mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
Adding new LLM class
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from inspect import signature
|
||||
from typing import Any, List, Optional
|
||||
from typing import Any, List, Optional, Union
|
||||
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
|
||||
from crewai.agents import CacheHandler
|
||||
@@ -12,6 +12,7 @@ from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.llm import LLM
|
||||
|
||||
|
||||
def mock_agent_ops_provider():
|
||||
@@ -81,8 +82,8 @@ class Agent(BaseAgent):
|
||||
default=True,
|
||||
description="Use system prompt for the agent.",
|
||||
)
|
||||
llm: Any = Field(
|
||||
description="Language model that will run the agent.", default="gpt-4o-mini"
|
||||
llm: Union[str, InstanceOf[LLM], Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
)
|
||||
function_calling_llm: Optional[Any] = Field(
|
||||
description="Language model that will run the agent.", default=None
|
||||
@@ -118,17 +119,58 @@ class Agent(BaseAgent):
|
||||
@model_validator(mode="after")
|
||||
def post_init_setup(self):
|
||||
self.agent_ops_agent_name = self.role
|
||||
self.llm = (
|
||||
getattr(self.llm, "model_name", None)
|
||||
or getattr(self.llm, "deployment_name", None)
|
||||
or self.llm
|
||||
or os.environ.get("OPENAI_MODEL_NAME")
|
||||
)
|
||||
self.function_calling_llm = (
|
||||
getattr(self.function_calling_llm, "model_name", None)
|
||||
or getattr(self.function_calling_llm, "deployment_name", None)
|
||||
or self.function_calling_llm
|
||||
)
|
||||
|
||||
# Handle different cases for self.llm
|
||||
if isinstance(self.llm, str):
|
||||
# If it's a string, create an LLM instance
|
||||
self.llm = LLM(model=self.llm)
|
||||
elif isinstance(self.llm, LLM):
|
||||
# If it's already an LLM instance, keep it as is
|
||||
pass
|
||||
elif self.llm is None:
|
||||
# If it's None, use environment variables or default
|
||||
model_name = os.environ.get("OPENAI_MODEL_NAME", "gpt-4o-mini")
|
||||
llm_params = {"model": model_name}
|
||||
|
||||
api_base = os.environ.get("OPENAI_API_BASE")
|
||||
if api_base:
|
||||
llm_params["base_url"] = api_base
|
||||
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
if api_key:
|
||||
llm_params["api_key"] = api_key
|
||||
|
||||
self.llm = LLM(**llm_params)
|
||||
else:
|
||||
# For any other type, attempt to extract relevant attributes
|
||||
llm_params = {
|
||||
"model": getattr(self.llm, "model_name", None)
|
||||
or getattr(self.llm, "deployment_name", None)
|
||||
or str(self.llm),
|
||||
"temperature": getattr(self.llm, "temperature", None),
|
||||
"max_tokens": getattr(self.llm, "max_tokens", None),
|
||||
"logprobs": getattr(self.llm, "logprobs", None),
|
||||
"timeout": getattr(self.llm, "timeout", None),
|
||||
"max_retries": getattr(self.llm, "max_retries", None),
|
||||
"api_key": getattr(self.llm, "api_key", None),
|
||||
"base_url": getattr(self.llm, "base_url", None),
|
||||
"organization": getattr(self.llm, "organization", None),
|
||||
}
|
||||
# Remove None values to avoid passing unnecessary parameters
|
||||
llm_params = {k: v for k, v in llm_params.items() if v is not None}
|
||||
self.llm = LLM(**llm_params)
|
||||
|
||||
# Similar handling for function_calling_llm
|
||||
if self.function_calling_llm:
|
||||
if isinstance(self.function_calling_llm, str):
|
||||
self.function_calling_llm = LLM(model=self.function_calling_llm)
|
||||
