* initial knowledge

* WIP

* Adding core knowledge sources

* Improve types and better support for file paths

* added additional sources

* fix linting

* update yaml to include optional deps

* adding in lorenze feedback

* ensure embeddings are persisted

* improvements all around Knowledge class

* return this

* properly reset memory

* properly reset memory+knowledge

* consolodation and improvements

* linted

* cleanup rm unused embedder

* fix test

* fix duplicate

* generating cassettes for knowledge test

* updated default embedder

* None embedder to use default on pipeline cloning

* improvements

* fixed text_file_knowledge

* mypysrc fixes

* type check fixes

* added extra cassette

* just mocks

* linted

* mock knowledge query to not spin up db

* linted

* verbose run

* put a flag

* fix

* adding docs

* better docs

* improvements from review

* more docs

* linted

* rm print

* more fixes

* clearer docs

* added docstrings and type hints for cli

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
This commit is contained in:
Brandon Hancock (bhancock_ai)
2024-11-20 18:40:08 -05:00
committed by GitHub
parent fde1ee45f9
commit 14a36d3f5e
37 changed files with 2302 additions and 266 deletions

View File

@@ -26,7 +26,7 @@ jobs:
run: uv python install 3.11.9
- name: Install the project
run: uv sync --dev
run: uv sync --dev --all-extras
- name: Run tests
run: uv run pytest tests
run: uv run pytest tests -vv

View File

@@ -0,0 +1,75 @@
---
title: Knowledge
description: What is knowledge in CrewAI and how to use it.
icon: book
---
# Using Knowledge in CrewAI
## Introduction
The Knowledge class in CrewAI provides a powerful way to manage and query knowledge sources for your AI agents. This guide will show you how to implement knowledge management in your CrewAI projects.
Additionally, we have specific tools for generate knowledge sources for strings, text files, PDF's, and Spreadsheets. You can expand on any source type by extending the `KnowledgeSource` class.
## Basic Implementation
Here's a simple example of how to use the Knowledge class:
```python
from crewai import Agent, Task, Crew, Process, LLM
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
# Create a knowledge source
content = "Users name is John. He is 30 years old and lives in San Francisco."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
llm = LLM(model="gpt-4o-mini", temperature=0)
# Create an agent with the knowledge store
agent = Agent(
role="About User",
goal="You know everything about the user.",
backstory="""You are a master at understanding people and their preferences.""",
verbose=True,
allow_delegation=False,
llm=llm,
)
task = Task(
description="Answer the following questions about the user: {question}",
expected_output="An answer to the question.",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
knowledge={"sources": [string_source], "metadata": {"preference": "personal"}}, # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
)
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
```
## Embedder Configuration
You can also configure the embedder for the knowledge store. This is useful if you want to use a different embedder for the knowledge store than the one used for the agents.
```python
...
string_source = StringKnowledgeSource(
content="Users name is John. He is 30 years old and lives in San Francisco.",
metadata={"preference": "personal"}
)
crew = Crew(
...
knowledge={
"sources": [string_source],
"metadata": {"preference": "personal"},
"embedder_config": {"provider": "openai", "config": {"model": "text-embedding-3-small"}},
},
)
```

View File

@@ -39,6 +39,16 @@ Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.14.0"]
agentops = ["agentops>=0.3.0"]
fastembed = ["fastembed>=0.4.1"]
pdfplumber = [
"pdfplumber>=0.11.4",
]
pandas = [
"pandas>=2.2.3",
]
openpyxl = [
"openpyxl>=3.1.5",
]
mem0 = ["mem0ai>=0.1.29"]
[tool.uv]

View File

@@ -1,7 +1,9 @@
import warnings
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.flow.flow import Flow
from crewai.knowledge.knowledge import Knowledge
from crewai.llm import LLM
from crewai.pipeline import Pipeline
from crewai.process import Process
@@ -15,4 +17,14 @@ warnings.filterwarnings(
module="pydantic.main",
)
__version__ = "0.80.0"
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]
__all__ = [
"Agent",
"Crew",
"Process",
"Task",
"Pipeline",
"Router",
"LLM",
"Flow",
"Knowledge",
]

View File

@@ -11,8 +11,8 @@ from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.cli.constants import ENV_VARS
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.token_counter_callback import TokenCalcHandler
@@ -52,6 +52,7 @@ class Agent(BaseAgent):
role: The role of the agent.
goal: The objective of the agent.
backstory: The backstory of the agent.
knowledge: The knowledge base of the agent.
config: Dict representation of agent configuration.
llm: The language model that will run the agent.
function_calling_llm: The language model that will handle the tool calling for this agent, it overrides the crew function_calling_llm.
@@ -272,6 +273,18 @@ class Agent(BaseAgent):
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
# Integrate the knowledge base
if self.crew and self.crew.knowledge:
knowledge_snippets = self.crew.knowledge.query([task.prompt()])
valid_snippets = [
result["context"]
for result in knowledge_snippets
if result and result.get("context")
]
if valid_snippets:
formatted_knowledge = "\n".join(valid_snippets)
task_prompt += f"\n\nAdditional Information:\n{formatted_knowledge}"
tools = tools or self.tools or []
self.create_agent_executor(tools=tools, task=task)

View File

@@ -136,6 +136,7 @@ def log_tasks_outputs() -> None:
@click.option("-l", "--long", is_flag=True, help="Reset LONG TERM memory")
@click.option("-s", "--short", is_flag=True, help="Reset SHORT TERM memory")
@click.option("-e", "--entities", is_flag=True, help="Reset ENTITIES memory")
@click.option("-kn", "--knowledge", is_flag=True, help="Reset KNOWLEDGE storage")
@click.option(
"-k",
"--kickoff-outputs",
@@ -143,17 +144,24 @@ def log_tasks_outputs() -> None:
help="Reset LATEST KICKOFF TASK OUTPUTS",
)
@click.option("-a", "--all", is_flag=True, help="Reset ALL memories")
def reset_memories(long, short, entities, kickoff_outputs, all):
def reset_memories(
long: bool,
short: bool,
entities: bool,
knowledge: bool,
kickoff_outputs: bool,
all: bool,
) -> None:
"""
Reset the crew memories (long, short, entity, latest_crew_kickoff_ouputs). This will delete all the data saved.
"""
try:
if not all and not (long or short or entities or kickoff_outputs):
if not all and not (long or short or entities or knowledge or kickoff_outputs):
click.echo(
"Please specify at least one memory type to reset using the appropriate flags."
)
return
reset_memories_command(long, short, entities, kickoff_outputs, all)
reset_memories_command(long, short, entities, knowledge, kickoff_outputs, all)
except Exception as e:
click.echo(f"An error occurred while resetting memories: {e}", err=True)

View File

@@ -5,9 +5,17 @@ from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
def reset_memories_command(
long,
short,
entity,
knowledge,
kickoff_outputs,
all,
) -> None:
"""
Reset the crew memories.
@@ -17,6 +25,7 @@ def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
entity (bool): Whether to reset the entity memory.
kickoff_outputs (bool): Whether to reset the latest kickoff task outputs.
all (bool): Whether to reset all memories.
knowledge (bool): Whether to reset the knowledge.
"""
try:
@@ -25,6 +34,7 @@ def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
EntityMemory().reset()
LongTermMemory().reset()
TaskOutputStorageHandler().reset()
KnowledgeStorage().reset()
click.echo("All memories have been reset.")
else:
if long:
@@ -40,6 +50,9 @@ def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
if kickoff_outputs:
TaskOutputStorageHandler().reset()
click.echo("Latest Kickoff outputs stored has been reset.")
if knowledge:
KnowledgeStorage().reset()
click.echo("Knowledge has been reset.")
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while resetting the memories: {e}", err=True)

View File

@@ -27,6 +27,7 @@ from crewai.llm import LLM
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.knowledge.knowledge import Knowledge
from crewai.memory.user.user_memory import UserMemory
from crewai.process import Process
from crewai.task import Task
@@ -201,6 +202,10 @@ class Crew(BaseModel):
default=[],
description="List of execution logs for tasks",
)
knowledge: Optional[Dict[str, Any]] = Field(
default=None, description="Knowledge for the crew. Add knowledge sources to the knowledge object."
)
@field_validator("id", mode="before")
@classmethod
@@ -275,6 +280,15 @@ class Crew(BaseModel):
self._user_memory = None
return self
@model_validator(mode="after")
def create_crew_knowledge(self) -> "Crew":
if self.knowledge:
try:
self.knowledge = Knowledge(**self.knowledge) if isinstance(self.knowledge, dict) else self.knowledge
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid knowledge configuration: {str(e)}")
return self
@model_validator(mode="after")
def check_manager_llm(self):
"""Validates that the language model is set when using hierarchical process."""

View File

View File

@@ -0,0 +1,55 @@
from abc import ABC, abstractmethod
from typing import List
import numpy as np
class BaseEmbedder(ABC):
"""
Abstract base class for text embedding models
"""
@abstractmethod
def embed_chunks(self, chunks: List[str]) -> np.ndarray:
"""
Generate embeddings for a list of text chunks
Args:
chunks: List of text chunks to embed
Returns:
Array of embeddings
"""
pass
@abstractmethod
def embed_texts(self, texts: List[str]) -> np.ndarray:
"""
Generate embeddings for a list of texts
Args:
texts: List of texts to embed
Returns:
Array of embeddings
"""
pass
@abstractmethod
def embed_text(self, text: str) -> np.ndarray:
"""
Generate embedding for a single text
Args:
text: Text to embed
Returns:
Embedding array
"""
pass
@property
@abstractmethod
def dimension(self) -> int:
"""Get the dimension of the embeddings"""
pass

View File

@@ -0,0 +1,93 @@
from pathlib import Path
from typing import List, Optional, Union
import numpy as np
from .base_embedder import BaseEmbedder
try:
from fastembed_gpu import TextEmbedding # type: ignore
FASTEMBED_AVAILABLE = True
except ImportError:
try:
from fastembed import TextEmbedding
FASTEMBED_AVAILABLE = True
except ImportError:
FASTEMBED_AVAILABLE = False
class FastEmbed(BaseEmbedder):
"""
A wrapper class for text embedding models using FastEmbed
"""
def __init__(
self,
model_name: str = "BAAI/bge-small-en-v1.5",
cache_dir: Optional[Union[str, Path]] = None,
):
"""
Initialize the embedding model
Args:
model_name: Name of the model to use
cache_dir: Directory to cache the model
gpu: Whether to use GPU acceleration
"""
if not FASTEMBED_AVAILABLE:
raise ImportError(
"FastEmbed is not installed. Please install it with: "
"uv pip install fastembed or uv pip install fastembed-gpu for GPU support"
)
self.model = TextEmbedding(
model_name=model_name,
cache_dir=str(cache_dir) if cache_dir else None,
)
def embed_chunks(self, chunks: List[str]) -> List[np.ndarray]:
"""
Generate embeddings for a list of text chunks
Args:
chunks: List of text chunks to embed
Returns:
List of embeddings
"""
embeddings = list(self.model.embed(chunks))
return embeddings
def embed_texts(self, texts: List[str]) -> List[np.ndarray]:
"""
Generate embeddings for a list of texts
Args:
texts: List of texts to embed
Returns:
List of embeddings
"""
embeddings = list(self.model.embed(texts))
return embeddings
def embed_text(self, text: str) -> np.ndarray:
"""
Generate embedding for a single text
Args:
text: Text to embed
Returns:
Embedding array
"""
return self.embed_texts([text])[0]
@property
def dimension(self) -> int:
"""Get the dimension of the embeddings"""
# Generate a test embedding to get dimensions
test_embed = self.embed_text("test")
return len(test_embed)

View File

@@ -0,0 +1,54 @@
import os
from typing import List, Optional, Dict, Any
from pydantic import BaseModel, ConfigDict, Field
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
from crewai.utilities.logger import Logger
from crewai.utilities.constants import DEFAULT_SCORE_THRESHOLD
os.environ["TOKENIZERS_PARALLELISM"] = "false" # removes logging from fastembed
class Knowledge(BaseModel):
"""
Knowledge is a collection of sources and setup for the vector store to save and query relevant context.
Args:
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
embedder_config: Optional[Dict[str, Any]] = None
def __init__(self, embedder_config: Optional[Dict[str, Any]] = None, **data):
super().__init__(**data)
self.storage = KnowledgeStorage(embedder_config=embedder_config or None)
try:
for source in self.sources:
source.add()
except Exception as e:
Logger(verbose=True).log(
"warning",
f"Failed to init knowledge: {e}",
color="yellow",
)
def query(
self, query: List[str], limit: int = 3, preference: Optional[str] = None
) -> List[Dict[str, Any]]:
"""
Query across all knowledge sources to find the most relevant information.
Returns the top_k most relevant chunks.
"""
results = self.storage.search(
query,
limit,
filter={"preference": preference} if preference else None,
score_threshold=DEFAULT_SCORE_THRESHOLD,
)
return results

View File

View File

@@ -0,0 +1,36 @@
from pathlib import Path
from typing import Union, List
from pydantic import Field
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from typing import Dict, Any
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
class BaseFileKnowledgeSource(BaseKnowledgeSource):
"""Base class for knowledge sources that load content from files."""
file_path: Union[Path, List[Path]] = Field(...)
content: Dict[Path, str] = Field(init=False, default_factory=dict)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
def model_post_init(self, _):
"""Post-initialization method to load content."""
self.content = self.load_content()
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess file content. Should be overridden by subclasses."""
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
for path in paths:
if not path.exists():
raise FileNotFoundError(f"File not found: {path}")
if not path.is_file():
raise ValueError(f"Path is not a file: {path}")
return {}
def save_documents(self, metadata: Dict[str, Any]):
"""Save the documents to the storage."""
chunk_metadatas = [metadata.copy() for _ in self.chunks]
self.storage.save(self.chunks, chunk_metadatas)

View File

@@ -0,0 +1,48 @@
from abc import ABC, abstractmethod
from typing import List, Dict, Any
import numpy as np
from pydantic import BaseModel, ConfigDict, Field
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
class BaseKnowledgeSource(BaseModel, ABC):
"""Abstract base class for knowledge sources."""
chunk_size: int = 4000
chunk_overlap: int = 200
chunks: List[str] = Field(default_factory=list)
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
metadata: Dict[str, Any] = Field(default_factory=dict)
@abstractmethod
def load_content(self) -> Dict[Any, str]:
"""Load and preprocess content from the source."""
pass
@abstractmethod
def add(self) -> None:
"""Process content, chunk it, compute embeddings, and save them."""
pass
def get_embeddings(self) -> List[np.ndarray]:
"""Return the list of embeddings for the chunks."""
return self.chunk_embeddings
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]
def save_documents(self, metadata: Dict[str, Any]):
"""
Save the documents to the storage.
This method should be called after the chunks and embeddings are generated.
"""
self.storage.save(self.chunks, metadata)

View File

@@ -0,0 +1,44 @@
import csv
from typing import Dict, List
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class CSVKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries CSV file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess CSV file content."""
super().load_content() # Validate the file path
file_path = (
self.file_path[0] if isinstance(self.file_path, list) else self.file_path
)
file_path = Path(file_path) if isinstance(file_path, str) else file_path
with open(file_path, "r", encoding="utf-8") as csvfile:
reader = csv.reader(csvfile)
content = ""
for row in reader:
content += " ".join(row) + "\n"
return {file_path: content}
def add(self) -> None:
"""
Add CSV file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
content_str = (
str(self.content) if isinstance(self.content, dict) else self.content
)
new_chunks = self._chunk_text(content_str)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

@@ -0,0 +1,56 @@
from typing import Dict, List
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class ExcelKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries Excel file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess Excel file content."""
super().load_content() # Validate the file path
pd = self._import_dependencies()
if isinstance(self.file_path, list):
file_path = self.file_path[0]
else:
file_path = self.file_path
df = pd.read_excel(file_path)
content = df.to_csv(index=False)
return {file_path: content}
def _import_dependencies(self):
"""Dynamically import dependencies."""
try:
import openpyxl # noqa
import pandas as pd
return pd
except ImportError as e:
missing_package = str(e).split()[-1]
raise ImportError(
f"{missing_package} is not installed. Please install it with: pip install {missing_package}"
)
def add(self) -> None:
"""
Add Excel file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
# Convert dictionary values to a single string if content is a dictionary
if isinstance(self.content, dict):
content_str = "\n".join(str(value) for value in self.content.values())
else:
content_str = str(self.content)
new_chunks = self._chunk_text(content_str)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

@@ -0,0 +1,54 @@
import json
from typing import Any, Dict, List
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class JSONKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries JSON file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess JSON file content."""
super().load_content() # Validate the file path
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
content: Dict[Path, str] = {}
for path in paths:
with open(path, "r", encoding="utf-8") as json_file:
data = json.load(json_file)
content[path] = self._json_to_text(data)
return content
def _json_to_text(self, data: Any, level: int = 0) -> str:
"""Recursively convert JSON data to a text representation."""
text = ""
indent = " " * level
if isinstance(data, dict):
for key, value in data.items():
text += f"{indent}{key}: {self._json_to_text(value, level + 1)}\n"
elif isinstance(data, list):
for item in data:
text += f"{indent}- {self._json_to_text(item, level + 1)}\n"
else:
text += f"{str(data)}"
return text
def add(self) -> None:
"""
Add JSON file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
content_str = (
str(self.content) if isinstance(self.content, dict) else self.content
)
new_chunks = self._chunk_text(content_str)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

@@ -0,0 +1,54 @@
from typing import List, Dict
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class PDFKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries PDF file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess PDF file content."""
super().load_content() # Validate the file paths
pdfplumber = self._import_pdfplumber()
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
content = {}
for path in paths:
text = ""
with pdfplumber.open(path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
content[path] = text
return content
def _import_pdfplumber(self):
"""Dynamically import pdfplumber."""
try:
import pdfplumber
return pdfplumber
except ImportError:
raise ImportError(
"pdfplumber is not installed. Please install it with: pip install pdfplumber"
)
def add(self) -> None:
"""
Add PDF file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
for _, text in self.content.items():
new_chunks = self._chunk_text(text)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

@@ -0,0 +1,33 @@
from typing import List
from pydantic import Field
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
class StringKnowledgeSource(BaseKnowledgeSource):
"""A knowledge source that stores and queries plain text content using embeddings."""
content: str = Field(...)
def model_post_init(self, _):
"""Post-initialization method to validate content."""
self.load_content()
def load_content(self):
"""Validate string content."""
if not isinstance(self.content, str):
raise ValueError("StringKnowledgeSource only accepts string content")
def add(self) -> None:
"""Add string content to the knowledge source, chunk it, compute embeddings, and save them."""
new_chunks = self._chunk_text(self.content)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

@@ -0,0 +1,35 @@
from typing import Dict, List
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class TextFileKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries text file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess text file content."""
super().load_content()
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
content = {}
for path in paths:
with path.open("r", encoding="utf-8") as f:
content[path] = f.read() # type: ignore
return content
def add(self) -> None:
"""
Add text file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
for _, text in self.content.items():
new_chunks = self._chunk_text(text)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

View File

@@ -0,0 +1,29 @@
from abc import ABC, abstractmethod
from typing import Dict, Any, List, Optional
class BaseKnowledgeStorage(ABC):
"""Abstract base class for knowledge storage implementations."""
@abstractmethod
def search(
self,
query: List[str],
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Dict[str, Any]]:
"""Search for documents in the knowledge base."""
pass
@abstractmethod
def save(
self, documents: List[str], metadata: Dict[str, Any] | List[Dict[str, Any]]
) -> None:
"""Save documents to the knowledge base."""
pass
@abstractmethod
def reset(self) -> None:
"""Reset the knowledge base."""
pass

