Compare commits

..

4 Commits

9 changed files with 14 additions and 95 deletions

View File

@@ -23,7 +23,6 @@ from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_F
from crewai.utilities.converter import generate_model_description
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.utilities.typing import AgentConfig
agentops = None
@@ -89,7 +88,6 @@ class Agent(BaseAgent):
function_calling_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
)
config: Optional[Union[Dict[str, Any], AgentConfig]] = Field(default=None)
system_template: Optional[str] = Field(
default=None, description="System format for the agent."
)

View File

@@ -14,13 +14,13 @@ class Knowledge(BaseModel):
Knowledge is a collection of sources and setup for the vector store to save and query relevant context.
Args:
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
collection_name: Optional[str] = None

View File

@@ -22,7 +22,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
default_factory=list, description="The path to the file"
)
content: Dict[Path, str] = Field(init=False, default_factory=dict)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
safe_file_paths: List[Path] = Field(default_factory=list)
@field_validator("file_path", "file_paths", mode="before")
@@ -62,7 +62,10 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
def _save_documents(self):
"""Save the documents to the storage."""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""

View File

@@ -16,7 +16,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
metadata: Dict[str, Any] = Field(default_factory=dict) # Currently unused
collection_name: Optional[str] = Field(default=None)
@@ -46,4 +46,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
Save the documents to the storage.
This method should be called after the chunks and embeddings are generated.
"""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")

View File

@@ -16,12 +16,6 @@ def after_kickoff(func):
def task(func):
"""Decorator to mark a method as a task creator.
When applied to a method in a class decorated with @CrewBase,
this makes the method's return value accessible as an element
of the self.tasks list.
"""
func.is_task = True
@wraps(func)
@@ -35,12 +29,6 @@ def task(func):
def agent(func):
"""Decorator to mark a method as an agent creator.
When applied to a method in a class decorated with @CrewBase,
this makes the method's return value accessible as an element
of the self.agents list.
"""
func.is_agent = True
func = memoize(func)
return func

View File

@@ -1,6 +1,6 @@
import inspect
from pathlib import Path
from typing import Any, Callable, Dict, List, TypeVar, cast
from typing import Any, Callable, Dict, TypeVar, cast
import yaml
from dotenv import load_dotenv
@@ -66,9 +66,6 @@ def CrewBase(cls: T) -> T:
self._kickoff = self._filter_functions(
self._original_functions, "is_kickoff"
)
self.agents = [] # type: List[Any]
self.tasks = [] # type: List[Any]
@staticmethod
def load_yaml(config_path: Path):

View File

@@ -41,7 +41,6 @@ from crewai.tools.base_tool import BaseTool
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter, convert_to_model
from crewai.utilities.i18n import I18N
from crewai.utilities.typing import TaskConfig
class Task(BaseModel):
@@ -75,7 +74,7 @@ class Task(BaseModel):
expected_output: str = Field(
description="Clear definition of expected output for the task."
)
config: Optional[Union[Dict[str, Any], TaskConfig]] = Field(
config: Optional[Dict[str, Any]] = Field(
description="Configuration for the agent",
default=None,
)

View File

@@ -1,14 +0,0 @@
from typing import Dict, List, Optional, Any, TypedDict, Union
class AgentConfig(TypedDict, total=False):
"""TypedDict for agent configuration loaded from YAML."""
role: str
goal: str
backstory: str
verbose: bool
class TaskConfig(TypedDict, total=False):
"""TypedDict for task configuration loaded from YAML."""
description: str
expected_output: str
agent: str # Role of the agent to execute this task

View File

@@ -1,55 +0,0 @@
from typing import Dict, Any
import pytest
from crewai.agent import Agent
from crewai.task import Task
from crewai.utilities.typing import AgentConfig, TaskConfig
def test_agent_with_config_dict():
config: AgentConfig = {
"role": "Test Agent",
"goal": "Test Goal",
"backstory": "Test Backstory",
"verbose": True
}
agent = Agent(config=config)
assert agent.role == "Test Agent"
assert agent.goal == "Test Goal"
assert agent.backstory == "Test Backstory"
assert agent.verbose is True
def test_agent_with_yaml_config():
config: Dict[str, Any] = {
"researcher": {
"role": "Researcher",
"goal": "Research Goal",
"backstory": "Researcher Backstory",
"verbose": True
}
}
agent = Agent(config=config["researcher"])
assert agent.role == "Researcher"
assert agent.goal == "Research Goal"
assert agent.backstory == "Researcher Backstory"
def test_task_with_config_dict():
config: TaskConfig = {
"description": "Test Task",
"expected_output": "Test Output",
"agent": "researcher"
}
agent = Agent(role="Researcher", goal="Goal", backstory="Backstory")
task = Task(config=config, agent=agent)
assert task.description == "Test Task"
assert task.expected_output == "Test Output"
assert task.agent == agent