Lorenze/new version 0.140.0 (#3106)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled

* fix: clean up whitespace and update dependencies

* Removed unnecessary whitespace in multiple files for consistency.
* Updated `crewai-tools` dependency version to `0.49.0` in `pyproject.toml` and related template files.
* Bumped CrewAI version to `0.140.0` in `__init__.py` for alignment with updated dependencies.

* chore: update pyproject.toml to exclude documentation from build targets

* Added exclusions for the `docs` directory in both wheel and sdist build targets to streamline the build process and reduce unnecessary file inclusion.

* chore: update uv.lock for dependency resolution and Python version compatibility

* Incremented revision to 2.
* Updated resolution markers to include support for Python 3.13 and adjusted platform checks for better compatibility.
* Added new wheel URLs for zstandard version 0.23.0 to ensure availability across various platforms.

* chore: pin json-repair dependency version in pyproject.toml and uv.lock

* Updated json-repair dependency from a range to a specific version (0.25.2) for consistency and to avoid potential compatibility issues.
* Adjusted related entries in uv.lock to reflect the pinned version, ensuring alignment across project files.

* chore: pin agentops dependency version in pyproject.toml and uv.lock

* Updated agentops dependency from a range to a specific version (0.3.18) for consistency and to avoid potential compatibility issues.
* Adjusted related entries in uv.lock to reflect the pinned version, ensuring alignment across project files.

* test: enhance cache call assertions in crew tests

* Improved the test for cache hitting between agents by filtering mock calls to ensure they include the expected 'tool' and 'input' keywords.
* Added assertions to verify the number of cache calls and their expected arguments, enhancing the reliability of the test.
* Cleaned up whitespace and improved readability in various test cases for better maintainability.
This commit is contained in:
Lorenze Jay
2025-07-02 15:22:18 -07:00
committed by GitHub
parent a77dcdd419
commit 748c25451c
9 changed files with 3460 additions and 2432 deletions

View File

@@ -260,7 +260,7 @@ def handle_success(self):
# Handle success case
pass
@listen("failure_path")
@listen("failure_path")
def handle_failure(self):
# Handle failure case
pass
@@ -288,7 +288,7 @@ class SelectiveFlow(Flow):
def critical_step(self):
# Only this method's state is persisted
self.state["important_data"] = "value"
@start()
def temporary_step(self):
# This method's state is not persisted
@@ -322,20 +322,20 @@ flow.plot("workflow_diagram") # Generates HTML visualization
class CyclicFlow(Flow):
max_iterations = 5
current_iteration = 0
@start("loop")
def process_iteration(self):
if self.current_iteration >= self.max_iterations:
return
# Process current iteration
self.current_iteration += 1
@router(process_iteration)
def check_continue(self):
if self.current_iteration < self.max_iterations:
return "loop" # Continue cycling
return "complete"
@listen("complete")
def finalize(self):
# Final processing
@@ -369,7 +369,7 @@ def risky_operation(self):
self.state["success"] = False
return None
@listen(risky_operation)
@listen(risky_operation)
def handle_result(self, result):
if self.state.get("success", False):
# Handle success case
@@ -390,7 +390,7 @@ class CrewOrchestrationFlow(Flow[WorkflowState]):
result = research_crew.crew().kickoff(inputs={"topic": self.state.research_topic})
self.state.research_results = result.raw
return result
@listen(research_phase)
def analysis_phase(self, research_results):
analysis_crew = AnalysisCrew()
@@ -400,13 +400,13 @@ class CrewOrchestrationFlow(Flow[WorkflowState]):
})
self.state.analysis_results = result.raw
return result
@router(analysis_phase)
def decide_next_action(self):
if self.state.analysis_results.confidence > 0.7:
return "generate_report"
return "additional_research"
@listen("generate_report")
def final_report(self):
reporting_crew = ReportingCrew()
@@ -439,7 +439,7 @@ class CrewOrchestrationFlow(Flow[WorkflowState]):
## CrewAI Version Compatibility:
- Stay updated with CrewAI releases for new features and bug fixes
- Test crew functionality when upgrading CrewAI versions
- Use version constraints in pyproject.toml (e.g., "crewai[tools]>=0.134.0,<1.0.0")
- Use version constraints in pyproject.toml (e.g., "crewai[tools]>=0.140.0,<1.0.0")
- Monitor deprecation warnings for future compatibility
## Code Examples and Implementation Patterns
@@ -464,22 +464,22 @@ class ResearchOutput(BaseModel):
@CrewBase
class ResearchCrew():
"""Advanced research crew with structured outputs and validation"""
agents: List[BaseAgent]
tasks: List[Task]
@before_kickoff
def setup_environment(self):
"""Initialize environment before crew execution"""
print("🚀 Setting up research environment...")
