Compare commits

..

1049 Commits

Author SHA1 Message Date
Brandon Hancock
51c17c763b drop record new episodes 2025-01-02 16:03:51 -05:00
Brandon Hancock
e5ee91fcd1 final clean up 2025-01-02 15:55:39 -05:00
Brandon Hancock
b5ec0ed8b1 Fixing tests 2025-01-02 15:51:23 -05:00
Brandon Hancock
767aeb5913 drop large file 2025-01-02 15:31:16 -05:00
Brandon Hancock
1d3b4fde04 fix tets 2025-01-02 15:24:57 -05:00
Brandon Hancock
9429253ac2 more test fixes 2025-01-02 15:18:43 -05:00
Brandon Hancock
0545294a27 sync packages with uv.lock 2025-01-02 15:07:23 -05:00
Brandon Hancock
a60c66a9af sync packages with uv.lock 2025-01-02 15:07:23 -05:00
Brandon Hancock
217ba655c7 Update llama3 cassettes 2025-01-02 14:56:03 -05:00
Brandon Hancock
8535c0c759 Update llama3 cassettes 2025-01-02 14:56:03 -05:00
Brandon Hancock
0088d6d397 Reverting uv.lock and pyproject 2025-01-02 14:44:37 -05:00
Brandon Hancock
98be37c18a Reverting uv.lock and pyproject 2025-01-02 14:44:37 -05:00
Brandon Hancock
54316109d5 more test changes 2025-01-02 14:34:18 -05:00
Brandon Hancock
e05cde0b46 more test changes 2025-01-02 14:34:18 -05:00
Brandon Hancock
db61f5dd59 tests should work now 2025-01-02 14:18:11 -05:00
Brandon Hancock
8c175b8333 tests should work now 2025-01-02 14:18:11 -05:00
Brandon Hancock
11ff8270ea add back in crewai tool dependencies and drop litellm version 2025-01-02 11:42:47 -05:00
Brandon Hancock
6ba36a3485 add back in crewai tool dependencies and drop litellm version 2025-01-02 11:42:47 -05:00
Brandon Hancock
9d4d4d495a revert uv.lock 2025-01-02 11:22:30 -05:00
Brandon Hancock
1237c05aee revert uv.lock 2025-01-02 11:22:30 -05:00
Brandon Hancock
640e68100c crew_test changes werent applied 2025-01-02 11:15:09 -05:00
Brandon Hancock
8569c2d254 crew_test changes werent applied 2025-01-02 11:15:09 -05:00
Brandon Hancock
ab93fdd348 more timeouts 2025-01-02 11:08:51 -05:00
Brandon Hancock
5fd01292b8 more timeouts 2025-01-02 11:08:51 -05:00
Brandon Hancock
e7696f9b07 timeout in crew_tests 2025-01-02 10:23:13 -05:00
Brandon Hancock
16d4bc1f56 timeout in crew_tests 2025-01-02 10:23:13 -05:00
Brandon Hancock
50efccd20b trying next crew_test timeout 2025-01-02 10:03:56 -05:00
Brandon Hancock
fbc7230859 trying next crew_test timeout 2025-01-02 10:03:56 -05:00
Brandon Hancock
d44eb89b7e Trying out timeouts 2025-01-02 09:56:31 -05:00
Brandon Hancock
e041103c04 Trying out timeouts 2025-01-02 09:56:31 -05:00
Brandon Hancock (bhancock_ai)
6cae5fd34b Suppressed userWarnings from litellm pydantic issues (#1833)
* Suppressed userWarnings from litellm pydantic issues

* change litellm version

* Fix failling ollama tasks
2024-12-31 18:40:51 -03:00
devin-ai-integration[bot]
31f595197b fix: Include agent knowledge in planning process (#1818)
* test: Add test demonstrating knowledge not included in planning process

Issue #1703: Add test to verify that agent knowledge sources are not currently
included in the planning process. This test will help validate the fix once
implemented.

- Creates agent with knowledge sources
- Verifies knowledge context missing from planning
- Checks other expected components are present

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Include agent knowledge in planning process

Issue #1703: Integrate agent knowledge sources into planning summaries
- Add agent_knowledge field to task summaries in planning_handler
- Update test to verify knowledge inclusion
- Ensure knowledge context is available during planning phase

The planning agent now has access to agent knowledge when creating
task execution plans, allowing for better informed planning decisions.

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in test_knowledge_planning.py

- Reorganize imports according to ruff linting rules
- Fix I001 linting error

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: Update task summary assertions to include knowledge field

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update ChromaDB mock path and fix knowledge string formatting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve knowledge integration in planning process with error handling

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update task summary format for empty tools and knowledge

- Change empty tools message to 'agent has no tools'
- Remove agent_knowledge field when empty
- Update test assertions to match new format
- Improve test messages for clarity

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools and knowledge in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update knowledge field formatting in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in test_planning_handler.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting order in test_planning_handler.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: Add ChromaDB mocking to test_create_tasks_summary_with_knowledge_and_tools

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-31 01:56:38 -03:00
Marco Vinciguerra
714134e8d3 feat: add docstring (#1819)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-31 01:51:43 -03:00
devin-ai-integration[bot]
f53b7f463c Docstring, Error Handling, and Type Hints Improvements (#1828)
* docs: add comprehensive docstrings to Flow class and methods

- Added NumPy-style docstrings to all decorator functions
- Added detailed documentation to Flow class methods
- Included parameter types, return types, and examples
- Enhanced documentation clarity and completeness

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: add secure path handling utilities

- Add path_utils.py with safe path handling functions
- Implement path validation and security checks
- Integrate secure path handling in flow_visualizer.py
- Add path validation in html_template_handler.py
- Add comprehensive error handling for path operations

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add comprehensive docstrings and type hints to flow utils (#1819)

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations and fix import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations to flow utils and visualization utils

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: resolve import sorting and type annotation issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: properly initialize and update edge_smooth variable

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-31 01:39:19 -03:00
devin-ai-integration[bot]
a7b00cee08 fix: add tiktoken as explicit dependency and document Rust requirement (#1826)
* feat: add tiktoken as explicit dependency and document Rust requirement

- Add tiktoken>=0.8.0 as explicit dependency to ensure pre-built wheels are used
- Document Rust compiler requirement as fallback in README.md
- Addresses issue #1824 tiktoken build failure

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: adjust tiktoken version to ~=0.7.0 for dependency compatibility

- Update tiktoken dependency to ~=0.7.0 to resolve conflict with embedchain
- Maintain compatibility with crewai-tools dependency chain
- Addresses CI build failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add troubleshooting section and make tiktoken optional

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update README.md

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-30 17:10:56 -03:00
devin-ai-integration[bot]
cac69e90fa fix(manager_llm): handle coworker role name case/whitespace properly (#1820)
* fix(manager_llm): handle coworker role name case/whitespace properly

- Add .strip() to agent name and role comparisons in base_agent_tools.py
- Add test case for varied role name cases and whitespace
- Fix issue #1503 with manager LLM delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): improve error handling and add debug logging

- Add debug logging for better observability
- Add sanitize_agent_name helper method
- Enhance error messages with more context
- Add parameterized tests for edge cases:
  - Embedded quotes
  - Trailing newlines
  - Multiple whitespace
  - Case variations
  - None values
- Improve error handling with specific exceptions

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in base_agent_tools and test_manager_llm_delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): improve whitespace normalization in role name matching

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in base_agent_tools and test_manager_llm_delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): add error message template for agent tool execution errors

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in test_manager_llm_delegation.py

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-30 16:58:18 -03:00
devin-ai-integration[bot]
3731a8c083 Fix interpolation for output_file in Task (#1803) (#1814)
* fix: interpolate output_file attribute from YAML

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add security validation for output_file paths

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add _original_output_file private attribute to fix type-checker error

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: update interpolate_only to handle None inputs and remove duplicate attribute

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: improve output_file validation and error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add end-to-end tests for output_file functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-29 01:57:59 -03:00
João Moura
d993b5133c fixing file paths for knowledge source 2024-12-28 02:05:19 -03:00
devin-ai-integration[bot]
289b56e122 docs: add agent-specific knowledge documentation and examples (#1811)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-28 01:48:51 -03:00
João Moura
2576037cfb Update README.md 2024-12-28 01:03:33 -03:00
devin-ai-integration[bot]
755722fa4c docs: update README to highlight Flows (#1809)
* docs: highlight Flows feature in README

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: enhance README with LangGraph comparison and flows-crews synergy

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: replace initial Flow example with advanced Flow+Crew example; enhance LangGraph comparison

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: incorporate key terms and enhance feature descriptions

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: refine technical language, enhance feature descriptions, fix string interpolation

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update README with performance metrics, feature enhancements, and course links

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update LangGraph comparison with paragraph and P.S. section

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-28 01:00:58 -03:00
devin-ai-integration[bot]
49ad4bc63e fix: handle optional storage with null checks (#1808)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 21:30:39 -03:00
Erick Amorim
1bc914edf4 fix: Change storage initialization to None for KnowledgeStorage (#1804)
* fix: Change storage initialization to None for KnowledgeStorage

* refactor: Change storage field to optional and improve error handling when saving documents

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 21:18:25 -03:00
siddharth Sambharia
40173c2f53 Portkey Integration with CrewAI (#1233)
* Create Portkey-Observability-and-Guardrails.md

* crewAI update with new changes

* small change

---------

Co-authored-by: siddharthsambharia-portkey <siddhath.s@portkey.ai>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 18:16:47 -03:00
devin-ai-integration[bot]
1c90f02984 docs: add guide for multimodal agents (#1807)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-27 18:16:02 -03:00
João Igor
f6f5f3db4f chore: removing crewai-tools from dev-dependencies (#1760)
As mentioned in issue #1759, listing crewai-tools as dev-dependencies makes pip install it a required dependency, and not an optional

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-27 17:45:06 -03:00
João Moura
0006fdb655 Adding Multimodal Abilities to Crew (#1805)
* initial fix on delegation tools

* fixing tests for delegations and coding

* Refactor prepare tool and adding initial add images logic

* supporting image tool

* fixing linter

* fix linter

* Making sure multimodal feature support i18n

* fix linter and types

* mixxing translations

* fix types and linter

* Revert "fixing linter"

This reverts commit ef323e3487e62ee4f5bce7f86378068a5ac77e16.

* fix linters

* test

* fix

* fix

* fix linter

* fix

* ignore

* type improvements
2024-12-27 17:03:35 -03:00
Brandon Hancock (bhancock_ai)
1aa6cfdf2d Feat/joao flow improvement requests (#1795)
* Add in or and and in router

* In the middle of improving plotting

* final plot changes

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-24 18:55:44 -03:00
Lorenze Jay
a8e0836add removed some redundancies (#1796)
* removed some redundancies

* cleanup
2024-12-23 13:54:16 -05:00
Lorenze Jay
a8ffb60928 Feat/docling-support (#1763)
* added tool for docling support

* docling support installation

* use file_paths instead of file_path

* fix import

* organized imports

* run_type docs

* needs to be list

* fixed logic

* logged but file_path is backwards compatible

* use file_paths instead of file_path 2

* added test for multiple sources for file_paths

* fix run-types

* enabling local files to work and type cleanup

* linted

* fix test and types

* fixed run types

* fix types

* renamed to CrewDoclingSource

* linted

* added docs

* resolve conflicts

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-12-23 13:19:58 -05:00
devin-ai-integration[bot]
764eac12e4 feat: Add interpolate_only method and improve error handling (#1791)
* Fixed output_file not respecting system path

* Fixed yaml config is not escaped properly for output requirements

* feat: Add interpolate_only method and improve error handling

- Add interpolate_only method for string interpolation while preserving JSON structure
- Add comprehensive test coverage for interpolate_only
- Add proper type annotation for logger using ClassVar
- Improve error handling and documentation for _save_file method

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports to fix lint issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Reorganize imports using ruff --fix

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Consolidate imports and fix formatting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Apply ruff automatic import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports using ruff --fix

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Frieda (Jingying) Huang <jingyingfhuang@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Frieda Huang <124417784+frieda-huang@users.noreply.github.com>
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2024-12-23 13:05:29 -05:00
devin-ai-integration[bot]
8c53880dca feat: Add task guardrails feature (#1742)
* feat: Add task guardrails feature

Add support for custom code guardrails in tasks that validate outputs
before proceeding to the next task. Features include:

- Optional task-level guardrail function
- Pre-next-task execution timing
- Tuple return format (success, data)
- Automatic result/error routing
- Configurable retry mechanism
- Comprehensive documentation and tests

Link to Devin run: https://app.devin.ai/sessions/39f6cfd6c5a24d25a7bd70ce070ed29a

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add type check for guardrail result and remove unused import

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Remove unnecessary f-string prefix

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add guardrail validation improvements

- Add result/error exclusivity validation in GuardrailResult
- Make return type annotations optional in Task guardrail validator
- Improve error messages for validation failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Add comprehensive guardrails documentation

- Add type hints and examples
- Add error handling best practices
- Add structured error response patterns
- Document retry mechanisms
- Improve documentation organization

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Update guardrail functions to handle TaskOutput objects

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add task guardrails feature

Add support for custom code guardrails in tasks that validate outputs
before proceeding to the next task. Features include:

- Optional task-level guardrail function
- Pre-next-task execution timing
- Tuple return format (success, data)
- Automatic result/error routing
- Configurable retry mechanism
- Comprehensive documentation and tests

Link to Devin run: https://app.devin.ai/sessions/39f6cfd6c5a24d25a7bd70ce070ed29a

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add type check for guardrail result and remove unused import

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Remove unnecessary f-string prefix

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add guardrail validation improvements

- Add result/error exclusivity validation in GuardrailResult
- Make return type annotations optional in Task guardrail validator
- Improve error messages for validation failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Add comprehensive guardrails documentation

- Add type hints and examples
- Add error handling best practices
- Add structured error response patterns
- Document retry mechanisms
- Improve documentation organization

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Update guardrail functions to handle TaskOutput objects

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in task guardrails files

Co-Authored-By: Joe Moura <joao@crewai.com>

* fixing docs

* Fixing guardarils implementation

* docs: Enhance guardrail validator docstring with runtime validation rationale

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-12-22 00:52:02 -03:00
PJ
757bfe07aa Correcting a small grammatical issue that was bugging me: from _satisfy the expect criteria_ to _satisfies the expected criteria_ (#1783)
Signed-off-by: PJ Hagerty <pjhagerty@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-20 10:17:34 -05:00
Vini Brasil
0487a0e8fb Add tool.crewai.type pyproject attribute in templates (#1789) 2024-12-20 10:36:18 -03:00
Vini Brasil
7f357d2696 Remove relative import in flow main.py template (#1782) 2024-12-18 10:47:44 -03:00
alan blount
08f252c49b Gemini 2.0 (#1773)
* Update llms.mdx (Gemini 2.0)

- Add Gemini 2.0 flash to Gemini table.
- Add link to 2 hosting paths for Gemini in Tip.
- Change to lower case model slugs vs names, user convenience.
- Add https://artificialanalysis.ai/ as alternate leaderboard.
- Move Gemma to "other" tab.

* Update llm.py (gemini 2.0)

Add setting for Gemini 2.0 context window to llm.py

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-17 16:44:10 -05:00
Tony Kipkemboi
6ff669e5da Merge pull request #1777 from crewAIInc/fix/python-max-version
Fix/python max version
2024-12-17 16:09:44 -05:00
Brandon Hancock
791d156dce change to <13 instead of <=12 2024-12-17 16:00:15 -05:00
Brandon Hancock
1d98a83296 include 12 but not 13 2024-12-17 15:29:11 -05:00
Karan Vaidya
9ecc534f8d Fix bool and null handling (#1771) 2024-12-16 16:23:53 -05:00
Shahar Yair
497724f3a4 Fix: CrewJSONEncoder now accepts enums (#1752)
* bugfix: CrewJSONEncoder now accepts enums

* sort imports

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 15:13:10 -05:00
Brandon Hancock (bhancock_ai)
2f4681e110 drop print (#1755) 2024-12-12 15:08:37 -05:00
Brandon Hancock (bhancock_ai)
49c02d06c3 apply agent ops changes and resolve merge conflicts (#1748)
* apply agent ops changes and resolve merge conflicts

* Trying to fix tests

* add back in vcr

* update tools

* remove pkg_resources which was causing issues

* Fix tests

* experimenting to see if unique content is an issue with knowledge

* experimenting to see if unique content is an issue with knowledge

* update chromadb which seems to have issues with upsert

* generate new yaml for failing test

* Investigating upsert

* Drop patch

* Update casettes

* Fix duplicate document issue

* more fixes

* add back in vcr

* new cassette for test

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
2024-12-12 15:04:32 -05:00
Brandon Hancock (bhancock_ai)
6738a02b8b remove pkg_resources which was causing issues (#1751) 2024-12-12 12:41:13 -05:00
Rip&Tear
ec6981d8d3 Feature/add workflow permissions (#1749)
* fix: Call ChromaDB reset before removing storage directory to fix disk I/O errors

* feat: add workflow permissions to stale.yml

* revert rag_storage.py changes

* revert rag_storage.py changes

---------

Co-authored-by: Matt B <mattb@Matts-MacBook-Pro.local>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 12:31:43 -05:00
André Lago
983ca25f5c Fix small typo in sample tool (#1747)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 10:11:47 -05:00
Rashmi Pawar
33c0c72194 NVIDIA Provider : UI changes (#1746)
* docs: add nvidia as provider

* nvidia ui docs changes

* add note for updated list

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-12 10:01:53 -05:00
Anmol Deep
32f2a39693 Added is_auto_end flag in agentops.end session in crew.py (#1320)
When using agentops, we have the option to pass the `skip_auto_end_session` parameter, which is supposed to not end the session if the `end_session` function is called by Crew.

Now the way it works is, the `agentops.end_session` accepts `is_auto_end` flag and crewai should have passed it as `True` (its `False` by default). 

I have changed the code to pass is_auto_end=True

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-11 11:34:17 -05:00
Bowen Liang
93425db024 sort imports with isort rules by ruff linter (#1730)
* sort imports

* update

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-12-11 10:46:53 -05:00
Brandon Hancock (bhancock_ai)
ec2f0a7c76 include event emitter in flows (#1740)
* include event emitter in flows

* Clean up

* Fix linter
2024-12-11 10:16:05 -05:00
Paul Cowgill
2a3698d53c Remove manager_callbacks reference (#1741) 2024-12-11 10:13:57 -05:00
Archkon
bc1ebf36e5 fix:typo error (#1738)
* Update base_agent_tools.py

typo error

* Update main.py

typo error

* Update base_file_knowledge_source.py

typo error

* Update test_main.py

typo error

* Update en.json

* Update prompts.json

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-10 11:18:45 -05:00
Brandon Hancock (bhancock_ai)
e2f71464ed copy googles changes. Fix tests. Improve LLM file (#1737)
* copy googles changes. Fix tests. Improve LLM file

* Fix type issue
2024-12-10 11:14:37 -05:00
Brandon Hancock (bhancock_ai)
7d85046eb6 Update pyproject.toml and uv.lock to drop crewai-tools as a default requirement (#1711) 2024-12-09 14:17:46 -05:00
Brandon Hancock (bhancock_ai)
6f7c94e88b Bugfix/restrict python version compatibility (#1736)
* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip

* drop pipeline
2024-12-09 14:07:57 -05:00
Brandon Hancock (bhancock_ai)
30566a8dfa restrict python version compatibility (#1731)
* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip
2024-12-09 14:00:18 -05:00
Carlos Souza
e5ccfbf68d Fix disk I/O error when resetting short-term memory. (#1724)
* Fix disk I/O error when resetting short-term memory.

Reset chromadb client and nullifies references before
removing directory.

* Nit for clarity

* did the same for knowledge_storage

* cleanup

* cleanup order

* Cleanup after the rm of the directories

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2024-12-09 10:30:51 -08:00
Piotr Mardziel
7d4d5c6bf7 Add missing @functools.wraps when wrapping functions and preserve wrapped class name in @CrewBase. (#1560)
* Update annotations.py

* Update utils.py

* Update crew_base.py

* Update utils.py

* Update crew_base.py

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:51:12 -05:00
Tony Kipkemboi
317bcac4c3 format bullet points (#1734)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:40:01 -05:00
fuckqqcom
55d420d1ad _execute_tool_and_check_finality 结果给回调参数,这样就可以提前拿到结果信息,去做数据解析判断做预判 (#1716)
Co-authored-by: xiaohan <fuck@qq.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:37:54 -05:00
lgesuellip
4a52db6f84 Add doc structured tool (#1713)
* Add doc structured tool

* Fix example

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:34:07 -05:00
Tony Kipkemboi
f5107d7238 Merge pull request #1733 from rokbenko/main
[DOCS] Fix Spaceflight News API docs link on Knowledge docs page
2024-12-09 11:27:01 -05:00
Tony Kipkemboi
eb3076b0f3 Merge branch 'main' into main 2024-12-09 11:23:36 -05:00
Aviral Jain
eae0eb2905 call storage.search in user context search instead of memory.search (#1692)
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-12-09 08:07:52 -08:00
Rok Benko
f724f30d16 Fix Knowledge docs Spaceflight News API dead link 2024-12-09 10:58:51 -05:00
Archkon
6fb6ef6c56 fix:typo error (#1732)
* Update crew_agent_executor.py

typo error

* Update en.json

typo error
2024-12-09 10:53:55 -05:00
Frieda Huang
b64098bbb6 Fixed output_file not respecting system path (#1726)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 10:05:54 -05:00
Eduardo Chiarotti
36eb6354c2 docs: Add quotes to agentops installing command (#1729)
* docs: Add quotes to agentops installing command

* feat: Add ContextualMemory to __init__

* feat: remove import due to circular improt

* feat: update tasks config main template typos
2024-12-09 11:42:36 -03:00
Brandon Hancock (bhancock_ai)
ade3934e2a add support for langfuse with litellm (#1721) 2024-12-06 13:57:28 -05:00
Brandon Hancock (bhancock_ai)
440513674a drop metadata requirement (#1712)
* drop metadata requirement

* fix linting

* Update docs for new knowledge

* more linting

* more linting

* make save_documents private

* update docs to the new way we use knowledge and include clearing memory
2024-12-05 14:59:52 -05:00
Brandon Hancock (bhancock_ai)
55456a2e2e Incorporate Stale PRs that have feedback (#1693)
* incorporate #1683

* add in --version flag to cli. closes #1679.

* Fix env issue

* Add in suggestions from @caike to make sure ragstorage doesnt exceed os file limit. Also, included additional checks to support windows.

* remove poetry.lock as pointed out by @sanders41 in #1574.

* Incorporate feedback from crewai reviewer

* Incorporate @lorenzejay feedback
2024-12-05 12:17:23 -05:00
João Moura
7a4d0dd8a2 curting new verson 2024-12-05 13:53:10 -03:00
João Moura
db0d0c25f1 updating tools 2024-12-05 13:51:20 -03:00
Brandon Hancock (bhancock_ai)
d77c35a4ba New docs about yaml crew with decorators. Simplify template crew with… (#1701)
* New docs about yaml crew with decorators. Simplify template crew with links

* Fix spelling issues.
2024-12-05 11:23:20 -05:00
Brandon Hancock (bhancock_ai)
03abf53ba9 Brandon/cre 509 hitl multiple rounds of followup (#1702)
* v1 of HITL working

* Drop print statements

* HITL code more robust. Still needs to be refactored.

* refactor and more clear messages

* Fix type issue

* fix tests

* Fix test again

* Drop extra print
2024-12-05 10:14:04 -05:00
Tony Kipkemboi
06d02c0f62 add knowledge demo + improve knowledge docs (#1706) 2024-12-05 09:49:44 -05:00
Rashmi Pawar
3820594581 docs: add nvidia as provider (#1632)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-04 15:38:46 -05:00
Brandon Hancock (bhancock_ai)
5f9de33cc0 remove all references to pipeline and pipeline router (#1661)
* remove all references to pipeline and router

* fix linting

* drop poetry.lock
2024-12-04 12:39:34 -05:00
Tony Kipkemboi
385c78ec54 Merge pull request #1698 from crewAIInc/brandon/cre-510-update-docs-to-talk-about-pydantic-and-json-outputs
Talk about getting structured consistent outputs with tasks.
2024-12-04 11:07:52 -05:00
Tony Kipkemboi
ec844ed7bf Merge branch 'main' into brandon/cre-510-update-docs-to-talk-about-pydantic-and-json-outputs 2024-12-04 11:05:47 -05:00
Brandon Hancock
c5659663ef Talk about getting structured consistent outputs with tasks. 2024-12-04 10:46:39 -05:00
Stephen
dea6b14255 Update README.md (#1694)
Corrected the statement which says users can not disable telemetry, but now users can disable by setting the environment variable OTEL_SDK_DISABLED to true.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 16:08:19 -05:00
Lorenze Jay
1f8ee15753 Knowledge project directory standard (#1691)
* Knowledge project directory standard

* fixed types

* comment fix

* made base file knowledge source an abstract class

* cleaner validator on model_post_init

* fix type checker

* cleaner refactor

* better template
2024-12-03 12:27:48 -08:00
Feynman Liang
04cbf10a78 Fix indentation in llm-connections.mdx code block (#1573)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:52:23 -05:00
Patcher
b2a0bec3f6 [Doc]: Add documenation for openlit observability (#1612)
* Create openlit-observability.mdx

* Update doc with images and steps

* Update mkdocs.yml and add OpenLIT guide link

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:38:49 -05:00
Tom Mahler, PhD
d6fdb9980c [FEATURE] Support for custom path in RAGStorage (#1659)
* added path to RAGStorage

* added path to short term and entity memory

* add path for long_term_storage for completeness

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:22:29 -05:00
Ola Hungerford
79cfa87341 Update using langchain tools docs (#1664)
* Update example of how to use LangChain tools with correct syntax

* Use .env

* Add  Code back

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 11:13:06 -05:00
Javier Saldaña
1ca68aff08 Update reset memories command based on the SDK (#1688)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 10:09:30 -05:00
Tony Kipkemboi
e449e535f7 fix missing code in flows docs (#1690)
* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text

* docs: add code snippet to Getting Started section in flows.mdx

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 10:02:06 -05:00
João Moura
ab7a594301 preparing new version 2024-12-02 18:28:58 -03:00
Brandon Hancock (bhancock_ai)
4d06708938 Fixes issues with result as answer not properly exiting LLM loop (#1689)
* v1 of fix implemented. Need to confirm with tokens.

* remove print statements
2024-12-02 13:38:17 -05:00
Tony Kipkemboi
aa532acdd2 Documentation Improvements: LLM Configuration and Usage (#1684)
* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text
2024-12-02 09:50:12 -05:00
Tony Kipkemboi
404da4066b Merge pull request #1675 from rokbenko/rok
[DOCS] Update Agents docs to include two approaches for creating an agent
2024-11-30 11:26:10 -05:00
Rok Benko
5735496227 Update Agents docs to include two approaches for creating an agent: with and without YAML configuration 2024-11-28 17:20:53 +01:00
Lorenze Jay
cd9a17a281 added knowledge to agent level (#1655)
* added knowledge to agent level

* linted

* added doc

* added from suggestions

* added test

* fixes from discussion

* fix docs

* fix test

* rm cassette for knowledge_sources test as its a mock and update agent doc string

* fix test

* rm unused

* linted
2024-11-27 11:33:07 -08:00
Brandon Hancock (bhancock_ai)
3fa44e9a07 Feat/remove langchain (#1668)
* feat: add initial changes from langchain

* feat: remove kwargs of being processed

* feat: remove langchain, update uv.lock and fix type_hint

* feat: change docs

* feat: remove forced requirements for parameter

* feat add tests for new structure tool

* feat: fix tests and adapt code for args

* fix tool calling for langchain tools

* doc strings

---------

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-11-27 11:22:49 -05:00
Eduardo Chiarotti
3d23f09107 Feat/remove langchain (#1654)
* feat: add initial changes from langchain

* feat: remove kwargs of being processed

* feat: remove langchain, update uv.lock and fix type_hint

* feat: change docs

* feat: remove forced requirements for parameter

* feat add tests for new structure tool

* feat: fix tests and adapt code for args
2024-11-26 16:59:52 -03:00
Ivan Peevski
e357a6b7f3 Update readme for running mypy (#1614)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-26 12:45:08 -05:00
Brandon Hancock (bhancock_ai)
8856ebcd21 fix spelling issue found by @Jacques-Murray (#1660) 2024-11-26 11:36:29 -05:00
Bowen Liang
f754eba6fb update (#1638)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-26 11:24:21 -05:00
Bowen Liang
08f15f8f9d Update Github actions (#1639)
* actions/checkout@v4

* actions/cache@v4

* actions/setup-python@v5

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-26 11:08:50 -05:00
Brandon Hancock (bhancock_ai)
b3a49e65e5 Improve typed task outputs (#1651)
* V1 working

* clean up imports and prints

* more clean up and add tests

* fixing tests

* fix test

* fix linting

* Fix tests

* Fix linting

* add doc string as requested by eduardo
2024-11-26 09:41:14 -05:00
Tony Kipkemboi
dbe0c5a176 Merge pull request #1652 from tonykipkemboi/main
add knowledge to mint.json
2024-11-25 16:51:48 -05:00
Tony Kipkemboi
fc653be765 add knowledge to mint.json 2024-11-25 20:37:27 +00:00
Vini Brasil
6812febf0e Log in to Tool Repository on crewai login (#1650)
This commit adds an extra step to `crewai login` to ensure users also
log in to Tool Repository, that is, exchanging their Auth0 tokens for a
Tool Repository username and password to be used by UV downloads and API
tool uploads.
2024-11-25 15:57:47 -03:00
João Moura
9f13c8afbf preparing new version 2024-11-25 10:05:15 -03:00
Gui Vieira
f41d9cacee Merge pull request #1640 from crewAIInc/gui/fix-threading
Fix threading
2024-11-21 15:50:46 -03:00
Gui Vieira
e9c999d533 Fix threading 2024-11-21 15:33:20 -03:00
Andy Bromberg
749cff8411 Update Perplexity example in documentation (#1623) 2024-11-20 21:54:04 -03:00
Bob Conan
2238f7fd47 Updated README.md, fix typo(s) (#1637) 2024-11-20 21:52:41 -03:00
Brandon Hancock (bhancock_ai)
8100d3e947 Knowledge (#1567)
* initial knowledge

* WIP

* Adding core knowledge sources

* Improve types and better support for file paths

* added additional sources

* fix linting

* update yaml to include optional deps

* adding in lorenze feedback

* ensure embeddings are persisted

* improvements all around Knowledge class

* return this

* properly reset memory

* properly reset memory+knowledge

* consolodation and improvements

* linted

* cleanup rm unused embedder

* fix test

* fix duplicate

* generating cassettes for knowledge test

* updated default embedder

* None embedder to use default on pipeline cloning

* improvements

* fixed text_file_knowledge

* mypysrc fixes

* type check fixes

* added extra cassette

* just mocks

* linted

* mock knowledge query to not spin up db

* linted

* verbose run

* put a flag

* fix

* adding docs

* better docs

* improvements from review

* more docs

* linted

* rm print

* more fixes

* clearer docs

* added docstrings and type hints for cli

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
2024-11-20 15:40:08 -08:00
Gui Vieira
208057eaf1 Merge pull request #1636 from crewAIInc/gui/make-it-green
Make it green!
2024-11-20 16:12:58 -03:00
Gui Vieira
5edbb86cf0 Make mypy happy 2024-11-20 16:08:08 -03:00
Gui Vieira
9b2b44bbf3 Merge pull request #1635 from crewAIInc/gui/kickoff-callbacks
Move kickoff callbacks to crew's domain
2024-11-20 14:37:52 -03:00
Gui Vieira
93471dea08 Cassettes 2024-11-20 10:26:00 -03:00
Gui Vieira
d36c3644a6 Move kickoff callbacks to crew's domain 2024-11-20 10:06:49 -03:00
Tony Kipkemboi
03029a336d Merge pull request #1634 from crewAIInc/github_tool_update
docs: add gh_token documentation to GithubSearchTool
2024-11-20 07:21:24 -05:00
theCyberTech
e761f330c5 docs: add gh_token documentation to GithubSearchTool 2024-11-20 19:23:09 +08:00
Tony Kipkemboi
704025fe1e Update CLI Watson supported models + docs (#1628) 2024-11-19 19:42:54 -03:00
João Moura
6c29ad29c9 adding before and after crew 2024-11-18 00:21:36 -03:00
João Moura
e6305ca11b preparing enw version 2024-11-18 00:21:36 -03:00
Lorenze Jay
781ac736ce upgrade chroma and adjust embedder function generator (#1607)
* upgrade chroma and adjust embedder function generator

* >= version

* linted
2024-11-14 14:13:12 -08:00
Dev Khant
fcb8114132 Add support for retrieving user preferences and memories using Mem0 (#1209)
* Integrate Mem0

* Update src/crewai/memory/contextual/contextual_memory.py

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>

* pending commit for _fetch_user_memories

* update poetry.lock

* fixes mypy issues

* fix mypy checks

* New fixes for user_id

* remove memory_provider

* handle memory_provider

* checks for memory_config

* add mem0 to dependency

* Update pyproject.toml

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>

* update docs

* update doc

* bump mem0 version

* fix api error msg and mypy issue

* mypy fix

* resolve comments

* fix memory usage without mem0

* mem0 version bump

* lazy import mem0

---------

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-14 10:59:24 -08:00
Eduardo Chiarotti
5ca23ce757 feat: Reduce level for Bandit and fix code to adapt (#1604) 2024-11-14 13:12:35 -03:00
Thiago Moretto
e1b1a9361c Merge pull request #1597 from crewAIInc/tm-fix-crew-train-test
Fix crew_train_success test
2024-11-13 10:52:49 -03:00
Thiago Moretto
11bdc7c679 Fix crew_train_success test 2024-11-13 10:47:49 -03:00
Thiago Moretto
80598969ee Merge pull request #1596 from crewAIInc/tm-recording-cached-prompt-tokens
Add cached prompt tokens info on usage metrics
2024-11-13 10:37:29 -03:00
Thiago Moretto
65266658db Merge branch 'main' into tm-recording-cached-prompt-tokens 2024-11-13 10:19:02 -03:00
Thiago Moretto
b1a0b85097 do not include cached on total 2024-11-13 10:18:30 -03:00
Thiago Moretto
6cab25aba9 Cached prompt tokens on usage metrics 2024-11-13 10:16:30 -03:00
Eduardo Chiarotti
1097abff32 fix: Step callback issue (#1595)
* fix: Step callback issue

* fix: Add empty thought since its required
2024-11-13 10:07:28 -03:00
João Moura
5c2c41eda9 removing prints 2024-11-12 18:37:57 -03:00
Thiago Moretto
c5471a78e9 Merge pull request #1588 from crewAIInc/tm-workaround-litellm-bug
fixing LiteLLM callback replacement bug
2024-11-12 17:19:01 -03:00
Thiago Moretto
ccd7723d91 fix test_agent_usage_metrics_are_captured_for_hierarchical_process 2024-11-12 16:43:43 -03:00
Thiago Moretto
d1169ad79d fix LiteLLM callback replacement 2024-11-12 15:04:57 -03:00
João Moura
12fb3fb0e8 add missing init 2024-11-11 02:29:40 -03:00
João Moura
cc1087764c preparing new version 2024-11-11 00:03:52 -03:00
João Moura
88ecd6b0c5 preparing new version 2024-11-10 23:46:38 -03:00
João Moura
8eb54cf168 curring new version 2024-11-10 21:16:36 -03:00
João Moura
e15bb1e95b preparing new version 2024-11-10 20:47:56 -03:00
João Moura
80dcbc7e46 updating LLM docs 2024-11-10 11:36:03 -03:00
João Moura
5bb1a3b257 preparing new version 2024-11-10 11:00:16 -03:00
João Moura
1267219c3d making sure we don't check for agents that were not used in the crew 2024-11-06 23:07:23 -03:00
Brandon Hancock (bhancock_ai)
bd3f4042e2 fix missing config (#1557) 2024-11-05 12:07:29 -05:00
Brandon Hancock (bhancock_ai)
9a979f80a0 Fix flows to support cycles and added in test (#1556) 2024-11-05 12:02:54 -05:00
Brandon Hancock (bhancock_ai)
8204de61c3 Feat/watson in cli (#1535)
* getting cli and .env to work together for different models

* support new models

* clean up prints

* Add support for cerebras

* Fix watson keys
2024-11-05 12:01:57 -05:00
Tony Kipkemboi
e160fef306 docs update (#1558)
* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion

* update crewai enterprise link in docs
2024-11-05 11:26:19 -05:00
Brandon Hancock (bhancock_ai)
9c6344967c Raise an error if an LLM doesnt return a response (#1548) 2024-11-04 11:42:38 -05:00
Gui Vieira
8065a02f06 Increase providers fetching timeout 2024-11-01 18:54:40 -03:00
Brandon Hancock (bhancock_ai)
bd1a53a718 add inputs to flows (#1553)
* add inputs to flows

* fix flows lint
2024-11-01 14:37:02 -07:00
Brandon Hancock (bhancock_ai)
e873950e4c Feat/ibm memory (#1549)
* Everything looks like its working. Waiting for lorenze review.

* Update docs as well.

* clean up for PR
2024-11-01 16:42:46 -04:00
Tony Kipkemboi
ad41065b03 Update docs (#1550)
* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion
2024-11-01 15:58:36 -04:00
C0deZ
ae33fdd05f refactor: Move BaseTool to main package and centralize tool description generation (#1514)
* move base_tool to main package and consolidate tool desscription generation

* update import path

* update tests

* update doc

* add base_tool test

* migrate agent delegation tools to use BaseTool

* update tests

* update import path for tool

* fix lint

* update param signature

* add from_langchain to BaseTool for backwards support of langchain tools

* fix the case where StructuredTool doesn't have func

---------

Co-authored-by: c0dez <li@vitablehealth.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-01 12:30:48 -04:00
Vini Brasil
bb9e5461d6 Replace .netrc with uv environment variables (#1541)
This commit replaces .netrc with uv environment variables for installing
tools from private repositories. To store credentials, I created a new
and reusable settings file for the CLI in
`$HOME/.config/crewai/settings.json`.

The issue with .netrc files is that they are applied system-wide and are
scoped by hostname, meaning we can't differentiate tool repositories
requests from regular requests to CrewAI's API.
2024-10-31 15:00:58 -03:00
Tony Kipkemboi
4eb5cab464 Add llm providers accordion group (#1534)
* add llm providers accordion group

* fix numbering
2024-10-30 21:56:13 -04:00
Robin Wang
54386c0de4 Enhance log storage to support more data types (#1530) 2024-10-30 16:45:19 -04:00
Brandon Hancock (bhancock_ai)
f7d7b5fe18 Disable telemetry explicitly (#1536)
* Disable telemetry explicitly

* fix linting

* revert parts to og
2024-10-30 16:37:21 -04:00
Rip&Tear
f4a8aa5bda Added security.md file (#1533) 2024-10-30 12:07:38 -04:00
João Moura
5d264d8e5a prepare new version 2024-10-30 00:07:46 -03:00
Brandon Hancock (bhancock_ai)
e8bade008d Bugfix/flows with multiple starts plus ands breaking (#1531)
* bugfix/flows-with-multiple-starts-plus-ands-breaking

* fix user found issue

* remove prints
2024-10-29 19:36:53 -03:00
Brandon Hancock (bhancock_ai)
20a0e4c0dd Update flows cli to allow you to easily add additional crews to a flow (#1525)
* Update flows cli to allow you to easily add additional crews to a flow

* fix failing test

* adding more error logs to test thats failing

* try again
2024-10-29 11:53:48 -04:00
Tony Kipkemboi
17006e2fe2 Merge pull request #1519 from crewAIInc/feat/improve-tooling-docs
Improve tooling and flow docs
2024-10-29 11:05:17 -04:00
Brandon Hancock (bhancock_ai)
06ce3e7f85 Merge branch 'main' into feat/improve-tooling-docs 2024-10-29 10:41:04 -04:00
Brandon Hancock (bhancock_ai)
0f37e861aa Update flows.mdx - Fix link 2024-10-29 10:40:49 -04:00
Brandon Hancock
73788e6c5b Update flow docs to talk about self evaluation example 2024-10-28 12:18:03 -05:00
Brandon Hancock
1eb87a59cc Update flow docs to talk about self evaluation example 2024-10-28 12:17:44 -05:00
Brandon Hancock
eac392974f Improve tooling docs 2024-10-28 09:40:56 -05:00
Brandon Hancock (bhancock_ai)
26c2812baf improve tool text description and args (#1512)
* improve tool text descriptoin and args

* fix lint

* Drop print

* add back in docstring
2024-10-25 18:42:55 -04:00
Vini Brasil
f131507e90 Forward install command options to uv sync (#1510)
Allow passing additional options from `crewai install` directly to
`uv sync`. This enables commands like `crewai install --locked` to work
as expected by forwarding all flags and options to the underlying uv
command.
2024-10-25 11:20:41 -03:00
Eduardo Chiarotti
c42c787f36 feat: add tomli so we can support 3.10 (#1506)
* feat: add tomli so we can support 3.10

* feat: add validation for poetry data
2024-10-25 10:33:21 -03:00
Brandon Hancock (bhancock_ai)
570c255bae update plot command (#1504) 2024-10-24 14:44:30 -04:00
João Moura
a1e766afb2 new version 2024-10-23 18:10:37 -03:00
João Moura
da238e02f5 new version 2024-10-23 18:08:49 -03:00
João Moura
bf79353e43 updating crewai version 2024-10-23 17:58:58 -03:00
Brandon Hancock (bhancock_ai)
083f579290 Fix memory imports for embedding functions (#1497) 2024-10-23 11:21:27 -04:00
Brandon Hancock (bhancock_ai)
3f8f19a82b support unsafe code execution. add in docker install and running checks. (#1496)
* support unsafe code execution. add in docker install and running checks.

* Update return type
2024-10-23 11:01:00 -04:00
Maicon Peixinho
0b486d562a chore(readme-fix): fixing step for 'running tests' in the contribution section (#1490)
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-10-23 11:38:41 -03:00
Rip&Tear
ed3edc5c43 fix/fixed missing API prompt + CLI docs update (#1464)
* updated CLI to allow for submitting API keys

* updated click prompt to remove default number

* removed all unnecessary comments

* feat: implement crew creation CLI command

- refactor code to multiple functions
- Added ability for users to select provider and model when uing crewai create command and ave API key to .env

* refactered select_choice function for early return

* refactored  select_provider to have an ealry return

* cleanup of comments

* refactor/Move functions into utils file, added new provider file and migrated fucntions thre, new constants file + general function refactor

* small comment cleanup

* fix unnecessary deps

* Added docs for new CLI provider + fixed missing API prompt

* Minor doc updates

* allow user to bypass api key entry + incorect number selected logic + ruff formatting

* ruff updates

* Fix spelling mistake

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-10-23 09:41:14 -04:00
João Moura
38a131d525 preparing new verison 2024-10-23 05:34:34 -03:00
Brandon Hancock (bhancock_ai)
ab05c2048d use copy to split testing and training on crews (#1491)
* use copy to split testing and training on crews

* make tests handle new copy functionality on train and test

* fix last test

* fix test
2024-10-22 21:31:44 -04:00
Lorenze Jay
aa18967629 ensure original embedding config works (#1476)
* ensure original embedding config works

* some fixes

* raise error on unsupported provider

* WIP: brandons notes

* fixes

* rm prints

* fixed docs

* fixed run types

* updates to add more docs and correct imports with huggingface embedding server enabled

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-10-22 12:30:30 -07:00
Tony Kipkemboi
845b764ce9 Add Cerebras LLM example configuration to LLM docs (#1488) 2024-10-22 13:41:29 -04:00
Brandon Hancock (bhancock_ai)
dc16ac4cc3 simplify flow (#1482)
* simplify flow

* propogate changes

* Update docs and scripts

* Template fix

* make flow kickoff sync

* Clean up docs
2024-10-21 19:32:55 -04:00
Brandon Hancock (bhancock_ai)
fd1c9ec63a drop unneccesary tests (#1484)
* drop uneccesary tests

* fix linting
2024-10-21 15:26:30 -04:00
Sam
06793d1318 fix(docs): typo (#1470) 2024-10-21 11:49:33 -04:00
Vini Brasil
233fec1ea8 Adapt crewai tool install <tool> to uv (#1481)
This commit updates the tool install comamnd to uv's new custom index
feature.

Related: https://github.com/astral-sh/uv/pull/7746/
2024-10-21 09:24:03 -03:00
João Moura
9278736718 new verison 2024-10-18 17:57:37 -03:00
João Moura
e5a18a6ccf cutting new version 2024-10-18 17:57:02 -03:00
Brandon Hancock (bhancock_ai)
b3d16bba5f fix tool calling issue (#1467)
* fix tool calling issue

* Update tool type check

* Drop print
2024-10-18 15:56:56 -03:00
Eduardo Chiarotti
69cd84d78f feat: add poetry.lock to uv migration (#1468) 2024-10-18 15:45:01 -03:00
João Moura
e4f950720c Avoiding exceptions 2024-10-18 08:32:06 -03:00
João Moura
7948e62fd5 fix tasks and agents ordering 2024-10-18 08:06:38 -03:00
João Moura
c00e714460 fixing annotations 2024-10-18 07:46:30 -03:00
João Moura
02eb7e7f81 preparing new version 2024-10-18 07:13:17 -03:00
Lorenze Jay
65c32806ec Feat/memory base (#1444)
* byom - short/entity memory

* better

* rm uneeded

* fix text

* use context

* rm dep and sync

* type check fix

* fixed test using new cassete

* fixing types

* fixed types

* fix types

* fixed types

* fixing types

* fix type

* cassette update

* just mock the return of short term mem

* remove print

* try catch block

* added docs

* dding error handling here
2024-10-17 13:19:33 -03:00
Rok Benko
0eb3ba34dd Fix incorrect parameter name in Vision tool docs page (#1461)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-10-17 13:18:31 -03:00
Rip&Tear
175f40024b feat/updated CLI to allow for model selection & submitting API keys (#1430)
* updated CLI to allow for submitting API keys

* updated click prompt to remove default number

* removed all unnecessary comments

* feat: implement crew creation CLI command

- refactor code to multiple functions
- Added ability for users to select provider and model when uing crewai create command and ave API key to .env

* refactered select_choice function for early return

* refactored  select_provider to have an ealry return

* cleanup of comments

* refactor/Move functions into utils file, added new provider file and migrated fucntions thre, new constants file + general function refactor

* small comment cleanup

* fix unnecessary deps

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-10-17 10:05:07 -04:00
Eduardo Chiarotti
c86d4ef29c feat: ADd warning from poetry -> uv (#1458) 2024-10-16 18:58:08 -03:00
Tony Kipkemboi
d4213cecb7 Upgrade docs to mirror change from Poetry to UV (#1451)
* Update docs to use  instead of

* Add Flows YouTube tutorial & link images
2024-10-16 10:57:41 -04:00
Stephen Hankinson
8720316e2f use the same i18n as the agent for tool usage (#1440)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-10-16 10:38:42 -04:00
Vini Brasil
42f960b2bd Adapt Tools CLI to uv (#1455)
* Adapt Tools CLI to UV

* Fix failing test
2024-10-16 10:55:04 -03:00
dbubel
60a87c7f77 fix typo in template file (#1432) 2024-10-14 16:51:04 -04:00
Stephen Hankinson
99bcc44ce6 Correct the role for the message being added to the messages list (#1438)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-10-14 16:49:16 -04:00
Muhammad Noman Fareed
dda5e0de0f Fix Cache Typo in Documentation (#1441) 2024-10-14 16:30:31 -04:00
Stephen Hankinson
bcffbca854 Use a slice for the manager request. Make the task use the agent i18n settings (#1446) 2024-10-14 16:30:05 -04:00
Eduardo Chiarotti
a6d3898080 fix: training issue (#1433)
* fix: training issue

* fix: output from crew

* fix: message
2024-10-11 22:35:17 -03:00
Eduardo Chiarotti
2256462b7e Feat/poetry to uv migration (#1406)
* feat: Start migrating to UV

* feat: add uv to flows

* feat: update docs on Poetry -> uv

* feat: update docs and uv.locl

* feat: update tests and github CI

* feat: run ruff format

* feat: update typechecking

* feat: fix type checking

* feat: update python version

* feat: type checking gic

* feat: adapt uv command to run the tool repo

* Adapt tool build command to uv

* feat: update logic to let only projects with crew to be deployed

* feat: add uv to tools

* fix; tests

* fix: remove breakpoint

* fix :test

* feat: add crewai update to migrate from poetry to uv

* fix: tests

* feat: add validation for ˆ character on pyproject

* feat: add run_crew to pyproject if doesnt exist

* feat: add validation for poetry migration

* fix: warning

---------

Co-authored-by: Vinicius Brasil <vini@hey.com>
2024-10-11 19:11:27 -03:00
Brandon Hancock (bhancock_ai)
f1ecbc3f14 Trying to fix linting and other warnings (#1417)
* Trying to fix linting

* fixing more type issues

* clean up ci

* more ci fixes

---------

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-10-11 09:45:53 -04:00
João Moura
02a8edf866 Preparing new version 2024-10-10 19:58:54 -03:00
João Moura
3a1bb36848 updating init 2024-10-10 19:41:58 -03:00
João Moura
7faff4710d preparing new version 2024-10-10 19:35:52 -03:00
João Moura
24139f541d fixing tests 2024-10-10 19:32:26 -03:00
Shahar Yair
d5427fb019 Fix/logger - fix #1412 (#1413)
* improved logger

* log file looks better

* better lines written to log file

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-10-10 19:15:34 -03:00
Tony Kipkemboi
063ad2d99d Migrate docs from MkDocs to Mintlify (#1423)
* add new mintlify docs

* add favicon.svg

* minor edits

* add github stats
2024-10-10 19:14:28 -03:00
Brandon Hancock (bhancock_ai)
8119b7239d fix task cloning error (#1416) 2024-10-10 12:00:28 -04:00
Lennex Zinyando
384288e7b1 Update twitter logo to x-twiiter (#1403) 2024-10-07 10:21:47 -04:00
Akesh kumar
cdc907a87d Added version details (#1402)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-10-06 18:01:34 -03:00
Brandon Hancock (bhancock_ai)
32395b14d2 reduce import time by 6x (#1396)
* reduce import by 6x

* fix linting
2024-10-06 17:55:32 -03:00
Brandon Hancock (bhancock_ai)
f5699ddf68 quick fixes (#1385)
* quick fixes

* add generic name

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-10-04 13:23:42 -03:00
Brandon Hancock (bhancock_ai)
4361f4ff75 Brandon/cre 291 flow improvements (#1390)
* Implement joao feedback

* update colors for crew nodes

* clean up

* more linting clean up

* round legend corners

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-10-04 13:22:46 -03:00
Brandon Hancock (bhancock_ai)
f98c2c00d8 Brandon/cre 288 add telemetry to flows (#1391)
* Telemetry for flows

* store node names
2024-10-04 13:21:55 -03:00
Brandon Hancock (bhancock_ai)
b106927a4e add plotting to flows documentation (#1394) 2024-10-04 13:19:09 -03:00
Vini Brasil
5dee13e078 Add --force option to crewai tool publish (#1383)
This commit adds an option to bypass Git remote validations when
publishing tools.
2024-10-04 11:02:50 -03:00
Eren Küçüker
d063ed3014 docs: correct miswritten command name (#1365)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-10-03 12:22:07 -04:00
Tony Kipkemboi
91f9d56544 Update README (#1376)
* Change all instaces of crewAI to CrewAI and fix installation step

* Update the  example to use YAML format

* Update  to come after setup and edits

* Remove double tool instance
2024-10-03 12:09:26 -04:00
Guilherme de Amorim
fd3c8a8f92 fix: JSON encoding date objects (#1374) 2024-10-02 16:06:10 -04:00
Thiago Moretto
8742400b67 Merge pull request #1382 from crewAIInc/tm-basic-event-structure
Add tool usage events
2024-10-02 12:54:51 -03:00
Vini Brasil
7c1f88cd07 Add Git validations for publishing tools (#1381)
This commit prevents tools from being published if the underlying Git
repository is unsynced with origin.
2024-10-02 11:46:18 -03:00
Thiago Moretto
02fe5814f7 Make tests green again 2024-10-02 11:36:27 -03:00
Thiago Moretto
5166e7abd7 Merge branch 'main' into tm-basic-event-structure 2024-10-02 11:18:46 -03:00
Thiago Moretto
43d7bbbd03 Add tool usage events 2024-10-02 11:11:07 -03:00
Vini Brasil
8aba99a67d Create crewai tool create <tool> command (#1379)
This commit creates a new CLI command for scaffolding tools.
2024-10-01 18:58:27 -03:00
Vini Brasil
2c74efc8f2 Change Tool Repository authentication scope (#1378)
This commit adds a new command for adding custom PyPI indexes
credentials to the project. This was changed because credentials are now
user-scoped instead of organization.
2024-10-01 18:44:08 -03:00
João Moura
94f148e524 preparing new version 2024-10-01 14:18:17 -07:00
João Moura
ec010c37a7 hadnling pydantic obejct with Optional fields 2024-10-01 14:18:11 -07:00
João Moura
8a0afd6250 updating dependencies 2024-10-01 11:37:57 -07:00
João Moura
9407f5a7da preparing new version 2024-10-01 11:33:07 -07:00
Brandon Hancock (bhancock_ai)
8fb08a0b25 Flow visualizer (#1377)
* Almost working!

* It fully works but not clean enought

* Working but not clean engouth

* Everything is workign

* WIP. Working on adding and & or to flows. In the middle of setting up template for flow as well

* template working

* Everything is working

* More changes and todos

* Add more support for @start

* Router working now

* minor tweak to

* minor tweak to conditions and event handling

* Update logs

* Too trigger happy with cleanup

* Added in Thiago fix

* Flow passing results again

* Working on docs.

* made more progress updates on docs

* Finished talking about controlling flows

* add flow output

* fixed flow output section

* add crews to flows section is looking good now

* more flow doc changes

* Update docs and add more examples

* drop visualizer

* save visualizer

* pyvis is beginning to work

* pyvis working

* it is working

* regular methods and triggers working. Need to work on router next.

* properly identifying router and router children nodes. Need to fix color

* children router working. Need to support loops

* curving cycles but need to add curve conditionals

* everythin is showing up properly need to fix curves

* all working. needs to be cleaned up

* adjust padding

* drop lib

* clean up prior to PR

* incorporate joao feedback

* final tweaks for joao

* Refactor to make crews easier to understand

* update CLI and templates

* Fix crewai version in flows

* Fix merge conflict
2024-10-01 15:20:26 -03:00
João Moura
f65ecef670 remove unnecessary line 2024-09-30 23:21:50 -07:00
João Moura
3331ea186f preparing new version 2024-09-30 23:13:47 -07:00
Brandon Hancock (bhancock_ai)
45704fe16d Flow visualizer (#1375)
* Almost working!

* It fully works but not clean enought

* Working but not clean engouth

* Everything is workign

* WIP. Working on adding and & or to flows. In the middle of setting up template for flow as well

* template working

* Everything is working

* More changes and todos

* Add more support for @start

* Router working now

* minor tweak to

* minor tweak to conditions and event handling

* Update logs

* Too trigger happy with cleanup

* Added in Thiago fix

* Flow passing results again

* Working on docs.

* made more progress updates on docs

* Finished talking about controlling flows

* add flow output

* fixed flow output section

* add crews to flows section is looking good now

* more flow doc changes

* Update docs and add more examples

* drop visualizer

* save visualizer

* pyvis is beginning to work

* pyvis working

* it is working

* regular methods and triggers working. Need to work on router next.

* properly identifying router and router children nodes. Need to fix color

* children router working. Need to support loops

* curving cycles but need to add curve conditionals

* everythin is showing up properly need to fix curves

* all working. needs to be cleaned up

* adjust padding

* drop lib

* clean up prior to PR

* incorporate joao feedback

* final tweaks for joao
2024-09-30 20:52:56 -03:00
João Moura
c2124b7c01 fixing test 2024-09-30 12:01:50 -07:00
Shreyan Sood
4abcb7e3b3 Update Pipeline.md, fixed typo "=inputs" was repeated. (#1363) 2024-09-28 01:27:43 -03:00
Rip&Tear
19bdabf2ee flow template copy fix (#1364) 2024-09-28 01:27:17 -03:00
João Moura
5cbe6db486 temporary dropping excamples 2024-09-27 21:15:52 -03:00
João Moura
018eadce2b preparing for new verison 2024-09-27 20:28:25 -03:00
João Moura
86c035c9e1 preparing new verion 2024-09-27 20:24:37 -03:00
João Moura
76a826c1f0 fixing tasks order 2024-09-27 20:21:46 -03:00
Brandon Hancock (bhancock_ai)
f82420e7d6 Brandon/cre 19 workflows (#1347)
Flows
2024-09-27 12:11:17 -03:00
João Moura
f94aee3dc8 preparing for version 0.64.0 2024-09-26 21:53:09 -03:00
João Moura
30979e646d ordering tasks properly 2024-09-26 21:41:23 -03:00
João Moura
39d4773b3a Fixing summarization logic 2024-09-26 21:41:23 -03:00
João Moura
22d187c714 increase default max inter 2024-09-26 21:41:23 -03:00
Vini Brasil
35ef69d0e8 CLI for Tool Repository (#1357)
This commit adds two commands to the CLI:

- `crewai tool publish`
    - Builds the project using Poetry
    - Uploads the tarball to CrewAI's tool repository

- `crewai tool install my-tool`
    - Adds my-tool's index to Poetry and its credentials
    - Installs my-tool from the custom index
2024-09-26 17:23:31 -03:00
Thiago Moretto
bbfdcb90a7 Merge pull request #1360 from crewAIInc/tm-fix-base-agent-key
Crew's key must remain stable after input interpolation
2024-09-26 15:08:36 -03:00
Thiago Moretto
6b3a749cf4 Crew's key must remain stable after input interpolation 2024-09-26 14:55:33 -03:00
João Moura
3f8b15f34c Fixing trainign feature 2024-09-26 14:17:23 -03:00
João Moura
1120ed1f8c fixing training 2024-09-26 14:17:23 -03:00
Brandon Hancock (bhancock_ai)
cfc0645afb Fixed typing issues for new crews (#1358) 2024-09-26 14:12:24 -03:00
Vini Brasil
f311a465be Move crewai.cli.deploy.utils to crewai.cli.utils (#1350)
* Prevent double slashes when joining URLs

* Move crewai.cli.deploy.utils to crewai.cli.utils

This commit moves this package so it's reusable across commands.
2024-09-25 14:06:20 -03:00
Vini Brasil
d4d1882e72 Create client for Tools API (#1348)
This commit creates a class for the new Tools API. It extracts common
methods from crewai.cli.deploy.api.CrewAPI to a parent class.
2024-09-25 12:37:54 -03:00
DanKing1903
a5f3dd290b docs: fix misspelling of "EXA Search" in mkdocs.yml (#1346) 2024-09-25 12:34:11 -03:00
Lennex Zinyando
8b7ff930e7 Point footer socials to crewAIInc accounts (#1349) 2024-09-25 12:32:18 -03:00
João Moura
53bb18f9e8 updating version 2024-09-25 00:26:03 -03:00
João Moura
2fbd7b09b9 Updating logs and preparing new version 2024-09-24 23:55:12 -03:00
João Moura
2638ed9641 updating dependencies 2024-09-24 22:40:24 -03:00
João Moura
cbb858d375 Bringing support to o1 family back + any models that don't support stop words 2024-09-24 22:18:20 -03:00
João Moura
a1023739e0 cutting version 0.63.2 2024-09-24 05:31:58 -03:00
João Moura
ffae3f5a92 fixing importing 2024-09-24 01:54:02 -03:00
João Moura
8d1768fcc3 adding proepr LLM import 2024-09-24 01:53:23 -03:00
LogCreative
33695aa2fd docs: update "LLM-Connections" import and "Tasks" formatting (#1345)
* Update Tasks.md

Current formating of the page Tasks has been broken, fix the markdown formatting.

* Update LLM-Connections.md

LLM class has been moved to llm.py file
2024-09-24 01:52:41 -03:00
João Moura
6958c8dd48 adding OPENAI_BASE_URL as fallback 2024-09-23 23:39:04 -03:00
João Moura
09eaa76b44 prepare new version 2024-09-23 22:05:48 -03:00
João Moura
44f74fd6f6 removing logs 2024-09-23 20:56:58 -03:00
João Moura
9eeebd3c65 removing logs 2024-09-23 19:59:23 -03:00
João Moura
8abe4d98ed removing logging 2024-09-23 19:37:23 -03:00
João Moura
6f061cc306 updating tests 2024-09-23 17:45:20 -03:00
João Moura
8ebc89a227 Checking supports_function_calling isntead of gpt models 2024-09-23 16:23:38 -03:00
João Moura
9a62aa2977 preapring new version 2024-09-23 04:28:26 -03:00
João Moura
4ad69c573a ignore type checker 2024-09-23 04:25:13 -03:00
João Moura
2867cc4482 updating colors 2024-09-23 04:06:10 -03:00
Mr. Guo
d43135ca45 Fix encoding issue when loading i18n json file (#1341)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-09-23 04:01:35 -03:00
João Moura
73497596ae updating docs 2024-09-23 03:59:16 -03:00
João Moura
b440d143ed Adding new LLM class 2024-09-23 03:59:05 -03:00
João Moura
355338767c updating tests 2024-09-23 03:58:41 -03:00
João Moura
035929814e adding callbacks to llm 2024-09-23 00:54:01 -03:00
João Moura
699631fd1d supressing warning 2024-09-23 00:30:14 -03:00
João Moura
2d5af62df2 implementing initial LLM class 2024-09-22 22:37:29 -03:00
João Moura
7c0633e5de linter 2024-09-22 17:04:40 -03:00
Ayo Ayibiowu
6682fe3d89 feat(memory): adds support for customizable memory interface (#1339)
* feat(memory): adds support for customizing crew storage

* chore: allow overwriting the crew memory configuration

* docs: update custom storage usage

* fix(lint): use correct syntax

* fix: type check warning

* fix: type check warnings

* fix(test): address agent default failing test

* fix(lint). address type checker error

* Update crew.py

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-09-22 17:03:23 -03:00
João Moura
0f283325e1 fixing linting 2024-09-22 16:51:01 -03:00
Arthur Chien
f7994667e5 Fix encoding issue when loading YAML file (#1316)
related to #1270

Co-authored-by: ccw@cht.com.tw <ccw@cht.com.tw>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-09-22 16:50:50 -03:00
João Moura
f8169b74f1 updating dependencies 2024-09-22 16:47:57 -03:00
João Moura
cf74f5c9b6 fix test 2024-09-22 13:57:52 -03:00
FabioPolito24
f8a48a1389 Refactor: Remove redundant task creation in kickoff_for_each_async (#1326)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-09-22 10:42:05 -04:00
João Moura
76d0ec9f46 respecting OPENAI_MODEL_NAME 2024-09-22 11:20:54 -03:00
João Moura
08ed84dc21 bringin back gpt-4o-mini as default 2024-09-22 11:15:17 -03:00
Rip&Tear
5051e0b55e Merge pull request #1335 from lloydchang/patch-1
docs(Start-a-New-CrewAI-Project-Template-Method.md): fix typo
2024-09-22 18:11:18 +08:00
lloydchang
bc85480dd8 docs(Start-a-New-CrewAI-Project-Template-Method.md): fix typo
agents → tasks
2024-09-18 03:17:22 -07:00
João Moura
4f2806f5ba preparing new version 2024-09-18 04:36:05 -03:00
João Moura
2340de3c12 printing max rpm message in different color 2024-09-18 04:35:18 -03:00
João Moura
51b9e251dd Updating all cassetes 2024-09-18 04:17:41 -03:00
João Moura
25147476f7 always ending on a user message 2024-09-18 04:17:20 -03:00
João Moura
71f272b2b2 updating dependenceis 2024-09-18 03:26:46 -03:00
João Moura
213d245f4a preparing new version 2024-09-18 03:24:20 -03:00
João Moura
20a635970f quick bug fixes 2024-09-18 03:22:56 -03:00
João Moura
ae0c84cea6 Removing LangChain and Rebuilding Executor (#1322)
* rebuilding executor

* removing langchain

* Making all tests good

* fixing types and adding ability for nor using system prompts

* improving types

* pleasing the types gods

* pleasing the types gods

* fixing parser, tools and executor

* making sure all tests pass

* final pass

* fixing type

* Updating Docs

* preparing to cut new version
2024-09-16 14:14:04 -03:00
Paul Nugent
38189fb555 Merge pull request #1315 from crewAIInc/docs_update
update readme.md
2024-09-10 15:26:00 +01:00
Rip&Tear
4efc29db63 update readme.md 2024-09-10 21:56:46 +08:00
João Moura
fe7583413f preparing enw version with deploy 2024-09-07 11:17:12 -07:00
João Moura
ede37bc07e preparing new verison 0.55.1 2024-09-07 10:16:07 -07:00
João Moura
8306e49fb7 updating dependencies 2024-09-07 00:55:21 -07:00
João Moura
e6aea0304f preparing to cut new version 2024-09-07 00:34:34 -07:00
Sean
262637c3a4 Update LLM-Connections.md (#1181)
* Update LLM-Connections.md

* Update LLM-Connections.md

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-09-07 04:31:09 -03:00
Brandon Hancock (bhancock_ai)
1ac64b8852 Update regex (#1228) 2024-09-07 04:27:58 -03:00
Brandon Hancock (bhancock_ai)
7cc143624c add in 2 small improvements based on joao feedback (#1264) 2024-09-07 04:13:23 -03:00
Astha Puri
0fd5c7bab0 Update Start-a-New-CrewAI-Project-Template-Method.md (#1276)
* Update Start-a-New-CrewAI-Project-Template-Method.md

* Update Start-a-New-CrewAI-Project-Template-Method.md

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-09-07 04:12:51 -03:00
Astha Puri
87e4188e91 Add missing virtual environment commands (#1277)
* Add missing virtual environment commands

* Update Start-a-New-CrewAI-Project-Template-Method.md

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-09-07 04:12:04 -03:00
Astha Puri
638134fda3 Update Tasks.md (#1279) 2024-09-07 04:05:56 -03:00
Rip&Tear
284c085cdd Update readme.md (#1294)
* Update pyproject.toml

More GH link updates

* Added FAQ section in README.md

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-09-07 03:59:48 -03:00
Ali Waleed
f2ed29a511 Fix: Langtrace Docs (#1297)
* fix langtrace docs

* remove gif for size constraint
2024-09-07 03:58:27 -03:00
Brandon Hancock (bhancock_ai)
14544c8fe9 Brandon/cre 256 default template crew isnt running properly (#1299)
* Update config typecheck to accept agents

* Clean up prints
2024-09-07 03:57:36 -03:00
anmol-aidora
64354ac66d Updated CrewAI Documentation and Repository link in tools.poetry.urls (#1305)
* Updated CrewAI Documentation and Repository link in tools.poetry.urls

* Update pyproject.toml

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-09-07 03:55:02 -03:00
Brandon Hancock (bhancock_ai)
a234eb8baa Brandon/cre 252 add agent to crewai test (#1308)
* Update config typecheck to accept agents

* Clean up prints

* Adding agents to crew evaluator output table

* Properly generating table now

* Update tests
2024-09-07 03:53:23 -03:00
Brandon Hancock (bhancock_ai)
01124daf55 move away from pydantic v1 (#1284) 2024-09-06 14:22:01 -04:00
Paul Nugent
41a61e6d82 Merge pull request #1290 from crewAIInc/DOCS/readme_update
Docs/readme update
2024-09-06 16:18:31 +01:00
Rip&Tear
3ef9a41f48 Revert "feat: Improve documentation for Conditional Tasks in crewAI"
This reverts commit 2527ba9074.
2024-09-05 10:30:08 +08:00
Rip&Tear
172557684a Revert "docs: Improve "Creating and Utilizing Tools in crewAI" documentation"
This reverts commit a65598bc72.
2024-09-05 10:30:00 +08:00
Rip&Tear
8b732247cd Revert "feat: Improve documentation for TXTSearchTool"
This reverts commit f7015763d4.
2024-09-05 10:29:03 +08:00
Rip&Tear
b9b75c7e1d feat: Improve documentation for TXTSearchTool
Updated wording positioning
2024-09-05 10:27:11 +08:00
Rip&Tear
0c59f8ea57 Update README.md
Updated  GitHub links to point to new Repos
2024-09-05 10:17:46 +08:00
Rip&Tear (aider)
f7015763d4 feat: Improve documentation for TXTSearchTool 2024-09-05 00:06:11 +08:00
Rip&Tear (aider)
a65598bc72 docs: Improve "Creating and Utilizing Tools in crewAI" documentation 2024-09-04 18:31:09 +08:00
Rip&Tear (aider)
2527ba9074 feat: Improve documentation for Conditional Tasks in crewAI 2024-09-04 18:26:12 +08:00
Rip&Tear
ca8535a74b Merge pull request #1273 from Astha0024/main
Update README.md with default model
2024-09-01 00:43:40 +08:00
Astha Puri
a1698744d4 Merge branch 'main' into main 2024-08-30 21:58:02 -04:00
Thiago Moretto
a092c7f2e6 Merge pull request #1269 from crewAIInc/tm-fix-cli-for-py310
Add py 3.10 support back to CLI + fixes
2024-08-30 13:39:04 -03:00
Thiago Moretto
36cb08c062 Add comment to warn about dro simple_toml_parser 2024-08-30 11:52:53 -03:00
Astha Puri
2f4fd36eb1 Update README.md 2024-08-30 06:55:31 -04:00
Astha Puri
ef2b783be0 Update README.md 2024-08-30 06:54:34 -04:00
João Moura
1dcb9934b7 preparing new version 2024-08-30 00:33:51 -03:00
João Moura
7a828f9ad9 updating deployment cli with 2024-08-30 00:32:18 -03:00
João Moura
d03b89486d updating docs 2024-08-30 00:15:06 -03:00
João Moura
2f2945169d removing base_model from telemetry 2024-08-29 23:35:05 -03:00
Thiago Moretto
d305c45273 Fix test 2024-08-29 15:58:47 -03:00
Thiago Moretto
b0e410f10e Read as str no bytes
+handle when project_name is None (fails, basically)
2024-08-29 15:17:51 -03:00
Thiago Moretto
a0b8431ac7 Fix type checking + lint 2024-08-29 15:02:19 -03:00
Thiago Moretto
329027c2b8 Add python 3.10 support back to CLI +fixes 2024-08-29 14:37:34 -03:00
Thiago Moretto
2230279e05 Get current crewai version from poetry.lock 2024-08-29 11:14:04 -03:00
Thiago Moretto
b1ce3d57f0 Add Python 3.10 support to CLI 2024-08-29 10:22:54 -03:00
mvanwyk
d6034cebaa bug: fix incorrect mkdocs site_url (#1238)
* bug: fix incorrect mkdocs site_url

* bug: fix incorrect mkdocs repo_url

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>

---------

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-08-24 15:45:59 -03:00
Brandon Hancock (bhancock_ai)
d73fd96ee5 Fix deployment name issue to support Azure (#1253)
* Fix deployment name issue to support Azure

* More carefully check atters on llm
2024-08-23 12:58:37 -04:00
Brandon Hancock (bhancock_ai)
e838638bef Update async docs with more examples (#1254)
* Update async docs with more examples

* Add use cases
2024-08-23 12:51:58 -04:00
Eduardo Chiarotti
87d88e26ee fix: All files pre commit (#1249) 2024-08-23 10:52:36 -03:00
Paul Nugent
f9be04c311 Update LLM-Connections.md (#1190)
Added missing quotes around os.environ

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-08-23 10:39:06 -03:00
Eduardo Chiarotti
a962896d0e Feat/cli deploy (#1240)
* feat: set basic structure deploy commands

* feat: add first iteration of CLI Deploy

* feat: some minor refactor

* feat: Add api, Deploy command and update cli

* feat: Remove test token

* feat: add auth0 lib, update cli and improve code

* feat: update code and decouple auth

* fix: parts of the code

* feat: Add token manager to encrypt access token and get and save tokens

* feat: add audience to costants

* feat: add subsystem saving credentials and remove comment of type hinting

* feat: add get crew version to send on header of request

* feat: add docstrings

* feat: add tests for authentication module

* feat: add tests for utils

* feat: add unit tests for cl

* feat: add tests

* feat: add deploy man tests

* feat: fix type checking issue

* feat: rename tests to pass ci

* feat: fix pr issues

* feat: fix get crewai versoin

* fix: add timeout for tests.yml
2024-08-23 10:20:03 -03:00
Rip&Tear
c0c1302611 Merge pull request #1239 from ShuHuang/patch-1
Bugfix: Update LLM-Connections.md
2024-08-23 09:49:46 +08:00
Shu Huang
e0c1af14bd Bugfix: Update LLM-Connections.md
The original code doesn't work due to a comma
2024-08-22 14:39:15 +01:00
Brandon Hancock (bhancock_ai)
45a5e12ff8 Brandon/cre 211 fix agent and task config for yaml based projects (#1211)
* Fixed agents. Now need to fix tasks.

* Add type fixes and fix task decorator

* Clean up logs

* fix more type errors

* Revert back to required

* Undo changes.

* Remove default none for properties that cannot be none

* Clean up comments

* Implement all of Guis feedback
2024-08-20 09:31:02 -04:00
William Espegren
afa2847b3f docs: add spider docs (#1165)
* docs: add spider docs

* chore: add "Spider scraper" to mkdocs.yml
2024-08-20 07:53:04 -03:00
Rip&Tear
122dd945fe Merge pull request #1216 from theCyberTech/main 2024-08-20 18:32:04 +08:00
Eduardo Chiarotti
e684e06809 feat: Add only on release to deploy docs (#1212) 2024-08-20 07:26:50 -03:00
Rip&Tear
cc9620f7fd Merge pull request #2 from theCyberTech/theCyberTech-operations-per-run
Update operations-per-run in stale.yml
2024-08-20 12:54:55 +08:00
Rip&Tear
d4784507d0 Update operations-per-run in stale.yml
operations-per-run: 1200

this will allow for complete cleanup of all exiting issues
2024-08-20 12:54:26 +08:00
Rip&Tear
dbde306639 Merge pull request #1206 from theCyberTech/main
Create Cli.md
2024-08-17 21:51:13 +08:00
Rip&Tear
e4f01f4906 Update Cli.md 2024-08-17 20:55:46 +08:00
Rip&Tear
6ec2070936 Create Cli.md
Added initial Cli.md to help users get info on Cli commands
2024-08-17 20:06:31 +08:00
Rip&Tear
46e5929622 Merge pull request #1205 from theCyberTech/theCyberTech-stale-fix
Update stale.yml
2024-08-17 20:00:43 +08:00
Eduardo Chiarotti
ef2502a14f feat: Add crewai install CLI command (#1203)
* feat: Add crewai install CLI command

* feat: Add crewai install to the docs and force now crewai run
2024-08-17 08:41:53 -03:00
Rip&Tear
7fd6ef7012 Update stale.yml
Added  
operations-per-run: 500
2024-08-17 19:16:31 +08:00
Rip&Tear
dbede37121 Merge pull request #1194 from crewAIInc/docs_update
Updated Documentation to fix minor issues + minor .github fixes
2024-08-17 08:14:17 +08:00
Brandon Hancock (bhancock_ai)
678dfffb62 Adding Autocomplete to OSS (#1198)
* Cleaned up model_config

* Fix pydantic issues

* 99% done with autocomplete

* fixed test issues

* Fix type checking issues
2024-08-16 15:04:21 -04:00
Brandon Hancock (bhancock_ai)
c511f4d0b5 Clean up pipeline (#1187)
* Clean up pipeline

* Make versioning dynamic in templates

* fix .env issues when openai is trying to use invalid keys

* Fix type checker issue in pipeline

* Fix tests.
2024-08-16 14:47:28 -04:00
Vini Brasil
8fdf741b73 Add name and expected_output to TaskOutput (#1199)
* Add name and expected_output to TaskOutput

This commit adds task information to the TaskOutput class. This is
useful to provide extra context to callbacks.