elif not isinstance(self.function_calling_llm, LLM):
|
||||
self.function_calling_llm = LLM(
|
||||
model=getattr(self.function_calling_llm, "model_name", None)
|
||||
or getattr(self.function_calling_llm, "deployment_name", None)
|
||||
or str(self.function_calling_llm)
|
||||
)
|
||||
|
||||
if not self.agent_executor:
|
||||
self._setup_agent_executor()
|
||||
|
||||
|
||||
@@ -13,7 +13,6 @@ from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
)
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
from crewai.llm import LLM
|
||||
from crewai.agents.parser import (
|
||||
AgentAction,
|
||||
AgentFinish,
|
||||
@@ -104,23 +103,10 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
try:
|
||||
while not isinstance(formatted_answer, AgentFinish):
|
||||
if not self.request_within_rpm_limit or self.request_within_rpm_limit():
|
||||
if isinstance(self.llm, str):
|
||||
llm = LLM(
|
||||
model=self.llm,
|
||||
stop=self.stop if self.use_stop_words else None,
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
elif isinstance(self.llm, LLM):
|
||||
llm = self.llm
|
||||
else:
|
||||
llm = LLM(
|
||||
model=self.llm.model,
|
||||
provider=getattr(self.llm, "provider", "litellm"),
|
||||
stop=self.stop if self.use_stop_words else None,
|
||||
callbacks=self.callbacks,
|
||||
**getattr(self.llm, "llm_kwargs", {}),
|
||||
)
|
||||
answer = llm.call(self.messages)
|
||||
answer = self.llm.call(
|
||||
self.messages,
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
|
||||
if not self.use_stop_words:
|
||||
try:
|
||||
@@ -139,6 +125,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
action_result = self._use_tool(formatted_answer)
|
||||
formatted_answer.text += f"\nObservation: {action_result}"
|
||||
formatted_answer.result = action_result
|
||||
print("formatted_answer", formatted_answer)
|
||||
self._show_logs(formatted_answer)
|
||||
|
||||
if self.step_callback:
|
||||
@@ -194,7 +181,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
if isinstance(formatted_answer, AgentAction):
|
||||
thought = re.sub(r"\n+", "\n", formatted_answer.thought)
|
||||
formatted_json = json.dumps(
|
||||
json.loads(formatted_answer.tool_input),
|
||||
formatted_answer.tool_input,
|
||||
indent=2,
|
||||
ensure_ascii=False,
|
||||
)
|
||||
@@ -253,16 +240,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
return tool_result
|
||||
|
||||
def _summarize_messages(self) -> None:
|
||||
if isinstance(self.llm, str):
|
||||
llm = LLM(model=self.llm)
|
||||
elif isinstance(self.llm, LLM):
|
||||
llm = self.llm
|
||||
else:
|
||||
llm = LLM(
|
||||
model=self.llm.model,
|
||||
provider=getattr(self.llm, "provider", "litellm"),
|
||||
**getattr(self.llm, "llm_kwargs", {}),
|
||||
)
|
||||
messages_groups = []
|
||||
|
||||
for message in self.messages:
|
||||
@@ -272,7 +249,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
|
||||
summarized_contents = []
|
||||
for group in messages_groups:
|
||||
summary = llm.call(
|
||||
summary = self.llm.call(
|
||||
[
|
||||
self._format_msg(
|
||||
self._i18n.slices("summarizer_system_message"), role="system"
|
||||
@@ -280,7 +257,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._format_msg(
|
||||
self._i18n.errors("sumamrize_instruction").format(group=group),
|
||||
),
|
||||
]
|
||||
],
|
||||
callbacks=self.callbacks,
|
||||
)
|
||||
summarized_contents.append(summary)
|
||||
|
||||
|
||||
@@ -22,6 +22,7 @@ from crewai.agent import Agent
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
