mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
Feature/kickoff for each sync (#680)
* Sync with deep copy working now * async working!! * Clean up code for review * Fix naming --------- Co-authored-by: João Moura <joaomdmoura@gmail.com>
This commit is contained in:
committed by
GitHub
parent
3a77b418cb
commit
e202592715
@@ -1,3 +1,4 @@
|
||||
from copy import deepcopy
|
||||
import os
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
@@ -97,7 +98,8 @@ class Agent(BaseModel):
|
||||
agent_executor: InstanceOf[CrewAgentExecutor] = Field(
|
||||
default=None, description="An instance of the CrewAgentExecutor class."
|
||||
)
|
||||
crew: Any = Field(default=None, description="Crew to which the agent belongs.")
|
||||
crew: Any = Field(
|
||||
default=None, description="Crew to which the agent belongs.")
|
||||
tools_handler: InstanceOf[ToolsHandler] = Field(
|
||||
default=None, description="An instance of the ToolsHandler class."
|
||||
)
|
||||
@@ -108,7 +110,8 @@ class Agent(BaseModel):
|
||||
default=None,
|
||||
description="Callback to be executed after each step of the agent execution.",
|
||||
)
|
||||
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
|
||||
i18n: I18N = Field(
|
||||
default=I18N(), description="Internationalization settings.")
|
||||
llm: Any = Field(
|
||||
default_factory=lambda: ChatOpenAI(
|
||||
model=os.environ.get("OPENAI_MODEL_NAME", "gpt-4o")
|
||||
@@ -169,7 +172,8 @@ class Agent(BaseModel):
|
||||
def set_agent_executor(self) -> "Agent":
|
||||
"""set agent executor is set."""
|
||||
if hasattr(self.llm, "model_name"):
|
||||
token_handler = TokenCalcHandler(self.llm.model_name, self._token_process)
|
||||
token_handler = TokenCalcHandler(
|
||||
self.llm.model_name, self._token_process)
|
||||
|
||||
# Ensure self.llm.callbacks is a list
|
||||
if not isinstance(self.llm.callbacks, list):
|
||||
@@ -204,7 +208,8 @@ class Agent(BaseModel):
|
||||
Output of the agent
|
||||
"""
|
||||
if self.tools_handler:
|
||||
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
|
||||
# type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
|
||||
self.tools_handler.last_used_tool = {}
|
||||
|
||||
task_prompt = task.prompt()
|
||||
|
||||
@@ -224,13 +229,15 @@ class Agent(BaseModel):
|
||||
task_prompt += self.i18n.slice("memory").format(memory=memory)
|
||||
|
||||
tools = tools or self.tools
|
||||
parsed_tools = self._parse_tools(tools) # type: ignore # Argument 1 to "_parse_tools" of "Agent" has incompatible type "list[Any] | None"; expected "list[Any]"
|
||||
# type: ignore # Argument 1 to "_parse_tools" of "Agent" has incompatible type "list[Any] | None"; expected "list[Any]"
|
||||
parsed_tools = self._parse_tools(tools)
|
||||
|
||||
self.create_agent_executor(tools=tools)
|
||||
self.agent_executor.tools = parsed_tools
|
||||
self.agent_executor.task = task
|
||||
|
||||
self.agent_executor.tools_description = render_text_description(parsed_tools)
|
||||
self.agent_executor.tools_description = render_text_description(
|
||||
parsed_tools)
|
||||
self.agent_executor.tools_names = self.__tools_names(parsed_tools)
|
||||
|
||||
result = self.agent_executor.invoke(
|
||||
@@ -328,7 +335,8 @@ class Agent(BaseModel):
|
||||
)
|
||||
|
||||
bind = self.llm.bind(stop=stop_words)
|
||||
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser(agent=self)
|
||||
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser(
|
||||
agent=self)
|
||||
self.agent_executor = CrewAgentExecutor(
|
||||
agent=RunnableAgent(runnable=inner_agent), **executor_args
|
||||
)
|
||||
@@ -363,8 +371,31 @@ class Agent(BaseModel):
|
||||
thoughts += action.log
|
||||
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
|
||||
return thoughts
|
||||
|
||||
def copy(self):
|
||||
"""Create a deep copy of the Agent."""