* Populate task name from function names

This commit populates task name from function names when using
annotations.
2024-08-15 22:24:41 +01:00
Eduardo Chiarotti
a5d8ca7b16 feat: Add bandit ci pipeline (#1200)
* feat: Add bandit ci pipeline

* feat: add useforsecurty false for bandit pipeline

* feat: Add report only for High severity issues
2024-08-15 18:19:57 -03:00
theCyberTech
a6f433597c Updated Documentaion to fix navigation link for pipelin feature, removed legacy md fiel from .github & added missing config.yml config to remove custom issues from user access 2024-08-15 16:35:05 +08:00
Rip&Tear
323790384c Merge pull request #1183 from crewAIInc/feature-templates
Feature templates
2024-08-15 11:29:36 +08:00
Rip&Tear
44068c8779 Merge pull request #1182 from crewAIInc/git-temaplates
updated bug report template to yml for more control
2024-08-15 11:28:31 +08:00
Eduardo Chiarotti
dedab16ff1 fix: Fix planning_llm issue (#1189)
* fix: Fix planning_llm issue

* fix: add poetry.lock updated version

* fix: type checking issues

* fix: tests
2024-08-14 18:54:53 -03:00
theCyberTech
b279b84a55 Addded feature request template in YAML format
Added config .yml to remove blank template
2024-08-14 15:49:55 +08:00
theCyberTech
9e16df200c updated bug report template to yml for more control 2024-08-14 15:08:59 +08:00
Eduardo Chiarotti
ac97aafd78 docs: fix references to annotations (#1176) 2024-08-13 12:58:12 -03:00
Eduardo Chiarotti
08eaffbb7c docs: Update Dalle, FileWrite, Nl2Sql and Side menu Tools (#1175)
* docs: Update Dalle, FileWrite, Nl2Sql and Side menu Tools

* docs: remove unused phrase

* docs: fix identation
2024-08-13 12:29:34 -03:00
Rafael Miller
c1ae3a64ed Added Firecrawl tools to docs (#628) 2024-08-13 12:09:11 -03:00
João Moura
bce7bb793c preparing new version 2024-08-11 22:07:54 -03:00
João Moura
ff3ad45de9 Fixing telemetry condition that was missing 2024-08-11 22:07:45 -03:00
João Moura
fcacebb60f fix broken link 2024-08-11 15:52:25 -03:00
João Moura
3879cbb897 adding new docs 2024-08-11 15:50:42 -03:00
João Moura
61b3d04d0d adding testing link 2024-08-11 15:39:30 -03:00
João Moura
81a16a3e01 Updating docs 2024-08-11 15:04:45 -03:00
João Moura
a579da3b5f preparing new version 2024-08-11 01:33:20 -03:00
João Moura
277a217b31 Fixing evaluator reporter 2024-08-11 01:32:40 -03:00
João Moura
e81f4a1f35 Updating templates to new versions 2024-08-11 01:02:47 -03:00
João Moura
11d39b3f23 Preparing new version 2024-08-11 00:58:41 -03:00
João Moura
d96f20d0ef adding docs for new tools 2024-08-11 00:07:00 -03:00
João Moura
8eca3dae14 preparing new verion 2024-08-10 17:59:17 -03:00
João Moura
00997e5453 missing arg 2024-08-10 17:58:54 -03:00
João Moura
69df8245c9 fixing mock_agent_ops_provider 2024-08-10 17:26:45 -03:00
João Moura
ac48b7a669 fixing mock_agent_ops_provider 2024-08-10 17:21:21 -03:00
Abebe M.
b80ea04fe1 Handle minor issue: tools name shouldn't contain space for openai (#961)
As per (https://github.com/langchain-ai/langchain/pull/16395), OpenAI functions don't accept tool names with space. Therefore, I added an exception handling snippet to raise an issue if a custom tool name has a space.
2024-08-10 16:51:08 -03:00
Joshua Harper
817a838015 Sanitize agent roles to ensure valid directory names (#1037) 2024-08-10 09:50:38 -03:00
Vikram Guhan Subbiah
c0005e112e AgentOps ENG-525: Decouple CrewAI and AgentOps (#1033)
* Make AgentOps import optional upon AGENTOPS_API_KEY
    being set

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-08-10 09:47:13 -03:00
David
d1770b3749 remove broken links (#1043) 2024-08-10 09:45:21 -03:00
Jason Wu
bf87f3d5d3 Update AgentOps-Observability.md (#1044)
Fix the incorrectly formatted external link
2024-08-10 09:43:22 -03:00
Thiago Moretto
59faec2404 Increase test coverage for output to file (#1049) 2024-08-10 09:42:47 -03:00
Constantin Schreiber
276a7e5acc Update Start-a-New-CrewAI-Project-Template-Method.md (#1054)
Fixed grammar and typo

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-08-10 09:39:49 -03:00
fastali
fde60b0973 Update LLM-Connections.md (#1071)
ollama integration example code bug fixed.
2024-08-10 08:56:30 -03:00
Chris Johnston
5a8ce2b05c Update Start-a-New-CrewAI-Project-Template-Method.md (#1081)
I helped 💚
2024-08-10 08:55:39 -03:00
maf-rnmourao
5e1a9dd2ba Fix misplaced task info from process doc (#1098)
Co-authored-by: rnmourao <robertonunesmourao@yahoo.com.br>
2024-08-10 08:55:18 -03:00
Giulio De Luise
70452af9db Fix documentation typo. (#1153) 2024-08-10 08:54:40 -03:00
Muhammad Hakim Asy'ari
48edf67cad Remove orphan links (#1163)
Remove deprecated links, related to #1019
2024-08-10 08:54:12 -03:00
João Moura
17fbc74f34 preparing new verison 2024-08-10 03:28:53 -07:00
João Moura
96aba70531 adding test results telemetry 2024-08-10 03:13:11 -07:00
Eduardo Chiarotti
b4221ea560 feat: add ability to train on custom file (#1161)
* feat: add ability to train on custom file

* feat: add pkl file validation

* feat: fix tests

* feat: fix tests

* feat: fix tests
2024-08-09 19:41:58 -03:00
Lorenze Jay
4c122321ad Brandon/cre 130 pipeline project structure (#1066)
* WIP. Procedure appears to be working well. Working on mocking properly for tests

* All tests are passing now

* rshift working

* Add back in Gui's tool_usage fix

* WIP

* Going to start refactoring for pipeline_output

* Update terminology

* new pipeline flow with traces and usage metrics working. need to add more tests and make sure PipelineOutput behaves likew CrewOutput

* Fix pipelineoutput to look more like crewoutput and taskoutput

* Implemented additional tests for pipeline. One test is failing. Need team support

* Update docs for pipeline

* Update pipeline to properly process input and ouput dictionary

* Update Pipeline docs

* Add back in commentary at top of pipeline file

* Starting to work on router

* Drop router for now. will add in separately

* In the middle of fixing router. A ton of circular dependencies. Moving over to a new design.

* WIP.

* Fix circular dependencies and updated PipelineRouter

* Add in Eduardo feedback. Still need to add in more commentary describing the design decisions for pipeline

* Add developer notes to explain what is going on in pipelines.

* Add doc strings

* Fix missing rag datatype

* WIP. Converting usage metrics from a dict to an object

* Fix tests that were checking usage metrics

* Drop todo

* Fix 1 type error in pipeline

* Update pipeline to use UsageMetric

* Add missing doc string

* WIP.

* Change names

* Rename variables based on joaos feedback

* Fix critical circular dependency issues. Now needing to fix trace issue.

* Tests working now!

* Add more tests which showed underlying issue with traces

* Fix tests

* Remove overly complicated test

* Add router example to docs

* Clean up end of docs

* Clean up docs

* Working on creating Crew templates and pipeline templates

* WIP.

* WIP

* Fix poetry install from templates

* WIP

* Restructure

* changes for lorenze

* more todos

* WIP: create pipelines cli working

* wrapped up router

* ignore mypy src on templates

* ignored signature of copy

* fix all verbose

* rm print statements

* brought back correct folders

* fixes missing folders and then rm print statements

* fixed tests

* fixed broken test

* fixed type checker

* fixed type ignore

* ignore types for templates

* needed

* revert

* exclude only required

* rm type errors on templates

* rm excluding type checks for template files on github action

* fixed missing quotes

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-08-09 14:13:29 -07:00
Eduardo Chiarotti
c808f7bec9 Update issue templates (#1076)
* Update issue templates

* Update custom.md
2024-08-08 20:10:41 -03:00
Eduardo Chiarotti
34223c6576 Create stale.yml (#1158) 2024-08-08 11:54:13 -03:00
Eduardo Chiarotti
a38848097f feat: add cli to run the crew (#1080)
* feat: add cli to run the crew

* feat: change command to run_crew

* feat: change pyprojet to run_Crew

* docs: change docs to address crewai run
2024-08-08 10:48:22 -03:00
Lorenze Jay
8eea22c763 Fix logging types to bool (#1051)
* fixes pydantic validations hierarchical

* more tests

* logger logs everything or not

* verbose rm levels to bool

* updated readme verbose levels
2024-08-07 10:31:18 -07:00
Eduardo Chiarotti
033b6f23e3 Update issue templates (#1067)
* Update issue templates

Add both Bug and Feature templates

* Update feature_request.md
2024-08-06 14:47:00 -03:00
Thiago Moretto
b738f3e265 Merge pull request #1064 from crewAIInc/thiago/pipeline-fix
Fix flaky test due to suppressed error on `on_llm_start` callback
2024-08-05 16:13:19 -03:00
Thiago Moretto
7b62890113 Fix lint issue 2024-08-05 13:34:03 -03:00
Thiago Moretto
6d7e089be6 Fix flaky test due to suppressed error on on_llm_start callback 2024-08-05 13:29:39 -03:00
Rip&Tear
bf691af088 Update LLM-Connections.md (#1039)
* Minor fixes and updates

* minor fixes across docs

* Updated LLM-Connections.md

---------

Co-authored-by: theCyberTech <mattrapidb@gmail.com>
2024-08-02 15:04:52 -03:00
Rip&Tear
95e2e0bb8e Docs minor fixes (#1035)
* Minor fixes and updates

* minor fixes across docs

---------

Co-authored-by: theCyberTech <mattrapidb@gmail.com>
2024-08-02 15:01:16 -03:00
Lorenze Jay
071122791e Feat/sliding context window (#1042)
* patching for non-gpt model

* removal of json_object tool name assignment

* fixed issue for smaller models due to instructions prompt

* fixing for ollama llama3 models

* WIP: generated summary from documents split, could also create memgpt approach

* WIP: need tests but user inputted summarization strategy implemented - handling context window exceeding errors

* rm extra line

* removed type ignores

* added tests

* handling n to summarize prompt

* code cleanup, using click for cli asker

* rm not used class

* better refactor

* reverted poetry lock

* reverted poetry.locl

* improved context window exceeding exception class
2024-08-01 13:15:50 -07:00
João Moura
745ed5c8ae Preparing for new version 2024-07-30 19:21:18 -04:00
Lorenze Jay
38f9c3c500 WIP fixed mypy src types (#1036) 2024-07-30 10:59:50 -07:00
Eduardo Chiarotti
18d867aa47 feat: Add execution time to both task and testing feature (#1031)
* feat: Add execution time to both task and testing feature

* feat: Remove unused functions

* feat: change test_crew to evalaute_crew to avoid issues with testing libs

* feat: fix tests
2024-07-29 23:17:07 -03:00
Matt Young
c82f612c07 telemetry.py - fix typo in comment. (#1020) 2024-07-29 23:03:51 -03:00
Deepak Tammali
9c3e1a708f docs: Fix crewai-tools package name typo in getting-started docs (#1026) 2024-07-29 23:03:32 -03:00
Monarch Wadia
fa3af7db93 Fixed package name typo in pip install command (#1029)
Changed `pip install crewai-tools` to `pip install crewai-tools`
2024-07-29 23:02:48 -03:00
Mackensie Alvarez
7a70e393c4 Update Start-a-New-CrewAI-Project-Template-Method.md (#1030) 2024-07-29 23:02:18 -03:00
Brandon Hancock (bhancock_ai)
134be4984b Add in missing triple quote and execution time to resume agent functionality. (#1025)
* Add in missing triple quote and execution time to resume agent functionality

* Fixing broken kwargs and other issues causing our tests to fail
2024-07-29 14:39:02 -03:00
Rip&Tear
b8ff35f076 Minor fixes and updates (#1019)
Co-authored-by: theCyberTech <mattrapidb@gmail.com>
2024-07-29 03:24:23 -03:00
Rip&Tear
f8a09489f1 Small 404 error fixes (#1018)
* Updated Docs:  New Getting started section + content update / addition

* fixed indentation issue

* Minor updates to fix typos

* Fixed up 404 error on latest commit

---------

Co-authored-by: theCyberTech <the_t3ch@pm.me>
Co-authored-by: theCyberTech <mattrapidb@gmail.com>
2024-07-28 22:01:04 -03:00
Nuraly
496a4c087c Update Force-Tool-Ouput-as-Result.md (#964)
I think there is some mistake, because there is no such parameter as force_output_result, and as the code shows, the correct parameter result_as_answer is set during agent creation, not task.
2024-07-28 15:41:56 -03:00
Carine Bruyndoncx
93e0de2ed9 Update Crews.md - correct result variable to crew_output (#972) 2024-07-28 15:40:36 -03:00
Taleb
ca9deaebb7 Performed spell check across the rest of code base, and enahnced the yaml paraser code a little (#895)
* Performed spell check across the entire documentation

Thank you once again!

* Performed spell check across the most of code base
Folders been checked:
- agents
- cli
- memory
- project
- tasks
- telemetry
- tools
- translations

* Trying to add a max_token for the agents, so they limited by number of tokens.

* Performed spell check across the rest of code base, and enahnced the yaml paraser code a little

* Small change in the main agent doc

* Improve _save_file method to handle both dict and str inputs

- Add check for dict type input
- Use json.dump for dict serialization
- Convert non-dict inputs to string
- Remove type ignore comments

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-28 15:39:54 -03:00
Henri Wenlin
218b17f70f feat: add verbose option for printing in ToolUsage (#990) 2024-07-28 15:12:10 -03:00
Samuel Mallet
5626b72742 Add docs for new parameters to SerperDevTool (#993) 2024-07-28 15:09:55 -03:00
Taleb
a1e2ef376b Improve _save_file method to handle both dict and str inputs (#1011)
- Add check for dict type input
- Use json.dump for dict serialization
- Convert non-dict inputs to string
- Remove type ignore comments
2024-07-28 15:03:18 -03:00
Lennex Zinyando
9b2a113b58 Fixes getting started section links (#1016) 2024-07-28 15:02:41 -03:00
João Moura
32b1fb237b updating test 2024-07-28 13:23:03 -04:00
Rip&Tear
67179bbacb Docs update (#1008)
* Updated Docs:  New Getting started section + content update / addition

* fixed indentation issue

* Minor updates to fix typos

---------

Co-authored-by: theCyberTech <the_t3ch@pm.me>
2024-07-28 11:55:09 -03:00
ResearchAI
2b7a0b3342 Update reset_memories_command.py (#974) 2024-07-26 14:40:47 -07:00
Brandon Hancock (bhancock_ai)
5627159419 Json Task Output Truncation with Escape Characters (#1009)
* Fixed special character issue when converting json to models. Added numerous tests to ensure thigns work properly.

* Fix linting error and cleaned up tests

* Fix customer_converter_cls test failure

* Fixed tests. Thank you lorenze for pointing that out. added a few more to ensure converter creation works properly

* Address lorenze feedback

* Fix linting issues
2024-07-26 17:27:01 -04:00
Brandon Hancock (bhancock_ai)
7f5c4fded6 Merge pull request #1012 from crewAIInc/fix/breaking-test-task-eval
fix test due to asserting instructions model_schema change
2024-07-26 16:55:26 -04:00
Lorenze Jay
8054828aac fix test due to asserting instructions model_schema change 2024-07-26 13:37:44 -07:00
Lorenze Jay
67c2428495 Patch/non gpt model pydantic output (#1003)
* patching for non-gpt model

* removal of json_object tool name assignment

* fixed issue for smaller models due to instructions prompt

* fixing for ollama llama3 models

* closing brackets

* removed not used and fixes
2024-07-26 10:57:56 -07:00
Lorenze Jay
0c6514024e hierarchical process unblocked for async tasks (#995)
* WIP: hierarchical unblock for async tasks

* added better test

* update name change

* added more test and crew manager cleanup

* remove prints

* code cleanup, no need to pass manager
2024-07-26 10:55:51 -07:00
Eduardo Chiarotti
b415e2273a feat: add ability to set LLM for AgentPLanner on Crew (#1001)
* feat: add ability to set LLM for AgentPLanner on Crew

* feat: fixes issue on instantiating the ChatOpenAI on the crew

* docs: add docs for the planning_llm new parameter

* docs: change message to ChatOpenAI llm

* feat: add tests
2024-07-26 14:24:29 -03:00
Eduardo Chiarotti
56cb344c70 feat: add crew Testing/Evaluating feature (#998)
* feat: add crew Testing/evalauting feature

* feat: add docs and add unit test

* feat: improve testing output table

* feat: add tests

* feat: fix type checking issue

* feat: add raise ValueError when testing if output is not the expected

* docs: add docs for Testing

* feat: improve tests and fix some issue

* feat: back to sync

* feat: change opdeai model

* feat: fix test
2024-07-26 14:23:51 -03:00
Brandon Hancock (bhancock_ai)
b77cf9b279 Merge pull request #994 from crewAIInc/fix/getting-started-docs
fixed bullet points for crew yaml annoations
2024-07-23 14:36:45 -04:00
Lorenze Jay
5791325e63 clearer usage for crewai create command 2024-07-23 11:32:25 -07:00
Lorenze Jay
15e8593597 fixed bullet points for crew yaml annoations 2024-07-23 11:31:09 -07:00
Lorenze Jay
80c626504d Feat yaml config all attributes (#985)
* WIP: yaml proper mapping for agents and agent

* WIP: added output_json and output_pydantic setup

* WIP: core logic added, need cleanup

* code cleanup

* updated docs and example template to use yaml to reference agents within tasks

* cleanup type errors

* Update Start-a-New-CrewAI-Project.md

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-23 00:21:01 -03:00
Eduardo Chiarotti
21dea21e97 feat: add crewai test feature (#984)
* feat: add crewai test feature

* fix: remove unused import

* feat: update docstirng

* fix: tests
2024-07-22 17:21:05 -03:00
João Moura
0bbafe7e3b prepping new version 2024-07-20 12:26:32 -04:00
Eduardo Chiarotti
fa15c9012a fix: planning feature output (#969)
* fix: planning feature output

* fix: add validation for planning result
2024-07-20 11:56:53 -03:00
João Moura
16a949e7e4 preparing new verions 2024-07-19 13:22:28 -04:00
Eduardo Chiarotti
56fd603723 fix: agent missing fix (#966) 2024-07-19 13:15:33 -03:00
João Moura
67c06e5cef rmeoving extra logging 2024-07-19 01:16:15 -04:00
Dev Khant
78518f139d Docs: Update info about tools (#896) 2024-07-19 01:38:42 -03:00
ariel
4f3ae32eef Fix broken link to the installation guide (#912)
Updated the installation guide link to use the absolute URL instead of a relative path, ensuring it correctly points to 'https://docs.crewai.com/how-to/Installing-CrewAI/'.
2024-07-19 01:37:54 -03:00
Salman Faroz
da5faeb451 Update Crews.md (#889)
To solve :
I encountered an error while trying to use the tool. This was the error: DuckDuckGoSearchRun._run() got an unexpected keyword argument 'q'.
 Tool duckduckgo_search accepts these inputs: A wrapper around DuckDuckGo Search. Useful for when you need to answer questions about current events. Input should be a search query.

refer : https://github.com/joaomdmoura/crewAI/issues/316
2024-07-19 01:37:24 -03:00
robbyriverside
341fcad9a4 Update Memory.md (#728)
The memory documentation left me with a lot of questions.  After I went through the code to find an answer.  I added this paragraph to explain what I found.  Hope this is helpful.
2024-07-19 01:36:54 -03:00
Braelyn Boynton
96ca81b593 upgrade agentops to 0.3 (#957)
* upgrade agentops to 0.3

* lockfile
2024-07-18 13:30:04 -03:00
Lorenze Jay
405d45c3fb Reset memory (#958)
* reseting memory on cli

* using storage.reset

* deleting memories on command

* added tests

* handle when no flags are used

* added docs
2024-07-18 13:29:42 -03:00
Eduardo Chiarotti
3f2f832e8d feat: Add planning feature to crew (#919)
* feat: add planning feature to crew

* feat: add test to planning handler and change to execute_async method

* docs: add planning parameter to the Core documentation

* docs: add planning docs

* fix: fix type checking issue

* fix: test and logic
2024-07-18 13:15:08 -03:00
Lorenze Jay
4f99ea547f Merge pull request #951 from crewAIInc/test-hierarchical-tools-proper-setup
Test hierarchical tools proper setup
2024-07-17 08:53:23 -07:00
Lorenze Jay
716d794092 better spacing 2024-07-17 08:40:52 -07:00
Lorenze Jay
9a1c19cfbd code cleanup 2024-07-17 08:39:57 -07:00
Lorenze Jay
868ee4ce87 using gpt4o 2024-07-17 08:27:43 -07:00
Lorenze Jay
f6cc5d4c92 Merge branch 'main' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-17 08:21:13 -07:00
Brandon Hancock (bhancock_ai)
da59bb22e6 Merge pull request #954 from crewAIInc/hotfix/improve-async-logging
Fix logging for async and sync tasks
2024-07-17 11:20:13 -04:00
Lorenze Jay
e58b0a8d70 fixed test 2024-07-17 08:20:05 -07:00
Brandon Hancock
20863079fc Merge branch 'main' into hotfix/improve-async-logging 2024-07-17 11:17:23 -04:00
Lorenze Jay
547729cdd7 Merge branch 'main' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-17 08:16:44 -07:00
Brandon Hancock (bhancock_ai)
69867bc77e Merge pull request #950 from crewAIInc/conditional-task-f
conditional task feat
2024-07-17 11:08:06 -04:00
Brandon Hancock
c4164440ca Fix issues found by linter 2024-07-17 11:05:31 -04:00
Brandon Hancock
9777bf984f Add more tests. Clean up docs. Improve conditional task 2024-07-17 11:03:11 -04:00
Brandon Hancock
80d6596247 Fix logging 2024-07-17 10:10:34 -04:00
João Moura
a1b37f073d Adding better support for open source tool calling models (#952)
* Adding better support for open source tool calling models

* making sure the right tool is called

* fixing tests

* better support opensource models
2024-07-17 05:54:13 -03:00
Lorenze Jay
d261d68527 Merge branch 'conditional-task-f' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-16 20:35:27 -07:00
Lorenze Jay
d5ae6a6f59 Merge branch 'main' of github.com:joaomdmoura/crewAI into conditional-task-f 2024-07-16 20:34:35 -07:00
Lorenze Jay
36b7d03612 Merge branch 'test-hierarchical-tools-proper-setup' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-16 20:31:42 -07:00
Lorenze Jay
39ab81ea83 Merge branch 'conditional-task-f' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-16 20:28:50 -07:00
Lorenze Jay
dae39d37e9 code cleanup 2024-07-16 20:11:52 -07:00
Lorenze Jay
615cc03b9f code cleanup 2024-07-16 20:07:05 -07:00
Brandon Hancock (bhancock_ai)
d4d9d475b0 Merge pull request #941 from crewAIInc/bugfix/minor-max-retry-recursion-fix
Properly capture result from max retry recursive call
2024-07-16 22:05:58 -04:00
Lorenze Jay
8b5948d307 Merge branch 'conditional-task-f' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-16 16:05:09 -07:00
Lorenze Jay
510472db93 added docs and tests 2024-07-16 16:04:41 -07:00
Lorenze Jay
dcc8a671b8 Merge branch 'conditional-task-f' of github.com:joaomdmoura/crewAI into test-hierarchical-tools-proper-setup 2024-07-16 15:20:46 -07:00
Lorenze Jay
101bbc8954 ensures _update_manager_tools has a manager otherwise throw error 2024-07-16 15:15:50 -07:00
Lorenze Jay
e329e09b58 updated fixes for conditional tasks 2024-07-16 15:10:13 -07:00
Lorenze Jay
8833dc4451 fixed hierarchial manager tools when assigned an agent 2024-07-16 14:00:25 -07:00
Lorenze Jay
8710e6f545 better code spacing 2024-07-16 13:07:31 -07:00
Lorenze Jay
32491a156f removing unused code 2024-07-16 13:06:50 -07:00
Lorenze Jay
c373d6136f conditional task feat 2024-07-16 12:04:34 -07:00
Brandon Hancock (bhancock_ai)
c1be369566 Add docs for crewoutput and taskoutput (#943)
* Add docs for crewoutput and taskoutput

* Add reference to change log
2024-07-15 21:39:15 -03:00
Gui Vieira
02f6da700a Introduce structure keys (#902)
* Introduce structure keys

* Add agent key to tasks

* Rebasing is hard

* Rename task output telemetry

* Feedback
2024-07-15 19:37:07 -03:00
Gui Vieira
18fe9fc921 Fix crew creation telemetry (#939)
* Fix crew creation telemetry

* Remove task index
2024-07-15 17:43:57 -03:00
Lorenze Jay
387528c3fb Replay feat using db (#930)
* Cleaned up task execution to now have separate paths for async and sync execution. Updating all kickoff functions to return CrewOutput. WIP. Waiting for Joao feedback on async task execution with task_output

* Consistently storing async and sync output for context

* outline tests I need to create going forward

* Major rehaul of TaskOutput and CrewOutput. Updated all tests to work with new change. Need to add in a few final tricky async tests and add a few more to verify output types on TaskOutput and CrewOutput.

* Encountering issues with callback. Need to test on main. WIP

* working on tests. WIP

* WIP. Figuring out disconnect issue.

* Cleaned up logs now that I've isolated the issue to the LLM

* more wip.

* WIP. It looks like usage metrics has always been broken for async

* Update parent crew who is managing for_each loop

* Merge in main to bugfix/kickoff-for-each-usage-metrics

* Clean up code for review

* Add new tests

* Final cleanup. Ready for review.

* Moving copy functionality from Agent to BaseAgent

* Fix renaming issue

* Fix linting errors

* use BaseAgent instead of Agent where applicable

* Fixing missing function. Working on tests.

* WIP. Needing team to review change

* Fixing issues brought about by merge

* WIP: need to fix json encoder

* WIP need to fix encoder

* WIP

* WIP: replay working with async. need to add tests

* Implement major fixes from yesterdays group conversation. Now working on tests.

* The majority of tasks are working now. Need to fix converter class

* Fix final failing test

* Fix linting and type-checker issues

* Add more tests to fully test CrewOutput and TaskOutput changes

* Add in validation for async cannot depend on other async tasks.

* WIP: working replay feat fixing inputs, need tests

* WIP: core logic of seq and heir for executing tasks added into one

* Update validators and tests

* better logic for seq and hier

* replay working for both seq and hier just need tests

* fixed context

* added cli command + code cleanup TODO: need better refactoring

* refactoring for cleaner code

* added better tests

* removed todo comments and fixed some tests

* fix logging now all tests should pass

* cleaner code

* ensure replay is delcared when replaying specific tasks

* ensure hierarchical works

* better typing for stored_outputs and separated task_output_handler

* added better tests

* added replay feature to crew docs

* easier cli command name

* fixing changes

* using sqllite instead of .json file for logging previous task_outputs

* tools fix

* added to docs and fixed tests

* fixed .db

* fixed docs and removed unneeded comments

* separating ltm and replay db

* fixed printing colors

* added how to doc

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-07-15 17:14:10 -03:00
Gui Vieira
39587aa3f9 Fix tool usage (#925)
* Fix tool usage

* new tests

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-15 17:13:35 -03:00
Brandon Hancock
4f1bde0cfe capture result from recursive call 2024-07-15 13:59:58 -04:00
Brandon Hancock
a118d49bb1 Add return statement to recursive call 2024-07-15 13:40:51 -04:00
Gui Vieira
fbae4909a0 [DO NOT MERGE] Provide inputs on crew creation (#898)
* Provide inputs on crew creation

* Better naming

* Add crew id and task index to tasks

* Fix type again
2024-07-15 09:00:02 -03:00
Eduardo Chiarotti
bc8cb4984a feat: add max retry limit to agent execution (#899)
* feat: add max retry limit to agent execution

* feat: add test to max retry limit feature

* feat: add code execution docstring

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-15 08:58:50 -03:00
Brandon Hancock (bhancock_ai)
93d6655228 Feature/use converter instead of manually trimming (#894)
* Exploring output being passed to tool selector to see if we can better format data

* WIP. Adding JSON repair functionality

* Almost done implementing JSON repair. Testing fixes vs current base case.

* More action cleanup with additional tests

* WIP. Trying to figure out what is going on with tool descriptions

* Update tool description generation

* WIP. Trying to find out what is causing the tools to duplicate

* Replacing tools properly instead of duplicating them accidentally

* Fixing issues for MR

* Update dependencies for JSON_REPAIR

* More cleaning up pull request

* preppering for call

* Fix type-checking issues

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-15 08:53:41 -03:00
OP (oppenheimer)
e525b87fd3 Add Groq - OpenAI Compatible API - details (#934) 2024-07-14 16:11:54 -03:00
Brandon Hancock (bhancock_ai)
2fcaf68312 Feature/kickoff consistent output (#847)
* Cleaned up task execution to now have separate paths for async and sync execution. Updating all kickoff functions to return CrewOutput. WIP. Waiting for Joao feedback on async task execution with task_output

* Consistently storing async and sync output for context

* outline tests I need to create going forward

* Major rehaul of TaskOutput and CrewOutput. Updated all tests to work with new change. Need to add in a few final tricky async tests and add a few more to verify output types on TaskOutput and CrewOutput.

* Encountering issues with callback. Need to test on main. WIP

* working on tests. WIP

* WIP. Figuring out disconnect issue.

* Cleaned up logs now that I've isolated the issue to the LLM

* more wip.

* WIP. It looks like usage metrics has always been broken for async

* Update parent crew who is managing for_each loop

* Merge in main to bugfix/kickoff-for-each-usage-metrics

* Clean up code for review

* Add new tests

* Final cleanup. Ready for review.

* Moving copy functionality from Agent to BaseAgent

* Fix renaming issue

* Fix linting errors

* use BaseAgent instead of Agent where applicable

* Fixing missing function. Working on tests.

* WIP. Needing team to review change

* Fixing issues brought about by merge

* WIP

* Implement major fixes from yesterdays group conversation. Now working on tests.

* The majority of tasks are working now. Need to fix converter class

* Fix final failing test

* Fix linting and type-checker issues

* Add more tests to fully test CrewOutput and TaskOutput changes

* Add in validation for async cannot depend on other async tasks.

* Update validators and tests
2024-07-11 00:35:02 -03:00
João Moura
ca22a91b8a adding new docs 2024-07-08 03:15:14 -04:00
prime-computing-lab
c7e1376c4b Update MDXSearchTool.md (#745)
description fixed to markdown language instead of marketing search
2024-07-08 02:21:00 -03:00
João Moura
aa79050a43 updating crewAI-tools verison 2024-07-08 01:17:22 -04:00
Taleb
ea5811735a Performed spell check across most of code base (#882)
* Performed spell check across the entire documentation

Thank you once again!

* Performed spell check across the most of code base
Folders been checked:
- agents
- cli
- memory
- project
- tasks
- telemetry
- tools
- translations
2024-07-07 13:00:05 -03:00
WellyngtonF
33ece82e08 passing cloned agents when copying context (#885) 2024-07-07 12:58:38 -03:00
Gui Vieira
b56d584efc Emit task created (#875)
* Emit task created

* Limit data to shared crews
2024-07-07 12:58:24 -03:00
João Moura
51068ce766 TYPO 2024-07-06 20:03:54 -04:00
João Moura
87e39faa33 new docs 2024-07-06 16:32:00 -04:00
João Moura
a5662909cf preparing new version 2024-07-06 12:26:41 -04:00
João Moura
325a582330 updating dependencies and fixing tests (#878) 2024-07-06 02:14:52 -03:00
Eelke van den Bos
2aa9904392 Add converter_cls option to Task (#800)
* Add converter_cls option to Task

Fixes #799

* Update task_test.py

* Update task.py

* Update task.py

* Update task_test.py

* Update task.py

* Update task.py

* Update task.py

* Update task.py

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-06 02:01:39 -03:00
João Moura
b65eee45a8 TYPO 2024-07-06 00:34:50 -04:00
Ikko Eltociear Ashimine
42708d60bc chore: fix typo (#810)
* chore: update converter.py

attemps -> attempts

* chore: update tool_usage.py

attemps -> attempts
2024-07-06 01:33:48 -03:00
Alex Brinsmead
75feeabc3c Fix incorrect definition of RAG in GithubTool docs (#864) 2024-07-06 01:31:51 -03:00
Taleb
f36a0b3b9c Performed spell check across the entire documentation (#872)
Thank you once again!
2024-07-06 01:30:40 -03:00
Eduardo Chiarotti
57041af313 Fix/async tasks (#877)
* fix: async tasks calls

* fix: some issue along with some type check errors

* fix: some issue along with some type check errors

* fix: async test
2024-07-06 01:30:07 -03:00
Eduardo Chiarotti
8dfc40ff98 fix: Fix tests (#873)
* fix: call asserts

* fix: test_increment_tool_errors

* fix: test_increment_delegations_for_sequential_process

* fix: test_increment_delegations_for_hierarchical_process

* fix: test_code_execution_flag_adds_code_tool_upon_kickoff

* fix: test_tool_usage_information_is_appended_to_agent

* fix: try to fix test_crew_full_output

* fix: try to fix test_crew_full_output

* fix: test remove vcr to test crew_test test

* fix: comment test to see if ci passes

* fix: comment test to see if ci passes

* fix: test changing prompt tokens to get error on CI

* fix: test changing prompt tokens to get error on CI

* fix: test changing prompt tokens to get error on CI

* fix: test changing prompt tokens to get error on CI

* fix: test new approach

* fix: comment funciont not working in CI

* fix: github python version

* fix: remove need of vcr

* fix: fix and add comments for all type checking errors
2024-07-05 09:06:56 -03:00
João Moura
b51cf24f0f Adding support to force a tool return to be the final answer. (#867)
* Adding support to force a tool return to be the final answer.
This will at the end of the execution return the tool output.
It will return the output of the latest tool with the flag

* Update src/crewai/agent.py

Co-authored-by: Gui Vieira <guilherme_vieira@me.com>

* Update tests/agent_test.py

Co-authored-by: Gui Vieira <guilherme_vieira@me.com>

---------

Co-authored-by: Gui Vieira <guilherme_vieira@me.com>
2024-07-04 16:36:00 -03:00
MO Jr
45a4d15811 Update Crews.md (#868)
Fix misspelling
2024-07-04 16:35:07 -03:00
Eduardo Chiarotti
3d78ad4fff fix: file_handler issue (#869)
* fix: file_handler issue

* fix: add logic for the trained_agent data
2024-07-04 16:34:43 -03:00
João Moura
cc9e30ac23 TYPO 2024-07-03 18:41:52 -04:00
João Moura
4cb0d4e572 TYPO 2024-07-03 18:41:52 -04:00
João Moura
62e662a690 TYPO 2024-07-03 18:41:52 -04:00
João Moura
58bbff124b fix agentops attribute 2024-07-03 18:41:52 -04:00
Lorenze Jay
fae843a243 Lj/optional agent in task bug (#843)
* fixed bug for manager overriding task agent and then added pydanic valditors to sequential when no agent is added to task

* better test and fixed task.agent logic

* fixed tests and better validator message

* added validator for async_execution true in tasks whenever in hierarchical run
2024-07-03 18:45:53 -03:00
Brandon Hancock (bhancock_ai)
0b277e066d Bugfix/kickoff for each usage metrics (#844)
* WIP. Figuring out disconnect issue.

* Cleaned up logs now that I've isolated the issue to the LLM

* more wip.

* WIP. It looks like usage metrics has always been broken for async

* Update parent crew who is managing for_each loop

* Merge in main to bugfix/kickoff-for-each-usage-metrics

* Clean up code for review

* Add new tests

* Final cleanup. Ready for review.

* Moving copy functionality from Agent to BaseAgent

* Fix renaming issue

* Fix linting errors

* use BaseAgent instead of Agent where applicable
2024-07-03 15:30:53 -03:00
Alex Brinsmead
01b14ed3a7 Fix typos in EN "human_feedback" string (#859)
* Fix typo in EN "human_feedback" string

* Fix typos in EN "human_feedback" string
2024-07-03 15:26:58 -03:00
Taleb
e5f6374d98 Improved documentation for training module usage (#860)
- Added detailed steps for training the crew programmatically.
- Clarified the distinction between using the CLI and programmatic approaches.

This update makes it easier for users to understand how to train their crew both through the CLI and programmatically, whether using a UI or API endpoints.

Again Thank you to the author for the great project and the excellent foundation provided!
2024-07-03 15:26:32 -03:00
Brandon Hancock (bhancock_ai)
c9a639b057 Fix issue agentop poetry install issue (#863)
* Fix issue agentop poetry install issue

* Updated install requirements tests to fail if .lock becomes out of sync with poetry install. Cleaned up old issues that were merged back in.
2024-07-03 15:22:32 -03:00
Braelyn Boynton
75ecdae00e Add back AgentOps as Optional Dependency (#543)
* implements agentops with a langchain handler, agent tracking and tool call recording

* track tool usage

* end session after completion

* track tool usage time

* better tool and llm tracking

* code cleanup

* make agentops optional

* optional dependency usage

* remove telemetry code

* optional agentops

* agentops version bump

* remove org key

* true dependency

* add crew org key to agentops

* cleanup

* Update pyproject.toml

* Revert "true dependency"

This reverts commit e52e8e9568.

* Revert "cleanup"

This reverts commit 7f5635fb9e.

* optional parent key

* agentops 0.1.5

* Revert "Revert "cleanup""

This reverts commit cea33d9a5d.

* Revert "Revert "true dependency""

This reverts commit 4d1b460b

* cleanup

* Forcing version 0.1.5

* Update pyproject.toml

* agentops update

* noop

* add crew tag

* black formatting

* use langchain callback handler to support all LLMs

* agentops version bump

* track task evaluator

* merge upstream

* Fix typo in instruction en.json (#676)

* Enable search in docs (#663)

* Clarify text in docstring (#662)

* Update agent.py (#655)

Changed default model value from gpt-4 to gpt-4o.
Reasoning.
gpt-4 costs 30$ per million tokens while gpt-4o costs 5$.
This is more cost friendly for default option.

* Update README.md (#652)

Rework example so that if you use a custom LLM it doesn't throw code errors by uncommenting.

* Update BrowserbaseLoadTool.md (#647)

* Update crew.py (#644)

Fixed Type on line 53

* fixes #665 (#666)

* Added timestamp to logger (#646)

* Added timestamp to logger

Updated the logger.py file to include timestamps when logging output. For example:

 [2024-05-20 15:32:48][DEBUG]: == Working Agent: Researcher
 [2024-05-20 15:32:48][INFO]: == Starting Task: Research the topic
 [2024-05-20 15:33:22][DEBUG]: == [Researcher] Task output:

* Update tool_usage.py

* Revert "Update tool_usage.py"

This reverts commit 95d18d5b6f.

incorrect bramch for this commit

* support skip auto end session

* conditional protect agentops use

* fix crew logger bug

* fix crew logger bug

* Update crew.py

* Update tool_usage.py

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Howard Gil <howardbgil@gmail.com>
Co-authored-by: Olivier Roberdet <niox5199@gmail.com>
Co-authored-by: Paul Sanders <psanders1@gmail.com>
Co-authored-by: Anudeep Kolluri <50168940+Anudeep-Kolluri@users.noreply.github.com>
Co-authored-by: Mike Heavers <heaversm@users.noreply.github.com>
Co-authored-by: Mish Ushakov <10400064+mishushakov@users.noreply.github.com>
Co-authored-by: theCyberTech - Rip&Tear <84775494+theCyberTech@users.noreply.github.com>
Co-authored-by: Saif Mahmud <60409889+vmsaif@users.noreply.github.com>
2024-07-02 21:52:15 -03:00
Salman Faroz
6848d813bf Update Sequential.md (#849)
To Resolve : 
pydantic_core._pydantic_core.ValidationError: 1 validation error for Task
expected_output
Field required [type=missing, input_value=, input_type=dict]
For further information visit https://errors.pydantic.dev/2.6/v/missing

"Expected Output" is mandatory now as it forces people to be specific about the expected result and get better result


refer : https://github.com/joaomdmoura/crewAI/issues/308
2024-07-02 21:17:53 -03:00
Taleb
138bb6169d Enhanced documentation for readability and clarity (#855)
- Added a "Parameters" column to attribute tables. Improved overall document formatting for enhanced readability and ease of use.

Thank you to the author for the great project and the excellent foundation provided!
2024-07-02 21:17:04 -03:00
Lorenze Jay
5f0af16616 fixed mixin (#831)
* fixed mixin

* WIP: fixing types

* type fixes on mixin
2024-07-02 21:16:26 -03:00
João Moura
9de4f0d9a4 preparing new version 2024-07-02 09:03:20 -07:00
Eduardo Chiarotti
cd77aeebb9 docs: Update training feature/code interpreter docs (#852)
* docs: remove training docs from README

* docs: add CodeinterpreterTool to docs and update docs

* docs: fix name of tool
2024-07-02 13:00:37 -03:00
João Moura
5ad3712810 adding link to docs 2024-07-01 18:41:31 -07:00
João Moura
8be02d948d preparing new version 2024-07-01 18:28:11 -07:00
João Moura
9dcf96eb4c updatign tools 2024-07-01 15:25:29 -07:00
João Moura
5c78188d22 rollback update to new version 2024-07-01 15:25:10 -07:00
João Moura
b67b691fb8 preparing new version 2024-07-01 15:12:22 -07:00
João Moura
14f4add4ab preparing new version 2024-07-01 15:10:13 -07:00
João Moura
6386903c91 preparing new version 2024-07-01 08:41:13 -07:00
João Moura
819f5794e3 preparing new version 2024-07-01 06:08:46 -07:00
João Moura
edc46b2163 preparing new version 2024-07-01 05:48:47 -07:00
João Moura
8c63dbd4e1 new docs 2024-07-01 05:32:22 -07:00
João Moura
0dd77b5662 small formatting details 2024-07-01 05:32:22 -07:00
João Moura
49ab880623 Updating docs 2024-07-01 05:32:22 -07:00
João Moura
0f596480b0 updating docs 2024-07-01 05:32:22 -07:00
João Moura
dee7bd6258 small refractoring for new version 2024-07-01 05:32:22 -07:00
gpu7
64ec4eb1e6 bugfix in python script sample code (#787)
Add the line:

process = Process.sequential
2024-07-01 00:23:06 -03:00
JoePro
29e72b6ff5 Update LLM-Connections.md (#796)
Revised to utilize Ollama from langchain.llms instead as the functionality from the other method simply doesn't work when delegating.

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-01 00:22:38 -03:00
Eelke van den Bos
13283639e4 Set manager verbosity to crew verbosity by default (#797)
Fixes #793
2024-07-01 00:20:39 -03:00
finecwg
f14ddff141 Update tool_usage.py (#828)
fixed error for some cases with Pandas DataFrame:

ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
2024-07-01 00:19:36 -03:00
Bruno Tanabe
1c884f50ed fix: Fix grammar error in documentation 'Crew Attributes' (#836)
Correction of grammar error in the CrewAI documentation, on the page 'https://docs.crewai.com/core-concepts/Crews/' it says 'ustom' instead of 'Custom'.
2024-07-01 00:16:06 -03:00
Gui Vieira
647bd794ed Improve telemetry (#818)
* Improve telemetry

* Minor adjustments

* Try to fix typing error

* Try to fix typing error [2]
2024-06-28 20:05:47 -03:00
João Moura
0807798777 preparing new version 2024-06-27 11:04:08 -07:00
Eduardo Chiarotti
1e9c398ca5 docs: add docs for training (#824) 2024-06-27 14:56:32 -03:00
Lorenze Jay
9678d22724 Lorenzejay/byoa (#776)
* better spacing

* works with llama index

* works on langchain custom just need delegation to work

* cleanup for custom_agent class

* works with different argument expectations for agent_executor

* cleanup for hierarchial process, better agent_executor args handler and added to the crew agent doc page

* removed code examples for langchain + llama index, added to docs instead

* added key output if return is not a str for and added some tests

* added hinting for CustomAgent class

* removed pass as it was not needed

* closer just need to figuire ou agentTools

* running agents - llamaindex and langchain with base agent

* some cleanup on baseAgent

* minimum for agent to run for base class and ensure it works with hierarchical process

* cleanup for original agent to take on BaseAgent class

* Agent takes on langchainagent and cleanup across

* token handling working for usage_metrics to continue working

* installed llama-index, updated docs and added better name

* fixed some type errors

* base agent holds token_process

* heirarchail process uses proper tools and no longer relies on hasattr for token_processes

* removal of test_custom_agent_executions

* this fixes copying agents

* leveraging an executor class for trigger llamaindex agent

* llama index now has ask_human

* executor mixins added

* added output converter base class

* type listed

* cleanup for output conversions and tokenprocess eliminated redundancy

* properly handling tokens

* simplified token calc handling

* original agent with base agent builder structure setup

* better docs

* no more llama-index dep

* cleaner docs

* test fixes

* poetry reverts and better docs

* base_agent_tools set for third party agents

* updated task and test fix
2024-06-27 14:56:08 -03:00
Eduardo Chiarotti
4e1506f68e fix: fix trainig_data error (#820)
* fix: fix trainig_data error

* fix: fix lack crew on agent

* fix: fix lack crew on agent executor
2024-06-27 12:58:20 -03:00
Eduardo Chiarotti
a912ed33aa fix: fix tests (#814) 2024-06-27 05:45:23 -03:00
Eduardo Chiarotti
695bb4848e feat: add CodeInterpreterTool to run when enable code execution (#804)
* feat: add CodeInterpreterTool to run when enable code execution is allowed on agent

* feat: change to allow_code_execution

* feat: add readme for CodeInterpreterTool
2024-06-27 02:25:39 -03:00
Nuraly
b9bf7c19aa Update Agents.md (#816)
Made a space to ensure that Header formatting is displayed correctly on the website
2024-06-27 02:23:18 -03:00
Eduardo Chiarotti
3573a61568 feat: Add Train feature for Crews (#686)
* feat: add training logic to agent and crew

* feat: add training logic to agent executor

* feat: add input parameter  to cli command

* feat: add utilities for the training logic

* feat: polish code, logic and add private variables

* feat: add docstring and type hinting to executor

* feat: add constant file, add constant to code

* feat: fix name of training handler function

* feat: remove unused var

* feat: change file handler file name

* feat: Add training handler file, class and change on the code

* feat: fix name error from file

* fix: change import to adapt to logic

* feat: add training handler test

* feat: add tests for file and training_handler

* feat: add test for task evaluator function

* feat: change text to fit in-screen

* feat: add test for train function

* feat: add test for agent training_handler function

* feat: add test for agent._use_trained_data
2024-06-27 02:22:34 -03:00
Bruno Tanabe
0594a7f9d8 fix: Fix grammar error in documentation in PDF Search Tool (#819)
Correction of grammar error in the CrewAI documentation, on the page 'https://docs.crewai.com/tools/PDFSearchTool/' it says 'Optinal' instead of 'Optional'.
2024-06-27 00:41:22 -03:00
João Moura
41debd1191 updating docs 2024-06-22 19:49:50 -03:00
João Moura
08745a8632 preparing new version 2024-06-22 17:47:35 -03:00
João Moura
c12fa808ae Preparing new version 2024-06-22 17:01:22 -03:00
João Moura
aee991fb7b preapring to cut new version 2024-06-20 12:58:50 -03:00
João Moura
3d5d71f096 addding new kickoff docs 2024-06-20 02:46:13 -03:00
João Moura
25528dbee1 adding new docs to the menu 2024-06-20 02:24:02 -03:00
João Moura
73c3d26d55 Updating Docs 2024-06-20 02:19:35 -03:00
Brandon Hancock (bhancock_ai)
72e20a5dbb Resolved Merge Conflicts for PR #712: Remove Hyphen in co-workers (#786)
* removed hyphen in co-workers

* Fix issue with AgentTool agent selection. The LLM included double quotes in the agent name which messed up the string comparison. Added additional types. Cleaned up error messaging.

* Remove duplicate import

* Improve explanation

* Revert poetry.lock changes

* Fix missing line in poetry.lock

---------

Co-authored-by: madmag77 <goncharov.artemv@gmail.com>
2024-06-18 16:57:56 -03:00
João Moura
ff80f57816 fixing bug to multiple crews on yaml format in the same project 2024-06-18 02:32:53 -03:00
Lorenze Jay
9a71e66a62 Lorenzejay/crew kickoff union type (#767)
* added extra parameter for kickoff to return token usage count after result

* added output_token_usage to class and in full_output

* logger duplicated

* added more types

* added usage_metrics to full output instead

* added more to the description on full_output

* possible mispacing

* updated kickoff return types to be either string or dict applicable when full_output is set

* removed duplicates
2024-06-14 14:23:55 -03:00
Lorenze Jay
b992fd26b9 fixes crewai docs assembling crew code block example code (#768) 2024-06-14 14:23:30 -03:00
Dan McKinley
2aae7600f4 updates instructor to the latest version. (#760)
* updates instructor to the latest version. adds jsonref, which instructor seems to depend on.

* updates embedchain reference, necessary for python 3.12
2024-06-14 01:57:40 -03:00
Lorenze Jay
14e7046980 added usage_metrics to full output (#756)
* added extra parameter for kickoff to return token usage count after result

* added output_token_usage to class and in full_output

* logger duplicated

* added more types

* added usage_metrics to full output instead

* added more to the description on full_output

* possible mispacing
2024-06-12 14:18:52 -03:00
Guangqiang Lu
9e2eb2700a add datetime import for logger.py (#702) 2024-06-11 16:43:15 -03:00
Matt Thompson
4f093e2626 fix: correct default model (gpt-4o), correct token counts, and correct TaskOutput attributes (added agent) (#749)
* fix: 'from datetime import datetime for logging' to print the timestamp

* fix: correct default model (gpt-4o), correct token counts, and correct TaskOutput attributes (added agent)

* test: verify Task callback data is an instance of TaskOutput
2024-06-11 15:29:22 -03:00
Brandon Hancock (bhancock_ai)
e202592715 Feature/kickoff for each sync (#680)
* Sync with deep copy working now

* async working!!

* Clean up code for review

* Fix naming

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-06-11 12:51:39 -03:00
Taradepan R
3a77b418cb updated the import for cohere llm (#696) 2024-06-04 03:32:23 -03:00
Karthik Kalyanaraman
e0a42eb394 Add Langtrace to the "How to" docs for CrewAI Agent Observability (#634)
* Add files via upload

* Create Langtrace-Observability.md

* Rename crewai-agentops-stats.png to crewai-langtrace-stats.png
2024-05-29 02:14:29 -03:00
theCyberTech - Rip&Tear
eecb6402cf Added timestamp to logger (#646)
* Added timestamp to logger

Updated the logger.py file to include timestamps when logging output. For example:

 [2024-05-20 15:32:48][DEBUG]: == Working Agent: Researcher
 [2024-05-20 15:32:48][INFO]: == Starting Task: Research the topic
 [2024-05-20 15:33:22][DEBUG]: == [Researcher] Task output:

* Update tool_usage.py

* Revert "Update tool_usage.py"

This reverts commit 95d18d5b6f.

incorrect bramch for this commit
2024-05-26 01:32:16 -03:00
Saif Mahmud
0f3e92108f fixes #665 (#666) 2024-05-26 01:31:28 -03:00
theCyberTech - Rip&Tear
824b0e85f0 Update crew.py (#644)
Fixed Type on line 53
2024-05-24 00:06:27 -03:00
Mish Ushakov
81788d1ad2 Update BrowserbaseLoadTool.md (#647) 2024-05-24 00:05:52 -03:00
Mike Heavers
c317c0ee36 Update README.md (#652)
Rework example so that if you use a custom LLM it doesn't throw code errors by uncommenting.
2024-05-24 00:05:32 -03:00
Anudeep Kolluri
59336515b0 Update agent.py (#655)
Changed default model value from gpt-4 to gpt-4o.
Reasoning.
gpt-4 costs 30$ per million tokens while gpt-4o costs 5$.
This is more cost friendly for default option.
2024-05-24 00:04:53 -03:00
Paul Sanders
492d86b701 Clarify text in docstring (#662) 2024-05-24 00:04:01 -03:00
Paul Sanders
e64512a67e Enable search in docs (#663) 2024-05-24 00:03:31 -03:00
Olivier Roberdet
bc786cb9ba Fix typo in instruction en.json (#676) 2024-05-24 00:03:07 -03:00
Eduardo Chiarotti
b48beaaf9c feat: Add crew train cli (#624)
* fix: fix crewai-tools cli command

* feat: add crewai train CLI command

* feat: add the tests

* fix: fix typing hinting issue on code

* fix: test.yml

* fix: fix test

* fix: removed fix since it didnt changed the test
2024-05-23 18:46:45 -03:00
João Moura
393a86792c adding agent to task output 2024-05-16 05:12:32 -03:00
Jason Schrader
77f595e617 Add version command to CLI (#348)
* feat: add version command to cli with tools flag

* test: check output of version and tools flag

* fix: add version tool info to cli outputs
2024-05-15 19:50:49 -03:00
João Moura
978653db75 fixing crew base 2024-05-14 17:40:38 -03:00
João Moura
99af98b16a ppreparing new version 0.30.9 2024-05-14 11:32:05 -03:00
João Moura
643c1d6d31 cutting new version with no yaml parsing 2024-05-13 23:09:29 -03:00
João Moura
a0dcc65dac preparing new version 2024-05-13 22:32:24 -03:00
João Moura
fc510dbc3d New version, updating dependencies, fixing memory 2024-05-13 22:26:41 -03:00
João Moura
eaa8aa7d35 preparing new version 2024-05-13 12:59:55 -03:00
João Moura
6e1fe5171e preparing new version 2024-05-13 02:35:46 -03:00
Saif Mahmud
526f594d47 Fixes #603 (#604) 2024-05-13 02:34:52 -03:00
João Moura
f8949ba975 Adding new tests 2024-05-13 02:34:33 -03:00
João Moura
f175ac32d0 Small RC Fixes (#608)
* mentioning ollama on the docs as embedder

* lowering barrier to match tool with simialr name

* Fixing agent tools to support co_worker

* Adding new tests

* Fixing type"

* updating tests

* fixing conflict
2024-05-13 02:29:04 -03:00
Ítalo Vieira
c0a7e75f29 fix typo exectue -> execute (#607) 2024-05-13 02:19:06 -03:00
João Moura
bc741e9e3b preparing new version 2024-05-12 19:56:40 -03:00
Eduardo Chiarotti
6eb0c0666b feat: add mypy as type checker, update code and add comment to reference (#591)
* fix: fix test actually running

* fix: fix test to not send request to openai

* fix: fix linting to remove cli files

* fix: exclude only files that breaks black

* fix: Fix all Ruff checkings on the code and Fix Test with repeated name

* fix: Change linter name on yml file

* feat: update pre-commit

* feat: remove need for isort on the code

* feat: add mypy as type checker, update code and add comment to reference

* feat: remove black linter

* feat: remove poetry to run the command

* feat: change logic to test mypy

* feat: update tests yml to try to fix the tests gh action

* feat: try to add just mypy to run on gh action

* feat: fix yml file

* feat: add comment to avoid issue on gh action

* feat: decouple pytest from the necessity of poetry install

* feat: change tests.yml to test different approach

* feat: change to poetry run

* fix: parameter field on yml file

* fix: update parameters to be on the pyproject

* fix: update pyproject to remove import untyped errors
2024-05-10 16:37:52 -03:00
Steven Edwards
b20853d21d Task needs an expected_output field in docs. (#568)
* Task needs an expected_output field in docs..

* Add missing comma.
2024-05-10 11:55:10 -03:00
Ayo Ayibiowu
dedaafd863 feat: adds support to automatically fallback to the default encoding (#596)
* feat: adds support to automatically fallbackk to the default encoding

* fix: use the correct method
2024-05-10 11:54:45 -03:00
Eduardo Chiarotti
f0c9e80d33 Feat: Add Ruff to improve linting/formatting (#588)
* fix: fix test actually running

* fix: fix test to not send request to openai

* fix: fix linting to remove cli files

* fix: exclude only files that breaks black

* fix: Fix all Ruff checkings on the code and Fix Test with repeated name

* fix: Change linter name on yml file

* feat: update pre-commit

* feat: remove need for isort on the code

* feat: remove black linter

* feat: update tests yml to try to fix the tests gh action
2024-05-10 11:53:53 -03:00
GabeKoga
16907b13db Fix/yaml formatting (#590)
* Bug/curly_braces_yaml

Added parser to help users on yaml syntax

* context error

Patch and later will prioritize this again to have context work with the yaml
2024-05-09 21:35:21 -03:00
Eduardo Chiarotti
1b73933be0 fix: fix test actually running (#587)
* fix: fix test actually running

* fix: fix test to not send request to openai

* fix: fix linting to remove cli files

* fix: exclude only files that breaks black
2024-05-09 21:33:48 -03:00
João Moura
cbf6be9df1 prepping new version 2024-05-09 09:12:57 -03:00
Eduardo Chiarotti
8063e1d154 fix: Add validation fix output_file issue when have '/' (#585)
* fix: Add validation fix output_file issue when have /

* fix: run black to format code

* fix: run black to format code
2024-05-09 08:11:00 -03:00
João Moura
402c5f477b Revert "Fix .md doc file 404 error on github (#564)" (#567)
This reverts commit 6f17b2d0ff.
2024-05-05 10:35:46 -03:00
Alex Fazio
8106f3bbba corrected imprecision in the instantiation (#555) 2024-05-05 03:55:13 -03:00
João Moura
5c52ae731d preparing new RC version 2024-05-05 02:57:29 -03:00
Jackie Qi
6f17b2d0ff Fix .md doc file 404 error on github (#564)
* fix md file link not working on github

* miss one changed file
2024-05-05 02:53:20 -03:00
João Moura
d6b08f097f updating .gitignore 2024-05-05 02:52:43 -03:00
João Moura
54668d252c TYPO 2024-05-05 02:14:49 -03:00
João Moura
9071f27d9f Fixing manager_agent_support 2024-05-05 00:51:18 -03:00
João Moura
e9cc746851 cutting new RC 2024-05-03 00:55:32 -03:00
João Moura
b0e38c2a2d adding meomization to crewai project annotations 2024-05-03 00:49:37 -03:00
tarekadam
9b25b4c5bf Update LLM-Connections.md (#553)
fixes command to lower case
2024-05-03 00:25:03 -03:00
João Moura
68e1444ed8 updating manager llm pydantic error 2024-05-02 23:39:56 -03:00
João Moura
3f1fda6a63 curring new rc 2024-05-02 23:22:02 -03:00
João Moura
e14d457905 updating gitignore 2024-05-02 21:57:49 -03:00
João Moura
9648254ec7 Better json parsing for smaller models 2024-05-02 21:57:41 -03:00
João Moura
3360cad4cc updating git ignore 2024-05-02 20:52:43 -03:00
David Solito
e280e4a62a Update crew.py (#551)
Ad manager_agent description in crew docstring
2024-05-02 19:21:22 -03:00
João Moura
cf9d946969 new version 2024-05-02 05:00:29 -03:00
João Moura
d9124b333b cutting new version 2024-05-02 05:00:29 -03:00
João Moura
cbe53d9daf small improvements for i18n 2024-05-02 05:00:29 -03:00
João Moura
2c17ff3e9f new version 2024-05-02 05:00:29 -03:00
João Moura
7ad0357eaa adding initial support for external prompt file 2024-05-02 05:00:29 -03:00
Jason Schrader
b7d4c4843d fix typos in generated readme (#345)
small things I noticed while upgrading our setup!
2024-05-02 03:32:18 -03:00
Dmitri Khokhlov
5daa40b498 fix: TypeError: LongTermMemory.search() missing 1 required positional argument: 'latest_n' (#488)
Signed-off-by: Dmitri Khokhlov <dkhokhlov@gmail.com>
2024-05-02 03:28:36 -03:00
Ikko Eltociear Ashimine
93dc0874b5 fix typo (#489)
* Update test_crew_function_calling_llm.yaml

ouput -> output

* Update tool_usage.py

ouput -> output
2024-05-02 03:27:40 -03:00
Sarvajith Adyanthaya
cbe9404bb9 Changed "Inert" to "Innate" #470 (#490) 2024-05-02 03:27:09 -03:00
ftoppi
19fe093ce9 Update task.py: try to find json in task output using regex (#491)
* Update task.py: try to find json in task output using regex

Sometimes the model replies with a valid and additional text, let's try to extract and validate it first. It's cheaper than calling LLM for that.

* Update task.py

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-05-02 03:26:34 -03:00
Mosta
f7e856a16d Update PGSearchTool.md (#492)
typo on code snippet
2024-05-02 03:22:18 -03:00
Samuel Kocúr
75b495c544 fix db_storage_path handling to use env variable or cwd (#507) 2024-05-02 03:16:54 -03:00
Mish Ushakov
dfaf0700f1 Added Browserbase loader to the docs (#508)
* Create BrowserbaseLoadTool.md

* added browserbase loader
2024-05-02 03:15:59 -03:00
deadlious
e16b1f4a53 Tool name recognition based on string distance (#521)
* adding variations of ask question and delegate work tools

* Revert "adding variations of ask question and delegate work tools"

This reverts commit 38d4589be8.

* adding distance calculation for tool names.

* proper formatting

* remove brackets
2024-05-02 03:15:34 -03:00
Victor Carvalho Tavernari
3f16686627 Add conditional check for output file directory creation (#523)
This commit adds a conditional check to ensure that the output file directory exists before attempting to create it. This ensures that the code does not
fail in cases where the directory does not exist and needs to be created. The condition is added in the `_save_file` method of the `Task` class, ensuring
that the correct behavior is maintained for saving results to a file.
2024-05-02 03:13:51 -03:00
Jim Collins
48ad3d5a5a Update README.md (#525)
Reworded "If you want to also install crewai-tools, which is a package with tools that can be used by the agents, but more dependencies, you can install it with, example below uses it:" for clarity
2024-05-02 03:12:03 -03:00
Alex Fazio
d9043f0a0a fix to import statement PGSearchTool.md (#548)
fix to the import statement in PGSearchTool documentation
2024-05-02 03:10:43 -03:00
João Moura
2ae6fc4bd8 smal fixes and better guardrail for parsing small models tools usage 2024-05-02 02:21:59 -03:00
João Moura
84775373a6 Adding support for system, prompt and answe templates 2024-05-02 02:21:59 -03:00
João Moura
8360abd1c0 removing unnecessary test 2024-05-02 02:21:59 -03:00
João Moura
9d4dc1a081 unifying co-worker string 2024-05-02 02:21:59 -03:00
João Moura
6840fd8ffc remving blank line 2024-05-02 02:21:59 -03:00
João Moura
83596c1a32 Fixing task callback 2024-05-02 02:21:59 -03:00
João Moura
55fcda758a Revert "AgentOps Implementation (#411)"
This reverts commit bf436f885e.
2024-05-02 02:21:59 -03:00
Alex Fazio
51fced9913 docs fix to xml tool import statement (#546)
* docs fix to xml tool import statement

* Update XMLSearchTool.md
2024-05-01 12:53:49 -03:00
Braelyn Boynton
bf436f885e AgentOps Implementation (#411)
* implements agentops with a langchain handler, agent tracking and tool call recording

* track tool usage

* end session after completion

* track tool usage time

* better tool and llm tracking

* code cleanup

* make agentops optional

* optional dependency usage

* remove telemetry code

* optional agentops

* agentops version bump

* remove org key

* true dependency

* add crew org key to agentops

* cleanup

* Update pyproject.toml

* Revert "true dependency"

This reverts commit e52e8e9568.

* Revert "cleanup"

This reverts commit 7f5635fb9e.

* optional parent key

* agentops 0.1.5

* Revert "Revert "cleanup""

This reverts commit cea33d9a5d.

* Revert "Revert "true dependency""

This reverts commit 4d1b460b

* cleanup

* Forcing version 0.1.5

* Update pyproject.toml

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-20 12:20:13 -03:00
Elijas Dapšauskas
f7f9720ce8 Allow minor version patches to python-dotenv (#339)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-19 02:44:08 -03:00
Emmanuel Crown
61c745357d Fixed a typo in the main readme on the llm selection , options for an agent (#349) 2024-04-19 02:42:04 -03:00
Sajal Sharma
a49e3daaba Update LLM-Connections.md (#353)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-19 02:41:36 -03:00
Kaushal Powar
9cbc6f4531 Update GitHubSearchTool.md (#357)
GithubSearchTool was misspelled as GitHubSearchTool

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-19 02:40:38 -03:00
Selim Erhan
46f8d6c31e Update LLM-Connections.md (#359)
Created a short documentation on how to use Llama2 locally with crewAI thanks to the help of Ollama.

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-19 02:39:33 -03:00
Christian24
038c805c8c Fix lockfile (#477) 2024-04-18 11:28:06 -03:00
João Moura
be5c879697 Update README.md 2024-04-17 00:02:49 -03:00
João Moura
f3bfabb149 Adding manager llm 2024-04-16 16:50:44 -03:00
João Moura
60995e03d1 adding new installing crew docs 2024-04-16 16:50:44 -03:00
Joseph Bastulli
74f23ada73 fix: swapped the task callback assignment (#443) 2024-04-16 15:54:42 -03:00
Jack Hayter
e307da43c5 Prevent duplicate TokenCalcHandler callbacks on Agent (#475) 2024-04-16 15:54:02 -03:00
Alex Reibman
2bc0de8716 Incorrect documentation link for AgentOps (#458)
* remove .md

* made language more clear

* update images and documentation for spelling

* update typos and links

* update repo placement

* update wording

* clarify

* update wording

* Added clearer features

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-16 08:24:30 -03:00
Jonathan Morales Vélez
972b24eab7 fix link to observability (#461) 2024-04-16 08:22:11 -03:00
Preston Badeer
81bb91db14 Update LLM-Connections.md with up to date LM Studio instructions (#468)
Co-authored-by: Preston Badeer <467756+pbadeer@users.noreply.github.com>
2024-04-16 08:20:56 -03:00
Eivind Hyldmo
52f0d22784 Fixed typo in Tools.md (#472) 2024-04-16 08:20:25 -03:00
Lennart J. Kurzweg
19e0e3fcb4 Added optional manager_agent parameter (#474)
* Added optional manager_agent parameter

* Update crew.py

---------

Co-authored-by: Lennart J. Kurzweg (Nx2) <git@nx2.site>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-16 08:18:36 -03:00
João Moura
69964e005d cutting new version with updated cli template 2024-04-11 11:30:30 -03:00
João Moura
b0dfe95dae Preparing new version to use new version of crewai-tools 2024-04-10 11:52:12 -03:00
Cfomodz
c2a88018d8 Update README.md (#442) 2024-04-08 05:59:04 -03:00
João Moura
21ab621d02 preparring new version 2024-04-08 02:08:57 -03:00
João Moura
e2ad0efbed adding missing import 2024-04-08 02:08:43 -03:00
João Moura
abeb9bdac3 preparing new version 2024-04-08 01:39:22 -03:00
João Moura
ed1581dee5 removing unnecessary certificate 2024-04-08 01:39:11 -03:00
João Moura
be2afbe990 preparing new version 2024-04-07 14:55:45 -03:00
João Moura
0c717fb24a fixing long temr memory interpolation 2024-04-07 14:55:35 -03:00
João Moura
a0c4cea9f9 preping new verison with new tools package 2024-04-07 14:19:50 -03:00
João Moura
685130c18c preparing new version 2024-04-07 04:18:05 -03:00
rajib
b5ecb36b50 The suggestions were getting split at character level and not at sentence level (#436)
* fix the issue where the suggestions were split at character level

* Update contextual_memory.py

---------

Co-authored-by: rajib76 <rajib76@yahoo.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-07 02:57:23 -03:00
João Moura
61f3ad0662 Updating tool dependency 2024-04-05 22:46:32 -03:00
João Moura
428f8d2f05 preparing new version 2024-04-05 19:52:13 -03:00
shivam singh
8314591523 doc: Add documentation to Task model. (#363) 2024-04-05 19:49:36 -03:00
高璟琦
c1049a5d10 add solar example (#373)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-05 19:48:27 -03:00
Rueben Ramirez
80c1b6a2ee whitespace consistency across docs (#407)
I saw a rendedered whitespace inconsistency in the Tasks docs here:
c87d887efc/docs/core-concepts/Tasks.md (L173)

So I set out to patch that up to make it easier to read.  I then noticed
there were a few whitespace inconsistencies:
- 2 spaces
- 4 whitespaces
- tabs

It appears that the 4 whitespaces is the prevalent whitesapce usage, so
I overwrote other whitespace usages with that in this commit.

Co-authored-by: Rueben Ramirez <rramirez@ruebens-mbp.tail7c016.ts.net>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-05 19:47:09 -03:00
GabeKoga
289e12de5a Feature: Log files (#423)
* log_file

feature: added a new parameter for crew that creates a txt file to log agent execution

* unit tests and documentation

unit test if file is created but not what is inside the file
2024-04-05 19:44:50 -03:00
GabeKoga
459a404563 purple (#428)
changed from yellow to purple for visibility
2024-04-05 18:25:59 -03:00
João Moura
e7fcf5cd54 TYPO 2024-04-05 09:37:51 -03:00
João Moura
c47c288138 fixing memory docs 2024-04-05 08:59:54 -03:00
João Moura
9216f1d9b2 adding specific memmory docs 2024-04-05 08:59:20 -03:00
João Moura
f7fc61f043 Increasing default max inter 2024-04-05 08:36:09 -03:00
João Moura
4c274dbca7 updating tests 2024-04-05 08:33:31 -03:00
João Moura
9b37aab61a adding max execution time 2024-04-05 08:31:25 -03:00
João Moura
da72f4cfc8 preparing new version 2024-04-05 08:24:41 -03:00
João Moura
a0ba9a81b2 not overriding llm callbacks 2024-04-05 08:24:20 -03:00
João Moura
52963880ce fix docs 2024-04-04 17:36:50 -03:00
João Moura
748ab102c2 preparing new version 0.27.0 2024-04-04 15:29:45 -03:00
João Moura
fd12609330 Adding new test for crew memory 2024-04-04 15:29:45 -03:00
João Moura
86b8b3e9bc Adding link to agentops docs 2024-04-04 15:29:45 -03:00
João Moura
1ed5881b30 updating dependendies 2024-04-04 15:29:45 -03:00
João Moura
a1e1113101 Removing memory flag from agent in favor of crew memory 2024-04-04 15:29:45 -03:00
João Moura
c45d1c337c TYPO 2024-04-04 15:29:45 -03:00
João Moura
1fb9f9c585 updating tools dependency 2024-04-04 15:29:45 -03:00
João Moura
029b8796f9 Updating docs 2024-04-04 15:29:45 -03:00
Braelyn Boynton
9abbed2049 AgentOps Docs (#412)
Agentops documentation
2024-04-04 15:09:31 -03:00
ftoppi
ce9c343c0a tasks.py: don't call Converter when model response is valid (#406)
* tasks.py: don't call Converter when model response is valid

Try to convert the task output to the expected Pydantic model before sending it to Converter, maybe the model got it right.
2024-04-04 10:11:46 -03:00
ftoppi
2edc824b61 Update Creating-a-Crew-and-kick-it-off.md: add compatible python versions (#420)
* Update Creating-a-Crew-and-kick-it-off.md: add compatible python versions

* Update Creating-a-Crew-and-kick-it-off.md

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-03 19:10:11 -03:00
João Moura
0b70c3e8db preparing new rc 2024-04-03 08:11:30 -03:00
João Moura
3c64626c67 setting fake openai key 2024-04-03 06:56:02 -03:00
João Moura
a368e53a02 updating dependencies 2024-04-03 06:03:18 -03:00
João Moura
c730d73c10 force reseting db in care of change in dimensions 2024-04-03 05:52:35 -03:00
João Moura
eb17e192c0 Fixing db path 2024-04-03 05:45:59 -03:00
João Moura
6532370c30 creating db file based on package name 2024-04-03 05:22:20 -03:00
João Moura
1da288de85 preparing new version 2024-04-03 05:04:26 -03:00
João Moura
17a47224f3 adding initial memory docs 2024-04-03 05:04:14 -03:00
João Moura
6129c908b8 updating gitignore 2024-04-03 05:04:00 -03:00
João Moura
35f6156ed4 checking crew before using memory 2024-04-03 05:03:43 -03:00
João Moura
4dcbcfe533 cutting new version, adding cache_function docs 2024-04-02 14:26:22 -03:00
João Moura
80fd67cdea updating specs 2024-04-02 13:51:16 -03:00
João Moura
0abfcedda8 updating db storage and dependencies 2024-04-02 13:51:05 -03:00
João Moura
244458a1c9 preparing RC 2024-04-01 14:38:26 -03:00
João Moura
c87d887efc update docs 2024-04-01 11:14:06 -03:00
João Moura
bbd4e58b65 Starting i18n language file support 2024-04-01 10:45:17 -03:00
João Moura
f85bf00409 Adding long term, short term, entity and contextual memory 2024-04-01 10:45:17 -03:00
João Moura
044fbbdbac updating gitignore 2024-04-01 10:45:17 -03:00
João Moura
ecb6a97dc4 updating dependencies 2024-04-01 10:45:17 -03:00
João Moura
b791df95d4 adding editor config 2024-04-01 10:45:17 -03:00
João Moura
3ef2df75fd using .casefold() instead of lower 2024-04-01 10:45:17 -03:00
João Moura
703f1378dc updating git ignore 2024-04-01 10:45:17 -03:00
João Moura
b7983ccd8f updating i18n to take on translation files 2024-04-01 10:45:17 -03:00
João Moura
66d0f448c4 improving agent tools descriptions 2024-04-01 10:45:17 -03:00
João Moura
13766e4339 updating gitignore 2024-04-01 10:45:17 -03:00
João Moura
5f65b7f7f4 improving original promtps 2024-04-01 10:45:14 -03:00
João Moura
d73dd08ef4 Adding custom caching 2024-04-01 10:43:05 -03:00
João Moura
2c359ca926 udpating dependencies 2024-04-01 10:43:05 -03:00
João Moura
a78d5156ac adding proper docs for crewAI 2024-04-01 10:43:05 -03:00
João Moura
81d5fe6fc6 Ability to disable cache at agent and crew level 2024-04-01 10:43:05 -03:00
João Moura
6d36f66a00 Adding HuggingFace docs 2024-04-01 10:43:05 -03:00
João Moura
45ba8d4bd2 fixing warnings 2024-04-01 10:43:05 -03:00
João Moura
6b2f7088a2 updating telemetry to use https 2024-04-01 10:43:05 -03:00
João Moura
b240568a9f Updating crewai-tools dependency 2024-04-01 10:43:05 -03:00
GabeKoga
eb98b8efad feature: human input per task (#395)
* feature: human input per task

* Update executor.py

* Update executor.py

* Update executor.py

* Update executor.py

* Update executor.py

* feat: change human input for unit testing
added documentation and unit test

* Create test_agent_human_input.yaml

add yaml for test

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-01 10:04:56 -03:00
Elle Neal
0c7594d3c2 Update LLM-Connections.md (#252)
Adding Cohere LLM

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-04-01 10:03:16 -03:00
sebestyenmiklos1
cb63c7360b Update Tasks.md (#240)
Fix example code of missing comma.

