on each iteration.
Once the training is complete, your agents will be equipped with enhanced capabilities and knowledge, ready to tackle complex tasks and provide more consistent and valuable insights.
Remember to regularly update and retrain your agents to ensure they stay up-to-date with the latest information and advancements in the field.

View File

@@ -0,0 +1,7 @@
---
title: "GET /inputs"
description: "크루가 필요로 하는 입력 확인"
openapi: "/enterprise-api.ko.yaml GET /inputs"
---

View File

@@ -0,0 +1,7 @@
---
title: "POST /kickoff"
description: "크루 실행 시작"
openapi: "/enterprise-api.ko.yaml POST /kickoff"
---

View File

@@ -0,0 +1,7 @@
---
title: "GET /status/{kickoff_id}"
description: "실행 상태 조회"
openapi: "/enterprise-api.ko.yaml GET /status/{kickoff_id}"
---

View File

@@ -0,0 +1,7 @@
---
title: "GET /inputs"
description: "Obter entradas necessárias para sua crew"
openapi: "/enterprise-api.pt-BR.yaml GET /inputs"
---

View File

@@ -0,0 +1,7 @@
---
title: "POST /kickoff"
description: "Iniciar a execução da crew"
openapi: "/enterprise-api.pt-BR.yaml POST /kickoff"
---

View File

@@ -0,0 +1,7 @@
---
title: "GET /status/{kickoff_id}"
description: "Obter o status da execução"
openapi: "/enterprise-api.pt-BR.yaml GET /status/{kickoff_id}"
---