Adding support for system, prompt and answe templates

This commit is contained in:
João Moura
2024-05-02 02:20:59 -03:00
parent 8360abd1c0
commit 84775373a6
4 changed files with 117 additions and 15 deletions

View File

@@ -121,6 +121,15 @@ class Agent(BaseModel):
callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
default=None, description="Callback to be executed"
)
system_template: Optional[str] = Field(
default=None, description="System format for the agent."
)
prompt_template: Optional[str] = Field(
default=None, description="Prompt format for the agent."
)
response_template: Optional[str] = Field(
default=None, description="Response format for the agent."
)
_original_role: str | None = None
_original_goal: str | None = None
@@ -167,7 +176,9 @@ class Agent(BaseModel):
self.llm.callbacks = []
# Check if an instance of TokenCalcHandler already exists in the list
if not any(isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks):
if not any(
isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks
):
self.llm.callbacks.append(token_handler)
if not self.agent_executor:
@@ -296,7 +307,13 @@ class Agent(BaseModel):
"request_within_rpm_limit"
] = self._rpm_controller.check_or_wait
prompt = Prompts(i18n=self.i18n, tools=tools).task_execution()
prompt = Prompts(
i18n=self.i18n,
tools=tools,
system_template=self.system_template,
prompt_template=self.prompt_template,
response_template=self.response_template,
).task_execution()
execution_prompt = prompt.partial(
goal=self.goal,
@@ -304,7 +321,13 @@ class Agent(BaseModel):
backstory=self.backstory,
)
bind = self.llm.bind(stop=[self.i18n.slice("observation")])
stop_words = [self.i18n.slice("observation")]
if self.response_template:
stop_words.append(
self.response_template.split("{{ .Response }}")[1].strip()
)
bind = self.llm.bind(stop=stop_words)
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser(agent=self)
self.agent_executor = CrewAgentExecutor(
agent=RunnableAgent(runnable=inner_agent), **executor_args

View File

@@ -40,6 +40,9 @@ class CrewAgentExecutor(AgentExecutor):
have_forced_answer: bool = False
force_answer_max_iterations: Optional[int] = None
step_callback: Optional[Any] = None
system_template: Optional[str] = None
prompt_template: Optional[str] = None
response_template: Optional[str] = None
@root_validator()
def set_force_answer_max_iterations(cls, values: Dict) -> Dict:
@@ -113,6 +116,7 @@ class CrewAgentExecutor(AgentExecutor):
# Allowing human input given task setting
if self.task.human_input:
self.should_ask_for_human_input = True
# Let's start tracking the number of iterations and time elapsed
self.iterations = 0
time_elapsed = 0.0
@@ -128,8 +132,10 @@ class CrewAgentExecutor(AgentExecutor):
intermediate_steps,
run_manager=run_manager,
)
if self.step_callback:
self.step_callback(next_step_output)
if isinstance(next_step_output, AgentFinish):
# Creating long term memory
create_long_term_memory = threading.Thread(
@@ -292,7 +298,6 @@ class CrewAgentExecutor(AgentExecutor):
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
yield AgentStep(action=agent_action, observation=observation)
def _ask_human_input(self, final_answer: dict) -> str:

View File

@@ -1,4 +1,4 @@
from typing import Any, ClassVar
from typing import Any, ClassVar, Optional
from langchain.prompts import BasePromptTemplate, PromptTemplate
from pydantic import BaseModel, Field
@@ -11,12 +11,11 @@ class Prompts(BaseModel):
i18n: I18N = Field(default=I18N())
tools: list[Any] = Field(default=[])
system_template: Optional[str] = None
prompt_template: Optional[str] = None
response_template: Optional[str] = None
SCRATCHPAD_SLICE: ClassVar[str] = "\n{agent_scratchpad}"
def task_execution_without_tools(self) -> BasePromptTemplate:
"""Generate a prompt for task execution without tools components."""
return self._build_prompt(["role_playing", "task"])
def task_execution(self) -> BasePromptTemplate:
"""Generate a standard prompt for task execution."""
slices = ["role_playing"]
@@ -24,12 +23,42 @@ class Prompts(BaseModel):
slices.append("tools")
else:
slices.append("no_tools")
slices.append("task")
return self._build_prompt(slices)
def _build_prompt(self, components: list[str]) -> BasePromptTemplate:
slices.append("task")
if not self.system_template and not self.prompt_template:
return self._build_prompt(slices)
else:
return self._build_prompt(
slices,
self.system_template,
self.prompt_template,
self.response_template,
)
def _build_prompt(
self,
components: list[str],
system_template=None,
prompt_template=None,
response_template=None,
) -> BasePromptTemplate:
"""Constructs a prompt string from specified components."""
prompt_parts = [self.i18n.slice(component) for component in components]
prompt_parts.append(self.SCRATCHPAD_SLICE)
prompt = PromptTemplate.from_template("".join(prompt_parts))
if not system_template and not prompt_template:
prompt_parts = [self.i18n.slice(component) for component in components]
prompt_parts.append(self.SCRATCHPAD_SLICE)
prompt = PromptTemplate.from_template("".join(prompt_parts))
else:
prompt_parts = [
self.i18n.slice(component)
for component in components
if component != "task"
]
system = system_template.replace("{{ .System }}", "".join(prompt_parts))
prompt = prompt_template.replace(
"{{ .Prompt }}",
"".join([self.i18n.slice("task"), self.SCRATCHPAD_SLICE]),
)
response = response_template.split("{{ .Response }}")[0]
prompt = PromptTemplate.from_template(f"{system}\n{prompt}\n{response}")
return prompt

View File

@@ -754,6 +754,7 @@ def test_agent_definition_based_on_dict():
assert agent.verbose == True
assert agent.tools == []
# test for human input
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_human_input():
@@ -780,6 +781,7 @@ def test_agent_human_input():
mock_human_input.assert_called_once()
assert output == "Hello"
def test_interpolate_inputs():
agent = Agent(
role="{topic} specialist",
@@ -797,3 +799,46 @@ def test_interpolate_inputs():
assert agent.goal == "Figure stuff out"
assert agent.backstory == "I am the master of nothing"
def test_system_and_prompt_template():
agent = Agent(
role="{topic} specialist",
goal="Figure {goal} out",
backstory="I am the master of {role}",
system_template="""<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>""",
prompt_template="""<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>""",
response_template="""<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>""",
)
template = agent.agent_executor.agent.dict()["runnable"]["middle"][0]["template"]
assert (
template
== """<|start_header_id|>system<|end_header_id|>
You are {role}. {backstory}
Your personal goal is: {goal}To give my best complete final answer to the task use the exact following format:
Thought: I now can give a great answer
Final Answer: my best complete final answer to the task.
Your final answer must be the great and the most complete as possible, it must be outcome described.
I MUST use these formats, my job depends on it!<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Current Task: {input}
Begin! This is VERY important to you, use the tools available and give your best Final Answer, your job depends on it!
Thought:
{agent_scratchpad}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
"""
)