Compare commits

...

8 Commits

Author SHA1 Message Date
Devin AI
6b354201cb Fix lint issues: suppress unused chromadb import warnings and update remaining external memory test
Co-Authored-By: João <joao@crewai.com>
2025-05-30 09:45:39 +00:00
Devin AI
5566f4716b Update external memory tests to handle optional ChromaDB dependency
Co-Authored-By: João <joao@crewai.com>
2025-05-30 09:38:50 +00:00
Devin AI
ea5f6b592c Update memory tests to handle optional ChromaDB dependency
Co-Authored-By: João <joao@crewai.com>
2025-05-30 09:37:44 +00:00
Devin AI
a0057afe45 Fix Collection type annotation and test mocking issues
Co-Authored-By: João <joao@crewai.com>
2025-05-30 09:27:06 +00:00
Devin AI
ebcb6c6f90 Fix CI failures: restore missing error classes and resolve type issues
Co-Authored-By: João <joao@crewai.com>
2025-05-30 09:19:30 +00:00
Devin AI
c7e83a7529 Update optional dependencies tests
Co-Authored-By: João <joao@crewai.com>
2025-05-30 09:10:46 +00:00
Devin AI
f0b1cc23f4 Add ChromaDBRequiredError class and improve error handling
Co-Authored-By: João <joao@crewai.com>
2025-05-30 09:10:35 +00:00
Devin AI
7b129fc847 Fix #2919: Make chromadb an optional dependency to resolve package conflicts
Co-Authored-By: João <joao@crewai.com>
2025-05-30 08:56:35 +00:00
10 changed files with 570 additions and 171 deletions

View File

@@ -21,7 +21,6 @@ dependencies = [
"opentelemetry-sdk>=1.30.0",
"opentelemetry-exporter-otlp-proto-http>=1.30.0",
# Data Handling
"chromadb>=0.5.23",
"openpyxl>=3.1.5",
"pyvis>=0.3.2",
# Authentication and Security
@@ -49,6 +48,9 @@ tools = ["crewai-tools~=0.45.0"]
embeddings = [
"tiktoken~=0.7.0"
]
storage = [
"chromadb>=0.5.23"
]
agentops = ["agentops>=0.3.0"]
fastembed = ["fastembed>=0.4.1"]
pdfplumber = [