|
||||
exclude = {
|
||||
"id",
|
||||
"_logger",
|
||||
"_rpm_controller",
|
||||
"_request_within_rpm_limit",
|
||||
"_token_process",
|
||||
"agent_executor",
|
||||
"tools",
|
||||
"tools_handler",
|
||||
"cache_handler",
|
||||
}
|
||||
|
||||
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]: # type: ignore # Function "langchain_core.tools.tool" is not valid as a type
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
|
||||
copied_agent = Agent(**copied_data)
|
||||
copied_agent.tools = deepcopy(self.tools)
|
||||
|
||||
return copied_agent
|
||||
|
||||
# type: ignore # Function "langchain_core.tools.tool" is not valid as a type
|
||||
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]:
|
||||
"""Parse tools to be used for the task."""
|
||||
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
|
||||
tools_list = []
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import asyncio
|
||||
import json
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
@@ -58,7 +59,8 @@ class Crew(BaseModel):
|
||||
_rpm_controller: RPMController = PrivateAttr()
|
||||
_logger: Logger = PrivateAttr()
|
||||
_file_handler: FileHandler = PrivateAttr()
|
||||
_cache_handler: InstanceOf[CacheHandler] = PrivateAttr(default=CacheHandler())
|
||||
_cache_handler: InstanceOf[CacheHandler] = PrivateAttr(
|
||||
default=CacheHandler())
|
||||
_short_term_memory: Optional[InstanceOf[ShortTermMemory]] = PrivateAttr()
|
||||
_long_term_memory: Optional[InstanceOf[LongTermMemory]] = PrivateAttr()
|
||||
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
|
||||
@@ -153,7 +155,8 @@ class Crew(BaseModel):
|
||||
self._logger = Logger(self.verbose)
|
||||
if self.output_log_file:
|
||||
self._file_handler = FileHandler(self.output_log_file)
|
||||
self._rpm_controller = RPMController(max_rpm=self.max_rpm, logger=self._logger)
|
||||
self._rpm_controller = RPMController(
|
||||
max_rpm=self.max_rpm, logger=self._logger)
|
||||
self._telemetry = Telemetry()
|
||||
self._telemetry.set_tracer()
|
||||
self._telemetry.crew_creation(self)
|
||||
@@ -164,9 +167,7 @@ class Crew(BaseModel):
|
||||
"""Set private attributes."""
|
||||
if self.memory:
|
||||
self._long_term_memory = LongTermMemory()
|
||||
self._short_term_memory = ShortTermMemory(
|
||||
crew=self, embedder_config=self.embedder
|
||||
)
|
||||
self._short_term_memory = ShortTermMemory(crew=self, embedder_config=self.embedder)
|
||||
self._entity_memory = EntityMemory(crew=self, embedder_config=self.embedder)
|
||||
return self
|
||||
|
||||
@@ -244,7 +245,8 @@ class Crew(BaseModel):
|
||||
def kickoff(self, inputs: Optional[Dict[str, Any]] = {}) -> str:
|
||||
"""Starts the crew to work on its assigned tasks."""
|
||||
self._execution_span = self._telemetry.crew_execution_span(self)
|
||||
self._interpolate_inputs(inputs) # type: ignore # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
|
||||
# type: ignore # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
|
||||
self._interpolate_inputs(inputs)
|
||||
self._set_tasks_callbacks()
|
||||
|
||||
i18n = I18N(prompt_file=self.prompt_file)
|
||||
@@ -265,8 +267,10 @@ class Crew(BaseModel):
|
||||
if self.process == Process.sequential:
|
||||
result = self._run_sequential_process()
|
||||
elif self.process == Process.hierarchical:
|
||||
result, manager_metrics = self._run_hierarchical_process() # type: ignore # Unpacking a string is disallowed
|
||||
metrics.append(manager_metrics) # type: ignore # Cannot determine type of "manager_metrics"
|
||||
# type: ignore # Unpacking a string is disallowed
|
||||
result, manager_metrics = self._run_hierarchical_process()
|
||||
# type: ignore # Cannot determine type of "manager_metrics"
|
||||
metrics.append(manager_metrics)
|
||||
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
@@ -282,6 +286,45 @@ class Crew(BaseModel):
|
||||
|
||||
return result
|
||||
|
||||
def kickoff_for_each(self, inputs: List[Dict[str, Any]]) -> List:
|
||||
"""Executes the Crew's workflow for each input in the list and aggregates results."""
