Compare commits

...

28 Commits

Author SHA1 Message Date
Lorenze Jay
99133104dd Update version to 0.130.0 and dependencies in pyproject.toml and uv.lock (#3002)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
- Bump CrewAI version from 0.126.0 to 0.130.0 in pyproject.toml and uv.lock.
- Update optional dependency 'crewai-tools' version from 0.46.0 to 0.47.1.
- Adjust dependency specifications in CLI templates to reflect the new version.
2025-06-11 17:01:11 -07:00
devin-ai-integration[bot]
970a63c13c Fix issue 2993: Prevent Flow status logs from hiding human input (#2994)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* Fix issue 2993: Prevent Flow status logs from hiding human input

- Add pause_live_updates() and resume_live_updates() methods to ConsoleFormatter
- Modify _ask_human_input() to pause Flow status updates during human input
- Add comprehensive tests for pause/resume functionality and integration
- Ensure Live session is properly managed during human input prompts
- Fix prevents Flow status logs from overwriting user input prompts

Fixes #2993

Co-Authored-By: João <joao@crewai.com>

* Fix lint: Remove unused pytest import

- Remove unused pytest import from test_console_formatter_pause_resume.py
- Fixes F401 lint error identified in CI

Co-Authored-By: João <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: João <joao@crewai.com>
2025-06-11 12:08:00 -04:00
devin-ai-integration[bot]
06c991d8c3 Fix telemetry singleton pattern to respect dynamic environment variables (#2946)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* Fix telemetry singleton pattern to respect dynamic environment variables

- Modified Telemetry.__init__ to prevent re-initialization with _initialized flag
- Updated _safe_telemetry_operation to check _is_telemetry_disabled() dynamically
- Added comprehensive tests for environment variables set after singleton creation
- Fixed singleton contamination in existing tests by adding proper reset
- Resolves issue #2945 where CREWAI_DISABLE_TELEMETRY=true was ignored when set after import

Co-Authored-By: João <joao@crewai.com>

* Implement code review improvements

- Move _initialized flag to __new__ method for better encapsulation
- Add type hints to _safe_telemetry_operation method
- Consolidate telemetry execution checks into _should_execute_telemetry helper
- Add pytest fixtures to reduce test setup redundancy
- Enhanced documentation for singleton behavior

Co-Authored-By: João <joao@crewai.com>

* Fix mypy type-checker errors

- Add explicit bool type annotation to _initialized field
- Fix return value in task_started method to not return _safe_telemetry_operation result
- Simplify initialization logic to set _initialized once in __init__

Co-Authored-By: João <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: João <joao@crewai.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-06-10 17:38:40 -07:00
Lucas Gomide
739eb72fd0 LiteAgent w/ Guardrail (#2982)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* feat: add guardrail support for Agents when using direct kickoff calls

* refactor: expose guardrail func in a proper utils file

* fix: resolve Self import on python 3.10
2025-06-10 13:32:32 -04:00
Lucas Gomide
b0d2e9fe31 docs: update Python version requirement from <=3.13 to <3.14 (#2987)
This correctly reflects support for all 3.13.x patch version
2025-06-10 12:44:28 -04:00
Lucas Gomide
5c51349a85 Support async tool executions (#2983)
* test: fix structured tool tests

No tests were being executed from this file

* feat: support to run async tool

Some Tool requires async execution. This commit allow us to collect tool result from coroutines

* docs: add docs about asynchronous tool support
2025-06-10 12:17:06 -04:00
Richard Luo
5b740467cb docs: fix the guide on persistence (#2849)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-06-09 14:09:56 -04:00
hegasz
e9d9dd2a79 Fix missing manager_agent tokens in usage_metrics from kickoff (#2848)
* fix(metrics): prevent usage_metrics from dropping manager_agent tokens

* Add test to verify hierarchical kickoff aggregates manager and agent usage metrics

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
2025-06-09 13:16:05 -04:00
Lorenze Jay
3e74cb4832 docs: add integrations documentation and images for enterprise features (#2981)
- Introduced a new documentation file for Integrations, detailing supported services and setup instructions.
- Updated the main docs.json to include the new "integrations" feature in the contextual options.
- Added several images related to integrations to enhance the documentation.

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-06-09 12:46:09 -04:00
Lucas Gomide
db3c8a49bd feat: improve docs and logging for Multi-Org actions in CLI (#2980)
* docs: add organization management in our CLI docs

* feat: improve user feedback when user is not authenticated

* feat: improve logging about current organization while publishing/install a Tool

* feat: improve logging when Agent repository is not found during fetch

* fix linter offences

* test: fix auth token error
2025-06-09 12:21:12 -04:00
Lucas Gomide
8a37b535ed docs: improve docs about planning LLM usage (#2977) 2025-06-09 10:17:04 -04:00
Lucas Gomide
e6ac1311e7 build: upgrade LiteLLM to support latest Openai version (#2963)
Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-06-09 08:55:12 -04:00
Akshit Madan
b0d89698fd docs: added Maxim support for Agent Observability (#2861)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* docs: added Maxim support for Agent Observability

* enhanced the maxim integration doc page as per the github PR reviewer bot suggestions

* Update maxim-observability.mdx

* Update maxim-observability.mdx

- Fixed Python version, >=3.10
- added expected_output field in Task
- Removed marketing links and added github link

* added maxim in observability

---------

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-06-08 13:39:01 -04:00
Lucas Gomide
21d063a46c Support multi org in CLI (#2969)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: support to list, switch and see your current organization

* feat: store the current org after logged in

* feat: filtering agents, tools and their actions by organization_uuid if present

* fix linter offenses

* refactor: propagate the current org thought Header instead of params

* refactor: rename org column name to ID instead of Handle

---------

Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-06-06 15:28:09 -04:00
Mike Plachta
02912a653e Increasing the default X-axis spacing for flow plotting (#2967)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* Increasing the default X-axis spacing for flow plotting

* removing unused imports
2025-06-06 09:43:38 -07:00
Greyson LaLonde
f1cfba7527 docs: update hallucination guardrail examples
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
- Add basic usage example showing guardrail uses task's expected_output as default context
- Add explicit context example for custom reference content
2025-06-05 12:34:52 -04:00
Lucas Gomide
3e075cd48d docs: add minimum UV version required to use the Tool repository (#2965)
* docs: add minimum UV version required to use the Tool repository

* docs: remove memory from Agent docs

The Agent does not support `memory` attribute
2025-06-05 11:37:19 -04:00
Lucas Gomide
e03ec4d60f fix: remove duplicated message about Tool result (#2964)
We are currently inserting tool results into LLM messages twice, which may unnecessarily increase processing costs, especially for longer outputs.
2025-06-05 09:42:10 -04:00
Lorenze Jay
ba740c6157 Update version to 0.126.0 and dependencies in pyproject.toml and lock files (#2961)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-06-04 17:49:07 -07:00
Tony Kipkemboi
34c813ed79 Add enterprise testing image (#2960) 2025-06-04 15:05:35 -07:00
Tony Kipkemboi
545cc2ffe4 docs: Fix missing await keywords in async crew kickoff methods and add llm selection guide (#2959) 2025-06-04 14:12:52 -07:00
Mike Plachta
47b97d9b7f Azure embeddings documentation for knowledge (#2957)
Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
2025-06-04 13:27:50 -07:00
Lucas Gomide
bf8fbb0a44 Minor adjustments on Tool publish and docs (#2958)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* fix: fix tool publisher logger when available_exports is found

* docs: update docs and templates since we support Python 3.13
2025-06-04 11:58:26 -04:00
Lucas Gomide
552921cf83 feat: load Tool from Agent repository by their own module (#2940)
Previously, we only supported tools from the crewai-tools open-source repository. Now, we're introducing improved support for private tool repositories.
2025-06-04 09:53:25 -04:00
Lorenze Jay
372874fb3a agent add knowledge sources fix and test (#2948) 2025-06-04 06:47:15 -07:00
Lucas Gomide
2bd6b72aae Persist available tools from a Tool repository (#2851)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: add capability to see and expose public Tool classes

* feat: persist available Tools from repository on publish

* ci: ignore explictly templates from ruff check

Ruff only applies --exclude to files it discovers itself. So we have to skip manually the same files excluded from `ruff.toml`

* sytle: fix linter issues

* refactor: renaming available_tools_classes by available_exports

* feat: provide more context about exportable tools

* feat: allow to install a Tool from pypi

* test: fix tests

* feat: add env_vars attribute to BaseTool

* remove TODO: security check since we are handle that on enterprise side
2025-06-03 10:09:02 -04:00
siddharth Sambharia
f02e0060fa feat/portkey-ai-docs-udpated (#2936) 2025-06-03 08:15:28 -04:00
Lucas Gomide
66b7628972 Support Python 3.13 (#2844)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* ci: support python 3.13 on CI

* docs: update docs about support python version

* build: adds requires python <3.14

* build: explicit tokenizers dependency

Added explicit tokenizers dependency: Added tokenizers>=0.20.3 to ensure a version compatible with Python 3.13 is used.

* build: drop fastembed is not longer used

* build: attempt to build PyTorch on Python 3.13

* feat: upgrade fastavro, pyarrow and lancedb

* build: ensure tiktoken greather than 0.8.0 due Python 3.13 compatibility
2025-06-02 18:12:24 -04:00
77 changed files with 7673 additions and 1344 deletions

View File

@@ -30,4 +30,7 @@ jobs:
- name: Run Ruff on Changed Files
if: ${{ steps.changed-files.outputs.files != '' }}
run: |
echo "${{ steps.changed-files.outputs.files }}" | tr " " "\n" | xargs -I{} ruff check "{}"
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} ruff check "{}"

View File

@@ -14,7 +14,7 @@ jobs:
timeout-minutes: 15
strategy:
matrix:
python-version: ['3.10', '3.11', '3.12']
python-version: ['3.10', '3.11', '3.12', '3.13']
steps:
- name: Checkout code
uses: actions/checkout@v4

View File

@@ -161,7 +161,7 @@ To get started with CrewAI, follow these simple steps:
### 1. Installation
Ensure you have Python >=3.10 <3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <3.14 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, install CrewAI:

View File

@@ -43,7 +43,6 @@ The Visual Agent Builder enables:
| **Max Iterations** _(optional)_ | `max_iter` | `int` | Maximum iterations before the agent must provide its best answer. Default is 20. |
| **Max RPM** _(optional)_ | `max_rpm` | `Optional[int]` | Maximum requests per minute to avoid rate limits. |
| **Max Execution Time** _(optional)_ | `max_execution_time` | `Optional[int]` | Maximum time (in seconds) for task execution. |
| **Memory** _(optional)_ | `memory` | `bool` | Whether the agent should maintain memory of interactions. Default is True. |
| **Verbose** _(optional)_ | `verbose` | `bool` | Enable detailed execution logs for debugging. Default is False. |
| **Allow Delegation** _(optional)_ | `allow_delegation` | `bool` | Allow the agent to delegate tasks to other agents. Default is False. |
| **Step Callback** _(optional)_ | `step_callback` | `Optional[Any]` | Function called after each agent step, overrides crew callback. |
@@ -156,7 +155,6 @@ agent = Agent(
"you excel at finding patterns in complex datasets.",
llm="gpt-4", # Default: OPENAI_MODEL_NAME or "gpt-4"
function_calling_llm=None, # Optional: Separate LLM for tool calling
memory=True, # Default: True
verbose=False, # Default: False
allow_delegation=False, # Default: False
max_iter=20, # Default: 20 iterations
@@ -537,7 +535,6 @@ The context window management feature works automatically in the background. You
- Adjust `max_iter` and `max_retry_limit` based on task complexity
### Memory and Context Management
- Use `memory: true` for tasks requiring historical context
- Leverage `knowledge_sources` for domain-specific information
- Configure `embedder` when using custom embedding models
- Use custom templates (`system_template`, `prompt_template`, `response_template`) for fine-grained control over agent behavior
@@ -585,7 +582,6 @@ The context window management feature works automatically in the background. You
- Review code sandbox settings
4. **Memory Issues**: If agent responses seem inconsistent:
- Verify memory is enabled
- Check knowledge source configuration
- Review conversation history management

View File

@@ -200,6 +200,37 @@ Deploy the crew or flow to [CrewAI Enterprise](https://app.crewai.com).
```
- Reads your local project configuration.
- Prompts you to confirm the environment variables (like `OPENAI_API_KEY`, `SERPER_API_KEY`) found locally. These will be securely stored with the deployment on the Enterprise platform. Ensure your sensitive keys are correctly configured locally (e.g., in a `.env` file) before running this.
### 11. Organization Management
Manage your CrewAI Enterprise organizations.
```shell Terminal
crewai org [COMMAND] [OPTIONS]
```
#### Commands:
- `list`: List all organizations you belong to
```shell Terminal
crewai org list
```
- `current`: Display your currently active organization
```shell Terminal
crewai org current
```
- `switch`: Switch to a specific organization
```shell Terminal
crewai org switch <organization_id>
```
<Note>
You must be authenticated to CrewAI Enterprise to use these organization management commands.
</Note>
- **Create a deployment** (continued):
- Links the deployment to the corresponding remote GitHub repository (it usually detects this automatically).
- **Deploy the Crew**: Once you are authenticated, you can deploy your crew or flow to CrewAI Enterprise.

View File

@@ -325,12 +325,12 @@ for result in results:
# Example of using kickoff_async
inputs = {'topic': 'AI in healthcare'}
async_result = my_crew.kickoff_async(inputs=inputs)
async_result = await my_crew.kickoff_async(inputs=inputs)
print(async_result)
# Example of using kickoff_for_each_async
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
async_results = my_crew.kickoff_for_each_async(inputs=inputs_array)
async_results = await my_crew.kickoff_for_each_async(inputs=inputs_array)
for async_result in async_results:
print(async_result)
```

View File

@@ -602,6 +602,30 @@ agent = Agent(
)
```
#### Configuring Azure OpenAI Embeddings
When using Azure OpenAI embeddings:
1. Make sure you deploy the embedding model in Azure platform first
2. Then you need to use the following configuration:
```python
agent = Agent(
role="Researcher",
goal="Research topics",
backstory="Expert researcher",
knowledge_sources=[knowledge_source],
embedder={
"provider": "azure",
"config": {
"api_key": "your-azure-api-key",
"model": "text-embedding-ada-002", # change to the model you are using and is deployed in Azure
"api_base": "https://your-azure-endpoint.openai.azure.com/",
"api_version": "2024-02-01"
}
}
)
```
## Advanced Features
### Query Rewriting

View File

@@ -29,6 +29,10 @@ my_crew = Crew(
From this point on, your crew will have planning enabled, and the tasks will be planned before each iteration.
<Warning>
When planning is enabled, crewAI will use `gpt-4o-mini` as the default LLM for planning, which requires a valid OpenAI API key. Since your agents might be using different LLMs, this could cause confusion if you don't have an OpenAI API key configured or if you're experiencing unexpected behavior related to LLM API calls.
</Warning>
#### Planning LLM
Now you can define the LLM that will be used to plan the tasks.

View File

@@ -32,6 +32,7 @@ The Enterprise Tools Repository includes:
- **Customizability**: Provides the flexibility to develop custom tools or utilize existing ones, catering to the specific needs of agents.
- **Error Handling**: Incorporates robust error handling mechanisms to ensure smooth operation.
- **Caching Mechanism**: Features intelligent caching to optimize performance and reduce redundant operations.
- **Asynchronous Support**: Handles both synchronous and asynchronous tools, enabling non-blocking operations.
## Using CrewAI Tools
@@ -177,6 +178,62 @@ class MyCustomTool(BaseTool):
return "Tool's result"
```
## Asynchronous Tool Support
CrewAI supports asynchronous tools, allowing you to implement tools that perform non-blocking operations like network requests, file I/O, or other async operations without blocking the main execution thread.
### Creating Async Tools
You can create async tools in two ways:
#### 1. Using the `tool` Decorator with Async Functions
```python Code
from crewai.tools import tool
@tool("fetch_data_async")
async def fetch_data_async(query: str) -> str:
"""Asynchronously fetch data based on the query."""
# Simulate async operation
await asyncio.sleep(1)
return f"Data retrieved for {query}"
```
#### 2. Implementing Async Methods in Custom Tool Classes
```python Code
from crewai.tools import BaseTool
class AsyncCustomTool(BaseTool):
name: str = "async_custom_tool"
description: str = "An asynchronous custom tool"
async def _run(self, query: str = "") -> str:
"""Asynchronously run the tool"""
# Your async implementation here
await asyncio.sleep(1)
return f"Processed {query} asynchronously"
```
### Using Async Tools
Async tools work seamlessly in both standard Crew workflows and Flow-based workflows:
```python Code
# In standard Crew
agent = Agent(role="researcher", tools=[async_custom_tool])
# In Flow
class MyFlow(Flow):
@start()
async def begin(self):
crew = Crew(agents=[agent])
result = await crew.kickoff_async()
return result
```
The CrewAI framework automatically handles the execution of both synchronous and asynchronous tools, so you don't need to worry about how to call them differently.
### Utilizing the `tool` Decorator
```python Code

View File

@@ -9,7 +9,12 @@
},
"favicon": "images/favicon.svg",
"contextual": {
"options": ["copy", "view", "chatgpt", "claude"]
"options": [
"copy",
"view",
"chatgpt",
"claude"
]
},
"navigation": {
"tabs": [
@@ -201,6 +206,7 @@
"observability/arize-phoenix",
"observability/langfuse",
"observability/langtrace",
"observability/maxim",
"observability/mlflow",
"observability/openlit",
"observability/opik",
@@ -213,6 +219,7 @@
"group": "Learn",
"pages": [
"learn/overview",
"learn/llm-selection-guide",
"learn/conditional-tasks",
"learn/coding-agents",
"learn/create-custom-tools",
@@ -255,7 +262,8 @@
"enterprise/features/tool-repository",
"enterprise/features/webhook-streaming",
"enterprise/features/traces",
"enterprise/features/hallucination-guardrail"
"enterprise/features/hallucination-guardrail",
"enterprise/features/integrations"
]
},
{

View File

@@ -25,8 +25,13 @@ AI hallucinations occur when language models generate content that appears plaus
from crewai.tasks.hallucination_guardrail import HallucinationGuardrail
from crewai import LLM
# Initialize the guardrail with reference context
# Basic usage - will use task's expected_output as context
guardrail = HallucinationGuardrail(
llm=LLM(model="gpt-4o-mini")
)
# With explicit reference context
context_guardrail = HallucinationGuardrail(
context="AI helps with various tasks including analysis and generation.",
llm=LLM(model="gpt-4o-mini")
)

View File

@@ -0,0 +1,185 @@
---
title: Integrations
description: "Connected applications for your agents to take actions."
icon: "plug"
---
## Overview
Enable your agents to authenticate with any OAuth enabled provider and take actions. From Salesforce and HubSpot to Google and GitHub, we've got you covered with 16+ integrated services.
<Frame>
![Integrations](/images/enterprise/crew_connectors.png)
</Frame>
## Supported Integrations
### **Communication & Collaboration**
- **Gmail** - Manage emails and drafts
- **Slack** - Workspace notifications and alerts
- **Microsoft** - Office 365 and Teams integration
### **Project Management**
- **Jira** - Issue tracking and project management
- **ClickUp** - Task and productivity management
- **Asana** - Team task and project coordination
- **Notion** - Page and database management
- **Linear** - Software project and bug tracking
- **GitHub** - Repository and issue management
### **Customer Relationship Management**
- **Salesforce** - CRM account and opportunity management
- **HubSpot** - Sales pipeline and contact management
- **Zendesk** - Customer support ticket management
### **Business & Finance**
- **Stripe** - Payment processing and customer management
- **Shopify** - E-commerce store and product management
### **Productivity & Storage**
- **Google Sheets** - Spreadsheet data synchronization
- **Google Calendar** - Event and schedule management
- **Box** - File storage and document management
and more to come!
## Prerequisites
Before using Authentication Integrations, ensure you have:
- A [CrewAI Enterprise](https://app.crewai.com) account. You can get started with a free trial.
## Setting Up Integrations
### 1. Connect Your Account
1. Navigate to [CrewAI Enterprise](https://app.crewai.com)
2. Go to **Integrations** tab - https://app.crewai.com/crewai_plus/connectors
3. Click **Connect** on your desired service from the Authentication Integrations section
4. Complete the OAuth authentication flow
5. Grant necessary permissions for your use case
6. Get your Enterprise Token from your [CrewAI Enterprise](https://app.crewai.com) account page - https://app.crewai.com/crewai_plus/settings/account
<Frame>
![Integrations](/images/enterprise/enterprise_action_auth_token.png)
</Frame>
### 2. Install Integration Tools
All you need is the latest version of `crewai-tools` package.
```bash
uv add crewai-tools
```
## Usage Examples
### Basic Usage
<Tip>
All the services you are authenticated into will be available as tools. So all you need to do is add the `CrewaiEnterpriseTools` to your agent and you are good to go.
</Tip>
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Gmail tool will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# print the tools
print(enterprise_tools)
# Create an agent with Gmail capabilities
email_agent = Agent(
role="Email Manager",
goal="Manage and organize email communications",
backstory="An AI assistant specialized in email management and communication.",
tools=[enterprise_tools]
)
# Task to send an email
email_task = Task(
description="Draft and send a follow-up email to john@example.com about the project update",
agent=email_agent,
expected_output="Confirmation that email was sent successfully"
)
# Run the task
crew = Crew(
agents=[email_agent],
tasks=[email_task]
)
# Run the crew
crew.kickoff()
```
### Filtering Tools
```python
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
actions_list=["gmail_find_email"] # only gmail_find_email tool will be available
)
gmail_tool = enterprise_tools[0]
gmail_agent = Agent(
role="Gmail Manager",
goal="Manage gmail communications and notifications",
backstory="An AI assistant that helps coordinate gmail communications.",
tools=[gmail_tool]
)
notification_task = Task(
description="Find the email from john@example.com",
agent=gmail_agent,
expected_output="Email found from john@example.com"
)
# Run the task
crew = Crew(
agents=[slack_agent],
tasks=[notification_task]
)
```
## Best Practices
### Security
- **Principle of Least Privilege**: Only grant the minimum permissions required for your agents' tasks
- **Regular Audits**: Periodically review connected integrations and their permissions
- **Secure Credentials**: Never hardcode credentials; use CrewAI's secure authentication flow
### Filtering Tools
On a deployed crew, you can specify which actions are avialbel for each integration from the settings page of the service you connected to.
<Frame>
![Integrations](/images/enterprise/filtering_enterprise_action_tools.png)
</Frame>
### Scoped Deployments for multi user organizations
You can deploy your crew and scope each integration to a specific user. For example, a crew that connects to google can use a specific user's gmail account.
<Tip>
This is useful for multi user organizations where you want to scope the integration to a specific user.
</Tip>
Use the `user_bearer_token` to scope the integration to a specific user so that when the crew is kicked off, it will use the user's bearer token to authenticate with the integration. If user is not logged in, then the crew will not use any connected integrations. Use the default bearer token to authenticate with the integrations thats deployed with the crew.
<Frame>
![Integrations](/images/enterprise/user_bearer_token.png)
</Frame>
### Getting Help
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with integration setup or troubleshooting.
</Card>

