Update docs (#1842)

* Update portkey docs

* Add more examples to Knowledge docs + clarify issue with `embedder`

* fix knowledge params and usage instructions
This commit is contained in:
Tony Kipkemboi
2025-01-02 16:10:31 -05:00
committed by GitHub
parent 4bcc3b532d
commit c1172a685a
4 changed files with 244 additions and 87 deletions

View File

@@ -138,7 +138,7 @@ print("---- Final Output ----")
print(final_output)
````
``` text Output
```text Output
---- Final Output ----
Second method received: Output from first_method
````

View File

@@ -4,8 +4,6 @@ description: What is knowledge in CrewAI and how to use it.
icon: book
---
# Using Knowledge in CrewAI
## What is Knowledge?
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks.
@@ -36,7 +34,20 @@ CrewAI supports various types of knowledge sources out of the box:
</Card>
</CardGroup>
## Quick Start
## Supported Knowledge Parameters
| Parameter | Type | Required | Description |
| :--------------------------- | :---------------------------------- | :------- | :---------------------------------------------------------------------------------------------------------------------------------------------------- |
| `sources` | **List[BaseKnowledgeSource]** | Yes | List of knowledge sources that provide content to be stored and queried. Can include PDF, CSV, Excel, JSON, text files, or string content. |
| `collection_name` | **str** | No | Name of the collection where the knowledge will be stored. Used to identify different sets of knowledge. Defaults to "knowledge" if not provided. |
| `storage` | **Optional[KnowledgeStorage]** | No | Custom storage configuration for managing how the knowledge is stored and retrieved. If not provided, a default storage will be created. |
## Quickstart Example
<Tip>
For file-Based Knowledge Sources, make sure to place your files in a `knowledge` directory at the root of your project.
Also, use relative paths from the `knowledge` directory when creating the source.
</Tip>
Here's an example using string-based knowledge:
@@ -80,7 +91,8 @@ result = crew.kickoff(inputs={"question": "What city does John live in and how o
```
Here's another example with the `CrewDoclingSource`
Here's another example with the `CrewDoclingSource`. The CrewDoclingSource is actually quite versatile and can handle multiple file formats including TXT, PDF, DOCX, HTML, and more.
```python Code
from crewai import LLM, Agent, Crew, Process, Task
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
@@ -128,39 +140,192 @@ result = crew.kickoff(
)
```
## More Examples
Here are examples of how to use different types of knowledge sources:
### Text File Knowledge Source
```python
from crewai.knowledge.source import CrewDoclingSource
# Create a text file knowledge source
text_source = CrewDoclingSource(
file_paths=["document.txt", "another.txt"]
)
# Create knowledge with text file source
knowledge = Knowledge(
collection_name="text_knowledge",
sources=[text_source]
)
```
### PDF Knowledge Source
```python
from crewai.knowledge.source import PDFKnowledgeSource
# Create a PDF knowledge source
pdf_source = PDFKnowledgeSource(
file_paths=["document.pdf", "another.pdf"]
)
# Create knowledge with PDF source
knowledge = Knowledge(
collection_name="pdf_knowledge",
sources=[pdf_source]
)
```
### CSV Knowledge Source
```python
from crewai.knowledge.source import CSVKnowledgeSource
# Create a CSV knowledge source
csv_source = CSVKnowledgeSource(
file_paths=["data.csv"]
)
# Create knowledge with CSV source
knowledge = Knowledge(
collection_name="csv_knowledge",
sources=[csv_source]
)
```
### Excel Knowledge Source
```python
from crewai.knowledge.source import ExcelKnowledgeSource
# Create an Excel knowledge source
excel_source = ExcelKnowledgeSource(
file_paths=["spreadsheet.xlsx"]
)
# Create knowledge with Excel source
knowledge = Knowledge(
collection_name="excel_knowledge",
sources=[excel_source]
)
```
### JSON Knowledge Source
```python
from crewai.knowledge.source import JSONKnowledgeSource
# Create a JSON knowledge source
json_source = JSONKnowledgeSource(
file_paths=["data.json"]
)
# Create knowledge with JSON source
knowledge = Knowledge(
collection_name="json_knowledge",
sources=[json_source]
)
```
## Knowledge Configuration
### Chunking Configuration
Control how content is split for processing by setting the chunk size and overlap.
Knowledge sources automatically chunk content for better processing.
You can configure chunking behavior in your knowledge sources:
```python Code
knowledge_source = StringKnowledgeSource(
content="Long content...",
chunk_size=4000, # Characters per chunk (default)
chunk_overlap=200 # Overlap between chunks (default)
```python
from crewai.knowledge.source import StringKnowledgeSource
source = StringKnowledgeSource(
content="Your content here",
chunk_size=4000, # Maximum size of each chunk (default: 4000)
chunk_overlap=200 # Overlap between chunks (default: 200)
)
```
## Embedder Configuration
The chunking configuration helps in:
- Breaking down large documents into manageable pieces
- Maintaining context through chunk overlap
- Optimizing retrieval accuracy
You can also configure the embedder for the knowledge store. This is useful if you want to use a different embedder for the knowledge store than the one used for the agents.
### Embeddings Configuration
```python Code
...
You can also configure the embedder for the knowledge store.
This is useful if you want to use a different embedder for the knowledge store than the one used for the agents.
The `embedder` parameter supports various embedding model providers that include:
- `openai`: OpenAI's embedding models
- `google`: Google's text embedding models
- `azure`: Azure OpenAI embeddings
- `ollama`: Local embeddings with Ollama
- `vertexai`: Google Cloud VertexAI embeddings
- `cohere`: Cohere's embedding models
- `bedrock`: AWS Bedrock embeddings
- `huggingface`: Hugging Face models
- `watson`: IBM Watson embeddings
Here's an example of how to configure the embedder for the knowledge store using Google's `text-embedding-004` model:
<CodeGroup>
```python Example
from crewai import Agent, Task, Crew, Process, LLM
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
import os
# Get the GEMINI API key
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
# Create a knowledge source
content = "Users name is John. He is 30 years old and lives in San Francisco."
string_source = StringKnowledgeSource(
content="Users name is John. He is 30 years old and lives in San Francisco.",
content=content,
)
# Create an LLM with a temperature of 0 to ensure deterministic outputs
gemini_llm = LLM(
model="gemini/gemini-1.5-pro-002",
api_key=GEMINI_API_KEY,
temperature=0,
)
# Create an agent with the knowledge store
agent = Agent(
role="About User",
goal="You know everything about the user.",
backstory="""You are a master at understanding people and their preferences.""",
verbose=True,
allow_delegation=False,
llm=gemini_llm,
)
task = Task(
description="Answer the following questions about the user: {question}",
expected_output="An answer to the question.",
agent=agent,
)
crew = Crew(
...
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
knowledge_sources=[string_source],
embedder={
"provider": "openai",
"config": {"model": "text-embedding-3-small"},
},
"provider": "google",
"config": {
"model": "models/text-embedding-004",
"api_key": GEMINI_API_KEY,
}
}
)
```
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
```
```text Output
# Agent: About User
## Task: Answer the following questions about the user: What city does John live in and how old is he?
# Agent: About User
## Final Answer:
John is 30 years old and lives in San Francisco.
```
</CodeGroup>
## Clearing Knowledge
If you need to clear the knowledge stored in CrewAI, you can use the `crewai reset-memories` command with the `--knowledge` option.

