refactor: improve type safety and test patterns

Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
Devin AI
2025-02-09 21:28:13 +00:00
parent b8a15c6115
commit 90c577fdd0
3 changed files with 82 additions and 14 deletions

View File

@@ -1079,7 +1079,24 @@ class Crew(BaseModel):
llm: Union[str, LLM],
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures.
Args:
n_iterations: Number of test iterations to run
llm: Language model to use for evaluation. Can be either a model name string (e.g. "gpt-4")
or an LLM instance for custom implementations
inputs: Optional dictionary of input values to use for task execution
Example:
```python
# Using model name string
crew.test(n_iterations=3, llm="gpt-4")
# Using custom LLM implementation
custom_llm = LLM(model="custom-model")
crew.test(n_iterations=3, llm=custom_llm)
```
"""
test_crew = self.copy()
self._test_execution_span = test_crew._telemetry.test_execution_span(

View File

@@ -1,13 +1,16 @@
from typing import Union
from crewai.llm import LLM
from collections import defaultdict
from typing import Any, Dict, List, Optional, TypeVar, Union
from typing import DefaultDict # Separate import to avoid circular imports
from pydantic import BaseModel, Field
from rich.box import HEAVY_EDGE
from rich.console import Console
from rich.table import Table
from crewai.llm import LLM
T = TypeVar('T', bound=LLM)
from crewai.agent import Agent
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
@@ -31,14 +34,47 @@ class CrewEvaluator:
iteration (int): The current iteration of the evaluation.
"""
tasks_scores: defaultdict = defaultdict(list)
run_execution_times: defaultdict = defaultdict(list)
_tasks_scores: DefaultDict[int, List[float]] = Field(
default_factory=lambda: defaultdict(list))
_run_execution_times: DefaultDict[int, List[float]] = Field(
default_factory=lambda: defaultdict(list))
iteration: int = 0
def __init__(self, crew, llm: Union[str, LLM]):
@property
def tasks_scores(self) -> DefaultDict[int, List[float]]:
return self._tasks_scores
@tasks_scores.setter
def tasks_scores(self, value: Dict[int, List[float]]) -> None:
self._tasks_scores = defaultdict(list, value)
@property
def run_execution_times(self) -> DefaultDict[int, List[float]]:
return self._run_execution_times
@run_execution_times.setter
def run_execution_times(self, value: Dict[int, List[float]]) -> None:
self._run_execution_times = defaultdict(list, value)
def __init__(self, crew, llm: Union[str, T]):
"""Initialize the CrewEvaluator.
Args:
crew: The Crew instance to evaluate
llm: Language model to use for evaluation. Can be either a model name string
or an LLM instance for custom implementations
Raises:
ValueError: If llm is None or invalid
"""
if not llm:
raise ValueError("Invalid LLM configuration")
self.crew = crew
self.llm = LLM(model=llm) if isinstance(llm, str) else llm
self._telemetry = Telemetry()
self._tasks_scores = defaultdict(list)
self._run_execution_times = defaultdict(list)
self._setup_for_evaluating()
def _setup_for_evaluating(self) -> None:
@@ -184,11 +220,19 @@ class CrewEvaluator:
self.crew,
evaluation_result.pydantic.quality,
current_task._execution_time,
str(self.llm) if isinstance(self.llm, LLM) else self.llm,
self._get_llm_identifier(),
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(
self._tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self._run_execution_times[self.iteration].append(
current_task._execution_time
)
else:
raise ValueError("Evaluation result is not in the expected format")
def _get_llm_identifier(self) -> str:
"""Get a string identifier for the LLM instance.
Returns:
String representation of the LLM for telemetry
"""
return str(self.llm) if isinstance(self.llm, LLM) else self.llm

View File

@@ -48,11 +48,18 @@ class TestCrewEvaluator:
assert agent.verbose is False
assert agent.llm.model == "gpt-4o-mini"
def test_evaluator_with_custom_llm(self, crew_planner):
custom_llm = LLM(model="gpt-4")
evaluator = CrewEvaluator(crew_planner.crew, custom_llm)
@pytest.mark.parametrize("llm_input,expected_model", [
(LLM(model="gpt-4"), "gpt-4"),
("gpt-4", "gpt-4"),
])
def test_evaluator_with_llm_types(self, crew_planner, llm_input, expected_model):
evaluator = CrewEvaluator(crew_planner.crew, llm_input)
agent = evaluator._evaluator_agent()
assert agent.llm == custom_llm
assert agent.llm.model == expected_model
def test_evaluator_with_invalid_llm(self, crew_planner):
with pytest.raises(ValueError, match="Invalid LLM configuration"):
CrewEvaluator(crew_planner.crew, None)
def test_evaluator_with_string_llm(self, crew_planner):
evaluator = CrewEvaluator(crew_planner.crew, "gpt-4")