View File

@@ -21,6 +21,7 @@ Before using the Tool Repository, ensure you have:
- A [CrewAI Enterprise](https://app.crewai.com) account
- [CrewAI CLI](https://docs.crewai.com/concepts/cli#cli) installed
- uv>=0.5.0 installed. Check out [how to upgrade](https://docs.astral.sh/uv/getting-started/installation/#upgrading-uv)
- [Git](https://git-scm.com) installed and configured
- Access permissions to publish or install tools in your CrewAI Enterprise organization

View File

@@ -277,22 +277,23 @@ This pattern allows you to combine direct data passing with state updates for ma
One of CrewAI's most powerful features is the ability to persist flow state across executions. This enables workflows that can be paused, resumed, and even recovered after failures.
### The @persist Decorator
### The @persist() Decorator
The `@persist` decorator automates state persistence, saving your flow's state at key points in execution.
The `@persist()` decorator automates state persistence, saving your flow's state at key points in execution.
#### Class-Level Persistence
When applied at the class level, `@persist` saves state after every method execution:
When applied at the class level, `@persist()` saves state after every method execution:
```python
from crewai.flow.flow import Flow, listen, persist, start
from crewai.flow.flow import Flow, listen, start
from crewai.flow.persistence import persist
from pydantic import BaseModel
class CounterState(BaseModel):
value: int = 0
@persist # Apply to the entire flow class
@persist() # Apply to the entire flow class
class PersistentCounterFlow(Flow[CounterState]):
@start()
def increment(self):
@@ -319,10 +320,11 @@ print(f"Second run result: {result2}") # Will be higher due to persisted state
#### Method-Level Persistence
For more granular control, you can apply `@persist` to specific methods:
For more granular control, you can apply `@persist()` to specific methods:
```python
from crewai.flow.flow import Flow, listen, persist, start
from crewai.flow.flow import Flow, listen, start
from crewai.flow.persistence import persist
class SelectivePersistFlow(Flow):
@start()
@@ -330,7 +332,7 @@ class SelectivePersistFlow(Flow):
self.state["count"] = 1
return "First step"
@persist # Only persist after this method
@persist() # Only persist after this method
@listen(first_step)
def important_step(self, prev_result):
self.state["count"] += 1

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 288 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 362 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

View File

@@ -22,7 +22,7 @@ Watch this video tutorial for a step-by-step demonstration of the installation p
<Note>
**Python Version Requirements**
CrewAI requires `Python >=3.10 and <3.13`. Here's how to check your version:
CrewAI requires `Python >=3.10 and <3.14`. Here's how to check your version:
```bash
python3 --version
```

View File

@@ -108,6 +108,7 @@ crew_2 = Crew(agents=[coding_agent], tasks=[task_2])
# Async function to kickoff multiple crews asynchronously and wait for all to finish
async def async_multiple_crews():
# Create coroutines for concurrent execution
result_1 = crew_1.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
result_2 = crew_2.kickoff_async(inputs={"ages": [20, 22, 24, 28, 30]})