# Validate API keys, create directories, etc.
@after_kickoff
def cleanup_and_report(self, output):
"""Handle post-execution tasks"""
print(f"✅ Research completed. Generated {len(output.tasks_output)} task outputs")
print(f"📊 Token usage: {output.token_usage}")
@agent
def researcher(self) -> Agent:
return Agent(
@@ -490,7 +490,7 @@ class ResearchCrew():
max_iter=15,
max_execution_time=1800
)
@agent
def analyst(self) -> Agent:
return Agent(
@@ -499,7 +499,7 @@ class ResearchCrew():
verbose=True,
memory=True
)
@task
def research_task(self) -> Task:
return Task(
@@ -507,7 +507,7 @@ class ResearchCrew():
agent=self.researcher(),
output_pydantic=ResearchOutput
)
@task
def validation_task(self) -> Task:
return Task(
@@ -517,7 +517,7 @@ class ResearchCrew():
guardrail=self.validate_research_quality,
max_retries=3
)
def validate_research_quality(self, output) -> tuple[bool, str]:
"""Custom guardrail to ensure research quality"""
content = output.raw
@@ -526,7 +526,7 @@ class ResearchCrew():
if not any(keyword in content.lower() for keyword in ['conclusion', 'finding', 'result']):
return False, "Missing key analytical elements."
return True, content
@crew
def crew(self) -> Crew:
return Crew(
@@ -557,13 +557,13 @@ class RobustSearchTool(BaseTool):
name: str = "robust_search"
description: str = "Perform web search with retry logic and error handling"
args_schema: Type[BaseModel] = SearchInput
def __init__(self, api_key: Optional[str] = None, **kwargs):
super().__init__(**kwargs)
self.api_key = api_key or os.getenv("SEARCH_API_KEY")
self.rate_limit_delay = 1.0
self.last_request_time = 0
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10)
@@ -575,43 +575,43 @@ class RobustSearchTool(BaseTool):
time_since_last = time.time() - self.last_request_time
if time_since_last < self.rate_limit_delay:
time.sleep(self.rate_limit_delay - time_since_last)
# Input validation
if not query or len(query.strip()) == 0:
return "Error: Empty search query provided"
if len(query) > 500:
return "Error: Search query too long (max 500 characters)"
# Perform search
results = self._perform_search(query, max_results, timeout)
self.last_request_time = time.time()
return self._format_results(results)
except requests.exceptions.Timeout:
return f"Search timed out after {timeout} seconds"
except requests.exceptions.RequestException as e:
return f"Search failed due to network error: {str(e)}"
except Exception as e:
return f"Unexpected error during search: {str(e)}"
def _perform_search(self, query: str, max_results: int, timeout: int) -> List[dict]:
"""Implement actual search logic here"""
# Your search API implementation
pass
def _format_results(self, results: List[dict]) -> str:
"""Format search results for LLM consumption"""
if not results:
return "No results found for the given query."