View File

@@ -0,0 +1,132 @@
import contextlib
import io
import logging
import chromadb
import os
from crewai.utilities.paths import db_storage_path
from typing import Optional, List
from typing import Dict, Any
from crewai.utilities import EmbeddingConfigurator
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
import hashlib
@contextlib.contextmanager
def suppress_logging(
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
level=logging.ERROR,
):
logger = logging.getLogger(logger_name)
original_level = logger.getEffectiveLevel()
logger.setLevel(level)
with (
contextlib.redirect_stdout(io.StringIO()),
contextlib.redirect_stderr(io.StringIO()),
contextlib.suppress(UserWarning),
):
yield
logger.setLevel(original_level)
class KnowledgeStorage(BaseKnowledgeStorage):
"""
Extends Storage to handle embeddings for memory entries, improving
search efficiency.
"""
collection: Optional[chromadb.Collection] = None
def __init__(self, embedder_config: Optional[Dict[str, Any]] = None):
self._initialize_app(embedder_config or {})
def search(
self,
query: List[str],
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Dict[str, Any]]:
with suppress_logging():
if self.collection:
fetched = self.collection.query(
query_texts=query,
n_results=limit,
where=filter,
)
results = []
for i in range(len(fetched["ids"][0])): # type: ignore
result = {
"id": fetched["ids"][0][i], # type: ignore
"metadata": fetched["metadatas"][0][i], # type: ignore
"context": fetched["documents"][0][i], # type: ignore
"score": fetched["distances"][0][i], # type: ignore
}
if result["score"] >= score_threshold: # type: ignore
results.append(result)
return results
else:
raise Exception("Collection not initialized")
def _initialize_app(self, embedder_config: Optional[Dict[str, Any]] = None):
import chromadb
from chromadb.config import Settings
self._set_embedder_config(embedder_config)
chroma_client = chromadb.PersistentClient(
path=f"{db_storage_path()}/knowledge",
settings=Settings(allow_reset=True),
)
self.app = chroma_client
try:
self.collection = self.app.get_or_create_collection(name="knowledge")
except Exception:
raise Exception("Failed to create or get collection")
def reset(self):
if self.app:
self.app.reset()
def save(
self, documents: List[str], metadata: Dict[str, Any] | List[Dict[str, Any]]
):
if self.collection:
metadatas = [metadata] if isinstance(metadata, dict) else metadata
ids = [
hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents
]
self.collection.upsert(
documents=documents,
metadatas=metadatas,
ids=ids,
)
else:
raise Exception("Collection not initialized")
def _create_default_embedding_function(self):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
def _set_embedder_config(
self, embedder_config: Optional[Dict[str, Any]] = None
) -> None:
"""Set the embedding configuration for the knowledge storage.
Args:
embedder_config (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
If None or empty, defaults to the default embedding function.
"""
self.embedder_config = (
EmbeddingConfigurator().configure_embedder(embedder_config)
if embedder_config
else self._create_default_embedding_function()
)

View File

@@ -4,13 +4,12 @@ import logging
import os
import shutil
import uuid
from typing import Any, Dict, List, Optional, cast
from chromadb import Documents, EmbeddingFunction, Embeddings
from typing import Any, Dict, List, Optional
from chromadb.api import ClientAPI
from chromadb.api.types import validate_embedding_function
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities.paths import db_storage_path
from crewai.utilities import EmbeddingConfigurator
@contextlib.contextmanager
@@ -51,133 +50,8 @@ class RAGStorage(BaseRAGStorage):
self._initialize_app()
def _set_embedder_config(self):
if self.embedder_config is None:
self.embedder_config = self._create_default_embedding_function()
if isinstance(self.embedder_config, dict):
provider = self.embedder_config.get("provider")
config = self.embedder_config.get("config", {})
model_name = config.get("model")
if provider == "openai":
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
self.embedder_config = OpenAIEmbeddingFunction(
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
model_name=model_name,
)
elif provider == "azure":
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
self.embedder_config = OpenAIEmbeddingFunction(
api_key=config.get("api_key"),
api_base=config.get("api_base"),
api_type=config.get("api_type", "azure"),
api_version=config.get("api_version"),
model_name=model_name,
)
elif provider == "ollama":
from chromadb.utils.embedding_functions.ollama_embedding_function import (
OllamaEmbeddingFunction,
)
self.embedder_config = OllamaEmbeddingFunction(
url=config.get("url", "http://localhost:11434/api/embeddings"),
model_name=model_name,
)
elif provider == "vertexai":
from chromadb.utils.embedding_functions.google_embedding_function import (
GoogleVertexEmbeddingFunction,
)
self.embedder_config = GoogleVertexEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
elif provider == "google":
from chromadb.utils.embedding_functions.google_embedding_function import (
GoogleGenerativeAiEmbeddingFunction,
)
self.embedder_config = GoogleGenerativeAiEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
elif provider == "cohere":
from chromadb.utils.embedding_functions.cohere_embedding_function import (
CohereEmbeddingFunction,
)
self.embedder_config = CohereEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
elif provider == "bedrock":
from chromadb.utils.embedding_functions.amazon_bedrock_embedding_function import (
AmazonBedrockEmbeddingFunction,
)
self.embedder_config = AmazonBedrockEmbeddingFunction(
session=config.get("session"),
)
elif provider == "huggingface":
from chromadb.utils.embedding_functions.huggingface_embedding_function import (
HuggingFaceEmbeddingServer,
)
self.embedder_config = HuggingFaceEmbeddingServer(
url=config.get("api_url"),
)
elif provider == "watson":
try:
import ibm_watsonx_ai.foundation_models as watson_models
from ibm_watsonx_ai import Credentials
from ibm_watsonx_ai.metanames import (
EmbedTextParamsMetaNames as EmbedParams,
)
except ImportError as e:
raise ImportError(
"IBM Watson dependencies are not installed. Please install them to use Watson embedding."
) from e
class WatsonEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
if isinstance(input, str):
input = [input]
embed_params = {
EmbedParams.TRUNCATE_INPUT_TOKENS: 3,
EmbedParams.RETURN_OPTIONS: {"input_text": True},
}
embedding = watson_models.Embeddings(
model_id=config.get("model"),
params=embed_params,
credentials=Credentials(
api_key=config.get("api_key"), url=config.get("api_url")
),
project_id=config.get("project_id"),
)
try:
embeddings = embedding.embed_documents(input)
return cast(Embeddings, embeddings)
except Exception as e:
print("Error during Watson embedding:", e)
raise e
self.embedder_config = WatsonEmbeddingFunction()
else:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: [openai, azure, ollama, vertexai, google, cohere, huggingface, watson]"
)
else:
validate_embedding_function(self.embedder_config)
self.embedder_config = self.embedder_config
configurator = EmbeddingConfigurator()
self.embedder_config = configurator.configure_embedder(self.embedder_config)
def _initialize_app(self):
import chromadb

View File

@@ -10,6 +10,7 @@ from .rpm_controller import RPMController
from .exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
from .embedding_configurator import EmbeddingConfigurator
__all__ = [
"Converter",
@@ -23,4 +24,5 @@ __all__ = [
"RPMController",
"YamlParser",
"LLMContextLengthExceededException",
"EmbeddingConfigurator",
]

View File

@@ -1,2 +1,3 @@
TRAINING_DATA_FILE = "training_data.pkl"
TRAINED_AGENTS_DATA_FILE = "trained_agents_data.pkl"
DEFAULT_SCORE_THRESHOLD = 0.35

View File

@@ -0,0 +1,183 @@
import os
from typing import Any, Dict, cast
from chromadb import EmbeddingFunction, Documents, Embeddings
from chromadb.api.types import validate_embedding_function
class EmbeddingConfigurator:
def __init__(self):
self.embedding_functions = {
"openai": self._configure_openai,
"azure": self._configure_azure,
"ollama": self._configure_ollama,
"vertexai": self._configure_vertexai,
"google": self._configure_google,
"cohere": self._configure_cohere,
"bedrock": self._configure_bedrock,
"huggingface": self._configure_huggingface,
"watson": self._configure_watson,
}
def configure_embedder(
self,
embedder_config: Dict[str, Any] | None = None,
) -> EmbeddingFunction:
"""Configures and returns an embedding function based on the provided config."""
if embedder_config is None:
return self._create_default_embedding_function()
provider = embedder_config.get("provider")
config = embedder_config.get("config", {})
model_name = config.get("model")
if isinstance(provider, EmbeddingFunction):
try:
validate_embedding_function(provider)
return provider
except Exception as e:
raise ValueError(f"Invalid custom embedding function: {str(e)}")
if provider not in self.embedding_functions:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: {list(self.embedding_functions.keys())}"
)
return self.embedding_functions[provider](config, model_name)
@staticmethod
def _create_default_embedding_function():
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
@staticmethod
def _configure_openai(config, model_name):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
model_name=model_name,
)
@staticmethod
def _configure_azure(config, model_name):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=config.get("api_key"),
api_base=config.get("api_base"),
api_type=config.get("api_type", "azure"),
api_version=config.get("api_version"),
model_name=model_name,
)
@staticmethod
def _configure_ollama(config, model_name):
from chromadb.utils.embedding_functions.ollama_embedding_function import (
OllamaEmbeddingFunction,
)
return OllamaEmbeddingFunction(
url=config.get("url", "http://localhost:11434/api/embeddings"),
model_name=model_name,
)
@staticmethod
def _configure_vertexai(config, model_name):
from chromadb.utils.embedding_functions.google_embedding_function import (
GoogleVertexEmbeddingFunction,
)
return GoogleVertexEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
@staticmethod
def _configure_google(config, model_name):
from chromadb.utils.embedding_functions.google_embedding_function import (
GoogleGenerativeAiEmbeddingFunction,
)
return GoogleGenerativeAiEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
@staticmethod
def _configure_cohere(config, model_name):
from chromadb.utils.embedding_functions.cohere_embedding_function import (
CohereEmbeddingFunction,
)
return CohereEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
@staticmethod
def _configure_bedrock(config, model_name):
from chromadb.utils.embedding_functions.amazon_bedrock_embedding_function import (
AmazonBedrockEmbeddingFunction,
)
return AmazonBedrockEmbeddingFunction(
session=config.get("session"),
)
@staticmethod
def _configure_huggingface(config, model_name):
from chromadb.utils.embedding_functions.huggingface_embedding_function import (
HuggingFaceEmbeddingServer,
)
return HuggingFaceEmbeddingServer(
url=config.get("api_url"),
)
@staticmethod
def _configure_watson(config, model_name):
try:
import ibm_watsonx_ai.foundation_models as watson_models
from ibm_watsonx_ai import Credentials
from ibm_watsonx_ai.metanames import EmbedTextParamsMetaNames as EmbedParams
except ImportError as e:
raise ImportError(
"IBM Watson dependencies are not installed. Please install them to use Watson embedding."
) from e
class WatsonEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
if isinstance(input, str):
input = [input]
embed_params = {
EmbedParams.TRUNCATE_INPUT_TOKENS: 3,
EmbedParams.RETURN_OPTIONS: {"input_text": True},
}
embedding = watson_models.Embeddings(
model_id=config.get("model"),
params=embed_params,
credentials=Credentials(
api_key=config.get("api_key"), url=config.get("api_url")
),
project_id=config.get("project_id"),
)
try:
embeddings = embedding.embed_documents(input)
return cast(Embeddings, embeddings)
except Exception as e:
print("Error during Watson embedding:", e)
raise e
return WatsonEmbeddingFunction()

View File

@@ -10,10 +10,11 @@ from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.tools import tool
from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.tools import tool
from crewai.tools.tool_usage_events import ToolUsageFinished
from crewai.utilities import RPMController
from crewai.utilities.events import Emitter
@@ -1574,3 +1575,42 @@ def test_agent_execute_task_with_ollama():
result = agent.execute_task(task)
assert len(result.split(".")) == 2
assert "AI" in result or "artificial intelligence" in result.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources():
# Create a knowledge source with some content
content = "Brandon's favorite color is blue and he likes Mexican food."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
with patch('crewai.knowledge.storage.knowledge_storage.KnowledgeStorage') as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{
"content": content,
"metadata": {"preference": "personal"}
}]
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
)
# Create a task that requires the agent to use the knowledge
task = Task(
description="What is Brandon's favorite color?",
expected_output="Brandon's favorite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
# Assert that the agent provides the correct information
assert "blue" in result.raw.lower()