View File

@@ -0,0 +1,729 @@
---
title: 'Strategic LLM Selection Guide'
description: 'Strategic framework for choosing the right LLM for your CrewAI AI agents and writing effective task and agent definitions'
icon: 'brain-circuit'
---
## The CrewAI Approach to LLM Selection
Rather than prescriptive model recommendations, we advocate for a **thinking framework** that helps you make informed decisions based on your specific use case, constraints, and requirements. The LLM landscape evolves rapidly, with new models emerging regularly and existing ones being updated frequently. What matters most is developing a systematic approach to evaluation that remains relevant regardless of which specific models are available.
<Note>
This guide focuses on strategic thinking rather than specific model recommendations, as the LLM landscape evolves rapidly.
</Note>
## Quick Decision Framework
<Steps>
<Step title="Analyze Your Tasks">
Begin by deeply understanding what your tasks actually require. Consider the cognitive complexity involved, the depth of reasoning needed, the format of expected outputs, and the amount of context the model will need to process. This foundational analysis will guide every subsequent decision.
</Step>
<Step title="Map Model Capabilities">
Once you understand your requirements, map them to model strengths. Different model families excel at different types of work; some are optimized for reasoning and analysis, others for creativity and content generation, and others for speed and efficiency.
</Step>
<Step title="Consider Constraints">
Factor in your real-world operational constraints including budget limitations, latency requirements, data privacy needs, and infrastructure capabilities. The theoretically best model may not be the practically best choice for your situation.
</Step>
<Step title="Test and Iterate">
Start with reliable, well-understood models and optimize based on actual performance in your specific use case. Real-world results often differ from theoretical benchmarks, so empirical testing is crucial.
</Step>
</Steps>
## Core Selection Framework
### a. Task-First Thinking
The most critical step in LLM selection is understanding what your task actually demands. Too often, teams select models based on general reputation or benchmark scores without carefully analyzing their specific requirements. This approach leads to either over-engineering simple tasks with expensive, complex models, or under-powering sophisticated work with models that lack the necessary capabilities.
<Tabs>
<Tab title="Reasoning Complexity">
- **Simple Tasks** represent the majority of everyday AI work and include basic instruction following, straightforward data processing, and simple formatting operations. These tasks typically have clear inputs and outputs with minimal ambiguity. The cognitive load is low, and the model primarily needs to follow explicit instructions rather than engage in complex reasoning.
- **Complex Tasks** require multi-step reasoning, strategic thinking, and the ability to handle ambiguous or incomplete information. These might involve analyzing multiple data sources, developing comprehensive strategies, or solving problems that require breaking down into smaller components. The model needs to maintain context across multiple reasoning steps and often must make inferences that aren't explicitly stated.
- **Creative Tasks** demand a different type of cognitive capability focused on generating novel, engaging, and contextually appropriate content. This includes storytelling, marketing copy creation, and creative problem-solving. The model needs to understand nuance, tone, and audience while producing content that feels authentic and engaging rather than formulaic.
</Tab>
<Tab title="Output Requirements">
- **Structured Data** tasks require precision and consistency in format adherence. When working with JSON, XML, or database formats, the model must reliably produce syntactically correct output that can be programmatically processed. These tasks often have strict validation requirements and little tolerance for format errors, making reliability more important than creativity.
- **Creative Content** outputs demand a balance of technical competence and creative flair. The model needs to understand audience, tone, and brand voice while producing content that engages readers and achieves specific communication goals. Quality here is often subjective and requires models that can adapt their writing style to different contexts and purposes.
- **Technical Content** sits between structured data and creative content, requiring both precision and clarity. Documentation, code generation, and technical analysis need to be accurate and comprehensive while remaining accessible to the intended audience. The model must understand complex technical concepts and communicate them effectively.
</Tab>
<Tab title="Context Needs">
- **Short Context** scenarios involve focused, immediate tasks where the model needs to process limited information quickly. These are often transactional interactions where speed and efficiency matter more than deep understanding. The model doesn't need to maintain extensive conversation history or process large documents.
- **Long Context** requirements emerge when working with substantial documents, extended conversations, or complex multi-part tasks. The model needs to maintain coherence across thousands of tokens while referencing earlier information accurately. This capability becomes crucial for document analysis, comprehensive research, and sophisticated dialogue systems.
- **Very Long Context** scenarios push the boundaries of what's currently possible, involving massive document processing, extensive research synthesis, or complex multi-session interactions. These use cases require models specifically designed for extended context handling and often involve trade-offs between context length and processing speed.
</Tab>
</Tabs>
### b. Model Capability Mapping
Understanding model capabilities requires looking beyond marketing claims and benchmark scores to understand the fundamental strengths and limitations of different model architectures and training approaches.
<AccordionGroup>
<Accordion title="Reasoning Models" icon="brain">
Reasoning models represent a specialized category designed specifically for complex, multi-step thinking tasks. These models excel when problems require careful analysis, strategic planning, or systematic problem decomposition. They typically employ techniques like chain-of-thought reasoning or tree-of-thought processing to work through complex problems step by step.
The strength of reasoning models lies in their ability to maintain logical consistency across extended reasoning chains and to break down complex problems into manageable components. They're particularly valuable for strategic planning, complex analysis, and situations where the quality of reasoning matters more than speed of response.
However, reasoning models often come with trade-offs in terms of speed and cost. They may also be less suitable for creative tasks or simple operations where their sophisticated reasoning capabilities aren't needed. Consider these models when your tasks involve genuine complexity that benefits from systematic, step-by-step analysis.
</Accordion>
<Accordion title="General Purpose Models" icon="microchip">
General purpose models offer the most balanced approach to LLM selection, providing solid performance across a wide range of tasks without extreme specialization in any particular area. These models are trained on diverse datasets and optimized for versatility rather than peak performance in specific domains.
The primary advantage of general purpose models is their reliability and predictability across different types of work. They handle most standard business tasks competently, from research and analysis to content creation and data processing. This makes them excellent choices for teams that need consistent performance across varied workflows.
While general purpose models may not achieve the peak performance of specialized alternatives in specific domains, they offer operational simplicity and reduced complexity in model management. They're often the best starting point for new projects, allowing teams to understand their specific needs before potentially optimizing with more specialized models.
</Accordion>
<Accordion title="Fast & Efficient Models" icon="bolt">
Fast and efficient models prioritize speed, cost-effectiveness, and resource efficiency over sophisticated reasoning capabilities. These models are optimized for high-throughput scenarios where quick responses and low operational costs are more important than nuanced understanding or complex reasoning.
These models excel in scenarios involving routine operations, simple data processing, function calling, and high-volume tasks where the cognitive requirements are relatively straightforward. They're particularly valuable for applications that need to process many requests quickly or operate within tight budget constraints.
The key consideration with efficient models is ensuring that their capabilities align with your task requirements. While they can handle many routine operations effectively, they may struggle with tasks requiring nuanced understanding, complex reasoning, or sophisticated content generation. They're best used for well-defined, routine operations where speed and cost matter more than sophistication.
</Accordion>
<Accordion title="Creative Models" icon="pen">
Creative models are specifically optimized for content generation, writing quality, and creative thinking tasks. These models typically excel at understanding nuance, tone, and style while producing engaging, contextually appropriate content that feels natural and authentic.
The strength of creative models lies in their ability to adapt writing style to different audiences, maintain consistent voice and tone, and generate content that engages readers effectively. They often perform better on tasks involving storytelling, marketing copy, brand communications, and other content where creativity and engagement are primary goals.
When selecting creative models, consider not just their ability to generate text, but their understanding of audience, context, and purpose. The best creative models can adapt their output to match specific brand voices, target different audience segments, and maintain consistency across extended content pieces.
</Accordion>
<Accordion title="Open Source Models" icon="code">
Open source models offer unique advantages in terms of cost control, customization potential, data privacy, and deployment flexibility. These models can be run locally or on private infrastructure, providing complete control over data handling and model behavior.
The primary benefits of open source models include elimination of per-token costs, ability to fine-tune for specific use cases, complete data privacy, and independence from external API providers. They're particularly valuable for organizations with strict data privacy requirements, budget constraints, or specific customization needs.
However, open source models require more technical expertise to deploy and maintain effectively. Teams need to consider infrastructure costs, model management complexity, and the ongoing effort required to keep models updated and optimized. The total cost of ownership may be higher than cloud-based alternatives when factoring in technical overhead.
</Accordion>
</AccordionGroup>
## Strategic Configuration Patterns
### a. Multi-Model Approach
<Tip>
Use different models for different purposes within the same crew to optimize both performance and cost.
</Tip>
The most sophisticated CrewAI implementations often employ multiple models strategically, assigning different models to different agents based on their specific roles and requirements. This approach allows teams to optimize for both performance and cost by using the most appropriate model for each type of work.
Planning agents benefit from reasoning models that can handle complex strategic thinking and multi-step analysis. These agents often serve as the "brain" of the operation, developing strategies and coordinating other agents' work. Content agents, on the other hand, perform best with creative models that excel at writing quality and audience engagement. Processing agents handling routine operations can use efficient models that prioritize speed and cost-effectiveness.
**Example: Research and Analysis Crew**
```python
from crewai import Agent, Task, Crew, LLM
# High-capability reasoning model for strategic planning
manager_llm = LLM(model="gemini-2.5-flash-preview-05-20", temperature=0.1)
# Creative model for content generation
content_llm = LLM(model="claude-3-5-sonnet-20241022", temperature=0.7)
# Efficient model for data processing
processing_llm = LLM(model="gpt-4o-mini", temperature=0)
research_manager = Agent(
role="Research Strategy Manager",
goal="Develop comprehensive research strategies and coordinate team efforts",
backstory="Expert research strategist with deep analytical capabilities",
llm=manager_llm, # High-capability model for complex reasoning
verbose=True
)
content_writer = Agent(
role="Research Content Writer",
goal="Transform research findings into compelling, well-structured reports",
backstory="Skilled writer who excels at making complex topics accessible",
llm=content_llm, # Creative model for engaging content
verbose=True
)
data_processor = Agent(
role="Data Analysis Specialist",
goal="Extract and organize key data points from research sources",
backstory="Detail-oriented analyst focused on accuracy and efficiency",
llm=processing_llm, # Fast, cost-effective model for routine tasks
verbose=True
)
crew = Crew(
agents=[research_manager, content_writer, data_processor],
tasks=[...], # Your specific tasks
manager_llm=manager_llm, # Manager uses the reasoning model
verbose=True
)
```
The key to successful multi-model implementation is understanding how different agents interact and ensuring that model capabilities align with agent responsibilities. This requires careful planning but can result in significant improvements in both output quality and operational efficiency.
### b. Component-Specific Selection
<Tabs>
<Tab title="Manager LLM">
The manager LLM plays a crucial role in hierarchical CrewAI processes, serving as the coordination point for multiple agents and tasks. This model needs to excel at delegation, task prioritization, and maintaining context across multiple concurrent operations.
Effective manager LLMs require strong reasoning capabilities to make good delegation decisions, consistent performance to ensure predictable coordination, and excellent context management to track the state of multiple agents simultaneously. The model needs to understand the capabilities and limitations of different agents while optimizing task allocation for efficiency and quality.
Cost considerations are particularly important for manager LLMs since they're involved in every operation. The model needs to provide sufficient capability for effective coordination while remaining cost-effective for frequent use. This often means finding models that offer good reasoning capabilities without the premium pricing of the most sophisticated options.
</Tab>
<Tab title="Function Calling LLM">
Function calling LLMs handle tool usage across all agents, making them critical for crews that rely heavily on external tools and APIs. These models need to excel at understanding tool capabilities, extracting parameters accurately, and handling tool responses effectively.
The most important characteristics for function calling LLMs are precision and reliability rather than creativity or sophisticated reasoning. The model needs to consistently extract the correct parameters from natural language requests and handle tool responses appropriately. Speed is also important since tool usage often involves multiple round trips that can impact overall performance.
Many teams find that specialized function calling models or general purpose models with strong tool support work better than creative or reasoning-focused models for this role. The key is ensuring that the model can reliably bridge the gap between natural language instructions and structured tool calls.
</Tab>
<Tab title="Agent-Specific Overrides">
Individual agents can override crew-level LLM settings when their specific needs differ significantly from the general crew requirements. This capability allows for fine-tuned optimization while maintaining operational simplicity for most agents.
Consider agent-specific overrides when an agent's role requires capabilities that differ substantially from other crew members. For example, a creative writing agent might benefit from a model optimized for content generation, while a data analysis agent might perform better with a reasoning-focused model.
The challenge with agent-specific overrides is balancing optimization with operational complexity. Each additional model adds complexity to deployment, monitoring, and cost management. Teams should focus overrides on agents where the performance improvement justifies the additional complexity.
</Tab>
</Tabs>
## Task Definition Framework
### a. Focus on Clarity Over Complexity
Effective task definition is often more important than model selection in determining the quality of CrewAI outputs. Well-defined tasks provide clear direction and context that enable even modest models to perform well, while poorly defined tasks can cause even sophisticated models to produce unsatisfactory results.
<AccordionGroup>
<Accordion title="Effective Task Descriptions" icon="list-check">
The best task descriptions strike a balance between providing sufficient detail and maintaining clarity. They should define the specific objective clearly enough that there's no ambiguity about what success looks like, while explaining the approach or methodology in enough detail that the agent understands how to proceed.
Effective task descriptions include relevant context and constraints that help the agent understand the broader purpose and any limitations they need to work within. They break complex work into focused steps that can be executed systematically, rather than presenting overwhelming, multi-faceted objectives that are difficult to approach systematically.
Common mistakes include being too vague about objectives, failing to provide necessary context, setting unclear success criteria, or combining multiple unrelated tasks into a single description. The goal is to provide enough information for the agent to succeed while maintaining focus on a single, clear objective.
</Accordion>
<Accordion title="Expected Output Guidelines" icon="bullseye">
Expected output guidelines serve as a contract between the task definition and the agent, clearly specifying what the deliverable should look like and how it will be evaluated. These guidelines should describe both the format and structure needed, as well as the key elements that must be included for the output to be considered complete.
The best output guidelines provide concrete examples of quality indicators and define completion criteria clearly enough that both the agent and human reviewers can assess whether the task has been completed successfully. This reduces ambiguity and helps ensure consistent results across multiple task executions.
Avoid generic output descriptions that could apply to any task, missing format specifications that leave agents guessing about structure, unclear quality standards that make evaluation difficult, or failing to provide examples or templates that help agents understand expectations.
</Accordion>
</AccordionGroup>
### b. Task Sequencing Strategy
<Tabs>
<Tab title="Sequential Dependencies">
Sequential task dependencies are essential when tasks build upon previous outputs, information flows from one task to another, or quality depends on the completion of prerequisite work. This approach ensures that each task has access to the information and context it needs to succeed.
Implementing sequential dependencies effectively requires using the context parameter to chain related tasks, building complexity gradually through task progression, and ensuring that each task produces outputs that serve as meaningful inputs for subsequent tasks. The goal is to maintain logical flow between dependent tasks while avoiding unnecessary bottlenecks.
Sequential dependencies work best when there's a clear logical progression from one task to another and when the output of one task genuinely improves the quality or feasibility of subsequent tasks. However, they can create bottlenecks if not managed carefully, so it's important to identify which dependencies are truly necessary versus those that are merely convenient.
</Tab>
<Tab title="Parallel Execution">
Parallel execution becomes valuable when tasks are independent of each other, time efficiency is important, or different expertise areas are involved that don't require coordination. This approach can significantly reduce overall execution time while allowing specialized agents to work on their areas of strength simultaneously.
Successful parallel execution requires identifying tasks that can truly run independently, grouping related but separate work streams effectively, and planning for result integration when parallel tasks need to be combined into a final deliverable. The key is ensuring that parallel tasks don't create conflicts or redundancies that reduce overall quality.
Consider parallel execution when you have multiple independent research streams, different types of analysis that don't depend on each other, or content creation tasks that can be developed simultaneously. However, be mindful of resource allocation and ensure that parallel execution doesn't overwhelm your available model capacity or budget.
</Tab>
</Tabs>
## Optimizing Agent Configuration for LLM Performance
### a. Role-Driven LLM Selection
<Warning>
Generic agent roles make it impossible to select the right LLM. Specific roles enable targeted model optimization.
</Warning>
The specificity of your agent roles directly determines which LLM capabilities matter most for optimal performance. This creates a strategic opportunity to match precise model strengths with agent responsibilities.
**Generic vs. Specific Role Impact on LLM Choice:**
When defining roles, think about the specific domain knowledge, working style, and decision-making frameworks that would be most valuable for the tasks the agent will handle. The more specific and contextual the role definition, the better the model can embody that role effectively.
```python
# ✅ Specific role - clear LLM requirements
specific_agent = Agent(
role="SaaS Revenue Operations Analyst", # Clear domain expertise needed
goal="Analyze recurring revenue metrics and identify growth opportunities",
backstory="Specialist in SaaS business models with deep understanding of ARR, churn, and expansion revenue",
llm=LLM(model="gpt-4o") # Reasoning model justified for complex analysis
)
```
**Role-to-Model Mapping Strategy:**
- **"Research Analyst"** → Reasoning model (GPT-4o, Claude Sonnet) for complex analysis
- **"Content Editor"** → Creative model (Claude, GPT-4o) for writing quality
- **"Data Processor"** → Efficient model (GPT-4o-mini, Gemini Flash) for structured tasks
- **"API Coordinator"** → Function-calling optimized model (GPT-4o, Claude) for tool usage
### b. Backstory as Model Context Amplifier
<Info>
Strategic backstories multiply your chosen LLM's effectiveness by providing domain-specific context that generic prompting cannot achieve.
</Info>
A well-crafted backstory transforms your LLM choice from generic capability to specialized expertise. This is especially crucial for cost optimization - a well-contextualized efficient model can outperform a premium model without proper context.
**Context-Driven Performance Example:**
```python
# Context amplifies model effectiveness
domain_expert = Agent(
role="B2B SaaS Marketing Strategist",
goal="Develop comprehensive go-to-market strategies for enterprise software",
backstory="""
You have 10+ years of experience scaling B2B SaaS companies from Series A to IPO.
You understand the nuances of enterprise sales cycles, the importance of product-market
fit in different verticals, and how to balance growth metrics with unit economics.
You've worked with companies like Salesforce, HubSpot, and emerging unicorns, giving
you perspective on both established and disruptive go-to-market strategies.
""",
llm=LLM(model="claude-3-5-sonnet", temperature=0.3) # Balanced creativity with domain knowledge
)
# This context enables Claude to perform like a domain expert
# Without it, even it would produce generic marketing advice
```
**Backstory Elements That Enhance LLM Performance:**
- **Domain Experience**: "10+ years in enterprise SaaS sales"
- **Specific Expertise**: "Specializes in technical due diligence for Series B+ rounds"
- **Working Style**: "Prefers data-driven decisions with clear documentation"
- **Quality Standards**: "Insists on citing sources and showing analytical work"
### c. Holistic Agent-LLM Optimization
The most effective agent configurations create synergy between role specificity, backstory depth, and LLM selection. Each element reinforces the others to maximize model performance.
**Optimization Framework:**
```python
# Example: Technical Documentation Agent
tech_writer = Agent(
role="API Documentation Specialist", # Specific role for clear LLM requirements
goal="Create comprehensive, developer-friendly API documentation",
backstory="""
You're a technical writer with 8+ years documenting REST APIs, GraphQL endpoints,
and SDK integration guides. You've worked with developer tools companies and
understand what developers need: clear examples, comprehensive error handling,
and practical use cases. You prioritize accuracy and usability over marketing fluff.
""",
llm=LLM(
model="claude-3-5-sonnet", # Excellent for technical writing
temperature=0.1 # Low temperature for accuracy
),
tools=[code_analyzer_tool, api_scanner_tool],
verbose=True
)
```
**Alignment Checklist:**
- ✅ **Role Specificity**: Clear domain and responsibilities
- ✅ **LLM Match**: Model strengths align with role requirements
- ✅ **Backstory Depth**: Provides domain context the LLM can leverage
- ✅ **Tool Integration**: Tools support the agent's specialized function
- ✅ **Parameter Tuning**: Temperature and settings optimize for role needs
The key is creating agents where every configuration choice reinforces your LLM selection strategy, maximizing performance while optimizing costs.
## Practical Implementation Checklist
Rather than repeating the strategic framework, here's a tactical checklist for implementing your LLM selection decisions in CrewAI:
<Steps>
<Step title="Audit Your Current Setup" icon="clipboard-check">
**What to Review:**
- Are all agents using the same LLM by default?
- Which agents handle the most complex reasoning tasks?
- Which agents primarily do data processing or formatting?
- Are any agents heavily tool-dependent?
**Action**: Document current agent roles and identify optimization opportunities.
</Step>
<Step title="Implement Crew-Level Strategy" icon="users-gear">
**Set Your Baseline:**
```python
# Start with a reliable default for the crew
default_crew_llm = LLM(model="gpt-4o-mini") # Cost-effective baseline
crew = Crew(
agents=[...],
tasks=[...],
memory=True
)
```
**Action**: Establish your crew's default LLM before optimizing individual agents.
</Step>
<Step title="Optimize High-Impact Agents" icon="star">
**Identify and Upgrade Key Agents:**
```python
# Manager or coordination agents
manager_agent = Agent(
role="Project Manager",
llm=LLM(model="gemini-2.5-flash-preview-05-20"), # Premium for coordination
# ... rest of config
)
# Creative or customer-facing agents
content_agent = Agent(
role="Content Creator",
llm=LLM(model="claude-3-5-sonnet"), # Best for writing
# ... rest of config
)
```
**Action**: Upgrade 20% of your agents that handle 80% of the complexity.
</Step>
<Step title="Validate with Enterprise Testing" icon="test-tube">
**Once you deploy your agents to production:**
- Use [CrewAI Enterprise platform](https://app.crewai.com) to A/B test your model selections
- Run multiple iterations with real inputs to measure consistency and performance
- Compare cost vs. performance across your optimized setup
- Share results with your team for collaborative decision-making
**Action**: Replace guesswork with data-driven validation using the testing platform.
</Step>
</Steps>
### When to Use Different Model Types
<Tabs>
<Tab title="Reasoning Models">
Reasoning models become essential when tasks require genuine multi-step logical thinking, strategic planning, or high-level decision making that benefits from systematic analysis. These models excel when problems need to be broken down into components and analyzed systematically rather than handled through pattern matching or simple instruction following.
Consider reasoning models for business strategy development, complex data analysis that requires drawing insights from multiple sources, multi-step problem solving where each step depends on previous analysis, and strategic planning tasks that require considering multiple variables and their interactions.
However, reasoning models often come with higher costs and slower response times, so they're best reserved for tasks where their sophisticated capabilities provide genuine value rather than being used for simple operations that don't require complex reasoning.
</Tab>
<Tab title="Creative Models">
Creative models become valuable when content generation is the primary output and the quality, style, and engagement level of that content directly impact success. These models excel when writing quality and style matter significantly, creative ideation or brainstorming is needed, or brand voice and tone are important considerations.
Use creative models for blog post writing and article creation, marketing copy that needs to engage and persuade, creative storytelling and narrative development, and brand communications where voice and tone are crucial. These models often understand nuance and context better than general purpose alternatives.
Creative models may be less suitable for technical or analytical tasks where precision and factual accuracy are more important than engagement and style. They're best used when the creative and communicative aspects of the output are primary success factors.
</Tab>
<Tab title="Efficient Models">
Efficient models are ideal for high-frequency, routine operations where speed and cost optimization are priorities. These models work best when tasks have clear, well-defined parameters and don't require sophisticated reasoning or creative capabilities.
Consider efficient models for data processing and transformation tasks, simple formatting and organization operations, function calling and tool usage where precision matters more than sophistication, and high-volume operations where cost per operation is a significant factor.
The key with efficient models is ensuring that their capabilities align with task requirements. They can handle many routine operations effectively but may struggle with tasks requiring nuanced understanding, complex reasoning, or sophisticated content generation.
</Tab>
<Tab title="Open Source Models">
Open source models become attractive when budget constraints are significant, data privacy requirements exist, customization needs are important, or local deployment is required for operational or compliance reasons.
Consider open source models for internal company tools where data privacy is paramount, privacy-sensitive applications that can't use external APIs, cost-optimized deployments where per-token pricing is prohibitive, and situations requiring custom model modifications or fine-tuning.
However, open source models require more technical expertise to deploy and maintain effectively. Consider the total cost of ownership including infrastructure, technical overhead, and ongoing maintenance when evaluating open source options.
</Tab>
</Tabs>
## Common CrewAI Model Selection Pitfalls
<AccordionGroup>
<Accordion title="The 'One Model Fits All' Trap" icon="triangle-exclamation">
**The Problem**: Using the same LLM for all agents in a crew, regardless of their specific roles and responsibilities. This is often the default approach but rarely optimal.
**Real Example**: Using GPT-4o for both a strategic planning manager and a data extraction agent. The manager needs reasoning capabilities worth the premium cost, but the data extractor could perform just as well with GPT-4o-mini at a fraction of the price.
**CrewAI Solution**: Leverage agent-specific LLM configuration to match model capabilities with agent roles:
```python
# Strategic agent gets premium model
manager = Agent(role="Strategy Manager", llm=LLM(model="gpt-4o"))
# Processing agent gets efficient model
processor = Agent(role="Data Processor", llm=LLM(model="gpt-4o-mini"))
```
</Accordion>
<Accordion title="Ignoring Crew-Level vs Agent-Level LLM Hierarchy" icon="shuffle">
**The Problem**: Not understanding how CrewAI's LLM hierarchy works - crew LLM, manager LLM, and agent LLM settings can conflict or be poorly coordinated.
**Real Example**: Setting a crew to use Claude, but having agents configured with GPT models, creating inconsistent behavior and unnecessary model switching overhead.
**CrewAI Solution**: Plan your LLM hierarchy strategically:
```python
crew = Crew(
agents=[agent1, agent2],
tasks=[task1, task2],
manager_llm=LLM(model="gpt-4o"), # For crew coordination
process=Process.hierarchical # When using manager_llm
)
# Agents inherit crew LLM unless specifically overridden
agent1 = Agent(llm=LLM(model="claude-3-5-sonnet")) # Override for specific needs
```
</Accordion>
<Accordion title="Function Calling Model Mismatch" icon="screwdriver-wrench">
**The Problem**: Choosing models based on general capabilities while ignoring function calling performance for tool-heavy CrewAI workflows.
**Real Example**: Selecting a creative-focused model for an agent that primarily needs to call APIs, search tools, or process structured data. The agent struggles with tool parameter extraction and reliable function calls.
**CrewAI Solution**: Prioritize function calling capabilities for tool-heavy agents:
```python
# For agents that use many tools
tool_agent = Agent(
role="API Integration Specialist",
tools=[search_tool, api_tool, data_tool],
llm=LLM(model="gpt-4o"), # Excellent function calling
# OR
llm=LLM(model="claude-3-5-sonnet") # Also strong with tools
)
```
</Accordion>
<Accordion title="Premature Optimization Without Testing" icon="gear">
**The Problem**: Making complex model selection decisions based on theoretical performance without validating with actual CrewAI workflows and tasks.
**Real Example**: Implementing elaborate model switching logic based on task types without testing if the performance gains justify the operational complexity.
**CrewAI Solution**: Start simple, then optimize based on real performance data:
```python
# Start with this
crew = Crew(agents=[...], tasks=[...], llm=LLM(model="gpt-4o-mini"))
# Test performance, then optimize specific agents as needed
# Use Enterprise platform testing to validate improvements
```
</Accordion>
<Accordion title="Overlooking Context and Memory Limitations" icon="brain">
**The Problem**: Not considering how model context windows interact with CrewAI's memory and context sharing between agents.
**Real Example**: Using a short-context model for agents that need to maintain conversation history across multiple task iterations, or in crews with extensive agent-to-agent communication.
**CrewAI Solution**: Match context capabilities to crew communication patterns.
</Accordion>
</AccordionGroup>
## Testing and Iteration Strategy
<Steps>
<Step title="Start Simple" icon="play">
Begin with reliable, general-purpose models that are well-understood and widely supported. This provides a stable foundation for understanding your specific requirements and performance expectations before optimizing for specialized needs.
</Step>
<Step title="Measure What Matters" icon="chart-line">
Develop metrics that align with your specific use case and business requirements rather than relying solely on general benchmarks. Focus on measuring outcomes that directly impact your success rather than theoretical performance indicators.
</Step>
<Step title="Iterate Based on Results" icon="arrows-rotate">
Make model changes based on observed performance in your specific context rather than theoretical considerations or general recommendations. Real-world performance often differs significantly from benchmark results or general reputation.
</Step>
<Step title="Consider Total Cost" icon="calculator">
Evaluate the complete cost of ownership including model costs, development time, maintenance overhead, and operational complexity. The cheapest model per token may not be the most cost-effective choice when considering all factors.
</Step>
</Steps>
<Tip>
Focus on understanding your requirements first, then select models that best match those needs. The best LLM choice is the one that consistently delivers the results you need within your operational constraints.
</Tip>
### Enterprise-Grade Model Validation
For teams serious about optimizing their LLM selection, the **CrewAI Enterprise platform** provides sophisticated testing capabilities that go far beyond basic CLI testing. The platform enables comprehensive model evaluation that helps you make data-driven decisions about your LLM strategy.
<Frame>
![Enterprise Testing Interface](/images/enterprise/enterprise-testing.png)
</Frame>
**Advanced Testing Features:**
- **Multi-Model Comparison**: Test multiple LLMs simultaneously across the same tasks and inputs. Compare performance between GPT-4o, Claude, Llama, Groq, Cerebras, and other leading models in parallel to identify the best fit for your specific use case.
- **Statistical Rigor**: Configure multiple iterations with consistent inputs to measure reliability and performance variance. This helps identify models that not only perform well but do so consistently across runs.
- **Real-World Validation**: Use your actual crew inputs and scenarios rather than synthetic benchmarks. The platform allows you to test with your specific industry context, company information, and real use cases for more accurate evaluation.
- **Comprehensive Analytics**: Access detailed performance metrics, execution times, and cost analysis across all tested models. This enables data-driven decision making rather than relying on general model reputation or theoretical capabilities.
- **Team Collaboration**: Share testing results and model performance data across your team, enabling collaborative decision-making and consistent model selection strategies across projects.
Go to [app.crewai.com](https://app.crewai.com) to get started!
<Info>
The Enterprise platform transforms model selection from guesswork into a data-driven process, enabling you to validate the principles in this guide with your actual use cases and requirements.
</Info>
## Key Principles Summary
<CardGroup cols={2}>
<Card title="Task-Driven Selection" icon="bullseye">
Choose models based on what the task actually requires, not theoretical capabilities or general reputation.
</Card>
<Card title="Capability Matching" icon="puzzle-piece">
Align model strengths with agent roles and responsibilities for optimal performance.
</Card>
<Card title="Strategic Consistency" icon="link">
Maintain coherent model selection strategy across related components and workflows.
</Card>
<Card title="Practical Testing" icon="flask">
Validate choices through real-world usage rather than benchmarks alone.
</Card>
<Card title="Iterative Improvement" icon="arrow-up">
Start simple and optimize based on actual performance and needs.
</Card>
<Card title="Operational Balance" icon="scale-balanced">
Balance performance requirements with cost and complexity constraints.
</Card>
</CardGroup>
<Check>
Remember: The best LLM choice is the one that consistently delivers the results you need within your operational constraints. Focus on understanding your requirements first, then select models that best match those needs.
</Check>
## Current Model Landscape (June 2025)
<Warning>
**Snapshot in Time**: The following model rankings represent current leaderboard standings as of June 2025, compiled from [LMSys Arena](https://arena.lmsys.org/), [Artificial Analysis](https://artificialanalysis.ai/), and other leading benchmarks. LLM performance, availability, and pricing change rapidly. Always conduct your own evaluations with your specific use cases and data.
</Warning>
### Leading Models by Category
The tables below show a representative sample of current top-performing models across different categories, with guidance on their suitability for CrewAI agents:
<Note>
These tables/metrics showcase selected leading models in each category and are not exhaustive. Many excellent models exist beyond those listed here. The goal is to illustrate the types of capabilities to look for rather than provide a complete catalog.
</Note>
<Tabs>
<Tab title="Reasoning & Planning">
**Best for Manager LLMs and Complex Analysis**
| Model | Intelligence Score | Cost ($/M tokens) | Speed | Best Use in CrewAI |
|:------|:------------------|:------------------|:------|:------------------|
| **o3** | 70 | $17.50 | Fast | Manager LLM for complex multi-agent coordination |
| **Gemini 2.5 Pro** | 69 | $3.44 | Fast | Strategic planning agents, research coordination |
| **DeepSeek R1** | 68 | $0.96 | Moderate | Cost-effective reasoning for budget-conscious crews |
| **Claude 4 Sonnet** | 53 | $6.00 | Fast | Analysis agents requiring nuanced understanding |
| **Qwen3 235B (Reasoning)** | 62 | $2.63 | Moderate | Open-source alternative for reasoning tasks |
These models excel at multi-step reasoning and are ideal for agents that need to develop strategies, coordinate other agents, or analyze complex information.
</Tab>
<Tab title="Coding & Technical">
**Best for Development and Tool-Heavy Workflows**
| Model | Coding Performance | Tool Use Score | Cost ($/M tokens) | Best Use in CrewAI |
|:------|:------------------|:---------------|:------------------|:------------------|
| **Claude 4 Sonnet** | Excellent | 72.7% | $6.00 | Primary coding agent, technical documentation |
| **Claude 4 Opus** | Excellent | 72.5% | $30.00 | Complex software architecture, code review |
| **DeepSeek V3** | Very Good | High | $0.48 | Cost-effective coding for routine development |
| **Qwen2.5 Coder 32B** | Very Good | Medium | $0.15 | Budget-friendly coding agent |
| **Llama 3.1 405B** | Good | 81.1% | $3.50 | Function calling LLM for tool-heavy workflows |
These models are optimized for code generation, debugging, and technical problem-solving, making them ideal for development-focused crews.
</Tab>
<Tab title="Speed & Efficiency">
**Best for High-Throughput and Real-Time Applications**
| Model | Speed (tokens/s) | Latency (TTFT) | Cost ($/M tokens) | Best Use in CrewAI |
|:------|:-----------------|:---------------|:------------------|:------------------|
| **Llama 4 Scout** | 2,600 | 0.33s | $0.27 | High-volume processing agents |
| **Gemini 2.5 Flash** | 376 | 0.30s | $0.26 | Real-time response agents |
| **DeepSeek R1 Distill** | 383 | Variable | $0.04 | Cost-optimized high-speed processing |
| **Llama 3.3 70B** | 2,500 | 0.52s | $0.60 | Balanced speed and capability |
| **Nova Micro** | High | 0.30s | $0.04 | Simple, fast task execution |
These models prioritize speed and efficiency, perfect for agents handling routine operations or requiring quick responses. **Pro tip**: Pairing these models with fast inference providers like Groq can achieve even better performance, especially for open-source models like Llama.
</Tab>
<Tab title="Balanced Performance">
**Best All-Around Models for General Crews**
| Model | Overall Score | Versatility | Cost ($/M tokens) | Best Use in CrewAI |
|:------|:--------------|:------------|:------------------|:------------------|
| **GPT-4.1** | 53 | Excellent | $3.50 | General-purpose crew LLM |
| **Claude 3.7 Sonnet** | 48 | Very Good | $6.00 | Balanced reasoning and creativity |
| **Gemini 2.0 Flash** | 48 | Good | $0.17 | Cost-effective general use |
| **Llama 4 Maverick** | 51 | Good | $0.37 | Open-source general purpose |
| **Qwen3 32B** | 44 | Good | $1.23 | Budget-friendly versatility |
These models offer good performance across multiple dimensions, suitable for crews with diverse task requirements.
</Tab>
</Tabs>
### Selection Framework for Current Models
<AccordionGroup>
<Accordion title="High-Performance Crews" icon="rocket">
**When performance is the priority**: Use top-tier models like **o3**, **Gemini 2.5 Pro**, or **Claude 4 Sonnet** for manager LLMs and critical agents. These models excel at complex reasoning and coordination but come with higher costs.
**Strategy**: Implement a multi-model approach where premium models handle strategic thinking while efficient models handle routine operations.
</Accordion>
<Accordion title="Cost-Conscious Crews" icon="dollar-sign">
**When budget is a primary constraint**: Focus on models like **DeepSeek R1**, **Llama 4 Scout**, or **Gemini 2.0 Flash**. These provide strong performance at significantly lower costs.
**Strategy**: Use cost-effective models for most agents, reserving premium models only for the most critical decision-making roles.
</Accordion>
<Accordion title="Specialized Workflows" icon="screwdriver-wrench">
**For specific domain expertise**: Choose models optimized for your primary use case. **Claude 4** series for coding, **Gemini 2.5 Pro** for research, **Llama 405B** for function calling.
**Strategy**: Select models based on your crew's primary function, ensuring the core capability aligns with model strengths.
</Accordion>
<Accordion title="Enterprise & Privacy" icon="shield">
**For data-sensitive operations**: Consider open-source models like **Llama 4** series, **DeepSeek V3**, or **Qwen3** that can be deployed locally while maintaining competitive performance.
**Strategy**: Deploy open-source models on private infrastructure, accepting potential performance trade-offs for data control.
</Accordion>
</AccordionGroup>
### Key Considerations for Model Selection
- **Performance Trends**: The current landscape shows strong competition between reasoning-focused models (o3, Gemini 2.5 Pro) and balanced models (Claude 4, GPT-4.1). Specialized models like DeepSeek R1 offer excellent cost-performance ratios.
- **Speed vs. Intelligence Trade-offs**: Models like Llama 4 Scout prioritize speed (2,600 tokens/s) while maintaining reasonable intelligence, whereas models like o3 maximize reasoning capability at the cost of speed and price.
- **Open Source Viability**: The gap between open-source and proprietary models continues to narrow, with models like Llama 4 Maverick and DeepSeek V3 offering competitive performance at attractive price points. Fast inference providers particularly shine with open-source models, often delivering better speed-to-cost ratios than proprietary alternatives.
<Info>
**Testing is Essential**: Leaderboard rankings provide general guidance, but your specific use case, prompting style, and evaluation criteria may produce different results. Always test candidate models with your actual tasks and data before making final decisions.
</Info>
### Practical Implementation Strategy
<Steps>
<Step title="Start with Proven Models">
Begin with well-established models like **GPT-4.1**, **Claude 3.7 Sonnet**, or **Gemini 2.0 Flash** that offer good performance across multiple dimensions and have extensive real-world validation.
</Step>
<Step title="Identify Specialized Needs">
Determine if your crew has specific requirements (coding, reasoning, speed) that would benefit from specialized models like **Claude 4 Sonnet** for development or **o3** for complex analysis. For speed-critical applications, consider fast inference providers like **Groq** alongside model selection.
</Step>
<Step title="Implement Multi-Model Strategy">
Use different models for different agents based on their roles. High-capability models for managers and complex tasks, efficient models for routine operations.
</Step>
<Step title="Monitor and Optimize">
Track performance metrics relevant to your use case and be prepared to adjust model selections as new models are released or pricing changes.
</Step>
</Steps>