View File

@@ -6,16 +6,25 @@ import os
import shutil
from typing import Any, Dict, List, Optional, Union
import chromadb
import chromadb.errors
from chromadb.api import ClientAPI
from chromadb.api.types import OneOrMany
from chromadb.config import Settings
try:
import chromadb
import chromadb.errors
from chromadb.api import ClientAPI
from chromadb.api.types import OneOrMany
from chromadb.config import Settings
HAS_CHROMADB = True
except ImportError:
chromadb = None # type: ignore
ClientAPI = Any # type: ignore
OneOrMany = Any # type: ignore
Settings = Any # type: ignore
HAS_CHROMADB = False
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.chromadb import sanitize_collection_name
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.errors import ChromaDBRequiredError
from crewai.utilities.logger import Logger
from crewai.utilities.paths import db_storage_path
@@ -43,7 +52,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
search efficiency.
"""
collection: Optional[chromadb.Collection] = None
collection: Optional[Any] = None # type: ignore
collection_name: Optional[str] = "knowledge"
app: Optional[ClientAPI] = None
@@ -62,6 +71,9 @@ class KnowledgeStorage(BaseKnowledgeStorage):
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Dict[str, Any]]:
if not HAS_CHROMADB:
raise ChromaDBRequiredError("knowledge storage")
with suppress_logging():
if self.collection:
fetched = self.collection.query(
@@ -84,48 +96,63 @@ class KnowledgeStorage(BaseKnowledgeStorage):
raise Exception("Collection not initialized")
def initialize_knowledge_storage(self):
if not HAS_CHROMADB:
raise ChromaDBRequiredError("knowledge storage")
base_path = os.path.join(db_storage_path(), "knowledge")
chroma_client = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app = chroma_client
try:
collection_name = (
f"knowledge_{self.collection_name}"
if self.collection_name
else "knowledge"
)
if self.app:
self.collection = self.app.get_or_create_collection(
name=sanitize_collection_name(collection_name),
embedding_function=self.embedder,
)
else:
raise Exception("Vector Database Client not initialized")
except Exception:
raise Exception("Failed to create or get collection")
def reset(self):
base_path = os.path.join(db_storage_path(), KNOWLEDGE_DIRECTORY)
if not self.app:
self.app = chromadb.PersistentClient(
chroma_client = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app.reset()
shutil.rmtree(base_path)
self.app = None
self.collection = None
self.app = chroma_client
try:
collection_name = (
f"knowledge_{self.collection_name}"
if self.collection_name
else "knowledge"
)
if self.app:
self.collection = self.app.get_or_create_collection(
name=sanitize_collection_name(collection_name),
embedding_function=self.embedder,
)
else:
raise Exception("Vector Database Client not initialized")
except Exception:
raise Exception("Failed to create or get collection")
except ImportError:
raise ChromaDBRequiredError("knowledge storage")
def reset(self):
if not HAS_CHROMADB:
raise ChromaDBRequiredError("knowledge storage")
base_path = os.path.join(db_storage_path(), KNOWLEDGE_DIRECTORY)
try:
if not self.app:
self.app = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app.reset()
shutil.rmtree(base_path)
self.app = None
self.collection = None
except ImportError:
raise ChromaDBRequiredError("knowledge storage")
def save(
self,
documents: List[str],
metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
):
if not HAS_CHROMADB:
raise ChromaDBRequiredError("knowledge storage")
if not self.collection:
raise Exception("Collection not initialized")
@@ -156,7 +183,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
filtered_ids.append(doc_id)
# If we have no metadata at all, set it to None
final_metadata: Optional[OneOrMany[chromadb.Metadata]] = (
final_metadata: Optional[OneOrMany[Any]] = (
None if all(m is None for m in filtered_metadata) else filtered_metadata
)
@@ -165,29 +192,38 @@ class KnowledgeStorage(BaseKnowledgeStorage):
metadatas=final_metadata,
ids=filtered_ids,
)
except chromadb.errors.InvalidDimensionException as e:
Logger(verbose=True).log(
"error",
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
"red",
)
raise ValueError(
"Embedding dimension mismatch. Make sure you're using the same embedding model "
"across all operations with this collection."
"Try resetting the collection using `crewai reset-memories -a`"
) from e
except ImportError:
raise ChromaDBRequiredError("knowledge storage")
except Exception as e:
Logger(verbose=True).log("error", f"Failed to upsert documents: {e}", "red")
raise
if HAS_CHROMADB and isinstance(e, chromadb.errors.InvalidDimensionException):
Logger(verbose=True).log(
"error",
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
"red",
)
raise ValueError(
"Embedding dimension mismatch. Make sure you're using the same embedding model "
"across all operations with this collection."
"Try resetting the collection using `crewai reset-memories -a`"
) from e
else:
Logger(verbose=True).log("error", f"Failed to upsert documents: {e}", "red")
raise
def _create_default_embedding_function(self):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("knowledge storage")
try:
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
except ImportError:
raise ChromaDBRequiredError("knowledge storage")
def _set_embedder_config(self, embedder: Optional[Dict[str, Any]] = None) -> None:
"""Set the embedding configuration for the knowledge storage.

