Compare commits

..

4 Commits

7 changed files with 29 additions and 135 deletions

View File

@@ -4,7 +4,6 @@ import uuid
import warnings
from concurrent.futures import Future
from hashlib import md5
from crewai.llm import LLM
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from pydantic import (
@@ -1076,36 +1075,19 @@ class Crew(BaseModel):
def test(
self,
n_iterations: int,
llm: Union[str, LLM],
openai_model_name: Optional[str] = None,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures.
Args:
n_iterations: Number of test iterations to run
llm: Language model to use for evaluation. Can be either a model name string (e.g. "gpt-4")
or an LLM instance for custom implementations
inputs: Optional dictionary of input values to use for task execution
Example:
```python
# Using model name string
crew.test(n_iterations=3, llm="gpt-4")
# Using custom LLM implementation
custom_llm = LLM(model="custom-model")
crew.test(n_iterations=3, llm=custom_llm)
```
"""
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
test_crew = self.copy()
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
str(llm) if isinstance(llm, LLM) else llm,
)
evaluator = CrewEvaluator(test_crew, llm)
openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)

View File

@@ -14,13 +14,13 @@ class Knowledge(BaseModel):
Knowledge is a collection of sources and setup for the vector store to save and query relevant context.
Args:
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
collection_name: Optional[str] = None

View File

@@ -22,7 +22,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
default_factory=list, description="The path to the file"
)
content: Dict[Path, str] = Field(init=False, default_factory=dict)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
safe_file_paths: List[Path] = Field(default_factory=list)
@field_validator("file_path", "file_paths", mode="before")
@@ -62,7 +62,10 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
def _save_documents(self):
"""Save the documents to the storage."""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""

View File

@@ -16,7 +16,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
metadata: Dict[str, Any] = Field(default_factory=dict) # Currently unused
collection_name: Optional[str] = Field(default=None)
@@ -46,4 +46,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
Save the documents to the storage.
This method should be called after the chunks and embeddings are generated.
"""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")

View File

@@ -1,16 +1,10 @@
from collections import defaultdict
from typing import Any, Dict, List, Optional, TypeVar, Union
from typing import DefaultDict # Separate import to avoid circular imports
from pydantic import BaseModel, Field
from rich.box import HEAVY_EDGE
from rich.console import Console
from rich.table import Table
from crewai.llm import LLM
T = TypeVar('T', bound=LLM)
from crewai.agent import Agent
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
@@ -34,47 +28,14 @@ class CrewEvaluator:
iteration (int): The current iteration of the evaluation.
"""
_tasks_scores: DefaultDict[int, List[float]] = Field(
default_factory=lambda: defaultdict(list))
_run_execution_times: DefaultDict[int, List[float]] = Field(
default_factory=lambda: defaultdict(list))
tasks_scores: defaultdict = defaultdict(list)
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
@property
def tasks_scores(self) -> DefaultDict[int, List[float]]:
return self._tasks_scores
@tasks_scores.setter
def tasks_scores(self, value: Dict[int, List[float]]) -> None:
self._tasks_scores = defaultdict(list, value)
@property
def run_execution_times(self) -> DefaultDict[int, List[float]]:
return self._run_execution_times
@run_execution_times.setter
def run_execution_times(self, value: Dict[int, List[float]]) -> None:
self._run_execution_times = defaultdict(list, value)
def __init__(self, crew, llm: Union[str, T]):
"""Initialize the CrewEvaluator.
Args:
crew: The Crew instance to evaluate
llm: Language model to use for evaluation. Can be either a model name string
or an LLM instance for custom implementations
Raises:
ValueError: If llm is None or invalid
"""
if not llm:
raise ValueError("Invalid LLM configuration")
def __init__(self, crew, openai_model_name: str):
self.crew = crew
self.llm = LLM(model=llm) if isinstance(llm, str) else llm
self.openai_model_name = openai_model_name
self._telemetry = Telemetry()
self._tasks_scores = defaultdict(list)
self._run_execution_times = defaultdict(list)
self._setup_for_evaluating()
def _setup_for_evaluating(self) -> None:
@@ -90,7 +51,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.llm,
llm=self.openai_model_name,
)
def _evaluation_task(
@@ -220,19 +181,11 @@ class CrewEvaluator:
self.crew,
evaluation_result.pydantic.quality,
current_task._execution_time,
self._get_llm_identifier(),
self.openai_model_name,
)
self._tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self._run_execution_times[self.iteration].append(
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(
current_task._execution_time
)
else:
raise ValueError("Evaluation result is not in the expected format")
def _get_llm_identifier(self) -> str:
"""Get a string identifier for the LLM instance.
Returns:
String representation of the LLM for telemetry
"""
return str(self.llm) if isinstance(self.llm, LLM) else self.llm