View File

@@ -0,0 +1,115 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
You have access to specific knowledge sources.\nYour personal goal is: Provide
information based on knowledge sources\nTo give my best complete final answer
to the task use the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: What is Brandon''s
favorite color?\n\nThis is the expect criteria for your final answer: Brandon''s
favorite color.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '931'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSQW7bMBC86xULXnqxAtmxI1e3FEWBtJekCXJpC4GmVhIdapcgqbhN4L8HlB1L
QVOgFwGa2RnOLPmcAAhdiQKEamVQnTXp5f3d9lsdbndh++C+757Or6/bm6uvn59WH/FGzKKCN1tU
4VV1prizBoNmOtDKoQwYXef5+SK7WK3ny4HouEITZY0N6ZLTTpNOF9limWZ5Ol8f1S1rhV4U8CMB
AHgevjEnVfhbFJDNXpEOvZcNiuI0BCAcm4gI6b32QVIQs5FUTAFpiH4FxDtQkqDRjwgSmhgbJPkd
OoCf9EWTNHA5/BfwyUmqmD54qOUjOx0QFBt2oD1sTI9n02Mc1r2XsSr1xhzx/Sm34cY63vgjf8Jr
Tdq3pUPpmWJGH9iKgd0nAL+G/fRvKgvruLOhDPyAFA3nF/nBT4zXMmHXRzJwkGaKr2bv+JUVBqmN
n2xYKKlarEbpeB2yrzRPiGTS+u8073kfmmtq/sd+JJRCG7AqrcNKq7eNxzGH8dX+a+y05SGw8H98
wK6sNTXorNOHN1PbMsuz1aZe5yoTyT55AQAA//8DAPaYLdRBAwAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e54a2a7d81467f7-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 20 Nov 2024 01:23:34 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=DoHo1Z11nN9bxkwZmJGnaxRhyrWE0UfyimYuUVRU6A4-1732065814-1.0.1.1-JVRvFrIJLHEq9OaFQS0qcgYcawE7t2XQ4Tpqd58n2Yfx3mvEqD34MJmooi1LtvdvjB2J8x1Rs.rCdXD.msLlKw;
path=/; expires=Wed, 20-Nov-24 01:53:34 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=n3RrNhFMqC3HtJ7n3e3agyxnM1YOQ6eKESz_eeXLtZA-1732065814630-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '344'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999790'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_8f1622677c64913753a595f679596614
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,232 @@
interactions:
- request:
body: !!binary |
Cv1YCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS1FgKEgoQY3Jld2FpLnRl
bGVtZXRyeRLADQoQ5TzgW9QzcBbzMl1hJozLcxIIl3adf7U81wwqDENyZXcgQ3JlYXRlZDABOaAJ
txhffgkYQfiVuRhffgkYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5weXRob25fdmVy
c2lvbhIICgYzLjEyLjVKLgoIY3Jld19rZXkSIgogM2Y4ZDVjM2FiODgyZDY4NjlkOTNjYjgxZjBl
MmVkNGFKMQoHY3Jld19pZBImCiRjYjRiY2Q1Zi0xYWJkLTQyYmYtOGQ1OC02ZmEzMDU3ZDFjOTZK
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
bnVtYmVyX29mX3Rhc2tzEgIYA0obChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSpIFCgtjcmV3
X2FnZW50cxKCBQr/BFt7ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIs
ICJpZCI6ICI1ZThjNTM1MS1jNWVlLTRhZGUtODY5MC1kM2RhOWI1NzI5YzciLCAicm9sZSI6ICJS
ZXNlYXJjaGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6
IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwg
ImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZh
bHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5
YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICJhMTcwODczOC0yYWE2LTRk
ZmYtODFlNy00OGFkMDNjNWFjY2QiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/
IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxs
aW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8i
OiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0
IjogMiwgInRvb2xzX25hbWVzIjogW119XUrbBQoKY3Jld190YXNrcxLMBQrJBVt7ImtleSI6ICI2
Nzg0OWZmNzE3ZGJhZGFiYTFiOTVkNWYyZGZjZWVhMSIsICJpZCI6ICIyNzkxNTMxMy0wNDBhLTRk
ZWItOTVkMy1mNWVmMzg2Mjk3NTEiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IHRydWUsICJodW1hbl9p
bnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAi
OGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsi
a2V5IjogImZjNTZkZWEzOGM5OTc0YjZmNTVhMmUyOGMxNDk5ODg2IiwgImlkIjogIjc3NzQ3MmVl
LWYzNzAtNDQyZS05NWMyLWVlMGVkYzZiMTgyZiIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2Us
ICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2Vu
dF9rZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAidG9vbHNfbmFtZXMi
OiBbXX0sIHsia2V5IjogIjk0YTgyNmMxOTMwNTU5Njg2YmFmYjQwOWVlODM4NzZmIiwgImlkIjog
ImM4OWEzODA2LTg5MDItNGQ2My1iYzA0LTdjMzRhZTJmM2UxNyIsICJhc3luY19leGVjdXRpb24/
IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiU2VuaW9yIFdy
aXRlciIsICJhZ2VudF9rZXkiOiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAi
dG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQSqupTllrk2mxgu2AqenZUhIIspWxig2+
1M0qDFRhc2sgQ3JlYXRlZDABOcCj1BhffgkYQfhq1RhffgkYSi4KCGNyZXdfa2V5EiIKIDNmOGQ1
YzNhYjg4MmQ2ODY5ZDkzY2I4MWYwZTJlZDRhSjEKB2NyZXdfaWQSJgokY2I0YmNkNWYtMWFiZC00
MmJmLThkNTgtNmZhMzA1N2QxYzk2Si4KCHRhc2tfa2V5EiIKIDY3ODQ5ZmY3MTdkYmFkYWJhMWI5
NWQ1ZjJkZmNlZWExSjEKB3Rhc2tfaWQSJgokMjc5MTUzMTMtMDQwYS00ZGViLTk1ZDMtZjVlZjM4
NjI5NzUxegIYAYUBAAEAABKOAgoQ3dJesXQA5ISCqVgmwvBMgRIIdrWBiVQuihcqDFRhc2sgQ3Jl
YXRlZDABOdjAch1ffgkYQVh8cx1ffgkYSi4KCGNyZXdfa2V5EiIKIDNmOGQ1YzNhYjg4MmQ2ODY5
ZDkzY2I4MWYwZTJlZDRhSjEKB2NyZXdfaWQSJgokY2I0YmNkNWYtMWFiZC00MmJmLThkNTgtNmZh
MzA1N2QxYzk2Si4KCHRhc2tfa2V5EiIKIGZjNTZkZWEzOGM5OTc0YjZmNTVhMmUyOGMxNDk5ODg2
SjEKB3Rhc2tfaWQSJgokNzc3NDcyZWUtZjM3MC00NDJlLTk1YzItZWUwZWRjNmIxODJmegIYAYUB
AAEAABKOAgoQCBmV+4VbArZNiL5MaefbahII1fRxaC46KKgqDFRhc2sgQ3JlYXRlZDABOaDs4SNf
fgkYQai74iNffgkYSi4KCGNyZXdfa2V5EiIKIDNmOGQ1YzNhYjg4MmQ2ODY5ZDkzY2I4MWYwZTJl
ZDRhSjEKB2NyZXdfaWQSJgokY2I0YmNkNWYtMWFiZC00MmJmLThkNTgtNmZhMzA1N2QxYzk2Si4K
CHRhc2tfa2V5EiIKIDk0YTgyNmMxOTMwNTU5Njg2YmFmYjQwOWVlODM4NzZmSjEKB3Rhc2tfaWQS
JgokYzg5YTM4MDYtODkwMi00ZDYzLWJjMDQtN2MzNGFlMmYzZTE3egIYAYUBAAEAABKiBwoQhITI
U8q3JLgneRv1MZQY8RIIF2CpEmiZsP4qDENyZXcgQ3JlYXRlZDABOZDBCytffgkYQTDFDStffgkY
ShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjVK
LgoIY3Jld19rZXkSIgogYTljYzVkNDMzOTViMjFiMTgxYzgwYmQ0MzUxY2NlYzhKMQoHY3Jld19p
ZBImCiQ2MTMwMWVmYS0yOGQ4LTQyNTItOWVjNi1iM2JmZDcyMWM0MzVKHAoMY3Jld19wcm9jZXNz
EgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tz
EgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBStECCgtjcmV3X2FnZW50cxLBAgq+Alt7
ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJpZCI6ICI3NWRjOTUw
OS02MjQ4LTQ0YWQtYTExZC1iZjdlZWVhOWI0NTQiLCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgInZl
cmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlv
bl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5h
YmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5
X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUr+AQoKY3Jld190YXNrcxLvAQrsAVt7Imtl
eSI6ICJlOWU2YjcyYWFjMzI2NDU5ZGQ3MDY4ZjBiMTcxN2MxYyIsICJpZCI6ICIxOTBlMGQ1Zi0y
NDg1LTQ3N2ItYWIxNC1kMTlmNDE5YTFlYjQiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IHRydWUsICJo
dW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9r
ZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAidG9vbHNfbmFtZXMiOiBb
XX1degIYAYUBAAEAABKOAgoQxgDNe1lQGKnixKPk3O1TDBIISyqKkjcA7OYqDFRhc2sgQ3JlYXRl
ZDABOfCYJCtffgkYQZAlJStffgkYSi4KCGNyZXdfa2V5EiIKIGE5Y2M1ZDQzMzk1YjIxYjE4MWM4
MGJkNDM1MWNjZWM4SjEKB2NyZXdfaWQSJgokNjEzMDFlZmEtMjhkOC00MjUyLTllYzYtYjNiZmQ3
MjFjNDM1Si4KCHRhc2tfa2V5EiIKIGU5ZTZiNzJhYWMzMjY0NTlkZDcwNjhmMGIxNzE3YzFjSjEK
B3Rhc2tfaWQSJgokMTkwZTBkNWYtMjQ4NS00NzdiLWFiMTQtZDE5ZjQxOWExZWI0egIYAYUBAAEA
ABK/DQoQwwR54Z8nOGgj2VSb63WRwhIIonLT+7Mwj00qDENyZXcgQ3JlYXRlZDABObDfvzhffgkY
QfBvwjhffgkYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5weXRob25fdmVyc2lvbhII
CgYzLjEyLjVKLgoIY3Jld19rZXkSIgogNjZhOTYwZGM2OWZmZjU3OGIyNmM2MWQ0ZjdjNWE5ZmVK
MQoHY3Jld19pZBImCiQxNThhMTkzOS01OWUzLTRlODgtYTRkYi04M2IzN2U5MjgxZWVKHAoMY3Jl
d19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVy
X29mX3Rhc2tzEgIYA0obChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSpIFCgtjcmV3X2FnZW50
cxKCBQr/BFt7ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJpZCI6
ICI1ZThjNTM1MS1jNWVlLTRhZGUtODY5MC1kM2RhOWI1NzI5YzciLCAicm9sZSI6ICJSZXNlYXJj
aGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGws
ICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVn
YXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAi
bWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVl
ZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICJhMTcwODczOC0yYWE2LTRkZmYtODFl
Ny00OGFkMDNjNWFjY2QiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFs
c2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xs
bSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxz
ZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwg
InRvb2xzX25hbWVzIjogW119XUraBQoKY3Jld190YXNrcxLLBQrIBVt7ImtleSI6ICI5NDRhZWYw
YmFjODQwZjFjMjdiZDgzYTkzN2JjMzYxYiIsICJpZCI6ICIzN2FkNzI5MC04Yjg5LTRjNWEtYmNl
Zi03YzY0ZWJhMWM5NjciLCAiYXN5bmNfZXhlY3V0aW9uPyI6IHRydWUsICJodW1hbl9pbnB1dD8i
OiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAiOGJkMjEz
OWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsia2V5Ijog
ImZjNTZkZWEzOGM5OTc0YjZmNTVhMmUyOGMxNDk5ODg2IiwgImlkIjogIjZhMmViMGY2LTgwZTIt
NDkxOC05Zjk3LWVhNDY3OTNkMjI2YyIsICJhc3luY19leGVjdXRpb24/IjogdHJ1ZSwgImh1bWFu
X2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6
ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJ0b29sc19uYW1lcyI6IFtdfSwg
eyJrZXkiOiAiOTRhODI2YzE5MzA1NTk2ODZiYWZiNDA5ZWU4Mzg3NmYiLCAiaWQiOiAiZGQ2Yzkz
NzAtOGYwNC00ZDFmLThjODMtMmFiM2IyYzIwYWI3IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxz
ZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwg
ImFnZW50X2tleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJ0b29sc19u
YW1lcyI6IFtdfV16AhgBhQEAAQAAErMHChBV+1WNQzpVlY6l4C/mUgHzEgi3vWQXjOQJ5CoMQ3Jl
dyBDcmVhdGVkMAE5sH1kPF9+CRhBaH1mPF9+CRhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC44MC4w
ShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuNUouCghjcmV3X2tleRIiCiBlZTY3NDVkN2M4YWU4
MmUwMGRmOTRkZTBmN2Y4NzExOEoxCgdjcmV3X2lkEiYKJDAwOThmODNmLTdkNTAtNGI2Mi1hYmIy
LTJlNTc0N2ZlMWE4OUocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9y
eRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50
cxICGAFK2QIKC2NyZXdfYWdlbnRzEskCCsYCW3sia2V5IjogImYzMzg2ZjZkOGRhNzVhYTQxNmE2
ZTMxMDA1M2Y3Njk4IiwgImlkIjogIjEzODI4ZDViLWIyOWMtNDllMy05NWVhLTkyOGQ2ZmZhY2I0
NSIsICJyb2xlIjogInt0b3BpY30gUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4
X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwg
ImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxv
d19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19u
YW1lcyI6IFtdfV1KhwIKCmNyZXdfdGFza3MS+AEK9QFbeyJrZXkiOiAiMDZhNzMyMjBmNDE0OGE0
YmJkNWJhY2IwZDBiNDRmY2UiLCAiaWQiOiAiNWM4MjM1ZmYtNWVjNy00NzFhLWI4NWEtNWFkZjk3
YzJkYzI3IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNl
LCAiYWdlbnRfcm9sZSI6ICJ7dG9waWN9IFJlc2VhcmNoZXIiLCAiYWdlbnRfa2V5IjogImYzMzg2
ZjZkOGRhNzVhYTQxNmE2ZTMxMDA1M2Y3Njk4IiwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQAB
AAASjgIKEHOZ/a+LQwTLSkMO0sPwg9gSCL1SwQw1+0iKKgxUYXNrIENyZWF0ZWQwATl4kX48X34J
GEFIFn88X34JGEouCghjcmV3X2tleRIiCiBlZTY3NDVkN2M4YWU4MmUwMGRmOTRkZTBmN2Y4NzEx
OEoxCgdjcmV3X2lkEiYKJDAwOThmODNmLTdkNTAtNGI2Mi1hYmIyLTJlNTc0N2ZlMWE4OUouCgh0
YXNrX2tleRIiCiAwNmE3MzIyMGY0MTQ4YTRiYmQ1YmFjYjBkMGI0NGZjZUoxCgd0YXNrX2lkEiYK
JDVjODIzNWZmLTVlYzctNDcxYS1iODVhLTVhZGY5N2MyZGMyN3oCGAGFAQABAAASswcKEHZQCRd7
z4ZBCh4+06qs1r4SCNzrNsw+dn2zKgxDcmV3IENyZWF0ZWQwATlgWdtDX34JGEGIcN1DX34JGEoa
Cg5jcmV3YWlfdmVyc2lvbhIICgYwLjgwLjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMi41Si4K
CGNyZXdfa2V5EiIKIGVlNjc0NWQ3YzhhZTgyZTAwZGY5NGRlMGY3Zjg3MTE4SjEKB2NyZXdfaWQS
JgokZTgzMTdjNzEtNmZiZS00MjI5LWE3MzctYTkxM2I0ZmU0ZTU0ShwKDGNyZXdfcHJvY2VzcxIM
CgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxIC
GAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrZAgoLY3Jld19hZ2VudHMSyQIKxgJbeyJr
ZXkiOiAiZjMzODZmNmQ4ZGE3NWFhNDE2YTZlMzEwMDUzZjc2OTgiLCAiaWQiOiAiNjAwMzU5OTYt
ZWU1ZS00YmZhLThmODctMGM1ZTY0OTBlMmE4IiwgInJvbGUiOiAie3RvcGljfSBSZXNlYXJjaGVy
IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJm
dW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRp
b25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4
X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUqHAgoKY3Jld190YXNrcxL4AQr1
AVt7ImtleSI6ICIwNmE3MzIyMGY0MTQ4YTRiYmQ1YmFjYjBkMGI0NGZjZSIsICJpZCI6ICI4MDc3
MDhjNS0yN2RkLTQ4ZDEtYTU0ZC1lZTRkNTZmMzBiZTQiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZh
bHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogInt0b3BpY30gUmVzZWFy
Y2hlciIsICJhZ2VudF9rZXkiOiAiZjMzODZmNmQ4ZGE3NWFhNDE2YTZlMzEwMDUzZjc2OTgiLCAi
dG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQtqHg5uy2kZsnJlJTYgmZoxIIlgUHkQ7m
LugqDFRhc2sgQ3JlYXRlZDABOTi470NffgkYQQg98ENffgkYSi4KCGNyZXdfa2V5EiIKIGVlNjc0
NWQ3YzhhZTgyZTAwZGY5NGRlMGY3Zjg3MTE4SjEKB2NyZXdfaWQSJgokZTgzMTdjNzEtNmZiZS00
MjI5LWE3MzctYTkxM2I0ZmU0ZTU0Si4KCHRhc2tfa2V5EiIKIDA2YTczMjIwZjQxNDhhNGJiZDVi
YWNiMGQwYjQ0ZmNlSjEKB3Rhc2tfaWQSJgokODA3NzA4YzUtMjdkZC00OGQxLWE1NGQtZWU0ZDU2
ZjMwYmU0egIYAYUBAAEAABKzBwoQpfKhpM9cCoiT5Mun1aoNQhII4HhX0QHHc/0qDENyZXcgQ3Jl
YXRlZDABORiH20lffgkYQcix3UlffgkYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5w
eXRob25fdmVyc2lvbhIICgYzLjEyLjVKLgoIY3Jld19rZXkSIgogZWU2NzQ1ZDdjOGFlODJlMDBk
Zjk0ZGUwZjdmODcxMThKMQoHY3Jld19pZBImCiRmZDk2MmQwMi0wNGY0LTQ3NDUtODc5YS02NTFm
MzFmMmZhOTZKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAA
ShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgB
StkCCgtjcmV3X2FnZW50cxLJAgrGAlt7ImtleSI6ICJmMzM4NmY2ZDhkYTc1YWE0MTZhNmUzMTAw
NTNmNzY5OCIsICJpZCI6ICIzNmZhMTEyZS02ZDVlLTRhMzgtODk0Yy01M2M5YjAzNTI5ODUiLCAi
cm9sZSI6ICJ7dG9waWN9IFJlc2VhcmNoZXIiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVy
IjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0i
OiAiZ3B0LTRvLW1pbmkiLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29k
ZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMi
OiBbXX1dSocCCgpjcmV3X3Rhc2tzEvgBCvUBW3sia2V5IjogIjA2YTczMjIwZjQxNDhhNGJiZDVi
YWNiMGQwYjQ0ZmNlIiwgImlkIjogIjY3NTE3ZjY1LThhYzMtNDIyZi1hMmJhLTM4NDcyZDRkYmZl
NSIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFn
ZW50X3JvbGUiOiAie3RvcGljfSBSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICJmMzM4NmY2ZDhk
YTc1YWE0MTZhNmUzMTAwNTNmNzY5OCIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4C
ChAzGUzQMDZOgJ090im3887lEgik7+/nVnqntioMVGFzayBDcmVhdGVkMAE5UO7rSV9+CRhBWEDs
SV9+CRhKLgoIY3Jld19rZXkSIgogZWU2NzQ1ZDdjOGFlODJlMDBkZjk0ZGUwZjdmODcxMThKMQoH
Y3Jld19pZBImCiRmZDk2MmQwMi0wNGY0LTQ3NDUtODc5YS02NTFmMzFmMmZhOTZKLgoIdGFza19r
ZXkSIgogMDZhNzMyMjBmNDE0OGE0YmJkNWJhY2IwZDBiNDRmY2VKMQoHdGFza19pZBImCiQ2NzUx
N2Y2NS04YWMzLTQyMmYtYTJiYS0zODQ3MmQ0ZGJmZTV6AhgBhQEAAQAAErMHChCB1TPvVbWX62DF
102NfOHLEghdZ/LjI40W8SoMQ3JldyBDcmVhdGVkMAE5sJDUT19+CRhBEHXWT19+CRhKGgoOY3Jl
d2FpX3ZlcnNpb24SCAoGMC44MC4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuNUouCghjcmV3
X2tleRIiCiBlZTY3NDVkN2M4YWU4MmUwMGRmOTRkZTBmN2Y4NzExOEoxCgdjcmV3X2lkEiYKJDUx
YmI1NGQ0LWM4MTAtNDA0Yy04MTQzLWVmNTgwMTlhN2Q2OEocCgxjcmV3X3Byb2Nlc3MSDAoKc2Vx
dWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsK
FWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAFK2QIKC2NyZXdfYWdlbnRzEskCCsYCW3sia2V5Ijog
ImYzMzg2ZjZkOGRhNzVhYTQxNmE2ZTMxMDA1M2Y3Njk4IiwgImlkIjogIjRlNTExYTRhLTM1Yzkt
NDA0NC1iMzBlLWM4OGZjZTJiMzc5YiIsICJyb2xlIjogInt0b3BpY30gUmVzZWFyY2hlciIsICJ2
ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rp
b25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2Vu
YWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRy
eV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1KhwIKCmNyZXdfdGFza3MS+AEK9QFbeyJr
ZXkiOiAiMDZhNzMyMjBmNDE0OGE0YmJkNWJhY2IwZDBiNDRmY2UiLCAiaWQiOiAiOTIzMWJmZjIt
ODFmOS00MjU4LTgyMDktMjkzMjUyOWI1ZjlmIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwg
Imh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJ7dG9waWN9IFJlc2VhcmNoZXIi
LCAiYWdlbnRfa2V5IjogImYzMzg2ZjZkOGRhNzVhYTQxNmE2ZTMxMDA1M2Y3Njk4IiwgInRvb2xz
X25hbWVzIjogW119XXoCGAGFAQABAAASjgIKECTO19lNFYzBivlrqiZfSxASCIAH8VhjiPfQKgxU
YXNrIENyZWF0ZWQwATnIr+NPX34JGEHQAeRPX34JGEouCghjcmV3X2tleRIiCiBlZTY3NDVkN2M4
YWU4MmUwMGRmOTRkZTBmN2Y4NzExOEoxCgdjcmV3X2lkEiYKJDUxYmI1NGQ0LWM4MTAtNDA0Yy04
MTQzLWVmNTgwMTlhN2Q2OEouCgh0YXNrX2tleRIiCiAwNmE3MzIyMGY0MTQ4YTRiYmQ1YmFjYjBk
MGI0NGZjZUoxCgd0YXNrX2lkEiYKJDkyMzFiZmYyLTgxZjktNDI1OC04MjA5LTI5MzI1MjliNWY5
ZnoCGAGFAQABAAASswcKEHGb7KITfOkYfQT7CRjWfUcSCIn6YlQJ1QVbKgxDcmV3IENyZWF0ZWQw
ATmYH/BYX34JGEEgJ/JYX34JGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjgwLjBKGgoOcHl0aG9u
X3ZlcnNpb24SCAoGMy4xMi41Si4KCGNyZXdfa2V5EiIKIGVlNjc0NWQ3YzhhZTgyZTAwZGY5NGRl
MGY3Zjg3MTE4SjEKB2NyZXdfaWQSJgokZDc5Y2UyMWUtYmU1Ny00NTdiLWExMzEtNjZkMDFmZjQx
ZTI2ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRj
cmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrZAgoL
Y3Jld19hZ2VudHMSyQIKxgJbeyJrZXkiOiAiZjMzODZmNmQ4ZGE3NWFhNDE2YTZlMzEwMDUzZjc2
OTgiLCAiaWQiOiAiNzRhNDUxNzgtNmExOS00N2RjLThlZjktZDdhZmQ5YzUwMDQ0IiwgInJvbGUi
OiAie3RvcGljfSBSZXNlYXJjaGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIw
LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdw
dC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhl
Y3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119
XUqHAgoKY3Jld190YXNrcxL4AQr1AVt7ImtleSI6ICIwNmE3MzIyMGY0MTQ4YTRiYmQ1YmFjYjBk
MGI0NGZjZSIsICJpZCI6ICJjZWZiYjE1ZS01Y2M4LTQwZTctYTViMS03ODkzYjJlZGFkYmQiLCAi
YXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9y
b2xlIjogInt0b3BpY30gUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAiZjMzODZmNmQ4ZGE3NWFh
NDE2YTZlMzEwMDUzZjc2OTgiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '11392'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Tue, 19 Nov 2024 22:14:39 GMT
status:
code: 200
message: OK
version: 1

View File

Binary file not shown.