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-03-31 20:40:51 -03:00
Ken Jenney
4f3144f718 Update ScrapeWebsiteTool.md (#385) 2024-03-30 11:57:08 -03:00
chowderhead
eb27a8803a Update GitHubSearchTool.md (#390)
Import statement has a lower case h
2024-03-30 11:56:34 -03:00
Ikko Eltociear Ashimine
de3bc686c1 Update README.md (#391)
bellow -> below
2024-03-30 11:56:08 -03:00
Gui Vieira
27b3625cd1 Fix input interpolation bug (#369) 2024-03-22 03:08:54 -03:00
Gui Vieira
906c6598d6 Custom model docs (#368) 2024-03-22 03:01:34 -03:00
João Moura
19eaa62d4e adding auto flake 2024-03-11 23:27:19 -03:00
João Moura
6091db1948 cutting new version with proper imports 2024-03-11 23:27:04 -03:00
João Moura
10b4b09872 adding autoflake 2024-03-11 22:56:14 -03:00
João Moura
1295b9d604 cutting new version 2024-03-11 22:55:56 -03:00
João Moura
6b75f460cc preparring new version that autoloads env 2024-03-11 22:19:47 -03:00
João Moura
dd3784e0d0 preparring to cut new version 2024-03-11 19:54:27 -03:00
João Moura
e19993076c updating CLI template and guaranteeing tasks order 2024-03-11 19:53:34 -03:00
João Moura
5aa543f4d2 Preparing new version 2024-03-11 17:37:12 -03:00
João Moura
815606f4c2 Improving agent logging 2024-03-11 17:05:54 -03:00
João Moura
27914bd841 Improve tempalte readme 2024-03-11 17:05:20 -03:00
Abe Gong
711ef0e0f0 Fix typo in Tools.md (#300) 2024-03-11 16:45:28 -03:00
Selim Erhan
bbfb8cd8d7 Update Create-Custom-Tools.md (#311)
Added the langchain "Tool" functionality by creating a python function and then adding the functionality of that function to the tool by 'func' variable in the 'Tool' function.
2024-03-11 16:44:04 -03:00
Johan
6f03d239f3 Update Tools.md (#326)
* Update Tools.md

Fixing typo on the instantiation part

* Update Tools.md

Update tool naming
2024-03-11 16:41:14 -03:00
Bill Chambers
1ed3941e16 Update Crews.md (#331) 2024-03-11 16:40:45 -03:00
Chris Pang
7ce89b8741 added langchain callback to agents (#333)
Co-authored-by: Chris Pang <chris_pang@racv.com.au>
2024-03-11 16:40:10 -03:00
Merbin J Anselm
7d26bd1063 docs: fix formatting in Human-Input-on-Execution.md (#335) 2024-03-11 16:38:59 -03:00
João Moura
0a9404bb46 adding initial CLI support 2024-03-11 16:37:32 -03:00
João Moura
4503f1b9c1 removing double space on logs 2024-03-11 16:23:00 -03:00
João Moura
631fce5b7c Overridding classes __repr__ 2024-03-05 10:12:49 -03:00
João Moura
ef9f85f5d2 adding support for agents and tasks to be defined of configs 2024-03-05 01:26:07 -03:00
João Moura
14b800e2e4 fix readme 2024-03-05 00:31:52 -03:00
João Moura
bbf61fa368 udpatign readme example 2024-03-05 00:29:55 -03:00
João Moura
fd74f87b92 update serper doc 2024-03-04 11:15:49 -03:00
João Moura
0c77f57fd9 updating docs disclaimer 2024-03-04 09:59:01 -03:00
João Moura
dbd3639847 updating docs 2024-03-04 01:29:27 -03:00
João Moura
9105d963fc updating docs 2024-03-03 22:43:51 -03:00
João Moura
960ed03730 fix docs path 2024-03-03 22:18:48 -03:00
João Moura
9972a575a3 Adding tool specific docs 2024-03-03 22:14:53 -03:00
João Moura
2724662fc5 Updating dependencies, cutting new version 2024-03-03 21:23:42 -03:00
João Moura
4556accc62 Updating Docs 2024-03-03 20:54:15 -03:00
João Moura
14eb3c6e82 updating README 2024-03-03 20:54:15 -03:00
João Moura
0e24af9e00 preparing new version 2024-03-03 20:54:15 -03:00
João Moura
e98bce8c03 preparing 0.17.0rc0 2024-03-03 20:54:15 -03:00
João Moura
8468445e1d Update inner tool usage logic to support both regular and function calling 2024-03-03 20:54:15 -03:00
João Moura
c523fcdaab Small docs update 2024-03-03 20:54:15 -03:00
João Moura
475dcdfdbe updating tests 2024-03-03 20:54:15 -03:00
Jay Mathis
24ab2b8da5 Update README.md (#301)
Fix a very minor typo
2024-03-03 12:41:35 -03:00
heyfixit
42cc4a3d1e fix directory typo (#295) 2024-03-03 12:41:14 -03:00
João Moura
d2f8a30c96 cutting a new version addressin backward compatibility 2024-02-28 12:04:13 -03:00
Hongbo
69b43aafbb correct a typo in tool_usage.py (#276) 2024-02-28 09:25:27 -03:00
Gordon Stein
ae5847a845 Update en.json (#281) 2024-02-28 09:24:44 -03:00
Selim Erhan
3f75657a42 Update Tools.md (#283)
Added the link to LangChain built-in toolkits
2024-02-28 09:22:51 -03:00
João Moura
92b995b1bf cutting new versions that doens't include cli just yet 2024-02-28 09:16:13 -03:00
João Moura
1b63f1a2ab Fixing bug preparing new version 2024-02-28 09:09:37 -03:00
João Moura
ebc611740f removing logs and preping new version 2024-02-28 03:44:23 -03:00
João Moura
6d23dc6ad7 removing necessary crewai-tools dependency 2024-02-28 03:44:23 -03:00
João Moura
38ceb9d409 adding support for input interpolation for tasks and agents 2024-02-28 03:44:23 -03:00
João Moura
45ea5ccef0 fixing tests 2024-02-28 03:44:23 -03:00
João Moura
9435ff437a Adding ability to track tools_errors and delegations 2024-02-28 03:44:23 -03:00
João Moura
b6badbaf54 changing method naming to increment 2024-02-28 03:44:23 -03:00
João Moura
ed22fdd993 Adding overall usage_metrics to crew and not adding delegation tools if there no agents the allow delegation 2024-02-28 03:44:23 -03:00
João Moura
5d682a5d6c Adding initial formatting error counting and token counter 2024-02-28 03:44:23 -03:00
João Moura
46dbb77c8b Updating README 2024-02-28 03:44:23 -03:00
João Moura
542f0663cd Adding write job description example 2024-02-28 03:44:23 -03:00
BR
5d56c692ab Fix Creating-a-Crew-and-kick-it-off.md so it can run (#280)
* Fix Creating-a-Crew-and-kick-it-off.md

- Update deps to include `crewai[tools]`
- Remove invalid `max_inter` arg from Task constructor call

* Update Creating-a-Crew-and-kick-it-off.md

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-02-27 14:23:19 -03:00
João Moura
a8aec58460 updating docs 2024-02-26 15:54:06 -03:00
João Moura
bf957cb5ca Cutting new version removing crewai-tool as a mandatory dependency 2024-02-26 15:27:04 -03:00
João Moura
6aedd2c392 updating telemetry timeout 2024-02-26 13:40:41 -03:00
João Moura
5ecdab0ebb updating docs 2024-02-26 13:38:14 -03:00
João Moura
90d1e6d5ea updating telemetry code and gitignore 2024-02-24 16:18:26 -03:00
João Moura
1df621fad0 make agents not have a memory by default 2024-02-24 03:33:05 -03:00
João Moura
de4e0e4219 preparing new version 2024-02-24 03:30:12 -03:00
João Moura
4ada52153c Avoid empty task outputs 2024-02-24 03:11:41 -03:00
João Moura
c5500987aa Adding support for agents without tools 2024-02-24 01:39:29 -03:00
João Moura
78fe769ea6 updating broken doc link 2024-02-24 01:38:16 -03:00
João Moura
3610f56475 startign support to crew docs 2024-02-24 01:38:04 -03:00
João Moura
8808328e7d reducing telemetry timeout 2024-02-23 16:02:24 -03:00
João Moura
68b8f0ec66 Reducing telemetry timeout 2024-02-23 15:54:22 -03:00
João Moura
b630b60ed0 preping new version 2024-02-23 15:24:16 -03:00
João Moura
74d0b70df4 bringing TaskOutput.result back to avoind breakign change 2024-02-23 15:23:58 -03:00
João Moura
a59b397172 preparing new version 0.14.0 2024-02-22 16:10:17 -03:00
João Moura
24fca5536c adding new converter logic 2024-02-22 15:16:17 -03:00
João Moura
b93b6c56f4 Updatign prompts 2024-02-22 15:13:41 -03:00
João Moura
81305c3639 preparing new RC 2024-02-20 17:56:55 -03:00
João Moura
c099776962 Improving inner prompts 2024-02-20 17:53:30 -03:00
João Moura
18978521c9 preparing new version 2024-02-20 10:40:57 -03:00
João Moura
c11723dc7f Updating tests 2024-02-20 10:40:37 -03:00
João Moura
9bd1dd4d01 bug fixing 2024-02-20 10:40:16 -03:00
João Moura
090d965af3 Preparing new version 2024-02-19 22:50:38 -03:00
João Moura
7334bec571 improving reliability for agent tools 2024-02-19 22:48:47 -03:00
João Moura
79a4bfbbc4 updating tests 2024-02-19 22:48:34 -03:00
João Moura
72dea5310e Increasing timeout for telemetry 2024-02-19 22:48:14 -03:00
João Moura
a649eb8555 Adding support to export tasks as json, pydantic objects, and save as file 2024-02-19 22:46:34 -03:00
João Moura
3cfc8dd4e0 Adding new tool usage and parsing logic 2024-02-19 22:43:10 -03:00
João Moura
6da94c1bba Updating docs 2024-02-19 22:01:09 -03:00
João Moura
a4836c2b03 adding more error logging and preparing new version 2024-02-15 23:49:30 -03:00
João Moura
430eb23448 Cutting new version with tool ussage bug fix 2024-02-15 23:19:12 -03:00
João Moura
0ee7189b82 preparing new version 2024-02-13 02:58:16 -08:00
João Moura
55c0c186d1 adding function calling llm support 2024-02-13 02:57:12 -08:00
João Moura
2410d0c531 updating readme 2024-02-13 01:50:23 -08:00
João Moura
256a2f1979 updating tests 2024-02-13 01:50:12 -08:00
João Moura
261c047803 renaming function for tools 2024-02-12 16:48:14 -08:00
João Moura
974bf0399c removing hostname from default telemetry 2024-02-12 16:11:15 -08:00
João Moura
46f7dc205e Crewating a tool output parser 2024-02-12 14:24:36 -08:00
João Moura
aef083ee53 adding regexp as dependency 2024-02-12 14:13:20 -08:00
João Moura
c2aa873d8f refactoring default agent tools 2024-02-12 13:27:02 -08:00
João Moura
830ddb18d9 allowing to set model naem through env var 2024-02-12 13:24:01 -08:00
João Moura
c11b7f0413 avoinding telemetry errors 2024-02-12 13:23:40 -08:00
João Moura
297cbd52d6 updating LLM connection docs 2024-02-12 13:21:43 -08:00
João Moura
4680d86586 updating versions and adding instructor 2024-02-12 13:20:28 -08:00
João Moura
c99c5be40a updating codeignore 2024-02-11 20:37:42 -08:00
João Moura
84a51a3ef4 counting for tool retries on the acutal usage 2024-02-10 13:14:00 -08:00
João Moura
21d1168943 Adding ability to remember instruction after using too many tools 2024-02-10 12:53:02 -08:00
João Moura
bbbd976fe3 refactoring task execution 2024-02-10 11:28:08 -08:00
João Moura
5a102251cf Revamping tool usage 2024-02-10 10:36:34 -08:00
João Moura
58bb181b48 updating translations 2024-02-10 01:08:04 -08:00
João Moura
422e36a995 Adding printer logic 2024-02-10 00:57:04 -08:00
João Moura
a6ff7effc0 updating dependencies 2024-02-10 00:56:25 -08:00
João Moura
989c3b66cf updating all cassettes 2024-02-10 00:55:40 -08:00
João Moura
3f4823257a avoind unnecesarry telemetry errors 2024-02-09 10:48:45 -08:00
João Moura
a9da07dc5d include agentFinish as part of step callback 2024-02-09 02:00:41 -08:00
João Moura
3613bbc9e8 recreating executor upon setting new step_callback 2024-02-09 01:52:28 -08:00
João Moura
6d8be72aa7 adding crew step_callback 2024-02-09 01:24:31 -08:00
João Moura
43542f226b adding support for step_callback 2024-02-08 23:56:13 -08:00
João Moura
c630857010 adding support for full_ouput in crews 2024-02-08 23:23:34 -08:00
João Moura
c5839b215e adding agent step callback 2024-02-08 23:01:30 -08:00
João Moura
ed0131b46f adding user the otpion to share all data of their crews 2024-02-08 23:01:02 -08:00
João Moura
5cf61cac22 preparing verison 0.5.5 2024-02-07 23:13:39 -08:00
João Moura
f727b3f5e2 fixing RPM controlelr being set unencessarily 2024-02-07 23:09:36 -08:00
João Moura
2740196c08 Adding new crew specific docs 2024-02-07 23:09:16 -08:00
João Moura
f9e2e0b4ac preparing version 0.5.4 2024-02-07 22:22:33 -08:00
João Moura
5247137ef8 adding initial telemetry 2024-02-07 22:21:44 -08:00
João Moura
e3e5b0b0fc preparing new version 0.5.3 2024-02-07 02:14:58 -08:00
João Moura
d4e33f9953 adding fix to hierarchical process 2024-02-07 02:13:19 -08:00
João Moura
435fc57feb preparing v0.5.2 2024-02-06 00:04:53 -08:00
João Moura
2c86f0d07c updating RPM and max_inter logic 2024-02-05 23:14:22 -08:00
João Moura
1eed3a0378 updating docs and readme 2024-02-05 23:13:10 -08:00
João Moura
d7f77b42bf adding manager_llm 2024-02-05 20:46:47 -08:00
João Moura
cb09f17fc7 updating readme 2024-02-04 13:13:42 -08:00
João Moura
d9c092552f moving dependencies 2024-02-04 12:11:11 -08:00
João Moura
a7c05d2e84 updating readme 2024-02-04 12:07:40 -08:00
João Moura
789a92bc2c preparing new version 0.5.0 2024-02-04 12:01:05 -08:00
João Moura
47e8a2cef6 installing mkdocs dependencies 2024-02-04 11:58:21 -08:00
João Moura
ef7ce29fe0 fixing dependencies for mkdocs 2024-02-04 11:51:44 -08:00
João Moura
e2f18e4ee5 adding new docs and smaller fixes 2024-02-04 11:47:49 -08:00
João Moura
e23773e5de Adding multi thread execution 2024-02-03 23:24:41 -08:00
João Moura
fd53df53cd updating docs 2024-02-03 23:23:47 -08:00
João Moura
20c729f0d6 Update README.md 2024-02-03 05:48:54 -03:00
João Moura
5724309e78 simplifying README 2024-02-03 00:04:33 -08:00
João Moura
4f38539b41 adding ability to pass context to tasks 2024-02-02 23:17:02 -08:00
João Moura
fa8626c5ab Update README.md 2024-02-03 02:26:10 -03:00
João Moura
02f9eb6e71 Update README.md 2024-02-03 01:33:59 -03:00
Ilya Sudakov
3c52c9ea92 Update README.md: new header, text clean up, fix broken links (#210)
* Update README.MD

* Update examples section in README.md
2024-02-03 01:29:04 -03:00
Gui Vieira
7efecd10ea Hierarchical process (#206)
* Hierarchical process +  Docs
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-02-02 13:56:35 -03:00
João Moura
a3af73b593 adding task callback 2024-01-30 22:46:20 -03:00
João Moura
c1f42f51eb Update README.md 2024-01-29 22:49:17 -03:00
Guilherme Vieira
e0d97b9916 Fix static typing errors (#187)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-01-29 19:52:14 -03:00
João Moura
66d66bddae Adding support for expected output 2024-01-29 00:11:30 -03:00
IT Lackey
0ddcc07224 Feature: Documentation Site (#188) 2024-01-28 23:43:23 -03:00
Eliad Cohen
e0c1dcd4b9 Addresses typo and clarifiction in comments (#191)
Minor changes include a typo fixed and enhancing
an example for using OpenAI as an agent model with Ollama
via langchain

Resolves #189 #190
2024-01-28 23:42:31 -03:00
João Moura
01bb7c82ed updating website for crewai 2024-01-28 23:36:39 -03:00
João Moura
11ecba745f Update README.md 2024-01-22 11:05:01 -03:00
scott------
5322cff6a9 Update agent.py (#161)
adding tools to the list of attribute descriptions
2024-01-21 16:56:19 -03:00
Greyson LaLonde
e8a31da05d Update some docstrings / typehints (#144) 2024-01-21 16:55:17 -03:00
Prabha Arivalagan
7a93124cdb Fixed the small typo (#168) 2024-01-21 16:54:19 -03:00
João Moura
75a4efc8ba cutting new version 2024-01-14 11:25:09 -03:00
João Moura
e27dd53c78 Add RPM control to both agents and crews (#133)
* moving file into utilities
* creating Logger and RPMController
* Adding support for RPM to agents and crew
2024-01-14 00:22:11 -03:00
João Moura
b0c5e24507 Update tests.yml 2024-01-14 00:11:53 -03:00
João Moura
cce9a8aff2 slightly improving prompts 2024-01-13 11:32:32 -03:00
Jimmy Kounelis
c3833e2ebb Adding Greek translation (#122)
* Adding Greek translation
Co-authored-by: JimJim12 <loljk@Madness>
2024-01-13 11:22:23 -03:00
João Moura
1fc806161f Adding support for Crew throttling using RPM (#124)
* Add translations
* fixing translations
* Adding support for Crew throttling with RPM
2024-01-13 11:20:30 -03:00
Greyson LaLonde
3c74fbf9ab Add github action for black (#116) 2024-01-12 22:06:13 -03:00
João Moura
b487136878 Adding support for translations (#120)
Add translations support
2024-01-12 14:49:36 -03:00
João Moura
70072b4e40 Revamp max iteration Logic (#111)
This now will allow to add a max_inter option to agents while also making sure to force the agent to give it's best final answer before running out of it's max_inter.
2024-01-11 12:32:54 -03:00
Greyson LaLonde
0fde1f6258 Bump to langchain0.1.0 (#108)
* Bump `langchain`, `openai`; add `langchain-openai`

* Update imports to fix warnings
2024-01-11 09:33:43 -03:00
João Moura
f6b9f85099 Update README.md 2024-01-11 09:31:45 -03:00
João Moura
4c1089d335 Update README.md 2024-01-10 21:00:37 -03:00
João Moura
7b5f2b24b3 starting to revamp docs 2024-01-10 13:12:31 -03:00
João Moura
0c2e348239 fixing github action 2024-01-10 12:24:37 -03:00
João Moura
339da3ee1a replacing circleci with github actions 2024-01-10 12:05:42 -03:00
Greyson LaLonde
d122d90df0 Move to src dir usage (#99) 2024-01-10 11:39:36 -03:00
João Moura
c601fbdc12 installing mkdocs as part of the github workflow 2024-01-10 00:46:56 -03:00
João Moura
e5f3e47ccb TYPO 2024-01-10 00:42:12 -03:00
João Moura
6721a0bc6d starting github actions for docs 2024-01-10 00:40:56 -03:00
João Moura
2fc1cc333f starting to setup new documentation 2024-01-10 00:30:18 -03:00
Greyson LaLonde
71f53e4c87 Add imports (#98) 2024-01-10 00:13:06 -03:00
João Moura
e525a28398 updating logo 2024-01-10 00:08:39 -03:00
SashaXser
f6de0928c4 Refractoring (#88)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-01-10 00:04:13 -03:00
João Moura
ae385eca06 bringing output log 2024-01-09 23:57:35 -03:00
yanzz
e2685413ce improved readability (#90) 2024-01-09 23:29:50 -03:00
Chris
6e7bafd758 update example usage in README (#97) 2024-01-09 23:22:42 -03:00
João Moura
abca7f06d5 cutting new version v0.1.24 2024-01-07 21:36:14 -03:00
João Moura
e6805833c2 removing reference for pydantic v1 2024-01-07 21:35:30 -03:00
João Moura
4b802a15c3 Improving agent delegation prompt 2024-01-07 21:35:27 -03:00
Ikko Eltociear Ashimine
e7a201a2f6 Update README.md (#81)
bellow -> below
2024-01-07 13:37:30 -03:00
João Moura
2ef682edf3 Reliability improvements (#77)
* fixing identation for AgentTools
* updating gitignore to exclude quick test script
* startingprompt translation
* supporting individual task output
* adding agent to task output
* cutting new version
* Updating README example
2024-01-07 12:43:23 -03:00
João Moura
ca8c7266ed Tools cache and delegation improvements (#68)
* Fixing repeated tool usage treatment
* Improving agent delegation prompt
2024-01-06 11:46:34 -03:00
João Moura
7dcdde3ccb Update README.md 2024-01-06 01:36:00 -03:00
Chris Bruner
7adaa6b86a Updated the main example in README.md (#61)
Update Example to mention local LLMs
2024-01-06 00:34:28 -03:00
João Moura
0197b8d44c Update README.md 2024-01-06 00:03:03 -03:00
João Moura
6636b4cb8d Update README.md 2024-01-06 00:01:39 -03:00
João Moura
018bb18b6a Update README.md 2024-01-06 00:01:07 -03:00
João Moura
dfc965067a Update README.md 2024-01-05 16:06:48 -03:00
João Moura
db7e91248a Update README.md 2024-01-05 13:50:48 -03:00
João Moura
13bb3abf57 Better agent execution error handling (#54)
A few quality of life improvements around cache handling and repeated tool usage
2024-01-05 11:04:59 -03:00
João Moura
5602160caf Refactoring task cache to be a tool (#50)
* Refactoring task cache to be a tool

The previous implementation of the task caching system was early exiting
the agent executor due to the fact it was returning an AgentFinish object.

This now refactors it to use a cache specific tool that is dynamically
added and forced into the agent in case of a task execution that was
already executed with the same input.
2024-01-04 21:29:42 -03:00
João Moura
35f4169d6a Update README.md 2024-01-04 10:06:08 -03:00
João Moura
c82e29afe0 Update README.md 2024-01-04 10:04:56 -03:00
João Moura
4837f6bbfb Update README.md 2024-01-04 10:04:31 -03:00
João Moura
3f9a0cfd5c Proper README example (#48) 2024-01-04 10:03:23 -03:00
João Moura
c91fe15f6f Update README.md 2024-01-03 20:21:59 -03:00
João Moura
d489c85bf9 bumping langchain version and cutting new version 2024-01-03 18:58:45 -03:00
João Moura
a2cd2d6f48 Updating README example 2024-01-03 18:58:45 -03:00
Scott Stoltzman
f13d117afc Change "agent" to "openhermes" in Ollama example (#33) 2024-01-03 10:38:14 -03:00
SuperMalinge
77e3af6603 Update output_parser.py (#42) 2024-01-02 20:52:12 -03:00
João Moura
8df6cec4e5 Update README.md 2024-01-02 18:51:44 -03:00
João Moura
cb9c31a7b5 Update README.md 2023-12-31 17:41:50 -03:00
Greyson LaLonde
e41844334e Remove model inheritance (#30) 2023-12-31 10:52:08 -03:00
Greyson LaLonde
1f0001b644 Implement CrewAIBaseModel and Update to ConfigDict (#29)
New CrewAIBaseModel:

Base for Agent, Crew, Task.
Includes generated, frozen UUID.
Adds hashing capability
Migrate to ConfigDict:

Replaces class Config with model_config, see this deprecation note .
Benefits:
Adds auditing capability with frozen UUIDs.
2023-12-30 21:52:04 -03:00
Ikko Eltociear Ashimine
469874d858 Update README.md (#27)
Documention -> Documentation
2023-12-30 21:49:20 -03:00
João Moura
c0853ec37d Cutting a new version 0.1.14 2023-12-30 11:03:03 -03:00
João Moura
8547d4651b Small updates to the code formatting 2023-12-30 10:53:10 -03:00
João Moura
2b06dd263f Adding verbose levels 2023-12-30 07:41:38 -03:00
Greyson LaLonde
ed61f467b1 Update to use absolute imports (#17)
Update to use absolute imports
2023-12-29 22:39:59 -03:00
João Moura
d3ecd1d490 Adding tool caching a loop execution prevention. (#25)
* Adding tool caching a loop execution prevention.

This adds some guardrails, to both prevent the same tool to be used
consecutively and also caching tool's results across the entire crew
so it cuts down execution time and eventual LLM calls.

This plays a huge role for smaller opensource models that usually fall
into those behaviors patterns.

It also includes some smaller improvements around the tool prompt and
agent tools, all with the same intention of guiding models into
better conform with agent instructions.
2023-12-29 22:35:23 -03:00
Greyson LaLonde
d214100f0a Refactor Codebase to Use Pydantic v2 and Enhance Type Hints, Documentation (#24)
Update to Pydantic v2:

Transitioned all references from pydantic.v1 to pydantic (v2), ensuring compatibility with the latest Pydantic features and improvements.
Affected components include agent tools, prompts, crew, and task modules.
Refactoring & Alignment with Pydantic Standards:

Refactored the agent module away from traditional __init__ to align more closely with Pydantic best practices.
Updated the crew module to Pydantic v2 and enhanced configurations, allowing JSON and dictionary inputs. Additionally, some (not all) exceptions have been migrated to leverage Pydantic's error-handling capabilities.
Enhancements to Validators and Typings:

Improved validators and type annotations across multiple modules, enhancing code readability and maintainability.
Streamlined the validation process in line with Pydantic v2's methodologies.
Import and Configuration Adjustments:

Updated to test-related absolute imports due to issues with Pytest finding packages through relative imports.
2023-12-29 21:24:30 -03:00
João Moura
8638c328b4 Add .circleci/config.yml (#26)
* Add .circleci/config.yml

---------

Co-authored-by: João Moura <joaomdmoura@mgail.com>
2023-12-29 21:14:15 -03:00
João Moura
ddab457422 Merge pull request #15 from greysonlalonde/gl/devops/ci-code-formatting-enhancements
Update Python to 3.9, Add Code Quality Tools, & Update Lockfile
2023-12-27 17:34:56 -03:00
Greyson Lalonde
1547986b69 Make tools a subpackage 2023-12-27 15:13:42 -05:00
Greyson Lalonde
73716f35fc Run pre-commit hooks
In the title !
2023-12-27 15:13:42 -05:00
Greyson Lalonde
9f78e45cf6 Update autoflake args
This wont format automatically unless --in-place is passed and will remove init imports when missing --ignore-init-module-imports
2023-12-27 15:09:05 -05:00
Greyson Lalonde
ff46294882 Update readme to reflect pre-commit 2023-12-27 15:09:05 -05:00
Greyson Lalonde
d8661afb5f Add pre-commit config w/ new dev deps 2023-12-27 15:09:05 -05:00
Greyson Lalonde
517437ec78 Bump min py to 3.9; add formatting deps
Increased minimum Python version from 3.81 to 3.9 - most projects align with this; added pre-commit hooks, isort, black, & autoflake for code quality; updated lock file.
2023-12-27 15:09:05 -05:00
João Moura
f00e7e89f4 removing AgentVote class 2023-12-27 16:18:08 -03:00
João Moura
de343f3bd0 allowing cassetes to eb versioned 2023-12-27 16:18:08 -03:00
João Moura
d8c26f9579 Adding VCr and cassetes 2023-12-27 16:18:08 -03:00
João Moura
6d11766fbf Merge pull request #14 from jerryjliu/jerry/fix_typo
fix prompt typo
2023-12-27 15:05:50 -03:00
Jerry Liu
fdb94450d6 cr 2023-12-27 09:27:15 -08:00
João Moura
fb511a6488 small updates 2023-12-25 11:18:47 -03:00
João Moura
aa45edd913 Updating readme 2023-12-25 11:17:11 -03:00
João Moura
9e03b5d50e adding more specific guidelines to agent delegation tools 2023-12-25 11:13:46 -03:00
João Moura
78f04f5c95 Merge pull request #12 from JamesChannel1/main
Update agent.py
2023-12-25 09:25:01 -03:00
JamesChannel1
571da68fab Update agent.py
updated docstring
2023-12-25 00:38:21 +00:00
João Moura
c5a191b5c3 Update README.md 2023-12-23 10:18:10 -03:00
João Moura
1e66315eb7 Merge pull request #9 from llxxxll/develop
Update README.md
2023-12-22 10:24:35 -03:00
LiuYongFeng
f9754c9f1f Update README.md
This example can be run faster for openai users.
2023-12-22 11:40:22 +08:00
LiuYongFeng
c01abc9567 Update README.md
Fix the 'SyntaxError: invalid syntax. Perhaps you forgot a comma?' error in this code
2023-12-22 11:35:06 +08:00
João Moura
2bd15411da Updating openai version 2023-12-20 17:21:48 -03:00
João Moura
e0270d6a68 updating specs 2023-12-20 17:20:55 -03:00
João Moura
8c785b2c72 Adding proper support to memory-less agents 2023-12-20 11:30:56 -03:00
João Moura
37e8e99a48 cutting new version 2023-12-19 20:00:50 -03:00
Joao Moura
7e47614a93 Updating to the latest version of langchain 2023-12-19 20:00:50 -03:00
João Moura
0c92a7bd05 Update README.md 2023-12-19 11:06:27 -03:00
João Moura
80206f55d8 Merge pull request #7 from shreyaskarnik/main
Fix typo in readme for valid syntax in example code.
2023-12-18 01:10:49 -03:00
Joao Moura
c7003f0f49 rolling back verison upgrade for now 2023-12-18 01:10:02 -03:00
Joao Moura
7b6af93f63 adding allow_delegation=False to the readme example 2023-12-18 01:09:34 -03:00
Joao Moura
0e09d38020 fixing readme 2023-12-18 01:05:03 -03:00
Shreyas Karnik
ef275bf6f1 Fix typo in readme for valid syntax in example code. 2023-12-09 22:46:33 +00:00
Joao Moura
cb2be30949 rolling back prompt with --- 2023-12-05 00:09:44 -08:00
Joao Moura
cd30e2a5ba Making config optional with default value as it's WIP and Adding new treatment for wrong agent tool calls 2023-12-04 23:58:48 -08:00
Joao Moura
7dfbf71c4d Preparing to cut new version 2023-12-04 00:13:42 -08:00
Joao Moura
601b35acc8 slightly modifications on prompt 2023-12-04 00:12:36 -08:00
Joao Moura
78e833e626 cutting enw version 2023-11-24 17:09:43 -03:00
Joao Moura
c9b2e898ee Allwoing to use other LLM that are not OpenAI 2023-11-24 17:09:06 -03:00
Joao Moura
707bcce402 adding index to README 2023-11-20 18:37:42 -03:00
Joao Moura
7b66df22b1 Preparing to cut new version 2023-11-18 22:11:10 -03:00
João Moura
c7c2c32c8d Merge pull request #3 from manuel-soria/fix-typo-in-readme
fix typo in quickstart snippet
2023-11-17 15:56:13 -03:00
Manuel Soria
7c4c877681 another missing comma 2023-11-17 15:13:31 -03:00
Manuel Soria
d6202e35fe fix typo in quickstart snippet 2023-11-17 15:11:31 -03:00
João Moura
5507c4a366 Merge pull request #2 from joaomdmoura/joaomdmoura/adding-crew-specific-verbose-logs
Adding crew specific verbose logs
2023-11-16 19:17:11 -03:00
João Moura
f52b10be26 Merge branch 'main' into joaomdmoura/adding-crew-specific-verbose-logs 2023-11-16 19:17:04 -03:00
João Moura
4c9bd18a45 Merge pull request #1 from franzejr/patch-1
Fix tiny typo
2023-11-16 18:48:56 -03:00
Franze M
ed93059ec3 Update README.md 2023-11-16 08:17:18 -03:00
257 changed files with 41168 additions and 49815 deletions

5
.gitignore vendored
View File

@@ -21,8 +21,3 @@ crew_tasks_output.json
.mypy_cache
.ruff_cache
.venv
agentops.log
test_flow.html
crewairules.mdc
plan.md
conceptual_plan.md

View File

@@ -1,4 +1,4 @@
Copyright (c) 2025 crewAI, Inc.
Copyright (c) 2018 The Python Packaging Authority
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

173
README.md
View File

@@ -1,47 +1,14 @@
<div align="center">
![Logo of CrewAI](./docs/crewai_logo.png)
![Logo of CrewAI, two people rowing on a boat](./docs/crewai_logo.png)
# **CrewAI**
</div>
### Fast and Flexible Multi-Agent Automation Framework
CrewAI is a lean, lightning-fast Python framework built entirely from
scratch—completely **independent of LangChain or other agent frameworks**.
It empowers developers with both high-level simplicity and precise low-level
control, ideal for creating autonomous AI agents tailored to any scenario.
- **CrewAI Crews**: Optimize for autonomy and collaborative intelligence.
- **CrewAI Flows**: Enable granular, event-driven control, single LLM calls for precise task orchestration and supports Crews natively
With over 100,000 developers certified through our community courses at
[learn.crewai.com](https://learn.crewai.com), CrewAI is rapidly becoming the
standard for enterprise-ready AI automation.
# CrewAI Enterprise Suite
CrewAI Enterprise Suite is a comprehensive bundle tailored for organizations
that require secure, scalable, and easy-to-manage agent-driven automation.
You can try one part of the suite the [Crew Control Plane for free](https://app.crewai.com)
## Crew Control Plane Key Features:
- **Tracing & Observability**: Monitor and track your AI agents and workflows in real-time, including metrics, logs, and traces.
- **Unified Control Plane**: A centralized platform for managing, monitoring, and scaling your AI agents and workflows.
- **Seamless Integrations**: Easily connect with existing enterprise systems, data sources, and cloud infrastructure.
- **Advanced Security**: Built-in robust security and compliance measures ensuring safe deployment and management.
- **Actionable Insights**: Real-time analytics and reporting to optimize performance and decision-making.
- **24/7 Support**: Dedicated enterprise support to ensure uninterrupted operation and quick resolution of issues.
- **On-premise and Cloud Deployment Options**: Deploy CrewAI Enterprise on-premise or in the cloud, depending on your security and compliance requirements.
CrewAI Enterprise is designed for enterprises seeking a powerful,
reliable solution to transform complex business processes into efficient,
intelligent automations.
🤖 **CrewAI**: Production-grade framework for orchestrating sophisticated AI agent systems. From simple automations to complex real-world applications, CrewAI provides precise control and deep customization. By fostering collaborative intelligence through flexible, production-ready architecture, CrewAI empowers agents to work together seamlessly, tackling complex business challenges with predictable, consistent results.
<h3>
[Homepage](https://www.crewai.com/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Discourse](https://community.crewai.com)
[Homepage](https://www.crewai.com/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Examples](https://github.com/crewAIInc/crewAI-examples) | [Discourse](https://community.crewai.com)
</h3>
@@ -72,19 +39,8 @@ intelligent automations.
## Why CrewAI?
<div align="center" style="margin-bottom: 30px;">
<img src="docs/asset.png" alt="CrewAI Logo" width="100%">
</div>
CrewAI unlocks the true potential of multi-agent automation, delivering the best-in-class combination of speed, flexibility, and control with either Crews of AI Agents or Flows of Events:
- **Standalone Framework**: Built from scratch, independent of LangChain or any other agent framework.
- **High Performance**: Optimized for speed and minimal resource usage, enabling faster execution.
- **Flexible Low Level Customization**: Complete freedom to customize at both high and low levels - from overall workflows and system architecture to granular agent behaviors, internal prompts, and execution logic.
- **Ideal for Every Use Case**: Proven effective for both simple tasks and highly complex, real-world, enterprise-grade scenarios.
- **Robust Community**: Backed by a rapidly growing community of over **100,000 certified** developers offering comprehensive support and resources.
CrewAI empowers developers and enterprises to confidently build intelligent automations, bridging the gap between simplicity, flexibility, and performance.
The power of AI collaboration has too much to offer.
CrewAI is a standalone framework, built from the ground up without dependencies on Langchain or other agent frameworks. It's designed to enable AI agents to assume roles, share goals, and operate in a cohesive unit - much like a well-oiled crew. Whether you're building a smart assistant platform, an automated customer service ensemble, or a multi-agent research team, CrewAI provides the backbone for sophisticated multi-agent interactions.
## Getting Started
@@ -234,7 +190,7 @@ research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2025.
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
@@ -357,16 +313,18 @@ In addition to the sequential process, you can use the hierarchical process, whi
## Key Features
CrewAI stands apart as a lean, standalone, high-performance framework delivering simplicity, flexibility, and precise control—free from the complexity and limitations found in other agent frameworks.
**Note**: CrewAI is a standalone framework built from the ground up, without dependencies on Langchain or other agent frameworks.
- **Standalone & Lean**: Completely independent from other frameworks like LangChain, offering faster execution and lighter resource demands.
- **Flexible & Precise**: Easily orchestrate autonomous agents through intuitive [Crews](https://docs.crewai.com/concepts/crews) or precise [Flows](https://docs.crewai.com/concepts/flows), achieving perfect balance for your needs.
- **Seamless Integration**: Effortlessly combine Crews (autonomy) and Flows (precision) to create complex, real-world automations.
- **Deep Customization**: Tailor every aspect—from high-level workflows down to low-level internal prompts and agent behaviors.
- **Reliable Performance**: Consistent results across simple tasks and complex, enterprise-level automations.
- **Thriving Community**: Backed by robust documentation and over 100,000 certified developers, providing exceptional support and guidance.
- **Deep Customization**: Build sophisticated agents with full control over the system - from overriding inner prompts to accessing low-level APIs. Customize roles, goals, tools, and behaviors while maintaining clean abstractions.
- **Autonomous Inter-Agent Delegation**: Agents can autonomously delegate tasks and inquire amongst themselves, enabling complex problem-solving in real-world scenarios.
- **Flexible Task Management**: Define and customize tasks with granular control, from simple operations to complex multi-step processes.
- **Production-Grade Architecture**: Support for both high-level abstractions and low-level customization, with robust error handling and state management.
- **Predictable Results**: Ensure consistent, accurate outputs through programmatic guardrails, agent training capabilities, and flow-based execution control. See our [documentation on guardrails](https://docs.crewai.com/how-to/guardrails/) for implementation details.
- **Model Flexibility**: Run your crew using OpenAI or open source models with production-ready integrations. See [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) for detailed configuration options.
- **Event-Driven Flows**: Build complex, real-world workflows with precise control over execution paths, state management, and conditional logic.
- **Process Orchestration**: Achieve any workflow pattern through flows - from simple sequential and hierarchical processes to complex, custom orchestration patterns with conditional branching and parallel execution.
Choose CrewAI to easily build powerful, adaptable, and production-ready AI automations.
![CrewAI Mind Map](./docs/crewAI-mindmap.png "CrewAI Mind Map")
## Examples
@@ -597,39 +555,13 @@ Users can opt-in to Further Telemetry, sharing the complete telemetry data by se
CrewAI is released under the [MIT License](https://github.com/crewAIInc/crewAI/blob/main/LICENSE).
## Frequently Asked Questions (FAQ)
### General
- [What exactly is CrewAI?](#q-what-exactly-is-crewai)
- [How do I install CrewAI?](#q-how-do-i-install-crewai)
- [Does CrewAI depend on LangChain?](#q-does-crewai-depend-on-langchain)
- [Is CrewAI open-source?](#q-is-crewai-open-source)
- [Does CrewAI collect data from users?](#q-does-crewai-collect-data-from-users)
### Features and Capabilities
- [Can CrewAI handle complex use cases?](#q-can-crewai-handle-complex-use-cases)
- [Can I use CrewAI with local AI models?](#q-can-i-use-crewai-with-local-ai-models)
- [What makes Crews different from Flows?](#q-what-makes-crews-different-from-flows)
- [How is CrewAI better than LangChain?](#q-how-is-crewai-better-than-langchain)
- [Does CrewAI support fine-tuning or training custom models?](#q-does-crewai-support-fine-tuning-or-training-custom-models)
### Resources and Community
- [Where can I find real-world CrewAI examples?](#q-where-can-i-find-real-world-crewai-examples)
- [How can I contribute to CrewAI?](#q-how-can-i-contribute-to-crewai)
### Enterprise Features
- [What additional features does CrewAI Enterprise offer?](#q-what-additional-features-does-crewai-enterprise-offer)
- [Is CrewAI Enterprise available for cloud and on-premise deployments?](#q-is-crewai-enterprise-available-for-cloud-and-on-premise-deployments)
- [Can I try CrewAI Enterprise for free?](#q-can-i-try-crewai-enterprise-for-free)
### Q: What exactly is CrewAI?
A: CrewAI is a standalone, lean, and fast Python framework built specifically for orchestrating autonomous AI agents. Unlike frameworks like LangChain, CrewAI does not rely on external dependencies, making it leaner, faster, and simpler.
### Q: What is CrewAI?
A: CrewAI is a cutting-edge framework for orchestrating role-playing, autonomous AI agents. It enables agents to work together seamlessly, tackling complex tasks through collaborative intelligence.
### Q: How do I install CrewAI?
A: Install CrewAI using pip:
A: You can install CrewAI using pip:
```shell
pip install crewai
```
@@ -637,62 +569,27 @@ For additional tools, use:
```shell
pip install 'crewai[tools]'
```
### Q: Does CrewAI depend on LangChain?
A: No. CrewAI is built entirely from the ground up, with no dependencies on LangChain or other agent frameworks. This ensures a lean, fast, and flexible experience.
### Q: Can CrewAI handle complex use cases?
A: Yes. CrewAI excels at both simple and highly complex real-world scenarios, offering deep customization options at both high and low levels, from internal prompts to sophisticated workflow orchestration.
### Q: Can I use CrewAI with local models?
A: Yes, CrewAI supports various LLMs, including local models. You can configure your agents to use local models via tools like Ollama & LM Studio. Check the [LLM Connections documentation](https://docs.crewai.com/how-to/LLM-Connections/) for more details.
### Q: Can I use CrewAI with local AI models?
A: Absolutely! CrewAI supports various language models, including local ones. Tools like Ollama and LM Studio allow seamless integration. Check the [LLM Connections documentation](https://docs.crewai.com/how-to/LLM-Connections/) for more details.
### Q: What are the key features of CrewAI?
A: Key features include role-based agent design, autonomous inter-agent delegation, flexible task management, process-driven execution, output saving as files, and compatibility with both open-source and proprietary models.
### Q: What makes Crews different from Flows?
A: Crews provide autonomous agent collaboration, ideal for tasks requiring flexible decision-making and dynamic interaction. Flows offer precise, event-driven control, ideal for managing detailed execution paths and secure state management. You can seamlessly combine both for maximum effectiveness.
### Q: How is CrewAI better than LangChain?
A: CrewAI provides simpler, more intuitive APIs, faster execution speeds, more reliable and consistent results, robust documentation, and an active community—addressing common criticisms and limitations associated with LangChain.
### Q: How does CrewAI compare to other AI orchestration tools?
A: CrewAI is designed with production in mind, offering flexibility similar to Autogen's conversational agents and structured processes like ChatDev, but with more adaptability for real-world applications.
### Q: Is CrewAI open-source?
A: Yes, CrewAI is open-source and actively encourages community contributions and collaboration.
A: Yes, CrewAI is open-source and welcomes contributions from the community.
### Q: Does CrewAI collect data from users?
A: CrewAI collects anonymous telemetry data strictly for improvement purposes. Sensitive data such as prompts, tasks, or API responses are never collected unless explicitly enabled by the user.
### Q: Does CrewAI collect any data?
A: CrewAI uses anonymous telemetry to collect usage data for improvement purposes. No sensitive data (like prompts, task descriptions, or API calls) is collected. Users can opt-in to share more detailed data by setting `share_crew=True` on their Crews.
### Q: Where can I find real-world CrewAI examples?
A: Check out practical examples in the [CrewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), covering use cases like trip planners, stock analysis, and job postings.
### Q: Where can I find examples of CrewAI in action?
A: You can find various real-life examples in the [CrewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), including trip planners, stock analysis tools, and more.
### Q: What is the difference between Crews and Flows?
A: Crews and Flows serve different but complementary purposes in CrewAI. Crews are teams of AI agents working together to accomplish specific tasks through role-based collaboration, delivering accurate and predictable results. Flows, on the other hand, are event-driven workflows that can orchestrate both Crews and regular Python code, allowing you to build complex automation pipelines with secure state management and conditional execution paths.
### Q: How can I contribute to CrewAI?
A: Contributions are warmly welcomed! Fork the repository, create your branch, implement your changes, and submit a pull request. See the Contribution section of the README for detailed guidelines.
### Q: What additional features does CrewAI Enterprise offer?
A: CrewAI Enterprise provides advanced features such as a unified control plane, real-time observability, secure integrations, advanced security, actionable insights, and dedicated 24/7 enterprise support.
### Q: Is CrewAI Enterprise available for cloud and on-premise deployments?
A: Yes, CrewAI Enterprise supports both cloud-based and on-premise deployment options, allowing enterprises to meet their specific security and compliance requirements.
### Q: Can I try CrewAI Enterprise for free?
A: Yes, you can explore part of the CrewAI Enterprise Suite by accessing the [Crew Control Plane](https://app.crewai.com) for free.
### Q: Does CrewAI support fine-tuning or training custom models?
A: Yes, CrewAI can integrate with custom-trained or fine-tuned models, allowing you to enhance your agents with domain-specific knowledge and accuracy.
### Q: Can CrewAI agents interact with external tools and APIs?
A: Absolutely! CrewAI agents can easily integrate with external tools, APIs, and databases, empowering them to leverage real-world data and resources.
### Q: Is CrewAI suitable for production environments?
A: Yes, CrewAI is explicitly designed with production-grade standards, ensuring reliability, stability, and scalability for enterprise deployments.
### Q: How scalable is CrewAI?
A: CrewAI is highly scalable, supporting simple automations and large-scale enterprise workflows involving numerous agents and complex tasks simultaneously.
### Q: Does CrewAI offer debugging and monitoring tools?
A: Yes, CrewAI Enterprise includes advanced debugging, tracing, and real-time observability features, simplifying the management and troubleshooting of your automations.
### Q: What programming languages does CrewAI support?
A: CrewAI is primarily Python-based but easily integrates with services and APIs written in any programming language through its flexible API integration capabilities.
### Q: Does CrewAI offer educational resources for beginners?
A: Yes, CrewAI provides extensive beginner-friendly tutorials, courses, and documentation through learn.crewai.com, supporting developers at all skill levels.
### Q: Can CrewAI automate human-in-the-loop workflows?
A: Yes, CrewAI fully supports human-in-the-loop workflows, allowing seamless collaboration between human experts and AI agents for enhanced decision-making.
A: Contributions are welcome! You can fork the repository, create a new branch for your feature, add your improvement, and send a pull request. Check the Contribution section in the README for more details.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 66 KiB

View File

@@ -1,187 +0,0 @@
---
title: Changelog
description: View the latest updates and changes to CrewAI
icon: timeline
---
<Update label="2024-03-17" description="v0.108.0">
**Features**
- Converted tabs to spaces in `crew.py` template
- Enhanced LLM Streaming Response Handling and Event System
- Included `model_name`
- Enhanced Event Listener with rich visualization and improved logging
- Added fingerprints
**Bug Fixes**
- Fixed Mistral issues
- Fixed a bug in documentation
- Fixed type check error in fingerprint property
**Documentation Updates**
- Improved tool documentation
- Updated installation guide for the `uv` tool package
- Added instructions for upgrading crewAI with the `uv` tool
- Added documentation for `ApifyActorsTool`
</Update>
<Update label="2024-03-10" description="v0.105.0">
**Core Improvements & Fixes**
- Fixed issues with missing template variables and user memory configuration
- Improved async flow support and addressed agent response formatting
- Enhanced memory reset functionality and fixed CLI memory commands
- Fixed type issues, tool calling properties, and telemetry decoupling
**New Features & Enhancements**
- Added Flow state export and improved state utilities
- Enhanced agent knowledge setup with optional crew embedder
- Introduced event emitter for better observability and LLM call tracking
- Added support for Python 3.10 and ChatOllama from langchain_ollama
- Integrated context window size support for the o3-mini model
- Added support for multiple router calls
**Documentation & Guides**
- Improved documentation layout and hierarchical structure
- Added QdrantVectorSearchTool guide and clarified event listener usage
- Fixed typos in prompts and updated Amazon Bedrock model listings
</Update>
<Update label="2024-02-12" description="v0.102.0">
**Core Improvements & Fixes**
- Enhanced LLM Support: Improved structured LLM output, parameter handling, and formatting for Anthropic models
- Crew & Agent Stability: Fixed issues with cloning agents/crews using knowledge sources, multiple task outputs in conditional tasks, and ignored Crew task callbacks
- Memory & Storage Fixes: Fixed short-term memory handling with Bedrock, ensured correct embedder initialization, and added a reset memories function in the crew class
- Training & Execution Reliability: Fixed broken training and interpolation issues with dict and list input types
**New Features & Enhancements**
- Advanced Knowledge Management: Improved naming conventions and enhanced embedding configuration with custom embedder support
- Expanded Logging & Observability: Added JSON format support for logging and integrated MLflow tracing documentation
- Data Handling Improvements: Updated excel_knowledge_source.py to process multi-tab files
- General Performance & Codebase Clean-Up: Streamlined enterprise code alignment and resolved linting issues
- Adding new tool: `QdrantVectorSearchTool`
**Documentation & Guides**
- Updated AI & Memory Docs: Improved Bedrock, Google AI, and long-term memory documentation
- Task & Workflow Clarity: Added "Human Input" row to Task Attributes, Langfuse guide, and FileWriterTool documentation
- Fixed Various Typos & Formatting Issues
</Update>
<Update label="2024-01-28" description="v0.100.0">
**Features**
- Add Composio docs
- Add SageMaker as a LLM provider
**Fixes**
- Overall LLM connection issues
- Using safe accessors on training
- Add version check to crew_chat.py
**Documentation**
- New docs for crewai chat
- Improve formatting and clarity in CLI and Composio Tool docs
</Update>
<Update label="2024-01-20" description="v0.98.0">
**Features**
- Conversation crew v1
- Add unique ID to flow states
- Add @persist decorator with FlowPersistence interface
**Integrations**
- Add SambaNova integration
- Add NVIDIA NIM provider in cli
- Introducing VoyageAI
**Fixes**
- Fix API Key Behavior and Entity Handling in Mem0 Integration
- Fixed core invoke loop logic and relevant tests
- Make tool inputs actual objects and not strings
- Add important missing parts to creating tools
- Drop litellm version to prevent windows issue
- Before kickoff if inputs are none
- Fixed typos, nested pydantic model issue, and docling issues
</Update>
<Update label="2024-01-04" description="v0.95.0">
**New Features**
- Adding Multimodal Abilities to Crew
- Programatic Guardrails
- HITL multiple rounds
- Gemini 2.0 Support
- CrewAI Flows Improvements
- Add Workflow Permissions
- Add support for langfuse with litellm
- Portkey Integration with CrewAI
- Add interpolate_only method and improve error handling
- Docling Support
- Weviate Support
**Fixes**
- output_file not respecting system path
- disk I/O error when resetting short-term memory
- CrewJSONEncoder now accepts enums
- Python max version
- Interpolation for output_file in Task
- Handle coworker role name case/whitespace properly
- Add tiktoken as explicit dependency and document Rust requirement
- Include agent knowledge in planning process
- Change storage initialization to None for KnowledgeStorage
- Fix optional storage checks
- include event emitter in flows
- Docstring, Error Handling, and Type Hints Improvements
- Suppressed userWarnings from litellm pydantic issues
</Update>
<Update label="2023-12-05" description="v0.86.0">
**Changes**
- Remove all references to pipeline and pipeline router
- Add Nvidia NIM as provider in Custom LLM
- Add knowledge demo + improve knowledge docs
- Add HITL multiple rounds of followup
- New docs about yaml crew with decorators
- Simplify template crew
</Update>
<Update label="2023-12-04" description="v0.85.0">
**Features**
- Added knowledge to agent level
- Feat/remove langchain
- Improve typed task outputs
- Log in to Tool Repository on crewai login
**Fixes**
- Fixes issues with result as answer not properly exiting LLM loop
- Fix missing key name when running with ollama provider
- Fix spelling issue found
**Documentation**
- Update readme for running mypy
- Add knowledge to mint.json
- Update Github actions
- Update Agents docs to include two approaches for creating an agent
- Improvements to LLM Configuration and Usage
</Update>
<Update label="2023-11-25" description="v0.83.0">
**New Features**
- New before_kickoff and after_kickoff crew callbacks
- Support to pre-seed agents with Knowledge
- Add support for retrieving user preferences and memories using Mem0
**Fixes**
- Fix Async Execution
- Upgrade chroma and adjust embedder function generator
- Update CLI Watson supported models + docs
- Reduce level for Bandit
- Fixing all tests
**Documentation**
- Update Docs
</Update>
<Update label="2023-11-13" description="v0.80.0">
**Fixes**
- Fixing Tokens callback replacement bug
- Fixing Step callback issue
- Add cached prompt tokens info on usage metrics
- Fix crew_train_success test
</Update>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@@ -43,7 +43,7 @@ Think of an agent as a specialized team member with specific skills, expertise,
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
| **Embedder** _(optional)_ | `embedder` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
| **Embedder Config** _(optional)_ | `embedder_config` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
@@ -101,8 +101,6 @@ from crewai_tools import SerperDevTool
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
agents_config = "config/agents.yaml"
@agent
def researcher(self) -> Agent:
return Agent(
@@ -152,7 +150,7 @@ agent = Agent(
use_system_prompt=True, # Default: True
tools=[SerperDevTool()], # Optional: List of tools
knowledge_sources=None, # Optional: List of knowledge sources
embedder=None, # Optional: Custom embedder configuration
embedder_config=None, # Optional: Custom embedder configuration
system_template=None, # Optional: Custom system prompt template
prompt_template=None, # Optional: Custom prompt template
response_template=None, # Optional: Custom response template

View File

@@ -12,7 +12,7 @@ The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you
To use the CrewAI CLI, make sure you have CrewAI installed:
```shell Terminal
```shell
pip install crewai
```
@@ -20,7 +20,7 @@ pip install crewai
The basic structure of a CrewAI CLI command is:
```shell Terminal
```shell
crewai [COMMAND] [OPTIONS] [ARGUMENTS]
```
@@ -30,7 +30,7 @@ crewai [COMMAND] [OPTIONS] [ARGUMENTS]
Create a new crew or flow.
```shell Terminal
```shell
crewai create [OPTIONS] TYPE NAME
```
@@ -38,7 +38,7 @@ crewai create [OPTIONS] TYPE NAME
- `NAME`: Name of the crew or flow
Example:
```shell Terminal
```shell
crewai create crew my_new_crew
crewai create flow my_new_flow
```
@@ -47,14 +47,14 @@ crewai create flow my_new_flow
Show the installed version of CrewAI.
```shell Terminal
```shell
crewai version [OPTIONS]
```
- `--tools`: (Optional) Show the installed version of CrewAI tools
Example:
```shell Terminal
```shell
crewai version
crewai version --tools
```
@@ -63,7 +63,7 @@ crewai version --tools
Train the crew for a specified number of iterations.
```shell Terminal
```shell
crewai train [OPTIONS]
```
@@ -71,7 +71,7 @@ crewai train [OPTIONS]
- `-f, --filename TEXT`: Path to a custom file for training (default: "trained_agents_data.pkl")
Example:
```shell Terminal
```shell
crewai train -n 10 -f my_training_data.pkl
```
@@ -79,14 +79,14 @@ crewai train -n 10 -f my_training_data.pkl
Replay the crew execution from a specific task.
```shell Terminal
```shell
crewai replay [OPTIONS]
```
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
Example:
```shell Terminal
```shell
crewai replay -t task_123456
```
@@ -94,7 +94,7 @@ crewai replay -t task_123456
Retrieve your latest crew.kickoff() task outputs.
```shell Terminal
```shell
crewai log-tasks-outputs
```
@@ -102,7 +102,7 @@ crewai log-tasks-outputs
Reset the crew memories (long, short, entity, latest_crew_kickoff_outputs).
```shell Terminal
```shell
crewai reset-memories [OPTIONS]
```
@@ -113,7 +113,7 @@ crewai reset-memories [OPTIONS]
- `-a, --all`: Reset ALL memories
Example:
```shell Terminal
```shell
crewai reset-memories --long --short
crewai reset-memories --all
```
@@ -122,7 +122,7 @@ crewai reset-memories --all
Test the crew and evaluate the results.
```shell Terminal
```shell
crewai test [OPTIONS]
```
@@ -130,56 +130,24 @@ crewai test [OPTIONS]
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
Example:
```shell Terminal
```shell
crewai test -n 5 -m gpt-3.5-turbo
```
### 8. Run
Run the crew or flow.
Run the crew.
```shell Terminal
```shell
crewai run
```
<Note>
Starting from version 0.103.0, the `crewai run` command can be used to run both standard crews and flows. For flows, it automatically detects the type from pyproject.toml and runs the appropriate command. This is now the recommended way to run both crews and flows.
</Note>
<Note>
Make sure to run these commands from the directory where your CrewAI project is set up.
Some commands may require additional configuration or setup within your project structure.
</Note>
### 9. Chat
Starting in version `0.98.0`, when you run the `crewai chat` command, you start an interactive session with your crew. The AI assistant will guide you by asking for necessary inputs to execute the crew. Once all inputs are provided, the crew will execute its tasks.
After receiving the results, you can continue interacting with the assistant for further instructions or questions.
```shell Terminal
crewai chat
```
<Note>
Ensure you execute these commands from your CrewAI project's root directory.
</Note>
<Note>
IMPORTANT: Set the `chat_llm` property in your `crew.py` file to enable this command.
```python
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True,
chat_llm="gpt-4o", # LLM for chat orchestration
)
```
</Note>
### 10. API Keys
### 9. API Keys
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.
@@ -193,7 +161,6 @@ The CLI will initially prompt for API keys for the following services:
* Groq
* Anthropic
* Google Gemini
* SambaNova
When you select a provider, the CLI will prompt you to enter your API key.

View File

@@ -30,7 +30,7 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Step Callback** _(optional)_ | `step_callback` | A function that is called after each step of every agent. This can be used to log the agent's actions or to perform other operations; it won't override the agent-specific `step_callback`. |
| **Task Callback** _(optional)_ | `task_callback` | A function that is called after the completion of each task. Useful for monitoring or additional operations post-task execution. |
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
| **Output Log File** _(optional)_ | `output_log_file` | Set to True to save logs as logs.txt in the current directory or provide a file path. Logs will be in JSON format if the filename ends in .json, otherwise .txt. Defautls to `None`. |
| **Output Log File** _(optional)_ | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
@@ -240,23 +240,6 @@ print(f"Tasks Output: {crew_output.tasks_output}")
print(f"Token Usage: {crew_output.token_usage}")
```
## Accessing Crew Logs
You can see real time log of the crew execution, by setting `output_log_file` as a `True(Boolean)` or a `file_name(str)`. Supports logging of events as both `file_name.txt` and `file_name.json`.
In case of `True(Boolean)` will save as `logs.txt`.
In case of `output_log_file` is set as `False(Booelan)` or `None`, the logs will not be populated.
```python Code
# Save crew logs
crew = Crew(output_log_file = True) # Logs will be saved as logs.txt
crew = Crew(output_log_file = file_name) # Logs will be saved as file_name.txt
crew = Crew(output_log_file = file_name.txt) # Logs will be saved as file_name.txt
crew = Crew(output_log_file = file_name.json) # Logs will be saved as file_name.json
```
## Memory Utilization
Crews can utilize memory (short-term, long-term, and entity memory) to enhance their execution and learning over time. This feature allows crews to store and recall execution memories, aiding in decision-making and task execution strategies.
@@ -296,9 +279,9 @@ print(result)
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
- `kickoff()`: Starts the execution process according to the defined process flow.
- `kickoff_for_each()`: Executes tasks sequentially for each provided input event or item in the collection.
- `kickoff_for_each()`: Executes tasks for each agent individually.
- `kickoff_async()`: Initiates the workflow asynchronously.
- `kickoff_for_each_async()`: Executes tasks concurrently for each provided input event or item, leveraging asynchronous processing.
- `kickoff_for_each_async()`: Executes tasks for each agent individually in an asynchronous manner.
```python Code
# Start the crew's task execution

View File

@@ -1,350 +0,0 @@
---
title: 'Event Listeners'
description: 'Tap into CrewAI events to build custom integrations and monitoring'
---
# Event Listeners
CrewAI provides a powerful event system that allows you to listen for and react to various events that occur during the execution of your Crew. This feature enables you to build custom integrations, monitoring solutions, logging systems, or any other functionality that needs to be triggered based on CrewAI's internal events.
## How It Works
CrewAI uses an event bus architecture to emit events throughout the execution lifecycle. The event system is built on the following components:
1. **CrewAIEventsBus**: A singleton event bus that manages event registration and emission
2. **CrewEvent**: Base class for all events in the system
3. **BaseEventListener**: Abstract base class for creating custom event listeners
When specific actions occur in CrewAI (like a Crew starting execution, an Agent completing a task, or a tool being used), the system emits corresponding events. You can register handlers for these events to execute custom code when they occur.
## Creating a Custom Event Listener
To create a custom event listener, you need to:
1. Create a class that inherits from `BaseEventListener`
2. Implement the `setup_listeners` method
3. Register handlers for the events you're interested in
4. Create an instance of your listener in the appropriate file
Here's a simple example of a custom event listener class:
```python
from crewai.utilities.events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
AgentExecutionCompletedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_started(source, event):
print(f"Crew '{event.crew_name}' has started execution!")
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_completed(source, event):
print(f"Crew '{event.crew_name}' has completed execution!")
print(f"Output: {event.output}")
@crewai_event_bus.on(AgentExecutionCompletedEvent)
def on_agent_execution_completed(source, event):
print(f"Agent '{event.agent.role}' completed task")
print(f"Output: {event.output}")
```
## Properly Registering Your Listener
Simply defining your listener class isn't enough. You need to create an instance of it and ensure it's imported in your application. This ensures that:
1. The event handlers are registered with the event bus
2. The listener instance remains in memory (not garbage collected)
3. The listener is active when events are emitted
### Option 1: Import and Instantiate in Your Crew or Flow Implementation
The most important thing is to create an instance of your listener in the file where your Crew or Flow is defined and executed:
#### For Crew-based Applications
Create and import your listener at the top of your Crew implementation file:
```python
# In your crew.py file
from crewai import Agent, Crew, Task
from my_listeners import MyCustomListener
# Create an instance of your listener
my_listener = MyCustomListener()
class MyCustomCrew:
# Your crew implementation...
def crew(self):
return Crew(
agents=[...],
tasks=[...],
# ...
)
```
#### For Flow-based Applications
Create and import your listener at the top of your Flow implementation file:
```python
# In your main.py or flow.py file
from crewai.flow import Flow, listen, start
from my_listeners import MyCustomListener
# Create an instance of your listener
my_listener = MyCustomListener()
class MyCustomFlow(Flow):
# Your flow implementation...
@start()
def first_step(self):
# ...
```
This ensures that your listener is loaded and active when your Crew or Flow is executed.
### Option 2: Create a Package for Your Listeners
For a more structured approach, especially if you have multiple listeners:
1. Create a package for your listeners:
```
my_project/
├── listeners/
│ ├── __init__.py
│ ├── my_custom_listener.py
│ └── another_listener.py
```
2. In `my_custom_listener.py`, define your listener class and create an instance:
```python
# my_custom_listener.py
from crewai.utilities.events.base_event_listener import BaseEventListener
# ... import events ...
class MyCustomListener(BaseEventListener):
# ... implementation ...
# Create an instance of your listener
my_custom_listener = MyCustomListener()
```
3. In `__init__.py`, import the listener instances to ensure they're loaded:
```python
# __init__.py
from .my_custom_listener import my_custom_listener
from .another_listener import another_listener
# Optionally export them if you need to access them elsewhere
__all__ = ['my_custom_listener', 'another_listener']
```
4. Import your listeners package in your Crew or Flow file:
```python
# In your crew.py or flow.py file
import my_project.listeners # This loads all your listeners
class MyCustomCrew:
# Your crew implementation...
```
This is exactly how CrewAI's built-in `agentops_listener` is registered. In the CrewAI codebase, you'll find:
```python
# src/crewai/utilities/events/third_party/__init__.py
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Available Event Types
CrewAI provides a wide range of events that you can listen for:
### Crew Events
- **CrewKickoffStartedEvent**: Emitted when a Crew starts execution
- **CrewKickoffCompletedEvent**: Emitted when a Crew completes execution
- **CrewKickoffFailedEvent**: Emitted when a Crew fails to complete execution
- **CrewTestStartedEvent**: Emitted when a Crew starts testing
- **CrewTestCompletedEvent**: Emitted when a Crew completes testing
- **CrewTestFailedEvent**: Emitted when a Crew fails to complete testing
- **CrewTrainStartedEvent**: Emitted when a Crew starts training
- **CrewTrainCompletedEvent**: Emitted when a Crew completes training
- **CrewTrainFailedEvent**: Emitted when a Crew fails to complete training
### Agent Events
- **AgentExecutionStartedEvent**: Emitted when an Agent starts executing a task
- **AgentExecutionCompletedEvent**: Emitted when an Agent completes executing a task
- **AgentExecutionErrorEvent**: Emitted when an Agent encounters an error during execution
### Task Events
- **TaskStartedEvent**: Emitted when a Task starts execution
- **TaskCompletedEvent**: Emitted when a Task completes execution
- **TaskFailedEvent**: Emitted when a Task fails to complete execution
- **TaskEvaluationEvent**: Emitted when a Task is evaluated
### Tool Usage Events
- **ToolUsageStartedEvent**: Emitted when a tool execution is started
- **ToolUsageFinishedEvent**: Emitted when a tool execution is completed
- **ToolUsageErrorEvent**: Emitted when a tool execution encounters an error
- **ToolValidateInputErrorEvent**: Emitted when a tool input validation encounters an error
- **ToolExecutionErrorEvent**: Emitted when a tool execution encounters an error
- **ToolSelectionErrorEvent**: Emitted when there's an error selecting a tool
### Flow Events
- **FlowCreatedEvent**: Emitted when a Flow is created
- **FlowStartedEvent**: Emitted when a Flow starts execution
- **FlowFinishedEvent**: Emitted when a Flow completes execution
- **FlowPlotEvent**: Emitted when a Flow is plotted
- **MethodExecutionStartedEvent**: Emitted when a Flow method starts execution
- **MethodExecutionFinishedEvent**: Emitted when a Flow method completes execution
- **MethodExecutionFailedEvent**: Emitted when a Flow method fails to complete execution
### LLM Events
- **LLMCallStartedEvent**: Emitted when an LLM call starts
- **LLMCallCompletedEvent**: Emitted when an LLM call completes
- **LLMCallFailedEvent**: Emitted when an LLM call fails
- **LLMStreamChunkEvent**: Emitted for each chunk received during streaming LLM responses
## Event Handler Structure
Each event handler receives two parameters:
1. **source**: The object that emitted the event
2. **event**: The event instance, containing event-specific data
The structure of the event object depends on the event type, but all events inherit from `CrewEvent` and include:
- **timestamp**: The time when the event was emitted
- **type**: A string identifier for the event type
Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` includes `crew_name` and `output` fields.
## Real-World Example: Integration with AgentOps
CrewAI includes an example of a third-party integration with [AgentOps](https://github.com/AgentOps-AI/agentops), a monitoring and observability platform for AI agents. Here's how it's implemented:
```python
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
```
This listener initializes an AgentOps session when a Crew starts, registers agents with AgentOps, tracks tool usage, and ends the session when the Crew completes.
The AgentOps listener is registered in CrewAI's event system through the import in `src/crewai/utilities/events/third_party/__init__.py`:
```python
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Advanced Usage: Scoped Handlers
For temporary event handling (useful for testing or specific operations), you can use the `scoped_handlers` context manager:
```python
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)
def temp_handler(source, event):
print("This handler only exists within this context")
# Do something that emits events
# Outside the context, the temporary handler is removed
```
## Use Cases
Event listeners can be used for a variety of purposes:
1. **Logging and Monitoring**: Track the execution of your Crew and log important events
2. **Analytics**: Collect data about your Crew's performance and behavior
3. **Debugging**: Set up temporary listeners to debug specific issues
4. **Integration**: Connect CrewAI with external systems like monitoring platforms, databases, or notification services
5. **Custom Behavior**: Trigger custom actions based on specific events
## Best Practices
1. **Keep Handlers Light**: Event handlers should be lightweight and avoid blocking operations
2. **Error Handling**: Include proper error handling in your event handlers to prevent exceptions from affecting the main execution
3. **Cleanup**: If your listener allocates resources, ensure they're properly cleaned up
4. **Selective Listening**: Only listen for events you actually need to handle
5. **Testing**: Test your event listeners in isolation to ensure they behave as expected
By leveraging CrewAI's event system, you can extend its functionality and integrate it seamlessly with your existing infrastructure.

View File

@@ -35,8 +35,6 @@ class ExampleFlow(Flow):
@start()
def generate_city(self):
print("Starting flow")
# Each flow state automatically gets a unique ID
print(f"Flow State ID: {self.state['id']}")
response = completion(
model=self.model,
@@ -49,8 +47,6 @@ class ExampleFlow(Flow):
)
random_city = response["choices"][0]["message"]["content"]
# Store the city in our state
self.state["city"] = random_city
print(f"Random City: {random_city}")
return random_city
@@ -68,8 +64,6 @@ class ExampleFlow(Flow):
)
fun_fact = response["choices"][0]["message"]["content"]
# Store the fun fact in our state
self.state["fun_fact"] = fun_fact
return fun_fact
@@ -82,15 +76,7 @@ print(f"Generated fun fact: {result}")
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
Each Flow instance automatically receives a unique identifier (UUID) in its state, which helps track and manage flow executions. The state can also store additional data (like the generated city and fun fact) that persists throughout the flow's execution.
When you run the Flow, it will:
1. Generate a unique ID for the flow state
2. Generate a random city and store it in the state
3. Generate a fun fact about that city and store it in the state
4. Print the results to the console
The state's unique ID and stored data can be useful for tracking flow executions and maintaining context between tasks.
When you run the Flow, it will generate a random city and then generate a fun fact about that city. The output will be printed to the console.
**Note:** Ensure you have set up your `.env` file to store your `OPENAI_API_KEY`. This key is necessary for authenticating requests to the OpenAI API.
@@ -150,12 +136,12 @@ final_output = flow.kickoff()
print("---- Final Output ----")
print(final_output)
```
````
``` text Output
---- Final Output ----
Second method received: Output from first_method
```
````
</CodeGroup>
@@ -221,39 +207,34 @@ allowing developers to choose the approach that best fits their application's ne
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
Even with unstructured states, CrewAI Flows automatically generates and maintains a unique identifier (UUID) for each state instance.
```python Code
from crewai.flow.flow import Flow, listen, start
class UnstructuredExampleFlow(Flow):
class UntructuredExampleFlow(Flow):
@start()
def first_method(self):
# The state automatically includes an 'id' field
print(f"State ID: {self.state['id']}")
self.state['counter'] = 0
self.state['message'] = "Hello from structured flow"
self.state.message = "Hello from structured flow"
self.state.counter = 0
@listen(first_method)
def second_method(self):
self.state['counter'] += 1
self.state['message'] += " - updated"
self.state.counter += 1
self.state.message += " - updated"
@listen(second_method)
def third_method(self):
self.state['counter'] += 1
self.state['message'] += " - updated again"
self.state.counter += 1
self.state.message += " - updated again"
print(f"State after third_method: {self.state}")
flow = UnstructuredExampleFlow()
flow = UntructuredExampleFlow()
flow.kickoff()
```
**Note:** The `id` field is automatically generated and preserved throughout the flow's execution. You don't need to manage or set it manually, and it will be maintained even when updating the state with new data.
**Key Points:**
- **Flexibility:** You can dynamically add attributes to `self.state` without predefined constraints.
@@ -264,15 +245,12 @@ flow.kickoff()
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
Each state in CrewAI Flows automatically receives a unique identifier (UUID) to help track and manage state instances. This ID is automatically generated and managed by the Flow system.
```python Code
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
class ExampleState(BaseModel):
# Note: 'id' field is automatically added to all states
counter: int = 0
message: str = ""
@@ -281,8 +259,6 @@ class StructuredExampleFlow(Flow[ExampleState]):
@start()
def first_method(self):
# Access the auto-generated ID if needed
print(f"State ID: {self.state.id}")
self.state.message = "Hello from structured flow"
@listen(first_method)
@@ -323,91 +299,6 @@ flow.kickoff()
By providing both unstructured and structured state management options, CrewAI Flows empowers developers to build AI workflows that are both flexible and robust, catering to a wide range of application requirements.
## Flow Persistence
The @persist decorator enables automatic state persistence in CrewAI Flows, allowing you to maintain flow state across restarts or different workflow executions. This decorator can be applied at either the class level or method level, providing flexibility in how you manage state persistence.
### Class-Level Persistence
When applied at the class level, the @persist decorator automatically persists all flow method states:
```python
@persist # Using SQLiteFlowPersistence by default
class MyFlow(Flow[MyState]):
@start()
def initialize_flow(self):
# This method will automatically have its state persisted
self.state.counter = 1
print("Initialized flow. State ID:", self.state.id)
@listen(initialize_flow)
def next_step(self):
# The state (including self.state.id) is automatically reloaded
self.state.counter += 1
print("Flow state is persisted. Counter:", self.state.counter)
```
### Method-Level Persistence
For more granular control, you can apply @persist to specific methods:
```python
class AnotherFlow(Flow[dict]):
@persist # Persists only this method's state
@start()
def begin(self):
if "runs" not in self.state:
self.state["runs"] = 0
self.state["runs"] += 1
print("Method-level persisted runs:", self.state["runs"])
```
### How It Works
1. **Unique State Identification**
- Each flow state automatically receives a unique UUID
- The ID is preserved across state updates and method calls
- Supports both structured (Pydantic BaseModel) and unstructured (dictionary) states
2. **Default SQLite Backend**
- SQLiteFlowPersistence is the default storage backend
- States are automatically saved to a local SQLite database
- Robust error handling ensures clear messages if database operations fail
3. **Error Handling**
- Comprehensive error messages for database operations
- Automatic state validation during save and load
- Clear feedback when persistence operations encounter issues
### Important Considerations
- **State Types**: Both structured (Pydantic BaseModel) and unstructured (dictionary) states are supported
- **Automatic ID**: The `id` field is automatically added if not present
- **State Recovery**: Failed or restarted flows can automatically reload their previous state
- **Custom Implementation**: You can provide your own FlowPersistence implementation for specialized storage needs
### Technical Advantages
1. **Precise Control Through Low-Level Access**
- Direct access to persistence operations for advanced use cases
- Fine-grained control via method-level persistence decorators
- Built-in state inspection and debugging capabilities
- Full visibility into state changes and persistence operations
2. **Enhanced Reliability**
- Automatic state recovery after system failures or restarts
- Transaction-based state updates for data integrity
- Comprehensive error handling with clear error messages
- Robust validation during state save and load operations
3. **Extensible Architecture**
- Customizable persistence backend through FlowPersistence interface
- Support for specialized storage solutions beyond SQLite
- Compatible with both structured (Pydantic) and unstructured (dict) states
- Seamless integration with existing CrewAI flow patterns
The persistence system's architecture emphasizes technical precision and customization options, allowing developers to maintain full control over state management while benefiting from built-in reliability features.
## Flow Control
### Conditional Logic: `or`
@@ -738,34 +629,3 @@ Also, check out our YouTube video on how to use flows in CrewAI below!
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
## Running Flows
There are two ways to run a flow:
### Using the Flow API
You can run a flow programmatically by creating an instance of your flow class and calling the `kickoff()` method:
```python
flow = ExampleFlow()
result = flow.kickoff()
```
### Using the CLI
Starting from version 0.103.0, you can run flows using the `crewai run` command:
```shell
crewai run
```
This command automatically detects if your project is a flow (based on the `type = "flow"` setting in your pyproject.toml) and runs it accordingly. This is the recommended way to run flows from the command line.
For backward compatibility, you can also use:
```shell
crewai flow kickoff
```
However, the `crewai run` command is now the preferred method as it works for both crews and flows.