formatted = "Search Results:\n\n"
for i, result in enumerate(results[:10], 1):
formatted += f"{i}. {result.get('title', 'No title')}\n"
formatted += f" URL: {result.get('url', 'No URL')}\n"
formatted += f" Summary: {result.get('snippet', 'No summary')}\n\n"
return formatted
```
@@ -623,20 +623,20 @@ from crewai.memory.storage.mem0_storage import Mem0Storage
class AdvancedMemoryManager:
"""Enhanced memory management for CrewAI applications"""
def __init__(self, crew, config: dict = None):
self.crew = crew
self.config = config or {}
self.setup_memory_systems()
def setup_memory_systems(self):
"""Configure multiple memory systems"""
# Short-term memory for current session
self.short_term = ShortTermMemory()
# Long-term memory for cross-session persistence
self.long_term = LongTermMemory()
# External memory with Mem0 (if configured)
if self.config.get('use_external_memory'):
self.external = ExternalMemory.create_storage(
@@ -649,8 +649,8 @@ class AdvancedMemoryManager:
}
}
)
def save_with_context(self, content: str, memory_type: str = "short_term",
def save_with_context(self, content: str, memory_type: str = "short_term",
metadata: dict = None, agent: str = None):
"""Save content with enhanced metadata"""
enhanced_metadata = {
@@ -659,14 +659,14 @@ class AdvancedMemoryManager:
"crew_type": self.crew.__class__.__name__,
**(metadata or {})
}
if memory_type == "short_term":
self.short_term.save(content, enhanced_metadata, agent)
elif memory_type == "long_term":
self.long_term.save(content, enhanced_metadata, agent)
elif memory_type == "external" and hasattr(self, 'external'):
self.external.save(content, enhanced_metadata, agent)
def search_across_memories(self, query: str, limit: int = 5) -> dict:
"""Search across all memory systems"""
results = {
@@ -674,23 +674,23 @@ class AdvancedMemoryManager:
"long_term": [],
"external": []
}
# Search short-term memory
results["short_term"] = self.short_term.search(query, limit=limit)
# Search long-term memory
results["long_term"] = self.long_term.search(query, limit=limit)
# Search external memory (if available)
if hasattr(self, 'external'):
results["external"] = self.external.search(query, limit=limit)
return results
def cleanup_old_memories(self, days_threshold: int = 30):
"""Clean up old memories based on age"""
cutoff_time = time.time() - (days_threshold * 24 * 60 * 60)
# Implement cleanup logic based on timestamps in metadata
# This would vary based on your specific storage implementation
pass
@@ -719,12 +719,12 @@ class TaskMetrics:
class CrewMonitor:
"""Comprehensive monitoring for CrewAI applications"""
def __init__(self, crew_name: str, log_level: str = "INFO"):
self.crew_name = crew_name
self.metrics: List[TaskMetrics] = []
self.session_start = time.time()
# Setup logging
logging.basicConfig(
level=getattr(logging, log_level),
@@ -735,7 +735,7 @@ class CrewMonitor:
]
)
self.logger = logging.getLogger(f"CrewAI.{crew_name}")
def start_task_monitoring(self, task_name: str, agent_name: str) -> dict:
"""Start monitoring a task execution"""
context = {
@@ -743,16 +743,16 @@ class CrewMonitor:
"agent_name": agent_name,
"start_time": time.time()
}
self.logger.info(f"Task started: {task_name} by {agent_name}")
return context
def end_task_monitoring(self, context: dict, success: bool = True,
def end_task_monitoring(self, context: dict, success: bool = True,
tokens_used: int = 0, error: str = None):
"""End monitoring and record metrics"""
end_time = time.time()
duration = end_time - context["start_time"]
# Get memory usage (if psutil is available)
memory_usage = None
try:
@@ -761,7 +761,7 @@ class CrewMonitor:
memory_usage = process.memory_info().rss / 1024 / 1024 # MB
except ImportError:
pass
metrics = TaskMetrics(
task_name=context["task_name"],
agent_name=context["agent_name"],
@@ -773,29 +773,29 @@ class CrewMonitor:
error_message=error,
memory_usage_mb=memory_usage
)
self.metrics.append(metrics)
# Log the completion
status = "SUCCESS" if success else "FAILED"
self.logger.info(f"Task {status}: {context['task_name']} "
f"(Duration: {duration:.2f}s, Tokens: {tokens_used})")
if error:
self.logger.error(f"Task error: {error}")
def get_performance_summary(self) -> Dict[str, Any]:
"""Generate comprehensive performance summary"""
if not self.metrics:
return {"message": "No metrics recorded yet"}
successful_tasks = [m for m in self.metrics if m.success]
failed_tasks = [m for m in self.metrics if not m.success]
total_duration = sum(m.duration for m in self.metrics)
total_tokens = sum(m.tokens_used for m in self.metrics)
avg_duration = total_duration / len(self.metrics)
return {
"crew_name": self.crew_name,
"session_duration": time.time() - self.session_start,
@@ -811,7 +811,7 @@ class CrewMonitor:
"most_token_intensive": max(self.metrics, key=lambda x: x.tokens_used).task_name if self.metrics else None,
"common_errors": self._get_common_errors()
}
def _get_common_errors(self) -> Dict[str, int]:
"""Get frequency of common errors"""
error_counts = {}
@@ -819,20 +819,20 @@ class CrewMonitor:
if metric.error_message:
error_counts[metric.error_message] = error_counts.get(metric.error_message, 0) + 1
return dict(sorted(error_counts.items(), key=lambda x: x[1], reverse=True))
def export_metrics(self, filename: str = None) -> str:
"""Export metrics to JSON file"""
if not filename:
filename = f"crew_metrics_{self.crew_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
export_data = {
"summary": self.get_performance_summary(),
"detailed_metrics": [asdict(m) for m in self.metrics]
}
with open(filename, 'w') as f:
json.dump(export_data, f, indent=2, default=str)
self.logger.info(f"Metrics exported to {filename}")
return filename
@@ -847,10 +847,10 @@ def monitored_research_task(self) -> Task:
if context:
tokens = getattr(task_output, 'token_usage', {}).get('total', 0)
monitor.end_task_monitoring(context, success=True, tokens_used=tokens)
# Start monitoring would be called before task execution
# This is a simplified example - in practice you'd integrate this into the task execution flow
return Task(
config=self.tasks_config['research_task'],
agent=self.researcher(),
@@ -872,7 +872,7 @@ class ErrorSeverity(Enum):
class CrewError(Exception):
"""Base exception for CrewAI applications"""
def __init__(self, message: str, severity: ErrorSeverity = ErrorSeverity.MEDIUM,
def __init__(self, message: str, severity: ErrorSeverity = ErrorSeverity.MEDIUM,
context: dict = None):
super().__init__(message)
self.severity = severity
@@ -893,19 +893,19 @@ class ConfigurationError(CrewError):
class ErrorHandler:
"""Centralized error handling for CrewAI applications"""
def __init__(self, crew_name: str):
self.crew_name = crew_name
self.error_log: List[CrewError] = []
self.recovery_strategies: Dict[type, Callable] = {}
def register_recovery_strategy(self, error_type: type, strategy: Callable):
"""Register a recovery strategy for specific error types"""
self.recovery_strategies[error_type] = strategy
def handle_error(self, error: Exception, context: dict = None) -> Any:
"""Handle errors with appropriate recovery strategies"""
# Convert to CrewError if needed
if not isinstance(error, CrewError):
crew_error = CrewError(
@@ -915,11 +915,11 @@ class ErrorHandler:
)
else:
crew_error = error
# Log the error
self.error_log.append(crew_error)
self._log_error(crew_error)
# Apply recovery strategy if available
error_type = type(error)
if error_type in self.recovery_strategies:
@@ -931,21 +931,21 @@ class ErrorHandler:
ErrorSeverity.HIGH,
{"original_error": str(error), "recovery_error": str(recovery_error)}
))
# If critical, re-raise
if crew_error.severity == ErrorSeverity.CRITICAL:
raise crew_error
return None
