mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-29 18:18:13 +00:00
Compare commits
4 Commits
devin/1740
...
63028e1b20
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
63028e1b20 | ||
|
|
81759e8c72 | ||
|
|
27472ba69e | ||
|
|
25aa774d8c |
@@ -14,13 +14,13 @@ class Knowledge(BaseModel):
|
||||
Knowledge is a collection of sources and setup for the vector store to save and query relevant context.
|
||||
Args:
|
||||
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
|
||||
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
embedder_config: Optional[Dict[str, Any]] = None
|
||||
"""
|
||||
|
||||
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
embedder_config: Optional[Dict[str, Any]] = None
|
||||
collection_name: Optional[str] = None
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
default_factory=list, description="The path to the file"
|
||||
)
|
||||
content: Dict[Path, str] = Field(init=False, default_factory=dict)
|
||||
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
safe_file_paths: List[Path] = Field(default_factory=list)
|
||||
|
||||
@field_validator("file_path", "file_paths", mode="before")
|
||||
@@ -62,7 +62,10 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
|
||||
def _save_documents(self):
|
||||
"""Save the documents to the storage."""
|
||||
self.storage.save(self.chunks)
|
||||
if self.storage:
|
||||
self.storage.save(self.chunks)
|
||||
else:
|
||||
raise ValueError("No storage found to save documents.")
|
||||
|
||||
def convert_to_path(self, path: Union[Path, str]) -> Path:
|
||||
"""Convert a path to a Path object."""
|
||||
|
||||
@@ -16,7 +16,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
|
||||
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
metadata: Dict[str, Any] = Field(default_factory=dict) # Currently unused
|
||||
collection_name: Optional[str] = Field(default=None)
|
||||
|
||||
@@ -46,4 +46,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
|
||||
Save the documents to the storage.
|
||||
This method should be called after the chunks and embeddings are generated.
|
||||
"""
|
||||
self.storage.save(self.chunks)
|
||||
if self.storage:
|
||||
self.storage.save(self.chunks)
|
||||
else:
|
||||
raise ValueError("No storage found to save documents.")
|
||||
|
||||
@@ -92,43 +92,9 @@ def suppress_warnings():
|
||||
|
||||
|
||||
class LLM:
|
||||
"""
|
||||
A wrapper class for language model interactions using litellm.
|
||||
|
||||
This class provides a unified interface for interacting with various language models
|
||||
through litellm. It handles model configuration, context window sizing, and callback
|
||||
management.
|
||||
|
||||
Args:
|
||||
model (str): The identifier for the language model to use. Must be a valid model ID
|
||||
with a provider prefix (e.g., 'openai/gpt-4'). Cannot be a numeric value without
|
||||
a provider prefix.
|
||||
timeout (Optional[Union[float, int]]): The timeout for API calls in seconds.
|
||||
temperature (Optional[float]): Controls randomness in the model's output.
|
||||
top_p (Optional[float]): Controls diversity via nucleus sampling.
|
||||
n (Optional[int]): Number of completions to generate.
|
||||
stop (Optional[Union[str, List[str]]]): Sequences where the model should stop generating.
|
||||
max_completion_tokens (Optional[int]): Maximum number of tokens to generate.
|
||||
max_tokens (Optional[int]): Alias for max_completion_tokens.
|
||||
presence_penalty (Optional[float]): Penalizes repeated tokens.
|
||||
frequency_penalty (Optional[float]): Penalizes frequent tokens.
|
||||
logit_bias (Optional[Dict[int, float]]): Modifies likelihood of specific tokens.
|
||||
response_format (Optional[Dict[str, Any]]): Specifies the format for the model's response.
|
||||
seed (Optional[int]): Seed for deterministic outputs.
|
||||
logprobs (Optional[bool]): Whether to return log probabilities.
|
||||
top_logprobs (Optional[int]): Number of most likely tokens to return probabilities for.
|
||||
base_url (Optional[str]): Base URL for API calls.
|
||||
api_version (Optional[str]): API version to use.
|
||||
api_key (Optional[str]): API key for authentication.
|
||||
callbacks (List[Any]): List of callback functions.
|
||||
**kwargs: Additional keyword arguments to pass to the model.
|
||||
|
||||
Raises:
|
||||
ValueError: If the model ID is empty, whitespace, or a numeric value without a provider prefix.