View File

@@ -4,6 +4,8 @@ description: What is knowledge in CrewAI and how to use it.
icon: book
---
# Using Knowledge in CrewAI
## What is Knowledge?
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks.
@@ -34,20 +36,7 @@ CrewAI supports various types of knowledge sources out of the box:
</Card>
</CardGroup>
## Supported Knowledge Parameters
| Parameter | Type | Required | Description |
| :--------------------------- | :---------------------------------- | :------- | :---------------------------------------------------------------------------------------------------------------------------------------------------- |
| `sources` | **List[BaseKnowledgeSource]** | Yes | List of knowledge sources that provide content to be stored and queried. Can include PDF, CSV, Excel, JSON, text files, or string content. |
| `collection_name` | **str** | No | Name of the collection where the knowledge will be stored. Used to identify different sets of knowledge. Defaults to "knowledge" if not provided. |
| `storage` | **Optional[KnowledgeStorage]** | No | Custom storage configuration for managing how the knowledge is stored and retrieved. If not provided, a default storage will be created. |
## Quickstart Example
<Tip>
For file-Based Knowledge Sources, make sure to place your files in a `knowledge` directory at the root of your project.
Also, use relative paths from the `knowledge` directory when creating the source.
</Tip>
## Quick Start
Here's an example using string-based knowledge:
@@ -91,14 +80,7 @@ result = crew.kickoff(inputs={"question": "What city does John live in and how o
```
Here's another example with the `CrewDoclingSource`. The CrewDoclingSource is actually quite versatile and can handle multiple file formats including MD, PDF, DOCX, HTML, and more.
<Note>
You need to install `docling` for the following example to work: `uv add docling`
</Note>
Here's another example with the `CrewDoclingSource`
```python Code
from crewai import LLM, Agent, Crew, Process, Task
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
@@ -146,227 +128,39 @@ result = crew.kickoff(
)
```
## More Examples
Here are examples of how to use different types of knowledge sources:
Note: Please ensure that you create the ./knowldge folder. All source files (e.g., .txt, .pdf, .xlsx, .json) should be placed in this folder for centralized management.
### Text File Knowledge Source
```python
from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
# Create a text file knowledge source
text_source = TextFileKnowledgeSource(
file_paths=["document.txt", "another.txt"]
)
# Create crew with text file source on agents or crew level
agent = Agent(
...
knowledge_sources=[text_source]
)
crew = Crew(
...
knowledge_sources=[text_source]
)
```
### PDF Knowledge Source
```python
from crewai.knowledge.source.pdf_knowledge_source import PDFKnowledgeSource
# Create a PDF knowledge source
pdf_source = PDFKnowledgeSource(
file_paths=["document.pdf", "another.pdf"]
)
# Create crew with PDF knowledge source on agents or crew level
agent = Agent(
...
knowledge_sources=[pdf_source]
)
crew = Crew(
...
knowledge_sources=[pdf_source]
)
```
### CSV Knowledge Source
```python
from crewai.knowledge.source.csv_knowledge_source import CSVKnowledgeSource
# Create a CSV knowledge source
csv_source = CSVKnowledgeSource(
file_paths=["data.csv"]
)
# Create crew with CSV knowledge source or on agent level
agent = Agent(
...
knowledge_sources=[csv_source]
)
crew = Crew(
...
knowledge_sources=[csv_source]
)
```
### Excel Knowledge Source
```python
from crewai.knowledge.source.excel_knowledge_source import ExcelKnowledgeSource
# Create an Excel knowledge source
excel_source = ExcelKnowledgeSource(
file_paths=["spreadsheet.xlsx"]
)
# Create crew with Excel knowledge source on agents or crew level
agent = Agent(
...
knowledge_sources=[excel_source]
)
crew = Crew(
...
knowledge_sources=[excel_source]
)
```
### JSON Knowledge Source
```python
from crewai.knowledge.source.json_knowledge_source import JSONKnowledgeSource
# Create a JSON knowledge source
json_source = JSONKnowledgeSource(
file_paths=["data.json"]
)
# Create crew with JSON knowledge source on agents or crew level
agent = Agent(
...
knowledge_sources=[json_source]
)
crew = Crew(
...
knowledge_sources=[json_source]
)
```
## Knowledge Configuration
### Chunking Configuration
Knowledge sources automatically chunk content for better processing.
You can configure chunking behavior in your knowledge sources:
Control how content is split for processing by setting the chunk size and overlap.
```python
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
source = StringKnowledgeSource(
content="Your content here",
chunk_size=4000, # Maximum size of each chunk (default: 4000)
chunk_overlap=200 # Overlap between chunks (default: 200)
```python Code
knowledge_source = StringKnowledgeSource(
content="Long content...",
chunk_size=4000, # Characters per chunk (default)
chunk_overlap=200 # Overlap between chunks (default)
)
```
The chunking configuration helps in:
- Breaking down large documents into manageable pieces
- Maintaining context through chunk overlap
- Optimizing retrieval accuracy
## Embedder Configuration
### Embeddings Configuration
You can also configure the embedder for the knowledge store. This is useful if you want to use a different embedder for the knowledge store than the one used for the agents.
You can also configure the embedder for the knowledge store.
This is useful if you want to use a different embedder for the knowledge store than the one used for the agents.
The `embedder` parameter supports various embedding model providers that include:
- `openai`: OpenAI's embedding models
- `google`: Google's text embedding models
- `azure`: Azure OpenAI embeddings
- `ollama`: Local embeddings with Ollama
- `vertexai`: Google Cloud VertexAI embeddings
- `cohere`: Cohere's embedding models
- `voyageai`: VoyageAI's embedding models
- `bedrock`: AWS Bedrock embeddings
- `huggingface`: Hugging Face models
- `watson`: IBM Watson embeddings
Here's an example of how to configure the embedder for the knowledge store using Google's `text-embedding-004` model:
<CodeGroup>
```python Example
from crewai import Agent, Task, Crew, Process, LLM
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
import os
# Get the GEMINI API key
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
# Create a knowledge source
content = "Users name is John. He is 30 years old and lives in San Francisco."
```python Code
...
string_source = StringKnowledgeSource(
content=content,
content="Users name is John. He is 30 years old and lives in San Francisco.",
)
# Create an LLM with a temperature of 0 to ensure deterministic outputs
gemini_llm = LLM(
model="gemini/gemini-1.5-pro-002",
api_key=GEMINI_API_KEY,
temperature=0,
)
# Create an agent with the knowledge store
agent = Agent(
role="About User",
goal="You know everything about the user.",
backstory="""You are a master at understanding people and their preferences.""",
verbose=True,
allow_delegation=False,
llm=gemini_llm,
embedder={
"provider": "google",
"config": {
"model": "models/text-embedding-004",
"api_key": GEMINI_API_KEY,
}
}
)
task = Task(
description="Answer the following questions about the user: {question}",
expected_output="An answer to the question.",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
...
knowledge_sources=[string_source],
embedder={
"provider": "google",
"config": {
"model": "models/text-embedding-004",
"api_key": GEMINI_API_KEY,
}
}
"provider": "openai",
"config": {"model": "text-embedding-3-small"},
},
)
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
```
```text Output
# Agent: About User
## Task: Answer the following questions about the user: What city does John live in and how old is he?
# Agent: About User
## Final Answer:
John is 30 years old and lives in San Francisco.
```
</CodeGroup>
## Clearing Knowledge
If you need to clear the knowledge stored in CrewAI, you can use the `crewai reset-memories` command with the `--knowledge` option.
@@ -462,12 +256,12 @@ class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
data = response.json()
articles = data.get('results', [])
formatted_data = self.validate_content(articles)
formatted_data = self._format_articles(articles)
return {self.api_endpoint: formatted_data}
except Exception as e:
raise ValueError(f"Failed to fetch space news: {str(e)}")
def validate_content(self, articles: list) -> str:
def _format_articles(self, articles: list) -> str:
"""Format articles into readable text."""
formatted = "Space News Articles:\n\n"
for article in articles:

File diff suppressed because it is too large Load Diff

View File

@@ -58,108 +58,41 @@ my_crew = Crew(
### Example: Use Custom Memory Instances e.g FAISS as the VectorDB
```python Code
from crewai import Crew, Process
from crewai.memory import LongTermMemory, ShortTermMemory, EntityMemory
from crewai.memory.storage.rag_storage import RAGStorage
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
from typing import List, Optional
from crewai import Crew, Agent, Task, Process
# Assemble your crew with memory capabilities
my_crew: Crew = Crew(
my_crew = Crew(
agents=[...],
tasks=[...],
process = Process.sequential,
process="Process.sequential",
memory=True,
# Long-term memory for persistent storage across sessions
long_term_memory = LongTermMemory(
long_term_memory=EnhanceLongTermMemory(
storage=LTMSQLiteStorage(
db_path="/my_crew1/long_term_memory_storage.db"
db_path="/my_data_dir/my_crew1/long_term_memory_storage.db"
)
),
# Short-term memory for current context using RAG
short_term_memory = ShortTermMemory(
storage = RAGStorage(
embedder_config={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
},
type="short_term",
path="/my_crew1/"
)
short_term_memory=EnhanceShortTermMemory(
storage=CustomRAGStorage(
crew_name="my_crew",
storage_type="short_term",
data_dir="//my_data_dir",
model=embedder["model"],
dimension=embedder["dimension"],
),
),
# Entity memory for tracking key information about entities
entity_memory = EntityMemory(
storage=RAGStorage(
embedder_config={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
},
type="short_term",
path="/my_crew1/"
)
entity_memory=EnhanceEntityMemory(
storage=CustomRAGStorage(
crew_name="my_crew",
storage_type="entities",
data_dir="//my_data_dir",
model=embedder["model"],
dimension=embedder["dimension"],
),
),
verbose=True,
)
```
## Security Considerations
When configuring memory storage:
- Use environment variables for storage paths (e.g., `CREWAI_STORAGE_DIR`)
- Never hardcode sensitive information like database credentials
- Consider access permissions for storage directories
- Use relative paths when possible to maintain portability
Example using environment variables:
```python
import os
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
# Configure storage path using environment variable
storage_path = os.getenv("CREWAI_STORAGE_DIR", "./storage")
crew = Crew(
memory=True,
long_term_memory=LongTermMemory(
storage=LTMSQLiteStorage(
db_path="{storage_path}/memory.db".format(storage_path=storage_path)
)
)
)
```
## Configuration Examples
### Basic Memory Configuration
```python
from crewai import Crew
from crewai.memory import LongTermMemory
# Simple memory configuration
crew = Crew(memory=True) # Uses default storage locations
```
### Custom Storage Configuration
```python
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
# Configure custom storage paths
crew = Crew(
memory=True,
long_term_memory=LongTermMemory(
storage=LTMSQLiteStorage(db_path="./memory.db")
)
)
```
## Integrating Mem0 for Enhanced User Memory
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
@@ -201,23 +134,6 @@ crew = Crew(
)
```
## Memory Configuration Options
If you want to access a specific organization and project, you can set the `org_id` and `project_id` parameters in the memory configuration.
```python Code
from crewai import Crew
crew = Crew(
agents=[...],
tasks=[...],
verbose=True,
memory=True,
memory_config={
"provider": "mem0",
"config": {"user_id": "john", "org_id": "my_org_id", "project_id": "my_project_id"},
},
)
```
## Additional Embedding Providers
@@ -252,12 +168,7 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
}
embedder=OpenAIEmbeddingFunction(api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"),
)
```
@@ -283,19 +194,6 @@ my_crew = Crew(
### Using Google AI embeddings
#### Prerequisites
Before using Google AI embeddings, ensure you have:
- Access to the Gemini API
- The necessary API keys and permissions
You will need to update your *pyproject.toml* dependencies:
```YAML
dependencies = [
"google-generativeai>=0.8.4", #main version in January/2025 - crewai v.0.100.0 and crewai-tools 0.33.0
"crewai[tools]>=0.100.0,<1.0.0"
]
```
```python Code
from crewai import Crew, Agent, Task, Process
@@ -309,7 +207,7 @@ my_crew = Crew(
"provider": "google",
"config": {
"api_key": "<YOUR_API_KEY>",
"model": "<model_name>"
"model_name": "<model_name>"
}
}
)
@@ -327,15 +225,13 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "openai",
"config": {
"api_key": "YOUR_API_KEY",
"api_base": "YOUR_API_BASE_PATH",
"api_version": "YOUR_API_VERSION",
"model_name": 'text-embedding-3-small'
}
}
embedder=OpenAIEmbeddingFunction(
api_key="YOUR_API_KEY",
api_base="YOUR_API_BASE_PATH",
api_type="azure",
api_version="YOUR_API_VERSION",
model_name="text-embedding-3-small"
)
)
```
@@ -351,15 +247,12 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "vertexai",
"config": {
"project_id"="YOUR_PROJECT_ID",
"region"="YOUR_REGION",
"api_key"="YOUR_API_KEY",
"model_name"="textembedding-gecko"
}
}
embedder=GoogleVertexEmbeddingFunction(
project_id="YOUR_PROJECT_ID",
region="YOUR_REGION",
api_key="YOUR_API_KEY",
model_name="textembedding-gecko"
)
)
```
@@ -378,27 +271,7 @@ my_crew = Crew(
"provider": "cohere",
"config": {
"api_key": "YOUR_API_KEY",
"model": "<model_name>"
}
}
)
```
### Using VoyageAI embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "voyageai",
"config": {
"api_key": "YOUR_API_KEY",
"model": "<model_name>"
"model_name": "<model_name>"
}
}
)
@@ -448,66 +321,7 @@ my_crew = Crew(
)
```
### Using Amazon Bedrock embeddings
```python Code
# Note: Ensure you have installed `boto3` for Bedrock embeddings to work.
import os
import boto3
from crewai import Crew, Agent, Task, Process
boto3_session = boto3.Session(
region_name=os.environ.get("AWS_REGION_NAME"),
aws_access_key_id=os.environ.get("AWS_ACCESS_KEY_ID"),
aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY")
)
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
embedder={
"provider": "bedrock",
"config":{
"session": boto3_session,
"model": "amazon.titan-embed-text-v2:0",
"vector_dimension": 1024
}
}
verbose=True
)
```
### Adding Custom Embedding Function
```python Code
from crewai import Crew, Agent, Task, Process
from chromadb import Documents, EmbeddingFunction, Embeddings
# Create a custom embedding function
class CustomEmbedder(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
# generate embeddings
return [1, 2, 3] # this is a dummy embedding
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "custom",
"config": {
"embedder": CustomEmbedder()
}
}
)
```
### Resetting Memory via cli
### Resetting Memory
```shell
crewai reset-memories [OPTIONS]
@@ -521,46 +335,8 @@ crewai reset-memories [OPTIONS]
| `-s`, `--short` | Reset SHORT TERM memory. | Flag (boolean) | False |
| `-e`, `--entities` | Reset ENTITIES memory. | Flag (boolean) | False |
| `-k`, `--kickoff-outputs` | Reset LATEST KICKOFF TASK OUTPUTS. | Flag (boolean) | False |
| `-kn`, `--knowledge` | Reset KNOWLEDEGE storage | Flag (boolean) | False |
| `-a`, `--all` | Reset ALL memories. | Flag (boolean) | False |
Note: To use the cli command you need to have your crew in a file called crew.py in the same directory.
### Resetting Memory via crew object
```python
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "custom",
"config": {
"embedder": CustomEmbedder()
}
}
)
my_crew.reset_memories(command_type = 'all') # Resets all the memory
```
#### Resetting Memory Options
| Command Type | Description |
| :----------------- | :------------------------------- |
| `long` | Reset LONG TERM memory. |
| `short` | Reset SHORT TERM memory. |
| `entities` | Reset ENTITIES memory. |
| `kickoff_outputs` | Reset LATEST KICKOFF TASK OUTPUTS. |
| `knowledge` | Reset KNOWLEDGE memory. |
| `all` | Reset ALL memories. |
## Benefits of Using CrewAI's Memory System

View File

@@ -31,7 +31,7 @@ From this point on, your crew will have planning enabled, and the tasks will be
#### Planning LLM
Now you can define the LLM that will be used to plan the tasks.
Now you can define the LLM that will be used to plan the tasks. You can use any ChatOpenAI LLM model available.
When running the base case example, you will see something like the output below, which represents the output of the `AgentPlanner`
responsible for creating the step-by-step logic to add to the Agents' tasks.
@@ -39,6 +39,7 @@ responsible for creating the step-by-step logic to add to the Agents' tasks.
<CodeGroup>
```python Code
from crewai import Crew, Agent, Task, Process
from langchain_openai import ChatOpenAI
# Assemble your crew with planning capabilities and custom LLM
my_crew = Crew(
@@ -46,7 +47,7 @@ my_crew = Crew(
tasks=self.tasks,
process=Process.sequential,
planning=True,
planning_llm="gpt-4o"
planning_llm=ChatOpenAI(model="gpt-4o")
)
# Run the crew
@@ -81,8 +82,8 @@ my_crew.kickoff()
3. **Collect Data:**
- Search for the latest papers, articles, and reports published in 2024 and early 2025.
- Use keywords like "Large Language Models 2025", "AI LLM advancements", "AI ethics 2025", etc.
- Search for the latest papers, articles, and reports published in 2023 and early 2024.
- Use keywords like "Large Language Models 2024", "AI LLM advancements", "AI ethics 2024", etc.
4. **Analyze Findings:**

View File

@@ -23,7 +23,9 @@ Processes enable individual agents to operate as a cohesive unit, streamlining t
To assign a process to a crew, specify the process type upon crew creation to set the execution strategy. For a hierarchical process, ensure to define `manager_llm` or `manager_agent` for the manager agent.
```python
from crewai import Crew, Process
from crewai import Crew
from crewai.process import Process
from langchain_openai import ChatOpenAI
# Example: Creating a crew with a sequential process
crew = Crew(
@@ -38,7 +40,7 @@ crew = Crew(
agents=my_agents,
tasks=my_tasks,
process=Process.hierarchical,
manager_llm="gpt-4o"
manager_llm=ChatOpenAI(model="gpt-4")
# or
# manager_agent=my_manager_agent
)

View File

@@ -38,7 +38,6 @@ crew = Crew(
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | The tools/resources the agent is limited to use for this task. |
| **Context** _(optional)_ | `context` | `Optional[List["Task"]]` | Other tasks whose outputs will be used as context for this task. |
| **Async Execution** _(optional)_ | `async_execution` | `Optional[bool]` | Whether the task should be executed asynchronously. Defaults to False. |
| **Human Input** _(optional)_ | `human_input` | `Optional[bool]` | Whether the task should have a human review the final answer of the agent. Defaults to False. |
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Task-specific configuration parameters. |
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | File path for storing the task output. |
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | A Pydantic model to structure the JSON output. |
@@ -69,7 +68,7 @@ research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2025.
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
@@ -155,7 +154,7 @@ research_task = Task(
description="""
Conduct a thorough research about AI Agents.
Make sure you find any interesting and relevant information given
the current year is 2025.
the current year is 2024.
""",
expected_output="""
A list with 10 bullet points of the most relevant information about AI Agents
@@ -268,7 +267,7 @@ analysis_task = Task(
Task guardrails provide a way to validate and transform task outputs before they
are passed to the next task. This feature helps ensure data quality and provides
feedback to agents when their output doesn't meet specific criteria.
efeedback to agents when their output doesn't meet specific criteria.
### Using Task Guardrails
@@ -876,19 +875,6 @@ save_output_task = Task(
#...
```
Check out the video below to see how to use structured outputs in CrewAI:
<iframe
width="560"
height="315"
src="https://www.youtube.com/embed/dNpKQk5uxHw"
title="YouTube video player"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
## Conclusion
Tasks are the driving force behind the actions of agents in CrewAI.

View File

@@ -106,7 +106,6 @@ Here is a list of the available tools and their descriptions:
| Tool | Description |
| :------------------------------- | :--------------------------------------------------------------------------------------------- |
| **ApifyActorsTool** | A tool that integrates Apify Actors with your workflows for web scraping and automation tasks. |
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
| **CodeInterpreterTool** | A tool for interpreting python code. |
@@ -151,20 +150,15 @@ There are two main ways for one to create a CrewAI tool:
```python Code
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = "What this tool does. It's vital for effective utilization."
args_schema: Type[BaseModel] = MyToolInput
description: str = "Clear description for what this tool is useful for, your agent will need this information to use it."
def _run(self, argument: str) -> str:
# Your tool's logic here
return "Tool's result"
# Implementation goes here
return "Result from custom tool"
```
### Utilizing the `tool` Decorator

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

View File

@@ -1,223 +0,0 @@
{
"$schema": "https://mintlify.com/docs.json",
"theme": "palm",
"name": "CrewAI",
"colors": {
"primary": "#EB6658",
"light": "#F3A78B",
"dark": "#C94C3C"
},
"favicon": "favicon.svg",
"navigation": {
"tabs": [
{
"tab": "Get Started",
"groups": [
{
"group": "Get Started",
"pages": [
"introduction",
"installation",
"quickstart",
"changelog"
]
},
{
"group": "Guides",
"pages": [
{
"group": "Concepts",
"pages": [
"guides/concepts/evaluating-use-cases"
]
},
{
"group": "Agents",
"pages": [
"guides/agents/crafting-effective-agents"
]
},
{
"group": "Crews",
"pages": [
"guides/crews/first-crew"
]
},
{
"group": "Flows",
"pages": [
"guides/flows/first-flow",
"guides/flows/mastering-flow-state"
]
},
{
"group": "Advanced",
"pages": [
"guides/advanced/customizing-prompts",
"guides/advanced/fingerprinting"
]
}
]
},
{
"group": "Core Concepts",
"pages": [
"concepts/agents",
"concepts/tasks",
"concepts/crews",
"concepts/flows",
"concepts/knowledge",
"concepts/llms",
"concepts/processes",
"concepts/collaboration",
"concepts/training",
"concepts/memory",
"concepts/planning",
"concepts/testing",
"concepts/cli",
"concepts/tools",
"concepts/event-listener",
"concepts/langchain-tools",
"concepts/llamaindex-tools"
]
},
{
"group": "How to Guides",
"pages": [
"how-to/create-custom-tools",
"how-to/sequential-process",
"how-to/hierarchical-process",
"how-to/custom-manager-agent",
"how-to/llm-connections",
"how-to/customizing-agents",
"how-to/multimodal-agents",
"how-to/coding-agents",
"how-to/force-tool-output-as-result",
"how-to/human-input-on-execution",
"how-to/kickoff-async",
"how-to/kickoff-for-each",
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/conditional-tasks",
"how-to/agentops-observability",
"how-to/langtrace-observability",
"how-to/mlflow-observability",
"how-to/openlit-observability",
"how-to/portkey-observability",
"how-to/langfuse-observability"
]
},
{
"group": "Tools",
"pages": [
"tools/aimindtool",
"tools/apifyactorstool",
"tools/bravesearchtool",
"tools/browserbaseloadtool",
"tools/codedocssearchtool",
"tools/codeinterpretertool",
"tools/composiotool",
"tools/csvsearchtool",
"tools/dalletool",
"tools/directorysearchtool",
"tools/directoryreadtool",
"tools/docxsearchtool",
"tools/exasearchtool",
"tools/filereadtool",
"tools/filewritetool",
"tools/firecrawlcrawlwebsitetool",
"tools/firecrawlscrapewebsitetool",
"tools/firecrawlsearchtool",
"tools/githubsearchtool",
"tools/hyperbrowserloadtool",
"tools/linkupsearchtool",
"tools/llamaindextool",
"tools/serperdevtool",
"tools/s3readertool",
"tools/s3writertool",
"tools/scrapegraphscrapetool",
"tools/scrapeelementfromwebsitetool",
"tools/jsonsearchtool",
"tools/mdxsearchtool",
"tools/mysqltool",
"tools/multiontool",
"tools/nl2sqltool",
"tools/patronustools",
"tools/pdfsearchtool",
"tools/pgsearchtool",
"tools/qdrantvectorsearchtool",
"tools/ragtool",
"tools/scrapewebsitetool",
"tools/scrapflyscrapetool",
"tools/seleniumscrapingtool",
"tools/snowflakesearchtool",
"tools/spidertool",
"tools/txtsearchtool",
"tools/visiontool",
"tools/weaviatevectorsearchtool",
"tools/websitesearchtool",
"tools/xmlsearchtool",
"tools/youtubechannelsearchtool",
"tools/youtubevideosearchtool"
]
},
{
"group": "Telemetry",
"pages": [
"telemetry"
]
}
]
},
{
"tab": "Examples",
"groups": [
{
"group": "Examples",
"pages": [
"examples/example"
]
}
]
}
],
"global": {
"anchors": [
{
"anchor": "Community",
"href": "https://community.crewai.com",
"icon": "discourse"
}
]
}
},
"logo": {
"light": "crew_only_logo.png",
"dark": "crew_only_logo.png"
},
"appearance": {
"default": "dark",
"strict": false
},
"navbar": {
"primary": {
"type": "github",
"href": "https://github.com/crewAIInc/crewAI"
}
},
"search": {
"prompt": "Search CrewAI docs"
},
"seo": {
"indexing": "navigable"
},
"footer": {
"socials": {
"website": "https://crewai.com",
"x": "https://x.com/crewAIInc",
"github": "https://github.com/crewAIInc/crewAI",
"linkedin": "https://www.linkedin.com/company/crewai-inc",
"youtube": "https://youtube.com/@crewAIInc",
"reddit": "https://www.reddit.com/r/crewAIInc/"
}
}
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

View File

@@ -1,157 +0,0 @@
---
title: Customizing Prompts
description: Dive deeper into low-level prompt customization for CrewAI, enabling super custom and complex use cases for different models and languages.
icon: message-pen
---
# Customizing Prompts at a Low Level
## Why Customize Prompts?
Although CrewAI's default prompts work well for many scenarios, low-level customization opens the door to significantly more flexible and powerful agent behavior. Heres why you might want to take advantage of this deeper control:
1. **Optimize for specific LLMs** Different models (such as GPT-4, Claude, or Llama) thrive with prompt formats tailored to their unique architectures.
2. **Change the language** Build agents that operate exclusively in languages beyond English, handling nuances with precision.
3. **Specialize for complex domains** Adapt prompts for highly specialized industries like healthcare, finance, or legal.
4. **Adjust tone and style** Make agents more formal, casual, creative, or analytical.
5. **Support super custom use cases** Utilize advanced prompt structures and formatting to meet intricate, project-specific requirements.
This guide explores how to tap into CrewAI's prompts at a lower level, giving you fine-grained control over how agents think and interact.
## Understanding CrewAI's Prompt System
Under the hood, CrewAI employs a modular prompt system that you can customize extensively:
- **Agent templates** Govern each agents approach to their assigned role.
- **Prompt slices** Control specialized behaviors such as tasks, tool usage, and output structure.
- **Error handling** Direct how agents respond to failures, exceptions, or timeouts.
- **Tool-specific prompts** Define detailed instructions for how tools are invoked or utilized.
Check out the [original prompt templates in CrewAI's repository](https://github.com/crewAIInc/crewAI/blob/main/src/crewai/translations/en.json) to see how these elements are organized. From there, you can override or adapt them as needed to unlock advanced behaviors.
## Best Practices for Managing Prompt Files
When engaging in low-level prompt customization, follow these guidelines to keep things organized and maintainable:
1. **Keep files separate** Store your customized prompts in dedicated JSON files outside your main codebase.
2. **Version control** Track changes within your repository, ensuring clear documentation of prompt adjustments over time.
3. **Organize by model or language** Use naming schemes like `prompts_llama.json` or `prompts_es.json` to quickly identify specialized configurations.
4. **Document changes** Provide comments or maintain a README detailing the purpose and scope of your customizations.
5. **Minimize alterations** Only override the specific slices you genuinely need to adjust, keeping default functionality intact for everything else.
## The Simplest Way to Customize Prompts
One straightforward approach is to create a JSON file for the prompts you want to override and then point your Crew at that file:
1. Craft a JSON file with your updated prompt slices.
2. Reference that file via the `prompt_file` parameter in your Crew.
CrewAI then merges your customizations with the defaults, so you dont have to redefine every prompt. Heres how:
### Example: Basic Prompt Customization
Create a `custom_prompts.json` file with the prompts you want to modify. Ensure you list all top-level prompts it should contain, not just your changes:
```json
{
"slices": {
"format": "When responding, follow this structure:\n\nTHOUGHTS: Your step-by-step thinking\nACTION: Any tool you're using\nRESULT: Your final answer or conclusion"
}
}
```
Then integrate it like so:
```python
from crewai import Agent, Crew, Task, Process
# Create agents and tasks as normal
researcher = Agent(
role="Research Specialist",
goal="Find information on quantum computing",
backstory="You are a quantum physics expert",
verbose=True
)
research_task = Task(
description="Research quantum computing applications",
expected_output="A summary of practical applications",
agent=researcher
)
# Create a crew with your custom prompt file
crew = Crew(
agents=[researcher],
tasks=[research_task],
prompt_file="path/to/custom_prompts.json",
verbose=True
)
# Run the crew
result = crew.kickoff()
```
With these few edits, you gain low-level control over how your agents communicate and solve tasks.
## Optimizing for Specific Models
Different models thrive on differently structured prompts. Making deeper adjustments can significantly boost performance by aligning your prompts with a models nuances.
### Example: Llama 3.3 Prompting Template
For instance, when dealing with Metas Llama 3.3, deeper-level customization may reflect the recommended structure described at:
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/#prompt-template
Heres an example to highlight how you might fine-tune an Agent to leverage Llama 3.3 in code:
```python
from crewai import Agent, Crew, Task, Process
from crewai_tools import DirectoryReadTool, FileReadTool
# Define templates for system, user (prompt), and assistant (response) messages
system_template = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>{{ .System }}<|eot_id|>"""
prompt_template = """<|start_header_id|>user<|end_header_id|>{{ .Prompt }}<|eot_id|>"""
response_template = """<|start_header_id|>assistant<|end_header_id|>{{ .Response }}<|eot_id|>"""
# Create an Agent using Llama-specific layouts
principal_engineer = Agent(
role="Principal Engineer",
goal="Oversee AI architecture and make high-level decisions",
backstory="You are the lead engineer responsible for critical AI systems",
verbose=True,
llm="groq/llama-3.3-70b-versatile", # Using the Llama 3 model
system_template=system_template,
prompt_template=prompt_template,
response_template=response_template,
tools=[DirectoryReadTool(), FileReadTool()]
)
# Define a sample task
engineering_task = Task(
description="Review AI implementation files for potential improvements",
expected_output="A summary of key findings and recommendations",
agent=principal_engineer
)
# Create a Crew for the task
llama_crew = Crew(
agents=[principal_engineer],
tasks=[engineering_task],
process=Process.sequential,
verbose=True
)
# Execute the crew
result = llama_crew.kickoff()
print(result.raw)
```
Through this deeper configuration, you can exercise comprehensive, low-level control over your Llama-based workflows without needing a separate JSON file.
## Conclusion
Low-level prompt customization in CrewAI opens the door to super custom, complex use cases. By establishing well-organized prompt files (or direct inline templates), you can accommodate various models, languages, and specialized domains. This level of flexibility ensures you can craft precisely the AI behavior you need, all while knowing CrewAI still provides reliable defaults when you dont override them.
<Check>
You now have the foundation for advanced prompt customizations in CrewAI. Whether youre adapting for model-specific structures or domain-specific constraints, this low-level approach lets you shape agent interactions in highly specialized ways.
</Check>

View File

@@ -1,135 +0,0 @@
---
title: Fingerprinting
description: Learn how to use CrewAI's fingerprinting system to uniquely identify and track components throughout their lifecycle.
icon: fingerprint
---
# Fingerprinting in CrewAI
## Overview
Fingerprints in CrewAI provide a way to uniquely identify and track components throughout their lifecycle. Each `Agent`, `Crew`, and `Task` automatically receives a unique fingerprint when created, which cannot be manually overridden.
These fingerprints can be used for:
- Auditing and tracking component usage
- Ensuring component identity integrity
- Attaching metadata to components
- Creating a traceable chain of operations
## How Fingerprints Work
A fingerprint is an instance of the `Fingerprint` class from the `crewai.security` module. Each fingerprint contains:
- A UUID string: A unique identifier for the component that is automatically generated and cannot be manually set
- A creation timestamp: When the fingerprint was generated, automatically set and cannot be manually modified
- Metadata: A dictionary of additional information that can be customized
Fingerprints are automatically generated and assigned when a component is created. Each component exposes its fingerprint through a read-only property.
## Basic Usage
### Accessing Fingerprints
```python
from crewai import Agent, Crew, Task
# Create components - fingerprints are automatically generated
agent = Agent(
role="Data Scientist",
goal="Analyze data",
backstory="Expert in data analysis"
)
crew = Crew(
agents=[agent],
tasks=[]
)
task = Task(
description="Analyze customer data",
expected_output="Insights from data analysis",
agent=agent
)
# Access the fingerprints
agent_fingerprint = agent.fingerprint
crew_fingerprint = crew.fingerprint
task_fingerprint = task.fingerprint
# Print the UUID strings
print(f"Agent fingerprint: {agent_fingerprint.uuid_str}")
print(f"Crew fingerprint: {crew_fingerprint.uuid_str}")
print(f"Task fingerprint: {task_fingerprint.uuid_str}")
```
### Working with Fingerprint Metadata
You can add metadata to fingerprints for additional context:
```python
# Add metadata to the agent's fingerprint
agent.security_config.fingerprint.metadata = {
"version": "1.0",
"department": "Data Science",
"project": "Customer Analysis"
}
# Access the metadata
print(f"Agent metadata: {agent.fingerprint.metadata}")
```
## Fingerprint Persistence
Fingerprints are designed to persist and remain unchanged throughout a component's lifecycle. If you modify a component, the fingerprint remains the same:
```python
original_fingerprint = agent.fingerprint.uuid_str
# Modify the agent
agent.goal = "New goal for analysis"
# The fingerprint remains unchanged
assert agent.fingerprint.uuid_str == original_fingerprint
```
## Deterministic Fingerprints
While you cannot directly set the UUID and creation timestamp, you can create deterministic fingerprints using the `generate` method with a seed:
```python
from crewai.security import Fingerprint
# Create a deterministic fingerprint using a seed string
deterministic_fingerprint = Fingerprint.generate(seed="my-agent-id")
# The same seed always produces the same fingerprint
same_fingerprint = Fingerprint.generate(seed="my-agent-id")
assert deterministic_fingerprint.uuid_str == same_fingerprint.uuid_str
# You can also set metadata
custom_fingerprint = Fingerprint.generate(
seed="my-agent-id",
metadata={"version": "1.0"}
)
```
## Advanced Usage
### Fingerprint Structure
Each fingerprint has the following structure:
```python
from crewai.security import Fingerprint
fingerprint = agent.fingerprint
# UUID string - the unique identifier (auto-generated)
uuid_str = fingerprint.uuid_str # e.g., "123e4567-e89b-12d3-a456-426614174000"
# Creation timestamp (auto-generated)
created_at = fingerprint.created_at # A datetime object
# Metadata - for additional information (can be customized)
metadata = fingerprint.metadata # A dictionary, defaults to {}
```

View File

@@ -1,454 +0,0 @@
---
title: Crafting Effective Agents
description: Learn best practices for designing powerful, specialized AI agents that collaborate effectively to solve complex problems.
icon: robot
---
# Crafting Effective Agents
## The Art and Science of Agent Design
At the heart of CrewAI lies the agent - a specialized AI entity designed to perform specific roles within a collaborative framework. While creating basic agents is simple, crafting truly effective agents that produce exceptional results requires understanding key design principles and best practices.
This guide will help you master the art of agent design, enabling you to create specialized AI personas that collaborate effectively, think critically, and produce high-quality outputs tailored to your specific needs.
### Why Agent Design Matters
The way you define your agents significantly impacts:
1. **Output quality**: Well-designed agents produce more relevant, high-quality results
2. **Collaboration effectiveness**: Agents with complementary skills work together more efficiently
3. **Task performance**: Agents with clear roles and goals execute tasks more effectively
4. **System scalability**: Thoughtfully designed agents can be reused across multiple crews and contexts
Let's explore best practices for creating agents that excel in these dimensions.
## The 80/20 Rule: Focus on Tasks Over Agents
When building effective AI systems, remember this crucial principle: **80% of your effort should go into designing tasks, and only 20% into defining agents**.
Why? Because even the most perfectly defined agent will fail with poorly designed tasks, but well-designed tasks can elevate even a simple agent. This means:
- Spend most of your time writing clear task instructions
- Define detailed inputs and expected outputs
- Add examples and context to guide execution
- Dedicate the remaining time to agent role, goal, and backstory
This doesn't mean agent design isn't important - it absolutely is. But task design is where most execution failures occur, so prioritize accordingly.
## Core Principles of Effective Agent Design
### 1. The Role-Goal-Backstory Framework
The most powerful agents in CrewAI are built on a strong foundation of three key elements:
#### Role: The Agent's Specialized Function
The role defines what the agent does and their area of expertise. When crafting roles:
- **Be specific and specialized**: Instead of "Writer," use "Technical Documentation Specialist" or "Creative Storyteller"
- **Align with real-world professions**: Base roles on recognizable professional archetypes
- **Include domain expertise**: Specify the agent's field of knowledge (e.g., "Financial Analyst specializing in market trends")
**Examples of effective roles:**
```yaml
role: "Senior UX Researcher specializing in user interview analysis"
role: "Full-Stack Software Architect with expertise in distributed systems"
role: "Corporate Communications Director specializing in crisis management"
```
#### Goal: The Agent's Purpose and Motivation
The goal directs the agent's efforts and shapes their decision-making process. Effective goals should:
- **Be clear and outcome-focused**: Define what the agent is trying to achieve
- **Emphasize quality standards**: Include expectations about the quality of work
- **Incorporate success criteria**: Help the agent understand what "good" looks like
**Examples of effective goals:**
```yaml
goal: "Uncover actionable user insights by analyzing interview data and identifying recurring patterns, unmet needs, and improvement opportunities"
goal: "Design robust, scalable system architectures that balance performance, maintainability, and cost-effectiveness"
goal: "Craft clear, empathetic crisis communications that address stakeholder concerns while protecting organizational reputation"
```
#### Backstory: The Agent's Experience and Perspective
The backstory gives depth to the agent, influencing how they approach problems and interact with others. Good backstories:
- **Establish expertise and experience**: Explain how the agent gained their skills
- **Define working style and values**: Describe how the agent approaches their work
- **Create a cohesive persona**: Ensure all elements of the backstory align with the role and goal
**Examples of effective backstories:**
```yaml
backstory: "You have spent 15 years conducting and analyzing user research for top tech companies. You have a talent for reading between the lines and identifying patterns that others miss. You believe that good UX is invisible and that the best insights come from listening to what users don't say as much as what they do say."
backstory: "With 20+ years of experience building distributed systems at scale, you've developed a pragmatic approach to software architecture. You've seen both successful and failed systems and have learned valuable lessons from each. You balance theoretical best practices with practical constraints and always consider the maintenance and operational aspects of your designs."
backstory: "As a seasoned communications professional who has guided multiple organizations through high-profile crises, you understand the importance of transparency, speed, and empathy in crisis response. You have a methodical approach to crafting messages that address concerns while maintaining organizational credibility."
```
### 2. Specialists Over Generalists
Agents perform significantly better when given specialized roles rather than general ones. A highly focused agent delivers more precise, relevant outputs:
**Generic (Less Effective):**
```yaml
role: "Writer"
```
**Specialized (More Effective):**
```yaml
role: "Technical Blog Writer specializing in explaining complex AI concepts to non-technical audiences"
```
**Specialist Benefits:**
- Clearer understanding of expected output
- More consistent performance
- Better alignment with specific tasks
- Improved ability to make domain-specific judgments
### 3. Balancing Specialization and Versatility
Effective agents strike the right balance between specialization (doing one thing extremely well) and versatility (being adaptable to various situations):
- **Specialize in role, versatile in application**: Create agents with specialized skills that can be applied across multiple contexts
- **Avoid overly narrow definitions**: Ensure agents can handle variations within their domain of expertise
- **Consider the collaborative context**: Design agents whose specializations complement the other agents they'll work with
### 4. Setting Appropriate Expertise Levels
The expertise level you assign to your agent shapes how they approach tasks:
- **Novice agents**: Good for straightforward tasks, brainstorming, or initial drafts
- **Intermediate agents**: Suitable for most standard tasks with reliable execution
- **Expert agents**: Best for complex, specialized tasks requiring depth and nuance
- **World-class agents**: Reserved for critical tasks where exceptional quality is needed
Choose the appropriate expertise level based on task complexity and quality requirements. For most collaborative crews, a mix of expertise levels often works best, with higher expertise assigned to core specialized functions.
## Practical Examples: Before and After
Let's look at some examples of agent definitions before and after applying these best practices:
### Example 1: Content Creation Agent
**Before:**
```yaml
role: "Writer"
goal: "Write good content"
backstory: "You are a writer who creates content for websites."
```
**After:**
```yaml
role: "B2B Technology Content Strategist"
goal: "Create compelling, technically accurate content that explains complex topics in accessible language while driving reader engagement and supporting business objectives"
backstory: "You have spent a decade creating content for leading technology companies, specializing in translating technical concepts for business audiences. You excel at research, interviewing subject matter experts, and structuring information for maximum clarity and impact. You believe that the best B2B content educates first and sells second, building trust through genuine expertise rather than marketing hype."
```
### Example 2: Research Agent
**Before:**
```yaml
role: "Researcher"
goal: "Find information"
backstory: "You are good at finding information online."
```
**After:**
```yaml
role: "Academic Research Specialist in Emerging Technologies"
goal: "Discover and synthesize cutting-edge research, identifying key trends, methodologies, and findings while evaluating the quality and reliability of sources"
backstory: "With a background in both computer science and library science, you've mastered the art of digital research. You've worked with research teams at prestigious universities and know how to navigate academic databases, evaluate research quality, and synthesize findings across disciplines. You're methodical in your approach, always cross-referencing information and tracing claims to primary sources before drawing conclusions."
```
## Crafting Effective Tasks for Your Agents
While agent design is important, task design is critical for successful execution. Here are best practices for designing tasks that set your agents up for success:
### The Anatomy of an Effective Task
A well-designed task has two key components that serve different purposes:
#### Task Description: The Process
The description should focus on what to do and how to do it, including:
- Detailed instructions for execution
- Context and background information
- Scope and constraints
- Process steps to follow
#### Expected Output: The Deliverable
The expected output should define what the final result should look like:
- Format specifications (markdown, JSON, etc.)
- Structure requirements
- Quality criteria
- Examples of good outputs (when possible)
### Task Design Best Practices
#### 1. Single Purpose, Single Output
Tasks perform best when focused on one clear objective:
**Bad Example (Too Broad):**
```yaml
task_description: "Research market trends, analyze the data, and create a visualization."
```
**Good Example (Focused):**
```yaml
# Task 1
research_task:
description: "Research the top 5 market trends in the AI industry for 2024."
expected_output: "A markdown list of the 5 trends with supporting evidence."
# Task 2
analysis_task:
description: "Analyze the identified trends to determine potential business impacts."
expected_output: "A structured analysis with impact ratings (High/Medium/Low)."
# Task 3
visualization_task:
description: "Create a visual representation of the analyzed trends."
expected_output: "A description of a chart showing trends and their impact ratings."
```
#### 2. Be Explicit About Inputs and Outputs
Always clearly specify what inputs the task will use and what the output should look like:
**Example:**
```yaml
analysis_task:
description: >
Analyze the customer feedback data from the CSV file.
Focus on identifying recurring themes related to product usability.
Consider sentiment and frequency when determining importance.
expected_output: >
A markdown report with the following sections:
1. Executive summary (3-5 bullet points)
2. Top 3 usability issues with supporting data
3. Recommendations for improvement
```
#### 3. Include Purpose and Context
Explain why the task matters and how it fits into the larger workflow:
**Example:**
```yaml
competitor_analysis_task:
description: >
Analyze our three main competitors' pricing strategies.
This analysis will inform our upcoming pricing model revision.
Focus on identifying patterns in how they price premium features
and how they structure their tiered offerings.
```
#### 4. Use Structured Output Tools
For machine-readable outputs, specify the format clearly:
**Example:**
```yaml
data_extraction_task:
description: "Extract key metrics from the quarterly report."
expected_output: "JSON object with the following keys: revenue, growth_rate, customer_acquisition_cost, and retention_rate."
```
## Common Mistakes to Avoid
Based on lessons learned from real-world implementations, here are the most common pitfalls in agent and task design:
### 1. Unclear Task Instructions
**Problem:** Tasks lack sufficient detail, making it difficult for agents to execute effectively.
**Example of Poor Design:**
```yaml
research_task:
description: "Research AI trends."
expected_output: "A report on AI trends."
```
**Improved Version:**
```yaml
research_task:
description: >
Research the top emerging AI trends for 2024 with a focus on:
1. Enterprise adoption patterns
2. Technical breakthroughs in the past 6 months
3. Regulatory developments affecting implementation
For each trend, identify key companies, technologies, and potential business impacts.
expected_output: >
A comprehensive markdown report with:
- Executive summary (5 bullet points)
- 5-7 major trends with supporting evidence
- For each trend: definition, examples, and business implications
- References to authoritative sources
```
### 2. "God Tasks" That Try to Do Too Much
**Problem:** Tasks that combine multiple complex operations into one instruction set.
**Example of Poor Design:**
```yaml
comprehensive_task:
description: "Research market trends, analyze competitor strategies, create a marketing plan, and design a launch timeline."
```
**Improved Version:**
Break this into sequential, focused tasks:
```yaml
# Task 1: Research
market_research_task:
description: "Research current market trends in the SaaS project management space."
expected_output: "A markdown summary of key market trends."
# Task 2: Competitive Analysis
competitor_analysis_task:
description: "Analyze strategies of the top 3 competitors based on the market research."
expected_output: "A comparison table of competitor strategies."
context: [market_research_task]
# Continue with additional focused tasks...
```
### 3. Misaligned Description and Expected Output
**Problem:** The task description asks for one thing while the expected output specifies something different.
**Example of Poor Design:**
```yaml
analysis_task:
description: "Analyze customer feedback to find areas of improvement."
expected_output: "A marketing plan for the next quarter."
```
**Improved Version:**
```yaml
analysis_task:
description: "Analyze customer feedback to identify the top 3 areas for product improvement."
expected_output: "A report listing the 3 priority improvement areas with supporting customer quotes and data points."
```
### 4. Not Understanding the Process Yourself
**Problem:** Asking agents to execute tasks that you yourself don't fully understand.
**Solution:**
1. Try to perform the task manually first
2. Document your process, decision points, and information sources
3. Use this documentation as the basis for your task description
### 5. Premature Use of Hierarchical Structures
**Problem:** Creating unnecessarily complex agent hierarchies where sequential processes would work better.
**Solution:** Start with sequential processes and only move to hierarchical models when the workflow complexity truly requires it.
### 6. Vague or Generic Agent Definitions
**Problem:** Generic agent definitions lead to generic outputs.
**Example of Poor Design:**
```yaml
agent:
role: "Business Analyst"
goal: "Analyze business data"
backstory: "You are good at business analysis."
```
**Improved Version:**
```yaml
agent:
role: "SaaS Metrics Specialist focusing on growth-stage startups"
goal: "Identify actionable insights from business data that can directly impact customer retention and revenue growth"
backstory: "With 10+ years analyzing SaaS business models, you've developed a keen eye for the metrics that truly matter for sustainable growth. You've helped numerous companies identify the leverage points that turned around their business trajectory. You believe in connecting data to specific, actionable recommendations rather than general observations."
```
## Advanced Agent Design Strategies
### Designing for Collaboration
When creating agents that will work together in a crew, consider:
- **Complementary skills**: Design agents with distinct but complementary abilities
- **Handoff points**: Define clear interfaces for how work passes between agents
- **Constructive tension**: Sometimes, creating agents with slightly different perspectives can lead to better outcomes through productive dialogue
For example, a content creation crew might include:
```yaml
# Research Agent
role: "Research Specialist for technical topics"
goal: "Gather comprehensive, accurate information from authoritative sources"
backstory: "You are a meticulous researcher with a background in library science..."
# Writer Agent
role: "Technical Content Writer"
goal: "Transform research into engaging, clear content that educates and informs"
backstory: "You are an experienced writer who excels at explaining complex concepts..."
# Editor Agent
role: "Content Quality Editor"
goal: "Ensure content is accurate, well-structured, and polished while maintaining consistency"
backstory: "With years of experience in publishing, you have a keen eye for detail..."
```
### Creating Specialized Tool Users
Some agents can be designed specifically to leverage certain tools effectively:
```yaml
role: "Data Analysis Specialist"
goal: "Derive meaningful insights from complex datasets through statistical analysis"
backstory: "With a background in data science, you excel at working with structured and unstructured data..."
tools: [PythonREPLTool, DataVisualizationTool, CSVAnalysisTool]
```
### Tailoring Agents to LLM Capabilities
Different LLMs have different strengths. Design your agents with these capabilities in mind:
```yaml
# For complex reasoning tasks
analyst:
role: "Data Insights Analyst"
goal: "..."
backstory: "..."
llm: openai/gpt-4o
# For creative content
writer:
role: "Creative Content Writer"
goal: "..."
backstory: "..."
llm: anthropic/claude-3-opus
```
## Testing and Iterating on Agent Design
Agent design is often an iterative process. Here's a practical approach:
1. **Start with a prototype**: Create an initial agent definition
2. **Test with sample tasks**: Evaluate performance on representative tasks
3. **Analyze outputs**: Identify strengths and weaknesses
4. **Refine the definition**: Adjust role, goal, and backstory based on observations
5. **Test in collaboration**: Evaluate how the agent performs in a crew setting
## Conclusion
Crafting effective agents is both an art and a science. By carefully defining roles, goals, and backstories that align with your specific needs, and combining them with well-designed tasks, you can create specialized AI collaborators that produce exceptional results.
Remember that agent and task design is an iterative process. Start with these best practices, observe your agents in action, and refine your approach based on what you learn. And always keep in mind the 80/20 rule - focus most of your effort on creating clear, focused tasks to get the best results from your agents.
<Check>
Congratulations! You now understand the principles and practices of effective agent design. Apply these techniques to create powerful, specialized agents that work together seamlessly to accomplish complex tasks.
</Check>
## Next Steps
- Experiment with different agent configurations for your specific use case
- Learn about [building your first crew](/guides/crews/first-crew) to see how agents work together
- Explore [CrewAI Flows](/guides/flows/first-flow) for more advanced orchestration

View File

@@ -1,505 +0,0 @@
---
title: Evaluating Use Cases for CrewAI
description: Learn how to assess your AI application needs and choose the right approach between Crews and Flows based on complexity and precision requirements.
icon: scale-balanced
---
# Evaluating Use Cases for CrewAI
## Understanding the Decision Framework
When building AI applications with CrewAI, one of the most important decisions you'll make is choosing the right approach for your specific use case. Should you use a Crew? A Flow? A combination of both? This guide will help you evaluate your requirements and make informed architectural decisions.
At the heart of this decision is understanding the relationship between **complexity** and **precision** in your application:
<Frame caption="Complexity vs. Precision Matrix for CrewAI Applications">
<img src="../..//complexity_precision.png" alt="Complexity vs. Precision Matrix" />
</Frame>
This matrix helps visualize how different approaches align with varying requirements for complexity and precision. Let's explore what each quadrant means and how it guides your architectural choices.
## The Complexity-Precision Matrix Explained
### What is Complexity?
In the context of CrewAI applications, **complexity** refers to:
- The number of distinct steps or operations required
- The diversity of tasks that need to be performed
- The interdependencies between different components
- The need for conditional logic and branching
- The sophistication of the overall workflow
### What is Precision?
**Precision** in this context refers to:
- The accuracy required in the final output
- The need for structured, predictable results
- The importance of reproducibility
- The level of control needed over each step
- The tolerance for variation in outputs
### The Four Quadrants
#### 1. Low Complexity, Low Precision
**Characteristics:**
- Simple, straightforward tasks
- Tolerance for some variation in outputs
- Limited number of steps
- Creative or exploratory applications
**Recommended Approach:** Simple Crews with minimal agents
**Example Use Cases:**
- Basic content generation
- Idea brainstorming
- Simple summarization tasks
- Creative writing assistance
#### 2. Low Complexity, High Precision
**Characteristics:**
- Simple workflows that require exact, structured outputs
- Need for reproducible results
- Limited steps but high accuracy requirements
- Often involves data processing or transformation
**Recommended Approach:** Flows with direct LLM calls or simple Crews with structured outputs
**Example Use Cases:**
- Data extraction and transformation
- Form filling and validation
- Structured content generation (JSON, XML)
- Simple classification tasks
#### 3. High Complexity, Low Precision
**Characteristics:**
- Multi-stage processes with many steps
- Creative or exploratory outputs
- Complex interactions between components
- Tolerance for variation in final results
**Recommended Approach:** Complex Crews with multiple specialized agents
**Example Use Cases:**
- Research and analysis
- Content creation pipelines
- Exploratory data analysis
- Creative problem-solving
#### 4. High Complexity, High Precision
**Characteristics:**
- Complex workflows requiring structured outputs
- Multiple interdependent steps with strict accuracy requirements
- Need for both sophisticated processing and precise results
- Often mission-critical applications
**Recommended Approach:** Flows orchestrating multiple Crews with validation steps
**Example Use Cases:**
- Enterprise decision support systems
- Complex data processing pipelines
- Multi-stage document processing
- Regulated industry applications
## Choosing Between Crews and Flows
### When to Choose Crews
Crews are ideal when:
1. **You need collaborative intelligence** - Multiple agents with different specializations need to work together
2. **The problem requires emergent thinking** - The solution benefits from different perspectives and approaches
3. **The task is primarily creative or analytical** - The work involves research, content creation, or analysis
4. **You value adaptability over strict structure** - The workflow can benefit from agent autonomy
5. **The output format can be somewhat flexible** - Some variation in output structure is acceptable
```python
# Example: Research Crew for market analysis
from crewai import Agent, Crew, Process, Task
# Create specialized agents
researcher = Agent(
role="Market Research Specialist",
goal="Find comprehensive market data on emerging technologies",
backstory="You are an expert at discovering market trends and gathering data."
)
analyst = Agent(
role="Market Analyst",
goal="Analyze market data and identify key opportunities",
backstory="You excel at interpreting market data and spotting valuable insights."
)
# Define their tasks
research_task = Task(
description="Research the current market landscape for AI-powered healthcare solutions",
expected_output="Comprehensive market data including key players, market size, and growth trends",
agent=researcher
)
analysis_task = Task(
description="Analyze the market data and identify the top 3 investment opportunities",
expected_output="Analysis report with 3 recommended investment opportunities and rationale",
agent=analyst,
context=[research_task]
)
# Create the crew
market_analysis_crew = Crew(
agents=[researcher, analyst],
tasks=[research_task, analysis_task],
process=Process.sequential,
verbose=True
)
# Run the crew
result = market_analysis_crew.kickoff()
```
### When to Choose Flows
Flows are ideal when:
1. **You need precise control over execution** - The workflow requires exact sequencing and state management
2. **The application has complex state requirements** - You need to maintain and transform state across multiple steps
3. **You need structured, predictable outputs** - The application requires consistent, formatted results
4. **The workflow involves conditional logic** - Different paths need to be taken based on intermediate results
5. **You need to combine AI with procedural code** - The solution requires both AI capabilities and traditional programming
```python
# Example: Customer Support Flow with structured processing
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
from typing import List, Dict
# Define structured state
class SupportTicketState(BaseModel):
ticket_id: str = ""
customer_name: str = ""
issue_description: str = ""
category: str = ""
priority: str = "medium"
resolution: str = ""
satisfaction_score: int = 0
class CustomerSupportFlow(Flow[SupportTicketState]):
@start()
def receive_ticket(self):
# In a real app, this might come from an API
self.state.ticket_id = "TKT-12345"
self.state.customer_name = "Alex Johnson"
self.state.issue_description = "Unable to access premium features after payment"
return "Ticket received"
@listen(receive_ticket)
def categorize_ticket(self, _):
# Use a direct LLM call for categorization
from crewai import LLM
llm = LLM(model="openai/gpt-4o-mini")
prompt = f"""
Categorize the following customer support issue into one of these categories:
- Billing
- Account Access
- Technical Issue
- Feature Request
- Other
Issue: {self.state.issue_description}
Return only the category name.
"""
self.state.category = llm.call(prompt).strip()
return self.state.category
@router(categorize_ticket)
def route_by_category(self, category):
# Route to different handlers based on category
return category.lower().replace(" ", "_")
@listen("billing")
def handle_billing_issue(self):
# Handle billing-specific logic
self.state.priority = "high"
# More billing-specific processing...
return "Billing issue handled"
@listen("account_access")
def handle_access_issue(self):
# Handle access-specific logic
self.state.priority = "high"
# More access-specific processing...
return "Access issue handled"
# Additional category handlers...
@listen("billing", "account_access", "technical_issue", "feature_request", "other")
def resolve_ticket(self, resolution_info):
# Final resolution step
self.state.resolution = f"Issue resolved: {resolution_info}"
return self.state.resolution
# Run the flow
support_flow = CustomerSupportFlow()
result = support_flow.kickoff()
```
### When to Combine Crews and Flows
The most sophisticated applications often benefit from combining Crews and Flows:
1. **Complex multi-stage processes** - Use Flows to orchestrate the overall process and Crews for complex subtasks
2. **Applications requiring both creativity and structure** - Use Crews for creative tasks and Flows for structured processing
3. **Enterprise-grade AI applications** - Use Flows to manage state and process flow while leveraging Crews for specialized work
```python
# Example: Content Production Pipeline combining Crews and Flows
from crewai.flow.flow import Flow, listen, start
from crewai import Agent, Crew, Process, Task
from pydantic import BaseModel
from typing import List, Dict
class ContentState(BaseModel):
topic: str = ""
target_audience: str = ""
content_type: str = ""
outline: Dict = {}
draft_content: str = ""
final_content: str = ""
seo_score: int = 0
class ContentProductionFlow(Flow[ContentState]):
@start()
def initialize_project(self):
# Set initial parameters
self.state.topic = "Sustainable Investing"
self.state.target_audience = "Millennial Investors"
self.state.content_type = "Blog Post"
return "Project initialized"
@listen(initialize_project)
def create_outline(self, _):
# Use a research crew to create an outline
researcher = Agent(
role="Content Researcher",
goal=f"Research {self.state.topic} for {self.state.target_audience}",
backstory="You are an expert researcher with deep knowledge of content creation."
)
outliner = Agent(
role="Content Strategist",
goal=f"Create an engaging outline for a {self.state.content_type}",
backstory="You excel at structuring content for maximum engagement."
)
research_task = Task(
description=f"Research {self.state.topic} focusing on what would interest {self.state.target_audience}",
expected_output="Comprehensive research notes with key points and statistics",
agent=researcher
)
outline_task = Task(
description=f"Create an outline for a {self.state.content_type} about {self.state.topic}",
expected_output="Detailed content outline with sections and key points",
agent=outliner,
context=[research_task]
)
outline_crew = Crew(
agents=[researcher, outliner],
tasks=[research_task, outline_task],
process=Process.sequential,
verbose=True
)
# Run the crew and store the result
result = outline_crew.kickoff()
# Parse the outline (in a real app, you might use a more robust parsing approach)
import json
try:
self.state.outline = json.loads(result.raw)
except:
# Fallback if not valid JSON
self.state.outline = {"sections": result.raw}
return "Outline created"
@listen(create_outline)
def write_content(self, _):
# Use a writing crew to create the content
writer = Agent(
role="Content Writer",
goal=f"Write engaging content for {self.state.target_audience}",
backstory="You are a skilled writer who creates compelling content."
)
editor = Agent(
role="Content Editor",
goal="Ensure content is polished, accurate, and engaging",
backstory="You have a keen eye for detail and a talent for improving content."
)
writing_task = Task(
description=f"Write a {self.state.content_type} about {self.state.topic} following this outline: {self.state.outline}",
expected_output="Complete draft content in markdown format",
agent=writer
)
editing_task = Task(
description="Edit and improve the draft content for clarity, engagement, and accuracy",
expected_output="Polished final content in markdown format",
agent=editor,
context=[writing_task]
)
writing_crew = Crew(
agents=[writer, editor],
tasks=[writing_task, editing_task],
process=Process.sequential,
verbose=True
)
# Run the crew and store the result
result = writing_crew.kickoff()
self.state.final_content = result.raw
return "Content created"
@listen(write_content)
def optimize_for_seo(self, _):
# Use a direct LLM call for SEO optimization
from crewai import LLM
llm = LLM(model="openai/gpt-4o-mini")
prompt = f"""
Analyze this content for SEO effectiveness for the keyword "{self.state.topic}".
Rate it on a scale of 1-100 and provide 3 specific recommendations for improvement.
Content: {self.state.final_content[:1000]}... (truncated for brevity)
Format your response as JSON with the following structure:
{{
"score": 85,
"recommendations": [
"Recommendation 1",
"Recommendation 2",
"Recommendation 3"
]
}}
"""
seo_analysis = llm.call(prompt)
# Parse the SEO analysis
import json
try:
analysis = json.loads(seo_analysis)
self.state.seo_score = analysis.get("score", 0)
return analysis
except:
self.state.seo_score = 50
return {"score": 50, "recommendations": ["Unable to parse SEO analysis"]}
# Run the flow
content_flow = ContentProductionFlow()
result = content_flow.kickoff()
```
## Practical Evaluation Framework
To determine the right approach for your specific use case, follow this step-by-step evaluation framework:
### Step 1: Assess Complexity
Rate your application's complexity on a scale of 1-10 by considering:
1. **Number of steps**: How many distinct operations are required?
- 1-3 steps: Low complexity (1-3)
- 4-7 steps: Medium complexity (4-7)
- 8+ steps: High complexity (8-10)
2. **Interdependencies**: How interconnected are the different parts?
- Few dependencies: Low complexity (1-3)
- Some dependencies: Medium complexity (4-7)
- Many complex dependencies: High complexity (8-10)
3. **Conditional logic**: How much branching and decision-making is needed?
- Linear process: Low complexity (1-3)
- Some branching: Medium complexity (4-7)
- Complex decision trees: High complexity (8-10)
4. **Domain knowledge**: How specialized is the knowledge required?
- General knowledge: Low complexity (1-3)
- Some specialized knowledge: Medium complexity (4-7)
- Deep expertise in multiple domains: High complexity (8-10)
Calculate your average score to determine overall complexity.
### Step 2: Assess Precision Requirements
Rate your precision requirements on a scale of 1-10 by considering:
1. **Output structure**: How structured must the output be?
- Free-form text: Low precision (1-3)
- Semi-structured: Medium precision (4-7)
- Strictly formatted (JSON, XML): High precision (8-10)
2. **Accuracy needs**: How important is factual accuracy?
- Creative content: Low precision (1-3)
- Informational content: Medium precision (4-7)
- Critical information: High precision (8-10)
3. **Reproducibility**: How consistent must results be across runs?
- Variation acceptable: Low precision (1-3)
- Some consistency needed: Medium precision (4-7)
- Exact reproducibility required: High precision (8-10)
4. **Error tolerance**: What is the impact of errors?
- Low impact: Low precision (1-3)
- Moderate impact: Medium precision (4-7)
- High impact: High precision (8-10)
Calculate your average score to determine overall precision requirements.
### Step 3: Map to the Matrix
Plot your complexity and precision scores on the matrix:
- **Low Complexity (1-4), Low Precision (1-4)**: Simple Crews
- **Low Complexity (1-4), High Precision (5-10)**: Flows with direct LLM calls
- **High Complexity (5-10), Low Precision (1-4)**: Complex Crews
- **High Complexity (5-10), High Precision (5-10)**: Flows orchestrating Crews
### Step 4: Consider Additional Factors
Beyond complexity and precision, consider:
1. **Development time**: Crews are often faster to prototype
2. **Maintenance needs**: Flows provide better long-term maintainability
3. **Team expertise**: Consider your team's familiarity with different approaches
4. **Scalability requirements**: Flows typically scale better for complex applications
5. **Integration needs**: Consider how the solution will integrate with existing systems
## Conclusion
Choosing between Crews and Flows—or combining them—is a critical architectural decision that impacts the effectiveness, maintainability, and scalability of your CrewAI application. By evaluating your use case along the dimensions of complexity and precision, you can make informed decisions that align with your specific requirements.
Remember that the best approach often evolves as your application matures. Start with the simplest solution that meets your needs, and be prepared to refine your architecture as you gain experience and your requirements become clearer.
<Check>
You now have a framework for evaluating CrewAI use cases and choosing the right approach based on complexity and precision requirements. This will help you build more effective, maintainable, and scalable AI applications.
</Check>
## Next Steps
- Learn more about [crafting effective agents](/guides/agents/crafting-effective-agents)
- Explore [building your first crew](/guides/crews/first-crew)
- Dive into [mastering flow state management](/guides/flows/mastering-flow-state)
- Check out the [core concepts](/concepts/agents) for deeper understanding

View File

@@ -1,390 +0,0 @@
---
title: Build Your First Crew
description: Step-by-step tutorial to create a collaborative AI team that works together to solve complex problems.
icon: users-gear
---
# Build Your First Crew
## Unleashing the Power of Collaborative AI
Imagine having a team of specialized AI agents working together seamlessly to solve complex problems, each contributing their unique skills to achieve a common goal. This is the power of CrewAI - a framework that enables you to create collaborative AI systems that can accomplish tasks far beyond what a single AI could achieve alone.
In this guide, we'll walk through creating a research crew that will help us research and analyze a topic, then create a comprehensive report. This practical example demonstrates how AI agents can collaborate to accomplish complex tasks, but it's just the beginning of what's possible with CrewAI.
### What You'll Build and Learn
By the end of this guide, you'll have:
1. **Created a specialized AI research team** with distinct roles and responsibilities
2. **Orchestrated collaboration** between multiple AI agents
3. **Automated a complex workflow** that involves gathering information, analysis, and report generation
4. **Built foundational skills** that you can apply to more ambitious projects
While we're building a simple research crew in this guide, the same patterns and techniques can be applied to create much more sophisticated teams for tasks like:
- Multi-stage content creation with specialized writers, editors, and fact-checkers
- Complex customer service systems with tiered support agents
- Autonomous business analysts that gather data, create visualizations, and generate insights
- Product development teams that ideate, design, and plan implementation
Let's get started building your first crew!
### Prerequisites
Before starting, make sure you have:
1. Installed CrewAI following the [installation guide](/installation)
2. Set up your OpenAI API key in your environment variables
3. Basic understanding of Python
## Step 1: Create a New CrewAI Project
First, let's create a new CrewAI project using the CLI. This command will set up a complete project structure with all the necessary files, allowing you to focus on defining your agents and their tasks rather than setting up boilerplate code.
```bash
crewai create crew research_crew
cd research_crew
```
This will generate a project with the basic structure needed for your crew. The CLI automatically creates:
- A project directory with the necessary files
- Configuration files for agents and tasks
- A basic crew implementation
- A main script to run the crew
<Frame caption="CrewAI Framework Overview">
<img src="../../crews.png" alt="CrewAI Framework Overview" />
</Frame>
## Step 2: Explore the Project Structure
Let's take a moment to understand the project structure created by the CLI. CrewAI follows best practices for Python projects, making it easy to maintain and extend your code as your crews become more complex.
```
research_crew/
├── .gitignore
├── pyproject.toml
├── README.md
├── .env
└── src/
└── research_crew/
├── __init__.py
├── main.py
├── crew.py
├── tools/
│ ├── custom_tool.py
│ └── __init__.py
└── config/
├── agents.yaml
└── tasks.yaml
```
This structure follows best practices for Python projects and makes it easy to organize your code. The separation of configuration files (in YAML) from implementation code (in Python) makes it easy to modify your crew's behavior without changing the underlying code.
## Step 3: Configure Your Agents
Now comes the fun part - defining your AI agents! In CrewAI, agents are specialized entities with specific roles, goals, and backstories that shape their behavior. Think of them as characters in a play, each with their own personality and purpose.
For our research crew, we'll create two agents:
1. A **researcher** who excels at finding and organizing information
2. An **analyst** who can interpret research findings and create insightful reports
Let's modify the `agents.yaml` file to define these specialized agents:
```yaml
# src/research_crew/config/agents.yaml
researcher:
role: >
Senior Research Specialist for {topic}
goal: >
Find comprehensive and accurate information about {topic}
with a focus on recent developments and key insights
backstory: >
You are an experienced research specialist with a talent for
finding relevant information from various sources. You excel at
organizing information in a clear and structured manner, making
complex topics accessible to others.
llm: openai/gpt-4o-mini
analyst:
role: >
Data Analyst and Report Writer for {topic}
goal: >
Analyze research findings and create a comprehensive, well-structured
report that presents insights in a clear and engaging way
backstory: >
You are a skilled analyst with a background in data interpretation
and technical writing. You have a talent for identifying patterns
and extracting meaningful insights from research data, then
communicating those insights effectively through well-crafted reports.
llm: openai/gpt-4o-mini
```
Notice how each agent has a distinct role, goal, and backstory. These elements aren't just descriptive - they actively shape how the agent approaches its tasks. By crafting these carefully, you can create agents with specialized skills and perspectives that complement each other.
## Step 4: Define Your Tasks
With our agents defined, we now need to give them specific tasks to perform. Tasks in CrewAI represent the concrete work that agents will perform, with detailed instructions and expected outputs.
For our research crew, we'll define two main tasks:
1. A **research task** for gathering comprehensive information
2. An **analysis task** for creating an insightful report
Let's modify the `tasks.yaml` file:
```yaml
# src/research_crew/config/tasks.yaml
research_task:
description: >
Conduct thorough research on {topic}. Focus on:
1. Key concepts and definitions
2. Historical development and recent trends
3. Major challenges and opportunities
4. Notable applications or case studies
5. Future outlook and potential developments
Make sure to organize your findings in a structured format with clear sections.
expected_output: >
A comprehensive research document with well-organized sections covering
all the requested aspects of {topic}. Include specific facts, figures,
and examples where relevant.
agent: researcher
analysis_task:
description: >
Analyze the research findings and create a comprehensive report on {topic}.
Your report should:
1. Begin with an executive summary
2. Include all key information from the research
3. Provide insightful analysis of trends and patterns
4. Offer recommendations or future considerations
5. Be formatted in a professional, easy-to-read style with clear headings
expected_output: >
A polished, professional report on {topic} that presents the research
findings with added analysis and insights. The report should be well-structured
with an executive summary, main sections, and conclusion.
agent: analyst
context:
- research_task
output_file: output/report.md
```
Note the `context` field in the analysis task - this is a powerful feature that allows the analyst to access the output of the research task. This creates a workflow where information flows naturally between agents, just as it would in a human team.
## Step 5: Configure Your Crew
Now it's time to bring everything together by configuring our crew. The crew is the container that orchestrates how agents work together to complete tasks.
Let's modify the `crew.py` file:
```python
# src/research_crew/crew.py
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool
@CrewBase
class ResearchCrew():
"""Research crew for comprehensive topic analysis and reporting"""
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True,
tools=[SerperDevTool()]
)
@agent
def analyst(self) -> Agent:
return Agent(
config=self.agents_config['analyst'],
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task']
)
@task
def analysis_task(self) -> Task:
return Task(
config=self.tasks_config['analysis_task'],
output_file='output/report.md'
)
@crew
def crew(self) -> Crew:
"""Creates the research crew"""
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True,
)
```
In this code, we're:
1. Creating the researcher agent and equipping it with the SerperDevTool to search the web
2. Creating the analyst agent
3. Setting up the research and analysis tasks
4. Configuring the crew to run tasks sequentially (the analyst will wait for the researcher to finish)
This is where the magic happens - with just a few lines of code, we've defined a collaborative AI system where specialized agents work together in a coordinated process.
## Step 6: Set Up Your Main Script
Now, let's set up the main script that will run our crew. This is where we provide the specific topic we want our crew to research.
```python
#!/usr/bin/env python
# src/research_crew/main.py
import os
from research_crew.crew import ResearchCrew
# Create output directory if it doesn't exist
os.makedirs('output', exist_ok=True)
def run():
"""
Run the research crew.
"""
inputs = {
'topic': 'Artificial Intelligence in Healthcare'
}
# Create and run the crew
result = ResearchCrew().crew().kickoff(inputs=inputs)
# Print the result
print("\n\n=== FINAL REPORT ===\n\n")
print(result.raw)
print("\n\nReport has been saved to output/report.md")
if __name__ == "__main__":
run()
```
This script prepares the environment, specifies our research topic, and kicks off the crew's work. The power of CrewAI is evident in how simple this code is - all the complexity of managing multiple AI agents is handled by the framework.
## Step 7: Set Up Your Environment Variables
Create a `.env` file in your project root with your API keys:
```
OPENAI_API_KEY=your_openai_api_key
SERPER_API_KEY=your_serper_api_key
```
You can get a Serper API key from [Serper.dev](https://serper.dev/).
## Step 8: Install Dependencies
Install the required dependencies using the CrewAI CLI:
```bash
crewai install
```
This command will:
1. Read the dependencies from your project configuration
2. Create a virtual environment if needed
3. Install all required packages
## Step 9: Run Your Crew
Now for the exciting moment - it's time to run your crew and see AI collaboration in action!
```bash
crewai run
```
When you run this command, you'll see your crew spring to life. The researcher will gather information about the specified topic, and the analyst will then create a comprehensive report based on that research. You'll see the agents' thought processes, actions, and outputs in real-time as they work together to complete their tasks.
## Step 10: Review the Output
Once the crew completes its work, you'll find the final report in the `output/report.md` file. The report will include:
1. An executive summary
2. Detailed information about the topic
3. Analysis and insights
4. Recommendations or future considerations
Take a moment to appreciate what you've accomplished - you've created a system where multiple AI agents collaborated on a complex task, each contributing their specialized skills to produce a result that's greater than what any single agent could achieve alone.
## Exploring Other CLI Commands
CrewAI offers several other useful CLI commands for working with crews:
```bash
# View all available commands
crewai --help
# Run the crew
crewai run
# Test the crew
crewai test
# Reset crew memories
crewai reset-memories
# Replay from a specific task
crewai replay -t <task_id>
```
## The Art of the Possible: Beyond Your First Crew
What you've built in this guide is just the beginning. The skills and patterns you've learned can be applied to create increasingly sophisticated AI systems. Here are some ways you could extend this basic research crew:
### Expanding Your Crew
You could add more specialized agents to your crew:
- A **fact-checker** to verify research findings
- A **data visualizer** to create charts and graphs
- A **domain expert** with specialized knowledge in a particular area
- A **critic** to identify weaknesses in the analysis
### Adding Tools and Capabilities
You could enhance your agents with additional tools:
- Web browsing tools for real-time research
- CSV/database tools for data analysis
- Code execution tools for data processing
- API connections to external services
### Creating More Complex Workflows
You could implement more sophisticated processes:
- Hierarchical processes where manager agents delegate to worker agents
- Iterative processes with feedback loops for refinement
- Parallel processes where multiple agents work simultaneously
- Dynamic processes that adapt based on intermediate results
### Applying to Different Domains
The same patterns can be applied to create crews for:
- **Content creation**: Writers, editors, fact-checkers, and designers working together
- **Customer service**: Triage agents, specialists, and quality control working together
- **Product development**: Researchers, designers, and planners collaborating
- **Data analysis**: Data collectors, analysts, and visualization specialists
## Next Steps
Now that you've built your first crew, you can:
1. Experiment with different agent configurations and personalities
2. Try more complex task structures and workflows
3. Implement custom tools to give your agents new capabilities
4. Apply your crew to different topics or problem domains
5. Explore [CrewAI Flows](/guides/flows/first-flow) for more advanced workflows with procedural programming
<Check>
Congratulations! You've successfully built your first CrewAI crew that can research and analyze any topic you provide. This foundational experience has equipped you with the skills to create increasingly sophisticated AI systems that can tackle complex, multi-stage problems through collaborative intelligence.
</Check>

