Compare commits

...

16 Commits

Author SHA1 Message Date
Lorenze Jay
ea6d04a9d9 linted 2024-11-27 11:30:56 -08:00
Lorenze Jay
a81200a020 rm unused 2024-11-27 11:30:21 -08:00
Lorenze Jay
61fe1c69d9 fix test 2024-11-27 11:27:27 -08:00
Lorenze Jay
3eb52dad9f rm cassette for knowledge_sources test as its a mock and update agent doc string 2024-11-27 10:50:48 -08:00
Lorenze Jay
87e9a0c91a fix test 2024-11-27 10:47:03 -08:00
Lorenze Jay
24d2d9cd55 Merge branch 'main' of github.com:crewAIInc/crewAI into add/agent-specific-knowledge 2024-11-27 10:40:55 -08:00
Lorenze Jay
85b8d2af6f fix docs 2024-11-27 10:39:05 -08:00
Lorenze Jay
5b03d6c8bc fixes from discussion 2024-11-27 10:38:20 -08:00
Lorenze Jay
3f87bf3ada added test 2024-11-26 12:06:48 -08:00
Lorenze Jay
b3deac2a2b Merge branch 'main' of github.com:crewAIInc/crewAI into add/agent-specific-knowledge 2024-11-26 12:01:00 -08:00
Lorenze Jay
95f2e9eded Merge branch 'main' of github.com:crewAIInc/crewAI into add/agent-specific-knowledge 2024-11-26 11:57:15 -08:00
Lorenze Jay
707c50b833 added from suggestions 2024-11-26 11:52:57 -08:00
Lorenze Jay
a21feda2cc added doc 2024-11-25 16:20:51 -08:00
Lorenze Jay
15d549e157 linted 2024-11-25 15:32:40 -08:00
Lorenze Jay
74d681f3af Merge branch 'main' of github.com:crewAIInc/crewAI into add/agent-specific-knowledge 2024-11-25 15:29:53 -08:00
Lorenze Jay
6c6c60318c added knowledge to agent level 2024-11-25 15:28:42 -08:00
10 changed files with 654 additions and 91 deletions

View File

@@ -51,12 +51,41 @@ crew = Crew(
tasks=[task],
verbose=True,
process=Process.sequential,
knowledge={"sources": [string_source], "metadata": {"preference": "personal"}}, # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
knowledge_sources=[string_source], # Enable knowledge by adding the sources here.
)
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
```
## Appending Knowledge Sources To Individual Agents
Sometimes you may want to append knowledge sources to an individual agent. You can do this by setting the `knowledge` parameter in the `Agent` class.
```python
agent = Agent(
...
knowledge_sources=[
StringKnowledgeSource(
content="Users name is John. He is 30 years old and lives in San Francisco.",
metadata={"preference": "personal"},
)
],
)
```
## Agent Level Knowledge Sources
You can also append knowledge sources to an individual agent by setting the `knowledge_sources` parameter in the `Agent` class.
```python
string_source = StringKnowledgeSource(
content="Users name is John. He is 30 years old and lives in San Francisco.",
metadata={"preference": "personal"},
)
agent = Agent(
...
knowledge_sources=[string_source],
)
```
## Embedder Configuration
@@ -70,10 +99,7 @@ string_source = StringKnowledgeSource(
)
crew = Crew(
...
knowledge={
"sources": [string_source],
"metadata": {"preference": "personal"},
"embedder_config": {"provider": "openai", "config": {"model": "text-embedding-3-small"}},
},
knowledge_sources=[string_source],
embedder_config={"provider": "ollama", "config": {"model": "nomic-embed-text:latest"}},
)
```

View File

@@ -1,7 +1,7 @@
import os
import shutil
import subprocess
from typing import Any, List, Literal, Optional, Union
from typing import Any, List, Literal, Optional, Union, Dict
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
@@ -10,6 +10,8 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.cli.constants import ENV_VARS
from crewai.llm import LLM
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.task import Task
from crewai.tools import BaseTool
@@ -19,6 +21,7 @@ from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_F
from crewai.utilities.converter import generate_model_description
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
def mock_agent_ops_provider():
@@ -65,6 +68,7 @@ class Agent(BaseAgent):
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution.
knowledge_sources: Knowledge sources for the agent.
"""
_times_executed: int = PrivateAttr(default=0)
@@ -122,9 +126,21 @@ class Agent(BaseAgent):
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
embedder_config: Optional[Dict[str, Any]] = Field(
default=None,
description="Embedder configuration for the agent.",
)
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the agent.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
)
@model_validator(mode="after")
def post_init_setup(self):
self._set_knowledge()
self.agent_ops_agent_name = self.role
unaccepted_attributes = [
"AWS_ACCESS_KEY_ID",
@@ -232,6 +248,21 @@ class Agent(BaseAgent):
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
def _set_knowledge(self):
try:
if self.knowledge_sources:
knowledge_agent_name = f"{self.role.replace(' ', '_')}"
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self._knowledge = Knowledge(
sources=self.knowledge_sources,
embedder_config=self.embedder_config,
collection_name=knowledge_agent_name,
)
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
def execute_task(
self,
task: Task,
@@ -286,17 +317,21 @@ class Agent(BaseAgent):
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
# Integrate the knowledge base
if self.crew and self.crew.knowledge:
knowledge_snippets = self.crew.knowledge.query([task.prompt()])
valid_snippets = [
result["context"]
for result in knowledge_snippets
if result and result.get("context")
]
if valid_snippets:
formatted_knowledge = "\n".join(valid_snippets)
task_prompt += f"\n\nAdditional Information:\n{formatted_knowledge}"
if self._knowledge:
agent_knowledge_snippets = self._knowledge.query([task.prompt()])
if agent_knowledge_snippets:
agent_knowledge_context = extract_knowledge_context(
agent_knowledge_snippets
)
if agent_knowledge_context:
task_prompt += agent_knowledge_context
if self.crew:
knowledge_snippets = self.crew.query_knowledge([task.prompt()])
if knowledge_snippets:
crew_knowledge_context = extract_knowledge_context(knowledge_snippets)
if crew_knowledge_context:
task_prompt += crew_knowledge_context
tools = tools or self.tools or []
self.create_agent_executor(tools=tools, task=task)

View File

@@ -28,6 +28,7 @@ from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.memory.user.user_memory import UserMemory
from crewai.process import Process
from crewai.task import Task
@@ -202,10 +203,13 @@ class Crew(BaseModel):
default=[],
description="List of execution logs for tasks",
)
knowledge: Optional[Dict[str, Any]] = Field(
default=None, description="Knowledge for the crew. Add knowledge sources to the knowledge object."
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the crew. Add knowledge sources to the knowledge object.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
)
@field_validator("id", mode="before")
@classmethod
@@ -282,11 +286,22 @@ class Crew(BaseModel):
@model_validator(mode="after")
def create_crew_knowledge(self) -> "Crew":
if self.knowledge:
"""Create the knowledge for the crew."""
if self.knowledge_sources:
try:
self.knowledge = Knowledge(**self.knowledge) if isinstance(self.knowledge, dict) else self.knowledge
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid knowledge configuration: {str(e)}")
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self._knowledge = Knowledge(
sources=self.knowledge_sources,
embedder_config=self.embedder,
collection_name="crew",
)
except Exception as e:
self._logger.log(
"warning", f"Failed to init knowledge: {e}", color="yellow"
)
return self
@model_validator(mode="after")
@@ -942,6 +957,11 @@ class Crew(BaseModel):
result = self._execute_tasks(self.tasks, start_index, True)
return result
def query_knowledge(self, query: List[str]) -> Union[List[Dict[str, Any]], None]:
if self._knowledge:
return self._knowledge.query(query)
return None
def copy(self):
"""Create a deep copy of the Crew."""