def _log_error(self, error: CrewError):
"""Log error with appropriate level based on severity"""
logger = logging.getLogger(f"CrewAI.{self.crew_name}.ErrorHandler")
error_msg = f"[{error.severity.value.upper()}] {error}"
if error.context:
error_msg += f" | Context: {error.context}"
if error.severity in [ErrorSeverity.HIGH, ErrorSeverity.CRITICAL]:
logger.error(error_msg)
logger.error(f"Stack trace: {traceback.format_exc()}")
@@ -953,16 +953,16 @@ class ErrorHandler:
logger.warning(error_msg)
else:
logger.info(error_msg)
def get_error_summary(self) -> Dict[str, Any]:
"""Get summary of errors encountered"""
if not self.error_log:
return {"total_errors": 0}
severity_counts = {}
for error in self.error_log:
severity_counts[error.severity.value] = severity_counts.get(error.severity.value, 0) + 1
return {
"total_errors": len(self.error_log),
"severity_breakdown": severity_counts,
@@ -1004,7 +1004,7 @@ def robust_task(self) -> Task:
# Use fallback response
return "Task failed, using fallback response"
return wrapper
return Task(
config=self.tasks_config['research_task'],
agent=self.researcher()
@@ -1020,60 +1020,60 @@ from pydantic import BaseSettings, Field, validator
class Environment(str, Enum):
DEVELOPMENT = "development"
TESTING = "testing"
TESTING = "testing"
STAGING = "staging"
PRODUCTION = "production"
class CrewAISettings(BaseSettings):
"""Comprehensive settings management for CrewAI applications"""
# Environment
environment: Environment = Field(default=Environment.DEVELOPMENT)
debug: bool = Field(default=True)
# API Keys (loaded from environment)
openai_api_key: Optional[str] = Field(default=None, env="OPENAI_API_KEY")
anthropic_api_key: Optional[str] = Field(default=None, env="ANTHROPIC_API_KEY")
serper_api_key: Optional[str] = Field(default=None, env="SERPER_API_KEY")
mem0_api_key: Optional[str] = Field(default=None, env="MEM0_API_KEY")
# CrewAI Configuration
crew_max_rpm: int = Field(default=100)
crew_max_execution_time: int = Field(default=3600) # 1 hour
default_llm_model: str = Field(default="gpt-4")
fallback_llm_model: str = Field(default="gpt-3.5-turbo")
# Memory and Storage
crewai_storage_dir: str = Field(default="./storage", env="CREWAI_STORAGE_DIR")
memory_enabled: bool = Field(default=True)
memory_cleanup_interval: int = Field(default=86400) # 24 hours in seconds
# Performance
enable_caching: bool = Field(default=True)
max_retries: int = Field(default=3)
retry_delay: float = Field(default=1.0)
# Monitoring
enable_monitoring: bool = Field(default=True)
log_level: str = Field(default="INFO")
metrics_export_interval: int = Field(default=3600) # 1 hour
# Security
input_sanitization: bool = Field(default=True)
max_input_length: int = Field(default=10000)
allowed_file_types: list = Field(default=["txt", "md", "pdf", "docx"])
@validator('environment', pre=True)
def set_debug_based_on_env(cls, v):
return v
@validator('debug')
def set_debug_from_env(cls, v, values):
env = values.get('environment')
if env == Environment.PRODUCTION:
return False
return v
@validator('openai_api_key')
def validate_openai_key(cls, v):
if not v:
@@ -1081,15 +1081,15 @@ class CrewAISettings(BaseSettings):
if not v.startswith('sk-'):
raise ValueError("Invalid OpenAI API key format")
return v
@property
def is_production(self) -> bool:
return self.environment == Environment.PRODUCTION
@property
def is_development(self) -> bool:
return self.environment == Environment.DEVELOPMENT
def get_llm_config(self) -> Dict[str, Any]:
"""Get LLM configuration based on environment"""
config = {
@@ -1098,12 +1098,12 @@ class CrewAISettings(BaseSettings):
"max_tokens": 4000 if self.is_production else 2000,
"timeout": 60
}
if self.is_development:
config["model"] = self.fallback_llm_model
return config
def get_memory_config(self) -> Dict[str, Any]:
"""Get memory configuration"""
return {