View File

@@ -1,604 +0,0 @@
---
title: Build Your First Flow
description: Learn how to create structured, event-driven workflows with precise control over execution.
icon: diagram-project
---
# Build Your First Flow
## Taking Control of AI Workflows with Flows
CrewAI Flows represent the next level in AI orchestration - combining the collaborative power of AI agent crews with the precision and flexibility of procedural programming. While crews excel at agent collaboration, flows give you fine-grained control over exactly how and when different components of your AI system interact.
In this guide, we'll walk through creating a powerful CrewAI Flow that generates a comprehensive learning guide on any topic. This tutorial will demonstrate how Flows provide structured, event-driven control over your AI workflows by combining regular code, direct LLM calls, and crew-based processing.
### What Makes Flows Powerful
Flows enable you to:
1. **Combine different AI interaction patterns** - Use crews for complex collaborative tasks, direct LLM calls for simpler operations, and regular code for procedural logic
2. **Build event-driven systems** - Define how components respond to specific events and data changes
3. **Maintain state across components** - Share and transform data between different parts of your application
4. **Integrate with external systems** - Seamlessly connect your AI workflow with databases, APIs, and user interfaces
5. **Create complex execution paths** - Design conditional branches, parallel processing, and dynamic workflows
### What You'll Build and Learn
By the end of this guide, you'll have:
1. **Created a sophisticated content generation system** that combines user input, AI planning, and multi-agent content creation
2. **Orchestrated the flow of information** between different components of your system
3. **Implemented event-driven architecture** where each step responds to the completion of previous steps
4. **Built a foundation for more complex AI applications** that you can expand and customize
This guide creator flow demonstrates fundamental patterns that can be applied to create much more advanced applications, such as:
- Interactive AI assistants that combine multiple specialized subsystems
- Complex data processing pipelines with AI-enhanced transformations
- Autonomous agents that integrate with external services and APIs
- Multi-stage decision-making systems with human-in-the-loop processes
Let's dive in and build your first flow!
## Prerequisites
Before starting, make sure you have:
1. Installed CrewAI following the [installation guide](/installation)
2. Set up your OpenAI API key in your environment variables
3. Basic understanding of Python
## Step 1: Create a New CrewAI Flow Project
First, let's create a new CrewAI Flow project using the CLI. This command sets up a scaffolded project with all the necessary directories and template files for your flow.
```bash
crewai create flow guide_creator_flow
cd guide_creator_flow
```
This will generate a project with the basic structure needed for your flow.
<Frame caption="CrewAI Framework Overview">
<img src="../../flows.png" alt="CrewAI Framework Overview" />
</Frame>
## Step 2: Understanding the Project Structure
The generated project has the following structure. Take a moment to familiarize yourself with it, as understanding this structure will help you create more complex flows in the future.
```
guide_creator_flow/
├── .gitignore
├── pyproject.toml
├── README.md
├── .env
├── main.py
├── crews/
│ └── poem_crew/
│ ├── config/
│ │ ├── agents.yaml
│ │ └── tasks.yaml
│ └── poem_crew.py
└── tools/
└── custom_tool.py
```
This structure provides a clear separation between different components of your flow:
- The main flow logic in the `main.py` file
- Specialized crews in the `crews` directory
- Custom tools in the `tools` directory
We'll modify this structure to create our guide creator flow, which will orchestrate the process of generating comprehensive learning guides.
## Step 3: Add a Content Writer Crew
Our flow will need a specialized crew to handle the content creation process. Let's use the CrewAI CLI to add a content writer crew:
```bash
crewai flow add-crew content-crew
```
This command automatically creates the necessary directories and template files for your crew. The content writer crew will be responsible for writing and reviewing sections of our guide, working within the overall flow orchestrated by our main application.
## Step 4: Configure the Content Writer Crew
Now, let's modify the generated files for the content writer crew. We'll set up two specialized agents - a writer and a reviewer - that will collaborate to create high-quality content for our guide.
1. First, update the agents configuration file to define our content creation team:
```yaml
# src/guide_creator_flow/crews/content_crew/config/agents.yaml
content_writer:
role: >
Educational Content Writer
goal: >
Create engaging, informative content that thoroughly explains the assigned topic
and provides valuable insights to the reader
backstory: >
You are a talented educational writer with expertise in creating clear, engaging
content. You have a gift for explaining complex concepts in accessible language
and organizing information in a way that helps readers build their understanding.
llm: openai/gpt-4o-mini
content_reviewer:
role: >
Educational Content Reviewer and Editor
goal: >
Ensure content is accurate, comprehensive, well-structured, and maintains
consistency with previously written sections
backstory: >
You are a meticulous editor with years of experience reviewing educational
content. You have an eye for detail, clarity, and coherence. You excel at
improving content while maintaining the original author's voice and ensuring
consistent quality across multiple sections.
llm: openai/gpt-4o-mini
```
These agent definitions establish the specialized roles and perspectives that will shape how our AI agents approach content creation. Notice how each agent has a distinct purpose and expertise.
2. Next, update the tasks configuration file to define the specific writing and reviewing tasks:
```yaml
# src/guide_creator_flow/crews/content_crew/config/tasks.yaml
write_section_task:
description: >
Write a comprehensive section on the topic: "{section_title}"
Section description: {section_description}
Target audience: {audience_level} level learners
Your content should:
1. Begin with a brief introduction to the section topic
2. Explain all key concepts clearly with examples
3. Include practical applications or exercises where appropriate
4. End with a summary of key points
5. Be approximately 500-800 words in length
Format your content in Markdown with appropriate headings, lists, and emphasis.
Previously written sections:
{previous_sections}
Make sure your content maintains consistency with previously written sections
and builds upon concepts that have already been explained.
expected_output: >
A well-structured, comprehensive section in Markdown format that thoroughly
explains the topic and is appropriate for the target audience.
agent: content_writer
review_section_task:
description: >
Review and improve the following section on "{section_title}":
{draft_content}
Target audience: {audience_level} level learners
Previously written sections:
{previous_sections}
Your review should:
1. Fix any grammatical or spelling errors
2. Improve clarity and readability
3. Ensure content is comprehensive and accurate
4. Verify consistency with previously written sections
5. Enhance the structure and flow
6. Add any missing key information
Provide the improved version of the section in Markdown format.
expected_output: >
An improved, polished version of the section that maintains the original
structure but enhances clarity, accuracy, and consistency.
agent: content_reviewer
context:
- write_section_task
```
These task definitions provide detailed instructions to our agents, ensuring they produce content that meets our quality standards. Note how the `context` parameter in the review task creates a workflow where the reviewer has access to the writer's output.
3. Now, update the crew implementation file to define how our agents and tasks work together:
```python
# src/guide_creator_flow/crews/content_crew/content_crew.py
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
@CrewBase
class ContentCrew():
"""Content writing crew"""
@agent
def content_writer(self) -> Agent:
return Agent(
config=self.agents_config['content_writer'],
verbose=True
)
@agent
def content_reviewer(self) -> Agent:
return Agent(
config=self.agents_config['content_reviewer'],
verbose=True
)
@task
def write_section_task(self) -> Task:
return Task(
config=self.tasks_config['write_section_task']
)
@task
def review_section_task(self) -> Task:
return Task(
config=self.tasks_config['review_section_task'],
context=[self.write_section_task()]
)
@crew
def crew(self) -> Crew:
"""Creates the content writing crew"""
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True,
)
```
This crew definition establishes the relationship between our agents and tasks, setting up a sequential process where the content writer creates a draft and then the reviewer improves it. While this crew can function independently, in our flow it will be orchestrated as part of a larger system.
## Step 5: Create the Flow
Now comes the exciting part - creating the flow that will orchestrate the entire guide creation process. This is where we'll combine regular Python code, direct LLM calls, and our content creation crew into a cohesive system.
Our flow will:
1. Get user input for a topic and audience level
2. Make a direct LLM call to create a structured guide outline
3. Process each section sequentially using the content writer crew
4. Combine everything into a final comprehensive document
Let's create our flow in the `main.py` file:
```python
#!/usr/bin/env python
import json
from typing import List, Dict
from pydantic import BaseModel, Field
from crewai import LLM
from crewai.flow.flow import Flow, listen, start
from guide_creator_flow.crews.content_crew.content_crew import ContentCrew
# Define our models for structured data
class Section(BaseModel):
title: str = Field(description="Title of the section")
description: str = Field(description="Brief description of what the section should cover")
class GuideOutline(BaseModel):
title: str = Field(description="Title of the guide")
introduction: str = Field(description="Introduction to the topic")
target_audience: str = Field(description="Description of the target audience")
sections: List[Section] = Field(description="List of sections in the guide")
conclusion: str = Field(description="Conclusion or summary of the guide")
# Define our flow state
class GuideCreatorState(BaseModel):
topic: str = ""
audience_level: str = ""
guide_outline: GuideOutline = None
sections_content: Dict[str, str] = {}
class GuideCreatorFlow(Flow[GuideCreatorState]):
"""Flow for creating a comprehensive guide on any topic"""
@start()
def get_user_input(self):
"""Get input from the user about the guide topic and audience"""
print("\n=== Create Your Comprehensive Guide ===\n")
# Get user input
self.state.topic = input("What topic would you like to create a guide for? ")
# Get audience level with validation
while True:
audience = input("Who is your target audience? (beginner/intermediate/advanced) ").lower()
if audience in ["beginner", "intermediate", "advanced"]:
self.state.audience_level = audience
break
print("Please enter 'beginner', 'intermediate', or 'advanced'")
print(f"\nCreating a guide on {self.state.topic} for {self.state.audience_level} audience...\n")
return self.state
@listen(get_user_input)
def create_guide_outline(self, state):
"""Create a structured outline for the guide using a direct LLM call"""
print("Creating guide outline...")
# Initialize the LLM
llm = LLM(model="openai/gpt-4o-mini", response_format=GuideOutline)
# Create the messages for the outline
messages = [
{"role": "system", "content": "You are a helpful assistant designed to output JSON."},
{"role": "user", "content": f"""
Create a detailed outline for a comprehensive guide on "{state.topic}" for {state.audience_level} level learners.
The outline should include:
1. A compelling title for the guide
2. An introduction to the topic
3. 4-6 main sections that cover the most important aspects of the topic
4. A conclusion or summary
For each section, provide a clear title and a brief description of what it should cover.
"""}
]
# Make the LLM call with JSON response format
response = llm.call(messages=messages)
# Parse the JSON response
outline_dict = json.loads(response)
self.state.guide_outline = GuideOutline(**outline_dict)
# Save the outline to a file
with open("output/guide_outline.json", "w") as f:
json.dump(outline_dict, f, indent=2)
print(f"Guide outline created with {len(self.state.guide_outline.sections)} sections")
return self.state.guide_outline
@listen(create_guide_outline)
def write_and_compile_guide(self, outline):
"""Write all sections and compile the guide"""
print("Writing guide sections and compiling...")
completed_sections = []
# Process sections one by one to maintain context flow
for section in outline.sections:
print(f"Processing section: {section.title}")
# Build context from previous sections
previous_sections_text = ""
if completed_sections:
previous_sections_text = "# Previously Written Sections\n\n"
for title in completed_sections:
previous_sections_text += f"## {title}\n\n"
previous_sections_text += self.state.sections_content.get(title, "") + "\n\n"
else:
previous_sections_text = "No previous sections written yet."
# Run the content crew for this section
result = ContentCrew().crew().kickoff(inputs={
"section_title": section.title,
"section_description": section.description,
"audience_level": self.state.audience_level,
"previous_sections": previous_sections_text,
"draft_content": ""
})
# Store the content
self.state.sections_content[section.title] = result.raw
completed_sections.append(section.title)
print(f"Section completed: {section.title}")
# Compile the final guide
guide_content = f"# {outline.title}\n\n"
guide_content += f"## Introduction\n\n{outline.introduction}\n\n"
# Add each section in order
for section in outline.sections:
section_content = self.state.sections_content.get(section.title, "")
guide_content += f"\n\n{section_content}\n\n"
# Add conclusion
guide_content += f"## Conclusion\n\n{outline.conclusion}\n\n"
# Save the guide
with open("output/complete_guide.md", "w") as f:
f.write(guide_content)
print("\nComplete guide compiled and saved to output/complete_guide.md")
return "Guide creation completed successfully"
def kickoff():
"""Run the guide creator flow"""
GuideCreatorFlow().kickoff()
print("\n=== Flow Complete ===")
print("Your comprehensive guide is ready in the output directory.")
print("Open output/complete_guide.md to view it.")
def plot():
"""Generate a visualization of the flow"""
flow = GuideCreatorFlow()
flow.plot("guide_creator_flow")
print("Flow visualization saved to guide_creator_flow.html")
if __name__ == "__main__":
kickoff()
```
Let's analyze what's happening in this flow:
1. We define Pydantic models for structured data, ensuring type safety and clear data representation
2. We create a state class to maintain data across different steps of the flow
3. We implement three main flow steps:
- Getting user input with the `@start()` decorator
- Creating a guide outline with a direct LLM call
- Processing sections with our content crew
4. We use the `@listen()` decorator to establish event-driven relationships between steps
This is the power of flows - combining different types of processing (user interaction, direct LLM calls, crew-based tasks) into a coherent, event-driven system.
## Step 6: Set Up Your Environment Variables
Create a `.env` file in your project root with your API keys:
```
OPENAI_API_KEY=your_openai_api_key
```
## Step 7: Install Dependencies
Install the required dependencies:
```bash
crewai install
```
## Step 8: Run Your Flow
Now it's time to see your flow in action! Run it using the CrewAI CLI:
```bash
crewai flow kickoff
```
When you run this command, you'll see your flow spring to life:
1. It will prompt you for a topic and audience level
2. It will create a structured outline for your guide
3. It will process each section, with the content writer and reviewer collaborating on each
4. Finally, it will compile everything into a comprehensive guide
This demonstrates the power of flows to orchestrate complex processes involving multiple components, both AI and non-AI.
## Step 9: Visualize Your Flow
One of the powerful features of flows is the ability to visualize their structure:
```bash
crewai flow plot
```
This will create an HTML file that shows the structure of your flow, including the relationships between different steps and the data that flows between them. This visualization can be invaluable for understanding and debugging complex flows.
## Step 10: Review the Output
Once the flow completes, you'll find two files in the `output` directory:
1. `guide_outline.json`: Contains the structured outline of the guide
2. `complete_guide.md`: The comprehensive guide with all sections
Take a moment to review these files and appreciate what you've built - a system that combines user input, direct AI interactions, and collaborative agent work to produce a complex, high-quality output.
## The Art of the Possible: Beyond Your First Flow
What you've learned in this guide provides a foundation for creating much more sophisticated AI systems. Here are some ways you could extend this basic flow:
### Enhancing User Interaction
You could create more interactive flows with:
- Web interfaces for input and output
- Real-time progress updates
- Interactive feedback and refinement loops
- Multi-stage user interactions
### Adding More Processing Steps
You could expand your flow with additional steps for:
- Research before outline creation
- Image generation for illustrations
- Code snippet generation for technical guides
- Final quality assurance and fact-checking
### Creating More Complex Flows
You could implement more sophisticated flow patterns:
- Conditional branching based on user preferences or content type
- Parallel processing of independent sections
- Iterative refinement loops with feedback
- Integration with external APIs and services
### Applying to Different Domains
The same patterns can be applied to create flows for:
- **Interactive storytelling**: Create personalized stories based on user input
- **Business intelligence**: Process data, generate insights, and create reports
- **Product development**: Facilitate ideation, design, and planning
- **Educational systems**: Create personalized learning experiences
## Key Features Demonstrated
This guide creator flow demonstrates several powerful features of CrewAI:
1. **User interaction**: The flow collects input directly from the user
2. **Direct LLM calls**: Uses the LLM class for efficient, single-purpose AI interactions
3. **Structured data with Pydantic**: Uses Pydantic models to ensure type safety
4. **Sequential processing with context**: Writes sections in order, providing previous sections for context
5. **Multi-agent crews**: Leverages specialized agents (writer and reviewer) for content creation
6. **State management**: Maintains state across different steps of the process
7. **Event-driven architecture**: Uses the `@listen` decorator to respond to events
## Understanding the Flow Structure
Let's break down the key components of flows to help you understand how to build your own:
### 1. Direct LLM Calls
Flows allow you to make direct calls to language models when you need simple, structured responses:
```python
llm = LLM(model="openai/gpt-4o-mini", response_format=GuideOutline)
response = llm.call(messages=messages)
```
This is more efficient than using a crew when you need a specific, structured output.
### 2. Event-Driven Architecture
Flows use decorators to establish relationships between components:
```python
@start()
def get_user_input(self):
# First step in the flow
# ...
@listen(get_user_input)
def create_guide_outline(self, state):
# This runs when get_user_input completes
# ...
```
This creates a clear, declarative structure for your application.
### 3. State Management
Flows maintain state across steps, making it easy to share data:
```python
class GuideCreatorState(BaseModel):
topic: str = ""
audience_level: str = ""
guide_outline: GuideOutline = None
sections_content: Dict[str, str] = {}
```
This provides a type-safe way to track and transform data throughout your flow.
### 4. Crew Integration
Flows can seamlessly integrate with crews for complex collaborative tasks:
```python
result = ContentCrew().crew().kickoff(inputs={
"section_title": section.title,
# ...
})
```
This allows you to use the right tool for each part of your application - direct LLM calls for simple tasks and crews for complex collaboration.
## Next Steps
Now that you've built your first flow, you can:
1. Experiment with more complex flow structures and patterns
2. Try using `@router()` to create conditional branches in your flows
3. Explore the `and_` and `or_` functions for more complex parallel execution
4. Connect your flow to external APIs, databases, or user interfaces
5. Combine multiple specialized crews in a single flow
<Check>
Congratulations! You've successfully built your first CrewAI Flow that combines regular code, direct LLM calls, and crew-based processing to create a comprehensive guide. These foundational skills enable you to create increasingly sophisticated AI applications that can tackle complex, multi-stage problems through a combination of procedural control and collaborative intelligence.
</Check>

View File

@@ -1,771 +0,0 @@
---
title: Mastering Flow State Management
description: A comprehensive guide to managing, persisting, and leveraging state in CrewAI Flows for building robust AI applications.
icon: diagram-project
---
# Mastering Flow State Management
## Understanding the Power of State in Flows
State management is the backbone of any sophisticated AI workflow. In CrewAI Flows, the state system allows you to maintain context, share data between steps, and build complex application logic. Mastering state management is essential for creating reliable, maintainable, and powerful AI applications.
This guide will walk you through everything you need to know about managing state in CrewAI Flows, from basic concepts to advanced techniques, with practical code examples along the way.
### Why State Management Matters
Effective state management enables you to:
1. **Maintain context across execution steps** - Pass information seamlessly between different stages of your workflow
2. **Build complex conditional logic** - Make decisions based on accumulated data
3. **Create persistent applications** - Save and restore workflow progress
4. **Handle errors gracefully** - Implement recovery patterns for more robust applications
5. **Scale your applications** - Support complex workflows with proper data organization
6. **Enable conversational applications** - Store and access conversation history for context-aware AI interactions
Let's explore how to leverage these capabilities effectively.
## State Management Fundamentals
### The Flow State Lifecycle
In CrewAI Flows, the state follows a predictable lifecycle:
1. **Initialization** - When a flow is created, its state is initialized (either as an empty dictionary or a Pydantic model instance)
2. **Modification** - Flow methods access and modify the state as they execute
3. **Transmission** - State is passed automatically between flow methods
4. **Persistence** (optional) - State can be saved to storage and later retrieved
5. **Completion** - The final state reflects the cumulative changes from all executed methods
Understanding this lifecycle is crucial for designing effective flows.
### Two Approaches to State Management
CrewAI offers two ways to manage state in your flows:
1. **Unstructured State** - Using dictionary-like objects for flexibility
2. **Structured State** - Using Pydantic models for type safety and validation
Let's examine each approach in detail.
## Unstructured State Management
Unstructured state uses a dictionary-like approach, offering flexibility and simplicity for straightforward applications.
### How It Works
With unstructured state:
- You access state via `self.state` which behaves like a dictionary
- You can freely add, modify, or remove keys at any point
- All state is automatically available to all flow methods
### Basic Example
Here's a simple example of unstructured state management:
```python
from crewai.flow.flow import Flow, listen, start
class UnstructuredStateFlow(Flow):
@start()
def initialize_data(self):
print("Initializing flow data")
# Add key-value pairs to state
self.state["user_name"] = "Alex"
self.state["preferences"] = {
"theme": "dark",
"language": "English"
}
self.state["items"] = []
# The flow state automatically gets a unique ID
print(f"Flow ID: {self.state['id']}")
return "Initialized"
@listen(initialize_data)
def process_data(self, previous_result):
print(f"Previous step returned: {previous_result}")
# Access and modify state
user = self.state["user_name"]
print(f"Processing data for {user}")
# Add items to a list in state
self.state["items"].append("item1")
self.state["items"].append("item2")
# Add a new key-value pair
self.state["processed"] = True
return "Processed"
@listen(process_data)
def generate_summary(self, previous_result):
# Access multiple state values
user = self.state["user_name"]
theme = self.state["preferences"]["theme"]
items = self.state["items"]
processed = self.state.get("processed", False)
summary = f"User {user} has {len(items)} items with {theme} theme. "
summary += "Data is processed." if processed else "Data is not processed."
return summary
# Run the flow
flow = UnstructuredStateFlow()
result = flow.kickoff()
print(f"Final result: {result}")
print(f"Final state: {flow.state}")
```
### When to Use Unstructured State
Unstructured state is ideal for:
- Quick prototyping and simple flows
- Dynamically evolving state needs
- Cases where the structure may not be known in advance
- Flows with simple state requirements
While flexible, unstructured state lacks type checking and schema validation, which can lead to errors in complex applications.
## Structured State Management
Structured state uses Pydantic models to define a schema for your flow's state, providing type safety, validation, and better developer experience.
### How It Works
With structured state:
- You define a Pydantic model that represents your state structure
- You pass this model type to your Flow class as a type parameter
- You access state via `self.state`, which behaves like a Pydantic model instance
- All fields are validated according to their defined types
- You get IDE autocompletion and type checking support
### Basic Example
Here's how to implement structured state management:
```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel, Field
from typing import List, Dict, Optional
# Define your state model
class UserPreferences(BaseModel):
theme: str = "light"
language: str = "English"
class AppState(BaseModel):
user_name: str = ""
preferences: UserPreferences = UserPreferences()
items: List[str] = []
processed: bool = False
completion_percentage: float = 0.0
# Create a flow with typed state
class StructuredStateFlow(Flow[AppState]):
@start()
def initialize_data(self):
print("Initializing flow data")
# Set state values (type-checked)
self.state.user_name = "Taylor"
self.state.preferences.theme = "dark"
# The ID field is automatically available
print(f"Flow ID: {self.state.id}")
return "Initialized"
@listen(initialize_data)
def process_data(self, previous_result):
print(f"Processing data for {self.state.user_name}")
# Modify state (with type checking)
self.state.items.append("item1")
self.state.items.append("item2")
self.state.processed = True
self.state.completion_percentage = 50.0
return "Processed"
@listen(process_data)
def generate_summary(self, previous_result):
# Access state (with autocompletion)
summary = f"User {self.state.user_name} has {len(self.state.items)} items "
summary += f"with {self.state.preferences.theme} theme. "
summary += "Data is processed." if self.state.processed else "Data is not processed."
summary += f" Completion: {self.state.completion_percentage}%"
return summary
# Run the flow
flow = StructuredStateFlow()
result = flow.kickoff()
print(f"Final result: {result}")
print(f"Final state: {flow.state}")
```
### Benefits of Structured State
Using structured state provides several advantages:
1. **Type Safety** - Catch type errors at development time
2. **Self-Documentation** - The state model clearly documents what data is available
3. **Validation** - Automatic validation of data types and constraints
4. **IDE Support** - Get autocomplete and inline documentation
5. **Default Values** - Easily define fallbacks for missing data
### When to Use Structured State
Structured state is recommended for:
- Complex flows with well-defined data schemas
- Team projects where multiple developers work on the same code
- Applications where data validation is important
- Flows that need to enforce specific data types and constraints
## The Automatic State ID
Both unstructured and structured states automatically receive a unique identifier (UUID) to help track and manage state instances.
### How It Works
- For unstructured state, the ID is accessible as `self.state["id"]`
- For structured state, the ID is accessible as `self.state.id`
- This ID is generated automatically when the flow is created
- The ID remains the same throughout the flow's lifecycle
- The ID can be used for tracking, logging, and retrieving persisted states
This UUID is particularly valuable when implementing persistence or tracking multiple flow executions.
## Dynamic State Updates
Regardless of whether you're using structured or unstructured state, you can update state dynamically throughout your flow's execution.
### Passing Data Between Steps
Flow methods can return values that are then passed as arguments to listening methods:
```python
from crewai.flow.flow import Flow, listen, start
class DataPassingFlow(Flow):
@start()
def generate_data(self):
# This return value will be passed to listening methods
return "Generated data"
@listen(generate_data)
def process_data(self, data_from_previous_step):
print(f"Received: {data_from_previous_step}")
# You can modify the data and pass it along
processed_data = f"{data_from_previous_step} - processed"
# Also update state
self.state["last_processed"] = processed_data
return processed_data
@listen(process_data)
def finalize_data(self, processed_data):
print(f"Received processed data: {processed_data}")
# Access both the passed data and state
last_processed = self.state.get("last_processed", "")
return f"Final: {processed_data} (from state: {last_processed})"
```
This pattern allows you to combine direct data passing with state updates for maximum flexibility.
## Persisting Flow State
One of CrewAI's most powerful features is the ability to persist flow state across executions. This enables workflows that can be paused, resumed, and even recovered after failures.
### The @persist Decorator
The `@persist` decorator automates state persistence, saving your flow's state at key points in execution.
#### Class-Level Persistence
When applied at the class level, `@persist` saves state after every method execution:
```python
from crewai.flow.flow import Flow, listen, persist, start
from pydantic import BaseModel
class CounterState(BaseModel):
value: int = 0
@persist # Apply to the entire flow class
class PersistentCounterFlow(Flow[CounterState]):
@start()
def increment(self):
self.state.value += 1
print(f"Incremented to {self.state.value}")
return self.state.value
@listen(increment)
def double(self, value):
self.state.value = value * 2
print(f"Doubled to {self.state.value}")
return self.state.value
# First run
flow1 = PersistentCounterFlow()
result1 = flow1.kickoff()
print(f"First run result: {result1}")
# Second run - state is automatically loaded
flow2 = PersistentCounterFlow()
result2 = flow2.kickoff()
print(f"Second run result: {result2}") # Will be higher due to persisted state
```
#### Method-Level Persistence
For more granular control, you can apply `@persist` to specific methods:
```python
from crewai.flow.flow import Flow, listen, persist, start
class SelectivePersistFlow(Flow):
@start()
def first_step(self):
self.state["count"] = 1
return "First step"
@persist # Only persist after this method
@listen(first_step)
def important_step(self, prev_result):
self.state["count"] += 1
self.state["important_data"] = "This will be persisted"
return "Important step completed"
@listen(important_step)
def final_step(self, prev_result):
self.state["count"] += 1
return f"Complete with count {self.state['count']}"
```
## Advanced State Patterns
### State-Based Conditional Logic
You can use state to implement complex conditional logic in your flows:
```python
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
class PaymentState(BaseModel):
amount: float = 0.0
is_approved: bool = False
retry_count: int = 0
class PaymentFlow(Flow[PaymentState]):
@start()
def process_payment(self):
# Simulate payment processing
self.state.amount = 100.0
self.state.is_approved = self.state.amount < 1000
return "Payment processed"
@router(process_payment)
def check_approval(self, previous_result):
if self.state.is_approved:
return "approved"
elif self.state.retry_count < 3:
return "retry"
else:
return "rejected"
@listen("approved")
def handle_approval(self):
return f"Payment of ${self.state.amount} approved!"
@listen("retry")
def handle_retry(self):
self.state.retry_count += 1
print(f"Retrying payment (attempt {self.state.retry_count})...")
# Could implement retry logic here
return "Retry initiated"
@listen("rejected")
def handle_rejection(self):
return f"Payment of ${self.state.amount} rejected after {self.state.retry_count} retries."
```
### Handling Complex State Transformations
For complex state transformations, you can create dedicated methods:
```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
from typing import List, Dict
class UserData(BaseModel):
name: str
active: bool = True
login_count: int = 0
class ComplexState(BaseModel):
users: Dict[str, UserData] = {}
active_user_count: int = 0
class TransformationFlow(Flow[ComplexState]):
@start()
def initialize(self):
# Add some users
self.add_user("alice", "Alice")
self.add_user("bob", "Bob")
self.add_user("charlie", "Charlie")
return "Initialized"
@listen(initialize)
def process_users(self, _):
# Increment login counts
for user_id in self.state.users:
self.increment_login(user_id)
# Deactivate one user
self.deactivate_user("bob")
# Update active count
self.update_active_count()
return f"Processed {len(self.state.users)} users"
# Helper methods for state transformations
def add_user(self, user_id: str, name: str):
self.state.users[user_id] = UserData(name=name)
self.update_active_count()
def increment_login(self, user_id: str):
if user_id in self.state.users:
self.state.users[user_id].login_count += 1
def deactivate_user(self, user_id: str):
if user_id in self.state.users:
self.state.users[user_id].active = False
self.update_active_count()
def update_active_count(self):
self.state.active_user_count = sum(
1 for user in self.state.users.values() if user.active
)
```
This pattern of creating helper methods keeps your flow methods clean while enabling complex state manipulations.
## State Management with Crews
One of the most powerful patterns in CrewAI is combining flow state management with crew execution.
### Passing State to Crews
You can use flow state to parameterize crews:
```python
from crewai.flow.flow import Flow, listen, start
from crewai import Agent, Crew, Process, Task
from pydantic import BaseModel
class ResearchState(BaseModel):
topic: str = ""
depth: str = "medium"
results: str = ""
class ResearchFlow(Flow[ResearchState]):
@start()
def get_parameters(self):
# In a real app, this might come from user input
self.state.topic = "Artificial Intelligence Ethics"
self.state.depth = "deep"
return "Parameters set"
@listen(get_parameters)
def execute_research(self, _):
# Create agents
researcher = Agent(
role="Research Specialist",
goal=f"Research {self.state.topic} in {self.state.depth} detail",
backstory="You are an expert researcher with a talent for finding accurate information."
)
writer = Agent(
role="Content Writer",
goal="Transform research into clear, engaging content",
backstory="You excel at communicating complex ideas clearly and concisely."
)
# Create tasks
research_task = Task(
description=f"Research {self.state.topic} with {self.state.depth} analysis",
expected_output="Comprehensive research notes in markdown format",
agent=researcher
)
writing_task = Task(
description=f"Create a summary on {self.state.topic} based on the research",
expected_output="Well-written article in markdown format",
agent=writer,
context=[research_task]
)
# Create and run crew
research_crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
process=Process.sequential,
verbose=True
)
# Run crew and store result in state
result = research_crew.kickoff()
self.state.results = result.raw
return "Research completed"
@listen(execute_research)
def summarize_results(self, _):
# Access the stored results
result_length = len(self.state.results)
return f"Research on {self.state.topic} completed with {result_length} characters of results."
```
### Handling Crew Outputs in State
When a crew completes, you can process its output and store it in your flow state:
```python
@listen(execute_crew)
def process_crew_results(self, _):
# Parse the raw results (assuming JSON output)
import json
try:
results_dict = json.loads(self.state.raw_results)
self.state.processed_results = {
"title": results_dict.get("title", ""),
"main_points": results_dict.get("main_points", []),
"conclusion": results_dict.get("conclusion", "")
}
return "Results processed successfully"
except json.JSONDecodeError:
self.state.error = "Failed to parse crew results as JSON"
return "Error processing results"
```
## Best Practices for State Management
### 1. Keep State Focused
Design your state to contain only what's necessary:
```python
# Too broad
class BloatedState(BaseModel):
user_data: Dict = {}
system_settings: Dict = {}
temporary_calculations: List = []
debug_info: Dict = {}
# ...many more fields
# Better: Focused state
class FocusedState(BaseModel):
user_id: str
preferences: Dict[str, str]
completion_status: Dict[str, bool]
```
### 2. Use Structured State for Complex Flows
As your flows grow in complexity, structured state becomes increasingly valuable:
```python
# Simple flow can use unstructured state
class SimpleGreetingFlow(Flow):
@start()
def greet(self):
self.state["name"] = "World"
return f"Hello, {self.state['name']}!"
# Complex flow benefits from structured state
class UserRegistrationState(BaseModel):
username: str
email: str
verification_status: bool = False
registration_date: datetime = Field(default_factory=datetime.now)
last_login: Optional[datetime] = None
class RegistrationFlow(Flow[UserRegistrationState]):
# Methods with strongly-typed state access
```
### 3. Document State Transitions
For complex flows, document how state changes throughout the execution:
```python
@start()
def initialize_order(self):
"""
Initialize order state with empty values.
State before: {}
State after: {order_id: str, items: [], status: 'new'}
"""
self.state.order_id = str(uuid.uuid4())
self.state.items = []
self.state.status = "new"
return "Order initialized"
```
### 4. Handle State Errors Gracefully
Implement error handling for state access:
```python
@listen(previous_step)
def process_data(self, _):
try:
# Try to access a value that might not exist
user_preference = self.state.preferences.get("theme", "default")
except (AttributeError, KeyError):
# Handle the error gracefully
self.state.errors = self.state.get("errors", [])
self.state.errors.append("Failed to access preferences")
user_preference = "default"
return f"Used preference: {user_preference}"
```
### 5. Use State for Progress Tracking
Leverage state to track progress in long-running flows:
```python
class ProgressTrackingFlow(Flow):
@start()
def initialize(self):
self.state["total_steps"] = 3
self.state["current_step"] = 0
self.state["progress"] = 0.0
self.update_progress()
return "Initialized"
def update_progress(self):
"""Helper method to calculate and update progress"""
if self.state.get("total_steps", 0) > 0:
self.state["progress"] = (self.state.get("current_step", 0) /
self.state["total_steps"]) * 100
print(f"Progress: {self.state['progress']:.1f}%")
@listen(initialize)
def step_one(self, _):
# Do work...
self.state["current_step"] = 1
self.update_progress()
return "Step 1 complete"
# Additional steps...
```
### 6. Use Immutable Operations When Possible
Especially with structured state, prefer immutable operations for clarity:
```python
# Instead of modifying lists in place:
self.state.items.append(new_item) # Mutable operation
# Consider creating new state:
from pydantic import BaseModel
from typing import List
class ItemState(BaseModel):
items: List[str] = []
class ImmutableFlow(Flow[ItemState]):
@start()
def add_item(self):
# Create new list with the added item
self.state.items = [*self.state.items, "new item"]
return "Item added"
```
## Debugging Flow State
### Logging State Changes
When developing, add logging to track state changes:
```python
import logging
logging.basicConfig(level=logging.INFO)
class LoggingFlow(Flow):
def log_state(self, step_name):
logging.info(f"State after {step_name}: {self.state}")
@start()
def initialize(self):
self.state["counter"] = 0
self.log_state("initialize")
return "Initialized"
@listen(initialize)
def increment(self, _):
self.state["counter"] += 1
self.log_state("increment")
return f"Incremented to {self.state['counter']}"
```
### State Visualization
You can add methods to visualize your state for debugging:
```python
def visualize_state(self):
"""Create a simple visualization of the current state"""
import json
from rich.console import Console
from rich.panel import Panel
console = Console()
if hasattr(self.state, "model_dump"):
# Pydantic v2
state_dict = self.state.model_dump()
elif hasattr(self.state, "dict"):
# Pydantic v1
state_dict = self.state.dict()
else:
# Unstructured state
state_dict = dict(self.state)
# Remove id for cleaner output
if "id" in state_dict:
state_dict.pop("id")
state_json = json.dumps(state_dict, indent=2, default=str)
console.print(Panel(state_json, title="Current Flow State"))
```
## Conclusion
Mastering state management in CrewAI Flows gives you the power to build sophisticated, robust AI applications that maintain context, make complex decisions, and deliver consistent results.
Whether you choose unstructured or structured state, implementing proper state management practices will help you create flows that are maintainable, extensible, and effective at solving real-world problems.
As you develop more complex flows, remember that good state management is about finding the right balance between flexibility and structure, making your code both powerful and easy to understand.
<Check>
You've now mastered the concepts and practices of state management in CrewAI Flows! With this knowledge, you can create robust AI workflows that effectively maintain context, share data between steps, and build sophisticated application logic.
</Check>
## Next Steps
- Experiment with both structured and unstructured state in your flows
- Try implementing state persistence for long-running workflows
- Explore [building your first crew](/guides/crews/first-crew) to see how crews and flows can work together
- Check out the [Flow reference documentation](/concepts/flows) for more advanced features

View File

@@ -1,9 +1,4 @@
---
title: Agent Monitoring with Portkey
description: How to use Portkey with CrewAI
icon: key
---
# Portkey Integration with CrewAI
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
@@ -15,15 +10,20 @@ Portkey adds 4 core production capabilities to any CrewAI agent:
3. Full-stack tracing & cost, performance analytics
4. Real-time guardrails to enforce behavior
## Getting Started
<Steps>
<Step title="Install CrewAI and Portkey">
1. **Install Required Packages:**
```bash
pip install -qU crewai portkey-ai
```
</Step>
<Step title="Configure the LLM Client">
2. **Configure the LLM Client:**
To build CrewAI Agents with Portkey, you'll need two keys:
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
@@ -42,8 +42,9 @@ Portkey adds 4 core production capabilities to any CrewAI agent:
)
)
```
</Step>
<Step title="Create and Run Your First Agent">
3. **Create and Run Your First Agent:**
```python
from crewai import Agent, Task, Crew
@@ -71,13 +72,12 @@ Portkey adds 4 core production capabilities to any CrewAI agent:
result = crew.kickoff()
print(result)
```
</Step>
</Steps>
## Key Features
| Feature | Description |
|:--------|:------------|
|---------|-------------|
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
@@ -200,3 +200,12 @@ For detailed information on creating and managing Configs, visit the [Portkey do
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
- [🐦 Twitter](https://twitter.com/portkeyai)
- [💬 Discord Community](https://discord.gg/DD7vgKK299)

View File

@@ -73,9 +73,9 @@ result = crew.kickoff()
If you're using the hierarchical process and don't want to set a custom manager agent, you can specify the language model for the manager:
```python Code
from crewai import LLM
from langchain_openai import ChatOpenAI
manager_llm = LLM(model="gpt-4o")
manager_llm = ChatOpenAI(model_name="gpt-4")
crew = Crew(
agents=[researcher, writer],

View File

@@ -48,6 +48,7 @@ Define a crew with a designated manager and establish a clear chain of command.
</Tip>
```python Code
from langchain_openai import ChatOpenAI
from crewai import Crew, Process, Agent
# Agents are defined with attributes for backstory, cache, and verbose mode
@@ -55,51 +56,38 @@ researcher = Agent(
role='Researcher',
goal='Conduct in-depth analysis',
backstory='Experienced data analyst with a knack for uncovering hidden trends.',
cache=True,
verbose=False,
# tools=[] # This can be optionally specified; defaults to an empty list
use_system_prompt=True, # Enable or disable system prompts for this agent
max_rpm=30, # Limit on the number of requests per minute
max_iter=5 # Maximum number of iterations for a final answer
)
writer = Agent(
role='Writer',
goal='Create engaging content',
backstory='Creative writer passionate about storytelling in technical domains.',
cache=True,
verbose=False,
# tools=[] # Optionally specify tools; defaults to an empty list
use_system_prompt=True, # Enable or disable system prompts for this agent
max_rpm=30, # Limit on the number of requests per minute
max_iter=5 # Maximum number of iterations for a final answer
)
# Establishing the crew with a hierarchical process and additional configurations
project_crew = Crew(
tasks=[...], # Tasks to be delegated and executed under the manager's supervision
agents=[researcher, writer],
manager_llm="gpt-4o", # Specify which LLM the manager should use
process=Process.hierarchical,
planning=True,
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Mandatory if manager_agent is not set
process=Process.hierarchical, # Specifies the hierarchical management approach
respect_context_window=True, # Enable respect of the context window for tasks
memory=True, # Enable memory usage for enhanced task execution
manager_agent=None, # Optional: explicitly set a specific agent as manager instead of the manager_llm
planning=True, # Enable planning feature for pre-execution strategy
)
```
### Using a Custom Manager Agent
Alternatively, you can create a custom manager agent with specific attributes tailored to your project's management needs. This gives you more control over the manager's behavior and capabilities.
```python
# Define a custom manager agent
manager = Agent(
role="Project Manager",
goal="Efficiently manage the crew and ensure high-quality task completion",
backstory="You're an experienced project manager, skilled in overseeing complex projects and guiding teams to success.",
allow_delegation=True,
)
# Use the custom manager in your crew
project_crew = Crew(
tasks=[...],
agents=[researcher, writer],
manager_agent=manager, # Use your custom manager agent
process=Process.hierarchical,
planning=True,
)
```
<Tip>
For more details on creating and customizing a manager agent, check out the [Custom Manager Agent documentation](https://docs.crewai.com/how-to/custom-manager-agent#custom-manager-agent).
</Tip>
### Workflow in Action
1. **Task Assignment**: The manager assigns tasks strategically, considering each agent's capabilities and available tools.

View File

@@ -60,12 +60,12 @@ writer = Agent(
# Create tasks for your agents
task1 = Task(
description=(
"Conduct a comprehensive analysis of the latest advancements in AI in 2025. "
"Conduct a comprehensive analysis of the latest advancements in AI in 2024. "
"Identify key trends, breakthrough technologies, and potential industry impacts. "
"Compile your findings in a detailed report. "
"Make sure to check with a human if the draft is good before finalizing your answer."
),
expected_output='A comprehensive full report on the latest AI advancements in 2025, leave nothing out',
expected_output='A comprehensive full report on the latest AI advancements in 2024, leave nothing out',
agent=researcher,
human_input=True
)
@@ -76,7 +76,7 @@ task2 = Task(
"Your post should be informative yet accessible, catering to a tech-savvy audience. "
"Aim for a narrative that captures the essence of these breakthroughs and their implications for the future."
),
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2025',
expected_output='A compelling 3 paragraphs blog post formatted as markdown about the latest AI advancements in 2024',
agent=writer,
human_input=True
)

View File

@@ -54,8 +54,7 @@ coding_agent = Agent(
# Create a task that requires code execution
data_analysis_task = Task(
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent,
expected_output="The average age of the participants."
agent=coding_agent
)
# Create a crew and add the task

View File

@@ -1,100 +0,0 @@
---
title: Agent Monitoring with Langfuse
description: Learn how to integrate Langfuse with CrewAI via OpenTelemetry using OpenLit
icon: magnifying-glass-chart
---
# Integrate Langfuse with CrewAI
This notebook demonstrates how to integrate **Langfuse** with **CrewAI** using OpenTelemetry via the **OpenLit** SDK. By the end of this notebook, you will be able to trace your CrewAI applications with Langfuse for improved observability and debugging.
> **What is Langfuse?** [Langfuse](https://langfuse.com) is an open-source LLM engineering platform. It provides tracing and monitoring capabilities for LLM applications, helping developers debug, analyze, and optimize their AI systems. Langfuse integrates with various tools and frameworks via native integrations, OpenTelemetry, and APIs/SDKs.
[![Langfuse Overview Video](https://github.com/user-attachments/assets/3926b288-ff61-4b95-8aa1-45d041c70866)](https://langfuse.com/watch-demo)
## Get Started
We'll walk through a simple example of using CrewAI and integrating it with Langfuse via OpenTelemetry using OpenLit.
### Step 1: Install Dependencies
```python
%pip install langfuse openlit crewai crewai_tools
```
### Step 2: Set Up Environment Variables
Set your Langfuse API keys and configure OpenTelemetry export settings to send traces to Langfuse. Please refer to the [Langfuse OpenTelemetry Docs](https://langfuse.com/docs/opentelemetry/get-started) for more information on the Langfuse OpenTelemetry endpoint `/api/public/otel` and authentication.
```python
import os
import base64
LANGFUSE_PUBLIC_KEY="pk-lf-..."
LANGFUSE_SECRET_KEY="sk-lf-..."
LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LANGFUSE_SECRET_KEY}".encode()).decode()
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
# os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://us.cloud.langfuse.com/api/public/otel" # US data region
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
# your openai key
os.environ["OPENAI_API_KEY"] = "sk-..."
```
### Step 3: Initialize OpenLit
Initialize the OpenLit OpenTelemetry instrumentation SDK to start capturing OpenTelemetry traces.
```python
import openlit
openlit.init()
```
### Step 4: Create a Simple CrewAI Application
We'll create a simple CrewAI application where multiple agents collaborate to answer a user's question.
```python
from crewai import Agent, Task, Crew
from crewai_tools import (
WebsiteSearchTool
)
web_rag_tool = WebsiteSearchTool()
writer = Agent(
role="Writer",
goal="You make math engaging and understandable for young children through poetry",
backstory="You're an expert in writing haikus but you know nothing of math.",
tools=[web_rag_tool],
)
task = Task(description=("What is {multiplication}?"),
expected_output=("Compose a haiku that includes the answer."),
agent=writer)
crew = Crew(
agents=[writer],
tasks=[task],
share_crew=False
)
```
### Step 5: See Traces in Langfuse
After running the agent, you can view the traces generated by your CrewAI application in [Langfuse](https://cloud.langfuse.com). You should see detailed steps of the LLM interactions, which can help you debug and optimize your AI agent.
![CrewAI example trace in Langfuse](https://langfuse.com/images/cookbook/integration_crewai/crewai-example-trace.png)
_[Public example trace in Langfuse](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/e2cf380ffc8d47d28da98f136140642b?timestamp=2025-02-05T15%3A12%3A02.717Z&observation=3b32338ee6a5d9af)_
## References
- [Langfuse OpenTelemetry Docs](https://langfuse.com/docs/opentelemetry/get-started)

View File

@@ -23,7 +23,6 @@ LiteLLM supports a wide range of providers, including but not limited to:
- Azure OpenAI
- AWS (Bedrock, SageMaker)
- Cohere
- VoyageAI
- Hugging Face
- Ollama
- Mistral AI
@@ -33,7 +32,6 @@ LiteLLM supports a wide range of providers, including but not limited to:
- Cloudflare Workers AI
- DeepInfra
- Groq
- SambaNova
- [NVIDIA NIMs](https://docs.api.nvidia.com/nim/reference/models-1)
- And many more!

View File

@@ -1,206 +0,0 @@
---
title: Agent Monitoring with MLflow
description: Quickly start monitoring your Agents with MLflow.
icon: bars-staggered
---
# MLflow Overview
[MLflow](https://mlflow.org/) is an open-source platform to assist machine learning practitioners and teams in handling the complexities of the machine learning process.
It provides a tracing feature that enhances LLM observability in your Generative AI applications by capturing detailed information about the execution of your applications services.
Tracing provides a way to record the inputs, outputs, and metadata associated with each intermediate step of a request, enabling you to easily pinpoint the source of bugs and unexpected behaviors.
![Overview of MLflow crewAI tracing usage](/images/mlflow-tracing.gif)
### Features
- **Tracing Dashboard**: Monitor activities of your crewAI agents with detailed dashboards that include inputs, outputs and metadata of spans.
- **Automated Tracing**: A fully automated integration with crewAI, which can be enabled by running `mlflow.crewai.autolog()`.
- **Manual Trace Instrumentation with minor efforts**: Customize trace instrumentation through MLflow's high-level fluent APIs such as decorators, function wrappers and context managers.
- **OpenTelemetry Compatibility**: MLflow Tracing supports exporting traces to an OpenTelemetry Collector, which can then be used to export traces to various backends such as Jaeger, Zipkin, and AWS X-Ray.
- **Package and Deploy Agents**: Package and deploy your crewAI agents to an inference server with a variety of deployment targets.
- **Securely Host LLMs**: Host multiple LLM from various providers in one unified endpoint through MFflow gateway.
- **Evaluation**: Evaluate your crewAI agents with a wide range of metrics using a convenient API `mlflow.evaluate()`.
## Setup Instructions
<Steps>
<Step title="Install MLflow package">
```shell
# The crewAI integration is available in mlflow>=2.19.0
pip install mlflow
```
</Step>
<Step title="Start MFflow tracking server">
```shell
# This process is optional, but it is recommended to use MLflow tracking server for better visualization and broader features.
mlflow server
```
</Step>
<Step title="Initialize MLflow in Your Application">
Add the following two lines to your application code:
```python
import mlflow
mlflow.crewai.autolog()
# Optional: Set a tracking URI and an experiment name if you have a tracking server
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("CrewAI")
```
Example Usage for tracing CrewAI Agents:
```python
from crewai import Agent, Crew, Task
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai_tools import SerperDevTool, WebsiteSearchTool
from textwrap import dedent
content = "Users name is John. He is 30 years old and lives in San Francisco."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
search_tool = WebsiteSearchTool()
class TripAgents:
def city_selection_agent(self):
return Agent(
role="City Selection Expert",
goal="Select the best city based on weather, season, and prices",
backstory="An expert in analyzing travel data to pick ideal destinations",
tools=[
search_tool,
],
verbose=True,
)
def local_expert(self):
return Agent(
role="Local Expert at this city",
goal="Provide the BEST insights about the selected city",
backstory="""A knowledgeable local guide with extensive information
about the city, it's attractions and customs""",
tools=[search_tool],
verbose=True,
)
class TripTasks:
def identify_task(self, agent, origin, cities, interests, range):
return Task(
description=dedent(
f"""
Analyze and select the best city for the trip based
on specific criteria such as weather patterns, seasonal
events, and travel costs. This task involves comparing
multiple cities, considering factors like current weather
conditions, upcoming cultural or seasonal events, and
overall travel expenses.
Your final answer must be a detailed
report on the chosen city, and everything you found out
about it, including the actual flight costs, weather
forecast and attractions.
Traveling from: {origin}
City Options: {cities}
Trip Date: {range}
Traveler Interests: {interests}
"""
),
agent=agent,
expected_output="Detailed report on the chosen city including flight costs, weather forecast, and attractions",
)
def gather_task(self, agent, origin, interests, range):
return Task(
description=dedent(
f"""
As a local expert on this city you must compile an
in-depth guide for someone traveling there and wanting
to have THE BEST trip ever!
Gather information about key attractions, local customs,
special events, and daily activity recommendations.
Find the best spots to go to, the kind of place only a
local would know.
This guide should provide a thorough overview of what
the city has to offer, including hidden gems, cultural
hotspots, must-visit landmarks, weather forecasts, and
high level costs.
The final answer must be a comprehensive city guide,
rich in cultural insights and practical tips,
tailored to enhance the travel experience.
Trip Date: {range}
Traveling from: {origin}
Traveler Interests: {interests}
"""
),
agent=agent,
expected_output="Comprehensive city guide including hidden gems, cultural hotspots, and practical travel tips",
)
class TripCrew:
def __init__(self, origin, cities, date_range, interests):
self.cities = cities
self.origin = origin
self.interests = interests
self.date_range = date_range
def run(self):
agents = TripAgents()
tasks = TripTasks()
city_selector_agent = agents.city_selection_agent()
local_expert_agent = agents.local_expert()
identify_task = tasks.identify_task(
city_selector_agent,
self.origin,
self.cities,
self.interests,
self.date_range,
)
gather_task = tasks.gather_task(
local_expert_agent, self.origin, self.interests, self.date_range
)
crew = Crew(
agents=[city_selector_agent, local_expert_agent],
tasks=[identify_task, gather_task],
verbose=True,
memory=True,
knowledge={
"sources": [string_source],
"metadata": {"preference": "personal"},
},
)
result = crew.kickoff()
return result
trip_crew = TripCrew("California", "Tokyo", "Dec 12 - Dec 20", "sports")
result = trip_crew.run()
print(result)
```
Refer to [MLflow Tracing Documentation](https://mlflow.org/docs/latest/llms/tracing/index.html) for more configurations and use cases.
</Step>
<Step title="Visualize Activities of Agents">
Now traces for your crewAI agents are captured by MLflow.
Let's visit MLflow tracking server to view the traces and get insights into your Agents.
Open `127.0.0.1:5000` on your browser to visit MLflow tracking server.
<Frame caption="MLflow Tracing Dashboard">
<img src="/images/mlflow1.png" alt="MLflow tracing example with crewai" />
</Frame>
</Step>
</Steps>

View File

@@ -1,14 +1,14 @@
---
title: Using Multimodal Agents
description: Learn how to enable and use multimodal capabilities in your agents for processing images and other non-text content within the CrewAI framework.
icon: video
icon: image
---
## Using Multimodal Agents
# Using Multimodal Agents
CrewAI supports multimodal agents that can process both text and non-text content like images. This guide will show you how to enable and use multimodal capabilities in your agents.
### Enabling Multimodal Capabilities
## Enabling Multimodal Capabilities
To create a multimodal agent, simply set the `multimodal` parameter to `True` when initializing your agent:
@@ -25,7 +25,7 @@ agent = Agent(
When you set `multimodal=True`, the agent is automatically configured with the necessary tools for handling non-text content, including the `AddImageTool`.
### Working with Images
## Working with Images
The multimodal agent comes pre-configured with the `AddImageTool`, which allows it to process images. You don't need to manually add this tool - it's automatically included when you enable multimodal capabilities.
@@ -45,7 +45,6 @@ image_analyst = Agent(
# Create a task for image analysis
task = Task(
description="Analyze the product image at https://example.com/product.jpg and provide a detailed description",
expected_output="A detailed description of the product image",
agent=image_analyst
)
@@ -82,7 +81,6 @@ inspection_task = Task(
3. Compliance with standards
Provide a detailed report highlighting any issues found.
""",
expected_output="A detailed report highlighting any issues found",
agent=expert_analyst
)
@@ -110,7 +108,7 @@ The multimodal agent will automatically handle the image processing through its
- Process image content with optional context or specific questions
- Provide analysis and insights based on the visual information and task requirements
### Best Practices
## Best Practices
When working with multimodal agents, keep these best practices in mind:

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 382 KiB

View File

@@ -15,81 +15,79 @@ icon: wrench
If you need to update Python, visit [python.org/downloads](https://python.org/downloads)
</Note>
CrewAI uses the `uv` as its dependency management and package handling tool. It simplifies project setup and execution, offering a seamless experience.
# Installing CrewAI
If you haven't installed `uv` yet, follow **step 1** to quickly get it set up on your system, else you can skip to **step 2**.
CrewAI is a flexible and powerful AI framework that enables you to create and manage AI agents, tools, and tasks efficiently.
Let's get you set up! 🚀
<Steps>
<Step title="Install uv">
- **On macOS/Linux:**
Use `curl` to download the script and execute it with `sh`:
```shell
curl -LsSf https://astral.sh/uv/install.sh | sh
<Step title="Install CrewAI">
Install CrewAI with all recommended tools using either method:
```shell Terminal
pip install 'crewai[tools]'
```
If your system doesn't have `curl`, you can use `wget`:
```shell
wget -qO- https://astral.sh/uv/install.sh | sh
or
```shell Terminal
pip install crewai crewai-tools
```
- **On Windows:**
Use `irm` to download the script and `iex` to execute it:
```shell
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
```
If you run into any issues, refer to [UV's installation guide](https://docs.astral.sh/uv/getting-started/installation/) for more information.
<Note>
Both methods install the core package and additional tools needed for most use cases.
</Note>
</Step>
<Step title="Install CrewAI 🚀">
- Run the following command to install `crewai` CLI:
```shell
uv tool install crewai
<Step title="Upgrade CrewAI (Existing Installations Only)">
If you have an older version of CrewAI installed, you can upgrade it:
```shell Terminal
pip install --upgrade crewai crewai-tools
```
<Warning>
If you encounter a `PATH` warning, run this command to update your shell:
```shell
uv tool update-shell
If you see a Poetry-related warning, you'll need to migrate to our new dependency manager:
```shell Terminal
crewai update
```
This will update your project to use [UV](https://github.com/astral-sh/uv), our new faster dependency manager.
</Warning>
- To verify that `crewai` is installed, run:
```shell
uv tool list
<Note>
Skip this step if you're doing a fresh installation.
</Note>
</Step>
<Step title="Verify Installation">
Check your installed versions:
```shell Terminal
pip freeze | grep crewai
```
- You should see something like:
```shell
crewai v0.102.0
- crewai
You should see something like:
```markdown Output
crewai==X.X.X
crewai-tools==X.X.X
```
- If you need to update `crewai`, run:
```shell
uv tool install crewai --upgrade
```
<Check>Installation successful! You're ready to create your first crew! 🎉</Check>
<Check>Installation successful! You're ready to create your first crew.</Check>
</Step>
</Steps>
# Creating a CrewAI Project
# Creating a New Project
We recommend using the `YAML` template scaffolding for a structured approach to defining agents and tasks. Here's how to get started:
<Info>
We recommend using the YAML Template scaffolding for a structured approach to defining agents and tasks.
</Info>
<Steps>
<Step title="Generate Project Scaffolding">
- Run the `crewai` CLI command:
```shell
crewai create crew <your_project_name>
<Step title="Generate Project Structure">
Run the CrewAI CLI command:
```shell Terminal
crewai create crew <project_name>
```
- This creates a new project with the following structure:
This creates a new project with the following structure:
<Frame>
```
my_project/
├── .gitignore
├── knowledge/
├── pyproject.toml
├── README.md
├── .env
@@ -109,7 +107,8 @@ We recommend using the `YAML` template scaffolding for a structured approach to
</Step>
<Step title="Customize Your Project">
- Your project will contain these essential files:
Your project will contain these essential files:
| File | Purpose |
| --- | --- |
| `agents.yaml` | Define your AI agents and their roles |
@@ -118,25 +117,11 @@ We recommend using the `YAML` template scaffolding for a structured approach to
| `main.py` | Project entry point and execution flow |
| `crew.py` | Crew orchestration and coordination |
| `tools/` | Directory for custom agent tools |
| `knowledge/` | Directory for knowledge base |
- Start by editing `agents.yaml` and `tasks.yaml` to define your crew's behavior.
- Keep sensitive information like API keys in `.env`.
</Step>
<Step title="Run your Crew">
- Before you run your crew, make sure to run:
```bash
crewai install
```
- If you need to install additional packages, use:
```shell
uv add <package-name>
```
- To run your crew, execute the following command in the root of your project:
```bash
crewai run
```
<Tip>
Start by editing `agents.yaml` and `tasks.yaml` to define your crew's behavior.
Keep sensitive information like API keys in `.env`.
</Tip>
</Step>
</Steps>

View File

@@ -6,23 +6,20 @@ icon: handshake
# What is CrewAI?
**CrewAI is a lean, lightning-fast Python framework built entirely from scratch—completely independent of LangChain or other agent frameworks.**
**CrewAI is a cutting-edge framework for orchestrating autonomous AI agents.**
CrewAI empowers developers with both high-level simplicity and precise low-level control, ideal for creating autonomous AI agents tailored to any scenario:
CrewAI enables you to create AI teams where each agent has specific roles, tools, and goals, working together to accomplish complex tasks.
- **[CrewAI Crews](/guides/crews/first-crew)**: Optimize for autonomy and collaborative intelligence, enabling you to create AI teams where each agent has specific roles, tools, and goals.
- **[CrewAI Flows](/guides/flows/first-flow)**: Enable granular, event-driven control, single LLM calls for precise task orchestration and supports Crews natively.
Think of it as assembling your dream team - each member (agent) brings unique skills and expertise, collaborating seamlessly to achieve your objectives.
With over 100,000 developers certified through our community courses, CrewAI is rapidly becoming the standard for enterprise-ready AI automation.
## How Crews Work
## How CrewAI Works
<Note>
Just like a company has departments (Sales, Engineering, Marketing) working together under leadership to achieve business goals, CrewAI helps you create an organization of AI agents with specialized roles collaborating to accomplish complex tasks.
</Note>
<Frame caption="CrewAI Framework Overview">
<img src="crews.png" alt="CrewAI Framework Overview" />
<img src="crewAI-mindmap.png" alt="CrewAI Framework Overview" />
</Frame>
| Component | Description | Key Features |
@@ -56,87 +53,12 @@ With over 100,000 developers certified through our community courses, CrewAI is
</Card>
</CardGroup>
## How Flows Work
<Note>
While Crews excel at autonomous collaboration, Flows provide structured automations, offering granular control over workflow execution. Flows ensure tasks are executed reliably, securely, and efficiently, handling conditional logic, loops, and dynamic state management with precision. Flows integrate seamlessly with Crews, enabling you to balance high autonomy with exacting control.
</Note>
<Frame caption="CrewAI Framework Overview">
<img src="flows.png" alt="CrewAI Framework Overview" />
</Frame>
| Component | Description | Key Features |
|:----------|:-----------:|:------------|
| **Flow** | Structured workflow orchestration | • Manages execution paths<br/>• Handles state transitions<br/>• Controls task sequencing<br/>• Ensures reliable execution |
| **Events** | Triggers for workflow actions | • Initiate specific processes<br/>• Enable dynamic responses<br/>• Support conditional branching<br/>• Allow for real-time adaptation |
| **States** | Workflow execution contexts | • Maintain execution data<br/>• Enable persistence<br/>• Support resumability<br/>• Ensure execution integrity |
| **Crew Support** | Enhances workflow automation | • Injects pockets of agency when needed<br/>• Complements structured workflows<br/>• Balances automation with intelligence<br/>• Enables adaptive decision-making |
### Key Capabilities
<CardGroup cols={2}>
<Card title="Event-Driven Orchestration" icon="bolt">
Define precise execution paths responding dynamically to events
</Card>
<Card title="Fine-Grained Control" icon="sliders">
Manage workflow states and conditional execution securely and efficiently
</Card>
<Card title="Native Crew Integration" icon="puzzle-piece">
Effortlessly combine with Crews for enhanced autonomy and intelligence
</Card>
<Card title="Deterministic Execution" icon="route">
Ensure predictable outcomes with explicit control flow and error handling
</Card>
</CardGroup>
## When to Use Crews vs. Flows
<Note>
Understanding when to use [Crews](/guides/crews/first-crew) versus [Flows](/guides/flows/first-flow) is key to maximizing the potential of CrewAI in your applications.
</Note>
| Use Case | Recommended Approach | Why? |
|:---------|:---------------------|:-----|
| **Open-ended research** | [Crews](/guides/crews/first-crew) | When tasks require creative thinking, exploration, and adaptation |
| **Content generation** | [Crews](/guides/crews/first-crew) | For collaborative creation of articles, reports, or marketing materials |
| **Decision workflows** | [Flows](/guides/flows/first-flow) | When you need predictable, auditable decision paths with precise control |
| **API orchestration** | [Flows](/guides/flows/first-flow) | For reliable integration with multiple external services in a specific sequence |
| **Hybrid applications** | Combined approach | Use [Flows](/guides/flows/first-flow) to orchestrate overall process with [Crews](/guides/crews/first-crew) handling complex subtasks |
### Decision Framework
- **Choose [Crews](/guides/crews/first-crew) when:** You need autonomous problem-solving, creative collaboration, or exploratory tasks
- **Choose [Flows](/guides/flows/first-flow) when:** You require deterministic outcomes, auditability, or precise control over execution
- **Combine both when:** Your application needs both structured processes and pockets of autonomous intelligence
## Why Choose CrewAI?
- 🧠 **Autonomous Operation**: Agents make intelligent decisions based on their roles and available tools
- 📝 **Natural Interaction**: Agents communicate and collaborate like human team members
- 🛠️ **Extensible Design**: Easy to add new tools, roles, and capabilities
- 🚀 **Production Ready**: Built for reliability and scalability in real-world applications
- 🔒 **Security-Focused**: Designed with enterprise security requirements in mind
- 💰 **Cost-Efficient**: Optimized to minimize token usage and API calls
## Ready to Start Building?
<CardGroup cols={2}>
<Card
title="Build Your First Crew"
icon="users-gear"
href="/guides/crews/first-crew"
>
Step-by-step tutorial to create a collaborative AI team that works together to solve complex problems.
</Card>
<Card
title="Build Your First Flow"
icon="diagram-project"
href="/guides/flows/first-flow"
>
Learn how to create structured, event-driven workflows with precise control over execution.
</Card>
</CardGroup>
<CardGroup cols={3}>
<Card

166
docs/mint.json Normal file
View File

@@ -0,0 +1,166 @@
{
"name": "CrewAI",
"theme": "venus",
"logo": {
"dark": "crew_only_logo.png",
"light": "crew_only_logo.png"
},
"favicon": "favicon.svg",
"colors": {
"primary": "#EB6658",
"light": "#F3A78B",
"dark": "#C94C3C",
"anchors": {
"from": "#737373",
"to": "#EB6658"
}
},
"seo": {
"indexHiddenPages": false
},
"modeToggle": {
"default": "dark",
"isHidden": false
},
"feedback": {
"suggestEdit": true,
"raiseIssue": true,
"thumbsRating": true
},
"topbarCtaButton": {
"type": "github",
"url": "https://github.com/crewAIInc/crewAI"
},
"primaryTab": {
"name": "Get Started"
},
"tabs": [
{
"name": "Examples",
"url": "examples"
}
],
"anchors": [
{
"name": "Community",
"icon": "discourse",
"url": "https://community.crewai.com"
},
{
"name": "Changelog",
"icon": "timeline",
"url": "https://github.com/crewAIInc/crewAI/releases"
}
],
"navigation": [
{
"group": "Get Started",
"pages": [
"introduction",
"installation",
"quickstart"
]
},
{
"group": "Core Concepts",
"pages": [
"concepts/agents",
"concepts/tasks",
"concepts/crews",
"concepts/flows",
"concepts/knowledge",
"concepts/llms",
"concepts/processes",
"concepts/collaboration",
"concepts/training",
"concepts/memory",
"concepts/planning",
"concepts/testing",
"concepts/cli",
"concepts/tools",
"concepts/langchain-tools",
"concepts/llamaindex-tools"
]
},
{
"group": "How to Guides",
"pages": [
"how-to/create-custom-tools",
"how-to/sequential-process",
"how-to/hierarchical-process",
"how-to/custom-manager-agent",
"how-to/llm-connections",
"how-to/customizing-agents",
"how-to/coding-agents",
"how-to/force-tool-output-as-result",
"how-to/human-input-on-execution",
"how-to/kickoff-async",
"how-to/kickoff-for-each",
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/conditional-tasks",
"how-to/agentops-observability",
"how-to/langtrace-observability",
"how-to/openlit-observability"
]
},
{
"group": "Examples",
"pages": [
"examples/example"
]
},
{
"group": "Tools",
"pages": [
"tools/browserbaseloadtool",
"tools/codedocssearchtool",
"tools/codeinterpretertool",
"tools/composiotool",
"tools/csvsearchtool",
"tools/dalletool",
"tools/directorysearchtool",
"tools/directoryreadtool",
"tools/docxsearchtool",
"tools/exasearchtool",
"tools/filereadtool",
"tools/filewritetool",
"tools/firecrawlcrawlwebsitetool",
"tools/firecrawlscrapewebsitetool",
"tools/firecrawlsearchtool",
"tools/githubsearchtool",
"tools/serperdevtool",
"tools/jsonsearchtool",
"tools/mdxsearchtool",
"tools/mysqltool",
"tools/nl2sqltool",
"tools/pdfsearchtool",
"tools/pgsearchtool",
"tools/scrapewebsitetool",
"tools/seleniumscrapingtool",
"tools/spidertool",
"tools/txtsearchtool",
"tools/visiontool",
"tools/websitesearchtool",
"tools/xmlsearchtool",
"tools/youtubechannelsearchtool",
"tools/youtubevideosearchtool"
]
},
{
"group": "Telemetry",
"pages": [
"telemetry"
]
}
],
"search": {
"prompt": "Search CrewAI docs"
},
"footerSocials": {
"website": "https://crewai.com",
"x": "https://x.com/crewAIInc",
"github": "https://github.com/crewAIInc/crewAI",
"linkedin": "https://www.linkedin.com/company/crewai-inc",
"youtube": "https://youtube.com/@crewAIInc"
}
}