View File

@@ -5,8 +5,8 @@ from pydantic import BaseModel, ConfigDict, Field
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
from crewai.utilities.logger import Logger
from crewai.utilities.constants import DEFAULT_SCORE_THRESHOLD
os.environ["TOKENIZERS_PARALLELISM"] = "false" # removes logging from fastembed
@@ -18,24 +18,33 @@ class Knowledge(BaseModel):
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
embedder_config: Optional[Dict[str, Any]] = None
collection_name: Optional[str] = None
def __init__(self, embedder_config: Optional[Dict[str, Any]] = None, **data):
def __init__(
self,
collection_name: str,
sources: List[BaseKnowledgeSource],
embedder_config: Optional[Dict[str, Any]] = None,
storage: Optional[KnowledgeStorage] = None,
**data,
):
super().__init__(**data)
self.storage = KnowledgeStorage(embedder_config=embedder_config or None)
try:
for source in self.sources:
source.add()
except Exception as e:
Logger(verbose=True).log(
"warning",
f"Failed to init knowledge: {e}",
color="yellow",
if storage:
self.storage = storage
else:
self.storage = KnowledgeStorage(
embedder_config=embedder_config, collection_name=collection_name
)
self.sources = sources
self.storage.initialize_knowledge_storage()
for source in sources:
source.storage = self.storage
source.add()
def query(
self, query: List[str], limit: int = 3, preference: Optional[str] = None
@@ -52,3 +61,8 @@ class Knowledge(BaseModel):
score_threshold=DEFAULT_SCORE_THRESHOLD,
)
return results
def _add_sources(self):
for source in self.sources:
source.storage = self.storage
source.add()

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import List, Dict, Any
from typing import List, Dict, Any, Optional
import numpy as np
from pydantic import BaseModel, ConfigDict, Field
@@ -18,6 +18,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
metadata: Dict[str, Any] = Field(default_factory=dict)
collection_name: Optional[str] = Field(default=None)
@abstractmethod
def load_content(self) -> Dict[Any, str]:

View File

@@ -1,4 +1,4 @@
from typing import List
from typing import List, Optional
from pydantic import Field
@@ -9,6 +9,7 @@ class StringKnowledgeSource(BaseKnowledgeSource):
"""A knowledge source that stores and queries plain text content using embeddings."""
content: str = Field(...)
collection_name: Optional[str] = Field(default=None)
def model_post_init(self, _):
"""Post-initialization method to validate content."""

View File

@@ -3,12 +3,16 @@ import io
import logging
import chromadb
import os
import chromadb.errors
from crewai.utilities.paths import db_storage_path
from typing import Optional, List
from typing import Dict, Any
from typing import Optional, List, Dict, Any, Union
from crewai.utilities import EmbeddingConfigurator
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
import hashlib
from chromadb.config import Settings
from chromadb.api import ClientAPI
from crewai.utilities.logger import Logger
@contextlib.contextmanager
@@ -35,9 +39,16 @@ class KnowledgeStorage(BaseKnowledgeStorage):
"""
collection: Optional[chromadb.Collection] = None
collection_name: Optional[str] = "knowledge"
app: Optional[ClientAPI] = None
def __init__(self, embedder_config: Optional[Dict[str, Any]] = None):
self._initialize_app(embedder_config or {})
def __init__(
self,
embedder_config: Optional[Dict[str, Any]] = None,
collection_name: Optional[str] = None,
):
self.collection_name = collection_name
self._set_embedder_config(embedder_config)
def search(
self,
@@ -67,43 +78,75 @@ class KnowledgeStorage(BaseKnowledgeStorage):
else:
raise Exception("Collection not initialized")
def _initialize_app(self, embedder_config: Optional[Dict[str, Any]] = None):
import chromadb
from chromadb.config import Settings
self._set_embedder_config(embedder_config)
def initialize_knowledge_storage(self):
base_path = os.path.join(db_storage_path(), "knowledge")
chroma_client = chromadb.PersistentClient(
path=f"{db_storage_path()}/knowledge",
path=base_path,
settings=Settings(allow_reset=True),
)
self.app = chroma_client
try:
self.collection = self.app.get_or_create_collection(name="knowledge")
collection_name = (
f"knowledge_{self.collection_name}"
if self.collection_name
else "knowledge"
)
if self.app:
self.collection = self.app.get_or_create_collection(
name=collection_name, embedding_function=self.embedder_config
)
else:
raise Exception("Vector Database Client not initialized")
except Exception:
raise Exception("Failed to create or get collection")
def reset(self):
if self.app:
self.app.reset()
else:
base_path = os.path.join(db_storage_path(), "knowledge")
self.app = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app.reset()
def save(
self, documents: List[str], metadata: Dict[str, Any] | List[Dict[str, Any]]
self,
documents: List[str],
metadata: Union[Dict[str, Any], List[Dict[str, Any]]],
):
if self.collection:
metadatas = [metadata] if isinstance(metadata, dict) else metadata
try:
metadatas = [metadata] if isinstance(metadata, dict) else metadata
ids = [
hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents
]
ids = [
hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents
]
self.collection.upsert(
documents=documents,
metadatas=metadatas,
ids=ids,
)
self.collection.upsert(
documents=documents,
metadatas=metadatas,
ids=ids,
)
except chromadb.errors.InvalidDimensionException as e:
Logger(verbose=True).log(
"error",
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
"red",
)
raise ValueError(
"Embedding dimension mismatch. Make sure you're using the same embedding model "
"across all operations with this collection."
"Try resetting the collection using `crewai reset-memories -a`"
) from e
except Exception as e:
Logger(verbose=True).log(
"error", f"Failed to upsert documents: {e}", "red"
)
raise
else:
raise Exception("Collection not initialized")

View File

@@ -0,0 +1,12 @@
from typing import Any, Dict, List
def extract_knowledge_context(knowledge_snippets: List[Dict[str, Any]]) -> str:
"""Extract knowledge from the task prompt."""
valid_snippets = [
result["context"]
for result in knowledge_snippets
if result and result.get("context")
]
snippet = "\n".join(valid_snippets)
return f"Additional Information: {snippet}" if valid_snippets else ""

View File

@@ -3,20 +3,19 @@
import os
from unittest import mock
from unittest.mock import patch
import pytest
from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.tools import tool
from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.tools.tool_usage_events import ToolUsageFinished
from crewai.utilities import RPMController
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.utilities.events import Emitter
@@ -1584,21 +1583,22 @@ def test_agent_with_knowledge_sources():
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
with patch('crewai.knowledge.storage.knowledge_storage.KnowledgeStorage') as MockKnowledge:
with patch(
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
) as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{
"content": content,
"metadata": {"preference": "personal"}
}]
mock_knowledge_instance.query.return_value = [
{"content": content, "metadata": {"preference": "personal"}}
]
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
knowledge_sources=[string_source],
)
# Create a task that requires the agent to use the knowledge
@@ -1613,4 +1613,3 @@ def test_agent_with_knowledge_sources():
# Assert that the agent provides the correct information
assert "blue" in result.raw.lower()