View File

@@ -0,0 +1,545 @@
"""Test Knowledge creation and querying functionality."""
from pathlib import Path
from unittest.mock import patch
from crewai.knowledge.source.csv_knowledge_source import CSVKnowledgeSource
from crewai.knowledge.source.excel_knowledge_source import ExcelKnowledgeSource
from crewai.knowledge.source.json_knowledge_source import JSONKnowledgeSource
from crewai.knowledge.source.pdf_knowledge_source import PDFKnowledgeSource
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
import pytest
@pytest.fixture(autouse=True)
def mock_vector_db():
"""Mock vector database operations."""
with patch("crewai.knowledge.storage.knowledge_storage.KnowledgeStorage") as mock:
# Mock the query method to return a predefined response
instance = mock.return_value
instance.query.return_value = [
{
"context": "Brandon's favorite color is blue and he likes Mexican food.",
"score": 0.9,
}
]
instance.reset.return_value = None
yield instance
@pytest.fixture(autouse=True)
def reset_knowledge_storage(mock_vector_db):
"""Fixture to reset knowledge storage before each test."""
yield
def test_single_short_string(mock_vector_db):
# Create a knowledge base with a single short string
content = "Brandon's favorite color is blue and he likes Mexican food."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
mock_vector_db.sources = [string_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite color?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("blue" in result["context"].lower() for result in results)
# Verify the mock was called
mock_vector_db.query.assert_called_once()
# @pytest.mark.vcr(filter_headers=["authorization"])
def test_single_2k_character_string(mock_vector_db):
# Create a 2k character string with various facts about Brandon
content = (
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
)
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
mock_vector_db.sources = [string_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite movie?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("inception" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_multiple_short_strings(mock_vector_db):
# Create multiple short string sources
contents = [
"Brandon loves hiking.",
"Brandon has a dog named Max.",
"Brandon enjoys painting landscapes.",
]
string_sources = [
StringKnowledgeSource(content=content, metadata={"preference": "personal"})
for content in contents
]
# Mock the vector db query response
mock_vector_db.query.return_value = [
{"context": "Brandon has a dog named Max.", "score": 0.9}
]
mock_vector_db.sources = string_sources
# Perform a query
query = "What is the name of Brandon's pet?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("max" in result["context"].lower() for result in results)
# Verify the mock was called
mock_vector_db.query.assert_called_once()
def test_multiple_2k_character_strings(mock_vector_db):
# Create multiple 2k character strings with various facts about Brandon
contents = [
(
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
)
* 2, # Repeat to ensure it's 2k characters
(
"Brandon loves traveling and has visited over 20 countries. "
"He is fluent in Spanish and often practices with his friends. "
"Brandon's favorite city is Barcelona, where he enjoys the architecture and culture. "
"He is a foodie and loves trying new cuisines, with a particular fondness for sushi. "
"Brandon is an avid cyclist and participates in local cycling events. "
"He is also a photographer and enjoys capturing landscapes and cityscapes. "
"Brandon is a tech enthusiast and follows the latest trends in gadgets and software. "
"He is also a fan of virtual reality and owns a VR headset. "
"Brandon's favorite book is 'The Hitchhiker's Guide to the Galaxy'. "
"He enjoys watching documentaries and learning about history and science. "
"Brandon is a coffee lover and has a collection of coffee mugs from different countries. "
"He is also a fan of jazz music and often attends live performances. "
"Brandon is a member of a local running club and participates in marathons. "
"He is also a volunteer at a local animal shelter and helps with dog walking. "
"Brandon's favorite holiday is Christmas, and he enjoys decorating his home. "
"He is also a fan of classic movies and has a collection of DVDs. "
"Brandon is a mentor for young professionals and enjoys giving career advice. "
"He is also a fan of puzzles and enjoys solving them in his free time. "
"Brandon's favorite sport is soccer, and he often plays with his friends. "
"He is also a fan of FC Barcelona and enjoys watching their matches. "
)
* 2, # Repeat to ensure it's 2k characters
]
string_sources = [
StringKnowledgeSource(content=content, metadata={"preference": "personal"})
for content in contents
]
mock_vector_db.sources = string_sources
mock_vector_db.query.return_value = [{"context": contents[1], "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite book?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any(
"the hitchhiker's guide to the galaxy" in result["context"].lower()
for result in results
)
mock_vector_db.query.assert_called_once()
def test_single_short_file(mock_vector_db, tmpdir):
# Create a single short text file
content = "Brandon's favorite sport is basketball."
file_path = Path(tmpdir.join("short_file.txt"))
with open(file_path, "w") as f:
f.write(content)
file_source = TextFileKnowledgeSource(
file_path=file_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [file_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What sport does Brandon like?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("basketball" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_single_2k_character_file(mock_vector_db, tmpdir):
# Create a single 2k character text file with various facts about Brandon
content = (
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
) * 2 # Repeat to ensure it's 2k characters
file_path = Path(tmpdir.join("long_file.txt"))
with open(file_path, "w") as f:
f.write(content)
file_source = TextFileKnowledgeSource(
file_path=file_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [file_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite movie?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("inception" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_multiple_short_files(mock_vector_db, tmpdir):
# Create multiple short text files
contents = [
{
"content": "Brandon works as a software engineer.",
"metadata": {"category": "profession", "source": "occupation"},
},
{
"content": "Brandon lives in New York.",
"metadata": {"category": "city", "source": "personal"},
},
{
"content": "Brandon enjoys cooking Italian food.",
"metadata": {"category": "hobby", "source": "personal"},
},
]
file_paths = []
for i, item in enumerate(contents):
file_path = Path(tmpdir.join(f"file_{i}.txt"))
with open(file_path, "w") as f:
f.write(item["content"])
file_paths.append((file_path, item["metadata"]))
file_sources = [
TextFileKnowledgeSource(file_path=path, metadata=metadata)
for path, metadata in file_paths
]
mock_vector_db.sources = file_sources
mock_vector_db.query.return_value = [
{"context": "Brandon lives in New York.", "score": 0.9}
]
# Perform a query
query = "What city does he reside in?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("new york" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_multiple_2k_character_files(mock_vector_db, tmpdir):
# Create multiple 2k character text files with various facts about Brandon
contents = [
(
"Brandon loves traveling and has visited over 20 countries. "
"He is fluent in Spanish and often practices with his friends. "
"Brandon's favorite city is Barcelona, where he enjoys the architecture and culture. "
"He is a foodie and loves trying new cuisines, with a particular fondness for sushi. "
"Brandon is an avid cyclist and participates in local cycling events. "
"He is also a photographer and enjoys capturing landscapes and cityscapes. "
"Brandon is a tech enthusiast and follows the latest trends in gadgets and software. "
"He is also a fan of virtual reality and owns a VR headset. "
"Brandon's favorite book is 'The Hitchhiker's Guide to the Galaxy'. "
"He enjoys watching documentaries and learning about history and science. "
"Brandon is a coffee lover and has a collection of coffee mugs from different countries. "
"He is also a fan of jazz music and often attends live performances. "
"Brandon is a member of a local running club and participates in marathons. "
"He is also a volunteer at a local animal shelter and helps with dog walking. "
"Brandon's favorite holiday is Christmas, and he enjoys decorating his home. "
"He is also a fan of classic movies and has a collection of DVDs. "
"Brandon is a mentor for young professionals and enjoys giving career advice. "
"He is also a fan of puzzles and enjoys solving them in his free time. "
"Brandon's favorite sport is soccer, and he often plays with his friends. "
"He is also a fan of FC Barcelona and enjoys watching their matches. "
)
* 2, # Repeat to ensure it's 2k characters
(
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
)
* 2, # Repeat to ensure it's 2k characters
]
file_paths = []
for i, content in enumerate(contents):
file_path = Path(tmpdir.join(f"long_file_{i}.txt"))
with open(file_path, "w") as f:
f.write(content)
file_paths.append(file_path)
file_sources = [
TextFileKnowledgeSource(file_path=path, metadata={"preference": "personal"})
for path in file_paths
]
mock_vector_db.sources = file_sources
mock_vector_db.query.return_value = [
{
"context": "Brandon's favorite book is 'The Hitchhiker's Guide to the Galaxy'.",
"score": 0.9,
}
]
# Perform a query
query = "What is Brandon's favorite book?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any(
"the hitchhiker's guide to the galaxy" in result["context"].lower()
for result in results
)
mock_vector_db.query.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hybrid_string_and_files(mock_vector_db, tmpdir):
# Create string sources
string_contents = [
"Brandon is learning French.",
"Brandon visited Paris last summer.",
]
string_sources = [
StringKnowledgeSource(content=content, metadata={"preference": "personal"})
for content in string_contents
]
# Create file sources
file_contents = [
"Brandon prefers tea over coffee.",
"Brandon's favorite book is 'The Alchemist'.",
]
file_paths = []
for i, content in enumerate(file_contents):
file_path = Path(tmpdir.join(f"file_{i}.txt"))
with open(file_path, "w") as f:
f.write(content)
file_paths.append(file_path)
file_sources = [
TextFileKnowledgeSource(file_path=path, metadata={"preference": "personal"})
for path in file_paths
]
# Combine string and file sources
mock_vector_db.sources = string_sources + file_sources
mock_vector_db.query.return_value = [{"context": file_contents[1], "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite book?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("the alchemist" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_pdf_knowledge_source(mock_vector_db):
# Get the directory of the current file
current_dir = Path(__file__).parent
# Construct the path to the PDF file
pdf_path = current_dir / "crewai_quickstart.pdf"
# Create a PDFKnowledgeSource
pdf_source = PDFKnowledgeSource(
file_path=pdf_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [pdf_source]
mock_vector_db.query.return_value = [
{"context": "crewai create crew latest-ai-development", "score": 0.9}
]
# Perform a query
query = "How do you create a crew?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any(
"crewai create crew latest-ai-development" in result["context"].lower()
for result in results
)
mock_vector_db.query.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_csv_knowledge_source(mock_vector_db, tmpdir):
"""Test CSVKnowledgeSource with a simple CSV file."""
# Create a CSV file with sample data
csv_content = [
["Name", "Age", "City"],
["Brandon", "30", "New York"],
["Alice", "25", "Los Angeles"],
["Bob", "35", "Chicago"],
]
csv_path = Path(tmpdir.join("data.csv"))
with open(csv_path, "w", encoding="utf-8") as f:
for row in csv_content:
f.write(",".join(row) + "\n")
# Create a CSVKnowledgeSource
csv_source = CSVKnowledgeSource(
file_path=csv_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [csv_source]
mock_vector_db.query.return_value = [
{"context": "Brandon is 30 years old.", "score": 0.9}
]
# Perform a query
query = "How old is Brandon?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("30" in result["context"] for result in results)
mock_vector_db.query.assert_called_once()
def test_json_knowledge_source(mock_vector_db, tmpdir):
"""Test JSONKnowledgeSource with a simple JSON file."""
# Create a JSON file with sample data
json_data = {
"people": [
{"name": "Brandon", "age": 30, "city": "New York"},
{"name": "Alice", "age": 25, "city": "Los Angeles"},
{"name": "Bob", "age": 35, "city": "Chicago"},
]
}
json_path = Path(tmpdir.join("data.json"))
with open(json_path, "w", encoding="utf-8") as f:
import json
json.dump(json_data, f)
# Create a JSONKnowledgeSource
json_source = JSONKnowledgeSource(
file_path=json_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [json_source]
mock_vector_db.query.return_value = [
{"context": "Alice lives in Los Angeles.", "score": 0.9}
]
# Perform a query
query = "Where does Alice reside?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("los angeles" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_excel_knowledge_source(mock_vector_db, tmpdir):
"""Test ExcelKnowledgeSource with a simple Excel file."""
# Create an Excel file with sample data
import pandas as pd
excel_data = {
"Name": ["Brandon", "Alice", "Bob"],
"Age": [30, 25, 35],
"City": ["New York", "Los Angeles", "Chicago"],
}
df = pd.DataFrame(excel_data)
excel_path = Path(tmpdir.join("data.xlsx"))
df.to_excel(excel_path, index=False)
# Create an ExcelKnowledgeSource
excel_source = ExcelKnowledgeSource(
file_path=excel_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [excel_source]
mock_vector_db.query.return_value = [
{"context": "Brandon is 30 years old.", "score": 0.9}
]
# Perform a query
query = "What is Brandon's age?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("30" in result["context"] for result in results)
mock_vector_db.query.assert_called_once()

View File

@@ -38,6 +38,7 @@ def mock_crew_factory():
crew = MockCrew()
crew.name = name
crew.knowledge = None
task_output = TaskOutput(
description="Test task", raw="Task output", agent="Test Agent"
@@ -67,6 +68,7 @@ def mock_crew_factory():
crew.process = Process.sequential
crew.config = None
crew.cache = True
crew.embedder = None
# Add non-empty agents and tasks
mock_agent = MagicMock(spec=Agent)