|
||||
results = []
|
||||
|
||||
for input_data in inputs:
|
||||
crew = self.copy()
|
||||
|
||||
for task in crew.tasks:
|
||||
task.interpolate_inputs(input_data)
|
||||
for agent in crew.agents:
|
||||
agent.interpolate_inputs(input_data)
|
||||
|
||||
output = crew.kickoff()
|
||||
results.append(output)
|
||||
|
||||
return results
|
||||
|
||||
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = {}) -> Union[str, Dict]:
|
||||
"""Asynchronous kickoff method to start the crew execution."""
|
||||
return await asyncio.to_thread(self.kickoff, inputs)
|
||||
|
||||
async def kickoff_for_each_async(self, inputs: List[Dict]) -> List[Any]:
|
||||
async def run_crew(input_data):
|
||||
crew = self.copy()
|
||||
|
||||
for task in crew.tasks:
|
||||
task.interpolate_inputs(input_data)
|
||||
for agent in crew.agents:
|
||||
agent.interpolate_inputs(input_data)
|
||||
|
||||
return await crew.kickoff_async()
|
||||
|
||||
tasks = [asyncio.create_task(run_crew(input_data))
|
||||
for input_data in inputs]
|
||||
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
return results
|
||||
|
||||
def train(self, n_iterations: int) -> None:
|
||||
# TODO: Implement training
|
||||
pass
|
||||
@@ -298,7 +341,8 @@ class Crew(BaseModel):
|
||||
task.tools += AgentTools(agents=agents_for_delegation).tools()
|
||||
|
||||
role = task.agent.role if task.agent is not None else "None"
|
||||
self._logger.log("debug", f"== Working Agent: {role}", color="bold_purple")
|
||||
self._logger.log("debug", f"== Working Agent: {
|
||||
role}", color="bold_purple")
|
||||
self._logger.log(
|
||||
"info", f"== Starting Task: {task.description}", color="bold_purple"
|
||||
)
|
||||
@@ -313,14 +357,17 @@ class Crew(BaseModel):
|
||||
task_output = output
|
||||
|
||||
role = task.agent.role if task.agent is not None else "None"
|
||||
self._logger.log("debug", f"== [{role}] Task output: {task_output}\n\n")
|
||||
self._logger.log("debug", f"== [{role}] Task output: {
|
||||
task_output}\n\n")
|
||||
|
||||
if self.output_log_file:
|
||||
self._file_handler.log(agent=role, task=task_output, status="completed")
|
||||
self._file_handler.log(
|
||||
agent=role, task=task_output, status="completed")
|
||||
|
||||
self._finish_execution(task_output)
|
||||
return self._format_output(task_output)
|
||||
|
||||
|
||||
def _run_hierarchical_process(self) -> str:
|
||||
"""Creates and assigns a manager agent to make sure the crew completes the tasks."""
|
||||
|
||||
@@ -335,7 +382,8 @@ class Crew(BaseModel):
|
||||
manager = Agent(
|
||||
role=i18n.retrieve("hierarchical_manager_agent", "role"),
|
||||
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
|
||||
backstory=i18n.retrieve("hierarchical_manager_agent", "backstory"),
|
||||
backstory=i18n.retrieve(
|
||||
"hierarchical_manager_agent", "backstory"),
|
||||
tools=AgentTools(agents=self.agents).tools(),
|
||||
llm=self.manager_llm,
|
||||
verbose=True,
|
||||
@@ -355,7 +403,8 @@ class Crew(BaseModel):
|
||||
agent=manager, context=task_output, tools=manager.tools
|
||||
)
|
||||
|
||||
self._logger.log("debug", f"[{manager.role}] Task output: {task_output}")
|
||||
self._logger.log(
|
||||
"debug", f"[{manager.role}] Task output: {task_output}")
|
||||
|
||||
if self.output_log_file:
|
||||
self._file_handler.log(
|
||||
@@ -363,7 +412,39 @@ class Crew(BaseModel):
|
||||
)
|
||||
|
||||
self._finish_execution(task_output)
|
||||
return self._format_output(task_output), manager._token_process.get_summary() # type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
|
||||
# type: ignore # Incompatible return value type (got "tuple[str, Any]", expected "str")
|
||||
return self._format_output(task_output), manager._token_process.get_summary()
|
||||
|
||||
def copy(self):
|
||||
"""Create a deep copy of the Crew."""