View File

@@ -1,4 +1,415 @@
interactions:
- request:
body: '{"input": ["Brandon''s favorite color is blue and he likes Mexican food."],
"model": "text-embedding-3-small", "encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '138'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1R6SxOyurrmfP+KVWtKn5KLkGTNuIuABAFRu7q6QJGLIAKSQE6d/96l367T3RMH
EEpI8j63N//5r7/++rvPm+L2+fufv/5u6+nz9//4Xrtnn+zvf/76n//666+//vrP3+//N7Lo8uJ+
r1/lb/jvZv26F8vf//zF//eV/zvon7/+jq6vjKh9O4J16w0pDD6Sje2RqsYS44hDcWl9cPKQzIYP
H8KK5NDZkVu+3eVi0B0ntNmvzxlIl3fM8DMLoM+bIy5Ux2e0iE4p2g/aRIr0JXu0ntIb1N1dFLDx
vowUa0+I7jsjmhXu9AKr4lIODLV4wOaJfUaWM6xD7yWLWAN5O64qLkxZGDl1trNOzJmJMxdZUpbh
AEQuW8BVVtEHpGdsyZmZi5p5NBE+0gc+HuXJmyk6l1ADg42tKQ9y0Xw/fPh63+7EZnXH2OF8HODb
G0ZiuboPWMlffRCXuw/WsMAD5omxiNpX0c7bfPUNcYtoClEq74JJuHfjcnknNjrPtoEjd5FZ9zjC
AVrdxyOH6fUEzJUVBxl740z2mWwCQRrXHp128E5uN6UxlmI1IcJucCR76ebE0t6UAiW/imdsTI9P
vJbUKpCY+SI2z0YdLwN0dODkyCe5qUYetTe0R/PoaiSXjz5Y5wSY0OLiS7A62gxWWYlUsOmVDdkJ
6p3xb28p0et2+BDtVdFmQU5JZe58UcmDNi0j8Bqm6NpxyvxeMx8ICbhPf74n/+y5ZlHOvgnfA7MD
fnPaeWTIqg5VoZrOfaJazaeOjhdErOOeRNNUNnT/5ETITnxGwvfrFbOukCMYDeEb37I7x0ikyTMQ
RqiS073hgQTTJoNR7gREraukkYKqjZDw4iNi4EUASxTJIfi+Dy4CIcqlzUd6wpFuP/g2hed8ZUvl
ImSmhwBpWwDmy92BSnD3pBmMYW7wz4Wm8JiNJ2ycGziyOAo7NFwNOG/GNI1Fa/IdMPZjSCzmXWM2
XbcBykOSEi+vroy5Lc+hoTpe8f1xVwDdP0URzdltxfErujMeKFoK92QKZkELhpH2e/MJJXg1sc1h
f+TpCnz45CoZBwduGNlukp/w8fzYRMWeGovT5ZiBA2fcsNayyiA1Vbaw3h+35FJ2QSPa7l0FjYNR
sGZlbgiZeBsgV8AD0ept7bHdtHTQp71P8kKwgOT1bwWcac8RCzgxY5zjmOhb/9hF8Pv+99BFvirW
RBdO2PjdV+hV90jxfb/nhswZbPHBwdnc2Q1/3SYOOk8VJnGmqkB4j28XlIZQ4WKeNLboB0uBNr+M
OHfNvUdgOmaKogm3AKJM86jkeyqULOOA3Z23b4TbyiWwGqcjuWkGG1cbjiqc9W2LI77Y5TxnNAPS
l7s7z9v9yhbbEQNU05GSfVPHMZPPCUXdLsJEm2bVkPrdncJPs7pEl7n7uF5TYUacPS3kxuucQa/b
mwsWyRzJ+WSWDb0Ogw85zuxJEQhrvJJHMMHU3tbkIgbM+K6/D6mJg5mpOg/WBMISnt8mJSH2ypjd
02UFV32PsG0H9jiFXNDBIg522Iw0G/C6qWaoql9hIH1eptEb1HPh+Z7xZDcXHhO28FgDf7M7EzNZ
ImPZT/0WJjCqiHF/xYC/8+YNlqU/4XQKckNQtixAerZW+EB86C2+gRzltegj1pygNtjKmRBO5/aE
PXYQxvVxhD2Us8dz5sxYbZYeyheY93FDHEWVwezpRIduv1kCoGxgTkMueMJtXj3m6n6/jsO4W2uU
ctGVaNaCWB89/At8noUj9l7v3qDhA1HYRGqAo3F4MjLurwlsnAOaFWojbzrLVgkGQ2/w93kw303e
hJNzU7D33Z/irv/w4Mxbd2LVbZhTqrY+Wo+Yke/8MVaVNx0KZ8/AarA3mYSkt/vbXwSzmAJWzRaE
WwNFWCPxOWYv5NpQKL6rg5Gf8wWdHZC6Z42408M1hMYPXLhB6mfmXN8An/OkZJALQg7nryLJ+dNl
t8IT97ZI5Pv6KMQcr8P47c8kF+yrMafQc+ByhiF5OMfKeDc1jRB0xBfRzivJ+/e1KZC5OccEb0Iv
pp9WGeCzNTUSgavtSZ8NmeQnuRbYEyutYdd8f4PVQsbZlJoyZ9qiDGg7jArZ9a0zCicaTkgqnICc
goM6So9ligBneYiol/t9XL1n6kDbsFOciI4EmKA6HZRFnuCgS7OYmkeVgyJ/5oK2mp1G6AJtRuKw
tX71PFKS1BdoF5ZOsOuasXCoLQ5lYhcEm3u5HUnxuvRQ5/QBm77TNCs6diEK0kjGh8TUYvEqBDXg
dw3B6vZRMipxVx3eNneT3PqCNst12utwpMoHu88aj3/4d9yXQtB7fuMJxlhMIM3VkNyPL+SRbmp8
dNYzhxykvdj86lFxA/4dyOd2y97+eU2Q62UutqcAGFTYbhxwPYsP7J6hnYvv546ibjU7nGxOO4N+
dm8RNuU9w/up2jerfBI4FBoPfqbzW2df/FhBD8twVgrJyufLduKhYT235AoC7AmCcuLQjz+9bdYa
LCxsCJuPqmArEolBTrfJh8Ham8TFG4+x4EVrpFWCiK8xW73P8S5G6HBOeLJ7XWTjM1abJ2zKR0b2
ERximhSxCphsNwEyT6qxXu4qhAfxgYkXPx/xcBXsEup1Qr77TfMEAEoXSafphsO+9YDkyyqFV91D
2LNkIZ4QfVAo+/qFuKos58uhvwYgMZUB+59yMoi1D7agcW8qvlZ8wwTKZzoIFk4IxHlX5OzQGh3S
C6xif653jeAbgou4k+QH0sbkAbmKbQIn4tXEL5idr5xdRei3vvrecPOvHtMh2tEJX6L2BiQQczfI
nTMVa5qDY6qc2hCapeIQ/Oy8mNojuMHWSVziOV7L6O295ZFlPPRAnILce+9eOx1ujU1EDhv76JGZ
rye0X1olWFH0Hmku1StaQHANqPCswCInDwfah5zN4nCSxlmr31uQX/kzdsikGbQhXgbBe/KJ7vt1
Mx1K4kC3Rwv2QfoGbHoNLhA9O8deXslswcJxBenpPM/1STXZCt7aCt6P9Ups6ITGOl2OF1S7/IT3
Q995rPkkHfhczIBkYZ81LEVvCJVr/sZ4yT7N8uNL/pio2FgbM2b7vErQsBW62WukKmaOp98gPvQU
746UH1dasUFZjwdGsiGPGM0cZqIfflivl8eEQ38MYKSdOOLNz5fBskQM4DG2HHLcRp+G5tJA4cZO
LHJqbhfv7VjnLaxje4+1YNfm7GFVNdS74o4xf/JHaZu8eDidX6dZfnduw8pUvaB2M2kk1E5681Gf
7wy6Wd3OG2BJ47I9owJuaXInZ+5wMBa9oSp6JpcVWweejUvwXBX0fqWvmTOOT0CvQ+0j6c27+HLS
K0/yzIP40+fESDgrpgXtHESseE/MC2x//gDCLz/gI4mleDAmoYaJFAfYyCRnFBLtrSrcJ78GpXKg