@@ -1112,7 +1112,7 @@ class CrewAISettings(BaseSettings):
"cleanup_interval": self.memory_cleanup_interval,
"provider": "mem0" if self.mem0_api_key and self.is_production else "local"
}
class Config:
env_file = ".env"
env_file_encoding = 'utf-8'
@@ -1125,25 +1125,25 @@ settings = CrewAISettings()
@CrewBase
class ConfigurableCrew():
"""Crew that uses centralized configuration"""
def __init__(self):
self.settings = settings
self.validate_configuration()
def validate_configuration(self):
"""Validate configuration before crew execution"""
required_keys = [self.settings.openai_api_key]
if not all(required_keys):
raise ConfigurationError("Missing required API keys")
if not os.path.exists(self.settings.crewai_storage_dir):
os.makedirs(self.settings.crewai_storage_dir, exist_ok=True)
@agent
def adaptive_agent(self) -> Agent:
"""Agent that adapts to configuration"""
llm_config = self.settings.get_llm_config()
return Agent(
config=self.agents_config['researcher'],
llm=llm_config["model"],
@@ -1163,7 +1163,7 @@ from crewai.tasks.task_output import TaskOutput
class CrewAITestFramework:
"""Comprehensive testing framework for CrewAI applications"""
@staticmethod
def create_mock_agent(role: str = "test_agent", tools: list = None) -> Mock:
"""Create a mock agent for testing"""
@@ -1175,9 +1175,9 @@ class CrewAITestFramework:
mock_agent.llm = "gpt-3.5-turbo"
mock_agent.verbose = False
return mock_agent
@staticmethod
def create_mock_task_output(content: str, success: bool = True,
def create_mock_task_output(content: str, success: bool = True,
tokens: int = 100) -> TaskOutput:
"""Create a mock task output for testing"""
return TaskOutput(
@@ -1187,13 +1187,13 @@ class CrewAITestFramework:
pydantic=None,
json_dict=None
)
@staticmethod
def create_test_crew(agents: list = None, tasks: list = None) -> Crew:
"""Create a test crew with mock components"""
test_agents = agents or [CrewAITestFramework.create_mock_agent()]
test_tasks = tasks or []
return Crew(
agents=test_agents,
tasks=test_tasks,
@@ -1203,53 +1203,53 @@ class CrewAITestFramework:
# Example test cases
class TestResearchCrew:
"""Test cases for research crew functionality"""
def setup_method(self):
"""Setup test environment"""
self.framework = CrewAITestFramework()
self.mock_serper = Mock()
@patch('crewai_tools.SerperDevTool')
def test_agent_creation(self, mock_serper_tool):
"""Test agent creation with proper configuration"""
mock_serper_tool.return_value = self.mock_serper
crew = ResearchCrew()
researcher = crew.researcher()
assert researcher.role == "Senior Research Analyst"
assert len(researcher.tools) > 0
assert researcher.verbose is True
def test_task_validation(self):
"""Test task validation logic"""
crew = ResearchCrew()
# Test valid output
valid_output = self.framework.create_mock_task_output(
"This is a comprehensive research summary with conclusions and findings."
)
is_valid, message = crew.validate_research_quality(valid_output)
assert is_valid is True
# Test invalid output (too short)
invalid_output = self.framework.create_mock_task_output("Too short")
is_valid, message = crew.validate_research_quality(invalid_output)
assert is_valid is False
assert "brief" in message.lower()
@patch('requests.get')
def test_tool_error_handling(self, mock_requests):
"""Test tool error handling and recovery"""
# Simulate network error
mock_requests.side_effect = requests.exceptions.RequestException("Network error")
tool = RobustSearchTool()
result = tool._run("test query")
assert "network error" in result.lower()
assert "failed" in result.lower()
@pytest.mark.asyncio
async def test_crew_execution_flow(self):
"""Test complete crew execution with mocked dependencies"""
@@ -1257,18 +1257,18 @@ class TestResearchCrew:
mock_execute.return_value = self.framework.create_mock_task_output(
"Research completed successfully with findings and recommendations."