View File

@@ -8,10 +8,10 @@ icon: rocket
Let's create a simple crew that will help us `research` and `report` on the `latest AI developments` for a given topic or subject.
Before we proceed, make sure you have finished installing CrewAI.
Before we proceed, make sure you have `crewai` and `crewai-tools` installed.
If you haven't installed them yet, you can do so by following the [installation guide](/installation).
Follow the steps below to get Crewing! 🚣‍♂️
Follow the steps below to get crewing! 🚣‍♂️
<Steps>
<Step title="Create your crew">
@@ -23,13 +23,6 @@ Follow the steps below to get Crewing! 🚣‍♂️
```
</CodeGroup>
</Step>
<Step title="Navigate to your new crew project">
<CodeGroup>
```shell Terminal
cd latest-ai-development
```
</CodeGroup>
</Step>
<Step title="Modify your `agents.yaml` file">
<Tip>
You can also modify the agents as needed to fit your use case or copy and paste as is to your project.
@@ -65,7 +58,7 @@ Follow the steps below to get Crewing! 🚣‍♂️
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2025.
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
@@ -179,21 +172,16 @@ Follow the steps below to get Crewing! 🚣‍♂️
- A [Serper.dev](https://serper.dev/) API key: `SERPER_API_KEY=YOUR_KEY_HERE`
</Step>
<Step title="Lock and install the dependencies">
- Lock the dependencies and install them by using the CLI command:
Lock the dependencies and install them by using the CLI command but first, navigate to your project directory:
<CodeGroup>
```shell Terminal
cd latest-ai-development
crewai install
```
</CodeGroup>
- If you have additional packages that you want to install, you can do so by running:
<CodeGroup>
```shell Terminal
uv add <package-name>
```
</CodeGroup>
</Step>
<Step title="Run your crew">
- To run your crew, execute the following command in the root of your project:
To run your crew, execute the following command in the root of your project:
<CodeGroup>
```bash Terminal
crewai run
@@ -207,10 +195,10 @@ Follow the steps below to get Crewing! 🚣‍♂️
<CodeGroup>
```markdown output/report.md
# Comprehensive Report on the Rise and Impact of AI Agents in 2025
# Comprehensive Report on the Rise and Impact of AI Agents in 2024
## 1. Introduction to AI Agents
In 2025, Artificial Intelligence (AI) agents are at the forefront of innovation across various industries. As intelligent systems that can perform tasks typically requiring human cognition, AI agents are paving the way for significant advancements in operational efficiency, decision-making, and overall productivity within sectors like Human Resources (HR) and Finance. This report aims to detail the rise of AI agents, their frameworks, applications, and potential implications on the workforce.
In 2024, Artificial Intelligence (AI) agents are at the forefront of innovation across various industries. As intelligent systems that can perform tasks typically requiring human cognition, AI agents are paving the way for significant advancements in operational efficiency, decision-making, and overall productivity within sectors like Human Resources (HR) and Finance. This report aims to detail the rise of AI agents, their frameworks, applications, and potential implications on the workforce.
## 2. Benefits of AI Agents
AI agents bring numerous advantages that are transforming traditional work environments. Key benefits include:
@@ -264,18 +252,12 @@ Follow the steps below to get Crewing! 🚣‍♂️
To stay competitive and harness the full potential of AI agents, organizations must remain vigilant about latest developments in AI technology and consider continuous learning and adaptation in their strategic planning.
## 8. Conclusion
The emergence of AI agents is undeniably reshaping the workplace landscape in 5. With their ability to automate tasks, enhance efficiency, and improve decision-making, AI agents are critical in driving operational success. Organizations must embrace and adapt to AI developments to thrive in an increasingly digital business environment.
The emergence of AI agents is undeniably reshaping the workplace landscape in 2024. With their ability to automate tasks, enhance efficiency, and improve decision-making, AI agents are critical in driving operational success. Organizations must embrace and adapt to AI developments to thrive in an increasingly digital business environment.
```
</CodeGroup>
</Step>
</Steps>
<Check>
Congratulations!
You have successfully set up your crew project and are ready to start building your own agentic workflows!
</Check>
### Note on Consistency in Naming
The names you use in your YAML files (`agents.yaml` and `tasks.yaml`) should match the method names in your Python code.
@@ -296,11 +278,11 @@ email_summarizer:
Summarize emails into a concise and clear summary
backstory: >
You will create a 5 bullet point summary of the report
llm: openai/gpt-4o
llm: mixtal_llm
```
<Tip>
Note how we use the same name for the task in the `tasks.yaml` (`email_summarizer_task`) file as the method name in the `crew.py` (`email_summarizer_task`) file.
Note how we use the same name for the agent in the `tasks.yaml` (`email_summarizer_task`) file as the method name in the `crew.py` (`email_summarizer_task`) file.
</Tip>
```yaml tasks.yaml
@@ -315,9 +297,66 @@ email_summarizer_task:
- research_task
```
Use the annotations to properly reference the agent and task in the `crew.py` file.
### Annotations include:
* `@agent`
* `@task`
* `@crew`
* `@tool`
* `@before_kickoff`
* `@after_kickoff`
* `@callback`
* `@output_json`
* `@output_pydantic`
* `@cache_handler`
```python crew.py
# ...
@agent
def email_summarizer(self) -> Agent:
return Agent(
config=self.agents_config["email_summarizer"],
)
@task
def email_summarizer_task(self) -> Task:
return Task(
config=self.tasks_config["email_summarizer_task"],
)
# ...
```
<Tip>
In addition to the [sequential process](../how-to/sequential-process), you can use the [hierarchical process](../how-to/hierarchical-process),
which automatically assigns a manager to the defined crew to properly coordinate the planning and execution of tasks through delegation and validation of results.
You can learn more about the core concepts [here](/concepts).
</Tip>
### Replay Tasks from Latest Crew Kickoff
CrewAI now includes a replay feature that allows you to list the tasks from the last run and replay from a specific one. To use this feature, run.
```shell
crewai replay <task_id>
```
Replace `<task_id>` with the ID of the task you want to replay.
### Reset Crew Memory
If you need to reset the memory of your crew before running it again, you can do so by calling the reset memory feature:
```shell
crewai reset-memories --all
```
This will clear the crew's memory, allowing for a fresh start.
## Deploying Your Project
The easiest way to deploy your crew is through [CrewAI Enterprise](http://app.crewai.com), where you can deploy your crew in a few clicks.
The easiest way to deploy your crew is through CrewAI Enterprise, where you can deploy your crew in a few clicks.
<CardGroup cols={2}>
<Card

View File

@@ -1,118 +0,0 @@
---
title: AI Mind Tool
description: The `AIMindTool` is designed to query data sources in natural language.
icon: brain
---
# `AIMindTool`
## Description
The `AIMindTool` is a wrapper around [AI-Minds](https://mindsdb.com/minds) provided by [MindsDB](https://mindsdb.com/). It allows you to query data sources in natural language by simply configuring their connection parameters. This tool is useful when you need answers to questions from your data stored in various data sources including PostgreSQL, MySQL, MariaDB, ClickHouse, Snowflake, and Google BigQuery.
Minds are AI systems that work similarly to large language models (LLMs) but go beyond by answering any question from any data. This is accomplished by:
- Selecting the most relevant data for an answer using parametric search
- Understanding the meaning and providing responses within the correct context through semantic search
- Delivering precise answers by analyzing data and using machine learning (ML) models
## Installation
To incorporate this tool into your project, you need to install the Minds SDK:
```shell
uv add minds-sdk
```
## Steps to Get Started
To effectively use the `AIMindTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` and `minds-sdk` packages are installed in your Python environment.
2. **API Key Acquisition**: Sign up for a Minds account [here](https://mdb.ai/register), and obtain an API key.
3. **Environment Configuration**: Store your obtained API key in an environment variable named `MINDS_API_KEY` to facilitate its use by the tool.
## Example
The following example demonstrates how to initialize the tool and execute a query:
```python Code
from crewai_tools import AIMindTool
# Initialize the AIMindTool
aimind_tool = AIMindTool(
datasources=[
{
"description": "house sales data",
"engine": "postgres",
"connection_data": {
"user": "demo_user",
"password": "demo_password",
"host": "samples.mindsdb.com",
"port": 5432,
"database": "demo",
"schema": "demo_data"
},
"tables": ["house_sales"]
}
]
)
# Run a natural language query
result = aimind_tool.run("How many 3 bedroom houses were sold in 2008?")
print(result)
```
## Parameters
The `AIMindTool` accepts the following parameters:
- **api_key**: Optional. Your Minds API key. If not provided, it will be read from the `MINDS_API_KEY` environment variable.
- **datasources**: A list of dictionaries, each containing the following keys:
- **description**: A description of the data contained in the datasource.
- **engine**: The engine (or type) of the datasource.
- **connection_data**: A dictionary containing the connection parameters for the datasource.
- **tables**: A list of tables that the data source will use. This is optional and can be omitted if all tables in the data source are to be used.
A list of supported data sources and their connection parameters can be found [here](https://docs.mdb.ai/docs/data_sources).
## Agent Integration Example
Here's how to integrate the `AIMindTool` with a CrewAI agent:
```python Code
from crewai import Agent
from crewai.project import agent
from crewai_tools import AIMindTool
# Initialize the tool
aimind_tool = AIMindTool(
datasources=[
{
"description": "sales data",
"engine": "postgres",
"connection_data": {
"user": "your_user",
"password": "your_password",
"host": "your_host",
"port": 5432,
"database": "your_db",
"schema": "your_schema"
},
"tables": ["sales"]
}
]
)
# Define an agent with the AIMindTool
@agent
def data_analyst(self) -> Agent:
return Agent(
config=self.agents_config["data_analyst"],
allow_delegation=False,
tools=[aimind_tool]
)
```
## Conclusion
The `AIMindTool` provides a powerful way to query your data sources using natural language, making it easier to extract insights without writing complex SQL queries. By connecting to various data sources and leveraging AI-Minds technology, this tool enables agents to access and analyze data efficiently.

View File

@@ -1,99 +0,0 @@
---
title: Apify Actors
description: "`ApifyActorsTool` lets you call Apify Actors to provide your CrewAI workflows with web scraping, crawling, data extraction, and web automation capabilities."
# hack to use custom Apify icon
icon: "); -webkit-mask-image: url('https://upload.wikimedia.org/wikipedia/commons/a/ae/Apify.svg');/*"
---
# `ApifyActorsTool`
Integrate [Apify Actors](https://apify.com/actors) into your CrewAI workflows.
## Description
The `ApifyActorsTool` connects [Apify Actors](https://apify.com/actors), cloud-based programs for web scraping and automation, to your CrewAI workflows.
Use any of the 4,000+ Actors on [Apify Store](https://apify.com/store) for use cases such as extracting data from social media, search engines, online maps, e-commerce sites, travel portals, or general websites.
For details, see the [Apify CrewAI integration](https://docs.apify.com/platform/integrations/crewai) in Apify documentation.
## Steps to get started
<Steps>
<Step title="Install dependencies">
Install `crewai[tools]` and `langchain-apify` using pip: `pip install 'crewai[tools]' langchain-apify`.
</Step>
<Step title="Obtain an Apify API token">
Sign up to [Apify Console](https://console.apify.com/) and get your [Apify API token](https://console.apify.com/settings/integrations)..
</Step>
<Step title="Configure environment">
Set your Apify API token as the `APIFY_API_TOKEN` environment variable to enable the tool's functionality.
</Step>
</Steps>
## Usage example
Use the `ApifyActorsTool` manually to run the [RAG Web Browser Actor](https://apify.com/apify/rag-web-browser) to perform a web search:
```python
from crewai_tools import ApifyActorsTool
# Initialize the tool with an Apify Actor
tool = ApifyActorsTool(actor_name="apify/rag-web-browser")
# Run the tool with input parameters
results = tool.run(run_input={"query": "What is CrewAI?", "maxResults": 5})
# Process the results
for result in results:
print(f"URL: {result['metadata']['url']}")
print(f"Content: {result.get('markdown', 'N/A')[:100]}...")
```
### Expected output
Here is the output from running the code above:
```text
URL: https://www.example.com/crewai-intro
Content: CrewAI is a framework for building AI-powered workflows...
URL: https://docs.crewai.com/
Content: Official documentation for CrewAI...
```
The `ApifyActorsTool` automatically fetches the Actor definition and input schema from Apify using the provided `actor_name` and then constructs the tool description and argument schema. This means you need to specify only a valid `actor_name`, and the tool handles the rest when used with agents—no need to specify the `run_input`. Here's how it works:
```python
from crewai import Agent
from crewai_tools import ApifyActorsTool
rag_browser = ApifyActorsTool(actor_name="apify/rag-web-browser")
agent = Agent(
role="Research Analyst",
goal="Find and summarize information about specific topics",
backstory="You are an experienced researcher with attention to detail",
tools=[rag_browser],
)
```
You can run other Actors from [Apify Store](https://apify.com/store) simply by changing the `actor_name` and, when using it manually, adjusting the `run_input` based on the Actor input schema.
For an example of usage with agents, see the [CrewAI Actor template](https://apify.com/templates/python-crewai).
## Configuration
The `ApifyActorsTool` requires these inputs to work:
- **`actor_name`**
The ID of the Apify Actor to run, e.g., `"apify/rag-web-browser"`. Browse all Actors on [Apify Store](https://apify.com/store).
- **`run_input`**
A dictionary of input parameters for the Actor when running the tool manually.
- For example, for the `apify/rag-web-browser` Actor: `{"query": "search term", "maxResults": 5}`
- See the Actor's [input schema](https://apify.com/apify/rag-web-browser/input-schema) for the list of input parameters.
## Resources
- **[Apify](https://apify.com/)**: Explore the Apify platform.
- **[How to build an AI agent on Apify](https://blog.apify.com/how-to-build-an-ai-agent/)** - A complete step-by-step guide to creating, publishing, and monetizing AI agents on the Apify platform.
- **[RAG Web Browser Actor](https://apify.com/apify/rag-web-browser)**: A popular Actor for web search for LLMs.
- **[CrewAI Integration Guide](https://docs.apify.com/platform/integrations/crewai)**: Follow the official guide for integrating Apify and CrewAI.

View File

@@ -1,96 +0,0 @@
---
title: Brave Search
description: The `BraveSearchTool` is designed to search the internet using the Brave Search API.
icon: searchengin
---
# `BraveSearchTool`
## Description
This tool is designed to perform web searches using the Brave Search API. It allows you to search the internet with a specified query and retrieve relevant results. The tool supports customizable result counts and country-specific searches.
## Installation
To incorporate this tool into your project, follow the installation instructions below:
```shell
pip install 'crewai[tools]'
```
## Steps to Get Started
To effectively use the `BraveSearchTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
2. **API Key Acquisition**: Acquire a Brave Search API key by registering at [Brave Search API](https://api.search.brave.com/app/keys).
3. **Environment Configuration**: Store your obtained API key in an environment variable named `BRAVE_API_KEY` to facilitate its use by the tool.
## Example
The following example demonstrates how to initialize the tool and execute a search with a given query:
```python Code
from crewai_tools import BraveSearchTool
# Initialize the tool for internet searching capabilities
tool = BraveSearchTool()
# Execute a search
results = tool.run(search_query="CrewAI agent framework")
print(results)
```
## Parameters
The `BraveSearchTool` accepts the following parameters:
- **search_query**: Mandatory. The search query you want to use to search the internet.
- **country**: Optional. Specify the country for the search results. Default is empty string.
- **n_results**: Optional. Number of search results to return. Default is `10`.
- **save_file**: Optional. Whether to save the search results to a file. Default is `False`.
## Example with Parameters
Here is an example demonstrating how to use the tool with additional parameters:
```python Code
from crewai_tools import BraveSearchTool
# Initialize the tool with custom parameters
tool = BraveSearchTool(
country="US",
n_results=5,
save_file=True
)
# Execute a search
results = tool.run(search_query="Latest AI developments")
print(results)
```
## Agent Integration Example
Here's how to integrate the `BraveSearchTool` with a CrewAI agent:
```python Code
from crewai import Agent
from crewai.project import agent
from crewai_tools import BraveSearchTool
# Initialize the tool
brave_search_tool = BraveSearchTool()
# Define an agent with the BraveSearchTool
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config["researcher"],
allow_delegation=False,
tools=[brave_search_tool]
)
```
## Conclusion
By integrating the `BraveSearchTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. The tool provides a simple interface to the powerful Brave Search API, making it easy to retrieve and process search results programmatically. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.

View File

@@ -8,15 +8,18 @@ icon: code-simple
## Description
The `CodeInterpreterTool` enables CrewAI agents to execute Python 3 code that they generate autonomously. The code is run in a secure, isolated Docker container, ensuring safety regardless of the content. This functionality is particularly valuable as it allows agents to create code, execute it, obtain the results, and utilize that information to inform subsequent decisions and actions.
This tool enables the Agent to execute Python 3 code that it has generated autonomously. The code is run in a secure, isolated environment, ensuring safety regardless of the content.
This functionality is particularly valuable as it allows the Agent to create code, execute it within the same ecosystem,
obtain the results, and utilize that information to inform subsequent decisions and actions.
## Requirements
- Docker must be installed and running on your system. If you don't have it, you can install it from [here](https://docs.docker.com/get-docker/).
- Docker
## Installation
To use this tool, you need to install the CrewAI tools package:
Install the `crewai_tools` package
```shell
pip install 'crewai[tools]'
@@ -24,153 +27,27 @@ pip install 'crewai[tools]'
## Example
The following example demonstrates how to use the `CodeInterpreterTool` with a CrewAI agent:
Remember that when using this tool, the code must be generated by the Agent itself.
The code must be a Python3 code. And it will take some time for the first time to run
because it needs to build the Docker image.
```python Code
from crewai import Agent, Task, Crew, Process
from crewai import Agent
from crewai_tools import CodeInterpreterTool
# Initialize the tool
code_interpreter = CodeInterpreterTool()
# Define an agent that uses the tool
programmer_agent = Agent(
role="Python Programmer",
goal="Write and execute Python code to solve problems",
backstory="An expert Python programmer who can write efficient code to solve complex problems.",
tools=[code_interpreter],
verbose=True,
Agent(
...
tools=[CodeInterpreterTool()],
)
# Example task to generate and execute code
coding_task = Task(
description="Write a Python function to calculate the Fibonacci sequence up to the 10th number and print the result.",
expected_output="The Fibonacci sequence up to the 10th number.",
agent=programmer_agent,
)
# Create and run the crew
crew = Crew(
agents=[programmer_agent],
tasks=[coding_task],
verbose=True,
process=Process.sequential,
)
result = crew.kickoff()
```
You can also enable code execution directly when creating an agent:
We also provide a simple way to use it directly from the Agent.
```python Code
from crewai import Agent
# Create an agent with code execution enabled
programmer_agent = Agent(
role="Python Programmer",
goal="Write and execute Python code to solve problems",
backstory="An expert Python programmer who can write efficient code to solve complex problems.",
allow_code_execution=True, # This automatically adds the CodeInterpreterTool
verbose=True,
agent = Agent(
...
allow_code_execution=True,
)
```
## Parameters
The `CodeInterpreterTool` accepts the following parameters during initialization:
- **user_dockerfile_path**: Optional. Path to a custom Dockerfile to use for the code interpreter container.
- **user_docker_base_url**: Optional. URL to the Docker daemon to use for running the container.
- **unsafe_mode**: Optional. Whether to run code directly on the host machine instead of in a Docker container. Default is `False`. Use with caution!
When using the tool with an agent, the agent will need to provide:
- **code**: Required. The Python 3 code to execute.
- **libraries_used**: Required. A list of libraries used in the code that need to be installed.
## Agent Integration Example
Here's a more detailed example of how to integrate the `CodeInterpreterTool` with a CrewAI agent:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import CodeInterpreterTool
# Initialize the tool
code_interpreter = CodeInterpreterTool()
# Define an agent that uses the tool
data_analyst = Agent(
role="Data Analyst",
goal="Analyze data using Python code",
backstory="""You are an expert data analyst who specializes in using Python
to analyze and visualize data. You can write efficient code to process
large datasets and extract meaningful insights.""",
tools=[code_interpreter],
verbose=True,
)
# Create a task for the agent
analysis_task = Task(
description="""
Write Python code to:
1. Generate a random dataset of 100 points with x and y coordinates
2. Calculate the correlation coefficient between x and y
3. Create a scatter plot of the data
4. Print the correlation coefficient and save the plot as 'scatter.png'
Make sure to handle any necessary imports and print the results.
""",
expected_output="The correlation coefficient and confirmation that the scatter plot has been saved.",
agent=data_analyst,
)
# Run the task
crew = Crew(
agents=[data_analyst],
tasks=[analysis_task],
verbose=True,
process=Process.sequential,
)
result = crew.kickoff()
```
## Implementation Details
The `CodeInterpreterTool` uses Docker to create a secure environment for code execution:
```python Code
class CodeInterpreterTool(BaseTool):
name: str = "Code Interpreter"
description: str = "Interprets Python3 code strings with a final print statement."
args_schema: Type[BaseModel] = CodeInterpreterSchema
default_image_tag: str = "code-interpreter:latest"
def _run(self, **kwargs) -> str:
code = kwargs.get("code", self.code)
libraries_used = kwargs.get("libraries_used", [])
if self.unsafe_mode:
return self.run_code_unsafe(code, libraries_used)
else:
return self.run_code_in_docker(code, libraries_used)
```
The tool performs the following steps:
1. Verifies that the Docker image exists or builds it if necessary
2. Creates a Docker container with the current working directory mounted
3. Installs any required libraries specified by the agent
4. Executes the Python code in the container
5. Returns the output of the code execution
6. Cleans up by stopping and removing the container
## Security Considerations
By default, the `CodeInterpreterTool` runs code in an isolated Docker container, which provides a layer of security. However, there are still some security considerations to keep in mind:
1. The Docker container has access to the current working directory, so sensitive files could potentially be accessed.
2. The `unsafe_mode` parameter allows code to be executed directly on the host machine, which should only be used in trusted environments.
3. Be cautious when allowing agents to install arbitrary libraries, as they could potentially include malicious code.
## Conclusion
The `CodeInterpreterTool` provides a powerful way for CrewAI agents to execute Python code in a relatively secure environment. By enabling agents to write and run code, it significantly expands their problem-solving capabilities, especially for tasks involving data analysis, calculations, or other computational work. This tool is particularly useful for agents that need to perform complex operations that are more efficiently expressed in code than in natural language.

View File

@@ -1,118 +1,78 @@
---
title: Composio Tool
description: Composio provides 250+ production-ready tools for AI agents with flexible authentication management.
description: The `ComposioTool` is a wrapper around the composio set of tools and gives your agent access to a wide variety of tools from the Composio SDK.
icon: gear-code
---
# `ComposioToolSet`
# `ComposioTool`
## Description
Composio is an integration platform that allows you to connect your AI agents to 250+ tools. Key features include:
- **Enterprise-Grade Authentication**: Built-in support for OAuth, API Keys, JWT with automatic token refresh
- **Full Observability**: Detailed tool usage logs, execution timestamps, and more
This tools is a wrapper around the composio set of tools and gives your agent access to a wide variety of tools from the Composio SDK.
## Installation
To incorporate Composio tools into your project, follow the instructions below:
To incorporate this tool into your project, follow the installation instructions below:
```shell
pip install composio-crewai
pip install crewai
pip install composio-core
pip install 'crewai[tools]'
```
After the installation is complete, either run `composio login` or export your composio API key as `COMPOSIO_API_KEY`. Get your Composio API key from [here](https://app.composio.dev)
after the installation is complete, either run `composio login` or export your composio API key as `COMPOSIO_API_KEY`.
## Example
The following example demonstrates how to initialize the tool and execute a github action:
1. Initialize Composio toolset
1. Initialize Composio tools
```python Code
from composio_crewai import ComposioToolSet, App, Action
from crewai import Agent, Task, Crew
from composio import App
from crewai_tools import ComposioTool
from crewai import Agent, Task
toolset = ComposioToolSet()
tools = [ComposioTool.from_action(action=Action.GITHUB_ACTIVITY_STAR_REPO_FOR_AUTHENTICATED_USER)]
```
2. Connect your GitHub account
<CodeGroup>
```shell CLI
composio add github
```
If you don't know what action you want to use, use `from_app` and `tags` filter to get relevant actions
```python Code
request = toolset.initiate_connection(app=App.GITHUB)
print(f"Open this URL to authenticate: {request.redirectUrl}")
tools = ComposioTool.from_app(App.GITHUB, tags=["important"])
```
</CodeGroup>
3. Get Tools
or use `use_case` to search relevant actions
- Retrieving all the tools from an app (not recommended for production):
```python Code
tools = toolset.get_tools(apps=[App.GITHUB])
tools = ComposioTool.from_app(App.GITHUB, use_case="Star a github repository")
```
- Filtering tools based on tags:
```python Code
tag = "users"
filtered_action_enums = toolset.find_actions_by_tags(
App.GITHUB,
tags=[tag],
)
tools = toolset.get_tools(actions=filtered_action_enums)
```
- Filtering tools based on use case:
```python Code
use_case = "Star a repository on GitHub"
filtered_action_enums = toolset.find_actions_by_use_case(
App.GITHUB, use_case=use_case, advanced=False
)
tools = toolset.get_tools(actions=filtered_action_enums)
```
<Tip>Set `advanced` to True to get actions for complex use cases</Tip>
- Using specific tools:
In this demo, we will use the `GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER` action from the GitHub app.
```python Code
tools = toolset.get_tools(
actions=[Action.GITHUB_STAR_A_REPOSITORY_FOR_THE_AUTHENTICATED_USER]
)
```
Learn more about filtering actions [here](https://docs.composio.dev/patterns/tools/use-tools/use-specific-actions)
4. Define agent
2. Define agent
```python Code
crewai_agent = Agent(
role="GitHub Agent",
goal="You take action on GitHub using GitHub APIs",
backstory="You are AI agent that is responsible for taking actions on GitHub on behalf of users using GitHub APIs",
role="Github Agent",
goal="You take action on Github using Github APIs",
backstory=(
"You are AI agent that is responsible for taking actions on Github "
"on users behalf. You need to take action on Github using Github APIs"
),
verbose=True,
tools=tools,
llm= # pass an llm
)
```
5. Execute task
3. Execute task
```python Code
task = Task(
description="Star a repo composiohq/composio on GitHub",
description="Star a repo ComposioHQ/composio on GitHub",
agent=crewai_agent,
expected_output="Status of the operation",
expected_output="if the star happened",
)
crew = Crew(agents=[crewai_agent], tasks=[task])
crew.kickoff()
task.execute()
```
* More detailed list of tools can be found [here](https://app.composio.dev)

View File

@@ -8,9 +8,9 @@ icon: file-pen
## Description
The `FileWriterTool` is a component of the crewai_tools package, designed to simplify the process of writing content to files with cross-platform compatibility (Windows, Linux, macOS).
The `FileWriterTool` is a component of the crewai_tools package, designed to simplify the process of writing content to files.
It is particularly useful in scenarios such as generating reports, saving logs, creating configuration files, and more.
This tool handles path differences across operating systems, supports UTF-8 encoding, and automatically creates directories if they don't exist, making it easier to organize your output reliably across different platforms.
This tool supports creating new directories if they don't exist, making it easier to organize your output.
## Installation
@@ -43,8 +43,6 @@ print(result)
## Conclusion
By integrating the `FileWriterTool` into your crews, the agents can reliably write content to files across different operating systems.
This tool is essential for tasks that require saving output data, creating structured file systems, and handling cross-platform file operations.
It's particularly recommended for Windows users who may encounter file writing issues with standard Python file operations.
By adhering to the setup and usage guidelines provided, incorporating this tool into projects is straightforward and ensures consistent file writing behavior across all platforms.
By integrating the `FileWriterTool` into your crews, the agents can execute the process of writing content to files and creating directories.
This tool is essential for tasks that require saving output data, creating structured file systems, and more. By adhering to the setup and usage guidelines provided,
incorporating this tool into projects is straightforward and efficient.

View File

@@ -1,86 +0,0 @@
---
title: Hyperbrowser Load Tool
description: The `HyperbrowserLoadTool` enables web scraping and crawling using Hyperbrowser.
icon: globe
---
# `HyperbrowserLoadTool`
## Description
The `HyperbrowserLoadTool` enables web scraping and crawling using [Hyperbrowser](https://hyperbrowser.ai), a platform for running and scaling headless browsers. This tool allows you to scrape a single page or crawl an entire site, returning the content in properly formatted markdown or HTML.
Key Features:
- Instant Scalability - Spin up hundreds of browser sessions in seconds without infrastructure headaches
- Simple Integration - Works seamlessly with popular tools like Puppeteer and Playwright
- Powerful APIs - Easy to use APIs for scraping/crawling any site
- Bypass Anti-Bot Measures - Built-in stealth mode, ad blocking, automatic CAPTCHA solving, and rotating proxies
## Installation
To use this tool, you need to install the Hyperbrowser SDK:
```shell
uv add hyperbrowser
```
## Steps to Get Started
To effectively use the `HyperbrowserLoadTool`, follow these steps:
1. **Sign Up**: Head to [Hyperbrowser](https://app.hyperbrowser.ai/) to sign up and generate an API key.
2. **API Key**: Set the `HYPERBROWSER_API_KEY` environment variable or pass it directly to the tool constructor.
3. **Install SDK**: Install the Hyperbrowser SDK using the command above.
## Example
The following example demonstrates how to initialize the tool and use it to scrape a website:
```python Code
from crewai_tools import HyperbrowserLoadTool
from crewai import Agent
# Initialize the tool with your API key
tool = HyperbrowserLoadTool(api_key="your_api_key") # Or use environment variable
# Define an agent that uses the tool
@agent
def web_researcher(self) -> Agent:
'''
This agent uses the HyperbrowserLoadTool to scrape websites
and extract information.
'''
return Agent(
config=self.agents_config["web_researcher"],
tools=[tool]
)
```
## Parameters
The `HyperbrowserLoadTool` accepts the following parameters:
### Constructor Parameters
- **api_key**: Optional. Your Hyperbrowser API key. If not provided, it will be read from the `HYPERBROWSER_API_KEY` environment variable.
### Run Parameters
- **url**: Required. The website URL to scrape or crawl.
- **operation**: Optional. The operation to perform on the website. Either 'scrape' or 'crawl'. Default is 'scrape'.
- **params**: Optional. Additional parameters for the scrape or crawl operation.
## Supported Parameters
For detailed information on all supported parameters, visit:
- [Scrape Parameters](https://docs.hyperbrowser.ai/reference/sdks/python/scrape#start-scrape-job-and-wait)
- [Crawl Parameters](https://docs.hyperbrowser.ai/reference/sdks/python/crawl#start-crawl-job-and-wait)
## Return Format
The tool returns content in the following format:
- For **scrape** operations: The content of the page in markdown or HTML format.
- For **crawl** operations: The content of each page separated by dividers, including the URL of each page.
## Conclusion
The `HyperbrowserLoadTool` provides a powerful way to scrape and crawl websites, handling complex scenarios like anti-bot measures, CAPTCHAs, and more. By leveraging Hyperbrowser's platform, this tool enables agents to access and extract web content efficiently.

View File

@@ -7,10 +7,8 @@ icon: file-code
# `JSONSearchTool`
<Note>
The JSONSearchTool is currently in an experimental phase. This means the tool
is under active development, and users might encounter unexpected behavior or
changes. We highly encourage feedback on any issues or suggestions for
improvements.
The JSONSearchTool is currently in an experimental phase. This means the tool is under active development, and users might encounter unexpected behavior or changes.
We highly encourage feedback on any issues or suggestions for improvements.
</Note>
## Description
@@ -62,7 +60,7 @@ tool = JSONSearchTool(
# stream=true,
},
},
"embedding_model": {
"embedder": {
"provider": "google", # or openai, ollama, ...
"config": {
"model": "models/embedding-001",

View File

@@ -1,112 +0,0 @@
---
title: Linkup Search Tool
description: The `LinkupSearchTool` enables querying the Linkup API for contextual information.
icon: link
---
# `LinkupSearchTool`
## Description
The `LinkupSearchTool` provides the ability to query the Linkup API for contextual information and retrieve structured results. This tool is ideal for enriching workflows with up-to-date and reliable information from Linkup, allowing agents to access relevant data during their tasks.
## Installation
To use this tool, you need to install the Linkup SDK:
```shell
uv add linkup-sdk
```
## Steps to Get Started
To effectively use the `LinkupSearchTool`, follow these steps:
1. **API Key**: Obtain a Linkup API key.
2. **Environment Setup**: Set up your environment with the API key.
3. **Install SDK**: Install the Linkup SDK using the command above.
## Example
The following example demonstrates how to initialize the tool and use it in an agent:
```python Code
from crewai_tools import LinkupSearchTool
from crewai import Agent
import os
# Initialize the tool with your API key
linkup_tool = LinkupSearchTool(api_key=os.getenv("LINKUP_API_KEY"))
# Define an agent that uses the tool
@agent
def researcher(self) -> Agent:
'''
This agent uses the LinkupSearchTool to retrieve contextual information
from the Linkup API.
'''
return Agent(
config=self.agents_config["researcher"],
tools=[linkup_tool]
)
```
## Parameters
The `LinkupSearchTool` accepts the following parameters:
### Constructor Parameters
- **api_key**: Required. Your Linkup API key.
### Run Parameters
- **query**: Required. The search term or phrase.
- **depth**: Optional. The search depth. Default is "standard".
- **output_type**: Optional. The type of output. Default is "searchResults".
## Advanced Usage
You can customize the search parameters for more specific results:
```python Code
# Perform a search with custom parameters
results = linkup_tool.run(
query="Women Nobel Prize Physics",
depth="deep",
output_type="searchResults"
)
```
## Return Format
The tool returns results in the following format:
```json
{
"success": true,
"results": [
{
"name": "Result Title",
"url": "https://example.com/result",
"content": "Content of the result..."
},
// Additional results...
]
}
```
If an error occurs, the response will be:
```json
{
"success": false,
"error": "Error message"
}
```
## Error Handling
The tool gracefully handles API errors and provides structured feedback. If the API request fails, the tool will return a dictionary with `success: false` and an error message.
## Conclusion
The `LinkupSearchTool` provides a seamless way to integrate Linkup's contextual information retrieval capabilities into your CrewAI agents. By leveraging this tool, agents can access relevant and up-to-date information to enhance their decision-making and task execution.

View File

@@ -1,146 +0,0 @@
---
title: LlamaIndex Tool
description: The `LlamaIndexTool` is a wrapper for LlamaIndex tools and query engines.
icon: address-book
---
# `LlamaIndexTool`
## Description
The `LlamaIndexTool` is designed to be a general wrapper around LlamaIndex tools and query engines, enabling you to leverage LlamaIndex resources in terms of RAG/agentic pipelines as tools to plug into CrewAI agents. This tool allows you to seamlessly integrate LlamaIndex's powerful data processing and retrieval capabilities into your CrewAI workflows.
## Installation
To use this tool, you need to install LlamaIndex:
```shell
uv add llama-index
```
## Steps to Get Started
To effectively use the `LlamaIndexTool`, follow these steps:
1. **Install LlamaIndex**: Install the LlamaIndex package using the command above.
2. **Set Up LlamaIndex**: Follow the [LlamaIndex documentation](https://docs.llamaindex.ai/) to set up a RAG/agent pipeline.
3. **Create a Tool or Query Engine**: Create a LlamaIndex tool or query engine that you want to use with CrewAI.
## Example
The following examples demonstrate how to initialize the tool from different LlamaIndex components:
### From a LlamaIndex Tool
```python Code
from crewai_tools import LlamaIndexTool
from crewai import Agent
from llama_index.core.tools import FunctionTool
# Example 1: Initialize from FunctionTool
def search_data(query: str) -> str:
"""Search for information in the data."""
# Your implementation here
return f"Results for: {query}"
# Create a LlamaIndex FunctionTool
og_tool = FunctionTool.from_defaults(
search_data,
name="DataSearchTool",
description="Search for information in the data"
)
# Wrap it with LlamaIndexTool
tool = LlamaIndexTool.from_tool(og_tool)
# Define an agent that uses the tool
@agent
def researcher(self) -> Agent:
'''
This agent uses the LlamaIndexTool to search for information.
'''
return Agent(
config=self.agents_config["researcher"],
tools=[tool]
)
```
### From LlamaHub Tools
```python Code
from crewai_tools import LlamaIndexTool
from llama_index.tools.wolfram_alpha import WolframAlphaToolSpec
# Initialize from LlamaHub Tools
wolfram_spec = WolframAlphaToolSpec(app_id="your_app_id")
wolfram_tools = wolfram_spec.to_tool_list()
tools = [LlamaIndexTool.from_tool(t) for t in wolfram_tools]
```
### From a LlamaIndex Query Engine
```python Code
from crewai_tools import LlamaIndexTool
from llama_index.core import VectorStoreIndex
from llama_index.core.readers import SimpleDirectoryReader
# Load documents
documents = SimpleDirectoryReader("./data").load_data()
# Create an index
index = VectorStoreIndex.from_documents(documents)
# Create a query engine
query_engine = index.as_query_engine()
# Create a LlamaIndexTool from the query engine
query_tool = LlamaIndexTool.from_query_engine(
query_engine,
name="Company Data Query Tool",
description="Use this tool to lookup information in company documents"
)
```
## Class Methods
The `LlamaIndexTool` provides two main class methods for creating instances:
### from_tool
Creates a `LlamaIndexTool` from a LlamaIndex tool.
```python Code
@classmethod
def from_tool(cls, tool: Any, **kwargs: Any) -> "LlamaIndexTool":
# Implementation details
```
### from_query_engine
Creates a `LlamaIndexTool` from a LlamaIndex query engine.
```python Code
@classmethod
def from_query_engine(
cls,
query_engine: Any,
name: Optional[str] = None,
description: Optional[str] = None,
return_direct: bool = False,
**kwargs: Any,
) -> "LlamaIndexTool":
# Implementation details
```
## Parameters
The `from_query_engine` method accepts the following parameters:
- **query_engine**: Required. The LlamaIndex query engine to wrap.
- **name**: Optional. The name of the tool.
- **description**: Optional. The description of the tool.
- **return_direct**: Optional. Whether to return the response directly. Default is `False`.
## Conclusion
The `LlamaIndexTool` provides a powerful way to integrate LlamaIndex's capabilities into CrewAI agents. By wrapping LlamaIndex tools and query engines, it enables agents to leverage sophisticated data retrieval and processing functionalities, enhancing their ability to work with complex information sources.

View File

@@ -1,128 +0,0 @@
---
title: MultiOn Tool
description: The `MultiOnTool` empowers CrewAI agents with the capability to navigate and interact with the web through natural language instructions.
icon: globe
---
# `MultiOnTool`
## Description
The `MultiOnTool` is designed to wrap [MultiOn's](https://docs.multion.ai/welcome) web browsing capabilities, enabling CrewAI agents to control web browsers using natural language instructions. This tool facilitates seamless web browsing, making it an essential asset for projects requiring dynamic web data interaction and automation of web-based tasks.
## Installation
To use this tool, you need to install the MultiOn package:
```shell
uv add multion
```
You'll also need to install the MultiOn browser extension and enable API usage.
## Steps to Get Started
To effectively use the `MultiOnTool`, follow these steps:
1. **Install CrewAI**: Ensure that the `crewai[tools]` package is installed in your Python environment.
2. **Install and use MultiOn**: Follow [MultiOn documentation](https://docs.multion.ai/learn/browser-extension) for installing the MultiOn Browser Extension.
3. **Enable API Usage**: Click on the MultiOn extension in the extensions folder of your browser (not the hovering MultiOn icon on the web page) to open the extension configurations. Click the API Enabled toggle to enable the API.
## Example
The following example demonstrates how to initialize the tool and execute a web browsing task:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import MultiOnTool
# Initialize the tool
multion_tool = MultiOnTool(api_key="YOUR_MULTION_API_KEY", local=False)
# Define an agent that uses the tool
browser_agent = Agent(
role="Browser Agent",
goal="Control web browsers using natural language",
backstory="An expert browsing agent.",
tools=[multion_tool],
verbose=True,
)
# Example task to search and summarize news
browse_task = Task(
description="Summarize the top 3 trending AI News headlines",
expected_output="A summary of the top 3 trending AI News headlines",
agent=browser_agent,
)
# Create and run the crew
crew = Crew(agents=[browser_agent], tasks=[browse_task])
result = crew.kickoff()
```
## Parameters
The `MultiOnTool` accepts the following parameters during initialization:
- **api_key**: Optional. Specifies the MultiOn API key. If not provided, it will look for the `MULTION_API_KEY` environment variable.
- **local**: Optional. Set to `True` to run the agent locally on your browser. Make sure the MultiOn browser extension is installed and API Enabled is checked. Default is `False`.
- **max_steps**: Optional. Sets the maximum number of steps the MultiOn agent can take for a command. Default is `3`.
## Usage
When using the `MultiOnTool`, the agent will provide natural language instructions that the tool translates into web browsing actions. The tool returns the results of the browsing session along with a status.
```python Code
# Example of using the tool with an agent
browser_agent = Agent(
role="Web Browser Agent",
goal="Search for and summarize information from the web",
backstory="An expert at finding and extracting information from websites.",
tools=[multion_tool],
verbose=True,
)
# Create a task for the agent
search_task = Task(
description="Search for the latest AI news on TechCrunch and summarize the top 3 headlines",
expected_output="A summary of the top 3 AI news headlines from TechCrunch",
agent=browser_agent,
)
# Run the task
crew = Crew(agents=[browser_agent], tasks=[search_task])
result = crew.kickoff()
```
If the status returned is `CONTINUE`, the agent should be instructed to reissue the same instruction to continue execution.
## Implementation Details
The `MultiOnTool` is implemented as a subclass of `BaseTool` from CrewAI. It wraps the MultiOn client to provide web browsing capabilities:
```python Code
class MultiOnTool(BaseTool):
"""Tool to wrap MultiOn Browse Capabilities."""
name: str = "Multion Browse Tool"
description: str = """Multion gives the ability for LLMs to control web browsers using natural language instructions.
If the status is 'CONTINUE', reissue the same instruction to continue execution
"""
# Implementation details...
def _run(self, cmd: str, *args: Any, **kwargs: Any) -> str:
"""
Run the Multion client with the given command.
Args:
cmd (str): The detailed and specific natural language instruction for web browsing
*args (Any): Additional arguments to pass to the Multion client
**kwargs (Any): Additional keyword arguments to pass to the Multion client
"""
# Implementation details...
```
## Conclusion
The `MultiOnTool` provides a powerful way to integrate web browsing capabilities into CrewAI agents. By enabling agents to interact with websites through natural language instructions, it opens up a wide range of possibilities for web-based tasks, from data collection and research to automated interactions with web services.

View File

@@ -1,195 +0,0 @@
---
title: Patronus Evaluation Tools
description: The Patronus evaluation tools enable CrewAI agents to evaluate and score model inputs and outputs using the Patronus AI platform.
icon: check
---
# `Patronus Evaluation Tools`
## Description
The [Patronus evaluation tools](https://patronus.ai) are designed to enable CrewAI agents to evaluate and score model inputs and outputs using the Patronus AI platform. These tools provide different levels of control over the evaluation process, from allowing agents to select the most appropriate evaluator and criteria to using predefined criteria or custom local evaluators.
There are three main Patronus evaluation tools:
1. **PatronusEvalTool**: Allows agents to select the most appropriate evaluator and criteria for the evaluation task.
2. **PatronusPredefinedCriteriaEvalTool**: Uses predefined evaluator and criteria specified by the user.
3. **PatronusLocalEvaluatorTool**: Uses custom function evaluators defined by the user.
## Installation
To use these tools, you need to install the Patronus package:
```shell
uv add patronus
```
You'll also need to set up your Patronus API key as an environment variable:
```shell
export PATRONUS_API_KEY="your_patronus_api_key"
```
## Steps to Get Started
To effectively use the Patronus evaluation tools, follow these steps:
1. **Install Patronus**: Install the Patronus package using the command above.
2. **Set Up API Key**: Set your Patronus API key as an environment variable.
3. **Choose the Right Tool**: Select the appropriate Patronus evaluation tool based on your needs.
4. **Configure the Tool**: Configure the tool with the necessary parameters.
## Examples
### Using PatronusEvalTool
The following example demonstrates how to use the `PatronusEvalTool`, which allows agents to select the most appropriate evaluator and criteria:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import PatronusEvalTool
# Initialize the tool
patronus_eval_tool = PatronusEvalTool()
# Define an agent that uses the tool
coding_agent = Agent(
role="Coding Agent",
goal="Generate high quality code and verify that the output is code",
backstory="An experienced coder who can generate high quality python code.",
tools=[patronus_eval_tool],
verbose=True,
)
# Example task to generate and evaluate code
generate_code_task = Task(
description="Create a simple program to generate the first N numbers in the Fibonacci sequence. Select the most appropriate evaluator and criteria for evaluating your output.",
expected_output="Program that generates the first N numbers in the Fibonacci sequence.",
agent=coding_agent,
)
# Create and run the crew
crew = Crew(agents=[coding_agent], tasks=[generate_code_task])
result = crew.kickoff()
```
### Using PatronusPredefinedCriteriaEvalTool
The following example demonstrates how to use the `PatronusPredefinedCriteriaEvalTool`, which uses predefined evaluator and criteria:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import PatronusPredefinedCriteriaEvalTool
# Initialize the tool with predefined criteria
patronus_eval_tool = PatronusPredefinedCriteriaEvalTool(
evaluators=[{"evaluator": "judge", "criteria": "contains-code"}]
)
# Define an agent that uses the tool
coding_agent = Agent(
role="Coding Agent",
goal="Generate high quality code",
backstory="An experienced coder who can generate high quality python code.",
tools=[patronus_eval_tool],
verbose=True,
)
# Example task to generate code
generate_code_task = Task(
description="Create a simple program to generate the first N numbers in the Fibonacci sequence.",
expected_output="Program that generates the first N numbers in the Fibonacci sequence.",
agent=coding_agent,
)
# Create and run the crew
crew = Crew(agents=[coding_agent], tasks=[generate_code_task])
result = crew.kickoff()
```
### Using PatronusLocalEvaluatorTool
The following example demonstrates how to use the `PatronusLocalEvaluatorTool`, which uses custom function evaluators:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import PatronusLocalEvaluatorTool
from patronus import Client, EvaluationResult
import random
# Initialize the Patronus client
client = Client()
# Register a custom evaluator
@client.register_local_evaluator("random_evaluator")
def random_evaluator(**kwargs):
score = random.random()
return EvaluationResult(
score_raw=score,
pass_=score >= 0.5,
explanation="example explanation",
)
# Initialize the tool with the custom evaluator
patronus_eval_tool = PatronusLocalEvaluatorTool(
patronus_client=client,
evaluator="random_evaluator",
evaluated_model_gold_answer="example label",
)
# Define an agent that uses the tool
coding_agent = Agent(
role="Coding Agent",
goal="Generate high quality code",
backstory="An experienced coder who can generate high quality python code.",
tools=[patronus_eval_tool],
verbose=True,
)
# Example task to generate code
generate_code_task = Task(
description="Create a simple program to generate the first N numbers in the Fibonacci sequence.",
expected_output="Program that generates the first N numbers in the Fibonacci sequence.",
agent=coding_agent,
)
# Create and run the crew
crew = Crew(agents=[coding_agent], tasks=[generate_code_task])
result = crew.kickoff()
```
## Parameters
### PatronusEvalTool
The `PatronusEvalTool` does not require any parameters during initialization. It automatically fetches available evaluators and criteria from the Patronus API.
### PatronusPredefinedCriteriaEvalTool
The `PatronusPredefinedCriteriaEvalTool` accepts the following parameters during initialization:
- **evaluators**: Required. A list of dictionaries containing the evaluator and criteria to use. For example: `[{"evaluator": "judge", "criteria": "contains-code"}]`.
### PatronusLocalEvaluatorTool
The `PatronusLocalEvaluatorTool` accepts the following parameters during initialization:
- **patronus_client**: Required. The Patronus client instance.
- **evaluator**: Optional. The name of the registered local evaluator to use. Default is an empty string.
- **evaluated_model_gold_answer**: Optional. The gold answer to use for evaluation. Default is an empty string.
## Usage
When using the Patronus evaluation tools, you provide the model input, output, and context, and the tool returns the evaluation results from the Patronus API.
For the `PatronusEvalTool` and `PatronusPredefinedCriteriaEvalTool`, the following parameters are required when calling the tool:
- **evaluated_model_input**: The agent's task description in simple text.
- **evaluated_model_output**: The agent's output of the task.
- **evaluated_model_retrieved_context**: The agent's context.
For the `PatronusLocalEvaluatorTool`, the same parameters are required, but the evaluator and gold answer are specified during initialization.
## Conclusion
The Patronus evaluation tools provide a powerful way to evaluate and score model inputs and outputs using the Patronus AI platform. By enabling agents to evaluate their own outputs or the outputs of other agents, these tools can help improve the quality and reliability of CrewAI workflows.

View File

@@ -1,271 +0,0 @@
---
title: 'Qdrant Vector Search Tool'
description: 'Semantic search capabilities for CrewAI agents using Qdrant vector database'
icon: magnifying-glass-plus
---
# `QdrantVectorSearchTool`
The Qdrant Vector Search Tool enables semantic search capabilities in your CrewAI agents by leveraging [Qdrant](https://qdrant.tech/), a vector similarity search engine. This tool allows your agents to search through documents stored in a Qdrant collection using semantic similarity.
## Installation
Install the required packages:
```bash
uv add qdrant-client
```
## Basic Usage
Here's a minimal example of how to use the tool:
```python
from crewai import Agent
from crewai_tools import QdrantVectorSearchTool
# Initialize the tool
qdrant_tool = QdrantVectorSearchTool(
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
)
# Create an agent that uses the tool
agent = Agent(
role="Research Assistant",
goal="Find relevant information in documents",
tools=[qdrant_tool]
)
# The tool will automatically use OpenAI embeddings
# and return the 3 most relevant results with scores > 0.35
```
## Complete Working Example
Here's a complete example showing how to:
1. Extract text from a PDF
2. Generate embeddings using OpenAI
3. Store in Qdrant
4. Create a CrewAI agentic RAG workflow for semantic search
```python
import os
import uuid
import pdfplumber
from openai import OpenAI
from dotenv import load_dotenv
from crewai import Agent, Task, Crew, Process, LLM
from crewai_tools import QdrantVectorSearchTool
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct, Distance, VectorParams
# Load environment variables
load_dotenv()
# Initialize OpenAI client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Extract text from PDF
def extract_text_from_pdf(pdf_path):
text = []
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text.append(page_text.strip())
return text
# Generate OpenAI embeddings
def get_openai_embedding(text):
response = client.embeddings.create(
input=text,
model="text-embedding-3-small"
)
return response.data[0].embedding
# Store text and embeddings in Qdrant
def load_pdf_to_qdrant(pdf_path, qdrant, collection_name):
# Extract text from PDF
text_chunks = extract_text_from_pdf(pdf_path)
# Create Qdrant collection
if qdrant.collection_exists(collection_name):
qdrant.delete_collection(collection_name)
qdrant.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE)
)
# Store embeddings
points = []
for chunk in text_chunks:
embedding = get_openai_embedding(chunk)
points.append(PointStruct(
id=str(uuid.uuid4()),
vector=embedding,
payload={"text": chunk}
))
qdrant.upsert(collection_name=collection_name, points=points)
# Initialize Qdrant client and load data
qdrant = QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY")
)
collection_name = "example_collection"
pdf_path = "path/to/your/document.pdf"
load_pdf_to_qdrant(pdf_path, qdrant, collection_name)
# Initialize Qdrant search tool
qdrant_tool = QdrantVectorSearchTool(
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
)
# Create CrewAI agents
search_agent = Agent(
role="Senior Semantic Search Agent",
goal="Find and analyze documents based on semantic search",
backstory="""You are an expert research assistant who can find relevant
information using semantic search in a Qdrant database.""",
tools=[qdrant_tool],
verbose=True
)
answer_agent = Agent(
role="Senior Answer Assistant",
goal="Generate answers to questions based on the context provided",
backstory="""You are an expert answer assistant who can generate
answers to questions based on the context provided.""",
tools=[qdrant_tool],
verbose=True
)
# Define tasks
search_task = Task(
description="""Search for relevant documents about the {query}.
Your final answer should include:
- The relevant information found
- The similarity scores of the results
- The metadata of the relevant documents""",
agent=search_agent
)
answer_task = Task(
description="""Given the context and metadata of relevant documents,
generate a final answer based on the context.""",
agent=answer_agent
)
# Run CrewAI workflow
crew = Crew(
agents=[search_agent, answer_agent],
tasks=[search_task, answer_task],
process=Process.sequential,
verbose=True
)
result = crew.kickoff(
inputs={"query": "What is the role of X in the document?"}
)
print(result)
```
## Tool Parameters
### Required Parameters
- `qdrant_url` (str): The URL of your Qdrant server
- `qdrant_api_key` (str): API key for authentication with Qdrant
- `collection_name` (str): Name of the Qdrant collection to search
### Optional Parameters
- `limit` (int): Maximum number of results to return (default: 3)
- `score_threshold` (float): Minimum similarity score threshold (default: 0.35)
- `custom_embedding_fn` (Callable[[str], list[float]]): Custom function for text vectorization
## Search Parameters
The tool accepts these parameters in its schema:
- `query` (str): The search query to find similar documents
- `filter_by` (str, optional): Metadata field to filter on
- `filter_value` (str, optional): Value to filter by
## Return Format
The tool returns results in JSON format:
```json
[
{
"metadata": {
// Any metadata stored with the document
},
"context": "The actual text content of the document",
"distance": 0.95 // Similarity score
}
]
```
## Default Embedding
By default, the tool uses OpenAI's `text-embedding-3-small` model for vectorization. This requires:
- OpenAI API key set in environment: `OPENAI_API_KEY`
## Custom Embeddings
Instead of using the default embedding model, you might want to use your own embedding function in cases where you:
1. Want to use a different embedding model (e.g., Cohere, HuggingFace, Ollama models)
2. Need to reduce costs by using open-source embedding models
3. Have specific requirements for vector dimensions or embedding quality
4. Want to use domain-specific embeddings (e.g., for medical or legal text)
Here's an example using a HuggingFace model:
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
def custom_embeddings(text: str) -> list[float]:
# Tokenize and get model outputs
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
# Use mean pooling to get text embedding
embeddings = outputs.last_hidden_state.mean(dim=1)
# Convert to list of floats and return
return embeddings[0].tolist()
# Use custom embeddings with the tool
tool = QdrantVectorSearchTool(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
custom_embedding_fn=custom_embeddings # Pass your custom function
)
```
## Error Handling
The tool handles these specific errors:
- Raises ImportError if `qdrant-client` is not installed (with option to auto-install)
- Raises ValueError if `QDRANT_URL` is not set
- Prompts to install `qdrant-client` if missing using `uv add qdrant-client`
## Environment Variables
Required environment variables:
```bash
export QDRANT_URL="your_qdrant_url" # If not provided in constructor
export QDRANT_API_KEY="your_api_key" # If not provided in constructor
export OPENAI_API_KEY="your_openai_key" # If using default embeddings

View File

@@ -1,154 +0,0 @@
---
title: RAG Tool
description: The `RagTool` is a dynamic knowledge base tool for answering questions using Retrieval-Augmented Generation.
icon: vector-square
---
# `RagTool`
## Description
The `RagTool` is designed to answer questions by leveraging the power of Retrieval-Augmented Generation (RAG) through EmbedChain.
It provides a dynamic knowledge base that can be queried to retrieve relevant information from various data sources.
This tool is particularly useful for applications that require access to a vast array of information and need to provide contextually relevant answers.
## Example
The following example demonstrates how to initialize the tool and use it with different data sources:
```python Code
from crewai_tools import RagTool
# Create a RAG tool with default settings
rag_tool = RagTool()
# Add content from a file
rag_tool.add(data_type="file", path="path/to/your/document.pdf")
# Add content from a web page
rag_tool.add(data_type="web_page", url="https://example.com")
# Define an agent with the RagTool
@agent
def knowledge_expert(self) -> Agent:
'''
This agent uses the RagTool to answer questions about the knowledge base.
'''
return Agent(
config=self.agents_config["knowledge_expert"],
allow_delegation=False,
tools=[rag_tool]
)
```
## Supported Data Sources
The `RagTool` can be used with a wide variety of data sources, including:
- 📰 PDF files
- 📊 CSV files
- 📃 JSON files
- 📝 Text
- 📁 Directories/Folders
- 🌐 HTML Web pages
- 📽️ YouTube Channels
- 📺 YouTube Videos
- 📚 Documentation websites
- 📝 MDX files
- 📄 DOCX files
- 🧾 XML files
- 📬 Gmail
- 📝 GitHub repositories
- 🐘 PostgreSQL databases
- 🐬 MySQL databases
- 🤖 Slack conversations
- 💬 Discord messages
- 🗨️ Discourse forums
- 📝 Substack newsletters
- 🐝 Beehiiv content
- 💾 Dropbox files
- 🖼️ Images
- ⚙️ Custom data sources
## Parameters
The `RagTool` accepts the following parameters:
- **summarize**: Optional. Whether to summarize the retrieved content. Default is `False`.
- **adapter**: Optional. A custom adapter for the knowledge base. If not provided, an EmbedchainAdapter will be used.
- **config**: Optional. Configuration for the underlying EmbedChain App.
## Adding Content
You can add content to the knowledge base using the `add` method:
```python Code
# Add a PDF file
rag_tool.add(data_type="file", path="path/to/your/document.pdf")
# Add a web page
rag_tool.add(data_type="web_page", url="https://example.com")
# Add a YouTube video
rag_tool.add(data_type="youtube_video", url="https://www.youtube.com/watch?v=VIDEO_ID")
# Add a directory of files
rag_tool.add(data_type="directory", path="path/to/your/directory")
```
## Agent Integration Example
Here's how to integrate the `RagTool` with a CrewAI agent:
```python Code
from crewai import Agent
from crewai.project import agent
from crewai_tools import RagTool
# Initialize the tool and add content
rag_tool = RagTool()
rag_tool.add(data_type="web_page", url="https://docs.crewai.com")
rag_tool.add(data_type="file", path="company_data.pdf")
# Define an agent with the RagTool
@agent
def knowledge_expert(self) -> Agent:
return Agent(
config=self.agents_config["knowledge_expert"],
allow_delegation=False,
tools=[rag_tool]
)
```
## Advanced Configuration
You can customize the behavior of the `RagTool` by providing a configuration dictionary:
```python Code
from crewai_tools import RagTool
# Create a RAG tool with custom configuration
config = {
"app": {
"name": "custom_app",
},
"llm": {
"provider": "openai",
"config": {
"model": "gpt-4",
}
},
"embedding_model": {
"provider": "openai",
"config": {
"model": "text-embedding-ada-002"
}
}
}
rag_tool = RagTool(config=config, summarize=True)
```
## Conclusion
The `RagTool` provides a powerful way to create and query knowledge bases from various data sources. By leveraging Retrieval-Augmented Generation, it enables agents to access and retrieve relevant information efficiently, enhancing their ability to provide accurate and contextually appropriate responses.

View File

@@ -1,144 +0,0 @@
---
title: S3 Reader Tool
description: The `S3ReaderTool` enables CrewAI agents to read files from Amazon S3 buckets.
icon: aws
---
# `S3ReaderTool`
## Description
The `S3ReaderTool` is designed to read files from Amazon S3 buckets. This tool allows CrewAI agents to access and retrieve content stored in S3, making it ideal for workflows that require reading data, configuration files, or any other content stored in AWS S3 storage.
## Installation
To use this tool, you need to install the required dependencies:
```shell
uv add boto3
```
## Steps to Get Started
To effectively use the `S3ReaderTool`, follow these steps:
1. **Install Dependencies**: Install the required packages using the command above.
2. **Configure AWS Credentials**: Set up your AWS credentials as environment variables.
3. **Initialize the Tool**: Create an instance of the tool.
4. **Specify S3 Path**: Provide the S3 path to the file you want to read.
## Example
The following example demonstrates how to use the `S3ReaderTool` to read a file from an S3 bucket:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools.aws.s3 import S3ReaderTool
# Initialize the tool
s3_reader_tool = S3ReaderTool()
# Define an agent that uses the tool
file_reader_agent = Agent(
role="File Reader",
goal="Read files from S3 buckets",
backstory="An expert in retrieving and processing files from cloud storage.",
tools=[s3_reader_tool],
verbose=True,
)
# Example task to read a configuration file
read_task = Task(
description="Read the configuration file from {my_bucket} and summarize its contents.",
expected_output="A summary of the configuration file contents.",
agent=file_reader_agent,
)
# Create and run the crew
crew = Crew(agents=[file_reader_agent], tasks=[read_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/config/app-config.json"})
```
## Parameters
The `S3ReaderTool` accepts the following parameter when used by an agent:
- **file_path**: Required. The S3 file path in the format `s3://bucket-name/file-name`.
## AWS Credentials
The tool requires AWS credentials to access S3 buckets. You can configure these credentials using environment variables:
- **CREW_AWS_REGION**: The AWS region where your S3 bucket is located. Default is `us-east-1`.
- **CREW_AWS_ACCESS_KEY_ID**: Your AWS access key ID.
- **CREW_AWS_SEC_ACCESS_KEY**: Your AWS secret access key.
## Usage
When using the `S3ReaderTool` with an agent, the agent will need to provide the S3 file path:
```python Code
# Example of using the tool with an agent
file_reader_agent = Agent(
role="File Reader",
goal="Read files from S3 buckets",
backstory="An expert in retrieving and processing files from cloud storage.",
tools=[s3_reader_tool],
verbose=True,
)
# Create a task for the agent to read a specific file
read_config_task = Task(
description="Read the application configuration file from {my_bucket} and extract the database connection settings.",
expected_output="The database connection settings from the configuration file.",
agent=file_reader_agent,
)
# Run the task
crew = Crew(agents=[file_reader_agent], tasks=[read_config_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/config/app-config.json"})
```
## Error Handling
The `S3ReaderTool` includes error handling for common S3 issues:
- Invalid S3 path format
- Missing or inaccessible files
- Permission issues
- AWS credential problems
When an error occurs, the tool will return an error message that includes details about the issue.
## Implementation Details
The `S3ReaderTool` uses the AWS SDK for Python (boto3) to interact with S3:
```python Code
class S3ReaderTool(BaseTool):
name: str = "S3 Reader Tool"
description: str = "Reads a file from Amazon S3 given an S3 file path"
def _run(self, file_path: str) -> str:
try:
bucket_name, object_key = self._parse_s3_path(file_path)
s3 = boto3.client(
's3',
region_name=os.getenv('CREW_AWS_REGION', 'us-east-1'),
aws_access_key_id=os.getenv('CREW_AWS_ACCESS_KEY_ID'),
aws_secret_access_key=os.getenv('CREW_AWS_SEC_ACCESS_KEY')
)
# Read file content from S3
response = s3.get_object(Bucket=bucket_name, Key=object_key)
file_content = response['Body'].read().decode('utf-8')
return file_content
except ClientError as e:
return f"Error reading file from S3: {str(e)}"
```
## Conclusion
The `S3ReaderTool` provides a straightforward way to read files from Amazon S3 buckets. By enabling agents to access content stored in S3, it facilitates workflows that require cloud-based file access. This tool is particularly useful for data processing, configuration management, and any task that involves retrieving information from AWS S3 storage.

View File

@@ -1,150 +0,0 @@
---
title: S3 Writer Tool
description: The `S3WriterTool` enables CrewAI agents to write content to files in Amazon S3 buckets.
icon: aws
---
# `S3WriterTool`
## Description
The `S3WriterTool` is designed to write content to files in Amazon S3 buckets. This tool allows CrewAI agents to create or update files in S3, making it ideal for workflows that require storing data, saving configuration files, or persisting any other content to AWS S3 storage.
## Installation
To use this tool, you need to install the required dependencies:
```shell
uv add boto3
```
## Steps to Get Started
To effectively use the `S3WriterTool`, follow these steps:
1. **Install Dependencies**: Install the required packages using the command above.
2. **Configure AWS Credentials**: Set up your AWS credentials as environment variables.
3. **Initialize the Tool**: Create an instance of the tool.
4. **Specify S3 Path and Content**: Provide the S3 path where you want to write the file and the content to be written.
## Example
The following example demonstrates how to use the `S3WriterTool` to write content to a file in an S3 bucket:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools.aws.s3 import S3WriterTool
# Initialize the tool
s3_writer_tool = S3WriterTool()
# Define an agent that uses the tool
file_writer_agent = Agent(
role="File Writer",
goal="Write content to files in S3 buckets",
backstory="An expert in storing and managing files in cloud storage.",
tools=[s3_writer_tool],
verbose=True,
)
# Example task to write a report
write_task = Task(
description="Generate a summary report of the quarterly sales data and save it to {my_bucket}.",
expected_output="Confirmation that the report was successfully saved to S3.",
agent=file_writer_agent,
)
# Create and run the crew
crew = Crew(agents=[file_writer_agent], tasks=[write_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/reports/quarterly-summary.txt"})
```
## Parameters
The `S3WriterTool` accepts the following parameters when used by an agent:
- **file_path**: Required. The S3 file path in the format `s3://bucket-name/file-name`.
- **content**: Required. The content to write to the file.
## AWS Credentials
The tool requires AWS credentials to access S3 buckets. You can configure these credentials using environment variables:
- **CREW_AWS_REGION**: The AWS region where your S3 bucket is located. Default is `us-east-1`.
- **CREW_AWS_ACCESS_KEY_ID**: Your AWS access key ID.
- **CREW_AWS_SEC_ACCESS_KEY**: Your AWS secret access key.
## Usage
When using the `S3WriterTool` with an agent, the agent will need to provide both the S3 file path and the content to write:
```python Code
# Example of using the tool with an agent
file_writer_agent = Agent(
role="File Writer",
goal="Write content to files in S3 buckets",
backstory="An expert in storing and managing files in cloud storage.",
tools=[s3_writer_tool],
verbose=True,
)
# Create a task for the agent to write a specific file
write_config_task = Task(
description="""
Create a configuration file with the following database settings:
- host: db.example.com
- port: 5432
- username: app_user
- password: secure_password
Save this configuration as JSON to {my_bucket}.
""",
expected_output="Confirmation that the configuration file was successfully saved to S3.",
agent=file_writer_agent,
)
# Run the task
crew = Crew(agents=[file_writer_agent], tasks=[write_config_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/config/db-config.json"})
```
## Error Handling
The `S3WriterTool` includes error handling for common S3 issues:
- Invalid S3 path format
- Permission issues (e.g., no write access to the bucket)
- AWS credential problems
- Bucket does not exist
When an error occurs, the tool will return an error message that includes details about the issue.
## Implementation Details
The `S3WriterTool` uses the AWS SDK for Python (boto3) to interact with S3:
```python Code
class S3WriterTool(BaseTool):
name: str = "S3 Writer Tool"
description: str = "Writes content to a file in Amazon S3 given an S3 file path"
def _run(self, file_path: str, content: str) -> str:
try:
bucket_name, object_key = self._parse_s3_path(file_path)
s3 = boto3.client(
's3',
region_name=os.getenv('CREW_AWS_REGION', 'us-east-1'),
aws_access_key_id=os.getenv('CREW_AWS_ACCESS_KEY_ID'),
aws_secret_access_key=os.getenv('CREW_AWS_SEC_ACCESS_KEY')
)
s3.put_object(Bucket=bucket_name, Key=object_key, Body=content.encode('utf-8'))
return f"Successfully wrote content to {file_path}"
except ClientError as e:
return f"Error writing file to S3: {str(e)}"
```
## Conclusion
The `S3WriterTool` provides a straightforward way to write content to files in Amazon S3 buckets. By enabling agents to create and update files in S3, it facilitates workflows that require cloud-based file storage. This tool is particularly useful for data persistence, configuration management, report generation, and any task that involves storing information in AWS S3 storage.

View File

@@ -1,139 +0,0 @@
---
title: Scrape Element From Website Tool
description: The `ScrapeElementFromWebsiteTool` enables CrewAI agents to extract specific elements from websites using CSS selectors.
icon: code
---
# `ScrapeElementFromWebsiteTool`
## Description
The `ScrapeElementFromWebsiteTool` is designed to extract specific elements from websites using CSS selectors. This tool allows CrewAI agents to scrape targeted content from web pages, making it useful for data extraction tasks where only specific parts of a webpage are needed.
## Installation
To use this tool, you need to install the required dependencies:
```shell
uv add requests beautifulsoup4
```
## Steps to Get Started
To effectively use the `ScrapeElementFromWebsiteTool`, follow these steps:
1. **Install Dependencies**: Install the required packages using the command above.
2. **Identify CSS Selectors**: Determine the CSS selectors for the elements you want to extract from the website.
3. **Initialize the Tool**: Create an instance of the tool with the necessary parameters.
## Example
The following example demonstrates how to use the `ScrapeElementFromWebsiteTool` to extract specific elements from a website:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import ScrapeElementFromWebsiteTool
# Initialize the tool
scrape_tool = ScrapeElementFromWebsiteTool()
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract specific information from websites",
backstory="An expert in web scraping who can extract targeted content from web pages.",
tools=[scrape_tool],
verbose=True,
)
# Example task to extract headlines from a news website
scrape_task = Task(
description="Extract the main headlines from the CNN homepage. Use the CSS selector '.headline' to target the headline elements.",
expected_output="A list of the main headlines from CNN.",
agent=web_scraper_agent,
)
# Create and run the crew
crew = Crew(agents=[web_scraper_agent], tasks=[scrape_task])
result = crew.kickoff()
```
You can also initialize the tool with predefined parameters:
```python Code
# Initialize the tool with predefined parameters
scrape_tool = ScrapeElementFromWebsiteTool(
website_url="https://www.example.com",
css_element=".main-content"
)
```
## Parameters
The `ScrapeElementFromWebsiteTool` accepts the following parameters during initialization:
- **website_url**: Optional. The URL of the website to scrape. If provided during initialization, the agent won't need to specify it when using the tool.
- **css_element**: Optional. The CSS selector for the elements to extract. If provided during initialization, the agent won't need to specify it when using the tool.
- **cookies**: Optional. A dictionary containing cookies to be sent with the request. This can be useful for websites that require authentication.
## Usage
When using the `ScrapeElementFromWebsiteTool` with an agent, the agent will need to provide the following parameters (unless they were specified during initialization):
- **website_url**: The URL of the website to scrape.
- **css_element**: The CSS selector for the elements to extract.
The tool will return the text content of all elements matching the CSS selector, joined by newlines.
```python Code
# Example of using the tool with an agent
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract specific elements from websites",
backstory="An expert in web scraping who can extract targeted content using CSS selectors.",
tools=[scrape_tool],
verbose=True,
)
# Create a task for the agent to extract specific elements
extract_task = Task(
description="""
Extract all product titles from the featured products section on example.com.
Use the CSS selector '.product-title' to target the title elements.
""",
expected_output="A list of product titles from the website",
agent=web_scraper_agent,
)
# Run the task through a crew
crew = Crew(agents=[web_scraper_agent], tasks=[extract_task])
result = crew.kickoff()
```
## Implementation Details
The `ScrapeElementFromWebsiteTool` uses the `requests` library to fetch the web page and `BeautifulSoup` to parse the HTML and extract the specified elements:
```python Code
class ScrapeElementFromWebsiteTool(BaseTool):
name: str = "Read a website content"
description: str = "A tool that can be used to read a website content."
# Implementation details...
def _run(self, **kwargs: Any) -> Any:
website_url = kwargs.get("website_url", self.website_url)
css_element = kwargs.get("css_element", self.css_element)
page = requests.get(
website_url,
headers=self.headers,
cookies=self.cookies if self.cookies else {},
)
parsed = BeautifulSoup(page.content, "html.parser")
elements = parsed.select(css_element)
return "\n".join([element.get_text() for element in elements])
```
## Conclusion
The `ScrapeElementFromWebsiteTool` provides a powerful way to extract specific elements from websites using CSS selectors. By enabling agents to target only the content they need, it makes web scraping tasks more efficient and focused. This tool is particularly useful for data extraction, content monitoring, and research tasks where specific information needs to be extracted from web pages.

View File

@@ -1,196 +0,0 @@
---
title: Scrapegraph Scrape Tool
description: The `ScrapegraphScrapeTool` leverages Scrapegraph AI's SmartScraper API to intelligently extract content from websites.
icon: chart-area
---
# `ScrapegraphScrapeTool`
## Description
The `ScrapegraphScrapeTool` is designed to leverage Scrapegraph AI's SmartScraper API to intelligently extract content from websites. This tool provides advanced web scraping capabilities with AI-powered content extraction, making it ideal for targeted data collection and content analysis tasks. Unlike traditional web scrapers, it can understand the context and structure of web pages to extract the most relevant information based on natural language prompts.
## Installation
To use this tool, you need to install the Scrapegraph Python client:
```shell
uv add scrapegraph-py
```
You'll also need to set up your Scrapegraph API key as an environment variable:
```shell
export SCRAPEGRAPH_API_KEY="your_api_key"
```
You can obtain an API key from [Scrapegraph AI](https://scrapegraphai.com).
## Steps to Get Started
To effectively use the `ScrapegraphScrapeTool`, follow these steps:
1. **Install Dependencies**: Install the required package using the command above.
2. **Set Up API Key**: Set your Scrapegraph API key as an environment variable or provide it during initialization.
3. **Initialize the Tool**: Create an instance of the tool with the necessary parameters.
4. **Define Extraction Prompts**: Create natural language prompts to guide the extraction of specific content.
## Example
The following example demonstrates how to use the `ScrapegraphScrapeTool` to extract content from a website:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import ScrapegraphScrapeTool
# Initialize the tool
scrape_tool = ScrapegraphScrapeTool(api_key="your_api_key")
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract specific information from websites",
backstory="An expert in web scraping who can extract targeted content from web pages.",
tools=[scrape_tool],
verbose=True,
)
# Example task to extract product information from an e-commerce site
scrape_task = Task(
description="Extract product names, prices, and descriptions from the featured products section of example.com.",
expected_output="A structured list of product information including names, prices, and descriptions.",
agent=web_scraper_agent,
)
# Create and run the crew
crew = Crew(agents=[web_scraper_agent], tasks=[scrape_task])
result = crew.kickoff()
```
You can also initialize the tool with predefined parameters:
```python Code
# Initialize the tool with predefined parameters
scrape_tool = ScrapegraphScrapeTool(
website_url="https://www.example.com",
user_prompt="Extract all product prices and descriptions",
api_key="your_api_key"
)
```
## Parameters
The `ScrapegraphScrapeTool` accepts the following parameters during initialization:
- **api_key**: Optional. Your Scrapegraph API key. If not provided, it will look for the `SCRAPEGRAPH_API_KEY` environment variable.
- **website_url**: Optional. The URL of the website to scrape. If provided during initialization, the agent won't need to specify it when using the tool.
- **user_prompt**: Optional. Custom instructions for content extraction. If provided during initialization, the agent won't need to specify it when using the tool.
- **enable_logging**: Optional. Whether to enable logging for the Scrapegraph client. Default is `False`.
## Usage
When using the `ScrapegraphScrapeTool` with an agent, the agent will need to provide the following parameters (unless they were specified during initialization):
- **website_url**: The URL of the website to scrape.
- **user_prompt**: Optional. Custom instructions for content extraction. Default is "Extract the main content of the webpage".
The tool will return the extracted content based on the provided prompt.
```python Code
# Example of using the tool with an agent
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract specific information from websites",
backstory="An expert in web scraping who can extract targeted content from web pages.",
tools=[scrape_tool],
verbose=True,
)
# Create a task for the agent to extract specific content
extract_task = Task(
description="Extract the main heading and summary from example.com",
expected_output="The main heading and summary from the website",
agent=web_scraper_agent,
)
# Run the task
crew = Crew(agents=[web_scraper_agent], tasks=[extract_task])
result = crew.kickoff()
```
## Error Handling
The `ScrapegraphScrapeTool` may raise the following exceptions:
- **ValueError**: When API key is missing or URL format is invalid.
- **RateLimitError**: When API rate limits are exceeded.
- **RuntimeError**: When scraping operation fails (network issues, API errors).
It's recommended to instruct agents to handle potential errors gracefully:
```python Code
# Create a task that includes error handling instructions
robust_extract_task = Task(
description="""
Extract the main heading from example.com.
Be aware that you might encounter errors such as:
- Invalid URL format
- Missing API key
- Rate limit exceeded
- Network or API errors
If you encounter any errors, provide a clear explanation of what went wrong
and suggest possible solutions.
""",
expected_output="Either the extracted heading or a clear error explanation",
agent=web_scraper_agent,
)
```
## Rate Limiting
The Scrapegraph API has rate limits that vary based on your subscription plan. Consider the following best practices:
- Implement appropriate delays between requests when processing multiple URLs.
- Handle rate limit errors gracefully in your application.
- Check your API plan limits on the Scrapegraph dashboard.
## Implementation Details
The `ScrapegraphScrapeTool` uses the Scrapegraph Python client to interact with the SmartScraper API:
```python Code
class ScrapegraphScrapeTool(BaseTool):
"""
A tool that uses Scrapegraph AI to intelligently scrape website content.
"""
# Implementation details...
def _run(self, **kwargs: Any) -> Any:
website_url = kwargs.get("website_url", self.website_url)
user_prompt = (
kwargs.get("user_prompt", self.user_prompt)
or "Extract the main content of the webpage"
)
if not website_url:
raise ValueError("website_url is required")
# Validate URL format
self._validate_url(website_url)
try:
# Make the SmartScraper request
response = self._client.smartscraper(
website_url=website_url,
user_prompt=user_prompt,
)
return response
# Error handling...
```
## Conclusion
The `ScrapegraphScrapeTool` provides a powerful way to extract content from websites using AI-powered understanding of web page structure. By enabling agents to target specific information using natural language prompts, it makes web scraping tasks more efficient and focused. This tool is particularly useful for data extraction, content monitoring, and research tasks where specific information needs to be extracted from web pages.

View File

@@ -1,220 +0,0 @@
---
title: Scrapfly Scrape Website Tool
description: The `ScrapflyScrapeWebsiteTool` leverages Scrapfly's web scraping API to extract content from websites in various formats.
icon: spider
---
# `ScrapflyScrapeWebsiteTool`
## Description
The `ScrapflyScrapeWebsiteTool` is designed to leverage [Scrapfly](https://scrapfly.io/)'s web scraping API to extract content from websites. This tool provides advanced web scraping capabilities with headless browser support, proxies, and anti-bot bypass features. It allows for extracting web page data in various formats, including raw HTML, markdown, and plain text, making it ideal for a wide range of web scraping tasks.
## Installation
To use this tool, you need to install the Scrapfly SDK:
```shell
uv add scrapfly-sdk
```
You'll also need to obtain a Scrapfly API key by registering at [scrapfly.io/register](https://www.scrapfly.io/register/).
## Steps to Get Started
To effectively use the `ScrapflyScrapeWebsiteTool`, follow these steps:
1. **Install Dependencies**: Install the Scrapfly SDK using the command above.
2. **Obtain API Key**: Register at Scrapfly to get your API key.
3. **Initialize the Tool**: Create an instance of the tool with your API key.
4. **Configure Scraping Parameters**: Customize the scraping parameters based on your needs.
## Example
The following example demonstrates how to use the `ScrapflyScrapeWebsiteTool` to extract content from a website:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import ScrapflyScrapeWebsiteTool
# Initialize the tool
scrape_tool = ScrapflyScrapeWebsiteTool(api_key="your_scrapfly_api_key")
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract information from websites",
backstory="An expert in web scraping who can extract content from any website.",
tools=[scrape_tool],
verbose=True,
)
# Example task to extract content from a website
scrape_task = Task(
description="Extract the main content from the product page at https://web-scraping.dev/products and summarize the available products.",
expected_output="A summary of the products available on the website.",
agent=web_scraper_agent,
)
# Create and run the crew
crew = Crew(agents=[web_scraper_agent], tasks=[scrape_task])
result = crew.kickoff()
```
You can also customize the scraping parameters:
```python Code
# Example with custom scraping parameters
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract information from websites with custom parameters",
backstory="An expert in web scraping who can extract content from any website.",
tools=[scrape_tool],
verbose=True,
)
# The agent will use the tool with parameters like:
# url="https://web-scraping.dev/products"
# scrape_format="markdown"
# ignore_scrape_failures=True
# scrape_config={
# "asp": True, # Bypass scraping blocking solutions, like Cloudflare
# "render_js": True, # Enable JavaScript rendering with a cloud headless browser
# "proxy_pool": "public_residential_pool", # Select a proxy pool
# "country": "us", # Select a proxy location
# "auto_scroll": True, # Auto scroll the page
# }
scrape_task = Task(
description="Extract the main content from the product page at https://web-scraping.dev/products using advanced scraping options including JavaScript rendering and proxy settings.",
expected_output="A detailed summary of the products with all available information.",
agent=web_scraper_agent,
)
```
## Parameters
The `ScrapflyScrapeWebsiteTool` accepts the following parameters:
### Initialization Parameters
- **api_key**: Required. Your Scrapfly API key.
### Run Parameters
- **url**: Required. The URL of the website to scrape.
- **scrape_format**: Optional. The format in which to extract the web page content. Options are "raw" (HTML), "markdown", or "text". Default is "markdown".
- **scrape_config**: Optional. A dictionary containing additional Scrapfly scraping configuration options.
- **ignore_scrape_failures**: Optional. Whether to ignore failures during scraping. If set to `True`, the tool will return `None` instead of raising an exception when scraping fails.
## Scrapfly Configuration Options
The `scrape_config` parameter allows you to customize the scraping behavior with the following options:
- **asp**: Enable anti-scraping protection bypass.
- **render_js**: Enable JavaScript rendering with a cloud headless browser.
- **proxy_pool**: Select a proxy pool (e.g., "public_residential_pool", "datacenter").
- **country**: Select a proxy location (e.g., "us", "uk").
- **auto_scroll**: Automatically scroll the page to load lazy-loaded content.
- **js**: Execute custom JavaScript code by the headless browser.
For a complete list of configuration options, refer to the [Scrapfly API documentation](https://scrapfly.io/docs/scrape-api/getting-started).
## Usage
When using the `ScrapflyScrapeWebsiteTool` with an agent, the agent will need to provide the URL of the website to scrape and can optionally specify the format and additional configuration options:
```python Code
# Example of using the tool with an agent
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract information from websites",
backstory="An expert in web scraping who can extract content from any website.",
tools=[scrape_tool],
verbose=True,
)
# Create a task for the agent
scrape_task = Task(
description="Extract the main content from example.com in markdown format.",
expected_output="The main content of example.com in markdown format.",
agent=web_scraper_agent,
)
# Run the task
crew = Crew(agents=[web_scraper_agent], tasks=[scrape_task])
result = crew.kickoff()
```
For more advanced usage with custom configuration:
```python Code
# Create a task with more specific instructions
advanced_scrape_task = Task(
description="""
Extract content from example.com with the following requirements:
- Convert the content to plain text format
- Enable JavaScript rendering
- Use a US-based proxy
- Handle any scraping failures gracefully
""",
expected_output="The extracted content from example.com",
agent=web_scraper_agent,
)
```
## Error Handling
By default, the `ScrapflyScrapeWebsiteTool` will raise an exception if scraping fails. Agents can be instructed to handle failures gracefully by specifying the `ignore_scrape_failures` parameter:
```python Code
# Create a task that instructs the agent to handle errors
error_handling_task = Task(
description="""
Extract content from a potentially problematic website and make sure to handle any
scraping failures gracefully by setting ignore_scrape_failures to True.
""",
expected_output="Either the extracted content or a graceful error message",
agent=web_scraper_agent,
)
```
## Implementation Details
The `ScrapflyScrapeWebsiteTool` uses the Scrapfly SDK to interact with the Scrapfly API:
```python Code
class ScrapflyScrapeWebsiteTool(BaseTool):
name: str = "Scrapfly web scraping API tool"
description: str = (
"Scrape a webpage url using Scrapfly and return its content as markdown or text"
)
# Implementation details...
def _run(
self,
url: str,
scrape_format: str = "markdown",
scrape_config: Optional[Dict[str, Any]] = None,
ignore_scrape_failures: Optional[bool] = None,
):
from scrapfly import ScrapeApiResponse, ScrapeConfig
scrape_config = scrape_config if scrape_config is not None else {}
try:
response: ScrapeApiResponse = self.scrapfly.scrape(
ScrapeConfig(url, format=scrape_format, **scrape_config)
)
return response.scrape_result["content"]
except Exception as e:
if ignore_scrape_failures:
logger.error(f"Error fetching data from {url}, exception: {e}")
return None
else:
raise e
```
## Conclusion
The `ScrapflyScrapeWebsiteTool` provides a powerful way to extract content from websites using Scrapfly's advanced web scraping capabilities. With features like headless browser support, proxies, and anti-bot bypass, it can handle complex websites and extract content in various formats. This tool is particularly useful for data extraction, content monitoring, and research tasks where reliable web scraping is required.