428
uv.lock generated
View File

@@ -638,6 +638,18 @@ dependencies = [
agentops = [
{ name = "agentops" },
]
fastembed = [
{ name = "fastembed" },
]
openpyxl = [
{ name = "openpyxl" },
]
pandas = [
{ name = "pandas" },
]
pdfplumber = [
{ name = "pdfplumber" },
]
mem0 = [
{ name = "mem0ai" },
]
@@ -674,6 +686,7 @@ requires-dist = [
{ name = "click", specifier = ">=8.1.7" },
{ name = "crewai-tools", specifier = ">=0.14.0" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.14.0" },
{ name = "fastembed", marker = "extra == 'fastembed'", specifier = ">=0.4.1" },
{ name = "instructor", specifier = ">=1.3.3" },
{ name = "json-repair", specifier = ">=0.25.2" },
{ name = "jsonref", specifier = ">=1.1.0" },
@@ -681,9 +694,12 @@ requires-dist = [
{ name = "litellm", specifier = ">=1.44.22" },
{ name = "mem0ai", marker = "extra == 'mem0'", specifier = ">=0.1.29" },
{ name = "openai", specifier = ">=1.13.3" },
{ name = "openpyxl", marker = "extra == 'openpyxl'", specifier = ">=3.1.5" },
{ name = "opentelemetry-api", specifier = ">=1.22.0" },
{ name = "opentelemetry-exporter-otlp-proto-http", specifier = ">=1.22.0" },
{ name = "opentelemetry-sdk", specifier = ">=1.22.0" },
{ name = "pandas", marker = "extra == 'pandas'", specifier = ">=2.2.3" },
{ name = "pdfplumber", marker = "extra == 'pdfplumber'", specifier = ">=0.11.4" },
{ name = "pydantic", specifier = ">=2.4.2" },
{ name = "python-dotenv", specifier = ">=1.0.0" },
{ name = "pyvis", specifier = ">=0.3.2" },
@@ -927,6 +943,16 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/52/82/3d0355c22bc68cfbb8fbcf670da4c01b31bd7eb516974a08cf7533e89887/embedchain-0.1.125-py3-none-any.whl", hash = "sha256:f87b49732dc192c6b61221830f29e59cf2aff26d8f5d69df81f6f6cf482715c2", size = 211367 },
]
[[package]]
name = "et-xmlfile"
version = "2.0.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/d3/38/af70d7ab1ae9d4da450eeec1fa3918940a5fafb9055e934af8d6eb0c2313/et_xmlfile-2.0.0.tar.gz", hash = "sha256:dab3f4764309081ce75662649be815c4c9081e88f0837825f90fd28317d4da54", size = 17234 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c1/8b/5fe2cc11fee489817272089c4203e679c63b570a5aaeb18d852ae3cbba6a/et_xmlfile-2.0.0-py3-none-any.whl", hash = "sha256:7a91720bc756843502c3b7504c77b8fe44217c85c537d85037f0f536151b2caa", size = 18059 },
]
[[package]]
name = "exceptiongroup"
version = "1.2.2"
@@ -985,6 +1011,28 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/c8/0c/92b468e4649e61eaa2d93a92e19a5b57a0f6cecaa236c53a76f3f72a4696/fastavro-1.9.7-cp312-cp312-win_amd64.whl", hash = "sha256:b6b2ccdc78f6afc18c52e403ee68c00478da12142815c1bd8a00973138a166d0", size = 487778 },
]
[[package]]
name = "fastembed"
version = "0.4.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "huggingface-hub" },
{ name = "loguru" },
{ name = "mmh3" },
{ name = "numpy" },
{ name = "onnx" },
{ name = "onnxruntime" },
{ name = "pillow" },
{ name = "py-rust-stemmers" },
{ name = "requests" },
{ name = "tokenizers" },
{ name = "tqdm" },
]
sdist = { url = "https://files.pythonhosted.org/packages/0c/75/0883d15b54016fa99a32cc333182bf862025bf0983daac417a1beabb53bf/fastembed-0.4.1.tar.gz", hash = "sha256:d5dcfffc3554dca48caf16eec35e38c20544c58e396a5d215f238d40c8442718", size = 40461 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/19/ae/1303f005be08ff31686a30421121680b864cc6d82f7cd82cee74a6ff9416/fastembed-0.4.1-py3-none-any.whl", hash = "sha256:f75f02468aafa8de474844f9fbaa89683a3dcfd76521fa83cfc3efc885db61f3", size = 65123 },
]
[[package]]
name = "filelock"
version = "3.16.1"
@@ -2042,6 +2090,19 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/22/f3/89a4d65d1b9286eb5ac6a6e92dd93523d92f3142a832e60c00d5cad64176/litellm-1.50.2-py3-none-any.whl", hash = "sha256:99cac60c78037946ab809b7cfbbadad53507bb2db8ae39391b4be215a0869fdd", size = 6318265 },
]
[[package]]
name = "loguru"
version = "0.7.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "sys_platform == 'win32'" },
{ name = "win32-setctime", marker = "sys_platform == 'win32'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/9e/30/d87a423766b24db416a46e9335b9602b054a72b96a88a241f2b09b560fa8/loguru-0.7.2.tar.gz", hash = "sha256:e671a53522515f34fd406340ee968cb9ecafbc4b36c679da03c18fd8d0bd51ac", size = 145103 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/03/0a/4f6fed21aa246c6b49b561ca55facacc2a44b87d65b8b92362a8e99ba202/loguru-0.7.2-py3-none-any.whl", hash = "sha256:003d71e3d3ed35f0f8984898359d65b79e5b21943f78af86aa5491210429b8eb", size = 62549 },
]
[[package]]
name = "mako"
version = "1.3.6"
@@ -2310,74 +2371,58 @@ wheels = [
[[package]]
name = "mmh3"
version = "5.0.1"
version = "4.1.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/e2/08/04ad6419f072ea3f51f9a0f429dd30f5f0a0b02ead7ca11a831117b6f9e8/mmh3-5.0.1.tar.gz", hash = "sha256:7dab080061aeb31a6069a181f27c473a1f67933854e36a3464931f2716508896", size = 32008 }
sdist = { url = "https://files.pythonhosted.org/packages/63/96/aa247e82878b123468f0079ce2ac77e948315bab91ce45d2934a62e0af95/mmh3-4.1.0.tar.gz", hash = "sha256:a1cf25348b9acd229dda464a094d6170f47d2850a1fcb762a3b6172d2ce6ca4a", size = 26357 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/fa/b9/9a91b0a0e330557cdbf51fc43ca0ba306633f2ec6d2b15e871e288592a32/mmh3-5.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f0a4b4bf05778ed77d820d6e7d0e9bd6beb0c01af10e1ce9233f5d2f814fcafa", size = 52867 },
{ url = "https://files.pythonhosted.org/packages/da/28/6b37f0d6707872764e1af49f327b0940b6a3ad995d91b3839b90ba35f559/mmh3-5.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ac7a391039aeab95810c2d020b69a94eb6b4b37d4e2374831e92db3a0cdf71c6", size = 38352 },
{ url = "https://files.pythonhosted.org/packages/76/84/a98f59a620b522f218876a0630b02fc345ecf078f6393595756ddb3aa0b5/mmh3-5.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3a2583b5521ca49756d8d8bceba80627a9cc295f255dcab4e3df7ccc2f09679a", size = 38214 },
{ url = "https://files.pythonhosted.org/packages/35/cb/4980c7eb6cd31f49d1913a4066562bc9e0af28526750f1232be9688a9cd4/mmh3-5.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:081a8423fe53c1ac94f87165f3e4c500125d343410c1a0c5f1703e898a3ef038", size = 93502 },
{ url = "https://files.pythonhosted.org/packages/65/f3/29726296fadeaf06134a6978f7c453dfa562cf2f0f1faf9ae28b9b8ef76e/mmh3-5.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8b4d72713799755dc8954a7d36d5c20a6c8de7b233c82404d122c7c7c1707cc", size = 98394 },
{ url = "https://files.pythonhosted.org/packages/35/fd/e181f4f4b250f7b63ee27a7d65e5e290a3ea0e26cc633f4bfd906f04558b/mmh3-5.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:389a6fd51efc76d3182d36ec306448559c1244f11227d2bb771bdd0e6cc91321", size = 98052 },
{ url = "https://files.pythonhosted.org/packages/61/5c/8a5d838da3eb3fb91035ef5eaaea469abab4e8e3fae55607c27a1a07d162/mmh3-5.0.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:39f4128edaa074bff721b1d31a72508cba4d2887ee7867f22082e1fe9d4edea0", size = 86320 },
{ url = "https://files.pythonhosted.org/packages/10/80/3f33a8f4de12cea322607da1a84d001513affb741b3c3cc1277ecb85d34b/mmh3-5.0.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d5d23a94d91aabba3386b3769048d5f4210fdfef80393fece2f34ba5a7b466c", size = 93232 },
{ url = "https://files.pythonhosted.org/packages/9e/1c/d0ce5f498493be4de2e7e7596e1cbf63315a4c0bb8bb94e3c37c4fad965d/mmh3-5.0.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:16347d038361f8b8f24fd2b7ef378c9b68ddee9f7706e46269b6e0d322814713", size = 93590 },
{ url = "https://files.pythonhosted.org/packages/d9/66/770b5ad35b5a2eb7965f3fcaeaa76148e59543575d2e27b80690c1b0795c/mmh3-5.0.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:6e299408565af7d61f2d20a5ffdd77cf2ed902460fe4e6726839d59ba4b72316", size = 88433 },
{ url = "https://files.pythonhosted.org/packages/14/58/e0d258b18749d8640233976493716a40aa27352dcb1cea941836357dac24/mmh3-5.0.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:42050af21ddfc5445ee5a66e73a8fc758c71790305e3ee9e4a85a8e69e810f94", size = 99339 },
{ url = "https://files.pythonhosted.org/packages/38/26/7267146122deb584cf377975b994d80c6d72c4c8d0e8eedff4d0cc5cd4c8/mmh3-5.0.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2ae9b1f5ef27ec54659920f0404b7ceb39966e28867c461bfe83a05e8d18ddb0", size = 93944 },
{ url = "https://files.pythonhosted.org/packages/8d/6b/df60b14a2dd383d8848f6f35496c86c7003be3ffb236789e98d002c542c6/mmh3-5.0.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:50c2495a02045f3047d71d4ae9cdd7a15efc0bcbb7ff17a18346834a8e2d1d19", size = 92798 },
{ url = "https://files.pythonhosted.org/packages/0a/3f/d5fecf13915163a15b449e5cc89232a4df90e836ecad1c38121318119d27/mmh3-5.0.1-cp310-cp310-win32.whl", hash = "sha256:c028fa77cddf351ca13b4a56d43c1775652cde0764cadb39120b68f02a23ecf6", size = 39185 },
{ url = "https://files.pythonhosted.org/packages/74/8e/4bb5ade332a87de633cda21dae09d6002d69601f2b93e9f40302ab2d9acf/mmh3-5.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:c5e741e421ec14400c4aae30890515c201f518403bdef29ae1e00d375bb4bbb5", size = 39766 },
{ url = "https://files.pythonhosted.org/packages/16/2b/cd5cfa4d7ad40a37655af491f9270909d63fc27bcf0558ec36000ee5347f/mmh3-5.0.1-cp310-cp310-win_arm64.whl", hash = "sha256:b17156d56fabc73dbf41bca677ceb6faed435cc8544f6566d72ea77d8a17e9d0", size = 36540 },
{ url = "https://files.pythonhosted.org/packages/fb/8a/f3b9cf8b7110fef0f130158d7602af6f5b09f2cf568130814b7c92e2507b/mmh3-5.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9a6d5a9b1b923f1643559ba1fc0bf7a5076c90cbb558878d3bf3641ce458f25d", size = 52867 },
{ url = "https://files.pythonhosted.org/packages/bf/06/f466e0da3c5bd6fbb1e047f70fd4e9e9563d0268aa56de511f363478dbf2/mmh3-5.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3349b968be555f7334bbcce839da98f50e1e80b1c615d8e2aa847ea4a964a012", size = 38349 },
{ url = "https://files.pythonhosted.org/packages/13/f0/2d3daca276a4673f82af859e4b0b18befd4e6e54f1017ba48ea9735b2f1b/mmh3-5.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1bd3c94b110e55db02ab9b605029f48a2f7f677c6e58c09d44e42402d438b7e1", size = 38211 },
{ url = "https://files.pythonhosted.org/packages/e3/56/a2d203ca97702d4e045ac1a46a608393da1a1dddb24f81de664dae940518/mmh3-5.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d47ba84d48608f79adbb10bb09986b6dc33eeda5c2d1bd75d00820081b73bde9", size = 95104 },
{ url = "https://files.pythonhosted.org/packages/ec/45/c7c8ae64e3ae024776a0ce5377c16c6741a3359f3e9505fc35fc5012beb2/mmh3-5.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c0217987a8b8525c8d9170f66d036dec4ab45cfbd53d47e8d76125791ceb155e", size = 100049 },
{ url = "https://files.pythonhosted.org/packages/d5/74/681113776fe406c09870ab2152ffbd214a15bbc8f1d1da9ad73ce594b878/mmh3-5.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2797063a34e78d1b61639a98b0edec1c856fa86ab80c7ec859f1796d10ba429", size = 99671 },
{ url = "https://files.pythonhosted.org/packages/bf/4f/dbb8be18ce9b6ff8df14bc14348c0404b3091fb51df9c673ebfcf5877db3/mmh3-5.0.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8bba16340adcbd47853a2fbe5afdb397549e8f2e79324ff1dced69a3f8afe7c3", size = 87549 },
{ url = "https://files.pythonhosted.org/packages/5f/82/274d646f3f604c35b7e3d4eb7f3ff08b3bdc6a2c87d797709bb6f084a611/mmh3-5.0.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:282797957c9f60b51b9d768a602c25f579420cc9af46feb77d457a27823d270a", size = 94780 },
{ url = "https://files.pythonhosted.org/packages/c9/a1/f094ca8b8fb5e2ac53201070bda42b0fee80ceb92c153eb99a1453e3aed3/mmh3-5.0.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e4fb670c29e63f954f9e7a2cdcd57b36a854c2538f579ef62681ccbaa1de2b69", size = 90430 },
{ url = "https://files.pythonhosted.org/packages/d9/23/4732ba68c6ef7242b69bb53b9e1bcb2ef065d68ed85fd26e829fb911ab5a/mmh3-5.0.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ee7d85438dc6aff328e19ab052086a3c29e8a9b632998a49e5c4b0034e9e8d6", size = 89451 },
{ url = "https://files.pythonhosted.org/packages/3c/c5/daea5d534fcf20b2399c2a7b1cd00a8d29d4d474247c15c2c94548a1a272/mmh3-5.0.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:b7fb5db231f3092444bc13901e6a8d299667126b00636ffbad4a7b45e1051e2f", size = 94703 },
{ url = "https://files.pythonhosted.org/packages/5e/4a/34d5691e7be7c63c34181387bc69bdcc0005ca93c8b562d68cb5775e0e78/mmh3-5.0.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c100dd441703da5ec136b1d9003ed4a041d8a1136234c9acd887499796df6ad8", size = 91054 },
{ url = "https://files.pythonhosted.org/packages/5c/3a/ab31bb5e9e1a19a4a997593cbe6ce56710308218ff36c7f76d40ff9c8d2e/mmh3-5.0.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:71f3b765138260fd7a7a2dba0ea5727dabcd18c1f80323c9cfef97a7e86e01d0", size = 89571 },
{ url = "https://files.pythonhosted.org/packages/0b/79/b986bb067dbfcba6879afe6e723aad1bd53f223450532dd9a4606d0af389/mmh3-5.0.1-cp311-cp311-win32.whl", hash = "sha256:9a76518336247fd17689ce3ae5b16883fd86a490947d46a0193d47fb913e26e3", size = 39187 },
{ url = "https://files.pythonhosted.org/packages/48/69/97029eda3df0f84edde16a496a2e71bac508fc5d1f0a31e163da071e2670/mmh3-5.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:336bc4df2e44271f1c302d289cc3d78bd52d3eed8d306c7e4bff8361a12bf148", size = 39766 },
{ url = "https://files.pythonhosted.org/packages/c7/51/538f2b8412303281d8ce2a9a5c4ea84ff81f06de98af0b7c72059727a3bb/mmh3-5.0.1-cp311-cp311-win_arm64.whl", hash = "sha256:af6522722fbbc5999aa66f7244d0986767a46f1fb05accc5200f75b72428a508", size = 36540 },
{ url = "https://files.pythonhosted.org/packages/75/c7/5b52d0882e7c0dccfaf8786a648e2b26c5307c594abe5cbe98c092607c97/mmh3-5.0.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f2730bb263ed9c388e8860438b057a53e3cc701134a6ea140f90443c4c11aa40", size = 52907 },
{ url = "https://files.pythonhosted.org/packages/01/b5/9609fa353c27188292748db033323c206f3fc6fbfa124bccf6a42af0da08/mmh3-5.0.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:6246927bc293f6d56724536400b85fb85f5be26101fa77d5f97dd5e2a4c69bf2", size = 38389 },
{ url = "https://files.pythonhosted.org/packages/33/99/49bf3c86244857b3b250c2f54aff22a5a78ef12258af556fa39bb1e80699/mmh3-5.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:fbca322519a6e6e25b6abf43e940e1667cf8ea12510e07fb4919b48a0cd1c411", size = 38204 },
{ url = "https://files.pythonhosted.org/packages/f8/04/8860cab35b48aaefe40cf88344437e79ddc93cf7ff745dacd1cd56a2be1e/mmh3-5.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eae8c19903ed8a1724ad9e67e86f15d198a7a1271a4f9be83d47e38f312ed672", size = 95091 },
{ url = "https://files.pythonhosted.org/packages/fa/e9/4ac56001a5bab6d26aa3dfabeddea6d7f037fd2972c76803259f51a5af75/mmh3-5.0.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a09fd6cc72c07c0c07c3357714234b646d78052487c4a3bd5f7f6e08408cff60", size = 100055 },
{ url = "https://files.pythonhosted.org/packages/18/e8/7d5fd73f559c423ed5b72f940130c27803a406ee0ffc32ef5422f733df67/mmh3-5.0.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2ff8551fee7ae3b11c5d986b6347ade0dccaadd4670ffdb2b944dee120ffcc84", size = 99764 },
{ url = "https://files.pythonhosted.org/packages/54/d8/c0d89da6c729feec997a9b3b68698894cef12359ade0da95eba9e03b1d5d/mmh3-5.0.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e39694c73a5a20c8bf36dfd8676ed351e5234d55751ba4f7562d85449b21ef3f", size = 87650 },
{ url = "https://files.pythonhosted.org/packages/dd/41/ec0ee3fd5124c83cb767dcea8569bb326f8981cc88c991e3e4e948a31e24/mmh3-5.0.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eba6001989a92f72a89c7cf382fda831678bd780707a66b4f8ca90239fdf2123", size = 94976 },
{ url = "https://files.pythonhosted.org/packages/8e/fa/e8059199fe6fbb2fd6494302904cb1209b2f8b6899d58059858a280e89a5/mmh3-5.0.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0771f90c9911811cc606a5c7b7b58f33501c9ee896ed68a6ac22c7d55878ecc0", size = 90485 },
{ url = "https://files.pythonhosted.org/packages/3a/a0/eb9da5f93dea3f44b8e970f013279d1543ab210ccf63bb030830968682aa/mmh3-5.0.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:09b31ed0c0c0920363e96641fac4efde65b1ab62b8df86293142f35a254e72b4", size = 89554 },
{ url = "https://files.pythonhosted.org/packages/e7/e8/5803181eac4e015b4caf307af22fea74292dca48e580d93afe402dcdc138/mmh3-5.0.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5cf4a8deda0235312db12075331cb417c4ba163770edfe789bde71d08a24b692", size = 94872 },
{ url = "https://files.pythonhosted.org/packages/ed/f9/4d55063f9dcaed41524f078a85989efdf1d335159af5e70af29942ebae67/mmh3-5.0.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:41f7090a95185ef20ac018581a99337f0cbc84a2135171ee3290a9c0d9519585", size = 91326 },
{ url = "https://files.pythonhosted.org/packages/80/75/0a5acab5291480acd939db80e94448ac937fc7fbfddc0a67b3e721ebfc9c/mmh3-5.0.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b97b5b368fb7ff22194ec5854f5b12d8de9ab67a0f304728c7f16e5d12135b76", size = 89810 },
{ url = "https://files.pythonhosted.org/packages/9b/fd/eb1a3573cda74d4c2381d10ded62c128e869954ced1881c15e2bcd97a48f/mmh3-5.0.1-cp312-cp312-win32.whl", hash = "sha256:842516acf04da546f94fad52db125ee619ccbdcada179da51c326a22c4578cb9", size = 39206 },
{ url = "https://files.pythonhosted.org/packages/66/e8/542ed252924002b84c43a68a080cfd4facbea0d5df361e4f59637638d3c7/mmh3-5.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:d963be0dbfd9fca209c17172f6110787ebf78934af25e3694fe2ba40e55c1e2b", size = 39799 },
{ url = "https://files.pythonhosted.org/packages/bd/25/ff2cd36c82a23afa57a05cdb52ab467a911fb12c055c8a8238c0d426cbf0/mmh3-5.0.1-cp312-cp312-win_arm64.whl", hash = "sha256:a5da292ceeed8ce8e32b68847261a462d30fd7b478c3f55daae841404f433c15", size = 36537 },
{ url = "https://files.pythonhosted.org/packages/09/e0/fb19c46265c18311b422ba5ce3e18046ad45c48cfb213fd6dbec23ae6b51/mmh3-5.0.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:673e3f1c8d4231d6fb0271484ee34cb7146a6499fc0df80788adb56fd76842da", size = 52909 },
{ url = "https://files.pythonhosted.org/packages/c3/94/54fc591e7a24c7ce2c531ecfc5715cff932f9d320c2936550cc33d67304d/mmh3-5.0.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f795a306bd16a52ad578b663462cc8e95500b3925d64118ae63453485d67282b", size = 38396 },
{ url = "https://files.pythonhosted.org/packages/1f/9a/142bcc9d0d28fc8ae45bbfb83926adc069f984cdf3495a71534cc22b8e27/mmh3-5.0.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:5ed57a5e28e502a1d60436cc25c76c3a5ba57545f250f2969af231dc1221e0a5", size = 38207 },
{ url = "https://files.pythonhosted.org/packages/f8/5b/f1c9110aa70321bb1ee713f17851b9534586c63bc25e0110e4fc03ae2450/mmh3-5.0.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:632c28e7612e909dbb6cbe2fe496201ada4695b7715584005689c5dc038e59ad", size = 94988 },
{ url = "https://files.pythonhosted.org/packages/87/e5/4dc67e7e0e716c641ab0a5875a659e37258417439590feff5c3bd3ff4538/mmh3-5.0.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:53fd6bd525a5985e391c43384672d9d6b317fcb36726447347c7fc75bfed34ec", size = 99969 },
{ url = "https://files.pythonhosted.org/packages/ac/68/d148327337687c53f04ad9ceaedfa9ad155ee0111d0cb06220f044d66720/mmh3-5.0.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dceacf6b0b961a0e499836af3aa62d60633265607aef551b2a3e3c48cdaa5edd", size = 99662 },
{ url = "https://files.pythonhosted.org/packages/13/79/782adb6df6397947c1097b1e94b7f8d95629a4a73df05cf7207bd5148c1f/mmh3-5.0.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8f0738d478fdfb5d920f6aff5452c78f2c35b0eff72caa2a97dfe38e82f93da2", size = 87606 },
{ url = "https://files.pythonhosted.org/packages/f2/c2/0404383281df049d0e4ccf07fabd659fc1f3da834df6708d934116cbf45d/mmh3-5.0.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e70285e7391ab88b872e5bef632bad16b9d99a6d3ca0590656a4753d55988af", size = 94836 },
{ url = "https://files.pythonhosted.org/packages/c8/33/fda67c5f28e4c2131891cf8cbc3513cfc55881e3cfe26e49328e38ffacb3/mmh3-5.0.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:27e5fc6360aa6b828546a4318da1a7da6bf6e5474ccb053c3a6aa8ef19ff97bd", size = 90492 },
{ url = "https://files.pythonhosted.org/packages/64/2f/0ed38aefe2a87f30bb1b12e5b75dc69fcffdc16def40d1752d6fc7cbbf96/mmh3-5.0.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:7989530c3c1e2c17bf5a0ec2bba09fd19819078ba90beedabb1c3885f5040b0d", size = 89594 },
{ url = "https://files.pythonhosted.org/packages/95/ab/6e7a5e765fc78e3dbd0a04a04cfdf72e91eb8e31976228e69d82c741a5b4/mmh3-5.0.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:cdad7bee649950da7ecd3cbbbd12fb81f1161072ecbdb5acfa0018338c5cb9cf", size = 94929 },