View File

@@ -6,11 +6,17 @@ import shutil
import uuid
from typing import Any, Dict, List, Optional
from chromadb.api import ClientAPI
try:
from chromadb.api import ClientAPI
HAS_CHROMADB = True
except ImportError:
ClientAPI = Any # type: ignore
HAS_CHROMADB = False
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH
from crewai.utilities.errors import ChromaDBRequiredError
from crewai.utilities.paths import db_storage_path
@@ -60,26 +66,32 @@ class RAGStorage(BaseRAGStorage):
self.embedder_config = configurator.configure_embedder(self.embedder_config)
def _initialize_app(self):
import chromadb
from chromadb.config import Settings
self._set_embedder_config()
chroma_client = chromadb.PersistentClient(
path=self.path if self.path else self.storage_file_name,
settings=Settings(allow_reset=self.allow_reset),
)
self.app = chroma_client
if not HAS_CHROMADB:
raise ChromaDBRequiredError("memory storage")
try:
self.collection = self.app.get_collection(
name=self.type, embedding_function=self.embedder_config
)
except Exception:
self.collection = self.app.create_collection(
name=self.type, embedding_function=self.embedder_config
import chromadb
from chromadb.config import Settings
self._set_embedder_config()
chroma_client = chromadb.PersistentClient(
path=self.path if self.path else self.storage_file_name,
settings=Settings(allow_reset=self.allow_reset),
)
self.app = chroma_client
try:
self.collection = self.app.get_collection(
name=self.type, embedding_function=self.embedder_config
)
except Exception:
self.collection = self.app.create_collection(
name=self.type, embedding_function=self.embedder_config
)
except ImportError:
raise ChromaDBRequiredError("memory storage")
def _sanitize_role(self, role: str) -> str:
"""
Sanitizes agent roles to ensure valid directory names.
@@ -165,10 +177,16 @@ class RAGStorage(BaseRAGStorage):
)
def _create_default_embedding_function(self):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("memory storage")
try:
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
except ImportError:
raise ChromaDBRequiredError("memory storage")