View File

@@ -1,4 +1,9 @@
# Portkey Integration with CrewAI
---
title: Portkey Observability and Guardrails
description: How to use Portkey with CrewAI
icon: key
---
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
@@ -10,74 +15,69 @@ Portkey adds 4 core production capabilities to any CrewAI agent:
3. Full-stack tracing & cost, performance analytics
4. Real-time guardrails to enforce behavior
## Getting Started
1. **Install Required Packages:**
<Steps>
<Step title="Install CrewAI and Portkey">
```bash
pip install -qU crewai portkey-ai
```
</Step>
<Step title="Configure the LLM Client">
To build CrewAI Agents with Portkey, you'll need two keys:
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
```bash
pip install -qU crewai portkey-ai
```
```python
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
2. **Configure the LLM Client:**
To build CrewAI Agents with Portkey, you'll need two keys:
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
```python
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
gpt_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy", # We are using Virtual key
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
gpt_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy", # We are using Virtual key
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
)
)
)
```
```
</Step>
<Step title="Create and Run Your First Agent">
```python
from crewai import Agent, Task, Crew
3. **Create and Run Your First Agent:**
# Define your agents with roles and goals
coder = Agent(
role='Software developer',
goal='Write clear, concise code on demand',
backstory='An expert coder with a keen eye for software trends.',
llm=gpt_llm
)
```python
from crewai import Agent, Task, Crew
# Create tasks for your agents
task1 = Task(
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
expected_output="A clear and concise HTML code",
agent=coder
)
# Define your agents with roles and goals
coder = Agent(
role='Software developer',
goal='Write clear, concise code on demand',
backstory='An expert coder with a keen eye for software trends.',
llm=gpt_llm
)
# Create tasks for your agents
task1 = Task(
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
expected_output="A clear and concise HTML code",
agent=coder
)
# Instantiate your crew
crew = Crew(
agents=[coder],
tasks=[task1],
)
result = crew.kickoff()
print(result)
```
# Instantiate your crew
crew = Crew(
agents=[coder],
tasks=[task1],
)
result = crew.kickoff()
print(result)
```
</Step>
</Steps>
## Key Features
| Feature | Description |
|---------|-------------|
|:--------|:------------|
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
@@ -200,12 +200,3 @@ For detailed information on creating and managing Configs, visit the [Portkey do
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
- [🐦 Twitter](https://twitter.com/portkeyai)
- [💬 Discord Community](https://discord.gg/DD7vgKK299)

View File

@@ -100,7 +100,8 @@
"how-to/conditional-tasks",
"how-to/agentops-observability",
"how-to/langtrace-observability",
"how-to/openlit-observability"
"how-to/openlit-observability",
"how-to/portkey-observability"
]
},
{