adding support for input interpolation for tasks and agents

This commit is contained in:
João Moura
2024-02-28 02:59:58 -03:00
parent 45ea5ccef0
commit 38ceb9d409
4 changed files with 49 additions and 2 deletions

View File

@@ -1,6 +1,6 @@
import os
import uuid
from typing import Any, List, Optional, Tuple
from typing import Any, Dict, List, Optional, Tuple
from crewai_tools import BaseTool as CrewAITool
from langchain.agents.agent import RunnableAgent
@@ -255,6 +255,12 @@ class Agent(BaseModel):
agent=RunnableAgent(runnable=inner_agent), **executor_args
)
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolate inputs into the agent description and backstory."""
self.role = self.role.format(**inputs)
self.goal = self.goal.format(**inputs)
self.backstory = self.backstory.format(**inputs)
def increment_formatting_errors(self) -> None:
"""Count the formatting errors of the agent."""
self.formatting_errors += 1

View File

@@ -41,6 +41,7 @@ class Crew(BaseModel):
full_output: Whether the crew should return the full output with all tasks outputs or just the final output.
step_callback: Callback to be executed after each step for every agents execution.
share_crew: Whether you want to share the complete crew infromation and execution with crewAI to make the library better, and allow us to train models.
inputs: Any inputs that the crew will use in tasks or agents, it will be interpolated in promtps.
"""
__hash__ = object.__hash__ # type: ignore
@@ -67,6 +68,10 @@ class Crew(BaseModel):
function_calling_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
)
inputs: Optional[Dict[str, Any]] = Field(
description="Any inputs that the crew will use in tasks or agents, it will be interpolated in promtps.",
default={},
)
config: Optional[Union[Json, Dict[str, Any]]] = Field(default=None)
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
share_crew: Optional[bool] = Field(default=False)
@@ -129,6 +134,15 @@ class Crew(BaseModel):
)
return self
@model_validator(mode="after")
def interpolate_inputs(self):
"""Interpolates the inputs in the tasks and agents."""
for task in self.tasks:
task.interpolate_inputs(self.inputs)
for agent in self.agents:
agent.interpolate_inputs(self.inputs)
return self
@model_validator(mode="after")
def check_config(self):
"""Validates that the crew is properly configured with agents and tasks."""

View File

@@ -1,6 +1,6 @@
import threading
import uuid
from typing import Any, List, Optional, Type
from typing import Any, Dict, List, Optional, Type
from langchain_openai import ChatOpenAI
from pydantic import UUID4, BaseModel, Field, field_validator, model_validator
@@ -173,6 +173,12 @@ class Task(BaseModel):
tasks_slices = [self.description, output]
return "\n".join(tasks_slices)
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolate inputs into the task description and expected output."""
self.description = self.description.format(**inputs)
if self.expected_output:
self.expected_output = self.expected_output.format(**inputs)
def increment_tools_errors(self) -> None:
"""Increment the tools errors counter."""
self.tools_errors += 1

View File

@@ -650,3 +650,24 @@ def test_agent_usage_metrics_are_captured_for_hierarchical_process():
"completion_tokens": 109,
"successful_requests": 3,
}
def test_crew_inputs_interpolate_both_agents_and_tasks():
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="{points} bullet points about {topic}.",
)
crew = Crew(agents=[agent], tasks=[task], inputs={"topic": "AI", "points": 5})
assert crew.tasks[0].description == "Give me an analysis around AI."
assert crew.tasks[0].expected_output == "5 bullet points about AI."
assert crew.agents[0].role == "AI Researcher"
assert crew.agents[0].goal == "Express hot takes on AI."
assert crew.agents[0].backstory == "You have a lot of experience with AI."