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
model: Union[str, Any],
|
||||
model: str,
|
||||
timeout: Optional[Union[float, int]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
@@ -149,16 +115,6 @@ class LLM:
|
||||
callbacks: List[Any] = [],
|
||||
**kwargs,
|
||||
):
|
||||
# Only validate model ID if it's not None and is a numeric value without a provider prefix
|
||||
if model is not None and (
|
||||
isinstance(model, (int, float)) or
|
||||
(isinstance(model, str) and model.strip() and model.strip().isdigit())
|
||||
):
|
||||
raise ValueError(
|
||||
f"Invalid model ID: {model}. Model ID cannot be a numeric value without a provider prefix. "
|
||||
"Please specify a valid model ID with a provider prefix, e.g., 'openai/gpt-4'."
|
||||
)
|
||||
|
||||
self.model = model
|
||||
self.timeout = timeout
|
||||
self.temperature = temperature
|
||||
@@ -230,10 +186,7 @@ class LLM:
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
try:
|
||||
# Handle None model case
|
||||
if self.model is None:
|
||||
return False
|
||||
params = get_supported_openai_params(model=str(self.model))
|
||||
params = get_supported_openai_params(model=self.model)
|
||||
return "response_format" in params
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to get supported params: {str(e)}")
|
||||
@@ -241,10 +194,7 @@ class LLM:
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
try:
|
||||
# Handle None model case
|
||||
if self.model is None:
|
||||
return False
|
||||
params = get_supported_openai_params(model=str(self.model))
|
||||
params = get_supported_openai_params(model=self.model)
|
||||
return "stop" in params
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to get supported params: {str(e)}")
|
||||
@@ -258,10 +208,8 @@ class LLM:
|
||||
self.context_window_size = int(
|
||||
DEFAULT_CONTEXT_WINDOW_SIZE * CONTEXT_WINDOW_USAGE_RATIO
|
||||
)
|
||||
# Ensure model is a string before calling startswith
|
||||
model_str = str(self.model) if not isinstance(self.model, str) else self.model
|
||||
for key, value in LLM_CONTEXT_WINDOW_SIZES.items():
|
||||
if model_str.startswith(key):
|
||||
if self.model.startswith(key):
|
||||
self.context_window_size = int(value * CONTEXT_WINDOW_USAGE_RATIO)
|
||||
return self.context_window_size
|
||||
|
||||
|
||||
@@ -1,43 +0,0 @@
|
||||
import pytest
|
||||
|
||||
from crewai.llm import LLM
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"invalid_model,error_message",
|
||||
[
|
||||
(3420, "Invalid model ID: 3420. Model ID cannot be a numeric value without a provider prefix."),
|
||||
("3420", "Invalid model ID: 3420. Model ID cannot be a numeric value without a provider prefix."),
|
||||
(3.14, "Invalid model ID: 3.14. Model ID cannot be a numeric value without a provider prefix."),
|
||||
],
|
||||
)
|
||||
def test_invalid_numeric_model_ids(invalid_model, error_message):
|
||||
"""Test that numeric model IDs are rejected."""
|
||||
with pytest.raises(ValueError, match=error_message):
|
||||
LLM(model=invalid_model)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"valid_model",
|
||||
[
|
||||
"openai/gpt-4",
|
||||
"gpt-3.5-turbo",
|
||||
"anthropic/claude-2",
|
||||
],
|
||||
)
|
||||
def test_valid_model_ids(valid_model):
|
||||
"""Test that valid model IDs are accepted."""
|
||||
llm = LLM(model=valid_model)
|
||||
assert llm.model == valid_model
|
||||
|
||||
|
||||
def test_empty_model_id():
|
||||
"""Test that empty model IDs are rejected."""
|
||||
with pytest.raises(ValueError, match="Invalid model ID: ''. Model ID cannot be empty or whitespace."):
|
||||
LLM(model="")
|
||||
|
||||
|
||||
def test_whitespace_model_id():
|
||||
"""Test that whitespace model IDs are rejected."""
|
||||
with pytest.raises(ValueError, match="Invalid model ID: ' '. Model ID cannot be empty or whitespace."):
|
||||
LLM(model=" ")
|
||||
Reference in New Issue
Block a user