@@ -211,11 +212,15 @@ class Crew(BaseModel):
|
||||
if self.output_log_file:
|
||||
self._file_handler = FileHandler(self.output_log_file)
|
||||
self._rpm_controller = RPMController(max_rpm=self.max_rpm, logger=self._logger)
|
||||
self.function_calling_llm = (
|
||||
getattr(self.function_calling_llm, "model_name", None)
|
||||
or getattr(self.function_calling_llm, "deployment_name", None)
|
||||
or self.function_calling_llm
|
||||
)
|
||||
if self.function_calling_llm:
|
||||
if isinstance(self.function_calling_llm, str):
|
||||
self.function_calling_llm = LLM(model=self.function_calling_llm)
|
||||
elif not isinstance(self.function_calling_llm, LLM):
|
||||
self.function_calling_llm = LLM(
|
||||
model=getattr(self.function_calling_llm, "model_name", None)
|
||||
or getattr(self.function_calling_llm, "deployment_name", None)
|
||||
or str(self.function_calling_llm)
|
||||
)
|
||||
self._telemetry = Telemetry()
|
||||
self._telemetry.set_tracer()
|
||||
return self
|
||||
|
||||
@@ -85,6 +85,3 @@ class LLM:
|
||||
except Exception as e:
|
||||
logging.error(f"LiteLLM call failed: {str(e)}")
|
||||
raise # Re-raise the exception after logging
|
||||
|
||||
def __getattr__(self, name):
|
||||
return self.kwargs.get(name)
|
||||
|
||||
@@ -117,8 +117,10 @@ class Telemetry:
|
||||
"max_iter": agent.max_iter,
|
||||
"max_rpm": agent.max_rpm,
|
||||
"i18n": agent.i18n.prompt_file,
|
||||
"function_calling_llm": agent.function_calling_llm,
|
||||
"llm": agent.llm,
|
||||
"function_calling_llm": agent.function_calling_llm.model
|
||||
if agent.function_calling_llm
|
||||
else "",
|
||||
"llm": agent.llm.model,
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"allow_code_execution?": agent.allow_code_execution,
|
||||
"max_retry_limit": agent.max_retry_limit,
|
||||
@@ -182,8 +184,10 @@ class Telemetry:
|
||||
"verbose?": agent.verbose,
|
||||
"max_iter": agent.max_iter,
|
||||
"max_rpm": agent.max_rpm,
|
||||
"function_calling_llm": agent.function_calling_llm,
|
||||
"llm": agent.llm,
|
||||
"function_calling_llm": agent.function_calling_llm.model
|
||||
if agent.function_calling_llm
|
||||
else "",
|
||||
"llm": agent.llm.model,
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"allow_code_execution?": agent.allow_code_execution,
|
||||
"max_retry_limit": agent.max_retry_limit,
|
||||
@@ -488,7 +492,7 @@ class Telemetry:
|
||||
"max_iter": agent.max_iter,
|
||||
"max_rpm": agent.max_rpm,
|
||||
"i18n": agent.i18n.prompt_file,
|
||||
"llm": agent.llm,
|
||||
"llm": agent.llm.model,
|
||||
"delegation_enabled?": agent.allow_delegation,
|
||||
"tools_names": [
|
||||
tool.name.casefold() for tool in agent.tools or []
|
||||
|
||||
@@ -72,7 +72,8 @@ class ToolUsage:
|
||||
|
||||
# Set the maximum parsing attempts for bigger models
|
||||
if (
|
||||
self._is_gpt(self.function_calling_llm)
|
||||
self.function_calling_llm
|
||||
and self._is_gpt(self.function_calling_llm)
|
||||
and self.function_calling_llm in OPENAI_BIGGER_MODELS
|
||||
):
|
||||
self._max_parsing_attempts = 2
|
||||
@@ -85,6 +86,7 @@ class ToolUsage:
|
||||
def use(
|
||||
self, calling: Union[ToolCalling, InstructorToolCalling], tool_string: str
|
||||
) -> str:
|
||||
print("calling", calling)
|
||||
if isinstance(calling, ToolUsageErrorException):
|
||||
error = calling.message
|
||||
if self.agent.verbose:
|
||||
@@ -299,9 +301,9 @@ class ToolUsage:
|
||||
|
||||
def _is_gpt(self, llm) -> bool:
|
||||
return (
