Feat yaml config all attributes (#985)

* WIP: yaml proper mapping for agents and agent

* WIP: added output_json and output_pydantic setup

* WIP: core logic added, need cleanup

* code cleanup

* updated docs and example template to use yaml to reference agents within tasks

* cleanup type errors

* Update Start-a-New-CrewAI-Project.md

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
This commit is contained in:
Lorenze Jay
2024-07-22 20:21:01 -07:00
committed by GitHub
parent 21dea21e97
commit 80c626504d
6 changed files with 267 additions and 8 deletions

View File

@@ -79,8 +79,75 @@ research_candidates_task:
{job_requirements}
expected_output: >
A list of 10 potential candidates with their contact information and brief profiles highlighting their suitability.
agent: researcher # THIS NEEDS TO MATCH THE AGENT NAME IN THE AGENTS.YAML FILE AND THE AGENT DEFINED IN THE Crew.PY FILE
context: # THESE NEED TO MATCH THE TASK NAMES DEFINED ABOVE AND THE TASKS.YAML FILE AND THE TASK DEFINED IN THE Crew.PY FILE
- researcher
```
### Referencing Variables:
Your defined functions with the same name will be used. For example, you can reference the agent for specific tasks from task.yaml file. Ensure your annotated agent and function name is the same otherwise your task wont recognize the reference properly.
#### Example References
agent.yaml
```yaml
email_summarizer:
role: >
Email Summarizer
goal: >
Summarize emails into a concise and clear summary
backstory: >
You will create a 5 bullet point summary of the report
llm: mixtal_llm
```
task.yaml
```yaml
email_summarizer_task:
description: >
Summarize the email into a 5 bullet point summary
expected_output: >
A 5 bullet point summary of the email
agent: email_summarizer
context:
- reporting_task
- research_task
```
Use the annotations are used to properly reference the agent and task in the crew.py file.
Annotations include:
- @agent
- @task
- @crew
- @llm
- @tool
- @callback
- @output_json
- @output_pydantic
- @cache_handler
crew.py
```py
...
@llm
def mixtal_llm(self):
return ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
@agent
def email_summarizer(self) -> Agent:
return Agent(
config=self.agents_config["email_summarizer"],
)
## ...other tasks defined
@task
def email_summarizer_task(self) -> Task:
return Task(
config=self.tasks_config["email_summarizer_task"],
)
...
```
## Installing Dependencies
To install the dependencies for your project, you can use Poetry. First, navigate to your project directory:

View File

@@ -5,6 +5,7 @@ research_task:
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
@@ -13,3 +14,4 @@ reporting_task:
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst

View File

@@ -32,14 +32,12 @@ class {{crew_name}}Crew():
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
agent=self.researcher()
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
agent=self.reporting_analyst(),
output_file='report.md'
)

View File

@@ -1,2 +1,25 @@
from .annotations import agent, crew, task
from .annotations import (
agent,
crew,
task,
output_json,
output_pydantic,
tool,
callback,
llm,
cache_handler,
)
from .crew_base import CrewBase
__all__ = [
"agent",
"crew",
"task",
"output_json",
"output_pydantic",
"tool",
"callback",
"CrewBase",
"llm",
"cache_handler",
]

View File

@@ -30,6 +30,37 @@ def agent(func):
return func
def llm(func):
func.is_llm = True
func = memoize(func)
return func
def output_json(cls):
cls.is_output_json = True
return cls
def output_pydantic(cls):
cls.is_output_pydantic = True
return cls
def tool(func):
func.is_tool = True
return memoize(func)
def callback(func):
func.is_callback = True
return memoize(func)
def cache_handler(func):
func.is_cache_handler = True
return memoize(func)
def crew(func):
def wrapper(self, *args, **kwargs):
instantiated_tasks = []

View File

@@ -1,6 +1,7 @@
import inspect
import os
from pathlib import Path
from typing import Any, Callable, Dict
import yaml
from dotenv import load_dotenv
@@ -20,11 +21,6 @@ def CrewBase(cls):
base_directory = Path(frame_info.filename).parent.resolve()
break
if base_directory is None:
raise Exception(
"Unable to dynamically determine the project's base directory, you must run it from the project's root directory."
)
original_agents_config_path = getattr(
cls, "agents_config", "config/agents.yaml"
)
@@ -32,12 +28,20 @@ def CrewBase(cls):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.base_directory is None:
raise Exception(
"Unable to dynamically determine the project's base directory, you must run it from the project's root directory."
)
self.agents_config = self.load_yaml(
os.path.join(self.base_directory, self.original_agents_config_path)
)
self.tasks_config = self.load_yaml(
os.path.join(self.base_directory, self.original_tasks_config_path)
)
self.map_all_agent_variables()
self.map_all_task_variables()
@staticmethod
def load_yaml(config_path: str):
@@ -45,4 +49,138 @@ def CrewBase(cls):
# parsedContent = YamlParser.parse(file) # type: ignore # Argument 1 to "parse" has incompatible type "TextIOWrapper"; expected "YamlParser"
return yaml.safe_load(file)
def _get_all_functions(self):
return {
name: getattr(self, name)
for name in dir(self)
if callable(getattr(self, name))
}
def _filter_functions(
self, functions: Dict[str, Callable], attribute: str
) -> Dict[str, Callable]:
return {
name: func
for name, func in functions.items()
if hasattr(func, attribute)
}
def map_all_agent_variables(self) -> None:
all_functions = self._get_all_functions()
llms = self._filter_functions(all_functions, "is_llm")
tool_functions = self._filter_functions(all_functions, "is_tool")
cache_handler_functions = self._filter_functions(
all_functions, "is_cache_handler"
)
callbacks = self._filter_functions(all_functions, "is_callback")
agents = self._filter_functions(all_functions, "is_agent")
for agent_name, agent_info in self.agents_config.items():
self._map_agent_variables(
agent_name,
agent_info,
agents,
llms,
tool_functions,
cache_handler_functions,
callbacks,
)
def _map_agent_variables(
self,
agent_name: str,
agent_info: Dict[str, Any],
agents: Dict[str, Callable],
llms: Dict[str, Callable],
tool_functions: Dict[str, Callable],
cache_handler_functions: Dict[str, Callable],
callbacks: Dict[str, Callable],
) -> None:
if llm := agent_info.get("llm"):
self.agents_config[agent_name]["llm"] = llms[llm]()
if tools := agent_info.get("tools"):
self.agents_config[agent_name]["tools"] = [
tool_functions[tool]() for tool in tools
]
if function_calling_llm := agent_info.get("function_calling_llm"):
self.agents_config[agent_name]["function_calling_llm"] = agents[
function_calling_llm
]()
if step_callback := agent_info.get("step_callback"):
self.agents_config[agent_name]["step_callback"] = callbacks[
step_callback
]()
if cache_handler := agent_info.get("cache_handler"):
self.agents_config[agent_name]["cache_handler"] = (
cache_handler_functions[cache_handler]()
)
def map_all_task_variables(self) -> None:
all_functions = self._get_all_functions()
agents = self._filter_functions(all_functions, "is_agent")
tasks = self._filter_functions(all_functions, "is_task")
output_json_functions = self._filter_functions(
all_functions, "is_output_json"
)
tool_functions = self._filter_functions(all_functions, "is_tool")
callback_functions = self._filter_functions(all_functions, "is_callback")
output_pydantic_functions = self._filter_functions(
all_functions, "is_output_pydantic"
)
for task_name, task_info in self.tasks_config.items():
self._map_task_variables(
task_name,
task_info,
agents,
tasks,
output_json_functions,
tool_functions,
callback_functions,
output_pydantic_functions,
)
def _map_task_variables(
self,
task_name: str,
task_info: Dict[str, Any],
agents: Dict[str, Callable],
tasks: Dict[str, Callable],
output_json_functions: Dict[str, Callable],
tool_functions: Dict[str, Callable],
callback_functions: Dict[str, Callable],
output_pydantic_functions: Dict[str, Callable],
) -> None:
if context_list := task_info.get("context"):
self.tasks_config[task_name]["context"] = [
tasks[context_task_name]() for context_task_name in context_list
]
if tools := task_info.get("tools"):
self.tasks_config[task_name]["tools"] = [
tool_functions[tool]() for tool in tools
]
if agent_name := task_info.get("agent"):
self.tasks_config[task_name]["agent"] = agents[agent_name]()
if output_json := task_info.get("output_json"):
self.tasks_config[task_name]["output_json"] = output_json_functions[
output_json
]
if output_pydantic := task_info.get("output_pydantic"):
self.tasks_config[task_name]["output_pydantic"] = (
output_pydantic_functions[output_pydantic]
)
if callbacks := task_info.get("callbacks"):
self.tasks_config[task_name]["callbacks"] = [
callback_functions[callback]() for callback in callbacks
]
return WrappedClass