)
crew = ResearchCrew()
result = crew.crew().kickoff(inputs={"topic": "AI testing"})
assert result is not None
assert "successfully" in result.raw.lower()
def test_memory_integration(self):
"""Test memory system integration"""
crew = ResearchCrew()
memory_manager = AdvancedMemoryManager(crew)
# Test saving to memory
test_content = "Important research finding about AI"
memory_manager.save_with_context(
@@ -1277,34 +1277,34 @@ class TestResearchCrew:
metadata={"importance": "high"},
agent="researcher"
)
# Test searching memory
results = memory_manager.search_across_memories("AI research")
assert "short_term" in results
def test_error_handling_workflow(self):
"""Test error handling and recovery mechanisms"""
error_handler = ErrorHandler("test_crew")
# Test error registration and handling
test_error = TaskExecutionError("Test task failed", ErrorSeverity.MEDIUM)
result = error_handler.handle_error(test_error)
assert len(error_handler.error_log) == 1
assert error_handler.error_log[0].severity == ErrorSeverity.MEDIUM
def test_configuration_validation(self):
"""Test configuration validation"""
# Test with missing API key
with patch.dict(os.environ, {}, clear=True):
with pytest.raises(ValueError):
settings = CrewAISettings()
# Test with valid configuration
with patch.dict(os.environ, {"OPENAI_API_KEY": "sk-test-key"}):
settings = CrewAISettings()
assert settings.openai_api_key == "sk-test-key"
@pytest.mark.integration
def test_end_to_end_workflow(self):
"""Integration test for complete workflow"""
@@ -1315,41 +1315,41 @@ class TestResearchCrew:
# Performance testing
class TestCrewPerformance:
"""Performance tests for CrewAI applications"""
def test_memory_usage(self):
"""Test memory usage during crew execution"""
import psutil
import gc
process = psutil.Process()
initial_memory = process.memory_info().rss
# Create and run crew multiple times
for i in range(10):
crew = ResearchCrew()
# Simulate crew execution
del crew
gc.collect()
final_memory = process.memory_info().rss
memory_increase = final_memory - initial_memory
# Assert memory increase is reasonable (less than 100MB)
assert memory_increase < 100 * 1024 * 1024
def test_concurrent_execution(self):
"""Test concurrent crew execution"""
import concurrent.futures
def run_crew(crew_id):
crew = ResearchCrew()
# Simulate execution
return f"crew_{crew_id}_completed"
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
futures = [executor.submit(run_crew, i) for i in range(5)]
results = [future.result() for future in futures]
assert len(results) == 5
assert all("completed" in result for result in results)
@@ -1400,7 +1400,7 @@ class TestCrewPerformance:
### Development:
1. Always use .env files for sensitive configuration
2. Implement comprehensive error handling and logging
2. Implement comprehensive error handling and logging
3. Use structured outputs with Pydantic for reliability
4. Test crew functionality with different input scenarios
5. Follow CrewAI patterns and conventions consistently
@@ -1426,4 +1426,4 @@ class TestCrewPerformance:
5. Use async patterns for I/O-bound operations
6. Implement proper connection pooling and resource management
7. Profile and optimize critical paths
8. Plan for horizontal scaling when needed
8. Plan for horizontal scaling when needed

View File

@@ -33,7 +33,7 @@ dependencies = [
"click>=8.1.7",
"appdirs>=1.4.4",
"jsonref>=1.1.0",
"json-repair>=0.25.2",
"json-repair==0.25.2",
"uv>=0.4.25",
"tomli-w>=1.1.0",
"tomli>=2.0.2",
@@ -47,11 +47,11 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools~=0.48.0"]
tools = ["crewai-tools~=0.49.0"]
embeddings = [
"tiktoken~=0.8.0"
]
agentops = ["agentops>=0.3.0"]
agentops = ["agentops==0.3.18"]
pdfplumber = [
"pdfplumber>=0.11.4",
]
@@ -123,3 +123,15 @@ path = "src/crewai/__init__.py"
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[tool.hatch.build.targets.wheel]
exclude = [
"docs/**",
"docs/",
]
[tool.hatch.build.targets.sdist]
exclude = [
"docs/**",
"docs/",
]

View File

@@ -28,19 +28,19 @@ _telemetry_submitted = False
def _track_install():
"""Track package installation/first-use via Scarf analytics."""