+Wp6doaWMxfO8EJIzqposMH5Ck9fPdQyUeTeM+yVzY24F073/vAjRrcsAEuyxixnOxWyN3TwowCa
x9/elEcEvlVyxX2RC+tNLEFGVBXvPq+nQfXjmiJtN814N7oPsGizoAMsqD1JoUO95bYvS5i12w35
+iuPTw7QhbZXOsQSTAjYpgsVNNsnk1jqWQdCBLGp/Nbr8Z1fihKgwCDiM3LsGz+mPz3RMreaueOu
ZhOMbAi+84V9HYqAGGWdQUeFJdkJ1wHQGN19+NVPJP/iA9l04RZ2gXcIVplD49xu9k/w9SfYtPQQ
TFna6vIXD3GRXR+MlqKjwo2dWlgFd8tjcenWUFsrK+A5a82JLzsrPImHGIeusAWf0gp5REa0EKfs
5mb96gtAmReT3Z4pBhOL4wUmWE5JCG3GPjHOOCBp3UyyL/5OSzVAcFfgQFQAHuxTxLyLfvW/fyWZ
wdjtzsNrJPkkQN4cU2LTG8LLc49vjyHwlh1aHHR9XKYgUaW78UxkcQvuUu1h9dYfY1Y2a4LUZ9Fi
mz7rZo4Ig2hRGndeY+5t0NO8KBCbDZlFzR+9z0/PHorDik351jA2no0QUn7eYQ/d1FFKyVaF6TLJ
AZxCKR7icFkhON4oca/CGzBzEHV47aBCwjMfgM9eiUQUdaJL9L7ywdI+jhC+7ms1z02HPcnwPz4s
9HI70+C1aT6H+sDBjIJpbp6fblwSrVKRATmC7Xbae8tYSR0q0DnAvrPv4tX0ggsUBWXF9u0hg9Wa
TAfOH22aKd3L8XJIEh0pIZICGCKn+SjrC8JyXxrkV1+rkFkDsPK5+OJ9wliEmx4STRyIfrty46R7
LxP6UuViH4OJzb0lQrCiJ8KHjb0Ys9PiGvpS42JcjVM81cFhgI/EkAg2gBzTodmY8PEk9jySPADC
Dy/KMpjwjq8bY3GCi40sIvozSvkpXuK7qYBfXsDp+B2TXVBSdPRKBSelrMb0MjslFHAn4MAzvEa4
TnsVivbOwXtH8xq2U8YanquywY8dbuPFCUIbaVJ9IWb9wmC98XcHXIHdY/OrFz5zZftIpU6Fo+Ql
AfY6vFXQ9MYLY+dYeZ+V9QNMpGOA3eMW5yy9HraQls8r9rN7wWZcg4uiH98lMUu5jBmHOwr4KZ1m
sNsPBnsbUgEv28nEafKJjekyOzVcdrFGnJTScfnyO3zHvvzFgxqML3JxoQr1dQbpdoyXhWt70KBp
T45W3Hj0c8opPGbv0x/8FHkZi6CUVpm4MBjzKd2EK1SUdUfMNT16C3s0NxhAVGFzTReDlI2S/vT+
zw+wZb1x9c+fBP3SPkdB2YIA6nbPcGDG5bhQ/psnHA4GSbrVaCi/0S/oi1fYkK00nhXepuCnP01j
//nlFeoffZcZqsDWttxS2BuvNhB1JWuW/aWZ4Hs9JcRjh1Oz5kqZgTGoHeyV8z4Wu3t0g0IXF9jX
DNasb0VWlDO/u8+0b0dGq+SiQCjt7mSX59zIfFld0V6KbsRQ9YTRQlwu6Dw1GBuHbTQu751lw6y+
lWQfs9WYBcBT+Oa2PH5o/A18wk17gZy1R0S73+VxDOGDQqepsrn+6oXVnmUb2u0YzjLaReMY2FqG
zlfuFFBfDg1yhdsOJnv1go8oeXvrLgNb2L5uLbmZQhZPfDanym7y6mCm/jamoXncwstHd4hGYilf
HOuxhb551LD9nR+haqoB8Ql9zGUXg3yqQ6WDUe4G2PVFBtZ9ppeovAwFMT6VA+ijrVx08i6QnJAm
xQQ6SwFgUjfE3B+ezQLjz6qU4HCZ0TBrsQjlsoen9PrGxo1Oxvp6zTa88cUl4EQrHyldQfDT77O0
Z5nBnnRfwifsgyD16bahp7CyEf9gHta/+dfg6S8Vqv7BIbiKNvnin9cUWqkGMZbPvUcBE02UFcmC
bd47NQvtevtP/Rxi3RqF7OKJysU4bIl1Uex4ZtlGh226pD89bazVRBxoAoXH3qtIYkHTlRAWw5rM
Xf/qDXaZrjO8QbWd+5PcgzWLzxn45o/ELaQ2JpkcRWizuLfg43DzuJzRMUKb6Vxg+7K1GSlTJ/vp
nz954h88IZlpY1OV7t4snxCEFLQWUbs4jz950tZQ8J30h7dsjtBHgd4phbP8xZ+JHk3zT97JU8yP
7f21pD8/MG8sp2dsyN5P+F2fH54CVoRzDb3w/CYOXzbjRAtRh5rnHcjesqdx+uGnWssL9lV/ZMOi
miWMrm1GvCsb4uGrZ5T98lKwNdQD+zydlwg3yXIk3zwlFsugSKF+TnWiAf3SfIbzCOE3P8G7+1YH
c9HKInS9i0vuVcrlP/xTbvtBI8ZJOBj89UYj+PUHxFfsk8FIBJ6wqNN6Xr75AH3d9yuM1U1EDM/Z
xVT8KM6PL8gjkdw/zwPOCCMc5pt6ZK3a32Cp5voffqHy1ejg8bW1/uQJs3hbO3gJb/08c7rokXog
PTx4wzZYVdx7c4HxDFuirgTPQ51Pe7tTUUVc+uXHt0E39qUDM75Z+ARdMpL7eh9++UcAszsHxovi
9ZALIg7/9uuHNMCFUzmfsbtUVrOOUvwEjw+/w0cIoLFOilrCMqkpwa2oGqK7zROQfzgrAPTuNqtv
5Rxc/DAJlP7TxCy63zuF3ophfrpYNaRrrhVQvSln7BT1OV/iJnSh+zJtHGz3EZBOwXc/36sn/vkL
+tHSDgbtNZmnKTzHC0n3AaDx6Y09x7MYH3J2By3pkuH4sI2atToaEeqekhjU1rFpvvpY/9V3MH/x
e7ot5/q3f4iWo8abL8O6RVe54cnhtFI2teHeh21xaogZdly8Nutehffi9cD+M4bsu17/5q+oFvWG
8qX8hF99jC097Ixl3jxUmL3PxTzPMQ9oeRw5cJiBNvOzh3KKdhqHtlMwYz2An6YDIpvhNx/8g+8M
xFzxy2/IzpvuMZX5VwF/eYMhF02+zvVHhbW8q7H5HF/ewqvvCLatvGBNCo+M78rehFmrbIhbvydv
dcAygFwPXewlSwCeQNmncMcIxe63/7Cc0TWEm367ITvZW0bqP60CXJfNK+D9jZf3C7JFIOCngHH+
EgymPdUJ/fT/1+8Za6ChAaT1s8DOwbKbuRkF+qfedBrHIz10ykWRDsUGa/ONNPR11yhK/EIKWlCV
bJ06LwHUYzlxj9qu+fBqFUEVzhoxqqsyvr/5E0qIsXzzJZwTc+B0eE0yNfjpo6+euMEXf3eJ81z0
fNnCYwm0iOSzEBzKkemhUUNIGhwsp/Jh0G9+98tLyK493sbJGy4T3EFxCaauPRjT+3XK0M8P2unG
yIn2VGcwLFyPMSdx8RRwEoR9KJ6+/BMz6d12Hbg7Txvb5fAZV3GbFmhz30Y4PxyqfBl7nYdD5HA/
PjQ+vutcgLwJK/yA0c4gnnng4YGpdBZ2kdaw2k9FuDkmK/bbuY3Z4Xzt4VzPGPu3Kv2TD0Gef+6J
ulwDY8nEWw8P55SfWz20DSkwkgKam1McCM3tYqyWur+AL37O1TtLDOb17y0cIpeb++5xZF8+N0HF
ogfGUvEcmXfxdHjaJEnw81eLME06/OlFjZYdm++nDMKuywbsJGrbLKW/qaGbZhL++klDUA+bEKgx
SwP+rLgerWqdh6B8ecReo8ggQQxS+Jblilgypg2t1XwG6Q2AWawbCsj4RAHgYMWTn///9ss4+O2P