View File

@@ -10,7 +10,6 @@ import instructor
import pydantic_core
import pytest
from crewai.llm import LLM
from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
@@ -1124,7 +1123,7 @@ def test_kickoff_for_each_empty_input():
assert results == []
@pytest.mark.vcr(filter_headeruvs=["authorization"])
@pytest.mark.vcr(filter_headers=["authorization"])
def test_kickoff_for_each_invalid_input():
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
@@ -2829,7 +2828,7 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
copy_mock.return_value = crew
n_iterations = 2
crew.test(n_iterations, llm="gpt-4o-mini", inputs={"topic": "AI"})
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls(
@@ -2845,32 +2844,6 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
]
)
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_with_custom_llm(kickoff_mock, copy_mock, crew_evaluator):
task = Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[task])
copy_mock.return_value = crew
custom_llm = LLM(model="gpt-4")
crew.test(2, llm=custom_llm, inputs={"topic": "AI"})
kickoff_mock.assert_has_calls([
mock.call(inputs={"topic": "AI"}),
mock.call(inputs={"topic": "AI"})
])
crew_evaluator.assert_has_calls([
mock.call(crew, custom_llm),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
])
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_verbose_manager_agent():
@@ -3152,4 +3125,4 @@ def test_multimodal_agent_live_image_analysis():
# Verify we got a meaningful response
assert isinstance(result.raw, str)
assert len(result.raw) > 100 # Expecting a detailed analysis
assert "error" not in result.raw.lower() # No error messages in response
assert "error" not in result.raw.lower() # No error messages in response

View File

@@ -2,7 +2,6 @@ from unittest import mock
import pytest
from crewai.llm import LLM
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.task import Task
@@ -24,7 +23,7 @@ class TestCrewEvaluator:
)
crew = Crew(agents=[agent], tasks=[task])
return CrewEvaluator(crew, llm="gpt-4o-mini")
return CrewEvaluator(crew, openai_model_name="gpt-4o-mini")
def test_setup_for_evaluating(self, crew_planner):
crew_planner._setup_for_evaluating()
@@ -48,25 +47,6 @@ class TestCrewEvaluator:
assert agent.verbose is False
assert agent.llm.model == "gpt-4o-mini"
@pytest.mark.parametrize("llm_input,expected_model", [
(LLM(model="gpt-4"), "gpt-4"),
("gpt-4", "gpt-4"),
])
def test_evaluator_with_llm_types(self, crew_planner, llm_input, expected_model):
evaluator = CrewEvaluator(crew_planner.crew, llm_input)
agent = evaluator._evaluator_agent()
assert agent.llm.model == expected_model
def test_evaluator_with_invalid_llm(self, crew_planner):
with pytest.raises(ValueError, match="Invalid LLM configuration"):
CrewEvaluator(crew_planner.crew, None)
def test_evaluator_with_string_llm(self, crew_planner):
evaluator = CrewEvaluator(crew_planner.crew, "gpt-4")
agent = evaluator._evaluator_agent()
assert isinstance(agent.llm, LLM)
assert agent.llm.model == "gpt-4"
def test_evaluation_task(self, crew_planner):
evaluator_agent = Agent(
role="Evaluator Agent",