{ url = "https://files.pythonhosted.org/packages/74/51/f748f00c072006f4a093d9b08853a0e2e3cd5aeaa91343d4e2d942851978/mmh3-5.0.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e143b8f184c1bb58cecd85ab4a4fd6dc65a2d71aee74157392c3fddac2a4a331", size = 91317 },
{ url = "https://files.pythonhosted.org/packages/df/a1/21ee8017a7feb0270c49f756ff56da9f99bd150dcfe3b3f6f0d4b243423d/mmh3-5.0.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e5eb12e886f3646dd636f16b76eb23fc0c27e8ff3c1ae73d4391e50ef60b40f6", size = 89861 },
{ url = "https://files.pythonhosted.org/packages/c2/d2/46a6d070de4659bdf91cd6a62d659f8cc547dadee52b6d02bcbacb3262ed/mmh3-5.0.1-cp313-cp313-win32.whl", hash = "sha256:16e6dddfa98e1c2d021268e72c78951234186deb4df6630e984ac82df63d0a5d", size = 39201 },
{ url = "https://files.pythonhosted.org/packages/ed/07/316c062f09019b99b248a4183c5333f8eeebe638345484774908a8f2c9c0/mmh3-5.0.1-cp313-cp313-win_amd64.whl", hash = "sha256:d3ffb792d70b8c4a2382af3598dad6ae0c5bd9cee5b7ffcc99aa2f5fd2c1bf70", size = 39807 },
{ url = "https://files.pythonhosted.org/packages/9d/d3/f7e6d7d062b8d7072c3989a528d9d47486ee5d5ae75250f6e26b4976d098/mmh3-5.0.1-cp313-cp313-win_arm64.whl", hash = "sha256:122fa9ec148383f9124292962bda745f192b47bfd470b2af5fe7bb3982b17896", size = 36539 },
{ url = "https://files.pythonhosted.org/packages/ef/5a/8609dc74421858f7e94a89dc69221ab9b2c14d0d63a139b46ec190eedc44/mmh3-4.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:be5ac76a8b0cd8095784e51e4c1c9c318c19edcd1709a06eb14979c8d850c31a", size = 39433 },
{ url = "https://files.pythonhosted.org/packages/93/6c/e7a0f07c7082c76964b1ff46aa852f36e2ec6a9c3530dec0afa0b3162fc2/mmh3-4.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:98a49121afdfab67cd80e912b36404139d7deceb6773a83620137aaa0da5714c", size = 29280 },
{ url = "https://files.pythonhosted.org/packages/76/84/60ca728ec7d7e1779a98000d64941c6221786124b4f07bf105a627055890/mmh3-4.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5259ac0535874366e7d1a5423ef746e0d36a9e3c14509ce6511614bdc5a7ef5b", size = 30130 },
{ url = "https://files.pythonhosted.org/packages/2a/22/f2ec190b491f712d9ef5ea6252204b6f05255ac9af54a7b505adc3128aed/mmh3-4.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5950827ca0453a2be357696da509ab39646044e3fa15cad364eb65d78797437", size = 68837 },
{ url = "https://files.pythonhosted.org/packages/ae/b9/c1e8065671e1d2f4e280c9c57389e74964f4a5792cac26717ad592002c7d/mmh3-4.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1dd0f652ae99585b9dd26de458e5f08571522f0402155809fd1dc8852a613a39", size = 72275 },
{ url = "https://files.pythonhosted.org/packages/6b/18/92bbdb102ab2b4e80084e927187d871758280eb067c649693e42bfc6d0d1/mmh3-4.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:99d25548070942fab1e4a6f04d1626d67e66d0b81ed6571ecfca511f3edf07e6", size = 70919 },
{ url = "https://files.pythonhosted.org/packages/e2/cd/391ce1d1bb559871a5d3a6bbb30b82bf51d3e3b42c4e8589cccb201953da/mmh3-4.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:53db8d9bad3cb66c8f35cbc894f336273f63489ce4ac416634932e3cbe79eb5b", size = 65885 },
{ url = "https://files.pythonhosted.org/packages/03/87/4b01a43336bd506478850d1bc3d180648b2d26b4acf1fc4bf1df72bf562f/mmh3-4.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75da0f615eb55295a437264cc0b736753f830b09d102aa4c2a7d719bc445ec05", size = 67610 },
{ url = "https://files.pythonhosted.org/packages/e8/12/b464149a1b7181c7ce431ebf3d24fa994863f2f1abc75b78d202dde966e0/mmh3-4.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b926b07fd678ea84b3a2afc1fa22ce50aeb627839c44382f3d0291e945621e1a", size = 74888 },
{ url = "https://files.pythonhosted.org/packages/fc/3e/f4eb45a23fc17b970394c1fe74eba157514577ae2d63757684241651d754/mmh3-4.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:c5b053334f9b0af8559d6da9dc72cef0a65b325ebb3e630c680012323c950bb6", size = 72969 },
{ url = "https://files.pythonhosted.org/packages/c0/3b/83934fd9494371357da0ca026d55ad427c199d611b97b6ffeecacfd8e720/mmh3-4.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:5bf33dc43cd6de2cb86e0aa73a1cc6530f557854bbbe5d59f41ef6de2e353d7b", size = 80338 },
{ url = "https://files.pythonhosted.org/packages/b6/c4/5bcd709ea7269173d7e925402f05e05cf12194ef53cc9912a5ad166f8ded/mmh3-4.1.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fa7eacd2b830727ba3dd65a365bed8a5c992ecd0c8348cf39a05cc77d22f4970", size = 76580 },
{ url = "https://files.pythonhosted.org/packages/da/6a/4c0680d64475e551d7f4cc78bf0fd247c711ed2717f6bb311934993d1e69/mmh3-4.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:42dfd6742b9e3eec599f85270617debfa0bbb913c545bb980c8a4fa7b2d047da", size = 75325 },
{ url = "https://files.pythonhosted.org/packages/70/bc/e2ed99e580b3dd121f6462147bd5f521c57b3c81c692aa2d416b0678c89f/mmh3-4.1.0-cp310-cp310-win32.whl", hash = "sha256:2974ad343f0d39dcc88e93ee6afa96cedc35a9883bc067febd7ff736e207fa47", size = 31235 },
{ url = "https://files.pythonhosted.org/packages/73/2b/3aec865da7feb52830782d9fb7c54115cc18815680c244301adf9080622f/mmh3-4.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:74699a8984ded645c1a24d6078351a056f5a5f1fe5838870412a68ac5e28d865", size = 31271 },
{ url = "https://files.pythonhosted.org/packages/17/2a/925439189ccf562bdcb839aed6263d718359f0c376d673beb3b83d3864ac/mmh3-4.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:f0dc874cedc23d46fc488a987faa6ad08ffa79e44fb08e3cd4d4cf2877c00a00", size = 30147 },
{ url = "https://files.pythonhosted.org/packages/2e/d6/86beea107e7e9700df9522466346c23a2f54faa81337c86fd17002aa95a6/mmh3-4.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3280a463855b0eae64b681cd5b9ddd9464b73f81151e87bb7c91a811d25619e6", size = 39427 },
{ url = "https://files.pythonhosted.org/packages/1c/08/65fa5489044e2afc304e8540c6c607d5d7b136ddc5cd8315c13de0adc34c/mmh3-4.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:97ac57c6c3301769e757d444fa7c973ceb002cb66534b39cbab5e38de61cd896", size = 29281 },
{ url = "https://files.pythonhosted.org/packages/b3/aa/98511d3ea3f6ba958136d913be3be3c1009be935a20ecc7b2763f0a605b6/mmh3-4.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a7b6502cdb4dbd880244818ab363c8770a48cdccecf6d729ade0241b736b5ec0", size = 30130 },
{ url = "https://files.pythonhosted.org/packages/3c/b7/1a93f81643435b0e57f1046c4ffe46f0214693eaede0d9b0a1a236776e70/mmh3-4.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52ba2da04671a9621580ddabf72f06f0e72c1c9c3b7b608849b58b11080d8f14", size = 69072 },
{ url = "https://files.pythonhosted.org/packages/45/9e/2ff70246aefd9cf146bc6a420c28ed475a0d1a325f31ee203be02f9215d4/mmh3-4.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5a5fef4c4ecc782e6e43fbeab09cff1bac82c998a1773d3a5ee6a3605cde343e", size = 72470 },
{ url = "https://files.pythonhosted.org/packages/dc/cb/57bc1fdbdbe6837aebfca982494e23e2498ee2a89585c9054713b22e4167/mmh3-4.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5135358a7e00991f73b88cdc8eda5203bf9de22120d10a834c5761dbeb07dd13", size = 71251 },
{ url = "https://files.pythonhosted.org/packages/4d/c2/46d7d2721b69fbdfd30231309e6395f62ff6744e5c00dd8113b9faa06fba/mmh3-4.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cff9ae76a54f7c6fe0167c9c4028c12c1f6de52d68a31d11b6790bb2ae685560", size = 66035 },
{ url = "https://files.pythonhosted.org/packages/6f/a4/7ba4bcc838818bcf018e26d118d5ddb605c23c4fad040dc4d811f1cfcb04/mmh3-4.1.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f02576a4d106d7830ca90278868bf0983554dd69183b7bbe09f2fcd51cf54f", size = 67844 },
{ url = "https://files.pythonhosted.org/packages/71/ed/8e80d1038e7bb15eaf739711d1fc36f2341acb6b1b95fa77003f2799c91e/mmh3-4.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:073d57425a23721730d3ff5485e2da489dd3c90b04e86243dd7211f889898106", size = 76724 },
{ url = "https://files.pythonhosted.org/packages/1c/22/a6a70ca81f0ce8fe2f3a68d89c1184c2d2d0fbe0ee305da50e972c5ff9fa/mmh3-4.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:71e32ddec7f573a1a0feb8d2cf2af474c50ec21e7a8263026e8d3b4b629805db", size = 75004 },
{ url = "https://files.pythonhosted.org/packages/73/20/abe50b605760f1f5b6e0b436c650649e69ca478d0f41b154f300367c09e4/mmh3-4.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:7cbb20b29d57e76a58b40fd8b13a9130db495a12d678d651b459bf61c0714cea", size = 82230 },
{ url = "https://files.pythonhosted.org/packages/45/80/a1fc99d3ee50b573df0bfbb1ad518463af78d2ebca44bfca3b3f9473d651/mmh3-4.1.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:a42ad267e131d7847076bb7e31050f6c4378cd38e8f1bf7a0edd32f30224d5c9", size = 78679 },
{ url = "https://files.pythonhosted.org/packages/9e/51/6c9ee2ddf3b386f45ff83b6926a5e826635757d91dab04cbf16eee05f9a7/mmh3-4.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4a013979fc9390abadc445ea2527426a0e7a4495c19b74589204f9b71bcaafeb", size = 77382 },
{ url = "https://files.pythonhosted.org/packages/ee/fa/4b377f244c27fac5f0343cc4dc0d2eb0a08049afc8d5322d07be7461a768/mmh3-4.1.0-cp311-cp311-win32.whl", hash = "sha256:1d3b1cdad7c71b7b88966301789a478af142bddcb3a2bee563f7a7d40519a00f", size = 31232 },
{ url = "https://files.pythonhosted.org/packages/d1/b0/500ef56c29b276d796bfdb47c16d34fa18a68945e4d730a6fa7d483583ed/mmh3-4.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:0dc6dc32eb03727467da8e17deffe004fbb65e8b5ee2b502d36250d7a3f4e2ec", size = 31276 },
{ url = "https://files.pythonhosted.org/packages/cc/84/94795e6e710c3861f8f355a12be9c9f4b8433a538c983e75bd4c00496a8a/mmh3-4.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:9ae3a5c1b32dda121c7dc26f9597ef7b01b4c56a98319a7fe86c35b8bc459ae6", size = 30142 },
{ url = "https://files.pythonhosted.org/packages/18/45/b4d41e86b00eed8c500adbe0007129861710e181c7f49c507ef6beae9496/mmh3-4.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0033d60c7939168ef65ddc396611077a7268bde024f2c23bdc283a19123f9e9c", size = 39495 },
{ url = "https://files.pythonhosted.org/packages/a6/d4/f041b8704cb8d1aad3717105daa582e29818b78a540622dfed84cd00d88f/mmh3-4.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d6af3e2287644b2b08b5924ed3a88c97b87b44ad08e79ca9f93d3470a54a41c5", size = 29334 },
{ url = "https://files.pythonhosted.org/packages/cb/bb/8f75378e1a83b323f9ed06248333c383e7dac614c2f95e1419965cb91693/mmh3-4.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d82eb4defa245e02bb0b0dc4f1e7ee284f8d212633389c91f7fba99ba993f0a2", size = 30144 },
{ url = "https://files.pythonhosted.org/packages/3e/50/5e36c1945bd83e780a37361fc1999fc4c5a59ecc10a373557fdf0e58eb1f/mmh3-4.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ba245e94b8d54765e14c2d7b6214e832557e7856d5183bc522e17884cab2f45d", size = 69094 },
{ url = "https://files.pythonhosted.org/packages/70/c7/6ae37e7519a938226469476b84bcea2650e2a2cc7a848e6a206ea98ecee3/mmh3-4.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb04e2feeabaad6231e89cd43b3d01a4403579aa792c9ab6fdeef45cc58d4ec0", size = 72611 },
{ url = "https://files.pythonhosted.org/packages/5e/47/6613f69f57f1e5045e66b22fae9c2fb39ef754c455805d3917f6073e316e/mmh3-4.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1e3b1a27def545ce11e36158ba5d5390cdbc300cfe456a942cc89d649cf7e3b2", size = 71462 },
{ url = "https://files.pythonhosted.org/packages/e0/0a/e423db18ce7b479c4b96381a112b443f0985c611de420f95c58a9f934080/mmh3-4.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ce0ab79ff736d7044e5e9b3bfe73958a55f79a4ae672e6213e92492ad5e734d5", size = 66165 },
{ url = "https://files.pythonhosted.org/packages/4c/7b/bfeb68bee5bddc8baf7ef630b93edc0a533202d84eb076dbb6c77e7e5fd5/mmh3-4.1.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b02268be6e0a8eeb8a924d7db85f28e47344f35c438c1e149878bb1c47b1cd3", size = 68088 },
{ url = "https://files.pythonhosted.org/packages/d4/a6/b82e30143997c05776887f5177f724e3b714aa7e7346fbe2ec70f52abcd0/mmh3-4.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:deb887f5fcdaf57cf646b1e062d56b06ef2f23421c80885fce18b37143cba828", size = 76241 },
{ url = "https://files.pythonhosted.org/packages/6c/60/a3d5872cf7610fcb13e36c472476020c5cf217b23c092bad452eb7784407/mmh3-4.1.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:99dd564e9e2b512eb117bd0cbf0f79a50c45d961c2a02402787d581cec5448d5", size = 74538 },
{ url = "https://files.pythonhosted.org/packages/f6/d5/742173a94c78f4edab71c04097f6f9150c47f8fd034d592f5f34a9444719/mmh3-4.1.0-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:08373082dfaa38fe97aa78753d1efd21a1969e51079056ff552e687764eafdfe", size = 81793 },
{ url = "https://files.pythonhosted.org/packages/d0/7a/a1db0efe7c67b761d83be3d50e35ef26628ef56b3b8bc776d07412ee8b16/mmh3-4.1.0-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:54b9c6a2ea571b714e4fe28d3e4e2db37abfd03c787a58074ea21ee9a8fd1740", size = 78217 },
{ url = "https://files.pythonhosted.org/packages/b3/78/1ff8da7c859cd09704e2f500588d171eda9688fcf6f29e028ef261262a16/mmh3-4.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a7b1edf24c69e3513f879722b97ca85e52f9032f24a52284746877f6a7304086", size = 77052 },
{ url = "https://files.pythonhosted.org/packages/ed/c7/cf16ace81fc9fbe54a75c914306252af26c6ea485366bb3b579bf6e3dbb8/mmh3-4.1.0-cp312-cp312-win32.whl", hash = "sha256:411da64b951f635e1e2284b71d81a5a83580cea24994b328f8910d40bed67276", size = 31277 },
{ url = "https://files.pythonhosted.org/packages/d2/0b/b3b1637dca9414451edf287fd91e667e7231d5ffd7498137fe011951fc0a/mmh3-4.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:bebc3ecb6ba18292e3d40c8712482b4477abd6981c2ebf0e60869bd90f8ac3a9", size = 31318 },
{ url = "https://files.pythonhosted.org/packages/dd/6c/c0f06040c58112ccbd0df989055ede98f7c1a1f392dc6a3fc63ec6c124ec/mmh3-4.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:168473dd608ade6a8d2ba069600b35199a9af837d96177d3088ca91f2b3798e3", size = 30147 },
]
[[package]]
@@ -2572,6 +2617,33 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/7e/80/cab10959dc1faead58dc8384a781dfbf93cb4d33d50988f7a69f1b7c9bbe/oauthlib-3.2.2-py3-none-any.whl", hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca", size = 151688 },
]
[[package]]
name = "onnx"
version = "1.17.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "numpy" },
{ name = "protobuf" },
]
sdist = { url = "https://files.pythonhosted.org/packages/9a/54/0e385c26bf230d223810a9c7d06628d954008a5e5e4b73ee26ef02327282/onnx-1.17.0.tar.gz", hash = "sha256:48ca1a91ff73c1d5e3ea2eef20ae5d0e709bb8a2355ed798ffc2169753013fd3", size = 12165120 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/2e/29/57053ba7787788ac75efb095cfc1ae290436b6d3a26754693cd7ed1b4fac/onnx-1.17.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:38b5df0eb22012198cdcee527cc5f917f09cce1f88a69248aaca22bd78a7f023", size = 16645616 },
{ url = "https://files.pythonhosted.org/packages/75/0d/831807a18db2a5e8f7813848c59272b904a4ef3939fe4d1288cbce9ea735/onnx-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d545335cb49d4d8c47cc803d3a805deb7ad5d9094dc67657d66e568610a36d7d", size = 15908420 },
{ url = "https://files.pythonhosted.org/packages/dd/5b/c4f95dbe652d14aeba9afaceb177e9ffc48ac3c03048dd3f872f26f07e34/onnx-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3193a3672fc60f1a18c0f4c93ac81b761bc72fd8a6c2035fa79ff5969f07713e", size = 16046244 },
{ url = "https://files.pythonhosted.org/packages/08/a9/c1f218085043dccc6311460239e253fa6957cf12ee4b0a56b82014938d0b/onnx-1.17.0-cp310-cp310-win32.whl", hash = "sha256:0141c2ce806c474b667b7e4499164227ef594584da432fd5613ec17c1855e311", size = 14423516 },
{ url = "https://files.pythonhosted.org/packages/0e/d3/d26ebf590a65686dde6b27fef32493026c5be9e42083340d947395f93405/onnx-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:dfd777d95c158437fda6b34758f0877d15b89cbe9ff45affbedc519b35345cf9", size = 14528496 },
{ url = "https://files.pythonhosted.org/packages/e5/a9/8d1b1d53aec70df53e0f57e9f9fcf47004276539e29230c3d5f1f50719ba/onnx-1.17.0-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:d6fc3a03fc0129b8b6ac03f03bc894431ffd77c7d79ec023d0afd667b4d35869", size = 16647991 },
{ url = "https://files.pythonhosted.org/packages/7b/e3/cc80110e5996ca61878f7b4c73c7a286cd88918ff35eacb60dc75ab11ef5/onnx-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f01a4b63d4e1d8ec3e2f069e7b798b2955810aa434f7361f01bc8ca08d69cce4", size = 15908949 },
{ url = "https://files.pythonhosted.org/packages/b1/2f/91092557ed478e323a2b4471e2081fdf88d1dd52ae988ceaf7db4e4506ff/onnx-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a183c6178be001bf398260e5ac2c927dc43e7746e8638d6c05c20e321f8c949", size = 16048190 },
{ url = "https://files.pythonhosted.org/packages/ac/59/9ea23fc22d0bb853133f363e6248e31bcbc6c1c90543a3938c00412ac02a/onnx-1.17.0-cp311-cp311-win32.whl", hash = "sha256:081ec43a8b950171767d99075b6b92553901fa429d4bc5eb3ad66b36ef5dbe3a", size = 14424299 },
{ url = "https://files.pythonhosted.org/packages/51/a5/19b0dfcb567b62e7adf1a21b08b23224f0c2d13842aee4d0abc6f07f9cf5/onnx-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:95c03e38671785036bb704c30cd2e150825f6ab4763df3a4f1d249da48525957", size = 14529142 },
{ url = "https://files.pythonhosted.org/packages/b4/dd/c416a11a28847fafb0db1bf43381979a0f522eb9107b831058fde012dd56/onnx-1.17.0-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:0e906e6a83437de05f8139ea7eaf366bf287f44ae5cc44b2850a30e296421f2f", size = 16651271 },
{ url = "https://files.pythonhosted.org/packages/f0/6c/f040652277f514ecd81b7251841f96caa5538365af7df07f86c6018cda2b/onnx-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d955ba2939878a520a97614bcf2e79c1df71b29203e8ced478fa78c9a9c63c2", size = 15907522 },
{ url = "https://files.pythonhosted.org/packages/3d/7c/67f4952d1b56b3f74a154b97d0dd0630d525923b354db117d04823b8b49b/onnx-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f3fb5cc4e2898ac5312a7dc03a65133dd2abf9a5e520e69afb880a7251ec97a", size = 16046307 },
{ url = "https://files.pythonhosted.org/packages/ae/20/6da11042d2ab870dfb4ce4a6b52354d7651b6b4112038b6d2229ab9904c4/onnx-1.17.0-cp312-cp312-win32.whl", hash = "sha256:317870fca3349d19325a4b7d1b5628f6de3811e9710b1e3665c68b073d0e68d7", size = 14424235 },
{ url = "https://files.pythonhosted.org/packages/35/55/c4d11bee1fdb0c4bd84b4e3562ff811a19b63266816870ae1f95567aa6e1/onnx-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:659b8232d627a5460d74fd3c96947ae83db6d03f035ac633e20cd69cfa029227", size = 14530453 },
]
[[package]]
name = "onnxruntime"
version = "1.19.2"
@@ -2621,6 +2693,18 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/ad/31/28a83e124e9f9dd04c83b5aeb6f8b1770f45addde4dd3d34d9a9091590ad/openai-1.52.1-py3-none-any.whl", hash = "sha256:f23e83df5ba04ee0e82c8562571e8cb596cd88f9a84ab783e6c6259e5ffbfb4a", size = 386945 },
]
[[package]]
name = "openpyxl"
version = "3.1.5"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "et-xmlfile" },
]
sdist = { url = "https://files.pythonhosted.org/packages/3d/f9/88d94a75de065ea32619465d2f77b29a0469500e99012523b91cc4141cd1/openpyxl-3.1.5.tar.gz", hash = "sha256:cf0e3cf56142039133628b5acffe8ef0c12bc902d2aadd3e0fe5878dc08d1050", size = 186464 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl", hash = "sha256:5282c12b107bffeef825f4617dc029afaf41d0ea60823bbb665ef3079dc79de2", size = 250910 },
]
[[package]]
name = "opentelemetry-api"
version = "1.27.0"
@@ -2935,6 +3019,33 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191 },
]
[[package]]
name = "pdfminer-six"
version = "20231228"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "charset-normalizer" },
{ name = "cryptography" },
]
sdist = { url = "https://files.pythonhosted.org/packages/31/b1/a43e3bd872ded4deea4f8efc7aff1703fca8c5455d0c06e20506a06a44ff/pdfminer.six-20231228.tar.gz", hash = "sha256:6004da3ad1a7a4d45930cb950393df89b068e73be365a6ff64a838d37bcb08c4", size = 7362505 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/eb/9c/e46fe7502b32d7db6af6e36a9105abb93301fa1ec475b5ddcba8b35ae23a/pdfminer.six-20231228-py3-none-any.whl", hash = "sha256:e8d3c3310e6fbc1fe414090123ab01351634b4ecb021232206c4c9a8ca3e3b8f", size = 5614515 },
]
[[package]]
name = "pdfplumber"
version = "0.11.4"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pdfminer-six" },
{ name = "pillow" },
{ name = "pypdfium2" },
]
sdist = { url = "https://files.pythonhosted.org/packages/ca/f0/457bda3629dfa5b01c645519fe30230e1739751f6645e23fca2dabf6c2e5/pdfplumber-0.11.4.tar.gz", hash = "sha256:147b55cde2351fcb9523b46b09cc771eea3602faecfb60d463c6bf951694fbe8", size = 113305 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/d0/87/415cb472981a8d2e36beeeadf074ebb686cc2bfe8d18de973232da291bd5/pdfplumber-0.11.4-py3-none-any.whl", hash = "sha256:6150f0678c7aaba974ac09839c17475d6c0c4d126b5f92cb85154885f31c6d73", size = 59182 },