Eb35uLk4vqseLuvugvdiW46fpdFWCG/caUaq68fSLQtt9NVPxE+e+fjGxWuA3zyFHKqUi//4QXOH
bvj+7U+txKh5ePZJO0uvi+ytKTRcCK3M+fr3eGT7/J2CP36HdXXz1acO8jsJYEcMmDdonkThKLHx
33x5kWz1h9dkp2dlvGR9PSFtN8+BWFzuxsd5Mwi++DYjIzZzgtM+BN+8nHjf/owoS635wxtiCDEZ
yTiqBUKoJcH6JJ3BBFINaOqjZ4CyjWoIgZqKCl66/Q+/wPLLN0svn4lKazsXrSIL5Az7KSmcJY9X
zZNW2BX8LUD06jWrlJIUNoft49tPWvNVM682JFWfEGuoXbBUeCpgf5s6op3KjUffg5v8/CHR19YA
i2vONXBKGwR8RXuP5cfHVzGjKrjMx21D8+uRg0pUj1jP5N744Te8aMkB7z+XJV/uQhMi0TPzWc7p
NK5nQdpC6i15cGblLl9Rf7lA/E6mWf7ll3654aGWi7d51i7aKGbedgKHXjWIOd0PQOh76ENtbSxs
IU3K2WpeInibmUAOdzLGc5m8n1C3B4Z12xljKtzzEP70o688dE/imhGCKjf0WXad3vj5fUCCizsT
tA+AOF2uF/jt1+H7xj4aPGCcCWtuNfEh26ger39SH0aV12PfDmuwHprn+ut3BcJ4XZvuujcoEqP+
TX54wbbjEf70a8B9+8Xffm0NE/8mkW9e5/HS9kC3v/zZIL0VC+HCbuiL7zNnuX38m1+E5keCv3yR
s8DeZ6DvLzXOdt5+pGP3VCE+rg+yM469t66VHiFcKkqgfPO0n/9Gv/5JUCC1EU3PvqC2ODfYmY+X
hixMTmDYcyrO80oGFOxYCg311QZL8ZlzlqIKomN9aDA+wtF7/+rfbt8hDrcPlYlWEQXo1z+9j+3b
WGperSFz2oHsv/ky/X4f4GDDY5Xur9/9uVnhYyvy2AoOarOGLIr+9Ce0JoWA4WcUIIFkD+yfNk9v
CeOhB1HHu/j266/J3rH/zR9+nOYjWKPaVYF7FVLiKRsY08joa/D371TAf/3rr7/+1++EQdffi/Z7
MOBTLJ//+O+jAv8h/cfUZW375xjCPGVl8fc//z6B8Pd77Lv3539/+mfxmv7+5y9B/HPW4O9P/8na
//f6v75/9V//+j8AAAD//wMAOXBqMeAgAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e94839cd9e9967f-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 27 Nov 2024 19:27:11 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=XviX9Hjm.Uy8aR.6KFXUsi._PlZSGHz_33BG8yN1gNU-1732735631-1.0.1.1-xpDmkFSh5aO2fugj8VCyrc23NL7wf6Q8eq_yaxcwutJZAO5nSx9Eeqko_4UhxH4IQBfS8cJSaEmHnXWPD6lTJg;
path=/; expires=Wed, 27-Nov-24 19:57:11 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=Xz2QlgphZCJYG8KTd5zZKB.lSwPBCu24Nwv2aB6FkeE-1732735631371-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-allow-origin:
- '*'
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-model:
- text-embedding-3-small
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '272'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999986'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5cba1175a36bccbbad92e3ef21b7021d
status:
code: 200
message: OK
- request:
body: '{"input": ["What is Brandon''s favorite color? This is the expect criteria
for your final answer: Brandon''s favorite color. you MUST return the actual
complete content as the final answer, not a summary."], "model": "text-embedding-3-small",
"encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '270'
content-type:
- application/json
cookie:
- __cf_bm=XviX9Hjm.Uy8aR.6KFXUsi._PlZSGHz_33BG8yN1gNU-1732735631-1.0.1.1-xpDmkFSh5aO2fugj8VCyrc23NL7wf6Q8eq_yaxcwutJZAO5nSx9Eeqko_4UhxH4IQBfS8cJSaEmHnXWPD6lTJg;
_cfuvid=Xz2QlgphZCJYG8KTd5zZKB.lSwPBCu24Nwv2aB6FkeE-1732735631371-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1SaW6+6Srfm799PsbJu6R05SVWtO84gIIXgATudDiCiICKHKqB29nfv6P/N7u6b
mUwmM0YY4xm/5xn1n//666+/u7wui+nvf/76+/Ucp7//x/faLZuyv//563/+66+//vrrP38//787
yzYvb7fnu/rd/vvj830rl7//+Yv/7yv/96Z//vrbVLoSHzk5BMtWoT1gp3eFzUA0a2ZdPBt1Tqni
qC3bejWaQoT7x7TDxVCH9XwNkgppWjPT01tv/PlmCzGAy97HjkOVehnWOEbb0/tE3fEjAtoiL4RQ
1Tuqe2UNFusgp8hF3ZbGcqkPM55dD3oW14QiPL6M5STtPXg4WB+qSkPoL0FezEr0oQa1QWb7pA21
M/IfsocN8pRrmozbCH4+4wVrougOq6UdI+j2OkftUt36i58tPNr6XYcv5dgl62H7sNHVFrRQvkk6
E98Cb0MzqS/USK92LRjvi4uKZykRpFod621tE8IYKnesXk/nemmyxUNbtkPhKX6eAH+HzYruRgBw
FgbHgaj3voflwJ/oOWCHepWjU4WOY0OxPRJhYHIgR8g/lgcamp5ufH7ft9kUFmHxq2OST9RIObvP
E7aEdcxXWfIyiMb9gP2evcHq3GaC0pyvaIpELl+O3auAPkkRPd2iNZ8d7xkjAB85vWp+BNg4yg20
vGWPjZovfLLcPxFUOINQPNkfRqL4GsPTra+xbjivYV6CTIRBvS8Ia0acME+ORgRV/0JtX7LBzI1x
gcZs2mI3TDbGx2cfDh3FbMKm9Vj9pZXkCj1926b6mzv6y7JLnyhq9xJNx7dvsNB/9uh1rR/Yv+xU
xs9NpSNguSJNl/o08K9ENRFMlhinyf7GVo14Z+h3p56a3tXyRbtrTNh7qx9uww3JV+ZsdEiEXUCA
p0aMvIuHCnzhaRGxVSRAQoFfoRsU55A/jxNb7a6xYXrqSnratDswVHnUI3NGEY6ndWGLz7/FraaV
Gqnj97GeWCrayEr3Nj5kFkrmV+LaaCW2j4scbfxF2TkZmtrnTIRbaNe87FUKOrc2CpkhVMN6Y+cZ