|
||||
|
||||
exclude = {
|
||||
"id",
|
||||
"_rpm_controller",
|
||||
"_logger",
|
||||
"_execution_span",
|
||||
"_file_handler",
|
||||
"_cache_handler",
|
||||
"_short_term_memory",
|
||||
"_long_term_memory",
|
||||
"_entity_memory"
|
||||
"agents",
|
||||
"tasks",
|
||||
}
|
||||
|
||||
cloned_agents = [agent.copy() for agent in self.agents]
|
||||
cloned_tasks = [task.copy() for task in self.tasks]
|
||||
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
|
||||
copied_data.pop("agents", None)
|
||||
copied_data.pop("tasks", None)
|
||||
|
||||
copied_crew = Crew(**copied_data, agents=cloned_agents, tasks=cloned_tasks)
|
||||
|
||||
return copied_crew
|
||||
|
||||
|
||||
def _set_tasks_callbacks(self) -> None:
|
||||
"""Sets callback for every task suing task_callback"""
|
||||
@@ -373,8 +454,11 @@ class Crew(BaseModel):
|
||||
|
||||
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
|
||||
"""Interpolates the inputs in the tasks and agents."""
|
||||
[task.interpolate_inputs(inputs) for task in self.tasks] # type: ignore # "interpolate_inputs" of "Task" does not return a value (it only ever returns None)
|
||||
[agent.interpolate_inputs(inputs) for agent in self.agents] # type: ignore # "interpolate_inputs" of "Agent" does not return a value (it only ever returns None)
|
||||
[task.interpolate_inputs(
|
||||
# type: ignore # "interpolate_inputs" of "Task" does not return a value (it only ever returns None)
|
||||
inputs) for task in self.tasks]
|
||||
# type: ignore # "interpolate_inputs" of "Agent" does not return a value (it only ever returns None)
|
||||
[agent.interpolate_inputs(inputs) for agent in self.agents]
|
||||
|
||||
def _format_output(self, output: str) -> str:
|
||||
"""Formats the output of the crew execution."""
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from copy import deepcopy
|
||||
import os
|
||||
import re
|
||||
import threading
|
||||
@@ -163,13 +164,16 @@ class Task(BaseModel):
|
||||
)
|
||||
|
||||
if self.context:
|
||||
context = [] # type: ignore # Incompatible types in assignment (expression has type "list[Never]", variable has type "str | None")
|
||||
# type: ignore # Incompatible types in assignment (expression has type "list[Never]", variable has type "str | None")
|
||||
context = []
|
||||
for task in self.context:
|
||||
if task.async_execution:
|
||||
task.thread.join() # type: ignore # Item "None" of "Thread | None" has no attribute "join"
|
||||
if task and task.output:
|
||||
context.append(task.output.raw_output) # type: ignore # Item "str" of "str | None" has no attribute "append"
|
||||
context = "\n".join(context) # type: ignore # Argument 1 to "join" of "str" has incompatible type "str | None"; expected "Iterable[str]"
|
||||
# type: ignore # Item "str" of "str | None" has no attribute "append"
|
||||
context.append(task.output.raw_output)
|
||||
# type: ignore # Argument 1 to "join" of "str" has incompatible type "str | None"; expected "Iterable[str]"
|
||||
context = "\n".join(context)
|
||||
|
||||
self.prompt_context = context
|
||||
tools = tools or self.tools
|
||||
@@ -232,7 +236,8 @@ class Task(BaseModel):
|
||||
|
||||
if inputs:
|
||||
self.description = self._original_description.format(**inputs)
|
||||
self.expected_output = self._original_expected_output.format(**inputs)
|
||||
self.expected_output = self._original_expected_output.format(
|
||||
**inputs)
|
||||
|
||||
def increment_tools_errors(self) -> None:
|
||||
"""Increment the tools errors counter."""
|
||||
@@ -242,6 +247,25 @@ class Task(BaseModel):
|
||||
"""Increment the delegations counter."""
|
||||
self.delegations += 1
|
||||
|
||||
def copy(self):
|
||||
"""Create a deep copy of the Task."""
|
||||
exclude = {
|
||||
"id",
|
||||
"agent",
|
||||
"context",
|
||||
"tools",
|
||||
}
|
||||
|
||||
copied_data = self.model_dump(exclude=exclude)
|
||||
copied_data = {k: v for k, v in copied_data.items() if v is not None}
|
||||
|
||||
cloned_context = [task.copy() for task in self.context] if self.context else None
|
||||
cloned_agent = self.agent.copy() if self.agent else None
|
||||
cloned_tools = deepcopy(self.tools) if self.tools else None
|
||||
|
||||
copied_task = Task(**copied_data, context=cloned_context, agent=cloned_agent, tools=cloned_tools)
|
||||
return copied_task
|
||||
|
||||
def _export_output(self, result: str) -> Any:
|
||||
exported_result = result
|
||||
instructions = "I'm gonna convert this raw text into valid JSON."