View File

@@ -0,0 +1,152 @@
---
title: Maxim Integration
description: Start Agent monitoring, evaluation, and observability
icon: bars-staggered
---
# Maxim Integration
Maxim AI provides comprehensive agent monitoring, evaluation, and observability for your CrewAI applications. With Maxim's one-line integration, you can easily trace and analyse agent interactions, performance metrics, and more.
## Features: One Line Integration
- **End-to-End Agent Tracing**: Monitor the complete lifecycle of your agents
- **Performance Analytics**: Track latency, tokens consumed, and costs
- **Hyperparameter Monitoring**: View the configuration details of your agent runs
- **Tool Call Tracking**: Observe when and how agents use their tools
- **Advanced Visualisation**: Understand agent trajectories through intuitive dashboards
## Getting Started
### Prerequisites
- Python version >=3.10
- A Maxim account ([sign up here](https://getmaxim.ai/))
- A CrewAI project
### Installation
Install the Maxim SDK via pip:
```python
pip install maxim-py>=3.6.2
```
Or add it to your `requirements.txt`:
```
maxim-py>=3.6.2
```
### Basic Setup
### 1. Set up environment variables
```python
### Environment Variables Setup
# Create a `.env` file in your project root:
# Maxim API Configuration
MAXIM_API_KEY=your_api_key_here
MAXIM_LOG_REPO_ID=your_repo_id_here
```
### 2. Import the required packages
```python
from crewai import Agent, Task, Crew, Process
from maxim import Maxim
from maxim.logger.crewai import instrument_crewai
```
### 3. Initialise Maxim with your API key
```python
# Initialize Maxim logger
logger = Maxim().logger()
# Instrument CrewAI with just one line
instrument_crewai(logger)
```
### 4. Create and run your CrewAI application as usual
```python
# Create your agent
researcher = Agent(
role='Senior Research Analyst',
goal='Uncover cutting-edge developments in AI',
backstory="You are an expert researcher at a tech think tank...",
verbose=True,
llm=llm
)
# Define the task
research_task = Task(
description="Research the latest AI advancements...",
expected_output="",
agent=researcher
)
# Configure and run the crew
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=True
)
try:
result = crew.kickoff()
finally:
maxim.cleanup() # Ensure cleanup happens even if errors occur
```
That's it! All your CrewAI agent interactions will now be logged and available in your Maxim dashboard.
Check this Google Colab Notebook for a quick reference - [Notebook](https://colab.research.google.com/drive/1ZKIZWsmgQQ46n8TH9zLsT1negKkJA6K8?usp=sharing)
## Viewing Your Traces
After running your CrewAI application:
![Example trace in Maxim showing agent interactions](https://raw.githubusercontent.com/maximhq/maxim-docs/master/images/Screenshot2025-05-14at12.10.58PM.png)
1. Log in to your [Maxim Dashboard](https://getmaxim.ai/dashboard)
2. Navigate to your repository
3. View detailed agent traces, including:
- Agent conversations
- Tool usage patterns
- Performance metrics
- Cost analytics
## Troubleshooting
### Common Issues
- **No traces appearing**: Ensure your API key and repository ID are correc
- Ensure you've **called `instrument_crewai()`** ***before*** running your crew. This initializes logging hooks correctly.
- Set `debug=True` in your `instrument_crewai()` call to surface any internal errors:
```python
instrument_crewai(logger, debug=True)
```
- Configure your agents with `verbose=True` to capture detailed logs:
```python
agent = CrewAgent(..., verbose=True)
```
- Double-check that `instrument_crewai()` is called **before** creating or executing agents. This might be obvious, but it's a common oversight.
### Support
If you encounter any issues:
- Check the [Maxim Documentation](https://getmaxim.ai/docs)
- Maxim Github [Link](https://github.com/maximhq)