|
||||
"gpt" in str(llm).lower()
|
||||
or "o1-preview" in str(llm).lower()
|
||||
or "o1-mini" in str(llm).lower()
|
||||
"gpt" in str(llm.model).lower()
|
||||
or "o1-preview" in str(llm.model).lower()
|
||||
or "o1-mini" in str(llm.model).lower()
|
||||
)
|
||||
|
||||
def _tool_calling(
|
||||
@@ -309,11 +311,16 @@ class ToolUsage:
|
||||
) -> Union[ToolCalling, InstructorToolCalling]:
|
||||
try:
|
||||
if self.function_calling_llm:
|
||||
print("self.function_calling_llm")
|
||||
model = (
|
||||
InstructorToolCalling
|
||||
if self._is_gpt(self.function_calling_llm)
|
||||
else ToolCalling
|
||||
)
|
||||
print("model", model)
|
||||
print(
|
||||
"self.function_calling_llm.model", self.function_calling_llm.model
|
||||
)
|
||||
converter = Converter(
|
||||
text=f"Only tools available:\n###\n{self._render()}\n\nReturn a valid schema for the tool, the tool name must be exactly equal one of the options, use this text to inform the valid output schema:\n\n### TEXT \n{tool_string}",
|
||||
llm=self.function_calling_llm,
|
||||
@@ -329,7 +336,15 @@ class ToolUsage:
|
||||
),
|
||||
max_attempts=1,
|
||||
)
|
||||
calling = converter.to_pydantic()
|
||||
print("converter", converter)
|
||||
tool_object = converter.to_pydantic()
|
||||
print("tool_object", tool_object)
|
||||
calling = ToolCalling(
|
||||
tool_name=tool_object["tool_name"],
|
||||
arguments=tool_object["arguments"],
|
||||
log=tool_string, # type: ignore
|
||||
)
|
||||
print("calling", calling)
|
||||
|
||||
if isinstance(calling, ConverterError):
|
||||
raise calling
|
||||
|
||||
@@ -27,8 +27,7 @@ class Converter(OutputConverter):
|
||||
if self.is_gpt:
|
||||
return self._create_instructor().to_pydantic()
|
||||
else:
|
||||
llm = self._create_llm()
|
||||
return llm.call(
|
||||
return self.llm.call(
|
||||
[
|
||||
{"role": "system", "content": self.instructions},
|
||||
{"role": "user", "content": self.text},
|
||||
@@ -47,9 +46,8 @@ class Converter(OutputConverter):
|
||||
if self.is_gpt:
|
||||
return self._create_instructor().to_json()
|
||||
else:
|
||||
llm = self._create_llm()
|
||||
return json.dumps(
|
||||
llm.call(
|
||||
self.llm.call(
|
||||
[
|
||||
{"role": "system", "content": self.instructions},
|
||||
{"role": "user", "content": self.text},
|
||||
@@ -61,19 +59,6 @@ class Converter(OutputConverter):
|
||||
return self.to_json(current_attempt + 1)
|
||||
return ConverterError(f"Failed to convert text into JSON, error: {e}.")
|
||||
|
||||
def _create_llm(self):
|
||||
"""Create an LLM instance."""
|
||||
if isinstance(self.llm, str):
|
||||
return LLM(model=self.llm)
|
||||
elif isinstance(self.llm, LLM):
|
||||
return self.llm
|
||||
else:
|
||||
return LLM(
|
||||
model=self.llm.model,
|
||||
provider=getattr(self.llm, "provider", "litellm"),
|
||||
**getattr(self.llm, "llm_kwargs", {}),
|
||||
)
|
||||
|
||||
def _create_instructor(self):
|
||||
"""Create an instructor."""
|
||||
from crewai.utilities import InternalInstructor
|
||||
@@ -93,7 +78,7 @@ class Converter(OutputConverter):
|
||||
)
|
||||
|
||||
parser = CrewPydanticOutputParser(pydantic_object=self.model)
|
||||
result = LLM(model=self.llm).call(
|
||||
result = self.llm.call(
|
||||
[
|
||||
{"role": "system", "content": self.instructions},
|
||||
{"role": "user", "content": self.text},
|
||||
@@ -105,9 +90,9 @@ class Converter(OutputConverter):
|
||||
def is_gpt(self) -> bool:
|
||||
"""Return if llm provided is of gpt from openai."""