|
||||
@@ -251,27 +275,35 @@ class Task(BaseModel):
|
||||
|
||||
# try to convert task_output directly to pydantic/json
|
||||
try:
|
||||
exported_result = model.model_validate_json(result) # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
|
||||
# type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
|
||||
exported_result = model.model_validate_json(result)
|
||||
if self.output_json:
|
||||
return exported_result.model_dump() # type: ignore # "str" has no attribute "model_dump"
|
||||
# type: ignore # "str" has no attribute "model_dump"
|
||||
return exported_result.model_dump()
|
||||
return exported_result
|
||||
except Exception:
|
||||
# sometimes the response contains valid JSON in the middle of text
|
||||
match = re.search(r"({.*})", result, re.DOTALL)
|
||||
if match:
|
||||
try:
|
||||
exported_result = model.model_validate_json(match.group(0)) # type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
|
||||
# type: ignore # Item "None" of "type[BaseModel] | None" has no attribute "model_validate_json"
|
||||
exported_result = model.model_validate_json(
|
||||
match.group(0))
|
||||
if self.output_json:
|
||||
return exported_result.model_dump() # type: ignore # "str" has no attribute "model_dump"
|
||||
# type: ignore # "str" has no attribute "model_dump"
|
||||
return exported_result.model_dump()
|
||||
return exported_result
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
llm = self.agent.function_calling_llm or self.agent.llm # type: ignore # Item "None" of "Agent | None" has no attribute "function_calling_llm"
|
||||
# type: ignore # Item "None" of "Agent | None" has no attribute "function_calling_llm"
|
||||
llm = self.agent.function_calling_llm or self.agent.llm
|
||||
|
||||
if not self._is_gpt(llm):
|
||||
model_schema = PydanticSchemaParser(model=model).get_schema() # type: ignore # Argument "model" to "PydanticSchemaParser" has incompatible type "type[BaseModel] | None"; expected "type[BaseModel]"
|
||||
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
|
||||
# type: ignore # Argument "model" to "PydanticSchemaParser" has incompatible type "type[BaseModel] | None"; expected "type[BaseModel]"
|
||||
model_schema = PydanticSchemaParser(model=model).get_schema()
|
||||
instructions = f"{
|
||||
instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
|
||||
|
||||
converter = Converter(
|
||||
llm=llm, text=result, model=model, instructions=instructions
|
||||
@@ -284,14 +316,16 @@ class Task(BaseModel):
|
||||
|
||||
if isinstance(exported_result, ConverterError):
|
||||
Printer().print(
|
||||
content=f"{exported_result.message} Using raw output instead.",
|
||||
content=f"{
|
||||
exported_result.message} Using raw output instead.",
|
||||
color="red",
|
||||
)
|
||||
exported_result = result
|
||||
|
||||
if self.output_file:
|
||||
content = (
|
||||
exported_result if not self.output_pydantic else exported_result.json() # type: ignore # "str" has no attribute "json"
|
||||
# type: ignore # "str" has no attribute "json"
|
||||
exported_result if not self.output_pydantic else exported_result.json()
|
||||
)
|
||||
self._save_file(content)
|
||||
|
||||
@@ -301,12 +335,14 @@ class Task(BaseModel):
|
||||
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
|
||||
|
||||
def _save_file(self, result: Any) -> None:
|
||||
directory = os.path.dirname(self.output_file) # type: ignore # Value of type variable "AnyOrLiteralStr" of "dirname" cannot be "str | None"
|
||||
# type: ignore # Value of type variable "AnyOrLiteralStr" of "dirname" cannot be "str | None"
|
||||
directory = os.path.dirname(self.output_file)
|
||||
|
||||
if directory and not os.path.exists(directory):
|
||||
os.makedirs(directory)
|
||||
|
||||
with open(self.output_file, "w", encoding="utf-8") as file: # type: ignore # Argument 1 to "open" has incompatible type "str | None"; expected "int | str | bytes | PathLike[str] | PathLike[bytes]"
|
||||
# type: ignore # Argument 1 to "open" has incompatible type "str | None"; expected "int | str | bytes | PathLike[str] | PathLike[bytes]"
|
||||
with open(self.output_file, "w", encoding='utf-8') as file:
|
||||
file.write(result)
|
||||
return None
|
||||
|
||||
|
||||
Reference in New Issue
Block a user