View File

@@ -7,196 +7,818 @@ icon: key
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a 2-line upgrade to make your CrewAI agents reliable, cost-efficient, and fast.
Portkey adds 4 core production capabilities to any CrewAI agent:
1. Routing to **200+ LLMs**
2. Making each LLM call more robust
3. Full-stack tracing & cost, performance analytics
4. Real-time guardrails to enforce behavior
## Introduction
## Getting Started
Portkey enhances CrewAI with production-readiness features, turning your experimental agent crews into robust systems by providing:
- **Complete observability** of every agent step, tool use, and interaction
- **Built-in reliability** with fallbacks, retries, and load balancing
- **Cost tracking and optimization** to manage your AI spend
- **Access to 200+ LLMs** through a single integration
- **Guardrails** to keep agent behavior safe and compliant
- **Version-controlled prompts** for consistent agent performance
### Installation & Setup
<Steps>
<Step title="Install CrewAI and Portkey">
```bash
pip install -qU crewai portkey-ai
```
</Step>
<Step title="Configure the LLM Client">
To build CrewAI Agents with Portkey, you'll need two keys:
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
<Step title="Install the required packages">
```bash
pip install -U crewai portkey-ai
```
</Step>
```python
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
<Step title="Generate API Key" icon="lock">
Create a Portkey API key with optional budget/rate limits from the [Portkey dashboard](https://app.portkey.ai/). You can also attach configurations for reliability, caching, and more to this key. More on this later.
</Step>
gpt_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy", # We are using Virtual key
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
)
)
```
</Step>
<Step title="Create and Run Your First Agent">
```python
from crewai import Agent, Task, Crew
# Define your agents with roles and goals
coder = Agent(
role='Software developer',
goal='Write clear, concise code on demand',
backstory='An expert coder with a keen eye for software trends.',
llm=gpt_llm
)
# Create tasks for your agents
task1 = Task(
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
expected_output="A clear and concise HTML code",
agent=coder
)
# Instantiate your crew
crew = Crew(
agents=[coder],
tasks=[task1],
)
result = crew.kickoff()
print(result)
```
</Step>
</Steps>
## Key Features
| Feature | Description |
|:--------|:------------|
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
| 🚧 Security Controls | Set budget limits and implement role-based access control |
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
## Production Features with Portkey Configs
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
<Frame>
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
</Frame>
### 1. Use 250+ LLMs
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
Easily switch between different LLM providers:
<Step title="Configure CrewAI with Portkey">
The integration is simple - you just need to update the LLM configuration in your CrewAI setup:
```python
# Anthropic Configuration
anthropic_llm = LLM(
model="claude-3-5-sonnet-latest",
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
# Create an LLM instance with Portkey integration
gpt_llm = LLM(
model="gpt-4o",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
api_key="dummy", # We are using a Virtual key, so this is a placeholder
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="anthropic_agent"
virtual_key="YOUR_LLM_VIRTUAL_KEY",
trace_id="unique-trace-id", # Optional, for request tracing
)
)
# Azure OpenAI Configuration
azure_llm = LLM(
model="gpt-4",
#Use them in your Crew Agents like this:
@agent
def lead_market_analyst(self) -> Agent:
return Agent(
config=self.agents_config['lead_market_analyst'],
verbose=True,
memory=False,
llm=gpt_llm
)
```
<Info>
**What are Virtual Keys?** Virtual keys in Portkey securely store your LLM provider API keys (OpenAI, Anthropic, etc.) in an encrypted vault. They allow for easier key rotation and budget management. [Learn more about virtual keys here](https://portkey.ai/docs/product/ai-gateway/virtual-keys).
</Info>
</Step>
</Steps>
## Production Features
### 1. Enhanced Observability
Portkey provides comprehensive observability for your CrewAI agents, helping you understand exactly what's happening during each execution.
<Tabs>
<Tab title="Traces">
<Frame>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/refs/heads/main/CrewAI%20Product%2011.1.webp"/>
</Frame>
Traces provide a hierarchical view of your crew's execution, showing the sequence of LLM calls, tool invocations, and state transitions.
```python
# Add trace_id to enable hierarchical tracing in Portkey
portkey_llm = LLM(
model="gpt-4o",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_AZURE_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="azure_agent"
virtual_key="YOUR_OPENAI_VIRTUAL_KEY",
trace_id="unique-session-id" # Add unique trace ID
)
)
```
</Tab>
<Tab title="Logs">
<Frame>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/refs/heads/main/CrewAI%20Portkey%20Docs%20Metadata.png"/>
</Frame>
Portkey logs every interaction with LLMs, including:
- Complete request and response payloads
- Latency and token usage metrics
- Cost calculations
- Tool calls and function executions
All logs can be filtered by metadata, trace IDs, models, and more, making it easy to debug specific crew runs.
</Tab>
<Tab title="Metrics & Dashboards">
<Frame>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/refs/heads/main/CrewAI%20Dashboard.png"/>
</Frame>
Portkey provides built-in dashboards that help you:
- Track cost and token usage across all crew runs
- Analyze performance metrics like latency and success rates
- Identify bottlenecks in your agent workflows
- Compare different crew configurations and LLMs
You can filter and segment all metrics by custom metadata to analyze specific crew types, user groups, or use cases.
</Tab>
<Tab title="Metadata Filtering">
<Frame>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/refs/heads/main/Metadata%20Filters%20from%20CrewAI.png" alt="Analytics with metadata filters" />
</Frame>
Add custom metadata to your CrewAI LLM configuration to enable powerful filtering and segmentation:
```python
portkey_llm = LLM(
model="gpt-4o",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_OPENAI_VIRTUAL_KEY",
metadata={
"crew_type": "research_crew",
"environment": "production",
"_user": "user_123", # Special _user field for user analytics
"request_source": "mobile_app"
}
)
)
```
This metadata can be used to filter logs, traces, and metrics on the Portkey dashboard, allowing you to analyze specific crew runs, users, or environments.
</Tab>
</Tabs>
### 2. Caching
Improve response times and reduce costs with two powerful caching modes:
- **Simple Cache**: Perfect for exact matches
- **Semantic Cache**: Matches responses for requests that are semantically similar
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
### 2. Reliability - Keep Your Crews Running Smoothly
```py
config = {
"cache": {
"mode": "semantic", # or "simple" for exact matching
When running crews in production, things can go wrong - API rate limits, network issues, or provider outages. Portkey's reliability features ensure your agents keep running smoothly even when problems occur.
It's simple to enable fallback in your CrewAI setup by using a Portkey Config:
```python
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
# Create LLM with fallback configuration
portkey_llm = LLM(
model="gpt-4o",
max_tokens=1000,
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
config={
"strategy": {
"mode": "fallback"
},
"targets": [
{
"provider": "openai",
"api_key": "YOUR_OPENAI_API_KEY",
"override_params": {"model": "gpt-4o"}
},
{
"provider": "anthropic",
"api_key": "YOUR_ANTHROPIC_API_KEY",
"override_params": {"model": "claude-3-opus-20240229"}
}
]
}
)
)
# Use this LLM configuration with your agents
```
This configuration will automatically try Claude if the GPT-4o request fails, ensuring your crew can continue operating.
<CardGroup cols="2">
<Card title="Automatic Retries" icon="rotate" href="https://portkey.ai/docs/product/ai-gateway/automatic-retries">
Handles temporary failures automatically. If an LLM call fails, Portkey will retry the same request for the specified number of times - perfect for rate limits or network blips.
</Card>
<Card title="Request Timeouts" icon="clock" href="https://portkey.ai/docs/product/ai-gateway/request-timeouts">
Prevent your agents from hanging. Set timeouts to ensure you get responses (or can fail gracefully) within your required timeframes.
</Card>
<Card title="Conditional Routing" icon="route" href="https://portkey.ai/docs/product/ai-gateway/conditional-routing">
Send different requests to different providers. Route complex reasoning to GPT-4, creative tasks to Claude, and quick responses to Gemini based on your needs.
</Card>
<Card title="Fallbacks" icon="shield" href="https://portkey.ai/docs/product/ai-gateway/fallbacks">
Keep running even if your primary provider fails. Automatically switch to backup providers to maintain availability.
</Card>
<Card title="Load Balancing" icon="scale-balanced" href="https://portkey.ai/docs/product/ai-gateway/load-balancing">
Spread requests across multiple API keys or providers. Great for high-volume crew operations and staying within rate limits.
</Card>
</CardGroup>
### 3. Prompting in CrewAI
Portkey's Prompt Engineering Studio helps you create, manage, and optimize the prompts used in your CrewAI agents. Instead of hardcoding prompts or instructions, use Portkey's prompt rendering API to dynamically fetch and apply your versioned prompts.
<Frame caption="Manage prompts in Portkey's Prompt Library">
![Prompt Playground Interface](https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/refs/heads/main/CrewAI%20Portkey%20Docs.webp)
</Frame>
<Tabs>
<Tab title="Prompt Playground">
Prompt Playground is a place to compare, test and deploy perfect prompts for your AI application. It's where you experiment with different models, test variables, compare outputs, and refine your prompt engineering strategy before deploying to production. It allows you to:
1. Iteratively develop prompts before using them in your agents
2. Test prompts with different variables and models
3. Compare outputs between different prompt versions
4. Collaborate with team members on prompt development
This visual environment makes it easier to craft effective prompts for each step in your CrewAI agents' workflow.
</Tab>
<Tab title="Using Prompt Templates">
The Prompt Render API retrieves your prompt templates with all parameters configured:
```python
from crewai import Agent, LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL, Portkey
# Initialize Portkey admin client
portkey_admin = Portkey(api_key="YOUR_PORTKEY_API_KEY")
# Retrieve prompt using the render API
prompt_data = portkey_client.prompts.render(
prompt_id="YOUR_PROMPT_ID",
variables={
"agent_role": "Senior Research Scientist",
}
)
backstory_agent_prompt=prompt_data.data.messages[0]["content"]
# Set up LLM with Portkey integration
portkey_llm = LLM(
model="gpt-4o",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_OPENAI_VIRTUAL_KEY"
)
)
# Create agent using the rendered prompt
researcher = Agent(
role="Senior Research Scientist",
goal="Discover groundbreaking insights about the assigned topic",
backstory=backstory_agent, # Use the rendered prompt
verbose=True,
llm=portkey_llm
)
```
</Tab>
<Tab title="Prompt Versioning">
You can:
- Create multiple versions of the same prompt
- Compare performance between versions
- Roll back to previous versions if needed
- Specify which version to use in your code:
```python
# Use a specific prompt version
prompt_data = portkey_admin.prompts.render(
prompt_id="YOUR_PROMPT_ID@version_number",
variables={
"agent_role": "Senior Research Scientist",
"agent_goal": "Discover groundbreaking insights"
}
)
```
</Tab>
<Tab title="Mustache Templating for variables">
Portkey prompts use Mustache-style templating for easy variable substitution:
```
You are a {{agent_role}} with expertise in {{domain}}.
Your mission is to {{agent_goal}} by leveraging your knowledge
and experience in the field.
Always maintain a {{tone}} tone and focus on providing {{focus_area}}.
```
When rendering, simply pass the variables:
```python
prompt_data = portkey_admin.prompts.render(
prompt_id="YOUR_PROMPT_ID",
variables={
"agent_role": "Senior Research Scientist",
"domain": "artificial intelligence",
"agent_goal": "discover groundbreaking insights",
"tone": "professional",
"focus_area": "practical applications"
}
)
```
</Tab>
</Tabs>
<Card title="Prompt Engineering Studio" icon="wand-magic-sparkles" href="https://portkey.ai/docs/product/prompt-library">
Learn more about Portkey's prompt management features
</Card>
### 4. Guardrails for Safe Crews
Guardrails ensure your CrewAI agents operate safely and respond appropriately in all situations.
**Why Use Guardrails?**
CrewAI agents can experience various failure modes:
- Generating harmful or inappropriate content
- Leaking sensitive information like PII
- Hallucinating incorrect information
- Generating outputs in incorrect formats
Portkey's guardrails add protections for both inputs and outputs.
**Implementing Guardrails**
```python
from crewai import Agent, LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
# Create LLM with guardrails
portkey_llm = LLM(
model="gpt-4o",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_OPENAI_VIRTUAL_KEY",
config={
"input_guardrails": ["guardrails-id-xxx", "guardrails-id-yyy"],
"output_guardrails": ["guardrails-id-zzz"]
}
)
)
# Create agent with guardrailed LLM
researcher = Agent(
role="Senior Research Scientist",
goal="Discover groundbreaking insights about the assigned topic",
backstory="You are an expert researcher with deep domain knowledge.",
verbose=True,
llm=portkey_llm
)
```
Portkey's guardrails can:
- Detect and redact PII in both inputs and outputs
- Filter harmful or inappropriate content
- Validate response formats against schemas
- Check for hallucinations against ground truth
- Apply custom business logic and rules
<Card title="Learn More About Guardrails" icon="shield-check" href="https://portkey.ai/docs/product/guardrails">
Explore Portkey's guardrail features to enhance agent safety
</Card>
### 5. User Tracking with Metadata
Track individual users through your CrewAI agents using Portkey's metadata system.
**What is Metadata in Portkey?**
Metadata allows you to associate custom data with each request, enabling filtering, segmentation, and analytics. The special `_user` field is specifically designed for user tracking.
```python
from crewai import Agent, LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
# Configure LLM with user tracking
portkey_llm = LLM(
model="gpt-4o",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_OPENAI_VIRTUAL_KEY",
metadata={
"_user": "user_123", # Special _user field for user analytics
"user_tier": "premium",
"user_company": "Acme Corp",
"session_id": "abc-123"
}
)
)
# Create agent with tracked LLM
researcher = Agent(
role="Senior Research Scientist",
goal="Discover groundbreaking insights about the assigned topic",
backstory="You are an expert researcher with deep domain knowledge.",
verbose=True,
llm=portkey_llm
)
```
**Filter Analytics by User**
With metadata in place, you can filter analytics by user and analyze performance metrics on a per-user basis:
<Frame caption="Filter analytics by user">
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/refs/heads/main/Metadata%20Filters%20from%20CrewAI.png"/>
</Frame>
This enables:
- Per-user cost tracking and budgeting
- Personalized user analytics
- Team or organization-level metrics
- Environment-specific monitoring (staging vs. production)
<Card title="Learn More About Metadata" icon="tags" href="https://portkey.ai/docs/product/observability/metadata">
Explore how to use custom metadata to enhance your analytics
</Card>
### 6. Caching for Efficient Crews
Implement caching to make your CrewAI agents more efficient and cost-effective:
<Tabs>
<Tab title="Simple Caching">
```python
from crewai import Agent, LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
# Configure LLM with simple caching
portkey_llm = LLM(
model="gpt-4o",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_OPENAI_VIRTUAL_KEY",
config={
"cache": {
"mode": "simple"
}
}
)
)
# Create agent with cached LLM
researcher = Agent(
role="Senior Research Scientist",
goal="Discover groundbreaking insights about the assigned topic",
backstory="You are an expert researcher with deep domain knowledge.",
verbose=True,
llm=portkey_llm
)
```
Simple caching performs exact matches on input prompts, caching identical requests to avoid redundant model executions.
</Tab>
<Tab title="Semantic Caching">
```python
from crewai import Agent, LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
# Configure LLM with semantic caching
portkey_llm = LLM(
model="gpt-4o",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_OPENAI_VIRTUAL_KEY",
config={
"cache": {
"mode": "semantic"
}
}
)
)
# Create agent with semantically cached LLM
researcher = Agent(
role="Senior Research Scientist",
goal="Discover groundbreaking insights about the assigned topic",
backstory="You are an expert researcher with deep domain knowledge.",
verbose=True,
llm=portkey_llm
)
```
Semantic caching considers the contextual similarity between input requests, caching responses for semantically similar inputs.
</Tab>
</Tabs>
### 7. Model Interoperability
CrewAI supports multiple LLM providers, and Portkey extends this capability by providing access to over 200 LLMs through a unified interface. You can easily switch between different models without changing your core agent logic:
```python
from crewai import Agent, LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
# Set up LLMs with different providers
openai_llm = LLM(
model="gpt-4o",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_OPENAI_VIRTUAL_KEY"
)
)
anthropic_llm = LLM(
model="claude-3-5-sonnet-latest",
max_tokens=1000,
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY"
)
)
# Choose which LLM to use for each agent based on your needs
researcher = Agent(
role="Senior Research Scientist",
goal="Discover groundbreaking insights about the assigned topic",
backstory="You are an expert researcher with deep domain knowledge.",
verbose=True,
llm=openai_llm # Use anthropic_llm for Anthropic
)
```
Portkey provides access to LLMs from providers including:
- OpenAI (GPT-4o, GPT-4 Turbo, etc.)
- Anthropic (Claude 3.5 Sonnet, Claude 3 Opus, etc.)
- Mistral AI (Mistral Large, Mistral Medium, etc.)
- Google Vertex AI (Gemini 1.5 Pro, etc.)
- Cohere (Command, Command-R, etc.)
- AWS Bedrock (Claude, Titan, etc.)
- Local/Private Models
<Card title="Supported Providers" icon="server" href="https://portkey.ai/docs/integrations/llms">
See the full list of LLM providers supported by Portkey
</Card>
## Set Up Enterprise Governance for CrewAI
**Why Enterprise Governance?**
If you are using CrewAI inside your organization, you need to consider several governance aspects:
- **Cost Management**: Controlling and tracking AI spending across teams
- **Access Control**: Managing which teams can use specific models
- **Usage Analytics**: Understanding how AI is being used across the organization
- **Security & Compliance**: Maintaining enterprise security standards
- **Reliability**: Ensuring consistent service across all users
Portkey adds a comprehensive governance layer to address these enterprise needs. Let's implement these controls step by step.
<Steps>
<Step title="Create Virtual Key">
Virtual Keys are Portkey's secure way to manage your LLM provider API keys. They provide essential controls like:
- Budget limits for API usage
- Rate limiting capabilities
- Secure API key storage
To create a virtual key:
Go to [Virtual Keys](https://app.portkey.ai/virtual-keys) in the Portkey App. Save and copy the virtual key ID
<Frame>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/refs/heads/main/Virtual%20Key%20from%20Portkey%20Docs.png" width="500"/>
</Frame>
<Note>
Save your virtual key ID - you'll need it for the next step.
</Note>
</Step>
<Step title="Create Default Config">
Configs in Portkey define how your requests are routed, with features like advanced routing, fallbacks, and retries.
To create your config:
1. Go to [Configs](https://app.portkey.ai/configs) in Portkey dashboard
2. Create new config with:
```json
{
"virtual_key": "YOUR_VIRTUAL_KEY_FROM_STEP1",
"override_params": {
"model": "gpt-4o" // Your preferred model name
}
}
```
3. Save and note the Config name for the next step
<Frame>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/refs/heads/main/CrewAI%20Portkey%20Docs%20Config.png" width="500"/>
</Frame>
</Step>
<Step title="Configure Portkey API Key">
Now create a Portkey API key and attach the config you created in Step 2:
1. Go to [API Keys](https://app.portkey.ai/api-keys) in Portkey and Create new API key
2. Select your config from `Step 2`
3. Generate and save your API key
<Frame>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/refs/heads/main/CrewAI%20API%20Key.png" width="500"/>
</Frame>
</Step>
<Step title="Connect to CrewAI">
After setting up your Portkey API key with the attached config, connect it to your CrewAI agents:
```python
from crewai import Agent, LLM
from portkey_ai import PORTKEY_GATEWAY_URL
# Configure LLM with your API key
portkey_llm = LLM(
model="gpt-4o",
base_url=PORTKEY_GATEWAY_URL,
api_key="YOUR_PORTKEY_API_KEY"
)
# Create agent with Portkey-enabled LLM
researcher = Agent(
role="Senior Research Scientist",
goal="Discover groundbreaking insights about the assigned topic",
backstory="You are an expert researcher with deep domain knowledge.",
verbose=True,
llm=portkey_llm
)
```
</Step>
</Steps>
<AccordionGroup>
<Accordion title="Step 1: Implement Budget Controls & Rate Limits">
### Step 1: Implement Budget Controls & Rate Limits
Virtual Keys enable granular control over LLM access at the team/department level. This helps you:
- Set up [budget limits](https://portkey.ai/docs/product/ai-gateway/virtual-keys/budget-limits)
- Prevent unexpected usage spikes using Rate limits
- Track departmental spending