]
[[package]]
name = "pexpect"
version = "4.9.0"
@@ -2949,69 +3060,61 @@ wheels = [
[[package]]
name = "pillow"
version = "11.0.0"
version = "10.4.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a5/26/0d95c04c868f6bdb0c447e3ee2de5564411845e36a858cfd63766bc7b563/pillow-11.0.0.tar.gz", hash = "sha256:72bacbaf24ac003fea9bff9837d1eedb6088758d41e100c1552930151f677739", size = 46737780 }
sdist = { url = "https://files.pythonhosted.org/packages/cd/74/ad3d526f3bf7b6d3f408b73fde271ec69dfac8b81341a318ce825f2b3812/pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06", size = 46555059 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/98/fb/a6ce6836bd7fd93fbf9144bf54789e02babc27403b50a9e1583ee877d6da/pillow-11.0.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:6619654954dc4936fcff82db8eb6401d3159ec6be81e33c6000dfd76ae189947", size = 3154708 },
{ url = "https://files.pythonhosted.org/packages/6a/1d/1f51e6e912d8ff316bb3935a8cda617c801783e0b998bf7a894e91d3bd4c/pillow-11.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b3c5ac4bed7519088103d9450a1107f76308ecf91d6dabc8a33a2fcfb18d0fba", size = 2979223 },
{ url = "https://files.pythonhosted.org/packages/90/83/e2077b0192ca8a9ef794dbb74700c7e48384706467067976c2a95a0f40a1/pillow-11.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a65149d8ada1055029fcb665452b2814fe7d7082fcb0c5bed6db851cb69b2086", size = 4183167 },
{ url = "https://files.pythonhosted.org/packages/0e/74/467af0146970a98349cdf39e9b79a6cc8a2e7558f2c01c28a7b6b85c5bda/pillow-11.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88a58d8ac0cc0e7f3a014509f0455248a76629ca9b604eca7dc5927cc593c5e9", size = 4283912 },
{ url = "https://files.pythonhosted.org/packages/85/b1/d95d4f7ca3a6c1ae120959605875a31a3c209c4e50f0029dc1a87566cf46/pillow-11.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:c26845094b1af3c91852745ae78e3ea47abf3dbcd1cf962f16b9a5fbe3ee8488", size = 4195815 },
{ url = "https://files.pythonhosted.org/packages/41/c3/94f33af0762ed76b5a237c5797e088aa57f2b7fa8ee7932d399087be66a8/pillow-11.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:1a61b54f87ab5786b8479f81c4b11f4d61702830354520837f8cc791ebba0f5f", size = 4366117 },
{ url = "https://files.pythonhosted.org/packages/ba/3c/443e7ef01f597497268899e1cca95c0de947c9bbf77a8f18b3c126681e5d/pillow-11.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:674629ff60030d144b7bca2b8330225a9b11c482ed408813924619c6f302fdbb", size = 4278607 },
{ url = "https://files.pythonhosted.org/packages/26/95/1495304448b0081e60c0c5d63f928ef48bb290acee7385804426fa395a21/pillow-11.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:598b4e238f13276e0008299bd2482003f48158e2b11826862b1eb2ad7c768b97", size = 4410685 },
{ url = "https://files.pythonhosted.org/packages/45/da/861e1df971ef0de9870720cb309ca4d553b26a9483ec9be3a7bf1de4a095/pillow-11.0.0-cp310-cp310-win32.whl", hash = "sha256:9a0f748eaa434a41fccf8e1ee7a3eed68af1b690e75328fd7a60af123c193b50", size = 2249185 },
{ url = "https://files.pythonhosted.org/packages/d5/4e/78f7c5202ea2a772a5ab05069c1b82503e6353cd79c7e474d4945f4b82c3/pillow-11.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:a5629742881bcbc1f42e840af185fd4d83a5edeb96475a575f4da50d6ede337c", size = 2566726 },
{ url = "https://files.pythonhosted.org/packages/77/e4/6e84eada35cbcc646fc1870f72ccfd4afacb0fae0c37ffbffe7f5dc24bf1/pillow-11.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:ee217c198f2e41f184f3869f3e485557296d505b5195c513b2bfe0062dc537f1", size = 2254585 },
{ url = "https://files.pythonhosted.org/packages/f0/eb/f7e21b113dd48a9c97d364e0915b3988c6a0b6207652f5a92372871b7aa4/pillow-11.0.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1c1d72714f429a521d8d2d018badc42414c3077eb187a59579f28e4270b4b0fc", size = 3154705 },
{ url = "https://files.pythonhosted.org/packages/25/b3/2b54a1d541accebe6bd8b1358b34ceb2c509f51cb7dcda8687362490da5b/pillow-11.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:499c3a1b0d6fc8213519e193796eb1a86a1be4b1877d678b30f83fd979811d1a", size = 2979222 },
{ url = "https://files.pythonhosted.org/packages/20/12/1a41eddad8265c5c19dda8fb6c269ce15ee25e0b9f8f26286e6202df6693/pillow-11.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c8b2351c85d855293a299038e1f89db92a2f35e8d2f783489c6f0b2b5f3fe8a3", size = 4190220 },
{ url = "https://files.pythonhosted.org/packages/a9/9b/8a8c4d07d77447b7457164b861d18f5a31ae6418ef5c07f6f878fa09039a/pillow-11.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f4dba50cfa56f910241eb7f883c20f1e7b1d8f7d91c750cd0b318bad443f4d5", size = 4291399 },
{ url = "https://files.pythonhosted.org/packages/fc/e4/130c5fab4a54d3991129800dd2801feeb4b118d7630148cd67f0e6269d4c/pillow-11.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:5ddbfd761ee00c12ee1be86c9c0683ecf5bb14c9772ddbd782085779a63dd55b", size = 4202709 },
{ url = "https://files.pythonhosted.org/packages/39/63/b3fc299528d7df1f678b0666002b37affe6b8751225c3d9c12cf530e73ed/pillow-11.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:45c566eb10b8967d71bf1ab8e4a525e5a93519e29ea071459ce517f6b903d7fa", size = 4372556 },
{ url = "https://files.pythonhosted.org/packages/c6/a6/694122c55b855b586c26c694937d36bb8d3b09c735ff41b2f315c6e66a10/pillow-11.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:b4fd7bd29610a83a8c9b564d457cf5bd92b4e11e79a4ee4716a63c959699b306", size = 4287187 },
{ url = "https://files.pythonhosted.org/packages/ba/a9/f9d763e2671a8acd53d29b1e284ca298bc10a595527f6be30233cdb9659d/pillow-11.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:cb929ca942d0ec4fac404cbf520ee6cac37bf35be479b970c4ffadf2b6a1cad9", size = 4418468 },
{ url = "https://files.pythonhosted.org/packages/6e/0e/b5cbad2621377f11313a94aeb44ca55a9639adabcaaa073597a1925f8c26/pillow-11.0.0-cp311-cp311-win32.whl", hash = "sha256:006bcdd307cc47ba43e924099a038cbf9591062e6c50e570819743f5607404f5", size = 2249249 },
{ url = "https://files.pythonhosted.org/packages/dc/83/1470c220a4ff06cd75fc609068f6605e567ea51df70557555c2ab6516b2c/pillow-11.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:52a2d8323a465f84faaba5236567d212c3668f2ab53e1c74c15583cf507a0291", size = 2566769 },
{ url = "https://files.pythonhosted.org/packages/52/98/def78c3a23acee2bcdb2e52005fb2810ed54305602ec1bfcfab2bda6f49f/pillow-11.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:16095692a253047fe3ec028e951fa4221a1f3ed3d80c397e83541a3037ff67c9", size = 2254611 },
{ url = "https://files.pythonhosted.org/packages/1c/a3/26e606ff0b2daaf120543e537311fa3ae2eb6bf061490e4fea51771540be/pillow-11.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d2c0a187a92a1cb5ef2c8ed5412dd8d4334272617f532d4ad4de31e0495bd923", size = 3147642 },
{ url = "https://files.pythonhosted.org/packages/4f/d5/1caabedd8863526a6cfa44ee7a833bd97f945dc1d56824d6d76e11731939/pillow-11.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:084a07ef0821cfe4858fe86652fffac8e187b6ae677e9906e192aafcc1b69903", size = 2978999 },
{ url = "https://files.pythonhosted.org/packages/d9/ff/5a45000826a1aa1ac6874b3ec5a856474821a1b59d838c4f6ce2ee518fe9/pillow-11.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8069c5179902dcdce0be9bfc8235347fdbac249d23bd90514b7a47a72d9fecf4", size = 4196794 },
{ url = "https://files.pythonhosted.org/packages/9d/21/84c9f287d17180f26263b5f5c8fb201de0f88b1afddf8a2597a5c9fe787f/pillow-11.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f02541ef64077f22bf4924f225c0fd1248c168f86e4b7abdedd87d6ebaceab0f", size = 4300762 },
{ url = "https://files.pythonhosted.org/packages/84/39/63fb87cd07cc541438b448b1fed467c4d687ad18aa786a7f8e67b255d1aa/pillow-11.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:fcb4621042ac4b7865c179bb972ed0da0218a076dc1820ffc48b1d74c1e37fe9", size = 4210468 },
{ url = "https://files.pythonhosted.org/packages/7f/42/6e0f2c2d5c60f499aa29be14f860dd4539de322cd8fb84ee01553493fb4d/pillow-11.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:00177a63030d612148e659b55ba99527803288cea7c75fb05766ab7981a8c1b7", size = 4381824 },
{ url = "https://files.pythonhosted.org/packages/31/69/1ef0fb9d2f8d2d114db982b78ca4eeb9db9a29f7477821e160b8c1253f67/pillow-11.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8853a3bf12afddfdf15f57c4b02d7ded92c7a75a5d7331d19f4f9572a89c17e6", size = 4296436 },
{ url = "https://files.pythonhosted.org/packages/44/ea/dad2818c675c44f6012289a7c4f46068c548768bc6c7f4e8c4ae5bbbc811/pillow-11.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3107c66e43bda25359d5ef446f59c497de2b5ed4c7fdba0894f8d6cf3822dafc", size = 4429714 },
{ url = "https://files.pythonhosted.org/packages/af/3a/da80224a6eb15bba7a0dcb2346e2b686bb9bf98378c0b4353cd88e62b171/pillow-11.0.0-cp312-cp312-win32.whl", hash = "sha256:86510e3f5eca0ab87429dd77fafc04693195eec7fd6a137c389c3eeb4cfb77c6", size = 2249631 },
{ url = "https://files.pythonhosted.org/packages/57/97/73f756c338c1d86bb802ee88c3cab015ad7ce4b838f8a24f16b676b1ac7c/pillow-11.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:8ec4a89295cd6cd4d1058a5e6aec6bf51e0eaaf9714774e1bfac7cfc9051db47", size = 2567533 },
{ url = "https://files.pythonhosted.org/packages/0b/30/2b61876e2722374558b871dfbfcbe4e406626d63f4f6ed92e9c8e24cac37/pillow-11.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:27a7860107500d813fcd203b4ea19b04babe79448268403172782754870dac25", size = 2254890 },
{ url = "https://files.pythonhosted.org/packages/63/24/e2e15e392d00fcf4215907465d8ec2a2f23bcec1481a8ebe4ae760459995/pillow-11.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcd1fb5bb7b07f64c15618c89efcc2cfa3e95f0e3bcdbaf4642509de1942a699", size = 3147300 },
{ url = "https://files.pythonhosted.org/packages/43/72/92ad4afaa2afc233dc44184adff289c2e77e8cd916b3ddb72ac69495bda3/pillow-11.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0e038b0745997c7dcaae350d35859c9715c71e92ffb7e0f4a8e8a16732150f38", size = 2978742 },
{ url = "https://files.pythonhosted.org/packages/9e/da/c8d69c5bc85d72a8523fe862f05ababdc52c0a755cfe3d362656bb86552b/pillow-11.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ae08bd8ffc41aebf578c2af2f9d8749d91f448b3bfd41d7d9ff573d74f2a6b2", size = 4194349 },
{ url = "https://files.pythonhosted.org/packages/cd/e8/686d0caeed6b998351d57796496a70185376ed9c8ec7d99e1d19ad591fc6/pillow-11.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d69bfd8ec3219ae71bcde1f942b728903cad25fafe3100ba2258b973bd2bc1b2", size = 4298714 },
{ url = "https://files.pythonhosted.org/packages/ec/da/430015cec620d622f06854be67fd2f6721f52fc17fca8ac34b32e2d60739/pillow-11.0.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:61b887f9ddba63ddf62fd02a3ba7add935d053b6dd7d58998c630e6dbade8527", size = 4208514 },
{ url = "https://files.pythonhosted.org/packages/44/ae/7e4f6662a9b1cb5f92b9cc9cab8321c381ffbee309210940e57432a4063a/pillow-11.0.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:c6a660307ca9d4867caa8d9ca2c2658ab685de83792d1876274991adec7b93fa", size = 4380055 },
{ url = "https://files.pythonhosted.org/packages/74/d5/1a807779ac8a0eeed57f2b92a3c32ea1b696e6140c15bd42eaf908a261cd/pillow-11.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:73e3a0200cdda995c7e43dd47436c1548f87a30bb27fb871f352a22ab8dcf45f", size = 4296751 },
{ url = "https://files.pythonhosted.org/packages/38/8c/5fa3385163ee7080bc13026d59656267daaaaf3c728c233d530e2c2757c8/pillow-11.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fba162b8872d30fea8c52b258a542c5dfd7b235fb5cb352240c8d63b414013eb", size = 4430378 },
{ url = "https://files.pythonhosted.org/packages/ca/1d/ad9c14811133977ff87035bf426875b93097fb50af747793f013979facdb/pillow-11.0.0-cp313-cp313-win32.whl", hash = "sha256:f1b82c27e89fffc6da125d5eb0ca6e68017faf5efc078128cfaa42cf5cb38798", size = 2249588 },
{ url = "https://files.pythonhosted.org/packages/fb/01/3755ba287dac715e6afdb333cb1f6d69740a7475220b4637b5ce3d78cec2/pillow-11.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:8ba470552b48e5835f1d23ecb936bb7f71d206f9dfeee64245f30c3270b994de", size = 2567509 },
{ url = "https://files.pythonhosted.org/packages/c0/98/2c7d727079b6be1aba82d195767d35fcc2d32204c7a5820f822df5330152/pillow-11.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:846e193e103b41e984ac921b335df59195356ce3f71dcfd155aa79c603873b84", size = 2254791 },
{ url = "https://files.pythonhosted.org/packages/eb/38/998b04cc6f474e78b563716b20eecf42a2fa16a84589d23c8898e64b0ffd/pillow-11.0.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4ad70c4214f67d7466bea6a08061eba35c01b1b89eaa098040a35272a8efb22b", size = 3150854 },
{ url = "https://files.pythonhosted.org/packages/13/8e/be23a96292113c6cb26b2aa3c8b3681ec62b44ed5c2bd0b258bd59503d3c/pillow-11.0.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:6ec0d5af64f2e3d64a165f490d96368bb5dea8b8f9ad04487f9ab60dc4bb6003", size = 2982369 },
{ url = "https://files.pythonhosted.org/packages/97/8a/3db4eaabb7a2ae8203cd3a332a005e4aba00067fc514aaaf3e9721be31f1/pillow-11.0.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c809a70e43c7977c4a42aefd62f0131823ebf7dd73556fa5d5950f5b354087e2", size = 4333703 },
{ url = "https://files.pythonhosted.org/packages/28/ac/629ffc84ff67b9228fe87a97272ab125bbd4dc462745f35f192d37b822f1/pillow-11.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:4b60c9520f7207aaf2e1d94de026682fc227806c6e1f55bba7606d1c94dd623a", size = 4412550 },
{ url = "https://files.pythonhosted.org/packages/d6/07/a505921d36bb2df6868806eaf56ef58699c16c388e378b0dcdb6e5b2fb36/pillow-11.0.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:1e2688958a840c822279fda0086fec1fdab2f95bf2b717b66871c4ad9859d7e8", size = 4461038 },
{ url = "https://files.pythonhosted.org/packages/d6/b9/fb620dd47fc7cc9678af8f8bd8c772034ca4977237049287e99dda360b66/pillow-11.0.0-cp313-cp313t-win32.whl", hash = "sha256:607bbe123c74e272e381a8d1957083a9463401f7bd01287f50521ecb05a313f8", size = 2253197 },
{ url = "https://files.pythonhosted.org/packages/df/86/25dde85c06c89d7fc5db17940f07aae0a56ac69aa9ccb5eb0f09798862a8/pillow-11.0.0-cp313-cp313t-win_amd64.whl", hash = "sha256:5c39ed17edea3bc69c743a8dd3e9853b7509625c2462532e62baa0732163a904", size = 2572169 },
{ url = "https://files.pythonhosted.org/packages/51/85/9c33f2517add612e17f3381aee7c4072779130c634921a756c97bc29fb49/pillow-11.0.0-cp313-cp313t-win_arm64.whl", hash = "sha256:75acbbeb05b86bc53cbe7b7e6fe00fbcf82ad7c684b3ad82e3d711da9ba287d3", size = 2256828 },
{ url = "https://files.pythonhosted.org/packages/36/57/42a4dd825eab762ba9e690d696d894ba366e06791936056e26e099398cda/pillow-11.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:1187739620f2b365de756ce086fdb3604573337cc28a0d3ac4a01ab6b2d2a6d2", size = 3119239 },
{ url = "https://files.pythonhosted.org/packages/98/f7/25f9f9e368226a1d6cf3507081a1a7944eddd3ca7821023377043f5a83c8/pillow-11.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fbbcb7b57dc9c794843e3d1258c0fbf0f48656d46ffe9e09b63bbd6e8cd5d0a2", size = 2950803 },
{ url = "https://files.pythonhosted.org/packages/59/01/98ead48a6c2e31e6185d4c16c978a67fe3ccb5da5c2ff2ba8475379bb693/pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d203af30149ae339ad1b4f710d9844ed8796e97fda23ffbc4cc472968a47d0b", size = 3281098 },
{ url = "https://files.pythonhosted.org/packages/51/c0/570255b2866a0e4d500a14f950803a2ec273bac7badc43320120b9262450/pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21a0d3b115009ebb8ac3d2ebec5c2982cc693da935f4ab7bb5c8ebe2f47d36f2", size = 3323665 },
{ url = "https://files.pythonhosted.org/packages/0e/75/689b4ec0483c42bfc7d1aacd32ade7a226db4f4fac57c6fdcdf90c0731e3/pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:73853108f56df97baf2bb8b522f3578221e56f646ba345a372c78326710d3830", size = 3310533 },
{ url = "https://files.pythonhosted.org/packages/3d/30/38bd6149cf53da1db4bad304c543ade775d225961c4310f30425995cb9ec/pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e58876c91f97b0952eb766123bfef372792ab3f4e3e1f1a2267834c2ab131734", size = 3414886 },
{ url = "https://files.pythonhosted.org/packages/ec/3d/c32a51d848401bd94cabb8767a39621496491ee7cd5199856b77da9b18ad/pillow-11.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:224aaa38177597bb179f3ec87eeefcce8e4f85e608025e9cfac60de237ba6316", size = 2567508 },
{ url = "https://files.pythonhosted.org/packages/0e/69/a31cccd538ca0b5272be2a38347f8839b97a14be104ea08b0db92f749c74/pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e", size = 3509271 },
{ url = "https://files.pythonhosted.org/packages/9a/9e/4143b907be8ea0bce215f2ae4f7480027473f8b61fcedfda9d851082a5d2/pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d", size = 3375658 },
{ url = "https://files.pythonhosted.org/packages/8a/25/1fc45761955f9359b1169aa75e241551e74ac01a09f487adaaf4c3472d11/pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856", size = 4332075 },
{ url = "https://files.pythonhosted.org/packages/5e/dd/425b95d0151e1d6c951f45051112394f130df3da67363b6bc75dc4c27aba/pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f", size = 4444808 },
{ url = "https://files.pythonhosted.org/packages/b1/84/9a15cc5726cbbfe7f9f90bfb11f5d028586595907cd093815ca6644932e3/pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b", size = 4356290 },
{ url = "https://files.pythonhosted.org/packages/b5/5b/6651c288b08df3b8c1e2f8c1152201e0b25d240e22ddade0f1e242fc9fa0/pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc", size = 4525163 },
{ url = "https://files.pythonhosted.org/packages/07/8b/34854bf11a83c248505c8cb0fcf8d3d0b459a2246c8809b967963b6b12ae/pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e", size = 4463100 },
{ url = "https://files.pythonhosted.org/packages/78/63/0632aee4e82476d9cbe5200c0cdf9ba41ee04ed77887432845264d81116d/pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46", size = 4592880 },
{ url = "https://files.pythonhosted.org/packages/df/56/b8663d7520671b4398b9d97e1ed9f583d4afcbefbda3c6188325e8c297bd/pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984", size = 2235218 },
{ url = "https://files.pythonhosted.org/packages/f4/72/0203e94a91ddb4a9d5238434ae6c1ca10e610e8487036132ea9bf806ca2a/pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141", size = 2554487 },
{ url = "https://files.pythonhosted.org/packages/bd/52/7e7e93d7a6e4290543f17dc6f7d3af4bd0b3dd9926e2e8a35ac2282bc5f4/pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1", size = 2243219 },
{ url = "https://files.pythonhosted.org/packages/a7/62/c9449f9c3043c37f73e7487ec4ef0c03eb9c9afc91a92b977a67b3c0bbc5/pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c", size = 3509265 },
{ url = "https://files.pythonhosted.org/packages/f4/5f/491dafc7bbf5a3cc1845dc0430872e8096eb9e2b6f8161509d124594ec2d/pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be", size = 3375655 },
{ url = "https://files.pythonhosted.org/packages/73/d5/c4011a76f4207a3c151134cd22a1415741e42fa5ddecec7c0182887deb3d/pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3", size = 4340304 },
{ url = "https://files.pythonhosted.org/packages/ac/10/c67e20445a707f7a610699bba4fe050583b688d8cd2d202572b257f46600/pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6", size = 4452804 },
{ url = "https://files.pythonhosted.org/packages/a9/83/6523837906d1da2b269dee787e31df3b0acb12e3d08f024965a3e7f64665/pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe", size = 4365126 },
{ url = "https://files.pythonhosted.org/packages/ba/e5/8c68ff608a4203085158cff5cc2a3c534ec384536d9438c405ed6370d080/pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319", size = 4533541 },
{ url = "https://files.pythonhosted.org/packages/f4/7c/01b8dbdca5bc6785573f4cee96e2358b0918b7b2c7b60d8b6f3abf87a070/pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d", size = 4471616 },
{ url = "https://files.pythonhosted.org/packages/c8/57/2899b82394a35a0fbfd352e290945440e3b3785655a03365c0ca8279f351/pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696", size = 4600802 },
{ url = "https://files.pythonhosted.org/packages/4d/d7/a44f193d4c26e58ee5d2d9db3d4854b2cfb5b5e08d360a5e03fe987c0086/pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496", size = 2235213 },
{ url = "https://files.pythonhosted.org/packages/c1/d0/5866318eec2b801cdb8c82abf190c8343d8a1cd8bf5a0c17444a6f268291/pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91", size = 2554498 },