eh8J0b3+dH2RS6EKT+93RIPlMuak1PIWbk9li7WGbQEJi8cIz/F7wf505BhFTqxCFFZHqpouNoSb
karg6Zs2Dje2b/A21J8w0wijxgm+jYVElxaas/j41fPAO14fw+Z5GGis9m1OIw25UEW8hWOrKwb2
wdsQJe/5QB3b1WvpKUc61E7BQDOy8Wu2Owwi/NYTjobUSvi0qUbEKVNKo41a1Xy0eY1wubclNvNG
BeKJ10XUlqcNvvkVlzO69DMkHJ/h2NkdcmkCaQyDa0zDw9k4DPNterqok5eY7nPzaQx8ckyRW7ws
fBTMQyLtek6Bo3Dc40O5KYxVtZUnxI38ouddefcX7sNM9AgkiYDCueQiWrQQprpa02N/3Pm8e91x
0EweFxoUUmmw8tKc0VFMJ5rvL9hYpNGBiLpADOVgdAzGTJ7A1L0cv+8nSKjwvKvQ7wKArZrekqkc
9Bkik1zIcnAcX7g+mxhGReJRFd1UY7mMh1U53pMXDi7aceDxYusI+MGOWvLhMsypP7conxaHXrZ6
ZUi7z1aF1lMzablEDzAjS+8gKCGjxXi/5mt1m1W0N70HAVDWh/U53Voo27xHT6XA1UN2m57gp4fX
+BzUNXdaRmWKVxs7+zpN5g042fAePS1q37gpJ9ymk8E5HC9kVcfYWLqpM0HpBhnNLu7GXy11OUM9
2gfU6ZGVTyfxGaKL8RSJUFOUrGjZBbAj/Aur8zEyZvCuop+e4ov7ngB9ndYUusXbwmq2/9Qz/8kC
kDLzEo6h5Rn8M5R52MksJvnqtQbTx70CP2xhNE6KzCDP6dRAOSstqqu9nfBQ7GWlMSeDiF895aFk
8fATGTsCmrM7iGHYcGjOVhXvJB8n0vMweJAIB0B3Tg/AIghZBdjVHqkPlTBfN++EoFLYLnj/4vtk
Pet9Ay4RR8nC7VsgFUqjoP0x34Tw+/wXZYczqGfGjjrORADrpRqC8tUn2H6Kaj7uH1WJwsp2KC7P
j3ou5NsTSrqXk0LjJ38e+08Ip/l2o7mbm4OEqpcJp5Gs2GGhnn/7t0LYEJdw3usT4K9ZFKNeMxE9
rbctWDeh2qHD/jaR/iHmg3D1LiYsNgql5vqy/XEJYhEN1/SNi+zs+NKmuabw9MjD8J42lE12zMXg
8nBK7CD7Msx7hT2RuVgbfIOsZms04hg4e+5Dw8/WGERw1ER0zY57ihspHebEiM0/+v99nuxThH6K
1ACohMsOXSLct88CHcdCxcVyqgb6KMonLARo0LBvIaN8sjnCQzM1Yf3VI1HSkAh3ub1SYz+dgPDt
P4Bes08PHF7r73zo0NRmGrVcIiczXmwVSSMWcVgQh5GMNC38zlOqK5phMIljBfy9Lxa/XCA5e6lC
t7fb4jsklr/m53sGC/9EaWx1cFgHqihgHrQyfJXL21gPCuEAMgUb2+eXkazNoslINfYrvdjucxDe
lR3/qc8Ad3391dcGxGiHaPkYOYMlx50HN1vzTDam0oFVvHYmbB8bEM5GGPkzy08lMrQrxXF/2yQU
9FkDn/mlCeVX+DCk0SYdhEBzsX21lWRxHjcIh3vzIcr91AzrTplt5NXpjUbWlOfSb15BdXfBp6nO
fWHZRRUonwcRX779LorXyoRekJxC3tBtNpHbNoPJ0mB8y93rsCyA60GAi4U0NHTY8rbTGK5ZGVH/
oZ395TLyIzyLeMRB+26MtfA1GzWD6BH4Mut6oaUUw+/7oOHGPQOW2EEGKpkryVh5DVtpnulwimUB
G/pmmy9tVBGIH9crtu+PiX3MQuWR3116jLNNnYwzFY+I7NcWBzbxGcuGZ4SeRJypq+aeIejtIUbv
6t5Rd3l8ADPpGoDjHAzUIlc9Z3Iwx2ir8QMtVmUEy+vDZqBwGsHOJ2vAPMUiB9PXsqfYhPyw4tu7
RXGND1TbJq4vmMWwwl8/75PJAGu9W234QDMkgNI4kcSdAeF75+jhvDFlY/HZg0OdM5XUfEu7gV5U
4sKwTWUi/Hj4/fRGUIj7B/3Nb3Ze1AqW5aCQ5axZTPz1G6VyiHPhYSbSQdoRuNk8RLx3ihbMNxvF
0NWZi1XFnYZ5oyge6JxCpUkpL/XCv28zaA/kRr+8VrP1NvLwurQmVtGtMqh371rgnuuVekYRJGsU
wxA25YfSMlY8QwSAb+G96niqmnadLEXoZ5B/t1dsIV/M1xA7MmTi80XV+QzYCELZg+8dXqjx5SFy
vJAM8Msg0N37tQHMuug2IqaT0n3s1fm0PwRHOBusI/XB5P15eekcDF24CbeaP//uN2EpgAU7dIuB
RNc9gRe+7ak+JG098a3Cwzdv1TQMVT+fuKhToTmFr3DrPrGxzkYgwkfva9R36iVfLXV7BGWYFjQ9
tBbgX8McopdStNj2pRbMpp3ocKESpCYN30y8GFYFr43nh9xQYsDGKa/g8e6KWMU3LRFGrYDg3/1o
hoOYOZsR5sA+0NKiJGdffQP9qur4YIqeIYALteGaUYJN9fWuV3ZKeViUqKeHzyQPC2RdA8X3NcW6
XD6H6WZEOvryPjUzrcoXWm7iH99Q3WpePtHhU//xSXgr9HT47LjTGYnGcqNaRfWcPw4mD6zjpIQC
j30g7Q6uDA9yOFO9E9/5CndLBsMYjOGK0kc+X9lwhNzuKVCPbPxByNu0AV9eCuvNxCcfWm4i2F7k
OzX7M8+W6Dj3yJN2Dtad3SGZn+HMw3kwSuoiscwXafBseCDZig2XST7ty1SGx7g3sCvDzTA9L+8Z
nuNzQv0XODI2PTsPcEZo0n2Q3RL2PKgB5G669u2/zpgLaW1gfH+daDY2qTG/xtwDd8MMfjzgrx5A
HBTGuiXbZDsZPV/PFaryzxEfwv49THnLntAy3z4O7fcjXxzXk+H3/7967LLlXYWxYplFgbVmIcaK
zeIJbnxzxzuhI2BIpmMA0+1DImttCgm15pMLovgFsdFpGlg/MaggOaRPXIbqkLMJgED+8bB34eyc
XVQ/VH48FNzjZVgX+ZD9mW+WdJEHFnW9CtvhmVH9GkmASa8ug1+/HQLJhcm868wGJu/1gLEJjwOf
mHcI7MSWqcZfd8mcGJkN+WnrkXZXbgyWvnMd/D7vUG8zRhYZnqHcRAaOBR8wOsihDP0yDkPus62H
1agXBf708Os/vv4h0tEnyPd4vy1eNT1EhQgy2DYUf5ZL8meeXrPzHmvsIRprsOljUMRHF2epbOWi
mPkqkF7zGe+6ewnmYJBlMHovL9y6VZ1QNppPJSGOTnduo7D5OJgipOjoUO0uUWM95/EIQQcqrEuN
MfCPDLu/+sI72zDYvLw8DhUbmeJ7I6U1Pa9hBo2T0RNUqAFg4syN8M7ZI1Fua2OsCWUtbF/nNASh
XDPxUM0Q/fjbwdwAmjPZejBiDw1fvnozJ8XkwZARnV7kQGbDYFUr/PF5KL9Vn1fZzoTFs5Dorlfi
XAgPNIY/Xryz1xEsT67o4d67x9gpRzcfA4tAyD/SC83zfZr3pza0YQZpQlW51hLhZdgy1O3oju2j
a/oizSGE4iX+hNv60eVTvGYcrO39OZTWM84Z6FEFp/l+o6b4PjDSqvQJvzwYbufRzJcIqgX68aS9
1bjk8/pEPKyTZ0VN87Mx1q/fRfvLWlDMHaxakLefFcKHXZBNkKyA7fqEg5E74JDzBhkwzcxd4Em+