#### Setting Up Department-Specific Controls:
1. Navigate to [Virtual Keys](https://app.portkey.ai/virtual-keys) in Portkey dashboard
2. Create new Virtual Key for each department with budget limits and rate limits
3. Configure department-specific limits
<Frame>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/refs/heads/main/Virtual%20Key%20from%20Portkey%20Docs.png" width="500"/>
</Frame>
</Accordion>
<Accordion title="Step 2: Define Model Access Rules">
### Step 2: Define Model Access Rules
As your AI usage scales, controlling which teams can access specific models becomes crucial. Portkey Configs provide this control layer with features like:
#### Access Control Features:
- **Model Restrictions**: Limit access to specific models
- **Data Protection**: Implement guardrails for sensitive data
- **Reliability Controls**: Add fallbacks and retry logic
#### Example Configuration:
Here's a basic configuration to route requests to OpenAI, specifically using GPT-4o:
```json
{
"strategy": {
"mode": "single"
},
"targets": [
{
"virtual_key": "YOUR_OPENAI_VIRTUAL_KEY",
"override_params": {
"model": "gpt-4o"
}
}
]
}
```
### 3. Production Reliability
Portkey provides comprehensive reliability features:
- **Automatic Retries**: Handle temporary failures gracefully
- **Request Timeouts**: Prevent hanging operations
- **Conditional Routing**: Route requests based on specific conditions
- **Fallbacks**: Set up automatic provider failovers
- **Load Balancing**: Distribute requests efficiently
Create your config on the [Configs page](https://app.portkey.ai/configs) in your Portkey dashboard.
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
<Note>
Configs can be updated anytime to adjust controls without affecting running applications.
</Note>
</Accordion>
<Accordion title="Step 3: Implement Access Controls">
### Step 3: Implement Access Controls
Create User-specific API keys that automatically:
- Track usage per user/team with the help of virtual keys
- Apply appropriate configs to route requests
- Collect relevant metadata to filter logs
- Enforce access permissions
### 4. Metrics
Create API keys through:
- [Portkey App](https://app.portkey.ai/)
- [API Key Management API](/api-reference/admin-api/control-plane/api-keys/create-api-key)
Agent runs are complex. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need.
Example using Python SDK:
```python
from portkey_ai import Portkey
portkey = Portkey(api_key="YOUR_ADMIN_API_KEY")
- Cost per agent interaction
- Response times and latency
- Token usage and efficiency
- Success/failure rates
- Cache hit rates
api_key = portkey.api_keys.create(
name="engineering-team",
type="organisation",
workspace_id="YOUR_WORKSPACE_ID",
defaults={
"config_id": "your-config-id",
"metadata": {
"environment": "production",
"department": "engineering"
}
},
scopes=["logs.view", "configs.read"]
)
```
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
For detailed key management instructions, see our [API Keys documentation](/api-reference/admin-api/control-plane/api-keys/create-api-key).
</Accordion>
### 5. Detailed Logging
Logs are essential for understanding agent behavior, diagnosing issues, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.
<Accordion title="Step 4: Deploy & Monitor">
### Step 4: Deploy & Monitor
After distributing API keys to your team members, your enterprise-ready CrewAI setup is ready to go. Each team member can now use their designated API keys with appropriate access levels and budget controls.
Monitor usage in Portkey dashboard:
- Cost tracking by department
- Model usage patterns
- Request volumes
- Error rates
</Accordion>
Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.
</AccordionGroup>
<details>
<summary><b>Traces</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
</details>
<Note>
### Enterprise Features Now Available
**Your CrewAI integration now has:**
- Departmental budget controls
- Model access governance
- Usage tracking & attribution
- Security guardrails
- Reliability features
</Note>
<details>
<summary><b>Logs</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
</details>
## Frequently Asked Questions
### 6. Enterprise Security Features
- Set budget limit and rate limts per Virtual Key (disposable API keys)
- Implement role-based access control
- Track system changes with audit logs
- Configure data retention policies
<AccordionGroup>
<Accordion title="How does Portkey enhance CrewAI?">
Portkey adds production-readiness to CrewAI through comprehensive observability (traces, logs, metrics), reliability features (fallbacks, retries, caching), and access to 200+ LLMs through a unified interface. This makes it easier to debug, optimize, and scale your agent applications.
</Accordion>
<Accordion title="Can I use Portkey with existing CrewAI applications?">
Yes! Portkey integrates seamlessly with existing CrewAI applications. You just need to update your LLM configuration code with the Portkey-enabled version. The rest of your agent and crew code remains unchanged.
</Accordion>
<Accordion title="Does Portkey work with all CrewAI features?">
Portkey supports all CrewAI features, including agents, tools, human-in-the-loop workflows, and all task process types (sequential, hierarchical, etc.). It adds observability and reliability without limiting any of the framework's functionality.
</Accordion>
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://docs.portkey.ai/product/ai-gateway/configs).
<Accordion title="Can I track usage across multiple agents in a crew?">
Yes, Portkey allows you to use a consistent `trace_id` across multiple agents in a crew to track the entire workflow. This is especially useful for complex crews where you want to understand the full execution path across multiple agents.
</Accordion>
<Accordion title="How do I filter logs and traces for specific crew runs?">
Portkey allows you to add custom metadata to your LLM configuration, which you can then use for filtering. Add fields like `crew_name`, `crew_type`, or `session_id` to easily find and analyze specific crew executions.
</Accordion>
<Accordion title="Can I use my own API keys with Portkey?">
Yes! Portkey uses your own API keys for the various LLM providers. It securely stores them as virtual keys, allowing you to easily manage and rotate keys without changing your code.
</Accordion>
</AccordionGroup>
## Resources
- [📘 Portkey Documentation](https://docs.portkey.ai)
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
- [🐦 Twitter](https://twitter.com/portkeyai)
- [💬 Discord Community](https://discord.gg/DD7vgKK299)
<CardGroup cols="3">
<Card title="CrewAI Docs" icon="book" href="https://docs.crewai.com/">
<p>Official CrewAI documentation</p>
</Card>
<Card title="Book a Demo" icon="calendar" href="https://calendly.com/portkey-ai">
<p>Get personalized guidance on implementing this integration</p>
</Card>
</CardGroup>

View File

@@ -1,9 +1,9 @@
[project]
name = "crewai"
version = "0.121.1"
version = "0.130.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<3.13"
requires-python = ">=3.10,<3.14"
authors = [
{ name = "Joao Moura", email = "joao@crewai.com" }
]
@@ -11,7 +11,7 @@ dependencies = [
# Core Dependencies
"pydantic>=2.4.2",
"openai>=1.13.3",
"litellm==1.68.0",
"litellm==1.72.0",
"instructor>=1.3.3",
# Text Processing
"pdfplumber>=0.11.4",
@@ -22,6 +22,8 @@ dependencies = [
"opentelemetry-exporter-otlp-proto-http>=1.30.0",
# Data Handling
"chromadb>=0.5.23",
"tokenizers>=0.20.3",
"onnxruntime==1.22.0",
"openpyxl>=3.1.5",
"pyvis>=0.3.2",
# Authentication and Security
@@ -45,12 +47,11 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools~=0.45.0"]
tools = ["crewai-tools~=0.47.1"]
embeddings = [
"tiktoken~=0.7.0"
"tiktoken~=0.8.0"
]
agentops = ["agentops>=0.3.0"]
fastembed = ["fastembed>=0.4.1"]
pdfplumber = [
"pdfplumber>=0.11.4",
]
@@ -100,6 +101,27 @@ exclude = ["cli/templates"]
[tool.bandit]
exclude_dirs = ["src/crewai/cli/templates"]
# PyTorch index configuration, since torch 2.5.0 is not compatible with python 3.13
[[tool.uv.index]]
name = "pytorch-nightly"
url = "https://download.pytorch.org/whl/nightly/cpu"
explicit = true
[[tool.uv.index]]
name = "pytorch"
url = "https://download.pytorch.org/whl/cpu"
explicit = true
[tool.uv.sources]
torch = [
{ index = "pytorch-nightly", marker = "python_version >= '3.13'" },
{ index = "pytorch", marker = "python_version < '3.13'" },
]
torchvision = [
{ index = "pytorch-nightly", marker = "python_version >= '3.13'" },
{ index = "pytorch", marker = "python_version < '3.13'" },
]
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

View File

@@ -18,7 +18,7 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.121.1"
__version__ = "0.130.0"
__all__ = [
"Agent",
"Crew",

View File

@@ -1,6 +1,6 @@
import shutil
import subprocess
from typing import Any, Dict, List, Literal, Optional, Sequence, Type, Union
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
@@ -155,6 +155,13 @@ class Agent(BaseAgent):
default=None,
description="The Agent's role to be used from your repository.",
)
guardrail: Optional[Union[Callable[[Any], Tuple[bool, Any]], str]] = Field(
default=None,
description="Function or string description of a guardrail to validate agent output"
)
guardrail_max_retries: int = Field(
default=3, description="Maximum number of retries when guardrail fails"
)
@model_validator(mode="before")
def validate_from_repository(cls, v):
@@ -200,6 +207,7 @@ class Agent(BaseAgent):
collection_name=self.role,
storage=self.knowledge_storage or None,
)
self.knowledge.add_sources()
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
@@ -243,21 +251,28 @@ class Agent(BaseAgent):
"""
if self.reasoning:
try:
from crewai.utilities.reasoning_handler import AgentReasoning, AgentReasoningOutput
from crewai.utilities.reasoning_handler import (
AgentReasoning,
AgentReasoningOutput,
)
reasoning_handler = AgentReasoning(task=task, agent=self)
reasoning_output: AgentReasoningOutput = reasoning_handler.handle_agent_reasoning()
reasoning_output: AgentReasoningOutput = (
reasoning_handler.handle_agent_reasoning()
)
# Add the reasoning plan to the task description
task.description += f"\n\nReasoning Plan:\n{reasoning_output.plan.plan}"
except Exception as e:
if hasattr(self, '_logger'):
self._logger.log("error", f"Error during reasoning process: {str(e)}")
if hasattr(self, "_logger"):
self._logger.log(
"error", f"Error during reasoning process: {str(e)}"
)
else:
print(f"Error during reasoning process: {str(e)}")
self._inject_date_to_task(task)
if self.tools_handler:
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
@@ -622,22 +637,33 @@ class Agent(BaseAgent):
"""Inject the current date into the task description if inject_date is enabled."""
if self.inject_date:
from datetime import datetime
try:
valid_format_codes = ['%Y', '%m', '%d', '%H', '%M', '%S', '%B', '%b', '%A', '%a']
valid_format_codes = [
"%Y",
"%m",
"%d",
"%H",
"%M",
"%S",
"%B",
"%b",
"%A",
"%a",
]
is_valid = any(code in self.date_format for code in valid_format_codes)
if not is_valid:
raise ValueError(f"Invalid date format: {self.date_format}")
current_date: str = datetime.now().strftime(self.date_format)
task.description += f"\n\nCurrent Date: {current_date}"
except Exception as e:
if hasattr(self, '_logger'):
if hasattr(self, "_logger"):
self._logger.log("warning", f"Failed to inject date: {str(e)}")
else:
print(f"Warning: Failed to inject date: {str(e)}")
def _validate_docker_installation(self) -> None:
"""Check if Docker is installed and running."""
if not shutil.which("docker"):
@@ -761,6 +787,8 @@ class Agent(BaseAgent):
response_format=response_format,
i18n=self.i18n,
original_agent=self,
guardrail=self.guardrail,
guardrail_max_retries=self.guardrail_max_retries,
)
return lite_agent.kickoff(messages)

View File

@@ -7,6 +7,7 @@ from crewai.utilities import I18N
from crewai.utilities.converter import ConverterError
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.printer import Printer
from crewai.utilities.events.event_listener import event_listener
if TYPE_CHECKING:
from crewai.agents.agent_builder.base_agent import BaseAgent
@@ -125,33 +126,38 @@ class CrewAgentExecutorMixin:
def _ask_human_input(self, final_answer: str) -> str:
"""Prompt human input with mode-appropriate messaging."""
self._printer.print(
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
)
# Training mode prompt (single iteration)
if self.crew and getattr(self.crew, "_train", False):
prompt = (
"\n\n=====\n"
"## TRAINING MODE: Provide feedback to improve the agent's performance.\n"
"This will be used to train better versions of the agent.\n"
"Please provide detailed feedback about the result quality and reasoning process.\n"
"=====\n"
)
# Regular human-in-the-loop prompt (multiple iterations)
else:
prompt = (
"\n\n=====\n"
"## HUMAN FEEDBACK: Provide feedback on the Final Result and Agent's actions.\n"
"Please follow these guidelines:\n"
" - If you are happy with the result, simply hit Enter without typing anything.\n"
" - Otherwise, provide specific improvement requests.\n"
" - You can provide multiple rounds of feedback until satisfied.\n"
"=====\n"
event_listener.formatter.pause_live_updates()
try:
self._printer.print(
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
)
self._printer.print(content=prompt, color="bold_yellow")
response = input()
if response.strip() != "":
self._printer.print(content="\nProcessing your feedback...", color="cyan")
return response
# Training mode prompt (single iteration)
if self.crew and getattr(self.crew, "_train", False):
prompt = (
"\n\n=====\n"
"## TRAINING MODE: Provide feedback to improve the agent's performance.\n"
"This will be used to train better versions of the agent.\n"
"Please provide detailed feedback about the result quality and reasoning process.\n"
"=====\n"
)
# Regular human-in-the-loop prompt (multiple iterations)
else:
prompt = (
"\n\n=====\n"
"## HUMAN FEEDBACK: Provide feedback on the Final Result and Agent's actions.\n"
"Please follow these guidelines:\n"
" - If you are happy with the result, simply hit Enter without typing anything.\n"
" - Otherwise, provide specific improvement requests.\n"
" - You can provide multiple rounds of feedback until satisfied.\n"
"=====\n"
)
self._printer.print(content=prompt, color="bold_yellow")
response = input()
if response.strip() != "":
self._printer.print(content="\nProcessing your feedback...", color="cyan")
return response
finally:
event_listener.formatter.resume_live_updates()

View File

@@ -16,6 +16,7 @@ from .deploy.main import DeployCommand
from .evaluate_crew import evaluate_crew
from .install_crew import install_crew
from .kickoff_flow import kickoff_flow
from .organization.main import OrganizationCommand
from .plot_flow import plot_flow
from .replay_from_task import replay_task_command
from .reset_memories_command import reset_memories_command
@@ -353,5 +354,33 @@ def chat():
run_chat()
@crewai.group(invoke_without_command=True)
def org():
"""Organization management commands."""
pass
@org.command()
def list():
"""List available organizations."""
org_command = OrganizationCommand()
org_command.list()
@org.command()
@click.argument("id")
def switch(id):
"""Switch to a specific organization."""
org_command = OrganizationCommand()
org_command.switch(id)
@org.command()
def current():
"""Show current organization when 'crewai org' is called without subcommands."""
org_command = OrganizationCommand()
org_command.current()
if __name__ == "__main__":
crewai()

View File

@@ -14,6 +14,12 @@ class Settings(BaseModel):
tool_repository_password: Optional[str] = Field(
None, description="Password for interacting with the Tool Repository"
)
org_name: Optional[str] = Field(
None, description="Name of the currently active organization"
)
org_uuid: Optional[str] = Field(
None, description="UUID of the currently active organization"
)
config_path: Path = Field(default=DEFAULT_CONFIG_PATH, exclude=True)
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):

View File

@@ -0,0 +1 @@

View File

@@ -0,0 +1,76 @@
from rich.console import Console
from rich.table import Table
from requests import HTTPError
from crewai.cli.command import BaseCommand, PlusAPIMixin
from crewai.cli.config import Settings
console = Console()
class OrganizationCommand(BaseCommand, PlusAPIMixin):
def __init__(self):
BaseCommand.__init__(self)
PlusAPIMixin.__init__(self, telemetry=self._telemetry)
def list(self):
try:
response = self.plus_api_client.get_organizations()
response.raise_for_status()
orgs = response.json()
if not orgs:
console.print("You don't belong to any organizations yet.", style="yellow")
return
table = Table(title="Your Organizations")
table.add_column("Name", style="cyan")
table.add_column("ID", style="green")
for org in orgs:
table.add_row(org["name"], org["uuid"])
console.print(table)
except HTTPError as e:
if e.response.status_code == 401:
console.print("You are not logged in to any organization. Use 'crewai login' to login.", style="bold red")
return
console.print(f"Failed to retrieve organization list: {str(e)}", style="bold red")
raise SystemExit(1)
except Exception as e:
console.print(f"Failed to retrieve organization list: {str(e)}", style="bold red")
raise SystemExit(1)
def switch(self, org_id):
try:
response = self.plus_api_client.get_organizations()
response.raise_for_status()
orgs = response.json()
org = next((o for o in orgs if o["uuid"] == org_id), None)
if not org:
console.print(f"Organization with id '{org_id}' not found.", style="bold red")
return
settings = Settings()
settings.org_name = org["name"]
settings.org_uuid = org["uuid"]
settings.dump()
console.print(f"Successfully switched to {org['name']} ({org['uuid']})", style="bold green")
except HTTPError as e:
if e.response.status_code == 401:
console.print("You are not logged in to any organization. Use 'crewai login' to login.", style="bold red")
return
console.print(f"Failed to retrieve organization list: {str(e)}", style="bold red")
raise SystemExit(1)
except Exception as e:
console.print(f"Failed to switch organization: {str(e)}", style="bold red")
raise SystemExit(1)
def current(self):
settings = Settings()
if settings.org_uuid:
console.print(f"Currently logged in to organization {settings.org_name} ({settings.org_uuid})", style="bold green")
else:
console.print("You're not currently logged in to any organization.", style="yellow")
console.print("Use 'crewai org list' to see available organizations.", style="yellow")
console.print("Use 'crewai org switch <id>' to switch to an organization.", style="yellow")

View File

@@ -1,9 +1,10 @@
from os import getenv
from typing import Optional
from typing import List, Optional
from urllib.parse import urljoin
import requests
from crewai.cli.config import Settings
from crewai.cli.version import get_crewai_version
@@ -13,6 +14,7 @@ class PlusAPI:
"""
TOOLS_RESOURCE = "/crewai_plus/api/v1/tools"
ORGANIZATIONS_RESOURCE = "/crewai_plus/api/v1/me/organizations"
CREWS_RESOURCE = "/crewai_plus/api/v1/crews"
AGENTS_RESOURCE = "/crewai_plus/api/v1/agents"
@@ -24,6 +26,9 @@ class PlusAPI:
"User-Agent": f"CrewAI-CLI/{get_crewai_version()}",
"X-Crewai-Version": get_crewai_version(),
}
settings = Settings()
if settings.org_uuid:
self.headers["X-Crewai-Organization-Id"] = settings.org_uuid
self.base_url = getenv("CREWAI_BASE_URL", "https://app.crewai.com")
def _make_request(self, method: str, endpoint: str, **kwargs) -> requests.Response:
@@ -48,6 +53,7 @@ class PlusAPI:
version: str,
description: Optional[str],
encoded_file: str,
available_exports: Optional[List[str]] = None,
):
params = {
"handle": handle,
@@ -55,6 +61,7 @@ class PlusAPI:
"version": version,
"file": encoded_file,
"description": description,
"available_exports": available_exports,
}
return self._make_request("POST", f"{self.TOOLS_RESOURCE}", json=params)
@@ -101,3 +108,7 @@ class PlusAPI:
def create_crew(self, payload) -> requests.Response:
return self._make_request("POST", self.CREWS_RESOURCE, json=payload)
def get_organizations(self) -> requests.Response:
return self._make_request("GET", self.ORGANIZATIONS_RESOURCE)

View File

@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
## Installation
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <3.14 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install uv:

View File

@@ -3,9 +3,9 @@ name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.121.1,<1.0.0"
"crewai[tools]>=0.130.0,<1.0.0"
]
[project.scripts]

View File

@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
## Installation
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <3.14 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install uv:

View File

@@ -3,9 +3,9 @@ name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.121.1,<1.0.0",
"crewai[tools]>=0.130.0,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ custom tools to power up your crews.
## Installing
Ensure you have Python >=3.10 <3.13 installed on your system. This project
Ensure you have Python >=3.10 <3.14 installed on your system. This project
uses [UV](https://docs.astral.sh/uv/) for dependency management and package
handling, offering a seamless setup and execution experience.

View File

@@ -3,9 +3,9 @@ name = "{{folder_name}}"
version = "0.1.0"
description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.13"
requires-python = ">=3.10,<3.14"
dependencies = [
"crewai[tools]>=0.121.1"
"crewai[tools]>=0.130.0"
]
[tool.crewai]

View File

@@ -0,0 +1,3 @@
from .tool import {{class_name}}
__all__ = ["{{class_name}}"]

View File

@@ -3,6 +3,7 @@ import os
import subprocess
import tempfile
from pathlib import Path
from typing import Any
import click
from rich.console import Console
@@ -11,6 +12,7 @@ from crewai.cli import git
from crewai.cli.command import BaseCommand, PlusAPIMixin
from crewai.cli.config import Settings
from crewai.cli.utils import (
extract_available_exports,
get_project_description,
get_project_name,
get_project_version,
@@ -82,6 +84,15 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
project_description = get_project_description(require=False)
encoded_tarball = None
console.print("[bold blue]Discovering tools from your project...[/bold blue]")
available_exports = extract_available_exports()
if available_exports:
console.print(
f"[green]Found these tools to publish: {', '.join([e['name'] for e in available_exports])}[/green]"
)
self._print_current_organization()
with tempfile.TemporaryDirectory() as temp_build_dir:
subprocess.run(
["uv", "build", "--sdist", "--out-dir", temp_build_dir],
@@ -105,12 +116,14 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
encoded_tarball = base64.b64encode(tarball_contents).decode("utf-8")
console.print("[bold blue]Publishing tool to repository...[/bold blue]")
publish_response = self.plus_api_client.publish_tool(
handle=project_name,
is_public=is_public,
version=project_version,
description=project_description,
encoded_file=f"data:application/x-gzip;base64,{encoded_tarball}",
available_exports=available_exports,
)
self._validate_response(publish_response)
@@ -124,6 +137,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
)
def install(self, handle: str):
self._print_current_organization()
get_response = self.plus_api_client.get_tool(handle)
if get_response.status_code == 404:
@@ -161,13 +175,20 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
settings.tool_repository_password = login_response_json["credential"][
"password"
]
settings.org_uuid = login_response_json["current_organization"][
"uuid"
]
settings.org_name = login_response_json["current_organization"][
"name"
]
settings.dump()
console.print(
"Successfully authenticated to the tool repository.", style="bold green"
f"Successfully authenticated to the tool repository as {settings.org_name} ({settings.org_uuid}).", style="bold green"
)
def _add_package(self, tool_details):
def _add_package(self, tool_details: dict[str, Any]):
is_from_pypi = tool_details.get("source", None) == "pypi"
tool_handle = tool_details["handle"]
repository_handle = tool_details["repository"]["handle"]
repository_url = tool_details["repository"]["url"]
@@ -176,10 +197,13 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
add_package_command = [
"uv",
"add",
"--index",
index,
tool_handle,
]
if is_from_pypi:
add_package_command.append(tool_handle)
else:
add_package_command.extend(["--index", index, tool_handle])
add_package_result = subprocess.run(
add_package_command,
capture_output=False,
@@ -218,3 +242,10 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
)
return env
def _print_current_organization(self):
settings = Settings()
if settings.org_uuid:
console.print(f"Current organization: {settings.org_name} ({settings.org_uuid})", style="bold blue")
else:
console.print("No organization currently set. We recommend setting one before using: `crewai org switch <org_id>` command.", style="yellow")

View File

@@ -1,8 +1,10 @@
import importlib.util
import os
import shutil
import sys
from functools import reduce
from inspect import isfunction, ismethod
from inspect import getmro, isclass, isfunction, ismethod
from pathlib import Path
from typing import Any, Dict, List, get_type_hints
import click
@@ -339,3 +341,112 @@ def fetch_crews(module_attr) -> list[Crew]:
if crew_instance := get_crew_instance(attr):
crew_instances.append(crew_instance)
return crew_instances
def is_valid_tool(obj):
from crewai.tools.base_tool import Tool
if isclass(obj):
try:
return any(base.__name__ == "BaseTool" for base in getmro(obj))
except (TypeError, AttributeError):
return False
return isinstance(obj, Tool)
def extract_available_exports(dir_path: str = "src"):
"""
Extract available tool classes from the project's __init__.py files.
Only includes classes that inherit from BaseTool or functions decorated with @tool.
Returns:
list: A list of valid tool class names or ["BaseTool"] if none found
"""
try:
init_files = Path(dir_path).glob("**/__init__.py")
available_exports = []
for init_file in init_files:
tools = _load_tools_from_init(init_file)
available_exports.extend(tools)
if not available_exports:
_print_no_tools_warning()
raise SystemExit(1)
return available_exports
except Exception as e:
console.print(f"[red]Error: Could not extract tool classes: {str(e)}[/red]")
console.print(
"Please ensure your project contains valid tools (classes inheriting from BaseTool or functions with @tool decorator)."
)
raise SystemExit(1)
def _load_tools_from_init(init_file: Path) -> list[dict[str, Any]]:
"""
Load and validate tools from a given __init__.py file.
"""
spec = importlib.util.spec_from_file_location("temp_module", init_file)
if not spec or not spec.loader:
return []
module = importlib.util.module_from_spec(spec)
sys.modules["temp_module"] = module
try:
spec.loader.exec_module(module)
if not hasattr(module, "__all__"):
console.print(
f"[bold yellow]Warning: No __all__ defined in {init_file}[/bold yellow]"
)
raise SystemExit(1)
return [
{
"name": name,
}
for name in module.__all__
if hasattr(module, name) and is_valid_tool(getattr(module, name))
]
except Exception as e:
console.print(f"[red]Warning: Could not load {init_file}: {str(e)}[/red]")
raise SystemExit(1)
finally:
sys.modules.pop("temp_module", None)
def _print_no_tools_warning():
"""
Display warning and usage instructions if no tools were found.
"""
console.print(
"\n[bold yellow]Warning: No valid tools were exposed in your __init__.py file![/bold yellow]"
)
console.print(
"Your __init__.py file must contain all classes that inherit from [bold]BaseTool[/bold] "
"or functions decorated with [bold]@tool[/bold]."
)
console.print(
"\nExample:\n[dim]# In your __init__.py file[/dim]\n"
"[green]__all__ = ['YourTool', 'your_tool_function'][/green]\n\n"
"[dim]# In your tool.py file[/dim]\n"
"[green]from crewai.tools import BaseTool, tool\n\n"
"# Tool class example\n"
"class YourTool(BaseTool):\n"
' name = "your_tool"\n'
' description = "Your tool description"\n'
" # ... rest of implementation\n\n"
"# Decorated function example\n"
"@tool\n"
"def your_tool_function(text: str) -> str:\n"
' """Your tool description"""\n'
" # ... implementation\n"
" return result\n"
)

View File

@@ -655,8 +655,6 @@ class Crew(FlowTrackable, BaseModel):
if self.planning:
self._handle_crew_planning()
metrics: List[UsageMetrics] = []
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
@@ -669,11 +667,8 @@ class Crew(FlowTrackable, BaseModel):
for after_callback in self.after_kickoff_callbacks:
result = after_callback(result)
metrics += [agent._token_process.get_summary() for agent in self.agents]
self.usage_metrics = self.calculate_usage_metrics()
self.usage_metrics = UsageMetrics()
for metric in metrics:
self.usage_metrics.add_usage_metrics(metric)
return result
except Exception as e:
crewai_event_bus.emit(

View File

@@ -17,7 +17,7 @@ Example
import ast
import inspect
from typing import Any, Dict, List, Optional, Tuple, Union
from typing import Any, Dict, List, Tuple, Union
from .utils import (
build_ancestor_dict,
@@ -140,7 +140,7 @@ def compute_positions(
flow: Any,
node_levels: Dict[str, int],
y_spacing: float = 150,
x_spacing: float = 150
x_spacing: float = 300
) -> Dict[str, Tuple[float, float]]:
"""
Compute the (x, y) positions for each node in the flow graph.
@@ -154,7 +154,7 @@ def compute_positions(
y_spacing : float, optional
Vertical spacing between levels, by default 150.
x_spacing : float, optional
Horizontal spacing between nodes, by default 150.
Horizontal spacing between nodes, by default 300.
Returns
-------

View File

@@ -1,93 +0,0 @@
from pathlib import Path
from typing import List, Optional, Union
import numpy as np
from .base_embedder import BaseEmbedder
try:
from fastembed_gpu import TextEmbedding # type: ignore
FASTEMBED_AVAILABLE = True
except ImportError:
try:
from fastembed import TextEmbedding
FASTEMBED_AVAILABLE = True
except ImportError:
FASTEMBED_AVAILABLE = False
class FastEmbed(BaseEmbedder):
"""
A wrapper class for text embedding models using FastEmbed
"""
def __init__(
self,
model_name: str = "BAAI/bge-small-en-v1.5",
cache_dir: Optional[Union[str, Path]] = None,
):
"""
Initialize the embedding model
Args:
model_name: Name of the model to use
cache_dir: Directory to cache the model
gpu: Whether to use GPU acceleration
"""
if not FASTEMBED_AVAILABLE:
raise ImportError(
"FastEmbed is not installed. Please install it with: "
"uv pip install fastembed or uv pip install fastembed-gpu for GPU support"
)
self.model = TextEmbedding(
model_name=model_name,
cache_dir=str(cache_dir) if cache_dir else None,
)
def embed_chunks(self, chunks: List[str]) -> List[np.ndarray]:
"""
Generate embeddings for a list of text chunks
Args:
chunks: List of text chunks to embed
Returns:
List of embeddings
"""
embeddings = list(self.model.embed(chunks))
return embeddings
def embed_texts(self, texts: List[str]) -> List[np.ndarray]:
"""
Generate embeddings for a list of texts
Args:
texts: List of texts to embed
Returns:
List of embeddings
"""
embeddings = list(self.model.embed(texts))
return embeddings
def embed_text(self, text: str) -> np.ndarray:
"""
Generate embedding for a single text
Args:
text: Text to embed
Returns:
Embedding array
"""
return self.embed_texts([text])[0]
@property
def dimension(self) -> int:
"""Get the dimension of the embeddings"""
# Generate a test embedding to get dimensions
test_embed = self.embed_text("test")
return len(test_embed)

View File

@@ -1,9 +1,14 @@
import asyncio
import inspect
import uuid
from datetime import datetime
from typing import Any, Callable, Dict, List, Optional, Type, Union, cast
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union, cast, get_args, get_origin
from pydantic import BaseModel, Field, InstanceOf, PrivateAttr, model_validator
try:
from typing import Self
except ImportError:
from typing_extensions import Self
from pydantic import BaseModel, Field, InstanceOf, PrivateAttr, model_validator, field_validator
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
@@ -18,6 +23,7 @@ from crewai.llm import LLM
from crewai.tools.base_tool import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from crewai.utilities import I18N
from crewai.utilities.guardrail import process_guardrail
from crewai.utilities.agent_utils import (
enforce_rpm_limit,
format_message_for_llm,
@@ -35,7 +41,7 @@ from crewai.utilities.agent_utils import (
render_text_description_and_args,
show_agent_logs,
)
from crewai.utilities.converter import convert_to_model, generate_model_description
from crewai.utilities.converter import generate_model_description
from crewai.utilities.events.agent_events import (
LiteAgentExecutionCompletedEvent,
LiteAgentExecutionErrorEvent,
@@ -146,6 +152,15 @@ class LiteAgent(FlowTrackable, BaseModel):
default=[], description="Callbacks to be used for the agent"
)
# Guardrail Properties
guardrail: Optional[Union[Callable[[LiteAgentOutput], Tuple[bool, Any]], str]] = Field(
default=None,
description="Function or string description of a guardrail to validate agent output"
)
guardrail_max_retries: int = Field(
default=3, description="Maximum number of retries when guardrail fails"
)
# State and Results
tools_results: List[Dict[str, Any]] = Field(
default=[], description="Results of the tools used by the agent."
@@ -163,6 +178,9 @@ class LiteAgent(FlowTrackable, BaseModel):
_messages: List[Dict[str, str]] = PrivateAttr(default_factory=list)
_iterations: int = PrivateAttr(default=0)
_printer: Printer = PrivateAttr(default_factory=Printer)
_guardrail: Optional[Callable] = PrivateAttr(default=None)
_guardrail_retry_count: int = PrivateAttr(default=0)
@model_validator(mode="after")
def setup_llm(self):
@@ -184,6 +202,60 @@ class LiteAgent(FlowTrackable, BaseModel):
return self
@model_validator(mode="after")
def ensure_guardrail_is_callable(self) -> Self:
if callable(self.guardrail):
self._guardrail = self.guardrail
elif isinstance(self.guardrail, str):
from crewai.tasks.llm_guardrail import LLMGuardrail
assert isinstance(self.llm, LLM)
self._guardrail = LLMGuardrail(
description=self.guardrail, llm=self.llm
)
return self
@field_validator("guardrail", mode="before")
@classmethod
def validate_guardrail_function(cls, v: Optional[Union[Callable, str]]) -> Optional[Union[Callable, str]]:
"""Validate that the guardrail function has the correct signature.
If v is a callable, validate that it has the correct signature.
If v is a string, return it as is.
Args:
v: The guardrail function to validate or a string describing the guardrail task
Returns:
The validated guardrail function or a string describing the guardrail task
"""
if v is None or isinstance(v, str):
return v
# Check function signature
sig = inspect.signature(v)
if len(sig.parameters) != 1:
raise ValueError(
f"Guardrail function must accept exactly 1 parameter (LiteAgentOutput), "
f"but it accepts {len(sig.parameters)}"
)
# Check return annotation if present
if sig.return_annotation is not sig.empty:
if sig.return_annotation == Tuple[bool, Any]:
return v
origin = get_origin(sig.return_annotation)
args = get_args(sig.return_annotation)
if origin is not tuple or len(args) != 2 or args[0] is not bool:
raise ValueError(
"If return type is annotated, it must be Tuple[bool, Any]"
)
return v
@property
def key(self) -> str:
"""Get the unique key for this agent instance."""
@@ -223,54 +295,7 @@ class LiteAgent(FlowTrackable, BaseModel):
# Format messages for the LLM
self._messages = self._format_messages(messages)
# Emit event for agent execution start
crewai_event_bus.emit(
self,
event=LiteAgentExecutionStartedEvent(
agent_info=agent_info,
tools=self._parsed_tools,
messages=messages,
),
)
# Execute the agent using invoke loop
agent_finish = self._invoke_loop()
formatted_result: Optional[BaseModel] = None
if self.response_format:
try:
# Cast to BaseModel to ensure type safety
result = self.response_format.model_validate_json(
agent_finish.output
)
if isinstance(result, BaseModel):
formatted_result = result
except Exception as e:
self._printer.print(
content=f"Failed to parse output into response format: {str(e)}",
color="yellow",
)
# Calculate token usage metrics
usage_metrics = self._token_process.get_summary()
# Create output
output = LiteAgentOutput(
raw=agent_finish.output,
pydantic=formatted_result,
agent_role=self.role,
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
)
# Emit completion event
crewai_event_bus.emit(
self,
event=LiteAgentExecutionCompletedEvent(
agent_info=agent_info,
output=agent_finish.output,
),
)
return output
return self._execute_core(agent_info=agent_info)
except Exception as e:
self._printer.print(
@@ -288,6 +313,94 @@ class LiteAgent(FlowTrackable, BaseModel):
)
raise e
def _execute_core(self, agent_info: Dict[str, Any]) -> LiteAgentOutput:
# Emit event for agent execution start
crewai_event_bus.emit(
self,
event=LiteAgentExecutionStartedEvent(
agent_info=agent_info,
tools=self._parsed_tools,
messages=self._messages,
),
)
# Execute the agent using invoke loop
agent_finish = self._invoke_loop()
formatted_result: Optional[BaseModel] = None
if self.response_format:
try:
# Cast to BaseModel to ensure type safety
result = self.response_format.model_validate_json(
agent_finish.output
)
if isinstance(result, BaseModel):
formatted_result = result
except Exception as e:
self._printer.print(
content=f"Failed to parse output into response format: {str(e)}",
color="yellow",
)
# Calculate token usage metrics
usage_metrics = self._token_process.get_summary()
# Create output
output = LiteAgentOutput(
raw=agent_finish.output,
pydantic=formatted_result,
agent_role=self.role,
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
)
# Process guardrail if set
if self._guardrail is not None:
guardrail_result = process_guardrail(
output=output,
guardrail=self._guardrail,
retry_count=self._guardrail_retry_count
)
if not guardrail_result.success:
if self._guardrail_retry_count >= self.guardrail_max_retries:
raise Exception(
f"Agent's guardrail failed validation after {self.guardrail_max_retries} retries. "
f"Last error: {guardrail_result.error}"
)
self._guardrail_retry_count += 1
if self.verbose:
self._printer.print(
f"Guardrail failed. Retrying ({self._guardrail_retry_count}/{self.guardrail_max_retries})..."
f"\n{guardrail_result.error}"
)
self._messages.append({
"role": "user",
"content": guardrail_result.error or "Guardrail validation failed"
})
return self._execute_core(agent_info=agent_info)
# Apply guardrail result if available
if guardrail_result.result is not None:
if isinstance(guardrail_result.result, str):
output.raw = guardrail_result.result
elif isinstance(guardrail_result.result, BaseModel):
output.pydantic = guardrail_result.result
usage_metrics = self._token_process.get_summary()
output.usage_metrics = usage_metrics.model_dump() if usage_metrics else None
# Emit completion event
crewai_event_bus.emit(
self,
event=LiteAgentExecutionCompletedEvent(
agent_info=agent_info,
output=agent_finish.output,
),
)
return output
async def kickoff_async(
self, messages: Union[str, List[Dict[str, str]]]
) -> LiteAgentOutput:

View File

@@ -35,12 +35,12 @@ from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.security import Fingerprint, SecurityConfig
from crewai.tasks.guardrail_result import GuardrailResult
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.tools.base_tool import BaseTool
from crewai.utilities.config import process_config
from crewai.utilities.constants import NOT_SPECIFIED
from crewai.utilities.guardrail import process_guardrail, GuardrailResult
from crewai.utilities.converter import Converter, convert_to_model
from crewai.utilities.events import (
TaskCompletedEvent,
@@ -431,7 +431,11 @@ class Task(BaseModel):
)
if self._guardrail:
guardrail_result = self._process_guardrail(task_output)
guardrail_result = process_guardrail(
output=task_output,
guardrail=self._guardrail,
retry_count=self.retry_count
)
if not guardrail_result.success:
if self.retry_count >= self.max_retries:
raise Exception(
@@ -527,10 +531,10 @@ class Task(BaseModel):
def prompt(self) -> str:
"""Generates the task prompt with optional markdown formatting.
When the markdown attribute is True, instructions for formatting the
response in Markdown syntax will be added to the prompt.
Returns:
str: The formatted prompt string containing the task description,
expected output, and optional markdown formatting instructions.
@@ -541,7 +545,7 @@ class Task(BaseModel):
expected_output=self.expected_output
)
tasks_slices = [self.description, output]
if self.markdown:
markdown_instruction = """Your final answer MUST be formatted in Markdown syntax.
Follow these guidelines:

View File

@@ -8,7 +8,7 @@ import platform
import warnings
from contextlib import contextmanager
from importlib.metadata import version
from typing import TYPE_CHECKING, Any, Optional
from typing import TYPE_CHECKING, Any, Callable, Optional
import threading
from opentelemetry import trace
@@ -73,11 +73,16 @@ class Telemetry:
with cls._lock:
if cls._instance is None:
cls._instance = super(Telemetry, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self) -> None:
if hasattr(self, '_initialized') and self._initialized:
return
self.ready: bool = False
self.trace_set: bool = False
self._initialized: bool = True
if self._is_telemetry_disabled():
return
@@ -113,6 +118,10 @@ class Telemetry:
or os.getenv("CREWAI_DISABLE_TELEMETRY", "false").lower() == "true"
)
def _should_execute_telemetry(self) -> bool:
"""Check if telemetry operations should be executed."""
return self.ready and not self._is_telemetry_disabled()
def set_tracer(self):
if self.ready and not self.trace_set:
try:
@@ -123,8 +132,9 @@ class Telemetry:
self.ready = False
self.trace_set = False
def _safe_telemetry_operation(self, operation):
if not self.ready:
def _safe_telemetry_operation(self, operation: Callable[[], None]) -> None:
"""Execute telemetry operation safely, checking both readiness and environment variables."""
if not self._should_execute_telemetry():
return
try:
operation()
@@ -423,7 +433,8 @@ class Telemetry:
return span
return self._safe_telemetry_operation(operation)
self._safe_telemetry_operation(operation)
return None
def task_ended(self, span: Span, task: Task, crew: Crew):
"""Records the completion of a task execution in a crew.
@@ -773,7 +784,8 @@ class Telemetry:
return span
if crew.share_crew:
return self._safe_telemetry_operation(operation)
self._safe_telemetry_operation(operation)
return operation()
return None
def end_crew(self, crew, final_string_output):

View File

@@ -1 +1,7 @@
from .base_tool import BaseTool, tool
from .base_tool import BaseTool, tool, EnvVar
__all__ = [
"BaseTool",
"tool",
"EnvVar",
]

View File

@@ -1,7 +1,7 @@
import asyncio
from abc import ABC, abstractmethod
from inspect import signature
from typing import Any, Callable, Type, get_args, get_origin
from typing import Any, Callable, Type, get_args, get_origin, Optional, List
from pydantic import (
BaseModel,
@@ -14,6 +14,11 @@ from pydantic import BaseModel as PydanticBaseModel
from crewai.tools.structured_tool import CrewStructuredTool
class EnvVar(BaseModel):
name: str
description: str
required: bool = True
default: Optional[str] = None
class BaseTool(BaseModel, ABC):
class _ArgsSchemaPlaceholder(PydanticBaseModel):
@@ -25,6 +30,8 @@ class BaseTool(BaseModel, ABC):
"""The unique name of the tool that clearly communicates its purpose."""
description: str
"""Used to tell the model how/when/why to use the tool."""
env_vars: List[EnvVar] = []
"""List of environment variables used by the tool."""
args_schema: Type[PydanticBaseModel] = Field(
default_factory=_ArgsSchemaPlaceholder, validate_default=True
)
@@ -57,7 +64,7 @@ class BaseTool(BaseModel, ABC):
},
},
)
@field_validator("max_usage_count", mode="before")
@classmethod
def validate_max_usage_count(cls, v: int | None) -> int | None:
@@ -81,11 +88,11 @@ class BaseTool(BaseModel, ABC):
# If _run is async, we safely run it
if asyncio.iscoroutine(result):
result = asyncio.run(result)
self.current_usage_count += 1
return result
def reset_usage_count(self) -> None:
"""Reset the current usage count to zero."""
self.current_usage_count = 0
@@ -272,7 +279,7 @@ def to_langchain(
def tool(*args, result_as_answer: bool = False, max_usage_count: int | None = None) -> Callable:
"""
Decorator to create a tool from a function.
Args:
*args: Positional arguments, either the function to decorate or the tool name.
result_as_answer: Flag to indicate if the tool result should be used as the final agent answer.

View File

@@ -1,5 +1,7 @@
from __future__ import annotations
import asyncio
import inspect
import textwrap
from typing import Any, Callable, Optional, Union, get_type_hints
@@ -239,7 +241,17 @@ class CrewStructuredTool:
) -> Any:
"""Main method for tool execution."""
parsed_args = self._parse_args(input)
return self.func(**parsed_args, **kwargs)
if inspect.iscoroutinefunction(self.func):
result = asyncio.run(self.func(**parsed_args, **kwargs))
return result
result = self.func(**parsed_args, **kwargs)
