mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-07 15:18:29 +00:00
refactor: improve type safety and test patterns
Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
@@ -1079,7 +1079,24 @@ class Crew(BaseModel):
|
||||
llm: Union[str, LLM],
|
||||
inputs: Optional[Dict[str, Any]] = None,
|
||||
) -> None:
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures.
|
||||
|
||||
Args:
|
||||
n_iterations: Number of test iterations to run
|
||||
llm: Language model to use for evaluation. Can be either a model name string (e.g. "gpt-4")
|
||||
or an LLM instance for custom implementations
|
||||
inputs: Optional dictionary of input values to use for task execution
|
||||
|
||||
Example:
|
||||
```python
|
||||
# Using model name string
|
||||
crew.test(n_iterations=3, llm="gpt-4")
|
||||
|
||||
# Using custom LLM implementation
|
||||
custom_llm = LLM(model="custom-model")
|
||||
crew.test(n_iterations=3, llm=custom_llm)
|
||||
```
|
||||
"""
|
||||
test_crew = self.copy()
|
||||
|
||||
self._test_execution_span = test_crew._telemetry.test_execution_span(
|
||||
|
||||
@@ -1,13 +1,16 @@
|
||||
from typing import Union
|
||||
|
||||
from crewai.llm import LLM
|
||||
from collections import defaultdict
|
||||
from typing import Any, Dict, List, Optional, TypeVar, Union
|
||||
from typing import DefaultDict # Separate import to avoid circular imports
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from rich.box import HEAVY_EDGE
|
||||
from rich.console import Console
|
||||
from rich.table import Table
|
||||
|
||||
from crewai.llm import LLM
|
||||
|
||||
T = TypeVar('T', bound=LLM)
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
@@ -31,14 +34,47 @@ class CrewEvaluator:
|
||||
iteration (int): The current iteration of the evaluation.
|
||||
"""
|
||||
|
||||
tasks_scores: defaultdict = defaultdict(list)
|
||||
run_execution_times: defaultdict = defaultdict(list)
|
||||
_tasks_scores: DefaultDict[int, List[float]] = Field(
|
||||
default_factory=lambda: defaultdict(list))
|
||||
_run_execution_times: DefaultDict[int, List[float]] = Field(
|
||||
default_factory=lambda: defaultdict(list))
|
||||
iteration: int = 0
|
||||
|
||||
def __init__(self, crew, llm: Union[str, LLM]):
|
||||
@property
|
||||
def tasks_scores(self) -> DefaultDict[int, List[float]]:
|
||||
return self._tasks_scores
|
||||
|
||||
@tasks_scores.setter
|
||||
def tasks_scores(self, value: Dict[int, List[float]]) -> None:
|
||||
self._tasks_scores = defaultdict(list, value)
|
||||
|
||||
@property
|
||||
def run_execution_times(self) -> DefaultDict[int, List[float]]:
|
||||
return self._run_execution_times
|
||||
|
||||
@run_execution_times.setter
|
||||
def run_execution_times(self, value: Dict[int, List[float]]) -> None:
|
||||
self._run_execution_times = defaultdict(list, value)
|
||||
|
||||
def __init__(self, crew, llm: Union[str, T]):
|
||||
"""Initialize the CrewEvaluator.
|
||||
|
||||
Args:
|
||||
crew: The Crew instance to evaluate
|
||||
llm: Language model to use for evaluation. Can be either a model name string
|
||||
or an LLM instance for custom implementations
|
||||
|
||||
Raises:
|
||||
ValueError: If llm is None or invalid
|
||||
"""
|
||||
if not llm:
|
||||
raise ValueError("Invalid LLM configuration")
|
||||
|
||||
self.crew = crew
|
||||
self.llm = LLM(model=llm) if isinstance(llm, str) else llm
|
||||
self._telemetry = Telemetry()
|
||||
self._tasks_scores = defaultdict(list)
|
||||
self._run_execution_times = defaultdict(list)
|
||||
self._setup_for_evaluating()
|
||||
|
||||
def _setup_for_evaluating(self) -> None:
|
||||
@@ -184,11 +220,19 @@ class CrewEvaluator:
|
||||
self.crew,
|
||||
evaluation_result.pydantic.quality,
|
||||
current_task._execution_time,
|
||||
str(self.llm) if isinstance(self.llm, LLM) else self.llm,
|
||||
self._get_llm_identifier(),
|
||||
)
|
||||
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
|
||||
self.run_execution_times[self.iteration].append(
|
||||
self._tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
|
||||
self._run_execution_times[self.iteration].append(
|
||||
current_task._execution_time
|
||||
)
|
||||
else:
|
||||
raise ValueError("Evaluation result is not in the expected format")
|
||||
|
||||
def _get_llm_identifier(self) -> str:
|
||||
"""Get a string identifier for the LLM instance.
|
||||
|
||||
Returns:
|
||||
String representation of the LLM for telemetry
|
||||
"""
|
||||
return str(self.llm) if isinstance(self.llm, LLM) else self.llm
|
||||
|
||||
@@ -48,11 +48,18 @@ class TestCrewEvaluator:
|
||||
assert agent.verbose is False
|
||||
assert agent.llm.model == "gpt-4o-mini"
|
||||
|
||||
def test_evaluator_with_custom_llm(self, crew_planner):
|
||||
custom_llm = LLM(model="gpt-4")
|
||||
evaluator = CrewEvaluator(crew_planner.crew, custom_llm)
|
||||
@pytest.mark.parametrize("llm_input,expected_model", [
|
||||
(LLM(model="gpt-4"), "gpt-4"),
|
||||
("gpt-4", "gpt-4"),
|
||||
])
|
||||
def test_evaluator_with_llm_types(self, crew_planner, llm_input, expected_model):
|
||||
evaluator = CrewEvaluator(crew_planner.crew, llm_input)
|
||||
agent = evaluator._evaluator_agent()
|
||||
assert agent.llm == custom_llm
|
||||
assert agent.llm.model == expected_model
|
||||
|
||||
def test_evaluator_with_invalid_llm(self, crew_planner):
|
||||
with pytest.raises(ValueError, match="Invalid LLM configuration"):
|
||||
CrewEvaluator(crew_planner.crew, None)
|
||||
|
||||
def test_evaluator_with_string_llm(self, crew_planner):
|
||||
evaluator = CrewEvaluator(crew_planner.crew, "gpt-4")
|
||||
|
||||
Reference in New Issue
Block a user