View File

@@ -13,183 +13,64 @@ icon: clipboard-user
## Description
The `SeleniumScrapingTool` is crafted for high-efficiency web scraping tasks.
The SeleniumScrapingTool is crafted for high-efficiency web scraping tasks.
It allows for precise extraction of content from web pages by using CSS selectors to target specific elements.
Its design caters to a wide range of scraping needs, offering flexibility to work with any provided website URL.
## Installation
To use this tool, you need to install the CrewAI tools package and Selenium:
To get started with the SeleniumScrapingTool, install the crewai_tools package using pip:
```shell
pip install 'crewai[tools]'
uv add selenium webdriver-manager
```
You'll also need to have Chrome installed on your system, as the tool uses Chrome WebDriver for browser automation.
## Usage Examples
## Example
The following example demonstrates how to use the `SeleniumScrapingTool` with a CrewAI agent:
Below are some scenarios where the SeleniumScrapingTool can be utilized:
```python Code
from crewai import Agent, Task, Crew, Process
from crewai_tools import SeleniumScrapingTool
# Initialize the tool
selenium_tool = SeleniumScrapingTool()
# Example 1:
# Initialize the tool without any parameters to scrape
# the current page it navigates to
tool = SeleniumScrapingTool()
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract information from websites using Selenium",
backstory="An expert web scraper who can extract content from dynamic websites.",
tools=[selenium_tool],
verbose=True,
# Example 2:
# Scrape the entire webpage of a given URL
tool = SeleniumScrapingTool(website_url='https://example.com')
# Example 3:
# Target and scrape a specific CSS element from a webpage
tool = SeleniumScrapingTool(
website_url='https://example.com',
css_element='.main-content'
)
# Example task to scrape content from a website
scrape_task = Task(
description="Extract the main content from the homepage of example.com. Use the CSS selector 'main' to target the main content area.",
expected_output="The main content from example.com's homepage.",
agent=web_scraper_agent,
)
# Create and run the crew
crew = Crew(
agents=[web_scraper_agent],
tasks=[scrape_task],
verbose=True,
process=Process.sequential,
)
result = crew.kickoff()
```
You can also initialize the tool with predefined parameters:
```python Code
# Initialize the tool with predefined parameters
selenium_tool = SeleniumScrapingTool(
# Example 4:
# Perform scraping with additional parameters for a customized experience
tool = SeleniumScrapingTool(
website_url='https://example.com',
css_element='.main-content',
wait_time=5
)
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract information from websites using Selenium",
backstory="An expert web scraper who can extract content from dynamic websites.",
tools=[selenium_tool],
verbose=True,
cookie={'name': 'user', 'value': 'John Doe'},
wait_time=10
)
```
## Parameters
## Arguments
The `SeleniumScrapingTool` accepts the following parameters during initialization:
The following parameters can be used to customize the SeleniumScrapingTool's scraping process:
- **website_url**: Optional. The URL of the website to scrape. If provided during initialization, the agent won't need to specify it when using the tool.
- **css_element**: Optional. The CSS selector for the elements to extract. If provided during initialization, the agent won't need to specify it when using the tool.
- **cookie**: Optional. A dictionary containing cookie information, useful for simulating a logged-in session to access restricted content.
- **wait_time**: Optional. Specifies the delay (in seconds) before scraping, allowing the website and any dynamic content to fully load. Default is `3` seconds.
- **return_html**: Optional. Whether to return the HTML content instead of just the text. Default is `False`.
| Argument | Type | Description |
|:---------------|:---------|:-------------------------------------------------------------------------------------------------------------------------------------|
| **website_url** | `string` | **Mandatory**. Specifies the URL of the website from which content is to be scraped. |
| **css_element** | `string` | **Mandatory**. The CSS selector for a specific element to target on the website, enabling focused scraping of a particular part of a webpage. |
| **cookie** | `object` | **Optional**. A dictionary containing cookie information, useful for simulating a logged-in session to access restricted content. |
| **wait_time** | `int` | **Optional**. Specifies the delay (in seconds) before scraping, allowing the website and any dynamic content to fully load. |
When using the tool with an agent, the agent will need to provide the following parameters (unless they were specified during initialization):
- **website_url**: Required. The URL of the website to scrape.
- **css_element**: Required. The CSS selector for the elements to extract.
## Agent Integration Example
Here's a more detailed example of how to integrate the `SeleniumScrapingTool` with a CrewAI agent:
```python Code
from crewai import Agent, Task, Crew, Process
from crewai_tools import SeleniumScrapingTool
# Initialize the tool
selenium_tool = SeleniumScrapingTool()
# Define an agent that uses the tool
web_scraper_agent = Agent(
role="Web Scraper",
goal="Extract and analyze information from dynamic websites",
backstory="""You are an expert web scraper who specializes in extracting
content from dynamic websites that require browser automation. You have
extensive knowledge of CSS selectors and can identify the right selectors
to target specific content on any website.""",
tools=[selenium_tool],
verbose=True,
)
# Create a task for the agent
scrape_task = Task(
description="""
Extract the following information from the news website at {website_url}:
1. The headlines of all featured articles (CSS selector: '.headline')
2. The publication dates of these articles (CSS selector: '.pub-date')
3. The author names where available (CSS selector: '.author')
Compile this information into a structured format with each article's details grouped together.
""",
expected_output="A structured list of articles with their headlines, publication dates, and authors.",
agent=web_scraper_agent,
)
# Run the task
crew = Crew(
agents=[web_scraper_agent],
tasks=[scrape_task],
verbose=True,
process=Process.sequential,
)
result = crew.kickoff(inputs={"website_url": "https://news-example.com"})
```
## Implementation Details
The `SeleniumScrapingTool` uses Selenium WebDriver to automate browser interactions:
```python Code
class SeleniumScrapingTool(BaseTool):
name: str = "Read a website content"
description: str = "A tool that can be used to read a website content."
args_schema: Type[BaseModel] = SeleniumScrapingToolSchema
def _run(self, **kwargs: Any) -> Any:
website_url = kwargs.get("website_url", self.website_url)
css_element = kwargs.get("css_element", self.css_element)
return_html = kwargs.get("return_html", self.return_html)
driver = self._create_driver(website_url, self.cookie, self.wait_time)
content = self._get_content(driver, css_element, return_html)
driver.close()
return "\n".join(content)
```
The tool performs the following steps:
1. Creates a headless Chrome browser instance
2. Navigates to the specified URL
3. Waits for the specified time to allow the page to load
4. Adds any cookies if provided
5. Extracts content based on the CSS selector
6. Returns the extracted content as text or HTML
7. Closes the browser instance
## Handling Dynamic Content
The `SeleniumScrapingTool` is particularly useful for scraping websites with dynamic content that is loaded via JavaScript. By using a real browser instance, it can:
1. Execute JavaScript on the page
2. Wait for dynamic content to load
3. Interact with elements if needed
4. Extract content that would not be available with simple HTTP requests
You can adjust the `wait_time` parameter to ensure that all dynamic content has loaded before extraction.
## Conclusion
The `SeleniumScrapingTool` provides a powerful way to extract content from websites using browser automation. By enabling agents to interact with websites as a real user would, it facilitates scraping of dynamic content that would be difficult or impossible to extract using simpler methods. This tool is particularly useful for research, data collection, and monitoring tasks that involve modern web applications with JavaScript-rendered content.
<Warning>
Since the `SeleniumScrapingTool` is under active development, the parameters and functionality may evolve over time.
Users are encouraged to keep the tool updated and report any issues or suggestions for enhancements.
</Warning>

View File

@@ -1,202 +0,0 @@
---
title: Snowflake Search Tool
description: The `SnowflakeSearchTool` enables CrewAI agents to execute SQL queries and perform semantic search on Snowflake data warehouses.
icon: snowflake
---
# `SnowflakeSearchTool`
## Description
The `SnowflakeSearchTool` is designed to connect to Snowflake data warehouses and execute SQL queries with advanced features like connection pooling, retry logic, and asynchronous execution. This tool allows CrewAI agents to interact with Snowflake databases, making it ideal for data analysis, reporting, and business intelligence tasks that require access to enterprise data stored in Snowflake.
## Installation
To use this tool, you need to install the required dependencies:
```shell
uv add cryptography snowflake-connector-python snowflake-sqlalchemy
```
Or alternatively:
```shell
uv sync --extra snowflake
```
## Steps to Get Started
To effectively use the `SnowflakeSearchTool`, follow these steps:
1. **Install Dependencies**: Install the required packages using one of the commands above.
2. **Configure Snowflake Connection**: Create a `SnowflakeConfig` object with your Snowflake credentials.
3. **Initialize the Tool**: Create an instance of the tool with the necessary configuration.
4. **Execute Queries**: Use the tool to run SQL queries against your Snowflake database.
## Example
The following example demonstrates how to use the `SnowflakeSearchTool` to query data from a Snowflake database:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import SnowflakeSearchTool, SnowflakeConfig
# Create Snowflake configuration
config = SnowflakeConfig(
account="your_account",
user="your_username",
password="your_password",
warehouse="COMPUTE_WH",
database="your_database",
snowflake_schema="your_schema"
)
# Initialize the tool
snowflake_tool = SnowflakeSearchTool(config=config)
# Define an agent that uses the tool
data_analyst_agent = Agent(
role="Data Analyst",
goal="Analyze data from Snowflake database",
backstory="An expert data analyst who can extract insights from enterprise data.",
tools=[snowflake_tool],
verbose=True,
)
# Example task to query sales data
query_task = Task(
description="Query the sales data for the last quarter and summarize the top 5 products by revenue.",
expected_output="A summary of the top 5 products by revenue for the last quarter.",
agent=data_analyst_agent,
)
# Create and run the crew
crew = Crew(agents=[data_analyst_agent],
tasks=[query_task])
result = crew.kickoff()
```
You can also customize the tool with additional parameters:
```python Code
# Initialize the tool with custom parameters
snowflake_tool = SnowflakeSearchTool(
config=config,
pool_size=10,
max_retries=5,
retry_delay=2.0,
enable_caching=True
)
```
## Parameters
### SnowflakeConfig Parameters
The `SnowflakeConfig` class accepts the following parameters:
- **account**: Required. Snowflake account identifier.
- **user**: Required. Snowflake username.
- **password**: Optional*. Snowflake password.
- **private_key_path**: Optional*. Path to private key file (alternative to password).
- **warehouse**: Required. Snowflake warehouse name.
- **database**: Required. Default database.
- **snowflake_schema**: Required. Default schema.
- **role**: Optional. Snowflake role.
- **session_parameters**: Optional. Custom session parameters as a dictionary.
*Either `password` or `private_key_path` must be provided.
### SnowflakeSearchTool Parameters
The `SnowflakeSearchTool` accepts the following parameters during initialization:
- **config**: Required. A `SnowflakeConfig` object containing connection details.
- **pool_size**: Optional. Number of connections in the pool. Default is 5.
- **max_retries**: Optional. Maximum retry attempts for failed queries. Default is 3.
- **retry_delay**: Optional. Delay between retries in seconds. Default is 1.0.
- **enable_caching**: Optional. Whether to enable query result caching. Default is True.
## Usage
When using the `SnowflakeSearchTool`, you need to provide the following parameters:
- **query**: Required. The SQL query to execute.
- **database**: Optional. Override the default database specified in the config.
- **snowflake_schema**: Optional. Override the default schema specified in the config.
- **timeout**: Optional. Query timeout in seconds. Default is 300.
The tool will return the query results as a list of dictionaries, where each dictionary represents a row with column names as keys.
```python Code
# Example of using the tool with an agent
data_analyst = Agent(
role="Data Analyst",
goal="Analyze sales data from Snowflake",
backstory="An expert data analyst with experience in SQL and data visualization.",
tools=[snowflake_tool],
verbose=True
)
# The agent will use the tool with parameters like:
# query="SELECT product_name, SUM(revenue) as total_revenue FROM sales GROUP BY product_name ORDER BY total_revenue DESC LIMIT 5"
# timeout=600
# Create a task for the agent
analysis_task = Task(
description="Query the sales database and identify the top 5 products by revenue for the last quarter.",
expected_output="A detailed analysis of the top 5 products by revenue.",
agent=data_analyst
)
# Run the task
crew = Crew(
agents=[data_analyst],
tasks=[analysis_task]
)
result = crew.kickoff()
```
## Advanced Features
### Connection Pooling
The `SnowflakeSearchTool` implements connection pooling to improve performance by reusing database connections. You can control the pool size with the `pool_size` parameter.
### Automatic Retries
The tool automatically retries failed queries with exponential backoff. You can configure the retry behavior with the `max_retries` and `retry_delay` parameters.
### Query Result Caching
To improve performance for repeated queries, the tool can cache query results. This feature is enabled by default but can be disabled by setting `enable_caching=False`.
### Key-Pair Authentication
In addition to password authentication, the tool supports key-pair authentication for enhanced security:
```python Code
config = SnowflakeConfig(
account="your_account",
user="your_username",
private_key_path="/path/to/your/private/key.p8",
warehouse="COMPUTE_WH",
database="your_database",
snowflake_schema="your_schema"
)
```
## Error Handling
The `SnowflakeSearchTool` includes comprehensive error handling for common Snowflake issues:
- Connection failures
- Query timeouts
- Authentication errors
- Database and schema errors
When an error occurs, the tool will attempt to retry the operation (if configured) and provide detailed error information.
## Conclusion
The `SnowflakeSearchTool` provides a powerful way to integrate Snowflake data warehouses with CrewAI agents. With features like connection pooling, automatic retries, and query caching, it enables efficient and reliable access to enterprise data. This tool is particularly useful for data analysis, reporting, and business intelligence tasks that require access to structured data stored in Snowflake.

View File

@@ -1,164 +0,0 @@
---
title: Weaviate Vector Search
description: The `WeaviateVectorSearchTool` is designed to search a Weaviate vector database for semantically similar documents.
icon: database
---
# `WeaviateVectorSearchTool`
## Description
The `WeaviateVectorSearchTool` is specifically crafted for conducting semantic searches within documents stored in a Weaviate vector database. This tool allows you to find semantically similar documents to a given query, leveraging the power of vector embeddings for more accurate and contextually relevant search results.
[Weaviate](https://weaviate.io/) is a vector database that stores and queries vector embeddings, enabling semantic search capabilities.
## Installation
To incorporate this tool into your project, you need to install the Weaviate client:
```shell
uv add weaviate-client
```
## Steps to Get Started
To effectively use the `WeaviateVectorSearchTool`, follow these steps:
1. **Package Installation**: Confirm that the `crewai[tools]` and `weaviate-client` packages are installed in your Python environment.
2. **Weaviate Setup**: Set up a Weaviate cluster. You can follow the [Weaviate documentation](https://weaviate.io/developers/wcs/connect) for instructions.
3. **API Keys**: Obtain your Weaviate cluster URL and API key.
4. **OpenAI API Key**: Ensure you have an OpenAI API key set in your environment variables as `OPENAI_API_KEY`.
## Example
The following example demonstrates how to initialize the tool and execute a search:
```python Code
from crewai_tools import WeaviateVectorSearchTool
# Initialize the tool
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
@agent
def search_agent(self) -> Agent:
'''
This agent uses the WeaviateVectorSearchTool to search for
semantically similar documents in a Weaviate vector database.
'''
return Agent(
config=self.agents_config["search_agent"],
tools=[tool]
)
```
## Parameters
The `WeaviateVectorSearchTool` accepts the following parameters:
- **collection_name**: Required. The name of the collection to search within.
- **weaviate_cluster_url**: Required. The URL of the Weaviate cluster.
- **weaviate_api_key**: Required. The API key for the Weaviate cluster.
- **limit**: Optional. The number of results to return. Default is `3`.
- **vectorizer**: Optional. The vectorizer to use. If not provided, it will use `text2vec_openai` with the `nomic-embed-text` model.
- **generative_model**: Optional. The generative model to use. If not provided, it will use OpenAI's `gpt-4o`.
## Advanced Configuration
You can customize the vectorizer and generative model used by the tool:
```python Code
from crewai_tools import WeaviateVectorSearchTool
from weaviate.classes.config import Configure
# Setup custom model for vectorizer and generative model
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
vectorizer=Configure.Vectorizer.text2vec_openai(model="nomic-embed-text"),
generative_model=Configure.Generative.openai(model="gpt-4o-mini"),
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
```
## Preloading Documents
You can preload your Weaviate database with documents before using the tool:
```python Code
import os
from crewai_tools import WeaviateVectorSearchTool
import weaviate
from weaviate.classes.init import Auth
# Connect to Weaviate
client = weaviate.connect_to_weaviate_cloud(
cluster_url="https://your-weaviate-cluster-url.com",
auth_credentials=Auth.api_key("your-weaviate-api-key"),
headers={"X-OpenAI-Api-Key": "your-openai-api-key"}
)
# Get or create collection
test_docs = client.collections.get("example_collections")
if not test_docs:
test_docs = client.collections.create(
name="example_collections",
vectorizer_config=Configure.Vectorizer.text2vec_openai(model="nomic-embed-text"),
generative_config=Configure.Generative.openai(model="gpt-4o"),
)
# Load documents
docs_to_load = os.listdir("knowledge")
with test_docs.batch.dynamic() as batch:
for d in docs_to_load:
with open(os.path.join("knowledge", d), "r") as f:
content = f.read()
batch.add_object(
{
"content": content,
"year": d.split("_")[0],
}
)
# Initialize the tool
tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
```
## Agent Integration Example
Here's how to integrate the `WeaviateVectorSearchTool` with a CrewAI agent:
```python Code
from crewai import Agent
from crewai_tools import WeaviateVectorSearchTool
# Initialize the tool
weaviate_tool = WeaviateVectorSearchTool(
collection_name='example_collections',
limit=3,
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
weaviate_api_key="your-weaviate-api-key",
)
# Create an agent with the tool
rag_agent = Agent(
name="rag_agent",
role="You are a helpful assistant that can answer questions with the help of the WeaviateVectorSearchTool.",
llm="gpt-4o-mini",
tools=[weaviate_tool],
)
```
## Conclusion
The `WeaviateVectorSearchTool` provides a powerful way to search for semantically similar documents in a Weaviate vector database. By leveraging vector embeddings, it enables more accurate and contextually relevant search results compared to traditional keyword-based searches. This tool is particularly useful for applications that require finding information based on meaning rather than exact matches.

View File

@@ -27,73 +27,31 @@ pip install 'crewai[tools]'
## Example
The following example demonstrates how to use the `YoutubeChannelSearchTool` with a CrewAI agent:
To begin using the YoutubeChannelSearchTool, follow the example below.
This demonstrates initializing the tool with a specific Youtube channel handle and conducting a search within that channel's content.
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import YoutubeChannelSearchTool
# Initialize the tool for general YouTube channel searches
youtube_channel_tool = YoutubeChannelSearchTool()
# Initialize the tool to search within any Youtube channel's content the agent learns about during its execution
tool = YoutubeChannelSearchTool()
# Define an agent that uses the tool
channel_researcher = Agent(
role="Channel Researcher",
goal="Extract relevant information from YouTube channels",
backstory="An expert researcher who specializes in analyzing YouTube channel content.",
tools=[youtube_channel_tool],
verbose=True,
)
# OR
# Example task to search for information in a specific channel
research_task = Task(
description="Search for information about machine learning tutorials in the YouTube channel {youtube_channel_handle}",
expected_output="A summary of the key machine learning tutorials available on the channel.",
agent=channel_researcher,
)
# Create and run the crew
crew = Crew(agents=[channel_researcher], tasks=[research_task])
result = crew.kickoff(inputs={"youtube_channel_handle": "@exampleChannel"})
# Initialize the tool with a specific Youtube channel handle to target your search
tool = YoutubeChannelSearchTool(youtube_channel_handle='@exampleChannel')
```
You can also initialize the tool with a specific YouTube channel handle:
## Arguments
```python Code
# Initialize the tool with a specific YouTube channel handle
youtube_channel_tool = YoutubeChannelSearchTool(
youtube_channel_handle='@exampleChannel'
)
- `youtube_channel_handle` : A mandatory string representing the Youtube channel handle. This parameter is crucial for initializing the tool to specify the channel you want to search within. The tool is designed to only search within the content of the provided channel handle.
# Define an agent that uses the tool
channel_researcher = Agent(
role="Channel Researcher",
goal="Extract relevant information from a specific YouTube channel",
backstory="An expert researcher who specializes in analyzing YouTube channel content.",
tools=[youtube_channel_tool],
verbose=True,
)
```
## Parameters
The `YoutubeChannelSearchTool` accepts the following parameters:
- **youtube_channel_handle**: Optional. The handle of the YouTube channel to search within. If provided during initialization, the agent won't need to specify it when using the tool. If the handle doesn't start with '@', it will be automatically added.
- **config**: Optional. Configuration for the underlying RAG system, including LLM and embedder settings.
- **summarize**: Optional. Whether to summarize the retrieved content. Default is `False`.
When using the tool with an agent, the agent will need to provide:
- **search_query**: Required. The search query to find relevant information in the channel content.
- **youtube_channel_handle**: Required only if not provided during initialization. The handle of the YouTube channel to search within.
## Custom Model and Embeddings
## Custom model and embeddings
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
youtube_channel_tool = YoutubeChannelSearchTool(
tool = YoutubeChannelSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
@@ -115,80 +73,3 @@ youtube_channel_tool = YoutubeChannelSearchTool(
)
)
```
## Agent Integration Example
Here's a more detailed example of how to integrate the `YoutubeChannelSearchTool` with a CrewAI agent:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import YoutubeChannelSearchTool
# Initialize the tool
youtube_channel_tool = YoutubeChannelSearchTool()
# Define an agent that uses the tool
channel_researcher = Agent(
role="Channel Researcher",
goal="Extract and analyze information from YouTube channels",
backstory="""You are an expert channel researcher who specializes in extracting
and analyzing information from YouTube channels. You have a keen eye for detail
and can quickly identify key points and insights from video content across an entire channel.""",
tools=[youtube_channel_tool],
verbose=True,
)
# Create a task for the agent
research_task = Task(
description="""
Search for information about data science projects and tutorials
in the YouTube channel {youtube_channel_handle}.
Focus on:
1. Key data science techniques covered
2. Popular tutorial series
3. Most viewed or recommended videos
Provide a comprehensive summary of these points.
""",
expected_output="A detailed summary of data science content available on the channel.",
agent=channel_researcher,
)
# Run the task
crew = Crew(agents=[channel_researcher], tasks=[research_task])
result = crew.kickoff(inputs={"youtube_channel_handle": "@exampleDataScienceChannel"})
```
## Implementation Details
The `YoutubeChannelSearchTool` is implemented as a subclass of `RagTool`, which provides the base functionality for Retrieval-Augmented Generation:
```python Code
class YoutubeChannelSearchTool(RagTool):
name: str = "Search a Youtube Channels content"
description: str = "A tool that can be used to semantic search a query from a Youtube Channels content."
args_schema: Type[BaseModel] = YoutubeChannelSearchToolSchema
def __init__(self, youtube_channel_handle: Optional[str] = None, **kwargs):
super().__init__(**kwargs)
if youtube_channel_handle is not None:
kwargs["data_type"] = DataType.YOUTUBE_CHANNEL
self.add(youtube_channel_handle)
self.description = f"A tool that can be used to semantic search a query the {youtube_channel_handle} Youtube Channels content."
self.args_schema = FixedYoutubeChannelSearchToolSchema
self._generate_description()
def add(
self,
youtube_channel_handle: str,
**kwargs: Any,
) -> None:
if not youtube_channel_handle.startswith("@"):
youtube_channel_handle = f"@{youtube_channel_handle}"
super().add(youtube_channel_handle, **kwargs)
```
## Conclusion
The `YoutubeChannelSearchTool` provides a powerful way to search and extract information from YouTube channel content using RAG techniques. By enabling agents to search across an entire channel's videos, it facilitates information extraction and analysis tasks that would otherwise be difficult to perform. This tool is particularly useful for research, content analysis, and knowledge extraction from YouTube channels.

View File

@@ -29,73 +29,35 @@ pip install 'crewai[tools]'
## Example
The following example demonstrates how to use the `YoutubeVideoSearchTool` with a CrewAI agent:
To integrate the YoutubeVideoSearchTool into your Python projects, follow the example below.
This demonstrates how to use the tool both for general Youtube content searches and for targeted searches within a specific video's content.
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import YoutubeVideoSearchTool
# Initialize the tool for general YouTube video searches
youtube_search_tool = YoutubeVideoSearchTool()
# General search across Youtube content without specifying a video URL,
# so the agent can search within any Youtube video content
# it learns about its url during its operation
tool = YoutubeVideoSearchTool()
# Define an agent that uses the tool
video_researcher = Agent(
role="Video Researcher",
goal="Extract relevant information from YouTube videos",
backstory="An expert researcher who specializes in analyzing video content.",
tools=[youtube_search_tool],
verbose=True,
)
# Example task to search for information in a specific video
research_task = Task(
description="Search for information about machine learning frameworks in the YouTube video at {youtube_video_url}",
expected_output="A summary of the key machine learning frameworks mentioned in the video.",
agent=video_researcher,
)
# Create and run the crew
crew = Crew(agents=[video_researcher], tasks=[research_task])
result = crew.kickoff(inputs={"youtube_video_url": "https://youtube.com/watch?v=example"})
```
You can also initialize the tool with a specific YouTube video URL:
```python Code
# Initialize the tool with a specific YouTube video URL
youtube_search_tool = YoutubeVideoSearchTool(
# Targeted search within a specific Youtube video's content
tool = YoutubeVideoSearchTool(
youtube_video_url='https://youtube.com/watch?v=example'
)
# Define an agent that uses the tool
video_researcher = Agent(
role="Video Researcher",
goal="Extract relevant information from a specific YouTube video",
backstory="An expert researcher who specializes in analyzing video content.",
tools=[youtube_search_tool],
verbose=True,
)
```
## Parameters
## Arguments
The `YoutubeVideoSearchTool` accepts the following parameters:
The YoutubeVideoSearchTool accepts the following initialization arguments:
- **youtube_video_url**: Optional. The URL of the YouTube video to search within. If provided during initialization, the agent won't need to specify it when using the tool.
- **config**: Optional. Configuration for the underlying RAG system, including LLM and embedder settings.
- **summarize**: Optional. Whether to summarize the retrieved content. Default is `False`.
- `youtube_video_url`: An optional argument at initialization but required if targeting a specific Youtube video. It specifies the Youtube video URL path you want to search within.
When using the tool with an agent, the agent will need to provide:
- **search_query**: Required. The search query to find relevant information in the video content.
- **youtube_video_url**: Required only if not provided during initialization. The URL of the YouTube video to search within.
## Custom Model and Embeddings
## Custom model and embeddings
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
```python Code
youtube_search_tool = YoutubeVideoSearchTool(
tool = YoutubeVideoSearchTool(
config=dict(
llm=dict(
provider="ollama", # or google, openai, anthropic, llama2, ...
@@ -117,71 +79,3 @@ youtube_search_tool = YoutubeVideoSearchTool(
)
)
```
## Agent Integration Example
Here's a more detailed example of how to integrate the `YoutubeVideoSearchTool` with a CrewAI agent:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import YoutubeVideoSearchTool
# Initialize the tool
youtube_search_tool = YoutubeVideoSearchTool()
# Define an agent that uses the tool
video_researcher = Agent(
role="Video Researcher",
goal="Extract and analyze information from YouTube videos",
backstory="""You are an expert video researcher who specializes in extracting
and analyzing information from YouTube videos. You have a keen eye for detail
and can quickly identify key points and insights from video content.""",
tools=[youtube_search_tool],
verbose=True,
)
# Create a task for the agent
research_task = Task(
description="""
Search for information about recent advancements in artificial intelligence
in the YouTube video at {youtube_video_url}.
Focus on:
1. Key AI technologies mentioned
2. Real-world applications discussed
3. Future predictions made by the speaker
Provide a comprehensive summary of these points.
""",
expected_output="A detailed summary of AI advancements, applications, and future predictions from the video.",
agent=video_researcher,
)
# Run the task
crew = Crew(agents=[video_researcher], tasks=[research_task])
result = crew.kickoff(inputs={"youtube_video_url": "https://youtube.com/watch?v=example"})
```
## Implementation Details
The `YoutubeVideoSearchTool` is implemented as a subclass of `RagTool`, which provides the base functionality for Retrieval-Augmented Generation:
```python Code
class YoutubeVideoSearchTool(RagTool):
name: str = "Search a Youtube Video content"
description: str = "A tool that can be used to semantic search a query from a Youtube Video content."
args_schema: Type[BaseModel] = YoutubeVideoSearchToolSchema
def __init__(self, youtube_video_url: Optional[str] = None, **kwargs):
super().__init__(**kwargs)
if youtube_video_url is not None:
kwargs["data_type"] = DataType.YOUTUBE_VIDEO
self.add(youtube_video_url)
self.description = f"A tool that can be used to semantic search a query the {youtube_video_url} Youtube Video content."
self.args_schema = FixedYoutubeVideoSearchToolSchema
self._generate_description()
```
## Conclusion
The `YoutubeVideoSearchTool` provides a powerful way to search and extract information from YouTube video content using RAG techniques. By enabling agents to search within video content, it facilitates information extraction and analysis tasks that would otherwise be difficult to perform. This tool is particularly useful for research, content analysis, and knowledge extraction from video sources.

View File

@@ -152,7 +152,6 @@ nav:
- Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md'
- Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md'
- Agent Monitoring with OpenLIT: 'how-to/openlit-Observability.md'
- Agent Monitoring with MLflow: 'how-to/mlflow-Observability.md'
- Tools Docs:
- Browserbase Web Loader: 'tools/BrowserbaseLoadTool.md'
- Code Docs RAG Search: 'tools/CodeDocsSearchTool.md'

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.108.0"
version = "0.86.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<3.13"
@@ -11,22 +11,27 @@ dependencies = [
# Core Dependencies
"pydantic>=2.4.2",
"openai>=1.13.3",
"litellm==1.60.2",
"litellm>=1.44.22",
"instructor>=1.3.3",
# Text Processing
"pdfplumber>=0.11.4",
"regex>=2024.9.11",
# Telemetry and Monitoring
"opentelemetry-api>=1.30.0",
"opentelemetry-sdk>=1.30.0",
"opentelemetry-exporter-otlp-proto-http>=1.30.0",
"opentelemetry-api>=1.22.0",
"opentelemetry-sdk>=1.22.0",
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
# Data Handling
"chromadb>=0.5.23",
"openpyxl>=3.1.5",
"pyvis>=0.3.2",
# Authentication and Security
"auth0-python>=4.7.1",
"python-dotenv>=1.0.0",
# Configuration and Utils
"click>=8.1.7",
"appdirs>=1.4.4",
@@ -36,7 +41,6 @@ dependencies = [
"tomli-w>=1.1.0",
"tomli>=2.0.2",
"blinker>=1.9.0",
"json5>=0.10.0",
]
[project.urls]
@@ -45,7 +49,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.37.0"]
tools = ["crewai-tools>=0.17.0"]
embeddings = [
"tiktoken~=0.7.0"
]

View File

@@ -14,7 +14,7 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.108.0"
__version__ = "0.86.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -1,36 +1,44 @@
import re
import os
import shutil
import subprocess
from typing import Any, Dict, List, Literal, Optional, Sequence, Union
from typing import Any, Dict, List, Literal, Optional, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents import CacheHandler
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.cli.constants import ENV_VARS, LITELLM_PARAMS
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.security import Fingerprint
from crewai.task import Task
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
agentops = None
try:
import agentops # type: ignore # Name "agentops" is already defined
from agentops import track_agent # type: ignore
except ImportError:
def track_agent():
def noop(f):
return f
return noop
@track_agent()
class Agent(BaseAgent):
"""Represents an agent in a system.
@@ -47,13 +55,13 @@ class Agent(BaseAgent):
llm: The language model that will run the agent.
function_calling_llm: The language model that will handle the tool calling for this agent, it overrides the crew function_calling_llm.
max_iter: Maximum number of iterations for an agent to execute a task.
memory: Whether the agent should have memory or not.
max_rpm: Maximum number of requests per minute for the agent execution to be respected.
verbose: Whether the agent execution should be in verbose mode.
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution.
knowledge_sources: Knowledge sources for the agent.
embedder: Embedder configuration for the agent.
"""
_times_executed: int = PrivateAttr(default=0)
@@ -63,6 +71,9 @@ class Agent(BaseAgent):
)
agent_ops_agent_name: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
agent_ops_agent_id: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
cache_handler: InstanceOf[CacheHandler] = Field(
default=None, description="An instance of the CacheHandler class."
)
step_callback: Optional[Any] = Field(
default=None,
description="Callback to be executed after each step of the agent execution.",
@@ -74,7 +85,7 @@ class Agent(BaseAgent):
llm: Union[str, InstanceOf[LLM], Any] = Field(
description="Language model that will run the agent.", default=None
)
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
function_calling_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
)
system_template: Optional[str] = Field(
@@ -96,6 +107,10 @@ class Agent(BaseAgent):
default=True,
description="Keep messages under the context window size by summarizing content.",
)
max_iter: int = Field(
default=20,
description="Maximum number of iterations for an agent to execute a task before giving it's best answer",
)
max_retry_limit: int = Field(
default=2,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
@@ -108,18 +123,105 @@ class Agent(BaseAgent):
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
embedder: Optional[Dict[str, Any]] = Field(
embedder_config: Optional[Dict[str, Any]] = Field(
default=None,
description="Embedder configuration for the agent.",
)
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the agent.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
)
@model_validator(mode="after")
def post_init_setup(self):
self._set_knowledge()
self.agent_ops_agent_name = self.role
unaccepted_attributes = [
"AWS_ACCESS_KEY_ID",
"AWS_SECRET_ACCESS_KEY",
"AWS_REGION_NAME",
]
self.llm = create_llm(self.llm)
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = create_llm(self.function_calling_llm)
# Handle different cases for self.llm
if isinstance(self.llm, str):
# If it's a string, create an LLM instance
self.llm = LLM(model=self.llm)
elif isinstance(self.llm, LLM):
# If it's already an LLM instance, keep it as is
pass
elif self.llm is None:
# Determine the model name from environment variables or use default
model_name = (
os.environ.get("OPENAI_MODEL_NAME")
or os.environ.get("MODEL")
or "gpt-4o-mini"
)
llm_params = {"model": model_name}
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
"OPENAI_BASE_URL"
)
if api_base:
llm_params["base_url"] = api_base
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
# Iterate over all environment variables to find matching API keys or use defaults
for provider, env_vars in ENV_VARS.items():
if provider == set_provider:
for env_var in env_vars:
# Check if the environment variable is set
key_name = env_var.get("key_name")
if key_name and key_name not in unaccepted_attributes:
env_value = os.environ.get(key_name)
if env_value:
key_name = key_name.lower()
for pattern in LITELLM_PARAMS:
if pattern in key_name:
key_name = pattern
break
llm_params[key_name] = env_value
# Check for default values if the environment variable is not set
elif env_var.get("default", False):
for key, value in env_var.items():
if key not in ["prompt", "key_name", "default"]:
# Only add default if the key is already set in os.environ
if key in os.environ:
llm_params[key] = value
self.llm = LLM(**llm_params)
else:
# For any other type, attempt to extract relevant attributes
llm_params = {
"model": getattr(self.llm, "model_name", None)
or getattr(self.llm, "deployment_name", None)
or str(self.llm),
"temperature": getattr(self.llm, "temperature", None),
"max_tokens": getattr(self.llm, "max_tokens", None),
"logprobs": getattr(self.llm, "logprobs", None),
"timeout": getattr(self.llm, "timeout", None),
"max_retries": getattr(self.llm, "max_retries", None),
"api_key": getattr(self.llm, "api_key", None),
"base_url": getattr(self.llm, "base_url", None),
"organization": getattr(self.llm, "organization", None),
}
# Remove None values to avoid passing unnecessary parameters
llm_params = {k: v for k, v in llm_params.items() if v is not None}
self.llm = LLM(**llm_params)
# Similar handling for function_calling_llm
if self.function_calling_llm:
if isinstance(self.function_calling_llm, str):
self.function_calling_llm = LLM(model=self.function_calling_llm)
elif not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = LLM(
model=getattr(self.function_calling_llm, "model_name", None)
or getattr(self.function_calling_llm, "deployment_name", None)
or str(self.function_calling_llm)
)
if not self.agent_executor:
self._setup_agent_executor()
@@ -134,22 +236,17 @@ class Agent(BaseAgent):
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
def _set_knowledge(self):
try:
if self.embedder is None and crew_embedder:
self.embedder = crew_embedder
if self.knowledge_sources:
full_pattern = re.compile(r"[^a-zA-Z0-9\-_\r\n]|(\.\.)")
knowledge_agent_name = f"{re.sub(full_pattern, '_', self.role)}"
knowledge_agent_name = f"{self.role.replace(' ', '_')}"
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self.knowledge = Knowledge(
self._knowledge = Knowledge(
sources=self.knowledge_sources,
embedder=self.embedder,
embedder_config=self.embedder_config,
collection_name=knowledge_agent_name,
storage=self.knowledge_storage or None,
)
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
@@ -183,15 +280,13 @@ class Agent(BaseAgent):
if task.output_json:
# schema = json.dumps(task.output_json, indent=2)
schema = generate_model_description(task.output_json)
task_prompt += "\n" + self.i18n.slice(
"formatted_task_instructions"
).format(output_format=schema)
elif task.output_pydantic:
schema = generate_model_description(task.output_pydantic)
task_prompt += "\n" + self.i18n.slice(
"formatted_task_instructions"
).format(output_format=schema)
task_prompt += "\n" + self.i18n.slice("formatted_task_instructions").format(
output_format=schema
)
if context:
task_prompt = self.i18n.slice("task_with_context").format(
@@ -210,8 +305,8 @@ class Agent(BaseAgent):
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
if self.knowledge:
agent_knowledge_snippets = self.knowledge.query([task.prompt()])
if self._knowledge:
agent_knowledge_snippets = self._knowledge.query([task.prompt()])
if agent_knowledge_snippets:
agent_knowledge_context = extract_knowledge_context(
agent_knowledge_snippets
@@ -235,15 +330,6 @@ class Agent(BaseAgent):
task_prompt = self._use_trained_data(task_prompt=task_prompt)
try:
crewai_event_bus.emit(
self,
event=AgentExecutionStartedEvent(
agent=self,
tools=self.tools,
task_prompt=task_prompt,
task=task,
),
)
result = self.agent_executor.invoke(
{
"input": task_prompt,
@@ -253,27 +339,8 @@ class Agent(BaseAgent):
}
)["output"]
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
crewai_event_bus.emit(
self,
event=AgentExecutionErrorEvent(
agent=self,
task=task,
error=str(e),
),
)
raise e
self._times_executed += 1
if self._times_executed > self.max_retry_limit:
crewai_event_bus.emit(
self,
event=AgentExecutionErrorEvent(
agent=self,
task=task,
error=str(e),
),
)
raise e
result = self.execute_task(task, context, tools)
@@ -286,10 +353,7 @@ class Agent(BaseAgent):
for tool_result in self.tools_results: # type: ignore # Item "None" of "list[Any] | None" has no attribute "__iter__" (not iterable)
if tool_result.get("result_as_answer", False):
result = tool_result["result"]
crewai_event_bus.emit(
self,
event=AgentExecutionCompletedEvent(agent=self, task=task, output=result),
)
return result
def create_agent_executor(
@@ -347,14 +411,13 @@ class Agent(BaseAgent):
tools = agent_tools.tools()
return tools
def get_multimodal_tools(self) -> Sequence[BaseTool]:
def get_multimodal_tools(self) -> List[Tool]:
from crewai.tools.agent_tools.add_image_tool import AddImageTool
return [AddImageTool()]
def get_code_execution_tools(self):
try:
from crewai_tools import CodeInterpreterTool # type: ignore
from crewai_tools import CodeInterpreterTool
# Set the unsafe_mode based on the code_execution_mode attribute
unsafe_mode = self.code_execution_mode == "unsafe"
@@ -473,13 +536,3 @@ class Agent(BaseAgent):
def __repr__(self):
return f"Agent(role={self.role}, goal={self.goal}, backstory={self.backstory})"
@property
def fingerprint(self) -> Fingerprint:
"""
Get the agent's fingerprint.
Returns:
Fingerprint: The agent's fingerprint
"""
return self.security_config.fingerprint

View File

@@ -18,13 +18,10 @@ from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.security.security_config import SecurityConfig
from crewai.tools.base_tool import BaseTool, Tool
from crewai.tools import BaseTool
from crewai.tools.base_tool import Tool
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter
T = TypeVar("T", bound="BaseAgent")
@@ -43,7 +40,7 @@ class BaseAgent(ABC, BaseModel):
max_rpm (Optional[int]): Maximum number of requests per minute for the agent execution.
allow_delegation (bool): Allow delegation of tasks to agents.
tools (Optional[List[Any]]): Tools at the agent's disposal.
max_iter (int): Maximum iterations for an agent to execute a task.
max_iter (Optional[int]): Maximum iterations for an agent to execute a task.
agent_executor (InstanceOf): An instance of the CrewAgentExecutor class.
llm (Any): Language model that will run the agent.
crew (Any): Crew to which the agent belongs.
@@ -51,9 +48,6 @@ class BaseAgent(ABC, BaseModel):
cache_handler (InstanceOf[CacheHandler]): An instance of the CacheHandler class.
tools_handler (InstanceOf[ToolsHandler]): An instance of the ToolsHandler class.
max_tokens: Maximum number of tokens for the agent to generate in a response.
knowledge_sources: Knowledge sources for the agent.
knowledge_storage: Custom knowledge storage for the agent.
security_config: Security configuration for the agent, including fingerprinting.
Methods:
@@ -113,10 +107,10 @@ class BaseAgent(ABC, BaseModel):
default=False,
description="Enable agent to delegate and ask questions among each other.",
)
tools: Optional[List[BaseTool]] = Field(
tools: Optional[List[Any]] = Field(
default_factory=list, description="Tools at agents' disposal"
)
max_iter: int = Field(
max_iter: Optional[int] = Field(
default=25, description="Maximum iterations for an agent to execute a task"
)
agent_executor: InstanceOf = Field(
@@ -127,31 +121,15 @@ class BaseAgent(ABC, BaseModel):
)
crew: Any = Field(default=None, description="Crew to which the agent belongs.")
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
cache_handler: Optional[InstanceOf[CacheHandler]] = Field(
cache_handler: InstanceOf[CacheHandler] = Field(
default=None, description="An instance of the CacheHandler class."
)
tools_handler: InstanceOf[ToolsHandler] = Field(
default_factory=ToolsHandler,
description="An instance of the ToolsHandler class.",
default=None, description="An instance of the ToolsHandler class."
)
max_tokens: Optional[int] = Field(
default=None, description="Maximum number of tokens for the agent's execution."
)
knowledge: Optional[Knowledge] = Field(
default=None, description="Knowledge for the agent."
)
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the agent.",
)
knowledge_storage: Optional[Any] = Field(
default=None,
description="Custom knowledge storage for the agent.",
)
security_config: SecurityConfig = Field(
default_factory=SecurityConfig,
description="Security configuration for the agent, including fingerprinting.",
)
@model_validator(mode="before")
@classmethod
@@ -205,10 +183,6 @@ class BaseAgent(ABC, BaseModel):
if not self._token_process:
self._token_process = TokenProcess()
# Initialize security_config if not provided
if self.security_config is None:
self.security_config = SecurityConfig()
return self
@field_validator("id", mode="before")
@@ -265,7 +239,7 @@ class BaseAgent(ABC, BaseModel):
@abstractmethod
def get_output_converter(
self, llm: Any, text: str, model: type[BaseModel] | None, instructions: str
) -> Converter:
):
"""Get the converter class for the agent to create json/pydantic outputs."""
pass
@@ -282,44 +256,13 @@ class BaseAgent(ABC, BaseModel):
"tools_handler",
"cache_handler",
"llm",
"knowledge_sources",
"knowledge_storage",
"knowledge",
}
# Copy llm
# Copy llm and clear callbacks
existing_llm = shallow_copy(self.llm)
copied_knowledge = shallow_copy(self.knowledge)
copied_knowledge_storage = shallow_copy(self.knowledge_storage)
# Properly copy knowledge sources if they exist
existing_knowledge_sources = None
if self.knowledge_sources:
# Create a shared storage instance for all knowledge sources
shared_storage = (
self.knowledge_sources[0].storage if self.knowledge_sources else None
)
existing_knowledge_sources = []
for source in self.knowledge_sources:
copied_source = (
source.model_copy()
if hasattr(source, "model_copy")
else shallow_copy(source)
)
# Ensure all copied sources use the same storage instance
copied_source.storage = shared_storage
existing_knowledge_sources.append(copied_source)
copied_data = self.model_dump(exclude=exclude)
copied_data = {k: v for k, v in copied_data.items() if v is not None}
copied_agent = type(self)(
**copied_data,
llm=existing_llm,
tools=self.tools,
knowledge_sources=existing_knowledge_sources,
knowledge=copied_knowledge,
knowledge_storage=copied_knowledge_storage,
)
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools)
return copied_agent
@@ -361,6 +304,3 @@ class BaseAgent(ABC, BaseModel):
if not self._rpm_controller:
self._rpm_controller = rpm_controller
self.create_agent_executor()
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
pass

View File

@@ -19,10 +19,15 @@ class CrewAgentExecutorMixin:
agent: Optional["BaseAgent"]
task: Optional["Task"]
iterations: int
have_forced_answer: bool
max_iter: int
_i18n: I18N
_printer: Printer = Printer()
def _should_force_answer(self) -> bool:
"""Determine if a forced answer is required based on iteration count."""
return (self.iterations >= self.max_iter) and not self.have_forced_answer
def _create_short_term_memory(self, output) -> None:
"""Create and save a short-term memory item if conditions are met."""
if (
@@ -95,34 +100,18 @@ class CrewAgentExecutorMixin:
pass
def _ask_human_input(self, final_answer: str) -> str:
"""Prompt human input with mode-appropriate messaging."""
"""Prompt human input for final decision making."""
self._printer.print(
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
)
# Training mode prompt (single iteration)
if self.crew and getattr(self.crew, "_train", False):
prompt = (
self._printer.print(
content=(
"\n\n=====\n"
"## TRAINING MODE: Provide feedback to improve the agent's performance.\n"
"This will be used to train better versions of the agent.\n"
"Please provide detailed feedback about the result quality and reasoning process.\n"
"## Please provide feedback on the Final Result and the Agent's actions. "
"Respond with 'looks good' or a similar phrase when you're satisfied.\n"
"=====\n"
),
color="bold_yellow",
)
# Regular human-in-the-loop prompt (multiple iterations)
else:
prompt = (
"\n\n=====\n"
"## HUMAN FEEDBACK: Provide feedback on the Final Result and Agent's actions.\n"
"Please follow these guidelines:\n"
" - If you are happy with the result, simply hit Enter without typing anything.\n"
" - Otherwise, provide specific improvement requests.\n"
" - You can provide multiple rounds of feedback until satisfied.\n"
"=====\n"
)
self._printer.print(content=prompt, color="bold_yellow")
response = input()
if response.strip() != "":
self._printer.print(content="\nProcessing your feedback...", color="cyan")
return response
return input()

View File

@@ -25,17 +25,17 @@ class OutputConverter(BaseModel, ABC):
llm: Any = Field(description="The language model to be used to convert the text.")
model: Any = Field(description="The model to be used to convert the text.")
instructions: str = Field(description="Conversion instructions to the LLM.")
max_attempts: int = Field(
max_attempts: Optional[int] = Field(
description="Max number of attempts to try to get the output formatted.",
default=3,
)
@abstractmethod
def to_pydantic(self, current_attempt=1) -> BaseModel:
def to_pydantic(self, current_attempt=1):
"""Convert text to pydantic."""
pass
@abstractmethod
def to_json(self, current_attempt=1) -> dict:
def to_json(self, current_attempt=1):
"""Convert text to json."""
pass

View File

@@ -2,26 +2,25 @@ from crewai.types.usage_metrics import UsageMetrics
class TokenProcess:
def __init__(self) -> None:
self.total_tokens: int = 0
self.prompt_tokens: int = 0
self.cached_prompt_tokens: int = 0
self.completion_tokens: int = 0
self.successful_requests: int = 0
total_tokens: int = 0
prompt_tokens: int = 0
cached_prompt_tokens: int = 0
completion_tokens: int = 0
successful_requests: int = 0
def sum_prompt_tokens(self, tokens: int) -> None:
self.prompt_tokens += tokens
self.total_tokens += tokens
def sum_prompt_tokens(self, tokens: int):
self.prompt_tokens = self.prompt_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_completion_tokens(self, tokens: int) -> None:
self.completion_tokens += tokens
self.total_tokens += tokens
def sum_completion_tokens(self, tokens: int):
self.completion_tokens = self.completion_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_cached_prompt_tokens(self, tokens: int) -> None:
self.cached_prompt_tokens += tokens
def sum_cached_prompt_tokens(self, tokens: int):
self.cached_prompt_tokens = self.cached_prompt_tokens + tokens
def sum_successful_requests(self, requests: int) -> None:
self.successful_requests += requests
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
def get_summary(self) -> UsageMetrics:
return UsageMetrics(

View File

@@ -1,7 +1,7 @@
import json
import re
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
from typing import Any, Dict, List, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
@@ -13,17 +13,10 @@ from crewai.agents.parser import (
OutputParserException,
)
from crewai.agents.tools_handler import ToolsHandler
from crewai.llm import LLM
from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N, Printer
from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
from crewai.utilities.events import (
ToolUsageErrorEvent,
ToolUsageStartedEvent,
crewai_event_bus,
)
from crewai.utilities.events.tool_usage_events import ToolUsageStartedEvent
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
@@ -57,11 +50,11 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
original_tools: List[Any] = [],
function_calling_llm: Any = None,
respect_context_window: bool = False,
request_within_rpm_limit: Optional[Callable[[], bool]] = None,
request_within_rpm_limit: Any = None,
callbacks: List[Any] = [],
):
self._i18n: I18N = I18N()
self.llm: LLM = llm
self.llm = llm
self.task = task
self.agent = agent
self.crew = crew
@@ -84,11 +77,14 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.messages: List[Dict[str, str]] = []
self.iterations = 0
self.log_error_after = 3
self.have_forced_answer = False
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
tool.name: tool for tool in self.tools
}
self.stop = stop_words
if self.llm.stop:
self.llm.stop = list(set(self.llm.stop + self.stop))
else:
self.llm.stop = self.stop
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
if "system" in self.prompt:
@@ -103,22 +99,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._show_start_logs()
self.ask_for_human_input = bool(inputs.get("ask_for_human_input", False))
try:
formatted_answer = self._invoke_loop()
except AssertionError:
self._printer.print(
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
color="red",
)
raise
except Exception as e:
self._handle_unknown_error(e)
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
else:
raise e
if self.ask_for_human_input:
formatted_answer = self._handle_human_feedback(formatted_answer)
@@ -127,178 +108,106 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._create_long_term_memory(formatted_answer)
return {"output": formatted_answer.output}
def _invoke_loop(self) -> AgentFinish:
"""
Main loop to invoke the agent's thought process until it reaches a conclusion
or the maximum number of iterations is reached.
"""
formatted_answer = None
while not isinstance(formatted_answer, AgentFinish):
def _invoke_loop(self, formatted_answer=None):
try:
if self._has_reached_max_iterations():
formatted_answer = self._handle_max_iterations_exceeded(
formatted_answer
while not isinstance(formatted_answer, AgentFinish):
if not self.request_within_rpm_limit or self.request_within_rpm_limit():
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
)
break
self._enforce_rpm_limit()
if answer is None or answer == "":
self._printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError(
"Invalid response from LLM call - None or empty."
)
answer = self._get_llm_response()
formatted_answer = self._process_llm_response(answer)
if not self.use_stop_words:
try:
self._format_answer(answer)
except OutputParserException as e:
if (
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE
in e.error
):
answer = answer.split("Observation:")[0].strip()
self.iterations += 1
formatted_answer = self._format_answer(answer)
if isinstance(formatted_answer, AgentAction):
tool_result = self._execute_tool_and_check_finality(
formatted_answer
)
formatted_answer = self._handle_agent_action(
formatted_answer, tool_result
)
self._invoke_step_callback(formatted_answer)
self._append_message(formatted_answer.text, role="assistant")
except OutputParserException as e:
formatted_answer = self._handle_output_parser_exception(e)
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
if self._is_context_length_exceeded(e):
self._handle_context_length()
continue
else:
self._handle_unknown_error(e)
raise e
finally:
self.iterations += 1
# During the invoke loop, formatted_answer alternates between AgentAction
# (when the agent is using tools) and eventually becomes AgentFinish
# (when the agent reaches a final answer). This assertion confirms we've
# reached a final answer and helps type checking understand this transition.
assert isinstance(formatted_answer, AgentFinish)
self._show_logs(formatted_answer)
return formatted_answer
def _handle_unknown_error(self, exception: Exception) -> None:
"""Handle unknown errors by informing the user."""
self._printer.print(
content="An unknown error occurred. Please check the details below.",
color="red",
)
self._printer.print(
content=f"Error details: {exception}",
color="red",
)
def _has_reached_max_iterations(self) -> bool:
"""Check if the maximum number of iterations has been reached."""
return self.iterations >= self.max_iter
def _enforce_rpm_limit(self) -> None:
"""Enforce the requests per minute (RPM) limit if applicable."""
if self.request_within_rpm_limit:
self.request_within_rpm_limit()
def _get_llm_response(self) -> str:
"""Call the LLM and return the response, handling any invalid responses."""
try:
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
)
except Exception as e:
self._printer.print(
content=f"Error during LLM call: {e}",
color="red",
)
raise e
if not answer:
self._printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError("Invalid response from LLM call - None or empty.")
return answer
def _process_llm_response(self, answer: str) -> Union[AgentAction, AgentFinish]:
"""Process the LLM response and format it into an AgentAction or AgentFinish."""
if not self.use_stop_words:
try:
# Preliminary parsing to check for errors.
self._format_answer(answer)
except OutputParserException as e:
if FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE in e.error:
answer = answer.split("Observation:")[0].strip()
return self._format_answer(answer)
def _handle_agent_action(
self, formatted_answer: AgentAction, tool_result: ToolResult
) -> Union[AgentAction, AgentFinish]:
"""Handle the AgentAction, execute tools, and process the results."""
add_image_tool = self._i18n.tools("add_image")
if (
isinstance(add_image_tool, dict)
and formatted_answer.tool.casefold().strip()
== add_image_tool.get("name", "").casefold().strip()
):
# Directly append the result to the messages if the
# tool is "Add image to content" in case of multimodal
# agents
if formatted_answer.tool == self._i18n.tools("add_image")["name"]:
self.messages.append(tool_result.result)
return formatted_answer # Continue the loop
continue
else:
if self.step_callback:
self.step_callback(tool_result)
formatted_answer.text += f"\nObservation: {tool_result.result}"
formatted_answer.result = tool_result.result
formatted_answer.result = tool_result.result
if tool_result.result_as_answer:
return AgentFinish(
thought="",
output=tool_result.result,
text=formatted_answer.text,
)
self._show_logs(formatted_answer)
return formatted_answer
def _invoke_step_callback(self, formatted_answer) -> None:
"""Invoke the step callback if it exists."""
if self.step_callback:
self.step_callback(formatted_answer)
def _append_message(self, text: str, role: str = "assistant") -> None:
"""Append a message to the message list with the given role."""
self.messages.append(self._format_msg(text, role=role))
def _handle_output_parser_exception(self, e: OutputParserException) -> AgentAction:
"""Handle OutputParserException by updating messages and formatted_answer."""
self.messages.append({"role": "user", "content": e.error})
formatted_answer = AgentAction(
text=e.error,
tool="",
tool_input="",
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
thought="",
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="assistant")
)
except OutputParserException as e:
self.messages.append({"role": "user", "content": e.error})
if self.iterations > self.log_error_after:
self._printer.print(
content=f"Error parsing LLM output, agent will retry: {e.error}",
color="red",
)
return self._invoke_loop(formatted_answer)
except Exception as e:
if LLMContextLengthExceededException(str(e))._is_context_limit_error(
str(e)
):
self._handle_context_length()
return self._invoke_loop(formatted_answer)
else:
raise e
self._show_logs(formatted_answer)
return formatted_answer
def _is_context_length_exceeded(self, exception: Exception) -> bool:
"""Check if the exception is due to context length exceeding."""
return LLMContextLengthExceededException(
str(exception)
)._is_context_limit_error(str(exception))
def _show_start_logs(self):
if self.agent is None:
raise ValueError("Agent cannot be None")
@@ -309,11 +218,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._printer.print(
content=f"\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
description = (
getattr(self.task, "description") if self.task else "Not Found"
)
self._printer.print(
content=f"\033[95m## Task:\033[00m \033[92m{description}\033[00m"
content=f"\033[95m## Task:\033[00m \033[92m{self.task.description}\033[00m"
)
def _show_logs(self, formatted_answer: Union[AgentAction, AgentFinish]):
@@ -355,18 +261,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
def _execute_tool_and_check_finality(self, agent_action: AgentAction) -> ToolResult:
try:
if self.agent:
crewai_event_bus.emit(
self,
event=ToolUsageStartedEvent(
agent_key=self.agent.key,
agent_role=self.agent.role,
tool_name=agent_action.tool,
tool_args=agent_action.tool_input,
tool_class=agent_action.tool,
),
)
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
@@ -378,7 +272,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse_tool_calling(agent_action.text)
tool_calling = tool_usage.parse(agent_action.text)
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
@@ -402,22 +296,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
return ToolResult(result=tool_result, result_as_answer=False)
except Exception as e:
# TODO: drop
if self.agent:
crewai_event_bus.emit(
self,
event=ToolUsageErrorEvent( # validation error
agent_key=self.agent.key,
agent_role=self.agent.role,
tool_name=agent_action.tool,
tool_args=agent_action.tool_input,
tool_class=agent_action.tool,
error=str(e),
),
)
raise e
def _summarize_messages(self) -> None:
messages_groups = []
for message in self.messages:
@@ -466,50 +344,58 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
def _handle_crew_training_output(
self, result: AgentFinish, human_feedback: Optional[str] = None
self, result: AgentFinish, human_feedback: str | None = None
) -> None:
"""Handle the process of saving training data."""
"""Function to handle the process of the training data."""
agent_id = str(self.agent.id) # type: ignore
train_iteration = (
getattr(self.crew, "_train_iteration", None) if self.crew else None
)
if train_iteration is None or not isinstance(train_iteration, int):
# Load training data
training_handler = CrewTrainingHandler(TRAINING_DATA_FILE)
training_data = training_handler.load()
# Check if training data exists, human input is not requested, and self.crew is valid
if training_data and not self.ask_for_human_input:
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_handler.save(training_data)
else:
self._printer.print(
content="Invalid or missing train iteration. Cannot save training data.",
content="Invalid train iteration type or agent_id not in training data.",
color="red",
)
else:
self._printer.print(
content="Crew is None or does not have _train_iteration attribute.",
color="red",
)
return
training_handler = CrewTrainingHandler(TRAINING_DATA_FILE)
training_data = training_handler.load() or {}
# Initialize or retrieve agent's training data
agent_training_data = training_data.get(agent_id, {})
if human_feedback is not None:
# Save initial output and human feedback
agent_training_data[train_iteration] = {
if self.ask_for_human_input and human_feedback is not None:
training_data = {
"initial_output": result.output,
"human_feedback": human_feedback,
"agent": agent_id,
"agent_role": self.agent.role, # type: ignore
}
else:
# Save improved output
if train_iteration in agent_training_data:
agent_training_data[train_iteration]["improved_output"] = result.output
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if isinstance(train_iteration, int):
CrewTrainingHandler(TRAINING_DATA_FILE).append(
train_iteration, agent_id, training_data
)
else:
self._printer.print(
content=(
f"No existing training data for agent {agent_id} and iteration "
f"{train_iteration}. Cannot save improved output."
),
content="Invalid train iteration type. Expected int.",
color="red",
)
else:
self._printer.print(
content="Crew is None or does not have _train_iteration attribute.",
color="red",
)
return
# Update the training data and save
training_data[agent_id] = agent_training_data
training_handler.save(training_data)
def _format_prompt(self, prompt: str, inputs: Dict[str, str]) -> str:
prompt = prompt.replace("{input}", inputs["input"])
@@ -525,124 +411,79 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
return {"role": role, "content": prompt}
def _handle_human_feedback(self, formatted_answer: AgentFinish) -> AgentFinish:
"""Handle human feedback with different flows for training vs regular use.
Args:
formatted_answer: The initial AgentFinish result to get feedback on
Returns:
AgentFinish: The final answer after processing feedback
"""
human_feedback = self._ask_human_input(formatted_answer.output)
if self._is_training_mode():
return self._handle_training_feedback(formatted_answer, human_feedback)
return self._handle_regular_feedback(formatted_answer, human_feedback)
def _is_training_mode(self) -> bool:
"""Check if crew is in training mode."""
return bool(self.crew and self.crew._train)
def _handle_training_feedback(
self, initial_answer: AgentFinish, feedback: str
) -> AgentFinish:
"""Process feedback for training scenarios with single iteration."""
self._handle_crew_training_output(initial_answer, feedback)
self.messages.append(
self._format_msg(
self._i18n.slice("feedback_instructions").format(feedback=feedback)
)
)
improved_answer = self._invoke_loop()
self._handle_crew_training_output(improved_answer)
self.ask_for_human_input = False
return improved_answer
def _handle_regular_feedback(
self, current_answer: AgentFinish, initial_feedback: str
) -> AgentFinish:
"""Process feedback for regular use with potential multiple iterations."""
feedback = initial_feedback
answer = current_answer
while self.ask_for_human_input:
# If the user provides a blank response, assume they are happy with the result
if feedback.strip() == "":
self.ask_for_human_input = False
else:
answer = self._process_feedback_iteration(feedback)
feedback = self._ask_human_input(answer.output)
return answer
def _process_feedback_iteration(self, feedback: str) -> AgentFinish:
"""Process a single feedback iteration."""
self.messages.append(
self._format_msg(
self._i18n.slice("feedback_instructions").format(feedback=feedback)
)
)
return self._invoke_loop()
def _log_feedback_error(self, retry_count: int, error: Exception) -> None:
"""Log feedback processing errors."""
self._printer.print(
content=(
f"Error processing feedback: {error}. "
f"Retrying... ({retry_count + 1}/{MAX_LLM_RETRY})"
),
color="red",
)
def _log_max_retries_exceeded(self) -> None:
"""Log when max retries for feedback processing are exceeded."""
self._printer.print(
content=(
f"Failed to process feedback after {MAX_LLM_RETRY} attempts. "
"Ending feedback loop."
),
color="red",
)
def _handle_max_iterations_exceeded(self, formatted_answer):
"""
Handles the case when the maximum number of iterations is exceeded.
Performs one more LLM call to get the final answer.
Handles the human feedback loop, allowing the user to provide feedback
on the agent's output and determining if additional iterations are needed.
Parameters:
formatted_answer: The last formatted answer from the agent.
formatted_answer (AgentFinish): The initial output from the agent.
Returns:
The final formatted answer after exceeding max iterations.
AgentFinish: The final output after incorporating human feedback.
"""
self._printer.print(
content="Maximum iterations reached. Requesting final answer.",
color="yellow",
while self.ask_for_human_input:
human_feedback = self._ask_human_input(formatted_answer.output)
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer, human_feedback)
# Make an LLM call to verify if additional changes are requested based on human feedback
additional_changes_prompt = self._i18n.slice(
"human_feedback_classification"
).format(feedback=human_feedback)
retry_count = 0
llm_call_successful = False
additional_changes_response = None
while retry_count < MAX_LLM_RETRY and not llm_call_successful:
try:
additional_changes_response = (
self.llm.call(
[
self._format_msg(
additional_changes_prompt, role="system"
)
if formatted_answer and hasattr(formatted_answer, "text"):
assistant_message = (
formatted_answer.text + f'\n{self._i18n.errors("force_final_answer")}'
)
else:
assistant_message = self._i18n.errors("force_final_answer")
self.messages.append(self._format_msg(assistant_message, role="assistant"))
# Perform one more LLM call to get the final answer
answer = self.llm.call(
self.messages,
],
callbacks=self.callbacks,
)
.strip()
.lower()
)
llm_call_successful = True
except Exception as e:
retry_count += 1
if answer is None or answer == "":
self._printer.print(
content="Received None or empty response from LLM call.",
content=f"Error during LLM call to classify human feedback: {e}. Retrying... ({retry_count}/{MAX_LLM_RETRY})",
color="red",
)
raise ValueError("Invalid response from LLM call - None or empty.")
formatted_answer = self._format_answer(answer)
# Return the formatted answer, regardless of its type
if not llm_call_successful:
self._printer.print(
content="Error processing feedback after multiple attempts.",
color="red",
)
self.ask_for_human_input = False
break
if additional_changes_response == "false":
self.ask_for_human_input = False
elif additional_changes_response == "true":
self.ask_for_human_input = True
# Add human feedback to messages
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
# Invoke the loop again with updated messages
formatted_answer = self._invoke_loop()
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer)
else:
# Unexpected response
self._printer.print(
content=f"Unexpected response from LLM: '{additional_changes_response}'. Assuming no additional changes requested.",
color="red",
)
self.ask_for_human_input = False
return formatted_answer

View File

@@ -94,13 +94,6 @@ class CrewAgentParser:
elif includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
# Check whether the final answer ends with triple backticks.
if final_answer.endswith("```"):
# Count occurrences of triple backticks in the final answer.
count = final_answer.count("```")
# If count is odd then it's an unmatched trailing set; remove it.
if count % 2 != 0:
final_answer = final_answer[:-3].rstrip()
return AgentFinish(thought, final_answer, text)
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
@@ -124,19 +117,15 @@ class CrewAgentParser:
)
def _extract_thought(self, text: str) -> str:
thought_index = text.find("\nAction")
if thought_index == -1:
thought_index = text.find("\nFinal Answer")
if thought_index == -1:
regex = r"(.*?)(?:\n\nAction|\n\nFinal Answer)"
thought_match = re.search(regex, text, re.DOTALL)
if thought_match:
return thought_match.group(1).strip()
return ""
thought = text[:thought_index].strip()
# Remove any triple backticks from the thought string
thought = thought.replace("```", "").strip()
return thought
def _clean_action(self, text: str) -> str:
"""Clean action string by removing non-essential formatting characters."""
return text.strip().strip("*").strip()
return re.sub(r"^\s*\*+\s*|\s*\*+\s*$", "", text).strip()
def _safe_repair_json(self, tool_input: str) -> str:
UNABLE_TO_REPAIR_JSON_RESULTS = ['""', "{}"]

View File

@@ -1,13 +1,11 @@
import os
from importlib.metadata import version as get_version
from typing import Optional, Tuple
from typing import Optional
import click
from crewai.cli.add_crew_to_flow import add_crew_to_flow
from crewai.cli.create_crew import create_crew
from crewai.cli.create_flow import create_flow
from crewai.cli.crew_chat import run_chat
from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)
@@ -203,6 +201,7 @@ def install(context):
@crewai.command()
def run():
"""Run the Crew."""
click.echo("Running the Crew")
run_crew()
@@ -343,18 +342,5 @@ def flow_add_crew(crew_name):
add_crew_to_flow(crew_name)
@crewai.command()
def chat():
"""
Start a conversation with the Crew, collecting user-supplied inputs,
and using the Chat LLM to generate responses.
"""
click.secho(
"\nStarting a conversation with the Crew\n" "Type 'exit' or Ctrl+C to quit.\n",
)
run_chat()
if __name__ == "__main__":
crewai()