global _telemetry_submitted
if _telemetry_submitted or Telemetry._is_telemetry_disabled():
return
try:
pixel_url = "https://api.scarf.sh/v2/packages/CrewAI/crewai/docs/00f2dad1-8334-4a39-934e-003b2e1146db"
req = urllib.request.Request(pixel_url)
req.add_header('User-Agent', f'CrewAI-Python/{__version__}')
with urllib.request.urlopen(req, timeout=2): # nosec B310
_telemetry_submitted = True
except Exception:
pass
@@ -54,7 +54,7 @@ def _track_install_async():
_track_install_async()
__version__ = "0.134.0"
__version__ = "0.140.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.134.0,<1.0.0"
"crewai[tools]>=0.140.0,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.134.0,<1.0.0",
"crewai[tools]>=0.140.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.134.0"
"crewai[tools]>=0.140.0"
]
[tool.crewai]

File diff suppressed because one or more lines are too long

View File

@@ -52,6 +52,7 @@ from crewai.utilities.events.memory_events import (
MemoryRetrievalCompletedEvent,
)
@pytest.fixture
def ceo():
return Agent(
@@ -935,12 +936,27 @@ def test_cache_hitting_between_agents(researcher, writer, ceo):
read.return_value = "12"
crew.kickoff()
assert read.call_count == 2, "read was not called exactly twice"
# Check if read was called with the expected arguments
expected_calls = [
call(tool="multiplier", input={"first_number": 2, "second_number": 6}),
call(tool="multiplier", input={"first_number": 2, "second_number": 6}),
# Filter the mock calls to only include the ones with 'tool' and 'input' keywords
cache_calls = [
call
for call in read.call_args_list
if len(call.kwargs) == 2
and "tool" in call.kwargs
and "input" in call.kwargs
]
read.assert_has_calls(expected_calls, any_order=False)
# Check if we have the expected number of cache calls
assert len(cache_calls) == 2, f"Expected 2 cache calls, got {len(cache_calls)}"
# Check if both calls were made with the expected arguments
expected_call = call(
tool="multiplier", input={"first_number": 2, "second_number": 6}
)
assert cache_calls[0] == expected_call, f"First call mismatch: {cache_calls[0]}"
assert (
cache_calls[1] == expected_call
), f"Second call mismatch: {cache_calls[1]}"
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -1797,7 +1813,7 @@ def test_hierarchical_kickoff_usage_metrics_include_manager(researcher):
agent=researcher, # *regular* agent
)
# ── 2. Stub out each agents _token_process.get_summary() ───────────────────
# ── 2. Stub out each agent's _token_process.get_summary() ───────────────────
researcher_metrics = UsageMetrics(
total_tokens=120, prompt_tokens=80, completion_tokens=40, successful_requests=2
)
@@ -1821,7 +1837,7 @@ def test_hierarchical_kickoff_usage_metrics_include_manager(researcher):
process=Process.hierarchical,
)
# We dont care about LLM output here; patch execute_sync to avoid network
# We don't care about LLM output here; patch execute_sync to avoid network
with patch.object(
Task,
"execute_sync",
@@ -2489,17 +2505,19 @@ def test_using_contextual_memory():
memory=True,
)
with patch.object(ContextualMemory, "build_context_for_task", return_value="") as contextual_mem:
with patch.object(
ContextualMemory, "build_context_for_task", return_value=""
) as contextual_mem:
crew.kickoff()
contextual_mem.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_memory_events_are_emitted():
events = defaultdict(list)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(MemorySaveStartedEvent)
def handle_memory_save_started(source, event):
events["MemorySaveStartedEvent"].append(event)
@@ -2562,6 +2580,7 @@ def test_memory_events_are_emitted():
assert len(events["MemoryRetrievalStartedEvent"]) == 1
assert len(events["MemoryRetrievalCompletedEvent"]) == 1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory_with_long_term_memory():
from unittest.mock import patch
@@ -2585,7 +2604,9 @@ def test_using_contextual_memory_with_long_term_memory():
long_term_memory=LongTermMemory(),
)
with patch.object(ContextualMemory, "build_context_for_task", return_value="") as contextual_mem:
with patch.object(
ContextualMemory, "build_context_for_task", return_value=""
) as contextual_mem:
crew.kickoff()
contextual_mem.assert_called_once()
assert crew.memory is False
@@ -2686,7 +2707,9 @@ def test_using_contextual_memory_with_short_term_memory():
short_term_memory=ShortTermMemory(),
)
with patch.object(ContextualMemory, "build_context_for_task", return_value="") as contextual_mem:
with patch.object(
ContextualMemory, "build_context_for_task", return_value=""
) as contextual_mem:
crew.kickoff()
contextual_mem.assert_called_once()
assert crew.memory is False
@@ -2715,7 +2738,9 @@ def test_disabled_memory_using_contextual_memory():
memory=False,
)
with patch.object(ContextualMemory, "build_context_for_task", return_value="") as contextual_mem:
with patch.object(
ContextualMemory, "build_context_for_task", return_value=""
) as contextual_mem:
crew.kickoff()
contextual_mem.assert_not_called()

5400
uv.lock generated

File diff suppressed because it is too large Load Diff