Compare commits

..

4 Commits

5 changed files with 12 additions and 96 deletions

View File

@@ -112,8 +112,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
try:
while not isinstance(formatted_answer, AgentFinish):
if not self.request_within_rpm_limit or self.request_within_rpm_limit():
self._check_context_length_before_call()
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
@@ -329,19 +327,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
]
def _check_context_length_before_call(self) -> None:
total_chars = sum(len(msg.get("content", "")) for msg in self.messages)
estimated_tokens = total_chars // 4
context_window_size = self.llm.get_context_window_size()
if estimated_tokens > context_window_size:
self._printer.print(
content=f"Estimated token count ({estimated_tokens}) exceeds context window ({context_window_size}). Handling proactively.",
color="yellow",
)
self._handle_context_length()
def _handle_context_length(self) -> None:
if self.respect_context_window:
self._printer.print(

View File

@@ -14,13 +14,13 @@ class Knowledge(BaseModel):
Knowledge is a collection of sources and setup for the vector store to save and query relevant context.
Args:
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
embedder_config: Optional[Dict[str, Any]] = None
collection_name: Optional[str] = None

View File

@@ -22,7 +22,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
default_factory=list, description="The path to the file"
)
content: Dict[Path, str] = Field(init=False, default_factory=dict)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
safe_file_paths: List[Path] = Field(default_factory=list)
@field_validator("file_path", "file_paths", mode="before")
@@ -62,7 +62,10 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
def _save_documents(self):
"""Save the documents to the storage."""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""

View File

@@ -16,7 +16,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
storage: Optional[KnowledgeStorage] = Field(default=None)
metadata: Dict[str, Any] = Field(default_factory=dict) # Currently unused
collection_name: Optional[str] = Field(default=None)
@@ -46,4 +46,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
Save the documents to the storage.
This method should be called after the chunks and embeddings are generated.
"""
self.storage.save(self.chunks)
if self.storage:
self.storage.save(self.chunks)
else:
raise ValueError("No storage found to save documents.")

View File

@@ -1625,78 +1625,3 @@ def test_agent_with_knowledge_sources():
# Assert that the agent provides the correct information
assert "red" in result.raw.lower()
def test_proactive_context_length_handling_prevents_empty_response():
"""Test that proactive context length checking prevents empty LLM responses."""
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
sliding_context_window=True,
)
long_input = "This is a very long input that should exceed the context window. " * 1000
with patch.object(agent.llm, 'get_context_window_size', return_value=100):
with patch.object(agent.agent_executor, '_handle_context_length') as mock_handle:
with patch.object(agent.llm, 'call', return_value="Proper response after summarization"):
agent.agent_executor.messages = [
{"role": "user", "content": long_input}
]
task = Task(
description="Process this long input",
expected_output="A response",
agent=agent,
)
result = agent.execute_task(task)
mock_handle.assert_called()
assert result and result.strip() != ""
def test_proactive_context_length_handling_with_no_summarization():
"""Test proactive context length checking when summarization is disabled."""
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
sliding_context_window=False,
)
long_input = "This is a very long input. " * 1000
with patch.object(agent.llm, 'get_context_window_size', return_value=100):
agent.agent_executor.messages = [
{"role": "user", "content": long_input}
]
with pytest.raises(SystemExit):
agent.agent_executor._check_context_length_before_call()
def test_context_length_estimation():
"""Test the token estimation logic."""
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
)
agent.agent_executor.messages = [
{"role": "user", "content": "Short message"},
{"role": "assistant", "content": "Another short message"},
]
with patch.object(agent.llm, 'get_context_window_size', return_value=10):
with patch.object(agent.agent_executor, '_handle_context_length') as mock_handle:
agent.agent_executor._check_context_length_before_call()
mock_handle.assert_not_called()
with patch.object(agent.llm, 'get_context_window_size', return_value=5):
with patch.object(agent.agent_executor, '_handle_context_length') as mock_handle:
agent.agent_executor._check_context_length_before_call()
mock_handle.assert_called()