View File

@@ -17,12 +17,6 @@ ENV_VARS = {
"key_name": "GEMINI_API_KEY",
}
],
"nvidia_nim": [
{
"prompt": "Enter your NVIDIA API key (press Enter to skip)",
"key_name": "NVIDIA_NIM_API_KEY",
}
],
"groq": [
{
"prompt": "Enter your GROQ API key (press Enter to skip)",
@@ -91,12 +85,6 @@ ENV_VARS = {
"key_name": "CEREBRAS_API_KEY",
},
],
"sambanova": [
{
"prompt": "Enter your SambaNovaCloud API key (press Enter to skip)",
"key_name": "SAMBANOVA_API_KEY",
}
],
}
@@ -104,14 +92,12 @@ PROVIDERS = [
"openai",
"anthropic",
"gemini",
"nvidia_nim",
"groq",
"ollama",
"watson",
"bedrock",
"azure",
"cerebras",
"sambanova",
]
MODELS = {
@@ -128,75 +114,6 @@ MODELS = {
"gemini/gemini-gemma-2-9b-it",
"gemini/gemini-gemma-2-27b-it",
],
"nvidia_nim": [
"nvidia_nim/nvidia/mistral-nemo-minitron-8b-8k-instruct",
"nvidia_nim/nvidia/nemotron-4-mini-hindi-4b-instruct",
"nvidia_nim/nvidia/llama-3.1-nemotron-70b-instruct",
"nvidia_nim/nvidia/llama3-chatqa-1.5-8b",
"nvidia_nim/nvidia/llama3-chatqa-1.5-70b",
"nvidia_nim/nvidia/vila",
"nvidia_nim/nvidia/neva-22",
"nvidia_nim/nvidia/nemotron-mini-4b-instruct",
"nvidia_nim/nvidia/usdcode-llama3-70b-instruct",
"nvidia_nim/nvidia/nemotron-4-340b-instruct",
"nvidia_nim/meta/codellama-70b",
"nvidia_nim/meta/llama2-70b",
"nvidia_nim/meta/llama3-8b-instruct",
"nvidia_nim/meta/llama3-70b-instruct",
"nvidia_nim/meta/llama-3.1-8b-instruct",
"nvidia_nim/meta/llama-3.1-70b-instruct",
"nvidia_nim/meta/llama-3.1-405b-instruct",
"nvidia_nim/meta/llama-3.2-1b-instruct",
"nvidia_nim/meta/llama-3.2-3b-instruct",
"nvidia_nim/meta/llama-3.2-11b-vision-instruct",
"nvidia_nim/meta/llama-3.2-90b-vision-instruct",
"nvidia_nim/meta/llama-3.1-70b-instruct",
"nvidia_nim/google/gemma-7b",
"nvidia_nim/google/gemma-2b",
"nvidia_nim/google/codegemma-7b",
"nvidia_nim/google/codegemma-1.1-7b",
"nvidia_nim/google/recurrentgemma-2b",
"nvidia_nim/google/gemma-2-9b-it",
"nvidia_nim/google/gemma-2-27b-it",
"nvidia_nim/google/gemma-2-2b-it",
"nvidia_nim/google/deplot",
"nvidia_nim/google/paligemma",
"nvidia_nim/mistralai/mistral-7b-instruct-v0.2",
"nvidia_nim/mistralai/mixtral-8x7b-instruct-v0.1",
"nvidia_nim/mistralai/mistral-large",
"nvidia_nim/mistralai/mixtral-8x22b-instruct-v0.1",
"nvidia_nim/mistralai/mistral-7b-instruct-v0.3",
"nvidia_nim/nv-mistralai/mistral-nemo-12b-instruct",
"nvidia_nim/mistralai/mamba-codestral-7b-v0.1",
"nvidia_nim/microsoft/phi-3-mini-128k-instruct",
"nvidia_nim/microsoft/phi-3-mini-4k-instruct",
"nvidia_nim/microsoft/phi-3-small-8k-instruct",
"nvidia_nim/microsoft/phi-3-small-128k-instruct",
"nvidia_nim/microsoft/phi-3-medium-4k-instruct",
"nvidia_nim/microsoft/phi-3-medium-128k-instruct",
"nvidia_nim/microsoft/phi-3.5-mini-instruct",
"nvidia_nim/microsoft/phi-3.5-moe-instruct",
"nvidia_nim/microsoft/kosmos-2",
"nvidia_nim/microsoft/phi-3-vision-128k-instruct",
"nvidia_nim/microsoft/phi-3.5-vision-instruct",
"nvidia_nim/databricks/dbrx-instruct",
"nvidia_nim/snowflake/arctic",
"nvidia_nim/aisingapore/sea-lion-7b-instruct",
"nvidia_nim/ibm/granite-8b-code-instruct",
"nvidia_nim/ibm/granite-34b-code-instruct",
"nvidia_nim/ibm/granite-3.0-8b-instruct",
"nvidia_nim/ibm/granite-3.0-3b-a800m-instruct",
"nvidia_nim/mediatek/breeze-7b-instruct",
"nvidia_nim/upstage/solar-10.7b-instruct",
"nvidia_nim/writer/palmyra-med-70b-32k",
"nvidia_nim/writer/palmyra-med-70b",
"nvidia_nim/writer/palmyra-fin-70b-32k",
"nvidia_nim/01-ai/yi-large",
"nvidia_nim/deepseek-ai/deepseek-coder-6.7b-instruct",
"nvidia_nim/rakuten/rakutenai-7b-instruct",
"nvidia_nim/rakuten/rakutenai-7b-chat",
"nvidia_nim/baichuan-inc/baichuan2-13b-chat",
],
"groq": [
"groq/llama-3.1-8b-instant",
"groq/llama-3.1-70b-versatile",
@@ -216,43 +133,10 @@ MODELS = {
"watsonx/ibm/granite-3-8b-instruct",
],
"bedrock": [
"bedrock/us.amazon.nova-pro-v1:0",
"bedrock/us.amazon.nova-micro-v1:0",
"bedrock/us.amazon.nova-lite-v1:0",
"bedrock/us.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/us.anthropic.claude-3-5-haiku-20241022-v1:0",
"bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
"bedrock/us.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/us.anthropic.claude-3-opus-20240229-v1:0",
"bedrock/us.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/us.meta.llama3-2-11b-instruct-v1:0",
"bedrock/us.meta.llama3-2-3b-instruct-v1:0",
"bedrock/us.meta.llama3-2-90b-instruct-v1:0",
"bedrock/us.meta.llama3-2-1b-instruct-v1:0",
"bedrock/us.meta.llama3-1-8b-instruct-v1:0",
"bedrock/us.meta.llama3-1-70b-instruct-v1:0",
"bedrock/us.meta.llama3-3-70b-instruct-v1:0",
"bedrock/us.meta.llama3-1-405b-instruct-v1:0",
"bedrock/eu.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/eu.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/eu.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/eu.meta.llama3-2-3b-instruct-v1:0",
"bedrock/eu.meta.llama3-2-1b-instruct-v1:0",
"bedrock/apac.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/apac.anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/apac.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/apac.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/amazon.nova-pro-v1:0",
"bedrock/amazon.nova-micro-v1:0",
"bedrock/amazon.nova-lite-v1:0",
"bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/anthropic.claude-3-5-haiku-20241022-v1:0",
"bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/anthropic.claude-3-7-sonnet-20250219-v1:0",
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
"bedrock/anthropic.claude-v2:1",
"bedrock/anthropic.claude-v2",
"bedrock/anthropic.claude-instant-v1",
@@ -267,26 +151,13 @@ MODELS = {
"bedrock/ai21.j2-mid-v1",
"bedrock/ai21.j2-ultra-v1",
"bedrock/ai21.jamba-instruct-v1:0",
"bedrock/meta.llama2-13b-chat-v1",
"bedrock/meta.llama2-70b-chat-v1",
"bedrock/mistral.mistral-7b-instruct-v0:2",
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
],
"sambanova": [
"sambanova/Meta-Llama-3.3-70B-Instruct",
"sambanova/QwQ-32B-Preview",
"sambanova/Qwen2.5-72B-Instruct",
"sambanova/Qwen2.5-Coder-32B-Instruct",
"sambanova/Meta-Llama-3.1-405B-Instruct",
"sambanova/Meta-Llama-3.1-70B-Instruct",
"sambanova/Meta-Llama-3.1-8B-Instruct",
"sambanova/Llama-3.2-90B-Vision-Instruct",
"sambanova/Llama-3.2-11B-Vision-Instruct",
"sambanova/Meta-Llama-3.2-3B-Instruct",
"sambanova/Meta-Llama-3.2-1B-Instruct",
],
}
DEFAULT_LLM_MODEL = "gpt-4o-mini"
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"

View File

@@ -1,536 +0,0 @@
import json
import platform
import re
import sys
import threading
import time
from pathlib import Path
from typing import Any, Dict, List, Optional, Set, Tuple
import click
import tomli
from packaging import version
from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
from crewai.crew import Crew
from crewai.llm import LLM
from crewai.types.crew_chat import ChatInputField, ChatInputs
from crewai.utilities.llm_utils import create_llm
MIN_REQUIRED_VERSION = "0.98.0"
def check_conversational_crews_version(
crewai_version: str, pyproject_data: dict
) -> bool:
"""
Check if the installed crewAI version supports conversational crews.
Args:
crewai_version: The current version of crewAI.
pyproject_data: Dictionary containing pyproject.toml data.
Returns:
bool: True if version check passes, False otherwise.
"""
try:
if version.parse(crewai_version) < version.parse(MIN_REQUIRED_VERSION):
click.secho(
"You are using an older version of crewAI that doesn't support conversational crews. "
"Run 'uv upgrade crewai' to get the latest version.",
fg="red",
)
return False
except version.InvalidVersion:
click.secho("Invalid crewAI version format detected.", fg="red")
return False
return True
def run_chat():
"""
Runs an interactive chat loop using the Crew's chat LLM with function calling.
Incorporates crew_name, crew_description, and input fields to build a tool schema.
Exits if crew_name or crew_description are missing.
"""
crewai_version = get_crewai_version()
pyproject_data = read_toml()
if not check_conversational_crews_version(crewai_version, pyproject_data):
return
crew, crew_name = load_crew_and_name()
chat_llm = initialize_chat_llm(crew)
if not chat_llm:
return
# Indicate that the crew is being analyzed
click.secho(
"\nAnalyzing crew and required inputs - this may take 3 to 30 seconds "
"depending on the complexity of your crew.",
fg="white",
)
# Start loading indicator
loading_complete = threading.Event()
loading_thread = threading.Thread(target=show_loading, args=(loading_complete,))
loading_thread.start()
try:
crew_chat_inputs = generate_crew_chat_inputs(crew, crew_name, chat_llm)
crew_tool_schema = generate_crew_tool_schema(crew_chat_inputs)
system_message = build_system_message(crew_chat_inputs)
# Call the LLM to generate the introductory message
introductory_message = chat_llm.call(
messages=[{"role": "system", "content": system_message}]
)
finally:
# Stop loading indicator
loading_complete.set()
loading_thread.join()
# Indicate that the analysis is complete
click.secho("\nFinished analyzing crew.\n", fg="white")
click.secho(f"Assistant: {introductory_message}\n", fg="green")
messages = [
{"role": "system", "content": system_message},
{"role": "assistant", "content": introductory_message},
]
available_functions = {
crew_chat_inputs.crew_name: create_tool_function(crew, messages),
}
chat_loop(chat_llm, messages, crew_tool_schema, available_functions)
def show_loading(event: threading.Event):
"""Display animated loading dots while processing."""
while not event.is_set():
print(".", end="", flush=True)
time.sleep(1)
print()
def initialize_chat_llm(crew: Crew) -> Optional[LLM]:
"""Initializes the chat LLM and handles exceptions."""
try:
return create_llm(crew.chat_llm)
except Exception as e:
click.secho(
f"Unable to find a Chat LLM. Please make sure you set chat_llm on the crew: {e}",
fg="red",
)
return None
def build_system_message(crew_chat_inputs: ChatInputs) -> str:
"""Builds the initial system message for the chat."""
required_fields_str = (
", ".join(
f"{field.name} (desc: {field.description or 'n/a'})"
for field in crew_chat_inputs.inputs
)
or "(No required fields detected)"
)
return (
"You are a helpful AI assistant for the CrewAI platform. "
"Your primary purpose is to assist users with the crew's specific tasks. "
"You can answer general questions, but should guide users back to the crew's purpose afterward. "
"For example, after answering a general question, remind the user of your main purpose, such as generating a research report, and prompt them to specify a topic or task related to the crew's purpose. "
"You have a function (tool) you can call by name if you have all required inputs. "
f"Those required inputs are: {required_fields_str}. "
"Once you have them, call the function. "
"Please keep your responses concise and friendly. "
"If a user asks a question outside the crew's scope, provide a brief answer and remind them of the crew's purpose. "
"After calling the tool, be prepared to take user feedback and make adjustments as needed. "
"If you are ever unsure about a user's request or need clarification, ask the user for more information. "
"Before doing anything else, introduce yourself with a friendly message like: 'Hey! I'm here to help you with [crew's purpose]. Could you please provide me with [inputs] so we can get started?' "
"For example: 'Hey! I'm here to help you with uncovering and reporting cutting-edge developments through thorough research and detailed analysis. Could you please provide me with a topic you're interested in? This will help us generate a comprehensive research report and detailed analysis.'"
f"\nCrew Name: {crew_chat_inputs.crew_name}"
f"\nCrew Description: {crew_chat_inputs.crew_description}"
)
def create_tool_function(crew: Crew, messages: List[Dict[str, str]]) -> Any:
"""Creates a wrapper function for running the crew tool with messages."""
def run_crew_tool_with_messages(**kwargs):
return run_crew_tool(crew, messages, **kwargs)
return run_crew_tool_with_messages
def flush_input():
"""Flush any pending input from the user."""
if platform.system() == "Windows":
# Windows platform
import msvcrt
while msvcrt.kbhit():
msvcrt.getch()
else:
# Unix-like platforms (Linux, macOS)
import termios
termios.tcflush(sys.stdin, termios.TCIFLUSH)
def chat_loop(chat_llm, messages, crew_tool_schema, available_functions):
"""Main chat loop for interacting with the user."""
while True:
try:
# Flush any pending input before accepting new input
flush_input()
user_input = get_user_input()
handle_user_input(
user_input, chat_llm, messages, crew_tool_schema, available_functions
)
except KeyboardInterrupt:
click.echo("\nExiting chat. Goodbye!")
break
except Exception as e:
click.secho(f"An error occurred: {e}", fg="red")
break
def get_user_input() -> str:
"""Collect multi-line user input with exit handling."""
click.secho(
"\nYou (type your message below. Press 'Enter' twice when you're done):",
fg="blue",
)
user_input_lines = []
while True:
line = input()
if line.strip().lower() == "exit":
return "exit"
if line == "":
break
user_input_lines.append(line)
return "\n".join(user_input_lines)
def handle_user_input(
user_input: str,
chat_llm: LLM,
messages: List[Dict[str, str]],
crew_tool_schema: Dict[str, Any],
available_functions: Dict[str, Any],
) -> None:
if user_input.strip().lower() == "exit":
click.echo("Exiting chat. Goodbye!")
return
if not user_input.strip():
click.echo("Empty message. Please provide input or type 'exit' to quit.")
return
messages.append({"role": "user", "content": user_input})
# Indicate that assistant is processing
click.echo()
click.secho("Assistant is processing your input. Please wait...", fg="green")
# Process assistant's response
final_response = chat_llm.call(
messages=messages,
tools=[crew_tool_schema],
available_functions=available_functions,
)
messages.append({"role": "assistant", "content": final_response})
click.secho(f"\nAssistant: {final_response}\n", fg="green")
def generate_crew_tool_schema(crew_inputs: ChatInputs) -> dict:
"""
Dynamically build a Littellm 'function' schema for the given crew.
crew_name: The name of the crew (used for the function 'name').
crew_inputs: A ChatInputs object containing crew_description
and a list of input fields (each with a name & description).
"""
properties = {}
for field in crew_inputs.inputs:
properties[field.name] = {
"type": "string",
"description": field.description or "No description provided",
}
required_fields = [field.name for field in crew_inputs.inputs]
return {
"type": "function",
"function": {
"name": crew_inputs.crew_name,
"description": crew_inputs.crew_description or "No crew description",
"parameters": {
"type": "object",
"properties": properties,
"required": required_fields,
},
},
}
def run_crew_tool(crew: Crew, messages: List[Dict[str, str]], **kwargs):
"""
Runs the crew using crew.kickoff(inputs=kwargs) and returns the output.
Args:
crew (Crew): The crew instance to run.
messages (List[Dict[str, str]]): The chat messages up to this point.
**kwargs: The inputs collected from the user.
Returns:
str: The output from the crew's execution.
Raises:
SystemExit: Exits the chat if an error occurs during crew execution.
"""
try:
# Serialize 'messages' to JSON string before adding to kwargs
kwargs["crew_chat_messages"] = json.dumps(messages)
# Run the crew with the provided inputs
crew_output = crew.kickoff(inputs=kwargs)
# Convert CrewOutput to a string to send back to the user
result = str(crew_output)
return result
except Exception as e:
# Exit the chat and show the error message
click.secho("An error occurred while running the crew:", fg="red")
click.secho(str(e), fg="red")
sys.exit(1)
def load_crew_and_name() -> Tuple[Crew, str]:
"""
Loads the crew by importing the crew class from the user's project.
Returns:
Tuple[Crew, str]: A tuple containing the Crew instance and the name of the crew.
"""
# Get the current working directory
cwd = Path.cwd()
# Path to the pyproject.toml file
pyproject_path = cwd / "pyproject.toml"
if not pyproject_path.exists():
raise FileNotFoundError("pyproject.toml not found in the current directory.")
# Load the pyproject.toml file using 'tomli'
with pyproject_path.open("rb") as f:
pyproject_data = tomli.load(f)
# Get the project name from the 'project' section
project_name = pyproject_data["project"]["name"]
folder_name = project_name
# Derive the crew class name from the project name
# E.g., if project_name is 'my_project', crew_class_name is 'MyProject'
crew_class_name = project_name.replace("_", " ").title().replace(" ", "")
# Add the 'src' directory to sys.path
src_path = cwd / "src"
if str(src_path) not in sys.path:
sys.path.insert(0, str(src_path))
# Import the crew module
crew_module_name = f"{folder_name}.crew"
try:
crew_module = __import__(crew_module_name, fromlist=[crew_class_name])
except ImportError as e:
raise ImportError(f"Failed to import crew module {crew_module_name}: {e}")
# Get the crew class from the module
try:
crew_class = getattr(crew_module, crew_class_name)
except AttributeError:
raise AttributeError(
f"Crew class {crew_class_name} not found in module {crew_module_name}"
)
# Instantiate the crew
crew_instance = crew_class().crew()
return crew_instance, crew_class_name
def generate_crew_chat_inputs(crew: Crew, crew_name: str, chat_llm) -> ChatInputs:
"""
Generates the ChatInputs required for the crew by analyzing the tasks and agents.
Args:
crew (Crew): The crew object containing tasks and agents.
crew_name (str): The name of the crew.
chat_llm: The chat language model to use for AI calls.
Returns:
ChatInputs: An object containing the crew's name, description, and input fields.
"""
# Extract placeholders from tasks and agents
required_inputs = fetch_required_inputs(crew)
# Generate descriptions for each input using AI
input_fields = []
for input_name in required_inputs:
description = generate_input_description_with_ai(input_name, crew, chat_llm)
input_fields.append(ChatInputField(name=input_name, description=description))
# Generate crew description using AI
crew_description = generate_crew_description_with_ai(crew, chat_llm)
return ChatInputs(
crew_name=crew_name, crew_description=crew_description, inputs=input_fields
)
def fetch_required_inputs(crew: Crew) -> Set[str]:
"""
Extracts placeholders from the crew's tasks and agents.
Args:
crew (Crew): The crew object.
Returns:
Set[str]: A set of placeholder names.
"""
placeholder_pattern = re.compile(r"\{(.+?)\}")
required_inputs: Set[str] = set()
# Scan tasks
for task in crew.tasks:
text = f"{task.description or ''} {task.expected_output or ''}"
required_inputs.update(placeholder_pattern.findall(text))
# Scan agents
for agent in crew.agents:
text = f"{agent.role or ''} {agent.goal or ''} {agent.backstory or ''}"
required_inputs.update(placeholder_pattern.findall(text))
return required_inputs
def generate_input_description_with_ai(input_name: str, crew: Crew, chat_llm) -> str:
"""
Generates an input description using AI based on the context of the crew.
Args:
input_name (str): The name of the input placeholder.
crew (Crew): The crew object.
chat_llm: The chat language model to use for AI calls.
Returns:
str: A concise description of the input.
"""
# Gather context from tasks and agents where the input is used
context_texts = []
placeholder_pattern = re.compile(r"\{(.+?)\}")
for task in crew.tasks:
if (
f"{{{input_name}}}" in task.description
or f"{{{input_name}}}" in task.expected_output
):
# Replace placeholders with input names
task_description = placeholder_pattern.sub(
lambda m: m.group(1), task.description or ""
)
expected_output = placeholder_pattern.sub(
lambda m: m.group(1), task.expected_output or ""
)
context_texts.append(f"Task Description: {task_description}")
context_texts.append(f"Expected Output: {expected_output}")
for agent in crew.agents:
if (
f"{{{input_name}}}" in agent.role
or f"{{{input_name}}}" in agent.goal
or f"{{{input_name}}}" in agent.backstory
):
# Replace placeholders with input names
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
agent_backstory = placeholder_pattern.sub(
lambda m: m.group(1), agent.backstory or ""
)
context_texts.append(f"Agent Role: {agent_role}")
context_texts.append(f"Agent Goal: {agent_goal}")
context_texts.append(f"Agent Backstory: {agent_backstory}")
context = "\n".join(context_texts)
if not context:
# If no context is found for the input, raise an exception as per instruction
raise ValueError(f"No context found for input '{input_name}'.")
prompt = (
f"Based on the following context, write a concise description (15 words or less) of the input '{input_name}'.\n"
"Provide only the description, without any extra text or labels. Do not include placeholders like '{topic}' in the description.\n"
"Context:\n"
f"{context}"
)
response = chat_llm.call(messages=[{"role": "user", "content": prompt}])
description = response.strip()
return description
def generate_crew_description_with_ai(crew: Crew, chat_llm) -> str:
"""
Generates a brief description of the crew using AI.
Args:
crew (Crew): The crew object.
chat_llm: The chat language model to use for AI calls.
Returns:
str: A concise description of the crew's purpose (15 words or less).
"""
# Gather context from tasks and agents
context_texts = []
placeholder_pattern = re.compile(r"\{(.+?)\}")
for task in crew.tasks:
# Replace placeholders with input names
task_description = placeholder_pattern.sub(
lambda m: m.group(1), task.description or ""
)
expected_output = placeholder_pattern.sub(
lambda m: m.group(1), task.expected_output or ""
)
context_texts.append(f"Task Description: {task_description}")
context_texts.append(f"Expected Output: {expected_output}")
for agent in crew.agents:
# Replace placeholders with input names
agent_role = placeholder_pattern.sub(lambda m: m.group(1), agent.role or "")
agent_goal = placeholder_pattern.sub(lambda m: m.group(1), agent.goal or "")
agent_backstory = placeholder_pattern.sub(
lambda m: m.group(1), agent.backstory or ""
)
context_texts.append(f"Agent Role: {agent_role}")
context_texts.append(f"Agent Goal: {agent_goal}")
context_texts.append(f"Agent Backstory: {agent_backstory}")
context = "\n".join(context_texts)
if not context:
raise ValueError("No context found for generating crew description.")
prompt = (
"Based on the following context, write a concise, action-oriented description (15 words or less) of the crew's purpose.\n"
"Provide only the description, without any extra text or labels. Do not include placeholders like '{topic}' in the description.\n"
"Context:\n"
f"{context}"
)
response = chat_llm.call(messages=[{"role": "user", "content": prompt}])
crew_description = response.strip()
return crew_description

View File

@@ -1,5 +1,4 @@
import subprocess
from functools import lru_cache
class Repository:
@@ -36,7 +35,6 @@ class Repository:
encoding="utf-8",
).strip()
@lru_cache(maxsize=None)
def is_git_repo(self) -> bool:
"""Check if the current directory is a git repository."""
try:

View File

@@ -2,7 +2,11 @@ import subprocess
import click
from crewai.cli.utils import get_crew
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
def reset_memories_command(
@@ -26,34 +30,29 @@ def reset_memories_command(
"""
try:
crew = get_crew()
if not crew:
raise ValueError("No crew found.")
if all:
crew.reset_memories(command_type="all")
ShortTermMemory().reset()
EntityMemory().reset()
LongTermMemory().reset()
TaskOutputStorageHandler().reset()
KnowledgeStorage().reset()
click.echo("All memories have been reset.")
return
if not any([long, short, entity, kickoff_outputs, knowledge]):
click.echo(
"No memory type specified. Please specify at least one type to reset."
)
return
else:
if long:
crew.reset_memories(command_type="long")
LongTermMemory().reset()
click.echo("Long term memory has been reset.")
if short:
crew.reset_memories(command_type="short")
ShortTermMemory().reset()
click.echo("Short term memory has been reset.")
if entity:
crew.reset_memories(command_type="entity")
EntityMemory().reset()
click.echo("Entity memory has been reset.")
if kickoff_outputs:
crew.reset_memories(command_type="kickoff_outputs")
TaskOutputStorageHandler().reset()
click.echo("Latest Kickoff outputs stored has been reset.")
if knowledge:
crew.reset_memories(command_type="knowledge")
KnowledgeStorage().reset()
click.echo("Knowledge has been reset.")
except subprocess.CalledProcessError as e:

View File

@@ -1,6 +1,4 @@
import subprocess
from enum import Enum
from typing import List, Optional
import click
from packaging import version
@@ -9,24 +7,16 @@ from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
class CrewType(Enum):
STANDARD = "standard"
FLOW = "flow"
def run_crew() -> None:
"""
Run the crew or flow by running a command in the UV environment.
Starting from version 0.103.0, this command can be used to run both
standard crews and flows. For flows, it detects the type from pyproject.toml
and automatically runs the appropriate command.
Run the crew by running a command in the UV environment.
"""
command = ["uv", "run", "run_crew"]
crewai_version = get_crewai_version()
min_required_version = "0.71.0"
pyproject_data = read_toml()
# Check for legacy poetry configuration
if pyproject_data.get("tool", {}).get("poetry") and (
version.parse(crewai_version) < version.parse(min_required_version)
):
@@ -36,54 +26,18 @@ def run_crew() -> None:
fg="red",
)
# Determine crew type
is_flow = pyproject_data.get("tool", {}).get("crewai", {}).get("type") == "flow"
crew_type = CrewType.FLOW if is_flow else CrewType.STANDARD
# Display appropriate message
click.echo(f"Running the {'Flow' if is_flow else 'Crew'}")
# Execute the appropriate command
execute_command(crew_type)
def execute_command(crew_type: CrewType) -> None:
"""
Execute the appropriate command based on crew type.
Args:
crew_type: The type of crew to run
"""
command = ["uv", "run", "kickoff" if crew_type == CrewType.FLOW else "run_crew"]
try:
subprocess.run(command, capture_output=False, text=True, check=True)
except subprocess.CalledProcessError as e:
handle_error(e, crew_type)
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True, nl=True)
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry, please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",
)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)
def handle_error(error: subprocess.CalledProcessError, crew_type: CrewType) -> None:
"""
Handle subprocess errors with appropriate messaging.
Args:
error: The subprocess error that occurred
crew_type: The type of crew that was being run
"""
entity_type = "flow" if crew_type == CrewType.FLOW else "crew"
click.echo(f"An error occurred while running the {entity_type}: {error}", err=True)
if error.output:
click.echo(error.output, err=True, nl=True)
pyproject_data = read_toml()
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry, "
"please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",
)

View File

@@ -1,3 +1,2 @@
.env
__pycache__/
.DS_Store

View File

@@ -2,7 +2,7 @@ research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is {current_year}.
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher

View File

@@ -2,8 +2,6 @@
import sys
import warnings
from datetime import datetime
from {{folder_name}}.crew import {{crew_name}}
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
@@ -18,14 +16,9 @@ def run():
Run the crew.
"""
inputs = {
'topic': 'AI LLMs',
'current_year': str(datetime.now().year)
'topic': 'AI LLMs'
}
try:
{{crew_name}}().crew().kickoff(inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while running the crew: {e}")
def train():
@@ -56,11 +49,10 @@ def test():
Test the crew execution and returns the results.
"""
inputs = {
"topic": "AI LLMs",
"current_year": str(datetime.now().year)
"topic": "AI LLMs"
}
try:
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while testing the crew: {e}")
raise Exception(f"An error occurred while replaying the crew: {e}")

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.108.0,<1.0.0"
"crewai[tools]>=0.86.0,<1.0.0"
]
[project.scripts]

View File

@@ -1,4 +1,3 @@
.env
__pycache__/
lib/
.DS_Store

View File

@@ -30,13 +30,13 @@ crewai install
## Running the Project
To kickstart your flow and begin execution, run this from the root folder of your project:
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
```bash
crewai run
```
This command initializes the {{name}} Flow as defined in your configuration.
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.

View File

@@ -3,7 +3,7 @@ from random import randint
from pydantic import BaseModel
from crewai.flow import Flow, listen, start
from crewai.flow.flow import Flow, listen, start
from {{folder_name}}.crews.poem_crew.poem_crew import PoemCrew

View File

@@ -5,12 +5,11 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.108.0,<1.0.0",
"crewai[tools]>=0.86.0,<1.0.0",
]
[project.scripts]
kickoff = "{{folder_name}}.main:kickoff"
run_crew = "{{folder_name}}.main:kickoff"
plot = "{{folder_name}}.main:plot"
[build-system]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.108.0"
"crewai[tools]>=0.86.0"
]
[tool.crewai]

View File

@@ -9,7 +9,6 @@ import tomli
from rich.console import Console
from crewai.cli.constants import ENV_VARS
from crewai.crew import Crew
if sys.version_info >= (3, 11):
import tomllib
@@ -248,66 +247,3 @@ def write_env_file(folder_path, env_vars):
with open(env_file_path, "w") as file:
for key, value in env_vars.items():
file.write(f"{key}={value}\n")
def get_crew(crew_path: str = "crew.py", require: bool = False) -> Crew | None:
"""Get the crew instance from the crew.py file."""
try:
import importlib.util
import os
for root, _, files in os.walk("."):
if crew_path in files:
crew_os_path = os.path.join(root, crew_path)
try:
spec = importlib.util.spec_from_file_location(
"crew_module", crew_os_path
)
if not spec or not spec.loader:
continue
module = importlib.util.module_from_spec(spec)
try:
sys.modules[spec.name] = module
spec.loader.exec_module(module)
for attr_name in dir(module):
attr = getattr(module, attr_name)
try:
if isinstance(attr, Crew) and hasattr(attr, "kickoff"):
print(
f"Found valid crew object in attribute '{attr_name}' at {crew_os_path}."
)
return attr
except Exception as e:
print(f"Error processing attribute {attr_name}: {e}")
continue
except Exception as exec_error:
print(f"Error executing module: {exec_error}")
import traceback
print(f"Traceback: {traceback.format_exc()}")
except (ImportError, AttributeError) as e:
if require:
console.print(
f"Error importing crew from {crew_path}: {str(e)}",
style="bold red",
)
continue
break
if require:
console.print("No valid Crew instance found in crew.py", style="bold red")
raise SystemExit
return None
except Exception as e:
if require:
console.print(
f"Unexpected error while loading crew: {str(e)}", style="bold red"
)
raise SystemExit
return None

View File

@@ -1,12 +1,10 @@
import asyncio
import json
import re
import uuid
import warnings
from concurrent.futures import Future
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from pydantic import (
UUID4,
@@ -32,10 +30,10 @@ from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.memory.user.user_memory import UserMemory
from crewai.process import Process
from crewai.security import Fingerprint, SecurityConfig
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.types.usage_metrics import UsageMetrics
@@ -43,28 +41,20 @@ from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.events.crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
CrewTestStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
CrewTrainStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.event_listener import EventListener
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
)
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.planning_handler import CrewPlanner
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.utilities.training_handler import CrewTrainingHandler
try:
import agentops # type: ignore
except ImportError:
agentops = None
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
@@ -91,8 +81,6 @@ class Crew(BaseModel):
step_callback: Callback to be executed after each step for every agents execution.
share_crew: Whether you want to share the complete crew information and execution with crewAI to make the library better, and allow us to train models.
planning: Plan the crew execution and add the plan to the crew.
chat_llm: The language model used for orchestrating chat interactions with the crew.
security_config: Security configuration for the crew, including fingerprinting.
"""
__hash__ = object.__hash__ # type: ignore
@@ -159,7 +147,7 @@ class Crew(BaseModel):
manager_agent: Optional[BaseAgent] = Field(
description="Custom agent that will be used as manager.", default=None
)
function_calling_llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
function_calling_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
)
config: Optional[Union[Json, Dict[str, Any]]] = Field(default=None)
@@ -191,9 +179,9 @@ class Crew(BaseModel):
default=None,
description="Path to the prompt json file to be used for the crew.",
)
output_log_file: Optional[Union[bool, str]] = Field(
output_log_file: Optional[str] = Field(
default=None,
description="Path to the log file to be saved",
description="output_log_file",
)
planning: Optional[bool] = Field(
default=False,
@@ -215,17 +203,8 @@ class Crew(BaseModel):
default=None,
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
)
chat_llm: Optional[Any] = Field(
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
description="LLM used to handle chatting with the crew.",
)
knowledge: Optional[Knowledge] = Field(
default=None,
description="Knowledge for the crew.",
)
security_config: SecurityConfig = Field(
default_factory=SecurityConfig,
description="Security configuration for the crew, including fingerprinting.",
)
@field_validator("id", mode="before")
@@ -255,18 +234,22 @@ class Crew(BaseModel):
@model_validator(mode="after")
def set_private_attrs(self) -> "Crew":
"""Set private attributes."""
self._cache_handler = CacheHandler()
event_listener = EventListener()
event_listener.verbose = self.verbose
event_listener.formatter.verbose = self.verbose
self._logger = Logger(verbose=self.verbose)
if self.output_log_file:
self._file_handler = FileHandler(self.output_log_file)
self._rpm_controller = RPMController(max_rpm=self.max_rpm, logger=self._logger)
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = create_llm(self.function_calling_llm)
if self.function_calling_llm:
if isinstance(self.function_calling_llm, str):
self.function_calling_llm = LLM(model=self.function_calling_llm)
elif not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = LLM(
model=getattr(self.function_calling_llm, "model_name", None)
or getattr(self.function_calling_llm, "deployment_name", None)
or str(self.function_calling_llm)
)
self._telemetry = Telemetry()
self._telemetry.set_tracer()
return self
@model_validator(mode="after")
@@ -289,26 +272,12 @@ class Crew(BaseModel):
if self.entity_memory
else EntityMemory(crew=self, embedder_config=self.embedder)
)
if (
self.memory_config and "user_memory" in self.memory_config
): # Check for user_memory in config
user_memory_config = self.memory_config["user_memory"]
if isinstance(
user_memory_config, UserMemory
): # Check if it is already an instance
self._user_memory = user_memory_config
elif isinstance(
user_memory_config, dict
): # Check if it's a configuration dict
self._user_memory = UserMemory(
crew=self, **user_memory_config
) # Initialize with config
else:
raise TypeError(
"user_memory must be a UserMemory instance or a configuration dictionary"
if hasattr(self, "memory_config") and self.memory_config is not None:
self._user_memory = (
self.user_memory if self.user_memory else UserMemory(crew=self)
)
else:
self._user_memory = None # No user memory if not in config
self._user_memory = None
return self
@model_validator(mode="after")
@@ -319,9 +288,9 @@ class Crew(BaseModel):
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self.knowledge = Knowledge(
self._knowledge = Knowledge(
sources=self.knowledge_sources,
embedder=self.embedder,
embedder_config=self.embedder,
collection_name="crew",
)
@@ -408,22 +377,6 @@ class Crew(BaseModel):
return self
@model_validator(mode="after")
def validate_must_have_non_conditional_task(self) -> "Crew":
"""Ensure that a crew has at least one non-conditional task."""
if not self.tasks:
return self
non_conditional_count = sum(
1 for task in self.tasks if not isinstance(task, ConditionalTask)
)
if non_conditional_count == 0:
raise PydanticCustomError(
"only_conditional_tasks",
"Crew must include at least one non-conditional task",
{},
)
return self
@model_validator(mode="after")
def validate_first_task(self) -> "Crew":
"""Ensure the first task is not a ConditionalTask."""
@@ -485,21 +438,11 @@ class Crew(BaseModel):
@property
def key(self) -> str:
source: List[str] = [agent.key for agent in self.agents] + [
source = [agent.key for agent in self.agents] + [
task.key for task in self.tasks
]
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
@property
def fingerprint(self) -> Fingerprint:
"""
Get the crew's fingerprint.
Returns:
Fingerprint: The crew's fingerprint
"""
return self.security_config.fingerprint
def _setup_from_config(self):
assert self.config is not None, "Config should not be None."
@@ -545,16 +488,6 @@ class Crew(BaseModel):
self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = {}
) -> None:
"""Trains the crew for a given number of iterations."""
try:
crewai_event_bus.emit(
self,
CrewTrainStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
filename=filename,
inputs=inputs,
),
)
train_crew = self.copy()
train_crew._setup_for_training(filename)
@@ -569,44 +502,20 @@ class Crew(BaseModel):
result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id)
)
CrewTrainingHandler(filename).save_trained_data(
agent_id=str(agent.role), trained_data=result.model_dump()
)
crewai_event_bus.emit(
self,
CrewTrainCompletedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
filename=filename,
),
)
except Exception as e:
crewai_event_bus.emit(
self,
CrewTrainFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
self._logger.log("error", f"Training failed: {e}", color="red")
CrewTrainingHandler(TRAINING_DATA_FILE).clear()
CrewTrainingHandler(filename).clear()
raise
def kickoff(
self,
inputs: Optional[Dict[str, Any]] = None,
) -> CrewOutput:
try:
for before_callback in self.before_kickoff_callbacks:
if inputs is None:
inputs = {}
inputs = before_callback(inputs)
crewai_event_bus.emit(
self,
CrewKickoffStartedEvent(crew_name=self.name or "crew", inputs=inputs),
)
# Starts the crew to work on its assigned tasks.
"""Starts the crew to work on its assigned tasks."""
self._execution_span = self._telemetry.crew_execution_span(self, inputs)
self._task_output_handler.reset()
self._logging_color = "bold_purple"
@@ -621,7 +530,6 @@ class Crew(BaseModel):
agent.i18n = i18n
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
agent.crew = self # type: ignore[attr-defined]
agent.set_knowledge(crew_embedder=self.embedder)
# TODO: Create an AgentFunctionCalling protocol for future refactoring
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
@@ -653,13 +561,8 @@ class Crew(BaseModel):
self.usage_metrics = UsageMetrics()
for metric in metrics:
self.usage_metrics.add_usage_metrics(metric)
return result
except Exception as e:
crewai_event_bus.emit(
self,
CrewKickoffFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
raise
def kickoff_for_each(self, inputs: List[Dict[str, Any]]) -> List[CrewOutput]:
"""Executes the Crew's workflow for each input in the list and aggregates results."""
@@ -768,7 +671,11 @@ class Crew(BaseModel):
manager.tools = []
raise Exception("Manager agent should not have tools")
else:
self.manager_llm = create_llm(self.manager_llm)
self.manager_llm = (
getattr(self.manager_llm, "model_name", None)
or getattr(self.manager_llm, "deployment_name", None)
or self.manager_llm
)
manager = Agent(
role=i18n.retrieve("hierarchical_manager_agent", "role"),
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
@@ -828,7 +735,6 @@ class Crew(BaseModel):
task, task_outputs, futures, task_index, was_replayed
)
if skipped_task_output:
task_outputs.append(skipped_task_output)
continue
if task.async_execution:
@@ -852,7 +758,7 @@ class Crew(BaseModel):
context=context,
tools=tools_for_task,
)
task_outputs.append(task_output)
task_outputs = [task_output]
self._process_task_result(task, task_output)
self._store_execution_log(task, task_output, task_index, was_replayed)
@@ -873,7 +779,7 @@ class Crew(BaseModel):
task_outputs = self._process_async_tasks(futures, was_replayed)
futures.clear()
previous_output = task_outputs[-1] if task_outputs else None
previous_output = task_outputs[task_index - 1] if task_outputs else None
if previous_output is not None and not task.should_execute(previous_output):
self._logger.log(
"debug",
@@ -995,29 +901,20 @@ class Crew(BaseModel):
)
def _create_crew_output(self, task_outputs: List[TaskOutput]) -> CrewOutput:
if not task_outputs:
raise ValueError("No task outputs available to create crew output.")
# Filter out empty outputs and get the last valid one as the main output
valid_outputs = [t for t in task_outputs if t.raw]
if not valid_outputs:
raise ValueError("No valid task outputs available to create crew output.")
final_task_output = valid_outputs[-1]
if len(task_outputs) != 1:
raise ValueError(
"Something went wrong. Kickoff should return only one task output."
)
final_task_output = task_outputs[0]
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
token_usage = self.calculate_usage_metrics()
crewai_event_bus.emit(
self,
CrewKickoffCompletedEvent(
crew_name=self.name or "crew", output=final_task_output
),
)
return CrewOutput(
raw=final_task_output.raw,
pydantic=final_task_output.pydantic,
json_dict=final_task_output.json_dict,
tasks_output=task_outputs,
tasks_output=[task.output for task in self.tasks if task.output],
token_usage=token_usage,
)
@@ -1090,35 +987,10 @@ class Crew(BaseModel):
return result
def query_knowledge(self, query: List[str]) -> Union[List[Dict[str, Any]], None]:
if self.knowledge:
return self.knowledge.query(query)
if self._knowledge:
return self._knowledge.query(query)
return None
def fetch_inputs(self) -> Set[str]:
"""
Gathers placeholders (e.g., {something}) referenced in tasks or agents.
Scans each task's 'description' + 'expected_output', and each agent's
'role', 'goal', and 'backstory'.
Returns a set of all discovered placeholder names.
"""
placeholder_pattern = re.compile(r"\{(.+?)\}")
required_inputs: Set[str] = set()
# Scan tasks for inputs
for task in self.tasks:
# description and expected_output might contain e.g. {topic}, {user_name}, etc.
text = f"{task.description or ''} {task.expected_output or ''}"
required_inputs.update(placeholder_pattern.findall(text))
# Scan agents for inputs
for agent in self.agents:
# role, goal, backstory might have placeholders like {role_detail}, etc.
text = f"{agent.role or ''} {agent.goal or ''} {agent.backstory or ''}"
required_inputs.update(placeholder_pattern.findall(text))
return required_inputs
def copy(self):
"""Create a deep copy of the Crew."""
@@ -1132,10 +1004,9 @@ class Crew(BaseModel):
"_short_term_memory",
"_long_term_memory",
"_entity_memory",
"_telemetry",
"agents",
"tasks",
"knowledge_sources",
"knowledge",
}
cloned_agents = [agent.copy() for agent in self.agents]
@@ -1143,9 +1014,6 @@ class Crew(BaseModel):
task_mapping = {}
cloned_tasks = []
existing_knowledge_sources = shallow_copy(self.knowledge_sources)
existing_knowledge = shallow_copy(self.knowledge)
for task in self.tasks:
cloned_task = task.copy(cloned_agents, task_mapping)
cloned_tasks.append(cloned_task)
@@ -1165,13 +1033,7 @@ class Crew(BaseModel):
copied_data.pop("agents", None)
copied_data.pop("tasks", None)
copied_crew = Crew(
**copied_data,
agents=cloned_agents,
tasks=cloned_tasks,
knowledge_sources=existing_knowledge_sources,
knowledge=existing_knowledge,
)
copied_crew = Crew(**copied_data, agents=cloned_agents, tasks=cloned_tasks)
return copied_crew
@@ -1184,7 +1046,7 @@ class Crew(BaseModel):
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolates the inputs in the tasks and agents."""
[
task.interpolate_inputs_and_add_conversation_history(
task.interpolate_inputs(
# type: ignore # "interpolate_inputs" of "Task" does not return a value (it only ever returns None)
inputs
)
@@ -1197,6 +1059,13 @@ class Crew(BaseModel):
def _finish_execution(self, final_string_output: str) -> None:
if self.max_rpm:
self._rpm_controller.stop_rpm_counter()
if agentops:
agentops.end_session(
end_state="Success",
end_state_reason="Finished Execution",
is_auto_end=True,
)
self._telemetry.end_crew(self, final_string_output)
def calculate_usage_metrics(self) -> UsageMetrics:
"""Calculates and returns the usage metrics."""
@@ -1214,26 +1083,19 @@ class Crew(BaseModel):
def test(
self,
n_iterations: int,
eval_llm: Union[str, InstanceOf[LLM]],
openai_model_name: Optional[str] = None,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
try:
eval_llm = create_llm(eval_llm)
if not eval_llm:
raise ValueError("Failed to create LLM instance.")
crewai_event_bus.emit(
self,
CrewTestStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
eval_llm=eval_llm,
inputs=inputs,
),
)
test_crew = self.copy()
evaluator = CrewEvaluator(test_crew, eval_llm) # type: ignore[arg-type]
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
@@ -1241,95 +1103,5 @@ class Crew(BaseModel):
evaluator.print_crew_evaluation_result()
crewai_event_bus.emit(
self,
CrewTestCompletedEvent(
crew_name=self.name or "crew",
),
)
except Exception as e:
crewai_event_bus.emit(
self,
CrewTestFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
raise
def __repr__(self):
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"
def reset_memories(self, command_type: str) -> None:
"""Reset specific or all memories for the crew.
Args:
command_type: Type of memory to reset.
Valid options: 'long', 'short', 'entity', 'knowledge',
'kickoff_outputs', or 'all'
Raises:
ValueError: If an invalid command type is provided.
RuntimeError: If memory reset operation fails.
"""
VALID_TYPES = frozenset(
["long", "short", "entity", "knowledge", "kickoff_outputs", "all"]
)
if command_type not in VALID_TYPES:
raise ValueError(
f"Invalid command type. Must be one of: {', '.join(sorted(VALID_TYPES))}"
)
try:
if command_type == "all":
self._reset_all_memories()
else:
self._reset_specific_memory(command_type)
self._logger.log("info", f"{command_type} memory has been reset")
except Exception as e:
error_msg = f"Failed to reset {command_type} memory: {str(e)}"
self._logger.log("error", error_msg)
raise RuntimeError(error_msg) from e
def _reset_all_memories(self) -> None:
"""Reset all available memory systems."""
memory_systems = [
("short term", getattr(self, "_short_term_memory", None)),
("entity", getattr(self, "_entity_memory", None)),
("long term", getattr(self, "_long_term_memory", None)),
("task output", getattr(self, "_task_output_handler", None)),
("knowledge", getattr(self, "knowledge", None)),
]
for name, system in memory_systems:
if system is not None:
try:
system.reset()
except Exception as e:
raise RuntimeError(f"Failed to reset {name} memory") from e
def _reset_specific_memory(self, memory_type: str) -> None:
"""Reset a specific memory system.
Args:
memory_type: Type of memory to reset
Raises:
RuntimeError: If the specified memory system fails to reset
"""
reset_functions = {
"long": (self._long_term_memory, "long term"),
"short": (self._short_term_memory, "short term"),
"entity": (self._entity_memory, "entity"),
"knowledge": (self.knowledge, "knowledge"),
"kickoff_outputs": (self._task_output_handler, "task output"),
}
memory_system, name = reset_functions[memory_type]
if memory_system is None:
raise RuntimeError(f"{name} memory system is not initialized")
try:
memory_system.reset()
except Exception as e:
raise RuntimeError(f"Failed to reset {name} memory") from e

View File

@@ -1,5 +1,3 @@
from crewai.flow.flow import Flow, start, listen, or_, and_, router
from crewai.flow.persistence import persist
__all__ = ["Flow", "start", "listen", "or_", "and_", "router", "persist"]
from crewai.flow.flow import Flow
__all__ = ["Flow"]

View File

@@ -1,7 +1,5 @@
import asyncio
import copy
import inspect
import logging
from typing import (
Any,
Callable,
@@ -15,84 +13,21 @@ from typing import (
Union,
cast,
)
from uuid import uuid4
from pydantic import BaseModel, Field, ValidationError
from blinker import Signal
from pydantic import BaseModel, ValidationError
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.utils import get_possible_return_constants
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.flow_events import (
FlowCreatedEvent,
from crewai.flow.flow_events import (
FlowFinishedEvent,
FlowPlotEvent,
FlowStartedEvent,
MethodExecutionFailedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from crewai.utilities.printer import Printer
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.utils import get_possible_return_constants
from crewai.telemetry import Telemetry
logger = logging.getLogger(__name__)
class FlowState(BaseModel):
"""Base model for all flow states, ensuring each state has a unique ID."""
id: str = Field(
default_factory=lambda: str(uuid4()),
description="Unique identifier for the flow state",
)
# Type variables with explicit bounds
T = TypeVar(
"T", bound=Union[Dict[str, Any], BaseModel]
) # Generic flow state type parameter
StateT = TypeVar(
"StateT", bound=Union[Dict[str, Any], BaseModel]
) # State validation type parameter
def ensure_state_type(state: Any, expected_type: Type[StateT]) -> StateT:
"""Ensure state matches expected type with proper validation.
Args:
state: State instance to validate
expected_type: Expected type for the state
Returns:
Validated state instance
Raises:
TypeError: If state doesn't match expected type
ValueError: If state validation fails
"""
"""Ensure state matches expected type with proper validation.
Args:
state: State instance to validate
expected_type: Expected type for the state
Returns:
Validated state instance
Raises:
TypeError: If state doesn't match expected type
ValueError: If state validation fails
"""
if expected_type is dict:
if not isinstance(state, dict):
raise TypeError(f"Expected dict, got {type(state).__name__}")
return cast(StateT, state)
if isinstance(expected_type, type) and issubclass(expected_type, BaseModel):
if not isinstance(state, expected_type):
raise TypeError(
f"Expected {expected_type.__name__}, got {type(state).__name__}"
)
return cast(StateT, state)
raise TypeError(f"Invalid expected_type: {expected_type}")
T = TypeVar("T", bound=Union[BaseModel, Dict[str, Any]])
def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
@@ -136,7 +71,6 @@ def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
>>> def complex_start(self):
... pass
"""
def decorator(func):
func.__is_start_method__ = True
if condition is not None:
@@ -161,7 +95,6 @@ def start(condition: Optional[Union[str, dict, Callable]] = None) -> Callable:
return decorator
def listen(condition: Union[str, dict, Callable]) -> Callable:
"""
Creates a listener that executes when specified conditions are met.
@@ -198,7 +131,6 @@ def listen(condition: Union[str, dict, Callable]) -> Callable:
>>> def handle_completion(self):
... pass
"""
def decorator(func):
if isinstance(condition, str):
func.__trigger_methods__ = [condition]
@@ -263,7 +195,6 @@ def router(condition: Union[str, dict, Callable]) -> Callable:
... return CONTINUE
... return STOP
"""
def decorator(func):
func.__is_router__ = True
if isinstance(condition, str):
@@ -287,7 +218,6 @@ def router(condition: Union[str, dict, Callable]) -> Callable:
return decorator
def or_(*conditions: Union[str, dict, Callable]) -> dict:
"""
Combines multiple conditions with OR logic for flow control.
@@ -390,27 +320,17 @@ class FlowMeta(type):
routers = set()
for attr_name, attr_value in dct.items():
# Check for any flow-related attributes
if (
hasattr(attr_value, "__is_flow_method__")
or hasattr(attr_value, "__is_start_method__")
or hasattr(attr_value, "__trigger_methods__")
or hasattr(attr_value, "__is_router__")
):
# Register start methods
if hasattr(attr_value, "__is_start_method__"):
start_methods.append(attr_name)
# Register listeners and routers
if hasattr(attr_value, "__trigger_methods__"):
methods = attr_value.__trigger_methods__
condition_type = getattr(attr_value, "__condition_type__", "OR")
listeners[attr_name] = (condition_type, methods)
if (
hasattr(attr_value, "__is_router__")
and attr_value.__is_router__
):
elif hasattr(attr_value, "__trigger_methods__"):
methods = attr_value.__trigger_methods__
condition_type = getattr(attr_value, "__condition_type__", "OR")
listeners[attr_name] = (condition_type, methods)
if hasattr(attr_value, "__is_router__") and attr_value.__is_router__:
routers.add(attr_name)
possible_returns = get_possible_return_constants(attr_value)
if possible_returns:
@@ -425,17 +345,14 @@ class FlowMeta(type):
class Flow(Generic[T], metaclass=FlowMeta):
"""Base class for all flows.
Type parameter T must be either Dict[str, Any] or a subclass of BaseModel."""
_printer = Printer()
_telemetry = Telemetry()
_start_methods: List[str] = []
_listeners: Dict[str, tuple[str, List[str]]] = {}
_routers: Set[str] = set()
_router_paths: Dict[str, List[str]] = {}
initial_state: Union[Type[T], T, None] = None
event_emitter = Signal("event_emitter")
def __class_getitem__(cls: Type["Flow"], item: Type[T]) -> Type["Flow"]:
class _FlowGeneric(cls): # type: ignore
@@ -444,139 +361,30 @@ class Flow(Generic[T], metaclass=FlowMeta):
_FlowGeneric.__name__ = f"{cls.__name__}[{item.__name__}]"
return _FlowGeneric
def __init__(
self,
persistence: Optional[FlowPersistence] = None,
**kwargs: Any,
) -> None:
"""Initialize a new Flow instance.
Args:
persistence: Optional persistence backend for storing flow states
**kwargs: Additional state values to initialize or override
"""
# Initialize basic instance attributes
def __init__(self) -> None:
self._methods: Dict[str, Callable] = {}
self._state: T = self._create_initial_state()
self._method_execution_counts: Dict[str, int] = {}
self._pending_and_listeners: Dict[str, Set[str]] = {}
self._method_outputs: List[Any] = [] # List to store all method outputs
self._persistence: Optional[FlowPersistence] = persistence
# Initialize state with initial values
self._state = self._create_initial_state()
self._telemetry.flow_creation_span(self.__class__.__name__)
# Apply any additional kwargs
if kwargs:
self._initialize_state(kwargs)
crewai_event_bus.emit(
self,
FlowCreatedEvent(
type="flow_created",
flow_name=self.__class__.__name__,
),
)
# Register all flow-related methods
for method_name in dir(self):
if not method_name.startswith("_"):
method = getattr(self, method_name)
# Check for any flow-related attributes
if (
hasattr(method, "__is_flow_method__")
or hasattr(method, "__is_start_method__")
or hasattr(method, "__trigger_methods__")
or hasattr(method, "__is_router__")
if callable(getattr(self, method_name)) and not method_name.startswith(
"__"
):
# Ensure method is bound to this instance
if not hasattr(method, "__self__"):
method = method.__get__(self, self.__class__)
self._methods[method_name] = method
self._methods[method_name] = getattr(self, method_name)
def _create_initial_state(self) -> T:
"""Create and initialize flow state with UUID and default values.
Returns:
New state instance with UUID and default values initialized
Raises:
ValueError: If structured state model lacks 'id' field
TypeError: If state is neither BaseModel nor dictionary
"""
# Handle case where initial_state is None but we have a type parameter
if self.initial_state is None and hasattr(self, "_initial_state_T"):
state_type = getattr(self, "_initial_state_T")
if isinstance(state_type, type):
if issubclass(state_type, FlowState):
# Create instance without id, then set it
instance = state_type()
if not hasattr(instance, "id"):
setattr(instance, "id", str(uuid4()))
return cast(T, instance)
elif issubclass(state_type, BaseModel):
# Create a new type that includes the ID field
class StateWithId(state_type, FlowState): # type: ignore
pass
instance = StateWithId()
if not hasattr(instance, "id"):
setattr(instance, "id", str(uuid4()))
return cast(T, instance)
elif state_type is dict:
return cast(T, {"id": str(uuid4())})
# Handle case where no initial state is provided
return self._initial_state_T() # type: ignore
if self.initial_state is None:
return cast(T, {"id": str(uuid4())})
# Handle case where initial_state is a type (class)
if isinstance(self.initial_state, type):
if issubclass(self.initial_state, FlowState):
return cast(T, self.initial_state()) # Uses model defaults
elif issubclass(self.initial_state, BaseModel):
# Validate that the model has an id field
model_fields = getattr(self.initial_state, "model_fields", None)
if not model_fields or "id" not in model_fields:
raise ValueError("Flow state model must have an 'id' field")
return cast(T, self.initial_state()) # Uses model defaults
elif self.initial_state is dict:
return cast(T, {"id": str(uuid4())})
# Handle dictionary instance case
if isinstance(self.initial_state, dict):
new_state = dict(self.initial_state) # Copy to avoid mutations
if "id" not in new_state:
new_state["id"] = str(uuid4())
return cast(T, new_state)
# Handle BaseModel instance case
if isinstance(self.initial_state, BaseModel):
model = cast(BaseModel, self.initial_state)
if not hasattr(model, "id"):
raise ValueError("Flow state model must have an 'id' field")
# Create new instance with same values to avoid mutations
if hasattr(model, "model_dump"):
# Pydantic v2
state_dict = model.model_dump()
elif hasattr(model, "dict"):
# Pydantic v1
state_dict = model.dict()
return {} # type: ignore
elif isinstance(self.initial_state, type):
return self.initial_state()
else:
# Fallback for other BaseModel implementations
state_dict = {
k: v for k, v in model.__dict__.items() if not k.startswith("_")
}
# Create new instance of the same class
model_class = type(model)
return cast(T, model_class(**state_dict))
raise TypeError(
f"Initial state must be dict or BaseModel, got {type(self.initial_state)}"
)
def _copy_state(self) -> T:
return copy.deepcopy(self._state)
return self.initial_state
@property
def state(self) -> T:
@@ -587,198 +395,53 @@ class Flow(Generic[T], metaclass=FlowMeta):
"""Returns the list of all outputs from executed methods."""
return self._method_outputs
@property
def flow_id(self) -> str:
"""Returns the unique identifier of this flow instance.
This property provides a consistent way to access the flow's unique identifier
regardless of the underlying state implementation (dict or BaseModel).
Returns:
str: The flow's unique identifier, or an empty string if not found
Note:
This property safely handles both dictionary and BaseModel state types,
returning an empty string if the ID cannot be retrieved rather than raising
an exception.
Example:
```python
flow = MyFlow()
print(f"Current flow ID: {flow.flow_id}") # Safely get flow ID
```
"""
try:
if not hasattr(self, "_state"):
return ""
if isinstance(self._state, dict):
return str(self._state.get("id", ""))
elif isinstance(self._state, BaseModel):
return str(getattr(self._state, "id", ""))
return ""
except (AttributeError, TypeError):
return "" # Safely handle any unexpected attribute access issues
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
"""Initialize or update flow state with new inputs.
Args:
inputs: Dictionary of state values to set/update
Raises:
ValueError: If validation fails for structured state
TypeError: If state is neither BaseModel nor dictionary
"""
if isinstance(self._state, dict):
# For dict states, preserve existing fields unless overridden
current_id = self._state.get("id")
# Only update specified fields
for k, v in inputs.items():
self._state[k] = v
# Ensure ID is preserved or generated
if current_id:
self._state["id"] = current_id
elif "id" not in self._state:
self._state["id"] = str(uuid4())
elif isinstance(self._state, BaseModel):
# For BaseModel states, preserve existing fields unless overridden
if isinstance(self._state, BaseModel):
# Structured state
try:
model = cast(BaseModel, self._state)
# Get current state as dict
if hasattr(model, "model_dump"):
current_state = model.model_dump()
elif hasattr(model, "dict"):
current_state = model.dict()
else:
current_state = {
k: v for k, v in model.__dict__.items() if not k.startswith("_")
}
# Create new state with preserved fields and updates
new_state = {**current_state, **inputs}
def create_model_with_extra_forbid(
base_model: Type[BaseModel],
) -> Type[BaseModel]:
class ModelWithExtraForbid(base_model): # type: ignore
model_config = base_model.model_config.copy()
model_config["extra"] = "forbid"
# Create new instance with merged state
model_class = type(model)
if hasattr(model_class, "model_validate"):
# Pydantic v2
self._state = cast(T, model_class.model_validate(new_state))
elif hasattr(model_class, "parse_obj"):
# Pydantic v1
self._state = cast(T, model_class.parse_obj(new_state))
else:
# Fallback for other BaseModel implementations
self._state = cast(T, model_class(**new_state))
return ModelWithExtraForbid
ModelWithExtraForbid = create_model_with_extra_forbid(
self._state.__class__
)
self._state = cast(
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
)
except ValidationError as e:
raise ValueError(f"Invalid inputs for structured state: {e}") from e
elif isinstance(self._state, dict):
self._state.update(inputs)
else:
raise TypeError("State must be a BaseModel instance or a dictionary.")
def _restore_state(self, stored_state: Dict[str, Any]) -> None:
"""Restore flow state from persistence.
Args:
stored_state: Previously stored state to restore
Raises:
ValueError: If validation fails for structured state
TypeError: If state is neither BaseModel nor dictionary
"""
# When restoring from persistence, use the stored ID
stored_id = stored_state.get("id")
if not stored_id:
raise ValueError("Stored state must have an 'id' field")
if isinstance(self._state, dict):
# For dict states, update all fields from stored state
self._state.clear()
self._state.update(stored_state)
elif isinstance(self._state, BaseModel):
# For BaseModel states, create new instance with stored values
model = cast(BaseModel, self._state)
if hasattr(model, "model_validate"):
# Pydantic v2
self._state = cast(T, type(model).model_validate(stored_state))
elif hasattr(model, "parse_obj"):
# Pydantic v1
self._state = cast(T, type(model).parse_obj(stored_state))
else:
# Fallback for other BaseModel implementations
self._state = cast(T, type(model)(**stored_state))
else:
raise TypeError(f"State must be dict or BaseModel, got {type(self._state)}")
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Start the flow execution in a synchronous context.
This method wraps kickoff_async so that all state initialization and event
emission is handled in the asynchronous method.
"""
async def run_flow():
return await self.kickoff_async(inputs)
return asyncio.run(run_flow())
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Start the flow execution asynchronously.
This method performs state restoration (if an 'id' is provided and persistence is available)
and updates the flow state with any additional inputs. It then emits the FlowStartedEvent,
logs the flow startup, and executes all start methods. Once completed, it emits the
FlowFinishedEvent and returns the final output.
Args:
inputs: Optional dictionary containing input values and/or a state ID for restoration.
Returns:
The final output from the flow, which is the result of the last executed method.
"""
if inputs:
# Override the id in the state if it exists in inputs
if "id" in inputs:
if isinstance(self._state, dict):
self._state["id"] = inputs["id"]
elif isinstance(self._state, BaseModel):
setattr(self._state, "id", inputs["id"])
# If persistence is enabled, attempt to restore the stored state using the provided id.
if "id" in inputs and self._persistence is not None:
restore_uuid = inputs["id"]
stored_state = self._persistence.load_state(restore_uuid)
if stored_state:
self._log_flow_event(
f"Loading flow state from memory for UUID: {restore_uuid}",
color="yellow",
)
self._restore_state(stored_state)
else:
self._log_flow_event(
f"No flow state found for UUID: {restore_uuid}", color="red"
)
# Update state with any additional inputs (ignoring the 'id' key)
filtered_inputs = {k: v for k, v in inputs.items() if k != "id"}
if filtered_inputs:
self._initialize_state(filtered_inputs)
# Emit FlowStartedEvent and log the start of the flow.
crewai_event_bus.emit(
self.event_emitter.send(
self,
FlowStartedEvent(
event=FlowStartedEvent(
type="flow_started",
flow_name=self.__class__.__name__,
inputs=inputs,
),
)
self._log_flow_event(
f"Flow started with ID: {self.flow_id}", color="bold_magenta"
)
if inputs is not None and "id" not in inputs:
if inputs is not None:
self._initialize_state(inputs)
return asyncio.run(self.kickoff_async())
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
if not self._start_methods:
raise ValueError("No start method defined")
self._telemetry.flow_execution_span(
self.__class__.__name__, list(self._methods.keys())
)
tasks = [
self._execute_start_method(start_method)
@@ -788,15 +451,14 @@ class Flow(Generic[T], metaclass=FlowMeta):
final_output = self._method_outputs[-1] if self._method_outputs else None
crewai_event_bus.emit(
self.event_emitter.send(
self,
FlowFinishedEvent(
event=FlowFinishedEvent(
type="flow_finished",
flow_name=self.__class__.__name__,
result=final_output,
),
)
return final_output
async def _execute_start_method(self, start_method_name: str) -> None:
@@ -825,55 +487,16 @@ class Flow(Generic[T], metaclass=FlowMeta):
async def _execute_method(
self, method_name: str, method: Callable, *args: Any, **kwargs: Any
) -> Any:
try:
dumped_params = {f"_{i}": arg for i, arg in enumerate(args)} | (
kwargs or {}
)
crewai_event_bus.emit(
self,
MethodExecutionStartedEvent(
type="method_execution_started",
method_name=method_name,
flow_name=self.__class__.__name__,
params=dumped_params,
state=self._copy_state(),
),
)
result = (
await method(*args, **kwargs)
if asyncio.iscoroutinefunction(method)
else method(*args, **kwargs)
)
self._method_outputs.append(result)
self._method_execution_counts[method_name] = (
self._method_execution_counts.get(method_name, 0) + 1
)
crewai_event_bus.emit(
self,
MethodExecutionFinishedEvent(
type="method_execution_finished",
method_name=method_name,
flow_name=self.__class__.__name__,
state=self._copy_state(),
result=result,
),
)
return result
except Exception as e:
crewai_event_bus.emit(
self,
MethodExecutionFailedEvent(
type="method_execution_failed",
method_name=method_name,
flow_name=self.__class__.__name__,
error=e,
),
)
raise e
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
"""
@@ -894,38 +517,28 @@ class Flow(Generic[T], metaclass=FlowMeta):
Notes
-----
- Routers are executed sequentially to maintain flow control
- Each router's result becomes a new trigger_method
- Each router's result becomes the new trigger_method
- Normal listeners are executed in parallel for efficiency
- Listeners can receive the trigger method's result as a parameter
"""
# First, handle routers repeatedly until no router triggers anymore
router_results = []
current_trigger = trigger_method
while True:
routers_triggered = self._find_triggered_methods(
current_trigger, router_only=True
trigger_method, router_only=True
)
if not routers_triggered:
break
for router_name in routers_triggered:
await self._execute_single_listener(router_name, result)
# After executing router, the router's result is the path
router_result = self._method_outputs[-1]
if router_result: # Only add non-None results
router_results.append(router_result)
current_trigger = (
router_result # Update for next iteration of router chain
)
# The last router executed sets the trigger_method
# The router result is the last element in self._method_outputs
trigger_method = self._method_outputs[-1]
# Now execute normal listeners for all router results and the original trigger
all_triggers = [trigger_method] + router_results
for current_trigger in all_triggers:
if current_trigger: # Skip None results
# Now that no more routers are triggered by current trigger_method,
# execute normal listeners
listeners_triggered = self._find_triggered_methods(
current_trigger, router_only=False
trigger_method, router_only=False
)
if listeners_triggered:
tasks = [
@@ -1022,6 +635,15 @@ class Flow(Generic[T], metaclass=FlowMeta):
try:
method = self._methods[listener_name]
self.event_emitter.send(
self,
event=MethodExecutionStartedEvent(
type="method_execution_started",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
sig = inspect.signature(method)
params = list(sig.parameters.values())
method_params = [p for p in params if p.name != "self"]
@@ -1033,6 +655,15 @@ class Flow(Generic[T], metaclass=FlowMeta):
else:
listener_result = await self._execute_method(listener_name, method)
self.event_emitter.send(
self,
event=MethodExecutionFinishedEvent(
type="method_execution_finished",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
# Execute listeners (and possibly routers) of this listener
await self._execute_listeners(listener_name, listener_result)
@@ -1044,38 +675,8 @@ class Flow(Generic[T], metaclass=FlowMeta):
traceback.print_exc()
def _log_flow_event(
self, message: str, color: str = "yellow", level: str = "info"
) -> None:
"""Centralized logging method for flow events.
This method provides a consistent interface for logging flow-related events,
combining both console output with colors and proper logging levels.
Args:
message: The message to log
color: Color to use for console output (default: yellow)
Available colors: purple, red, bold_green, bold_purple,
bold_blue, yellow, yellow
level: Log level to use (default: info)
Supported levels: info, warning
Note:
This method uses the Printer utility for colored console output
and the standard logging module for log level support.
"""
self._printer.print(message, color=color)
if level == "info":
logger.info(message)
elif level == "warning":
logger.warning(message)
def plot(self, filename: str = "crewai_flow") -> None:
crewai_event_bus.emit(
self,
FlowPlotEvent(
type="flow_plot",
flow_name=self.__class__.__name__,
),
self._telemetry.flow_plotting_span(
self.__class__.__name__, list(self._methods.keys())
)
plot_flow(self, filename)

View File

@@ -0,0 +1,33 @@
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Optional
@dataclass
class Event:
type: str
flow_name: str
timestamp: datetime = field(init=False)
def __post_init__(self):
self.timestamp = datetime.now()
@dataclass
class FlowStartedEvent(Event):
pass
@dataclass
class MethodExecutionStartedEvent(Event):
method_name: str
@dataclass
class MethodExecutionFinishedEvent(Event):
method_name: str
@dataclass
class FlowFinishedEvent(Event):
result: Optional[Any] = None

View File

@@ -1,18 +0,0 @@
"""
CrewAI Flow Persistence.
This module provides interfaces and implementations for persisting flow states.
"""
from typing import Any, Dict, TypeVar, Union
from pydantic import BaseModel
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.persistence.decorators import persist
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
__all__ = ["FlowPersistence", "persist", "SQLiteFlowPersistence"]
StateType = TypeVar('StateType', bound=Union[Dict[str, Any], BaseModel])
DictStateType = Dict[str, Any]

View File

@@ -1,53 +0,0 @@
"""Base class for flow state persistence."""
import abc
from typing import Any, Dict, Optional, Union
from pydantic import BaseModel
class FlowPersistence(abc.ABC):
"""Abstract base class for flow state persistence.
This class defines the interface that all persistence implementations must follow.
It supports both structured (Pydantic BaseModel) and unstructured (dict) states.
"""
@abc.abstractmethod
def init_db(self) -> None:
"""Initialize the persistence backend.
This method should handle any necessary setup, such as:
- Creating tables
- Establishing connections
- Setting up indexes
"""
pass
@abc.abstractmethod
def save_state(
self,
flow_uuid: str,
method_name: str,
state_data: Union[Dict[str, Any], BaseModel],
) -> None:
"""Persist the flow state after method completion.
Args:
flow_uuid: Unique identifier for the flow instance
method_name: Name of the method that just completed
state_data: Current state data (either dict or Pydantic model)
"""
pass
@abc.abstractmethod
def load_state(self, flow_uuid: str) -> Optional[Dict[str, Any]]:
"""Load the most recent state for a given flow UUID.
Args:
flow_uuid: Unique identifier for the flow instance
Returns:
The most recent state as a dictionary, or None if no state exists
"""
pass

View File

@@ -1,254 +0,0 @@
"""
Decorators for flow state persistence.
Example:
```python
from crewai.flow.flow import Flow, start
from crewai.flow.persistence import persist, SQLiteFlowPersistence
class MyFlow(Flow):
@start()
@persist(SQLiteFlowPersistence())
def sync_method(self):
# Synchronous method implementation
pass
@start()
@persist(SQLiteFlowPersistence())
async def async_method(self):
# Asynchronous method implementation
await some_async_operation()
```
"""
import asyncio
import functools
import logging
from typing import (
Any,
Callable,
Optional,
Type,
TypeVar,
Union,
cast,
)
from pydantic import BaseModel
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
from crewai.utilities.printer import Printer
logger = logging.getLogger(__name__)
T = TypeVar("T")
# Constants for log messages
LOG_MESSAGES = {
"save_state": "Saving flow state to memory for ID: {}",
"save_error": "Failed to persist state for method {}: {}",
"state_missing": "Flow instance has no state",
"id_missing": "Flow state must have an 'id' field for persistence"
}
class PersistenceDecorator:
"""Class to handle flow state persistence with consistent logging."""
_printer = Printer() # Class-level printer instance
@classmethod
def persist_state(cls, flow_instance: Any, method_name: str, persistence_instance: FlowPersistence, verbose: bool = False) -> None:
"""Persist flow state with proper error handling and logging.
This method handles the persistence of flow state data, including proper
error handling and colored console output for status updates.
Args:
flow_instance: The flow instance whose state to persist
method_name: Name of the method that triggered persistence
persistence_instance: The persistence backend to use
verbose: Whether to log persistence operations
Raises:
ValueError: If flow has no state or state lacks an ID
RuntimeError: If state persistence fails
AttributeError: If flow instance lacks required state attributes
"""
try:
state = getattr(flow_instance, 'state', None)
if state is None:
raise ValueError("Flow instance has no state")
flow_uuid: Optional[str] = None
if isinstance(state, dict):
flow_uuid = state.get('id')
elif isinstance(state, BaseModel):
flow_uuid = getattr(state, 'id', None)
if not flow_uuid:
raise ValueError("Flow state must have an 'id' field for persistence")
# Log state saving only if verbose is True
if verbose:
cls._printer.print(LOG_MESSAGES["save_state"].format(flow_uuid), color="cyan")
logger.info(LOG_MESSAGES["save_state"].format(flow_uuid))
try:
persistence_instance.save_state(
flow_uuid=flow_uuid,
method_name=method_name,
state_data=state,
)
except Exception as e:
error_msg = LOG_MESSAGES["save_error"].format(method_name, str(e))
cls._printer.print(error_msg, color="red")
logger.error(error_msg)
raise RuntimeError(f"State persistence failed: {str(e)}") from e
except AttributeError:
error_msg = LOG_MESSAGES["state_missing"]
cls._printer.print(error_msg, color="red")
logger.error(error_msg)
raise ValueError(error_msg)
except (TypeError, ValueError) as e:
error_msg = LOG_MESSAGES["id_missing"]
cls._printer.print(error_msg, color="red")
logger.error(error_msg)
raise ValueError(error_msg) from e
def persist(persistence: Optional[FlowPersistence] = None, verbose: bool = False):
"""Decorator to persist flow state.
This decorator can be applied at either the class level or method level.
When applied at the class level, it automatically persists all flow method
states. When applied at the method level, it persists only that method's
state.
Args:
persistence: Optional FlowPersistence implementation to use.
If not provided, uses SQLiteFlowPersistence.
verbose: Whether to log persistence operations. Defaults to False.
Returns:
A decorator that can be applied to either a class or method
Raises:
ValueError: If the flow state doesn't have an 'id' field
RuntimeError: If state persistence fails
Example:
@persist(verbose=True) # Class-level persistence with logging
class MyFlow(Flow[MyState]):
@start()
def begin(self):
pass
"""
def decorator(target: Union[Type, Callable[..., T]]) -> Union[Type, Callable[..., T]]:
"""Decorator that handles both class and method decoration."""
actual_persistence = persistence or SQLiteFlowPersistence()
if isinstance(target, type):
# Class decoration
original_init = getattr(target, "__init__")
@functools.wraps(original_init)
def new_init(self: Any, *args: Any, **kwargs: Any) -> None:
if 'persistence' not in kwargs:
kwargs['persistence'] = actual_persistence
original_init(self, *args, **kwargs)
setattr(target, "__init__", new_init)
# Store original methods to preserve their decorators
original_methods = {}
for name, method in target.__dict__.items():
if callable(method) and (
hasattr(method, "__is_start_method__") or
hasattr(method, "__trigger_methods__") or
hasattr(method, "__condition_type__") or
hasattr(method, "__is_flow_method__") or
hasattr(method, "__is_router__")
):
original_methods[name] = method
# Create wrapped versions of the methods that include persistence
for name, method in original_methods.items():
if asyncio.iscoroutinefunction(method):
# Create a closure to capture the current name and method
def create_async_wrapper(method_name: str, original_method: Callable):
@functools.wraps(original_method)
async def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
result = await original_method(self, *args, **kwargs)
PersistenceDecorator.persist_state(self, method_name, actual_persistence, verbose)
return result
return method_wrapper
wrapped = create_async_wrapper(name, method)
# Preserve all original decorators and attributes
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(wrapped, attr, getattr(method, attr))
setattr(wrapped, "__is_flow_method__", True)
# Update the class with the wrapped method
setattr(target, name, wrapped)
else:
# Create a closure to capture the current name and method
def create_sync_wrapper(method_name: str, original_method: Callable):
@functools.wraps(original_method)
def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
result = original_method(self, *args, **kwargs)
PersistenceDecorator.persist_state(self, method_name, actual_persistence, verbose)
return result
return method_wrapper
wrapped = create_sync_wrapper(name, method)
# Preserve all original decorators and attributes
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(wrapped, attr, getattr(method, attr))
setattr(wrapped, "__is_flow_method__", True)
# Update the class with the wrapped method
setattr(target, name, wrapped)
return target
else:
# Method decoration
method = target
setattr(method, "__is_flow_method__", True)
if asyncio.iscoroutinefunction(method):
@functools.wraps(method)
async def method_async_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
method_coro = method(flow_instance, *args, **kwargs)
if asyncio.iscoroutine(method_coro):
result = await method_coro
else:
result = method_coro
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence, verbose)
return result
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(method_async_wrapper, attr, getattr(method, attr))
setattr(method_async_wrapper, "__is_flow_method__", True)
return cast(Callable[..., T], method_async_wrapper)
else:
@functools.wraps(method)
def method_sync_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
result = method(flow_instance, *args, **kwargs)
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence, verbose)
return result
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
if hasattr(method, attr):
setattr(method_sync_wrapper, attr, getattr(method, attr))
setattr(method_sync_wrapper, "__is_flow_method__", True)
return cast(Callable[..., T], method_sync_wrapper)
return decorator

Some files were not shown because too many files have changed in this diff Show More