View File

@@ -1,8 +1,29 @@
import os
from typing import Any, Dict, Optional, cast
from typing import Any, Dict, Optional, cast, Protocol, Sequence, TYPE_CHECKING, TypeVar, List, Union
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.api.types import validate_embedding_function
from crewai.utilities.errors import ChromaDBRequiredError
if TYPE_CHECKING:
from numpy import ndarray
from numpy import dtype, floating, signedinteger, unsignedinteger
try:
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.api.types import validate_embedding_function
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
Documents = List[str] # type: ignore
Embeddings = List[List[float]] # type: ignore
class EmbeddingFunction(Protocol): # type: ignore
"""Protocol for embedding functions when ChromaDB is not available."""
def __call__(self, input: List[str]) -> List[List[float]]: ...
def validate_embedding_function(func: Any) -> None: # type: ignore
"""Stub for validate_embedding_function when ChromaDB is not available."""
pass
class EmbeddingConfigurator:
@@ -26,6 +47,9 @@ class EmbeddingConfigurator:
embedder_config: Optional[Dict[str, Any]] = None,
) -> EmbeddingFunction:
"""Configures and returns an embedding function based on the provided config."""
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
if embedder_config is None:
return self._create_default_embedding_function()
@@ -47,129 +71,189 @@ class EmbeddingConfigurator:
@staticmethod
def _create_default_embedding_function():
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
try:
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
except ImportError:
raise ChromaDBRequiredError("embedding functionality")
@staticmethod
def _configure_openai(config, model_name):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
try:
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
model_name=model_name,
api_base=config.get("api_base", None),
api_type=config.get("api_type", None),
api_version=config.get("api_version", None),
default_headers=config.get("default_headers", None),
dimensions=config.get("dimensions", None),
deployment_id=config.get("deployment_id", None),
organization_id=config.get("organization_id", None),
)
return OpenAIEmbeddingFunction(
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
model_name=model_name,
api_base=config.get("api_base", None),
api_type=config.get("api_type", None),
api_version=config.get("api_version", None),
default_headers=config.get("default_headers", None),
dimensions=config.get("dimensions", None),
deployment_id=config.get("deployment_id", None),
organization_id=config.get("organization_id", None),
)
except ImportError:
raise ChromaDBRequiredError("embedding functionality")
@staticmethod
def _configure_azure(config, model_name):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
try:
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=config.get("api_key"),
api_base=config.get("api_base"),
api_type=config.get("api_type", "azure"),
api_version=config.get("api_version"),
model_name=model_name,
default_headers=config.get("default_headers"),
dimensions=config.get("dimensions"),
deployment_id=config.get("deployment_id"),
organization_id=config.get("organization_id"),
)
return OpenAIEmbeddingFunction(
api_key=config.get("api_key"),
api_base=config.get("api_base"),
api_type=config.get("api_type", "azure"),
api_version=config.get("api_version"),
model_name=model_name,
default_headers=config.get("default_headers"),
dimensions=config.get("dimensions"),
deployment_id=config.get("deployment_id"),
organization_id=config.get("organization_id"),
)
except ImportError:
raise ChromaDBRequiredError("embedding functionality")
@staticmethod
def _configure_ollama(config, model_name):
from chromadb.utils.embedding_functions.ollama_embedding_function import (
OllamaEmbeddingFunction,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
try:
from chromadb.utils.embedding_functions.ollama_embedding_function import (
OllamaEmbeddingFunction,
)
return OllamaEmbeddingFunction(
url=config.get("url", "http://localhost:11434/api/embeddings"),
model_name=model_name,
)
return OllamaEmbeddingFunction(
url=config.get("url", "http://localhost:11434/api/embeddings"),
model_name=model_name,
)
except ImportError:
raise ChromaDBRequiredError("embedding functionality")
@staticmethod
def _configure_vertexai(config, model_name):
from chromadb.utils.embedding_functions.google_embedding_function import (
GoogleVertexEmbeddingFunction,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
try:
from chromadb.utils.embedding_functions.google_embedding_function import (
GoogleVertexEmbeddingFunction,
)
return GoogleVertexEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
project_id=config.get("project_id"),
region=config.get("region"),
)
return GoogleVertexEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
project_id=config.get("project_id"),
region=config.get("region"),
)
except ImportError:
raise ChromaDBRequiredError("embedding functionality")
@staticmethod
def _configure_google(config, model_name):
from chromadb.utils.embedding_functions.google_embedding_function import (
GoogleGenerativeAiEmbeddingFunction,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
try:
from chromadb.utils.embedding_functions.google_embedding_function import (
GoogleGenerativeAiEmbeddingFunction,
)
return GoogleGenerativeAiEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
task_type=config.get("task_type"),
)
return GoogleGenerativeAiEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
task_type=config.get("task_type"),
)
except ImportError:
raise ChromaDBRequiredError("embedding functionality")
@staticmethod
def _configure_cohere(config, model_name):
from chromadb.utils.embedding_functions.cohere_embedding_function import (
CohereEmbeddingFunction,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
try:
from chromadb.utils.embedding_functions.cohere_embedding_function import (
CohereEmbeddingFunction,
)
return CohereEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
return CohereEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
except ImportError:
raise ChromaDBRequiredError("embedding functionality")
@staticmethod
def _configure_voyageai(config, model_name):
from chromadb.utils.embedding_functions.voyageai_embedding_function import (
VoyageAIEmbeddingFunction,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
try:
from chromadb.utils.embedding_functions.voyageai_embedding_function import (
VoyageAIEmbeddingFunction,
)
return VoyageAIEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
return VoyageAIEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
except ImportError:
raise ChromaDBRequiredError("embedding functionality")
@staticmethod
def _configure_bedrock(config, model_name):
from chromadb.utils.embedding_functions.amazon_bedrock_embedding_function import (
AmazonBedrockEmbeddingFunction,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
try:
from chromadb.utils.embedding_functions.amazon_bedrock_embedding_function import (
AmazonBedrockEmbeddingFunction,
)
# Allow custom model_name override with backwards compatibility
kwargs = {"session": config.get("session")}
if model_name is not None:
kwargs["model_name"] = model_name
return AmazonBedrockEmbeddingFunction(**kwargs)
# Allow custom model_name override with backwards compatibility
kwargs = {"session": config.get("session")}
if model_name is not None:
kwargs["model_name"] = model_name
return AmazonBedrockEmbeddingFunction(**kwargs)
except ImportError:
raise ChromaDBRequiredError("embedding functionality")
@staticmethod
def _configure_huggingface(config, model_name):
from chromadb.utils.embedding_functions.huggingface_embedding_function import (
HuggingFaceEmbeddingServer,
)
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
try:
from chromadb.utils.embedding_functions.huggingface_embedding_function import (
HuggingFaceEmbeddingServer,
)
return HuggingFaceEmbeddingServer(
url=config.get("api_url"),
)
return HuggingFaceEmbeddingServer(
url=config.get("api_url"),
)
except ImportError:
raise ChromaDBRequiredError("embedding functionality")
@staticmethod
def _configure_watson(config, model_name):
@@ -182,7 +266,7 @@ class EmbeddingConfigurator:
"IBM Watson dependencies are not installed. Please install them to use Watson embedding."
) from e
class WatsonEmbeddingFunction(EmbeddingFunction):
class WatsonEmbeddingFunction:
def __call__(self, input: Documents) -> Embeddings:
if isinstance(input, str):
input = [input]
@@ -212,6 +296,9 @@ class EmbeddingConfigurator:
@staticmethod
def _configure_custom(config):
if not HAS_CHROMADB:
raise ChromaDBRequiredError("embedding functionality")
custom_embedder = config.get("embedder")
if isinstance(custom_embedder, EmbeddingFunction):
try:

View File

@@ -0,0 +1,62 @@
"""Custom error classes for CrewAI."""
from typing import Optional
class ChromaDBRequiredError(ImportError):
"""Error raised when ChromaDB is required but not installed."""
def __init__(self, feature: str):
"""Initialize the error with a specific feature name.
Args:
feature: The name of the feature that requires ChromaDB.
"""
message = (
f"ChromaDB is required for {feature} features. "
"Please install it with 'pip install crewai[storage]'"
)
super().__init__(message)
class DatabaseOperationError(Exception):
"""Base exception class for database operation errors."""
def __init__(self, message: str, original_error: Optional[Exception] = None):
"""Initialize the database operation error.
Args:
message: The error message to display
original_error: The original exception that caused this error, if any
"""
super().__init__(message)
self.original_error = original_error
class DatabaseError:
"""Standardized error message templates for database operations."""
INIT_ERROR: str = "Database initialization error: {}"
SAVE_ERROR: str = "Error saving task outputs: {}"
UPDATE_ERROR: str = "Error updating task outputs: {}"
LOAD_ERROR: str = "Error loading task outputs: {}"
DELETE_ERROR: str = "Error deleting task outputs: {}"
@classmethod
def format_error(cls, template: str, error: Exception) -> str:
"""Format an error message with the given template and error.
Args:
template: The error message template to use
error: The exception to format into the template
Returns:
The formatted error message
"""
return template.format(str(error))
class AgentRepositoryError(Exception):
"""Exception raised when an agent repository is not found."""
...

View File

@@ -2384,6 +2384,16 @@ def test_multiple_conditional_tasks(researcher, writer):
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory():
from unittest.mock import patch
# Check if ChromaDB is available
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
math_researcher = Agent(
role="Researcher",
@@ -2412,6 +2422,16 @@ def test_using_contextual_memory():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory_with_long_term_memory():
from unittest.mock import patch
# Check if ChromaDB is available
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
math_researcher = Agent(
role="Researcher",
@@ -2441,6 +2461,16 @@ def test_using_contextual_memory_with_long_term_memory():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_warning_long_term_memory_without_entity_memory():
from unittest.mock import patch
# Check if ChromaDB is available
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
math_researcher = Agent(
role="Researcher",
@@ -2478,6 +2508,16 @@ def test_warning_long_term_memory_without_entity_memory():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_long_term_memory_with_memory_flag():
from unittest.mock import patch
# Check if ChromaDB is available
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
math_researcher = Agent(
role="Researcher",
@@ -2513,6 +2553,16 @@ def test_long_term_memory_with_memory_flag():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory_with_short_term_memory():
from unittest.mock import patch
# Check if ChromaDB is available
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
math_researcher = Agent(
role="Researcher",
@@ -2542,6 +2592,16 @@ def test_using_contextual_memory_with_short_term_memory():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_disabled_memory_using_contextual_memory():
from unittest.mock import patch
# Check if ChromaDB is available
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
math_researcher = Agent(
role="Researcher",

View File

@@ -169,6 +169,15 @@ def test_crew_external_memory_reset(mem_type, crew_with_external_memory):
def test_crew_external_memory_save_with_memory_flag(
mem_method, crew_with_external_memory
):
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
with patch(
f"crewai.memory.external.external_memory.ExternalMemory.{mem_method}"
) as mock_method:
@@ -181,6 +190,15 @@ def test_crew_external_memory_save_with_memory_flag(
def test_crew_external_memory_save_using_crew_without_memory_flag(
mem_method, crew_with_external_memory_without_memory_flag
):
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
with patch(
f"crewai.memory.external.external_memory.ExternalMemory.{mem_method}"
) as mock_method:

View File

@@ -7,10 +7,28 @@ from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
@pytest.fixture
def long_term_memory():
"""Fixture to create a LongTermMemory instance"""
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
return LongTermMemory()
def test_save_and_search(long_term_memory):
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
memory = LongTermMemoryItem(
agent="test_agent",
task="test_task",

View File

@@ -12,6 +12,15 @@ from crewai.task import Task
@pytest.fixture
def short_term_memory():
"""Fixture to create a ShortTermMemory instance"""
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
agent = Agent(
role="Researcher",
goal="Search relevant data and provide results",
@@ -29,6 +38,15 @@ def short_term_memory():
def test_save_and_search(short_term_memory):
try:
import chromadb # noqa: F401
HAS_CHROMADB = True
except ImportError:
HAS_CHROMADB = False
if not HAS_CHROMADB:
pytest.skip("ChromaDB is required for this test")
memory = ShortTermMemoryItem(
data="""test value test value test value test value test value test value
test value test value test value test value test value test value

View File

@@ -0,0 +1,80 @@
import pytest
import importlib
import sys
from unittest.mock import patch
from crewai.utilities.errors import ChromaDBRequiredError
def test_import_without_chromadb():
"""Test that crewai can be imported without chromadb."""
with patch.dict(sys.modules, {"chromadb": None, "chromadb.errors": None, "chromadb.api": None, "chromadb.config": None}):
modules_to_reload = [
"crewai.memory.storage.rag_storage",
"crewai.knowledge.storage.knowledge_storage",
"crewai.utilities.embedding_configurator"
]
for module in modules_to_reload:
if module in sys.modules:
importlib.reload(sys.modules[module])
from crewai import Agent, Task, Crew, Process
agent = Agent(role="Test Agent", goal="Test Goal", backstory="Test Backstory")
task = Task(description="Test Task", agent=agent)
_ = Crew(agents=[agent], tasks=[task], process=Process.sequential)
def test_memory_storage_without_chromadb():
"""Test that memory storage raises appropriate error when chromadb is not available."""
with patch.dict(sys.modules, {"chromadb": None, "chromadb.errors": None, "chromadb.api": None, "chromadb.config": None}):
if "crewai.memory.storage.rag_storage" in sys.modules:
importlib.reload(sys.modules["crewai.memory.storage.rag_storage"])
from crewai.memory.storage.rag_storage import RAGStorage, HAS_CHROMADB
assert not HAS_CHROMADB
with pytest.raises(ChromaDBRequiredError) as excinfo:
storage = RAGStorage("memory", allow_reset=True, crew=None)
assert "ChromaDB is required for memory storage" in str(excinfo.value)
def test_knowledge_storage_without_chromadb():
"""Test that knowledge storage raises appropriate error when chromadb is not available."""
with patch.dict(sys.modules, {"chromadb": None, "chromadb.errors": None, "chromadb.api": None, "chromadb.config": None}):
modules_to_reload = [
"crewai.knowledge.storage.knowledge_storage",
"crewai.utilities.embedding_configurator"
]
for module in modules_to_reload:
if module in sys.modules:
importlib.reload(sys.modules[module])
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage, HAS_CHROMADB
assert not HAS_CHROMADB
with pytest.raises(ChromaDBRequiredError) as excinfo:
storage = KnowledgeStorage()
storage.initialize_knowledge_storage()
assert "ChromaDB is required for knowledge storage" in str(excinfo.value)
def test_embedding_configurator_without_chromadb():
"""Test that embedding configurator raises appropriate error when chromadb is not available."""
with patch.dict(sys.modules, {"chromadb": None, "chromadb.errors": None, "chromadb.api": None, "chromadb.config": None}):
if "crewai.utilities.embedding_configurator" in sys.modules:
importlib.reload(sys.modules["crewai.utilities.embedding_configurator"])
from crewai.utilities.embedding_configurator import EmbeddingConfigurator, HAS_CHROMADB
assert not HAS_CHROMADB
with pytest.raises(ChromaDBRequiredError) as excinfo:
configurator = EmbeddingConfigurator()
configurator.configure_embedder()
assert "ChromaDB is required for embedding functionality" in str(excinfo.value)