mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-28 17:48:13 +00:00
Compare commits
4 Commits
devin/1737
...
63028e1b20
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
63028e1b20 | ||
|
|
81759e8c72 | ||
|
|
27472ba69e | ||
|
|
25aa774d8c |
@@ -3,7 +3,6 @@ import re
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
from litellm import AuthenticationError as LiteLLMAuthenticationError
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
|
||||
from crewai.agents.parser import (
|
||||
@@ -198,19 +197,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
return self._invoke_loop(formatted_answer)
|
||||
|
||||
except Exception as e:
|
||||
if isinstance(e, LiteLLMAuthenticationError):
|
||||
self._logger.log(
|
||||
level="error",
|
||||
message="Authentication error with litellm occurred. Please check your API key and configuration.",
|
||||
color="red",
|
||||
)
|
||||
self._logger.log(
|
||||
level="error",
|
||||
message=f"Error details: {str(e)}",
|
||||
color="red",
|
||||
)
|
||||
raise e
|
||||
elif LLMContextLengthExceededException(str(e))._is_context_limit_error(
|
||||
if LLMContextLengthExceededException(str(e))._is_context_limit_error(
|
||||
str(e)
|
||||
):
|
||||
self._handle_context_length()
|
||||
|
||||
@@ -14,13 +14,13 @@ class Knowledge(BaseModel):
|
||||
Knowledge is a collection of sources and setup for the vector store to save and query relevant context.
|
||||
Args:
|
||||
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
|
||||
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
embedder_config: Optional[Dict[str, Any]] = None
|
||||
"""
|
||||
|
||||
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
embedder_config: Optional[Dict[str, Any]] = None
|
||||
collection_name: Optional[str] = None
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
default_factory=list, description="The path to the file"
|
||||
)
|
||||
content: Dict[Path, str] = Field(init=False, default_factory=dict)
|
||||
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
safe_file_paths: List[Path] = Field(default_factory=list)
|
||||
|
||||
@field_validator("file_path", "file_paths", mode="before")
|
||||
@@ -62,7 +62,10 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
|
||||
def _save_documents(self):
|
||||
"""Save the documents to the storage."""
|
||||
self.storage.save(self.chunks)
|
||||
if self.storage:
|
||||
self.storage.save(self.chunks)
|
||||
else:
|
||||
raise ValueError("No storage found to save documents.")
|
||||
|
||||
def convert_to_path(self, path: Union[Path, str]) -> Path:
|
||||
"""Convert a path to a Path object."""
|
||||
|
||||
@@ -16,7 +16,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
|
||||
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
||||
storage: Optional[KnowledgeStorage] = Field(default=None)
|
||||
metadata: Dict[str, Any] = Field(default_factory=dict) # Currently unused
|
||||
collection_name: Optional[str] = Field(default=None)
|
||||
|
||||
@@ -46,4 +46,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
|
||||
Save the documents to the storage.
|
||||
This method should be called after the chunks and embeddings are generated.
|
||||
"""
|
||||
self.storage.save(self.chunks)
|
||||
if self.storage:
|
||||
self.storage.save(self.chunks)
|
||||
else:
|
||||
raise ValueError("No storage found to save documents.")
|
||||
|
||||
@@ -1308,115 +1308,6 @@ def test_llm_call_with_error():
|
||||
llm.call(messages)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_litellm_auth_error_handling():
|
||||
"""Test that LiteLLM authentication errors are handled correctly and not retried."""
|
||||
from litellm import AuthenticationError as LiteLLMAuthenticationError
|
||||
|
||||
# Create an agent with a mocked LLM and max_retry_limit=0
|
||||
agent = Agent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
llm=LLM(model="gpt-4"),
|
||||
max_retry_limit=0, # Disable retries for authentication errors
|
||||
max_iter=1, # Limit to one iteration to prevent multiple calls
|
||||
)
|
||||
|
||||
# Create a task
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Mock the LLM call to raise LiteLLMAuthenticationError
|
||||
with (
|
||||
patch.object(LLM, "call") as mock_llm_call,
|
||||
pytest.raises(LiteLLMAuthenticationError, match="Invalid API key"),
|
||||
):
|
||||
mock_llm_call.side_effect = LiteLLMAuthenticationError(
|
||||
message="Invalid API key",
|
||||
llm_provider="openai",
|
||||
model="gpt-4"
|
||||
)
|
||||
agent.execute_task(task)
|
||||
|
||||
# Verify the call was only made once (no retries)
|
||||
mock_llm_call.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_agent_executor_litellm_auth_error():
|
||||
"""Test that CrewAgentExecutor properly identifies and handles LiteLLM authentication errors."""
|
||||
from litellm import AuthenticationError as LiteLLMAuthenticationError
|
||||
from crewai.utilities import Logger
|
||||
from crewai.agents.tools_handler import ToolsHandler
|
||||
|
||||
# Create an agent and executor with max_retry_limit=0
|
||||
agent = Agent(
|
||||
role="test role",
|
||||
goal="test goal",
|
||||
backstory="test backstory",
|
||||
llm=LLM(model="gpt-4"),
|
||||
max_retry_limit=0, # Disable retries for authentication errors
|
||||
)
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Create executor with all required parameters
|
||||
executor = CrewAgentExecutor(
|
||||
agent=agent,
|
||||
task=task,
|
||||
llm=agent.llm,
|
||||
crew=None,
|
||||
prompt={
|
||||
"system": "You are a test agent",
|
||||
"user": "Execute the task: {input}"
|
||||
},
|
||||
max_iter=5,
|
||||
tools=[],
|
||||
tools_names="",
|
||||
stop_words=[],
|
||||
tools_description="",
|
||||
tools_handler=ToolsHandler(),
|
||||
)
|
||||
|
||||
# Mock the LLM call to raise LiteLLMAuthenticationError
|
||||
with (
|
||||
patch.object(LLM, "call") as mock_llm_call,
|
||||
patch.object(Logger, "log") as mock_logger,
|
||||
pytest.raises(LiteLLMAuthenticationError, match="Invalid API key"),
|
||||
):
|
||||
mock_llm_call.side_effect = LiteLLMAuthenticationError(
|
||||
message="Invalid API key",
|
||||
llm_provider="openai",
|
||||
model="gpt-4"
|
||||
)
|
||||
executor.invoke({
|
||||
"input": "test input",
|
||||
"tool_names": "", # Required template variable
|
||||
"tools": "", # Required template variable
|
||||
})
|
||||
|
||||
# Verify error handling
|
||||
mock_logger.assert_any_call(
|
||||
level="error",
|
||||
message="Authentication error with litellm occurred. Please check your API key and configuration.",
|
||||
color="red",
|
||||
)
|
||||
mock_logger.assert_any_call(
|
||||
level="error",
|
||||
message="Error details: litellm.AuthenticationError: Invalid API key",
|
||||
color="red",
|
||||
)
|
||||
# Verify the call was only made once (no retries)
|
||||
mock_llm_call.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_handle_context_length_exceeds_limit():
|
||||
agent = Agent(
|
||||
|
||||
Reference in New Issue
Block a user