Q8C1rZKZPMoeVq9jjctVCH1JcB/qH971JbfIF4UezqjbrwvZHPwXmF+DHMBqnQtsrbcto40j9JBP
YIl3OjkkAksTD5WvLqHRJJhM2Cq0g/tHm1HVCJrkj99dl83r933yUVFZCqvXLaa5Uy/Jui1RCD10
k0OlnZXkO18JnEbpQS3kn3P2yEELHlKj0PzbT2x+x2cI/KOMteBwZ0sKjinwOzP49q+f86LNt4r4
MN94l8cXn4BjM8PDqhJ868nHp+G6lvA1LykuUtbWKwCHDm1pHoegS/mELcKqwvYw3qijhQb49LXS
Qv38QHj/EUWDYPP4RHyWc4S3HrExX6ikw9dNn6jhsovxy9ugYPkaocGJqxc93RQwOXpnaj5RD5ha
VEeU0SQLZSSWyeyJ2hF+9FdEtd3ssnFuKhVW+XDEO2mf//zaEUaf9hhuv/5Pcg3TQ87rgkmSqeWw
ZmTXg3t/1KmtVh1bV6ewof9QPGzviiTh9Q/3BLp0TrAxArX++jMRcm/nFnLFzAYWkCGA6QtAUtb7
GCw+T3n44+v4FKg5I17MweGavb/5EjRGLunPsBDtFYfZoctniQQpRJtRwjmd7JqpOKwgubRNKM2M
sMULBPPH16TVLcHojGgolZS+PfI5stH4+nsbvploYV94NMnYLdYRjsJ5T6rooiai4NdHODuuRbGf
b2qaKxoH98LFDO0wRWAezXsEJBZgeiHHepjrjojw61+wHyp0WL88AL75Vfj65nnMUPQeHbHq4ETL
Jn/piKGiLy/TUJv0gb8GYgHNJOvozmmbhP0+r5YOHr42+Tuf9Q9XwVa4OXTPpZEh5Ju6g/zR2WOv
nZV8PXJ5DA9NI2CXlzvjW69H9LqpEw2VMDWWHXc7Kz9/oyreNl+NRlrBfVePpFkmZtw6m4UgV8Mq
7HrPHySH35VKmm8wdYrDka1oxSb0NYvHfrXxcnLHIIbF6FrUq7BRM0QeImqeLqTBh9Nz0dakEHZy
X1Pn3ZfDYm/VAPTe7NMgO7/9mbNeLRTS7UCd5rkAohH9qLyrW0exqvYG2zfZDL95cUhOVyFZbbES
EUVnh+rTbBsSdy56cOhs7ad/hnArahtyZ45gqx4sNivXoQJom9r0ui/2QMwcaVQoqzxazplSM+TE
OnijXqeWMvrf/EZL0bfffvyfSMjJdKi825Ba7BSwxamYin55cL4GB7bcY9QqIO10fJGDlK22JgUQ
lKJJvV3k+WJfzRHsHFr+8orhlzduXb27Ev6wUmOR4isHg/u7CuUn2ydsOtlH8PmQCxGa91zP7nrS
oXoWJqyXnliT/pEEf/TBG7p9It03F/NPPaLDEfof2NozLMaYxxq7ewnF7JRC/0hpKKRnNqzumGaw
0kiH9/PTZu2Zf83QRf02lHj3kQ/318eEvKDH2IhfLvtYhzn9w+96gLCxfMjEQTsxZfzl8YQv5FMF
O7mr6a7JnZx1WdOClO3tbz3U9RhtphEuenIiYn5/Gn/yiuVT+2Tzjkdj3U1lBMEpeYXcxh6M+YIi
EU1tNeOfP18e54cCz3T1Kf7q2S+/QnvhZOLd+3Vny/4DS3ASjB1ZyPuSzK2iiD9/EM7eWzFm8264
qDSn8I/fX7GxbYGcFRY9hyli5Jt/QFfvr9gEj3lYVXutgO91Cb7nhgLGK1MzeMg6FyeX+7tezqXE
wWPK8TgsZlaTV8oTcL+pMtVL7zxMDf/2lOWTFlhttHdOXiteYdJc+VDBVPDXZml4SA7ZE+8LXR66
LD+78LmWI3UPrcXWzxg2kEHpTIOoOSWsePAz3GmeTeD391U/ZQE0ymZHz1f9CdaptTIkR6tElmNp
JfypOhTocnEXsj++n4zB7S2EsnGbQp5Tc8D377sIhbhR6KXfLMZv3wEHax7pbk1gwurtSYbXqIrw
7hIN+eqOUQom7HnY06TKYNZ88iBPtC01DrqbzPwnDhTQrQs2dzViU+z7LqBFvYTvcuzy1YnOMhgk
hyOMFZdkdS21RT7gRWyRnBij4z0j+NVPfOYWM18Al0Po6kAi1Ll0xuxeNQiA9ulxoCQi+FjmuUV4
z24hnezd1++7PGw33imUEz/214MSqODCZe9QENYgX4U1DeAj+NYvSrX8l3fLwD/LWO2fpbEcO71C
uz3rqG5qTU0Kf9Sh5B5v9Ld/WM7lSf3pb/j4zvs/vClfrI5+87VE0gZVRYeGNmT0ZmlY7nHcwcl6
D1j75n2ren92QIoPHrYGE4PVKfP+D//iiml+t13zHshcSL/1niZrDVCs7OTnEE4VvOTUfj1mcDg4
H+wVymIsm4MOoWzcJ/zL0+a+hQq43O5PatySVz4tz7oBOy0WiPIcdcAnxctTfvnsrlfW5E++8C4I
wvsKSvl4r2EPm6e6p0fwiAbRaDarYuP3gA1SaoakFDcRJqAC2C6umiG89Boi9tnnNBYcM5fCBhHQ
r+5CHV/Xkt8+YKuepQk7n2Ie5msWRT++/PESWPpaaaAblGfqB3fozxLUPGRXqR7O+L43WOMIHfTu
IML7c6gwejxhHTZlesA72XgOYyEpDTRgUuFgVUa2lOZNhoQTM9IluzZfKtcLlWu0EGqfX3VOu0zr
0LnwImo0BBizeG9GtJy2ETVntwXLhK8EZndvoHrpekBYQE5gQiydqo2RGBIbzQqKO36mh5P/b96B
mrw5UX9+W8O6VmYIvnpE02/eNnx58c/z9JtzNzSa7q/w2kQKtj4P/K3vhIP3XYq++y/69XfEg0ex
LsKNqvb+4tJshDoaTIpzI2OEUw35l3dRYxt+8l8+BYe5L4nwuRs1PyNgw03e30KkNwmb1WDjgXJT
Rli/hqO/vlI4wjqpql8+nSzhXTPB5yPYf3hysWMxUr7zGtve0U7EUwBU8Nv/ubwq+GtnyArK38UZ
7yGrweJS1MFpPhNsDVBndFZfJQzxYSbbcyony6gqKgxxMmNnKmHOGvKswDev+O7/rEECPXrCctNu
qJahOV8e7uTBVV308HFLTZ+f4qMK34UwYlyj7UCeR72CaEMkrJmyAFh2e1VQsHYadi6XE6Cn2ljR
d/8UVviRAvbdb6KwCsQ/ebzIHEmF+40aU1V+7Q3GnbYEqOcWf/1A+W99+voN7KWylZB9qKswdMWI
qht9TBizLh3Ye+cau7b8ydnJyzv41R9sSvcGzD8/7aHTjkST0IDhu39VNptaJO/fPBUv6oigIl+p
fxy1WsjbqIHwYRZf3hj8oZc0FelXOcMnh9/m62/fsNnure/+McwXa/AL8N2X/clj6VACEXzrC5/k
gzTQildX+GGD+eVFMxHmoy8rbk321K7yEbBNc8hgqus11me8JJ++XtvffhLfaOcwAaCtDj6RtsN7
2r3BfHIeZ5RPXYpDVaDDeEfOCO99ufzqxV9tzDj4mLo9xWdnzv/4DS1PJxxGd7FerSxI4d+/UwH/
9a+//vpfvxMGbXcrX9+DAVO5TP/x30cF/kP6j7HNXq8/xxDImFXl3//8+wTC35+haz/T/566pnyP
f//zl4T+nDX4e+qm7PX/Xv/X96P+61//BwAA//8DAFT8PaLgIAAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e9483a10d7c967f-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 27 Nov 2024 19:27:11 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-allow-origin:
- '*'
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-model:
- text-embedding-3-small
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '68'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999953'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_09708939ca92f32d9d7143e8b7843b12
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
You have access to specific knowledge sources.\nYour personal goal is: Provide
@@ -9,9 +420,10 @@ interactions:
depends on it!"}, {"role": "user", "content": "\nCurrent Task: What is Brandon''s
favorite color?\n\nThis is the expect criteria for your final answer: Brandon''s
favorite color.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
not a summary.Additional Information: Brandon''s favorite color is blue and
he likes Mexican food.\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
@@ -20,7 +432,7 @@ interactions:
connection:
- keep-alive
content-length:
- '931'
- '1014'
content-type:
- application/json
host:
@@ -50,19 +462,19 @@ interactions:
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSQW7bMBC86xULXnqxAtmxI1e3FEWBtJekCXJpC4GmVhIdapcgqbhN4L8HlB1L
QVOgFwGa2RnOLPmcAAhdiQKEamVQnTXp5f3d9lsdbndh++C+757Or6/bm6uvn59WH/FGzKKCN1tU
4VV1prizBoNmOtDKoQwYXef5+SK7WK3ny4HouEITZY0N6ZLTTpNOF9limWZ5Ol8f1S1rhV4U8CMB
AHgevjEnVfhbFJDNXpEOvZcNiuI0BCAcm4gI6b32QVIQs5FUTAFpiH4FxDtQkqDRjwgSmhgbJPkd
OoCf9EWTNHA5/BfwyUmqmD54qOUjOx0QFBt2oD1sTI9n02Mc1r2XsSr1xhzx/Sm34cY63vgjf8Jr
Tdq3pUPpmWJGH9iKgd0nAL+G/fRvKgvruLOhDPyAFA3nF/nBT4zXMmHXRzJwkGaKr2bv+JUVBqmN
n2xYKKlarEbpeB2yrzRPiGTS+u8073kfmmtq/sd+JJRCG7AqrcNKq7eNxzGH8dX+a+y05SGw8H98
wK6sNTXorNOHN1PbMsuz1aZe5yoTyT55AQAA//8DAPaYLdRBAwAA
H4sIAAAAAAAAA4xSwY7TMBS85yuefOHSrNJ0l1S5bVdCLHAHBChy7Zf0geNnbGeX1ar/jpxmm1SA
xCVSZt6MZ579nAEI0qIGoQ4yqt6Z/Pbz26efjNXW+0/64917r82H3W64f9fpOxKrpOD9d1TxRXWl
uHcGI7E90cqjjJhc19WmrDY3rzflSPSs0SRZ52J+zXlPlvKyKK/zosrX20l9YFIYRA1fMgCA5/Gb
clqNv0QNxeoF6TEE2aGoz0MAwrNJiJAhUIjSRrGaScU2oh2j34PlR1DSQkcPCBK6FBukDY/oAb7a
N2Slgdvxv4adl1azfRWglQ/sKSIoNuyBAuzNgFfLYzy2Q5Cpqh2MmfDjObfhznneh4k/4y1ZCofG
owxsU8YQ2YmRPWYA38b9DBeVhfPcu9hE/oE2Ga635clPzNeyZCcycpRmxsti2uqlX6MxSjJhsWGh
pDqgnqXzdchBEy+IbNH6zzR/8z41J9v9j/1MKIUuom6cR03qsvE85jG92n+Nnbc8BhbhKUTsm5Zs
h955Or2Z1jVFVdzs222lCpEds98AAAD//wMAfDYBg0EDAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e54a2a7d81467f7-SJC
- 8e9483a44b2fcf51-SJC
Connection:
- keep-alive
Content-Encoding:
@@ -70,14 +482,14 @@ interactions:
Content-Type:
- application/json
Date:
- Wed, 20 Nov 2024 01:23:34 GMT
- Wed, 27 Nov 2024 19:27:12 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=DoHo1Z11nN9bxkwZmJGnaxRhyrWE0UfyimYuUVRU6A4-1732065814-1.0.1.1-JVRvFrIJLHEq9OaFQS0qcgYcawE7t2XQ4Tpqd58n2Yfx3mvEqD34MJmooi1LtvdvjB2J8x1Rs.rCdXD.msLlKw;
path=/; expires=Wed, 20-Nov-24 01:53:34 GMT; domain=.api.openai.com; HttpOnly;
- __cf_bm=pBzYx.9r7fU6srtt2lLWBrgojr5QFAfVuDKoOwUKCK4-1732735632-1.0.1.1-jYgG33D0s.RUVr6OV4fPXS7bQR9Yp5AwbbIAqdxaZCrcisNIYqPqOqxNO9.Lo3Ok7K8FXfSBrrnAOOJDVLa6bA;
path=/; expires=Wed, 27-Nov-24 19:57:12 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=n3RrNhFMqC3HtJ7n3e3agyxnM1YOQ6eKESz_eeXLtZA-1732065814630-0.0.1.1-604800000;
- _cfuvid=TYAi3OpktKJu15t1e4y3VbRnbHK6QYaCeSYJuT6e5Sk-1732735632634-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
@@ -90,7 +502,7 @@ interactions:
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '344'
- '535'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -102,13 +514,13 @@ interactions:
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999790'
- '149999769'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_8f1622677c64913753a595f679596614
- req_8501f29c09575f05c51fdec5c1c36090
status:
code: 200
message: OK