|
||||
return (
|
||||
"gpt" in str(self.llm).lower()
|
||||
or "o1-preview" in str(self.llm).lower()
|
||||
or "o1-mini" in str(self.llm).lower()
|
||||
"gpt" in str(self.llm.model).lower()
|
||||
or "o1-preview" in str(self.llm.model).lower()
|
||||
or "o1-mini" in str(self.llm.model).lower()
|
||||
)
|
||||
|
||||
|
||||
@@ -157,6 +142,7 @@ def handle_partial_json(
|
||||
converter_cls: Optional[Type[Converter]] = None,
|
||||
) -> Union[dict, BaseModel, str]:
|
||||
match = re.search(r"({.*})", result, re.DOTALL)
|
||||
print("handle_partial_json")
|
||||
if match:
|
||||
try:
|
||||
exported_result = model.model_validate_json(match.group(0))
|
||||
@@ -185,8 +171,11 @@ def convert_with_instructions(
|
||||
agent: Any,
|
||||
converter_cls: Optional[Type[Converter]] = None,
|
||||
) -> Union[dict, BaseModel, str]:
|
||||
print("convert_with_instructions")
|
||||
llm = agent.function_calling_llm or agent.llm
|
||||
print("llm", llm)
|
||||
instructions = get_conversion_instructions(model, llm)
|
||||
print("instructions", instructions)
|
||||
converter = create_converter(
|
||||
agent=agent,
|
||||
converter_cls=converter_cls,
|
||||
@@ -195,10 +184,11 @@ def convert_with_instructions(
|
||||
model=model,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
print("converter", converter)
|
||||
exported_result = (
|
||||
converter.to_pydantic() if not is_json_output else converter.to_json()
|
||||
)
|
||||
print("exported_result", exported_result)
|
||||
|
||||
if isinstance(exported_result, ConverterError):
|
||||
Printer().print(
|
||||
@@ -218,12 +208,12 @@ def get_conversion_instructions(model: Type[BaseModel], llm: Any) -> str:
|
||||
return instructions
|
||||
|
||||
|
||||
def is_gpt(llm: Any) -> bool:
|
||||
def is_gpt(llm: LLM) -> bool:
|
||||
"""Return if llm provided is of gpt from openai."""
|
||||
return (
|
||||
"gpt" in str(llm).lower()
|
||||
or "o1-preview" in str(llm).lower()
|
||||
or "o1-mini" in str(llm).lower()
|
||||
"gpt" in str(llm.model).lower()
|
||||
or "o1-preview" in str(llm.model).lower()
|
||||
or "o1-mini" in str(llm.model).lower()
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -93,9 +93,9 @@ class TaskEvaluator:
|
||||
|
||||
def _is_gpt(self, llm) -> bool:
|
||||
return (
|
||||
"gpt" in str(self.llm).lower()
|
||||
or "o1-preview" in str(self.llm).lower()
|
||||
or "o1-mini" in str(self.llm).lower()
|
||||
"gpt" in str(self.llm.model).lower()
|
||||
or "o1-preview" in str(self.llm.model).lower()
|
||||
or "o1-mini" in str(self.llm.model).lower()
|
||||
)
|
||||
|
||||
def evaluate_training_data(
|
||||
|
||||
@@ -42,6 +42,6 @@ class InternalInstructor:
|
||||
if self.instructions:
|
||||
messages.append({"role": "system", "content": self.instructions})
|
||||
model = self._client.chat.completions.create(
|
||||
model=self.llm, response_model=self.model, messages=messages
|
||||
model=self.llm.model, response_model=self.model, messages=messages
|
||||
)
|
||||
return model
|
||||
|
||||
Reference in New Issue
Block a user