feat: add max retry limit to agent execution (#899)

* feat: add max retry limit to agent execution

* feat: add test to max retry limit feature

* feat: add code execution docstring

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
This commit is contained in:
Eduardo Chiarotti
2024-07-15 08:58:50 -03:00
committed by GitHub
parent 93d6655228
commit bc8cb4984a
2 changed files with 72 additions and 8 deletions

View File

@@ -8,7 +8,7 @@ from langchain.agents.tools import tool as LangChainTool
from langchain_core.agents import AgentAction
from langchain_core.callbacks import BaseCallbackHandler
from langchain_openai import ChatOpenAI
from pydantic import Field, InstanceOf, model_validator
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser
from crewai.agents.agent_builder.base_agent import BaseAgent
@@ -55,8 +55,11 @@ class Agent(BaseAgent):
tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution.
callbacks: A list of callback functions from the langchain library that are triggered during the agent's execution process
allow_code_execution: Enable code execution for the agent.
max_retry_limit: Maximum number of retries for an agent to execute a task when an error occurs.
"""
_times_executed: int = PrivateAttr(default=0)
max_execution_time: Optional[int] = Field(
default=None,
description="Maximum execution time for an agent to execute a task",
@@ -97,6 +100,10 @@ class Agent(BaseAgent):
allow_code_execution: Optional[bool] = Field(
default=False, description="Enable code execution for the agent."
)
max_retry_limit: int = Field(
default=2,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
)
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
@@ -185,13 +192,19 @@ class Agent(BaseAgent):
else:
task_prompt = self._use_trained_data(task_prompt=task_prompt)
result = self.agent_executor.invoke(
{
"input": task_prompt,
"tool_names": self.agent_executor.tools_names,
"tools": self.agent_executor.tools_description,
}
)["output"]
try:
result = self.agent_executor.invoke(
{
"input": task_prompt,
"tool_names": self.agent_executor.tools_names,
"tools": self.agent_executor.tools_description,
}
)["output"]
except Exception as e:
self._times_executed += 1
if self._times_executed > self.max_retry_limit:
raise e
self.execute_task(task, context, tools)
if self.max_rpm:
self._rpm_controller.stop_rpm_counter()

View File

@@ -963,3 +963,54 @@ def test_agent_use_trained_data(crew_training_handler):
crew_training_handler.assert_has_calls(
[mock.call(), mock.call("trained_agents_data.pkl"), mock.call().load()]
)
def test_agent_max_retry_limit():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
max_retry_limit=1,
)
task = Task(
agent=agent,
description="Say the word: Hi",
expected_output="The word: Hi",
human_input=True,
)
error_message = "Error happening while sending prompt to model."
with patch.object(
CrewAgentExecutor, "invoke", wraps=agent.agent_executor.invoke
) as invoke_mock:
invoke_mock.side_effect = Exception(error_message)
assert agent._times_executed == 0
assert agent.max_retry_limit == 1
with pytest.raises(Exception) as e:
agent.execute_task(
task=task,
)
assert e.value.args[0] == error_message
assert agent._times_executed == 2
invoke_mock.assert_has_calls(
[
mock.call(
{
"input": "Say the word: Hi\n\nThis is the expect criteria for your final answer: The word: Hi \n you MUST return the actual complete content as the final answer, not a summary.",
"tool_names": "",
"tools": "",
}
),
mock.call(
{
"input": "Say the word: Hi\n\nThis is the expect criteria for your final answer: The word: Hi \n you MUST return the actual complete content as the final answer, not a summary.",
"tool_names": "",
"tools": "",
}
),
]
)