{ url = "https://files.pythonhosted.org/packages/d4/c8/310ac16ac2b97e902d9eb438688de0d961660a87703ad1561fd3dfbd2aa0/pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22", size = 2243219 },
{ url = "https://files.pythonhosted.org/packages/05/cb/0353013dc30c02a8be34eb91d25e4e4cf594b59e5a55ea1128fde1e5f8ea/pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94", size = 3509350 },
{ url = "https://files.pythonhosted.org/packages/e7/cf/5c558a0f247e0bf9cec92bff9b46ae6474dd736f6d906315e60e4075f737/pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597", size = 3374980 },
{ url = "https://files.pythonhosted.org/packages/84/48/6e394b86369a4eb68b8a1382c78dc092245af517385c086c5094e3b34428/pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80", size = 4343799 },
{ url = "https://files.pythonhosted.org/packages/3b/f3/a8c6c11fa84b59b9df0cd5694492da8c039a24cd159f0f6918690105c3be/pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca", size = 4459973 },
{ url = "https://files.pythonhosted.org/packages/7d/1b/c14b4197b80150fb64453585247e6fb2e1d93761fa0fa9cf63b102fde822/pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef", size = 4370054 },
{ url = "https://files.pythonhosted.org/packages/55/77/40daddf677897a923d5d33329acd52a2144d54a9644f2a5422c028c6bf2d/pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a", size = 4539484 },
{ url = "https://files.pythonhosted.org/packages/40/54/90de3e4256b1207300fb2b1d7168dd912a2fb4b2401e439ba23c2b2cabde/pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b", size = 4477375 },
{ url = "https://files.pythonhosted.org/packages/13/24/1bfba52f44193860918ff7c93d03d95e3f8748ca1de3ceaf11157a14cf16/pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9", size = 4608773 },
{ url = "https://files.pythonhosted.org/packages/55/04/5e6de6e6120451ec0c24516c41dbaf80cce1b6451f96561235ef2429da2e/pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42", size = 2235690 },
{ url = "https://files.pythonhosted.org/packages/74/0a/d4ce3c44bca8635bd29a2eab5aa181b654a734a29b263ca8efe013beea98/pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a", size = 2554951 },
{ url = "https://files.pythonhosted.org/packages/b5/ca/184349ee40f2e92439be9b3502ae6cfc43ac4b50bc4fc6b3de7957563894/pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9", size = 2243427 },
{ url = "https://files.pythonhosted.org/packages/c3/00/706cebe7c2c12a6318aabe5d354836f54adff7156fd9e1bd6c89f4ba0e98/pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3", size = 3525685 },
{ url = "https://files.pythonhosted.org/packages/cf/76/f658cbfa49405e5ecbfb9ba42d07074ad9792031267e782d409fd8fe7c69/pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb", size = 3374883 },
{ url = "https://files.pythonhosted.org/packages/46/2b/99c28c4379a85e65378211971c0b430d9c7234b1ec4d59b2668f6299e011/pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70", size = 4339837 },
{ url = "https://files.pythonhosted.org/packages/f1/74/b1ec314f624c0c43711fdf0d8076f82d9d802afd58f1d62c2a86878e8615/pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be", size = 4455562 },
{ url = "https://files.pythonhosted.org/packages/4a/2a/4b04157cb7b9c74372fa867096a1607e6fedad93a44deeff553ccd307868/pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0", size = 4366761 },
{ url = "https://files.pythonhosted.org/packages/ac/7b/8f1d815c1a6a268fe90481232c98dd0e5fa8c75e341a75f060037bd5ceae/pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc", size = 4536767 },
{ url = "https://files.pythonhosted.org/packages/e5/77/05fa64d1f45d12c22c314e7b97398ffb28ef2813a485465017b7978b3ce7/pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a", size = 4477989 },
{ url = "https://files.pythonhosted.org/packages/12/63/b0397cfc2caae05c3fb2f4ed1b4fc4fc878f0243510a7a6034ca59726494/pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309", size = 4610255 },
{ url = "https://files.pythonhosted.org/packages/7b/f9/cfaa5082ca9bc4a6de66ffe1c12c2d90bf09c309a5f52b27759a596900e7/pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060", size = 2235603 },
{ url = "https://files.pythonhosted.org/packages/01/6a/30ff0eef6e0c0e71e55ded56a38d4859bf9d3634a94a88743897b5f96936/pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea", size = 2554972 },
{ url = "https://files.pythonhosted.org/packages/48/2c/2e0a52890f269435eee38b21c8218e102c621fe8d8df8b9dd06fabf879ba/pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d", size = 2243375 },
{ url = "https://files.pythonhosted.org/packages/38/30/095d4f55f3a053392f75e2eae45eba3228452783bab3d9a920b951ac495c/pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4", size = 3493889 },
{ url = "https://files.pythonhosted.org/packages/f3/e8/4ff79788803a5fcd5dc35efdc9386af153569853767bff74540725b45863/pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da", size = 3346160 },
{ url = "https://files.pythonhosted.org/packages/d7/ac/4184edd511b14f760c73f5bb8a5d6fd85c591c8aff7c2229677a355c4179/pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026", size = 3435020 },
{ url = "https://files.pythonhosted.org/packages/da/21/1749cd09160149c0a246a81d646e05f35041619ce76f6493d6a96e8d1103/pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e", size = 3490539 },
{ url = "https://files.pythonhosted.org/packages/b6/f5/f71fe1888b96083b3f6dfa0709101f61fc9e972c0c8d04e9d93ccef2a045/pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5", size = 3476125 },
{ url = "https://files.pythonhosted.org/packages/96/b9/c0362c54290a31866c3526848583a2f45a535aa9d725fd31e25d318c805f/pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885", size = 3579373 },
{ url = "https://files.pythonhosted.org/packages/52/3b/ce7a01026a7cf46e5452afa86f97a5e88ca97f562cafa76570178ab56d8d/pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5", size = 2554661 },
]
[[package]]
@@ -3228,6 +3331,48 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/f6/f0/10642828a8dfb741e5f3fbaac830550a518a775c7fff6f04a007259b0548/py-1.11.0-py2.py3-none-any.whl", hash = "sha256:607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378", size = 98708 },
]
[[package]]
name = "py-rust-stemmers"
version = "0.1.3"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/f4/8a/c7481c6e324da825f13bafb362dbca47dbf8a7dd1a3a3502f47cdb05bfa9/py_rust_stemmers-0.1.3.tar.gz", hash = "sha256:ad796d47874181a25addb505a04245e34620bd7a0c5055671f52d9ce993253e2", size = 8676 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/3e/ed/4c85aa5f2046f7c34db174b89f92d24daaa347a149343f43614a6329c006/py_rust_stemmers-0.1.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:8b4861673bc690a5830a5d84d61c64a95ede86f79c9952df66e99e0559fe8264", size = 287578 },
{ url = "https://files.pythonhosted.org/packages/72/7c/b3df3222e375cb838572952217cedf3d7925f85f3449c3c87142417e9fab/py_rust_stemmers-0.1.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b0d2108c758e8081064cbbb7fc70d3cdfd32e0cccf7d051c1d888d16c91c1e78", size = 273908 },
{ url = "https://files.pythonhosted.org/packages/48/d2/2c422476a6e21d9adbf4355b306269ac396eaa853efc896afdb2c628a334/py_rust_stemmers-0.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fdf43a726b81dd5439a98973200546660e10379e805bb6fd6366dbd8d0857666", size = 309863 },
{ url = "https://files.pythonhosted.org/packages/ff/4f/42cd09a77639f3b0b2d662cbbc19248355ce40ba69eaac796007aae37b7e/py_rust_stemmers-0.1.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:03acb3d89f8090f67698d2c64172492618585927dfb56d0b5f6070ff54269940", size = 313215 },
{ url = "https://files.pythonhosted.org/packages/8a/2c/39bfcdf674c799cb486fd1f10a9ce1599030884b47f2819aabb39db0398a/py_rust_stemmers-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b3f8cd1139a641ed53e9a1d7f25ae9cf3757cae96a2b0ce0d9399332ec8b148f", size = 323524 },
{ url = "https://files.pythonhosted.org/packages/95/b4/38e66537da1864538912aae92f8285badf8201bccdddfdbe06c3c27e99ac/py_rust_stemmers-0.1.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:0a5906aa2eec31f647b94d6cc9b2b065bf77ca31be095fcbb1b412ba42f0e473", size = 323903 },
{ url = "https://files.pythonhosted.org/packages/78/a5/7f219ff3547bfc1337b00761c6cd857fe51b90014b9d51aeba325e33d548/py_rust_stemmers-0.1.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b89fe8e55201604e89bdbd7559b19337ef9ae703a5545878d37664507c1067e9", size = 485483 },
{ url = "https://files.pythonhosted.org/packages/66/59/43c89cb1388a9c508d28868ce04900d0f3b4457a74b1c61411c9306a3aa4/py_rust_stemmers-0.1.3-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:0d43981b272c73709d3885ed096a332b2a160db2317fbe16cc9ef3b1d974d39a", size = 567275 },
{ url = "https://files.pythonhosted.org/packages/7d/3a/08722448c51e7b926b8f40a55f363e92236a89b761e89e5ee76b0e11baa8/py_rust_stemmers-0.1.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1b379c3901a87ee63d7cbb01a68ece78af7040e0c3e3d52fe7b108bfa399feb2", size = 488902 },
{ url = "https://files.pythonhosted.org/packages/c3/74/41efa33c0eb008eb2b1337f40021debf487e8cea5dbe4af97241a43d54b7/py_rust_stemmers-0.1.3-cp310-none-win_amd64.whl", hash = "sha256:0f571ee0f2a4b2314d4cd8ef26af83e1fd24ea3e3ff97407d536184167f05957", size = 208973 },
{ url = "https://files.pythonhosted.org/packages/da/3b/f61826b786ed06f195c80b542abe082dcdd1747341c1194f6f782d566a02/py_rust_stemmers-0.1.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:2d8b8e6b6d5839a168dae510a00ff4662c7d0a22d12f24fe81caa0ac59265711", size = 287577 },
{ url = "https://files.pythonhosted.org/packages/59/fd/322bf0dbc142ae71516c06c2026f4ac0a4685f108a873935581b7eef3d9d/py_rust_stemmers-0.1.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:02b347ab8fe686a88aef0432060471d501b37a6b9a868e7c50bffcd382269cf2", size = 273910 },
{ url = "https://files.pythonhosted.org/packages/10/34/02aa64046e4a21b1dd5f7d602fb33b1c79bd0dd57c8ebfe5897efcf62ac3/py_rust_stemmers-0.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4a65b429eb1282934a1cc3c1b2698ae32a6dc00d6be00dd747e688c642eb110", size = 309863 },
{ url = "https://files.pythonhosted.org/packages/10/a4/f4fd2afc713b0497b76023c6e491f356962213bd518f148cbd28b7144e78/py_rust_stemmers-0.1.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9fbbb37e0df579859b42b3f850aa08fe829d190d32c6338349eccb0e762b74c6", size = 313218 },
{ url = "https://files.pythonhosted.org/packages/98/78/f64e096df43d730fb5f6e2201e6d6ca05ed18e94946f11cdeddd0205f099/py_rust_stemmers-0.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6f9790fe1e9962787817b1894486df7e0b5fc59e4adad423e189530530fae11", size = 323525 },
{ url = "https://files.pythonhosted.org/packages/21/38/09beb9ca8ec3af8dbfd441f77fc003472ca900f678d1eb25839db08df691/py_rust_stemmers-0.1.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:fd5d7388f807f584b4c55bfbe608ef40cff0024c1dc54de95d28265395065d02", size = 323903 },
{ url = "https://files.pythonhosted.org/packages/fc/63/08af5678a0cb0f6c5a462def7aec0c32f3742574ee36ddd660103d13bc86/py_rust_stemmers-0.1.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:72a7b810d8d376c03f0ccebe146f04cbf4c6c97bd74e489b0ddf1342eb40970c", size = 485484 },
{ url = "https://files.pythonhosted.org/packages/33/a7/740b8dd06cb48ed397d65cabda9d38c2c310869c3bf51b0e0a347cb7fc8f/py_rust_stemmers-0.1.3-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:658784c0072f7aae67c726be9acac40dd27b29416356c63a3a760a9499a93513", size = 567275 },
{ url = "https://files.pythonhosted.org/packages/6e/75/e785900047b4fc5773d0bea37c565825df26de81f25ab2d341ecaa2f55f5/py_rust_stemmers-0.1.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e6afcd19da56d4182eecb43bdb6c5b9686370063f2538df877fc23f1d16f909e", size = 488906 },
{ url = "https://files.pythonhosted.org/packages/5b/ee/86ee4eb3188f45cf0831318dab9afddc231ae71b8fecc0dbbc79eb885ded/py_rust_stemmers-0.1.3-cp311-none-win_amd64.whl", hash = "sha256:47211ac6252eb484f5067d30b1812667936deffcef89b4b0acd2efe881a99aed", size = 208976 },
{ url = "https://files.pythonhosted.org/packages/cc/08/f9c9ef78c7dca7a69c451b1df754195e02a3a1e7a450becdce687102aae7/py_rust_stemmers-0.1.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a36bfbd9219a55bdf5aa9c5d74b8a3741cb092495190ca18551dc39f57272d57", size = 287577 },
{ url = "https://files.pythonhosted.org/packages/50/3a/5c518bc2761f8a873b1ec9333f7f74a8f58e7e8b39d5de065038427b114b/py_rust_stemmers-0.1.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ca1ab04ff2fa15a1d0685007293ffdf4679dcfdc02fc5b36c1af0111670908a1", size = 273906 },
{ url = "https://files.pythonhosted.org/packages/b4/ae/3cae1a65a99687e4bf830ab733b3adde13e458a7908b6826dd9025c8c5c3/py_rust_stemmers-0.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ccaa08251b9cb421429976d56365ddf9db63b5a8ac4e7817723fb0b62adf8b19", size = 309864 },
{ url = "https://files.pythonhosted.org/packages/a9/f2/b4167a4a64b0bade1695b32e4bd13ca752085d43559670fd7173cfb59b9e/py_rust_stemmers-0.1.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6262b40f989c0b0bcb3eaef5511268ba63703428c4ab1aa9353a58c8572735b7", size = 313217 },
{ url = "https://files.pythonhosted.org/packages/54/ff/f27e0762a74668bf520525d7bad8daa4dd621ef5b3155c464c5bd8a7dd3f/py_rust_stemmers-0.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a073701b492ef900cee5185961c23006ba13fa6126cf716f241c929adbdfad6e", size = 323525 },
{ url = "https://files.pythonhosted.org/packages/d3/f2/2f4599ef5481be24378a23f93af405b4ca968450873d48d0a56ba925d7b5/py_rust_stemmers-0.1.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:39c75f10da70380076b68398d84cdc42b42966180bdb8216b81d21a824278b50", size = 323903 },
{ url = "https://files.pythonhosted.org/packages/dd/84/1aea103917659abc12456ce061621557eed0a44e174270908e3fb28f2cc3/py_rust_stemmers-0.1.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:34f7d92abc85f0f0b1fa407410b3f2daaf2c36b8277a2ffff2ff0beb2f2acc2f", size = 485487 },
{ url = "https://files.pythonhosted.org/packages/bd/67/16d48e7f02b285b39028aa47f847b3a279c903bc5cd49c8012ea90255317/py_rust_stemmers-0.1.3-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:fbb9f7933239a57d1d9c0fcdfbe0c5283a081e9e64ddc48ed878783be3d52b2b", size = 567278 },
{ url = "https://files.pythonhosted.org/packages/ad/1c/cb8cc9680f8aa04f96cb5c814887b3bb8d23a2e9abf460ef861ae16bfe50/py_rust_stemmers-0.1.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:921803a6f8259f10bf348ac0e32a767c28ab587c9ad5c3b1ee593a4bbbe98d39", size = 488907 },
{ url = "https://files.pythonhosted.org/packages/cd/29/88217de06239e3e526fa6286a11e3662d94acb0be4216c1310301a252dab/py_rust_stemmers-0.1.3-cp312-none-win_amd64.whl", hash = "sha256:576206b540575e81bb84a0f620b7a8529f5e89b0b2ec7d4487f3183789dd5cfd", size = 208980 },
{ url = "https://files.pythonhosted.org/packages/f1/45/e1ec9e76b4462e70fa42f6ac8be9f1bfe6565c1c260b9e5824e772157edf/py_rust_stemmers-0.1.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:59eacf7687738b20886a7c0ceeae999d501902b4e6234cf11eecd2f45f2c26bb", size = 288041 },
{ url = "https://files.pythonhosted.org/packages/4a/5b/eb594ca68715c23dd3b8f52dd700c10cbdd8133faaaf19886962c8f97c90/py_rust_stemmers-0.1.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:e39d5d273e13aec2f07a2c3ea0050b3bf3aaa7b6e9f6bef3d4e728ab49979ae8", size = 274089 },
{ url = "https://files.pythonhosted.org/packages/79/55/b62b14cdeb7268a818f21e4c8cfd543261c563dc9bd89ba7116293ce3008/py_rust_stemmers-0.1.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f95b25138431c4a457d684c49c6de5ff0c1852cf1cb3657e187ea63610fc7c21", size = 310373 },
{ url = "https://files.pythonhosted.org/packages/a4/71/f0b7131505013eaaa4fbfcd821b30b36431d01b7fe96951d84721cdb4ef8/py_rust_stemmers-0.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cc9df57dff15d12d7fec65a541af6fdcefd40ea5f7ebd48ad5202a1b9a56f89", size = 324052 },
]
[[package]]
name = "pyarrow"
version = "17.0.0"
@@ -3444,6 +3589,26 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/48/8f/9bbf22ba6a00001a45dbc54337e5bbbd43e7d8f34c8158c92cddc45736af/pypdf-5.0.1-py3-none-any.whl", hash = "sha256:ff8a32da6c7a63fea9c32fa4dd837cdd0db7966adf6c14f043e3f12592e992db", size = 294470 },
]
[[package]]
name = "pypdfium2"
version = "4.30.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a1/14/838b3ba247a0ba92e4df5d23f2bea9478edcfd72b78a39d6ca36ccd84ad2/pypdfium2-4.30.0.tar.gz", hash = "sha256:48b5b7e5566665bc1015b9d69c1ebabe21f6aee468b509531c3c8318eeee2e16", size = 140239 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/c7/9a/c8ff5cc352c1b60b0b97642ae734f51edbab6e28b45b4fcdfe5306ee3c83/pypdfium2-4.30.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:b33ceded0b6ff5b2b93bc1fe0ad4b71aa6b7e7bd5875f1ca0cdfb6ba6ac01aab", size = 2837254 },
{ url = "https://files.pythonhosted.org/packages/21/8b/27d4d5409f3c76b985f4ee4afe147b606594411e15ac4dc1c3363c9a9810/pypdfium2-4.30.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:4e55689f4b06e2d2406203e771f78789bd4f190731b5d57383d05cf611d829de", size = 2707624 },
{ url = "https://files.pythonhosted.org/packages/11/63/28a73ca17c24b41a205d658e177d68e198d7dde65a8c99c821d231b6ee3d/pypdfium2-4.30.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e6e50f5ce7f65a40a33d7c9edc39f23140c57e37144c2d6d9e9262a2a854854", size = 2793126 },
{ url = "https://files.pythonhosted.org/packages/d1/96/53b3ebf0955edbd02ac6da16a818ecc65c939e98fdeb4e0958362bd385c8/pypdfium2-4.30.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3d0dd3ecaffd0b6dbda3da663220e705cb563918249bda26058c6036752ba3a2", size = 2591077 },
{ url = "https://files.pythonhosted.org/packages/ec/ee/0394e56e7cab8b5b21f744d988400948ef71a9a892cbeb0b200d324ab2c7/pypdfium2-4.30.0-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cc3bf29b0db8c76cdfaac1ec1cde8edf211a7de7390fbf8934ad2aa9b4d6dfad", size = 2864431 },
{ url = "https://files.pythonhosted.org/packages/65/cd/3f1edf20a0ef4a212a5e20a5900e64942c5a374473671ac0780eaa08ea80/pypdfium2-4.30.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1f78d2189e0ddf9ac2b7a9b9bd4f0c66f54d1389ff6c17e9fd9dc034d06eb3f", size = 2812008 },
{ url = "https://files.pythonhosted.org/packages/c8/91/2d517db61845698f41a2a974de90762e50faeb529201c6b3574935969045/pypdfium2-4.30.0-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:5eda3641a2da7a7a0b2f4dbd71d706401a656fea521b6b6faa0675b15d31a163", size = 6181543 },
{ url = "https://files.pythonhosted.org/packages/ba/c4/ed1315143a7a84b2c7616569dfb472473968d628f17c231c39e29ae9d780/pypdfium2-4.30.0-py3-none-musllinux_1_1_i686.whl", hash = "sha256:0dfa61421b5eb68e1188b0b2231e7ba35735aef2d867d86e48ee6cab6975195e", size = 6175911 },
{ url = "https://files.pythonhosted.org/packages/7a/c4/9e62d03f414e0e3051c56d5943c3bf42aa9608ede4e19dc96438364e9e03/pypdfium2-4.30.0-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:f33bd79e7a09d5f7acca3b0b69ff6c8a488869a7fab48fdf400fec6e20b9c8be", size = 6267430 },
{ url = "https://files.pythonhosted.org/packages/90/47/eda4904f715fb98561e34012826e883816945934a851745570521ec89520/pypdfium2-4.30.0-py3-none-win32.whl", hash = "sha256:ee2410f15d576d976c2ab2558c93d392a25fb9f6635e8dd0a8a3a5241b275e0e", size = 2775951 },
{ url = "https://files.pythonhosted.org/packages/25/bd/56d9ec6b9f0fc4e0d95288759f3179f0fcd34b1a1526b75673d2f6d5196f/pypdfium2-4.30.0-py3-none-win_amd64.whl", hash = "sha256:90dbb2ac07be53219f56be09961eb95cf2473f834d01a42d901d13ccfad64b4c", size = 2892098 },
{ url = "https://files.pythonhosted.org/packages/be/7a/097801205b991bc3115e8af1edb850d30aeaf0118520b016354cf5ccd3f6/pypdfium2-4.30.0-py3-none-win_arm64.whl", hash = "sha256:119b2969a6d6b1e8d55e99caaf05290294f2d0fe49c12a3f17102d01c441bd29", size = 2752118 },
]
[[package]]
name = "pypika"
version = "0.48.9"
@@ -4743,6 +4908,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/56/27/96a5cd2626d11c8280656c6c71d8ab50fe006490ef9971ccd154e0c42cd2/websockets-13.1-py3-none-any.whl", hash = "sha256:a9a396a6ad26130cdae92ae10c36af09d9bfe6cafe69670fd3b6da9b07b4044f", size = 152134 },
]
[[package]]
name = "win32-setctime"
version = "1.1.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/6b/dd/f95a13d2b235a28d613ba23ebad55191514550debb968b46aab99f2e3a30/win32_setctime-1.1.0.tar.gz", hash = "sha256:15cf5750465118d6929ae4de4eb46e8edae9a5634350c01ba582df868e932cb2", size = 3676 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/0a/e6/a7d828fef907843b2a5773ebff47fb79ac0c1c88d60c0ca9530ee941e248/win32_setctime-1.1.0-py3-none-any.whl", hash = "sha256:231db239e959c2fe7eb1d7dc129f11172354f98361c4fa2d6d2d7e278baa8aad", size = 3604 },
]
[[package]]
name = "wrapt"
version = "1.16.0"