if asyncio.iscoroutine(result):
return asyncio.run(result)
return result
@property
def args(self) -> dict:

View File

@@ -20,7 +20,10 @@ from crewai.utilities.errors import AgentRepositoryError
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
from rich.console import Console
from crewai.cli.config import Settings
console = Console()
def parse_tools(tools: List[BaseTool]) -> List[CrewStructuredTool]:
"""Parse tools to be used for the task."""
@@ -215,9 +218,6 @@ def handle_agent_action_core(
if show_logs:
show_logs(formatted_answer)
if messages is not None:
messages.append({"role": "assistant", "content": tool_result.result})
return formatted_answer
@@ -438,6 +438,13 @@ def show_agent_logs(
)
def _print_current_organization():
settings = Settings()
if settings.org_uuid:
console.print(f"Fetching agent from organization: {settings.org_name} ({settings.org_uuid})", style="bold blue")
else:
console.print("No organization currently set. We recommend setting one before using: `crewai org switch <org_id>` command.", style="yellow")
def load_agent_from_repository(from_repository: str) -> Dict[str, Any]:
attributes: Dict[str, Any] = {}
if from_repository:
@@ -447,15 +454,18 @@ def load_agent_from_repository(from_repository: str) -> Dict[str, Any]:
from crewai.cli.plus_api import PlusAPI
client = PlusAPI(api_key=get_auth_token())
_print_current_organization()
response = client.get_agent(from_repository)
if response.status_code == 404:
raise AgentRepositoryError(
f"Agent {from_repository} does not exist, make sure the name is correct or the agent is available on your organization"
f"Agent {from_repository} does not exist, make sure the name is correct or the agent is available on your organization."
f"\nIf you are using the wrong organization, switch to the correct one using `crewai org switch <org_id>` command.",
)
if response.status_code != 200:
raise AgentRepositoryError(
f"Agent {from_repository} could not be loaded: {response.text}"
f"\nIf you are using the wrong organization, switch to the correct one using `crewai org switch <org_id>` command.",
)
agent = response.json()
@@ -464,7 +474,7 @@ def load_agent_from_repository(from_repository: str) -> Dict[str, Any]:
attributes[key] = []
for tool in value:
try:
module = importlib.import_module("crewai_tools")
module = importlib.import_module(tool["module"])
tool_class = getattr(module, tool["name"])
attributes[key].append(tool_class())
except Exception as e:

View File

@@ -17,6 +17,7 @@ class ConsoleFormatter:
current_lite_agent_branch: Optional[Tree] = None
tool_usage_counts: Dict[str, int] = {}
current_reasoning_branch: Optional[Tree] = None # Track reasoning status
_live_paused: bool = False
current_llm_tool_tree: Optional[Tree] = None
def __init__(self, verbose: bool = False):
@@ -119,6 +120,19 @@ class ConsoleFormatter:
# Finally, pass through to the regular Console.print implementation
self.console.print(*args, **kwargs)
def pause_live_updates(self) -> None:
"""Pause Live session updates to allow for human input without interference."""
if not self._live_paused:
if self._live:
self._live.stop()
self._live = None
self._live_paused = True
def resume_live_updates(self) -> None:
"""Resume Live session updates after human input is complete."""
if self._live_paused:
self._live_paused = False
def print_panel(
self, content: Text, title: str, style: str = "blue", is_flow: bool = False
) -> None:

View File

@@ -1,15 +1,7 @@
"""
Module for handling task guardrail validation results.
This module provides the GuardrailResult class which standardizes
the way task guardrails return their validation results.
"""
from typing import Any, Optional, Tuple, Union
from typing import Any, Callable, Optional, Tuple, Union
from pydantic import BaseModel, field_validator
class GuardrailResult(BaseModel):
"""Result from a task guardrail execution.
@@ -54,3 +46,48 @@ class GuardrailResult(BaseModel):
result=data if success else None,
error=data if not success else None
)
def process_guardrail(output: Any, guardrail: Callable, retry_count: int) -> GuardrailResult:
"""Process the guardrail for the agent output.
Args:
output: The output to validate with the guardrail
Returns:
GuardrailResult: The result of the guardrail validation
"""
from crewai.task import TaskOutput
from crewai.lite_agent import LiteAgentOutput
assert isinstance(output, TaskOutput) or isinstance(output, LiteAgentOutput), "Output must be a TaskOutput or LiteAgentOutput"
assert guardrail is not None
from crewai.utilities.events import (
LLMGuardrailCompletedEvent,
LLMGuardrailStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
crewai_event_bus.emit(
None,
LLMGuardrailStartedEvent(
guardrail=guardrail, retry_count=retry_count
),
)
result = guardrail(output)
guardrail_result = GuardrailResult.from_tuple(result)
crewai_event_bus.emit(
None,
LLMGuardrailCompletedEvent(
success=guardrail_result.success,
result=guardrail_result.result,
error=guardrail_result.error,
retry_count=retry_count,
),
)
return guardrail_result

View File

@@ -309,7 +309,9 @@ def test_cache_hitting():
def handle_tool_end(source, event):
received_events.append(event)
with (patch.object(CacheHandler, "read") as read,):
with (
patch.object(CacheHandler, "read") as read,
):
read.return_value = "0"
task = Task(
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
@@ -1628,13 +1630,13 @@ def test_agent_execute_task_with_ollama():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources():
# Create a knowledge source with some content
content = "Brandon's favorite color is red and he likes Mexican food."
string_source = StringKnowledgeSource(content=content)
with patch("crewai.knowledge") as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.search.return_value = [{"content": content}]
MockKnowledge.add_sources.return_value = [string_source]
agent = Agent(
role="Information Agent",
@@ -1644,7 +1646,6 @@ def test_agent_with_knowledge_sources():
knowledge_sources=[string_source],
)
# Create a task that requires the agent to use the knowledge
task = Task(
description="What is Brandon's favorite color?",
expected_output="Brandon's favorite color.",
@@ -1652,10 +1653,11 @@ def test_agent_with_knowledge_sources():
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
# Assert that the agent provides the correct information
assert "red" in result.raw.lower()
with patch.object(Knowledge, "add_sources") as mock_add_sources:
result = crew.kickoff()
assert mock_add_sources.called, "add_sources() should have been called"
mock_add_sources.assert_called_once()
assert "red" in result.raw.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -2036,7 +2038,7 @@ def mock_get_auth_token():
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
from crewai_tools import SerperDevTool
from crewai_tools import SerperDevTool, XMLSearchTool
mock_get_response = MagicMock()
mock_get_response.status_code = 200
@@ -2044,7 +2046,10 @@ def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"tools": [{"name": "SerperDevTool"}],
"tools": [
{"module": "crewai_tools", "name": "SerperDevTool"},
{"module": "crewai_tools", "name": "XMLSearchTool"},
],
}
mock_get_agent.return_value = mock_get_response
agent = Agent(from_repository="test_agent")
@@ -2052,8 +2057,9 @@ def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
assert agent.role == "test role"
assert agent.goal == "test goal"
assert agent.backstory == "test backstory"
assert len(agent.tools) == 1
assert len(agent.tools) == 2
assert isinstance(agent.tools[0], SerperDevTool)
assert isinstance(agent.tools[1], XMLSearchTool)
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
@@ -2066,7 +2072,7 @@ def test_agent_from_repository_override_attributes(mock_get_agent, mock_get_auth
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"tools": [{"name": "SerperDevTool"}],
"tools": [{"name": "SerperDevTool", "module": "crewai_tools"}],
}
mock_get_agent.return_value = mock_get_response
agent = Agent(from_repository="test_agent", role="Custom Role")
@@ -2086,7 +2092,7 @@ def test_agent_from_repository_with_invalid_tools(mock_get_agent, mock_get_auth_
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"tools": [{"name": "DoesNotExist"}],
"tools": [{"name": "DoesNotExist", "module": "crewai_tools",}],
}
mock_get_agent.return_value = mock_get_response
with pytest.raises(
@@ -2120,3 +2126,60 @@ def test_agent_from_repository_agent_not_found(mock_get_agent, mock_get_auth_tok
match="Agent test_agent does not exist, make sure the name is correct or the agent is available on your organization",
):
Agent(from_repository="test_agent")
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
@patch("crewai.utilities.agent_utils.Settings")
@patch("crewai.utilities.agent_utils.console")
def test_agent_from_repository_displays_org_info(mock_console, mock_settings, mock_get_agent, mock_get_auth_token):
mock_settings_instance = MagicMock()
mock_settings_instance.org_uuid = "test-org-uuid"
mock_settings_instance.org_name = "Test Organization"
mock_settings.return_value = mock_settings_instance
mock_get_response = MagicMock()
mock_get_response.status_code = 200
mock_get_response.json.return_value = {
"role": "test role",
"goal": "test goal",
"backstory": "test backstory",
"tools": []
}
mock_get_agent.return_value = mock_get_response
agent = Agent(from_repository="test_agent")
mock_console.print.assert_any_call(
"Fetching agent from organization: Test Organization (test-org-uuid)",
style="bold blue"
)
assert agent.role == "test role"
assert agent.goal == "test goal"
assert agent.backstory == "test backstory"
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
@patch("crewai.utilities.agent_utils.Settings")
@patch("crewai.utilities.agent_utils.console")
def test_agent_from_repository_without_org_set(mock_console, mock_settings, mock_get_agent, mock_get_auth_token):
mock_settings_instance = MagicMock()
mock_settings_instance.org_uuid = None
mock_settings_instance.org_name = None
mock_settings.return_value = mock_settings_instance
mock_get_response = MagicMock()
mock_get_response.status_code = 401
mock_get_response.text = "Unauthorized access"
mock_get_agent.return_value = mock_get_response
with pytest.raises(
AgentRepositoryError,
match="Agent test_agent could not be loaded: Unauthorized access"
):
Agent(from_repository="test_agent")
mock_console.print.assert_any_call(
"No organization currently set. We recommend setting one before using: `crewai org switch <org_id>` command.",
style="yellow"
)

View File

@@ -0,0 +1,137 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
are an expert at gathering and organizing information. You carefully collect
details and present them in a structured way.\nYour personal goal is: Gather
information about the best soccer players\n\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
in the world?"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '694'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//nFfNchtHDr7rKVBz0a6KVJGUZMm6SVrJcSw6Ktmb7NY6pQJ7wBlEPd1T
6B5S3JTP+yw55AVy9T7YFnr4Jy7pRLmwioP+wfcB+Br4eQ8g4zw7h8yUGE1V2+5l0dh/xOvXo5MT
ufDvJk//lNvJm+9HvR9+errPOrrDj34iExe7Do2vakuRvWvNRggj6an90+PXJ69OX50dJUPlc7K6
rahj99h3K3bcHfQGx93eabd/Nt9dejYUsnP41x4AwM/pV/10OT1l59DrLL5UFAIWlJ0vFwFk4q1+
yTAEDhFdzDoro/Eukkuufyx9U5TxHN6C81Mw6KDgCQFCof4DujAlAfjkbtihhYv0/xw+lgRjb62f
siuAAyCEKI2JjVAOfkIyYZqCH0MsCUwjQi5C9DX0exC8MSRQW5yRBGCXFk292BxGGPSA9IkFapKx
lwqdodABNCXThCpyUf+59ia0Friq0cT5PiiwIsCg139noh+RwKA3ODr/5D65/iEcHNyyd2RhSCHw
wQH85a2LJDBkrPivnxwAdOHg4M4H1ngeHJzDjZcpSr60XfnGRZmp6UIKcpEdLo0Xa27qilO4RGu9
g3z/OwHUg0IHqsZGri3B369vLuCqxKpm7wLcEhYNQeRoFbMlzJXj5TUQvaLpw5WvES6qL78IG0xs
DHqDAdy8vbmAHxKZV00NEzbRy+xQsQ8U+7uZZXQwHGFdf/lF0d+hcIAPyC5235BUyO7FLNyIxmgn
BRtOTdk5Eo38oNc/64BrKhLfBLhlxd5fon90fupg7AVKDhBqorwDufBoZNkVbQ4UHm03GC9KUy1+
SiEkuEcK91p0JXyDaNHlCneIzpQUNOJXHGcvhvpeTbPdUDFECnGe3hotITTlCqP6m7J+a+A7aaO6
jGCkMYwWtJp1w4bn+wGi0MhSV/nULYEweNfyOhioqhwlJo5T4GnCDv5GcCnNzNEfpmLI+ZjJ5iTb
2LgkW3BT7aTjHc0SogofSVIkNy5dq4Q7oYpJNktAg/w8EejJUK3+oYUJB/YuLapV7pS5EVuObc6f
KPQr4RAZnYd73ZN7BX9hu+8xBHlxAtx5iU2Bdifmk60Fj9Z2I1e0LGlNBNDEbUtBlWtHSszrxY9X
XNl1jnT7tSs0wzvwoUZ2LWtvI9qWhldKw3uaVSjwrRzO8X/DFu2L8V8K/pt3o3/3LFRjiyzJmfDI
1nagJCgxwNS7jWpvQ6hVkwPChONa5rdX7gdwOA97JKwgNMZQCB1gZ2yTSF2UgrI5V0hSgUwsnCoL
9/ogRLilKbrcT8NjegIuUQxZ7/BPpIPyvpOOe1I+KE+MPNOqeZp2Ehfqb1LJSxWPIbn9AHethKQE
mhd1byH0/Q7oOy48aqIeVhJO2M5Uby51l4Nh49iU+2HBEgUY0dgLQeUniSJdOked6DlLb2PziDD0
ufB//6PE3BNaGGIunP8ZfbgSj5F3P476ADwrlzbXNaTaUeg6tAp+zY/9sOW9FG6qumyzaFFh88sV
qfI71h4mLLqSdPPyTUoEvFYChr7EinL4gBZLZeCWJyS19y+vlOtiVsfflca5Li6v0Rqx9TyJKyUk
+buhjorz662DrljqxRtvc3Jw6X2cKxJsPTfx0O8pEd+z+/Kr4SbAt19+c+xlazp8lY+vSMf2YuEk
4CGibEg+FqlY1pVkqRU1T/y6WvxOqsxbogV+LaZuap3a5zMx8LGkQMsWtcQJablpM00u2hnkZDVc
lAM9RUEvOTuU2bOGddGOpupIjpfe5hC4cDxmgy4Cu7FtyBmCKcfyWSfsx/NGeaPQ21xmSQoY9teq
OzVDKI6SurDLecJ5gxbQGG8xp3C4PgYIjZuAOoq4xto1AzrnY9LZNID8OLd8Xo4c1he1+FHY2JqN
2XEoHyTRqONFiL7OkvXzHsCPabRpnk0rWS2+quND9I+UrusPBu152WqiWllPjxbWqBFfGc5Ojjtb
DnzIKSLbsDYdZQZNSflq62qUwiZnv2bYW4P9/+5sO7uFzq74I8evDEbbGcofaqGczXPIq2VCOnHu
WrakOTmcBR3BDD1EJtFQ5DTGxrZzYBZmIVL1MGZXkNTC7TA4rh9eDXBwhGd9Gmd7n/f+BwAA//8D
AMMI9CsaDwAA
headers:
CF-RAY:
- 94d9be627c40f260-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 10 Jun 2025 15:02:05 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=qYkxv9nLxeWAtPBvECxNw8fLnoBHLorJdRI8.xVEVEA-1749567725-1.0.1.1-75sp4gwHGJocK1MFkSgRcB4xJUiCwz31VRD4LAmQGEmfYB0BMQZ5sgWS8e_UMbjCaEhaPNO88q5XdbLOCWA85_rO0vYTb4hp6tmIiaerhsM;
path=/; expires=Tue, 10-Jun-25 15:32:05 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=HRKCwkyTqSXpCj9_i_T5lDtlr_INA290o0b3k.26oi8-1749567725794-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '42674'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '42684'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999859'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_d92e6f33fa5e0fbe43349afee8f55921
status:
code: 200
message: OK
version: 1

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,130 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
are an expert at gathering and organizing information. You carefully collect
details and present them in a structured way.\nYour personal goal is: Gather
information about the best soccer players\n\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "Top 1 best players
in the world?"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '693'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//TFPRbttGEHzPVwz04taQBFt1nFZvsgsnRlvYqI0aafOyPK7IjY97xO1R
CpMv6nf0x4qlZLcvBHh3Mzs7s/vtDTCTerbGLLRUQtfHxVUzPF6udsaXHx/Cn7//8fG8e9rf/XxF
X+vqaTZ3RKo+cygvqGVIXR+5SNLDdchMhZ31/N3FT28vL99enE0XXao5Oqzpy+IiLTpRWazOVheL
s3eL8x+P6DZJYJut8dcbAPg2fV2n1vxltsbENZ10bEYNz9avj4BZTtFPZmQmVkjLbP7fZUhaWCfp
j20amrascQtNewRSNLJjEBrXD1LbcwY+6Y0oRWym/zUeW0ZJPfpII2eIorSMfcqxnoMMaYu7UFLF
Gauz1Q9ziOFXScoRv7GZLPEkNccRmRvKNdcTSNmBzjRVZyuwFALnY52Jl2JEkY7nBya0ZGipBikk
xsFKljQYAmXmjNBSplA4y1euUY3gLyVTyrUo5RH2LDHaHDsxSToHaY2Q1E1jDePSO/+kv/CITWiF
d9yxFlv78QKnp9dxqOz0dH2UYj1rmfR39DllKaMLbuVVDRXcXOOKcuCYlObYt5wZLaPiQB1P2BCH
6sS8z4X3ichUizawkDLnJT5MzxQlk9qWc+YaJeGeshgeSLQs3nPuSBTf3T+8/97TWZ2tzpcHzbda
OCv5pFJ07R+8RI1NbliLKDnZTkJJeXwJ1uG4Tj1h0/3zd5ZAk1PHqxVubm82ePL0cT30cxiHIbtm
7z1yQ2H0gAkvddFyTsuji5s95fp/Nnqi+6Tohlikj4wrijEp6pO7DJoez9FK00Zp2vJSxgqVwbxM
mfy08jKdTUwVxTgiKYx3nCkihUAeuS094PtIo/M8lDHylO5BiRieNe0V25SnIqIhcy1VZNRZqio6
iiqJUsY5+sxBjNH72mlzGKc+pyhbCWgSxYWHKNos8cGd8ZVjz8PnpMm085HxZveGVjpPoiPlYccZ
pc2+qyjeNGreshobjKmLbBbHOTp6PrjRgaYx9s13oK9yOkS5FY71chrrW93GgTUcOr7iMWk92ShW
JNhxwU4M0vUUXhka8uU7uHEk8CuyXqbMj7t66H5Kpk+5WEdqrfRo6V8AAAD//4xVy24CIRTdz1cQ
1m1Tx+nCr+gXGHKFO85NGSDAaF347w2ggtUmXR84931O0hcdLJP5mlC14yNzPfmJQlrB0qkkWWQW
VMyhH62fIUVNApUXgWk8oGZH1JqRiTYzzqRe1+8hDRFYEhOY83kWVKEimbcx55mFoLTlM2+IvuoL
fuPs0gQxsOMEkVFkM4IJiWmHD9vWaiGLVsHprRVfj+MSIBmAWbRuADDGxpxQlv3tBTnfhF7bvfN2
F3595SMZCpPwCMGaJOohWsczeu4Y22ZDWe48gjtvZxdFtF+Yw636vvDx6mMV7TebCxptBF2BoV+9
PCEUCiOQDo0ncQlyQlW/VgODRZFtgK4p+zGdZ9yldDL7/9BXQEp0EZVw6aTlfcn1mcfk8389u7U5
J8wD+gNJFJHQp1EoHGHRxX15OIWIsxjJ7NE7T8WCRyfWA3wMgJu15N25+wEAAP//AwDdzCHTkAgA
AA==
headers:
CF-RAY:
- 94d9a27f5dc000f9-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 10 Jun 2025 14:42:51 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=7hq1JYlSmmLvjUR7npK1vcLJYOvCPn947S.EYBtvTcQ-1749566571-1.0.1.1-11XCSwdUqYCYC3zE9DZk20c_BHXTPqEi6YMhVtX9dekgrj0J3a4EHGdHvcnhBNkIxYzhM4zzQsetx2sxisMk62ywkO8Tzo3rlYdo__Kov7w;
path=/; expires=Tue, 10-Jun-25 15:12:51 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=bhxj6kzt6diFCyNbiiw60v4lKiUKaoHjQ3Yc4KWW4OI-1749566571331-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '30419'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '30424'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999859'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_b5983a9572e28ded39da7b12e678e2b7
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,643 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
are an expert at gathering and organizing information. You carefully collect
details and present them in a structured way.\nYour personal goal is: Gather
information about the best soccer players\n\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
in the world?"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '694'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA6RXXW4cNxJ+1ykK8+JdoyVII/lH8yZprUi25BVsB0GwDoQadk13ZdgkU2TPaBIY
2Lc9wx5hz7F7kj1JUOye38iBgrwImiZZrPr41VdVv+wBDLgcjGBgakymCXb/vGrfyvX4+zCZ/fTd
3dWPD69v+N3V7bfjDw/N20GhJ/z4RzJpeerA+CZYSuxdt2yEMJFaPXp1cvri5YvTl6/yQuNLsnqs
Cmn/xO837Hh/eDg82T98tX/0uj9dezYUByP4xx4AwC/5r/rpSnoYjOCwWH5pKEasaDBabQIYiLf6
ZYAxckzo0qBYLxrvErns+qfat1WdRnANzs/BoIOKZwQIlfoP6OKcBOCzu2SHFs7y7xFckRCgEKSa
IPkAR4cwppggemNIIFhckERgl3fMvdgSMIKfwN9N8mMSGB4OjwsYY6QSfN7GAoFk4qVBZ6gAbgKa
VAC6EvyMBK0F9V143CrQEZLP5itsaPTZfXZHB/D8+Q17RxZuKUZ+/hz+cu0SCdwyNvzXzw4A9uHO
R1YLI7j0Mkcp++8XvnVJFiM4k4pcYof9whVXteWqTnHUGc6OsGspOxFrPzcYCWqOQA+GglpHC6Xw
eGzZVQXMOLJ3XTQKT4NTdhXgmC2nRQGWsNQPq6vV8IxN8rJY4jg8HA7h8vryDL7LiF60IduLXDme
sEGX7GIDI1epEXXK2Hb8LEJsjaEYKR4oXEOF693CMjq4HWMI//2PAnaHwhE+Iru0/w1Jg+yeDNyl
6Ns9gto75+cOJl6yO2PLMZGogzEQlTkKY9mxQQsTdhzrjFrvFnAEhCktemZlQ2Ofarj7+E0+rPBc
CjlTg8Me/UTYFDDdunmDYZmeN1y1BEfZBitT1qd9Kw4bcqlD61jReiP6mnCFaNGVitYtOlOTRgMX
nBZPRuq9fl48glRv+1mEyqPdj8ZnnIL4OcXYvXcSclWqocYZQYOlMq8B70gzTKFofEwwIRTKu3na
Z+ObVnygAmqyQa3ueA+RTCsEkXK+QeJkM07GtpmdavvbN5dncFFjE3IS3hBWLWWITjKhaMYO/kZw
Lu3C0ZMwuuVywmRLkl2YzslW3DaP4LS64f///Pd21gWVPWVPzgRvu6TrEhAanP4GrSxdfVLuylYB
7GKSVomAVpd2osnXl75hp6TSDaVvKCY2+doOcXSgFYJSDrgj1AtF60I4Jkbn4YP6XnrF68zCe4xR
nkymOy+prdA+ClMMnJQRs14PNLSP2JYMd+L75yuW1z9TKJOgl5IdygISWnIph7LFx164YEoUMp49
aMa7GUnMWQTY+J40CnGhfNWzNZaAYKkiV+odBoVIAI34GKFpbeJgSSWxanuteqlgvadFgwJv5aBH
6Yot2iejdC74Mz+GUWf3WQSsejXO5Ztn+f+ccVO2tku3KYWUA0bVJC1+vaaQKAZdBSxyPe3rQg6Z
Yw/lil67bwDzmq2mM7uE7DLImrwK4ZamQRCK5EyXdK8UmQ9aUxPc0Bxd6edxmkvfOYoh6x3+ASKp
9jwC0aeaVIKslpmlouwUQeMlP7+2HJQrkeorqsTirgxvSHzofco/FGskYbTryrhbz1ZR5czbLmmv
swKhcAPn5H6mBnumXKfENZZ/vpApEP1rfyC0cIulsIosCgjp4y1p0T13ASVH1Rb1Xos8Say5q9uJ
TN2VvMyv2LGmR3XJmj45vkKaHPVp7nvaKcKtL4X/9y8NesO7PyK4F+Ix8WONzxk0mFXPT6Dpzy8l
tmtrlrrbe7HGwwG7iW21scn1vdIig2kTwWI3W+ghkLDSPBufeJ/G2gJqlbaWq1UCHB1q+Le+xoZK
+IgWa43/hmckwfteH7766JvBv6kWIS2/bsaerWZtDNZHbZED9o79vipmkTDkkqwD1yRYebd82Duh
hkmWWvDV0lFsCYQCFROmNub2el3SyKroT7o4u9z4VFOkVWuetaykxmt101Flq4RmPhbrbDa9DnY9
ee8zK+NjIJMUEFWmrj3pdbuA6C2XPFn0nYM2+P0TxJ3SsFVyDzanFaFJG1EnJtdau7GAzvmUZTHP
ST/0K19Wk5H1VRA/jjtHB5323Ath9E6noJh8GOTVL3sAP+QJrN0aqgZBfBPSffJTytcdDYedvcF6
8Fuvvjw96leTT2jXC6+PjotHDN6XlJBt3BjiBgZNTeX66HriUwXwGwt7G2H/1p3HbHehs6ueYn69
YJQfVN4HoZLNdsjrbUI6GH9t2wrm7PAgkszY0H1iEn2KkibY2m5cHcRFTNTcT9hVJEG4m1kn4f74
BF+cIJ0em8Hel71fAQAA//8DAICIe4nBDwAA
headers:
CF-RAY:
- 94d9947e9abcf1fe-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 10 Jun 2025 14:33:27 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=UscrLNUFPQp17ivpT2nYqbIb8GsK9e0GpWC7sIKWwnU-1749566007-1.0.1.1-fCm5jdN02Agxc9.Ep4aAnKukyBp9S3iOLK9NY51NLG1zib3MnfjyCm5HhsWtUvr2lIjQpD_EWosVk4JuLbGxrKYZBa4WTendGsY9lCU9naU;
path=/; expires=Tue, 10-Jun-25 15:03:27 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=CGbpwQsAGlm5OcWs4NP0JuyqJh.mIqHyUZjIdKm8_.I-1749566007688-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '40370'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '40375'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999859'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_94fb13dc93d3bc9714811ff4ede4c08f
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Guardrail Agent. You
are a expert at validating the output of a task. By providing effective feedback
if the output is not valid.\nYour personal goal is: Validate the output of the
task\n\nTo give my best complete final answer to the task respond using the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!\nIMPORTANT:
Your final answer MUST contain all the information requested in the following
format: {\n \"valid\": bool,\n \"feedback\": str | None\n}\n\nIMPORTANT: Ensure
the final output does not include any code block markers like ```json or ```python."},
{"role": "user", "content": "\n Ensure the following task result complies
with the given guardrail.\n\n Task result:\n Here are the top
10 best soccer players in the world as of October 2023, based on their performance,
impact, and overall contributions to the game:\n\n1. **Lionel Messi** (Inter
Miami)\n - Position: Forward\n - Country: Argentina\n - Highlights: Messi
continues to showcase his exceptional dribbling, vision, and playmaking ability,
leading Argentina to victory in the 2022 FIFA World Cup and significantly contributing
to his club''s successes.\n\n2. **Kylian Mbapp\u00e9** (Paris Saint-Germain)\n -
Position: Forward\n - Country: France\n - Highlights: Known for his blistering
speed and clinical finishing, Mbapp\u00e9 is a key player for both PSG and the
French national team, known for his performances in Ligue 1 and international
tournaments.\n\n3. **Erling Haaland** (Manchester City)\n - Position: Forward\n -
Country: Norway\n - Highlights: Haaland''s goal-scoring prowess and strength
have made him one of the most feared strikers in Europe, helping Manchester
City secure several titles including the UEFA Champions League.\n\n4. **Kevin
De Bruyne** (Manchester City)\n - Position: Midfielder\n - Country: Belgium\n -
Highlights: De Bruyne\u2019s exceptional passing, control, and vision make him
one of the best playmakers in the world, instrumental in Manchester City\u2019s
dominance in domestic and European competitions.\n\n5. **Cristiano Ronaldo**
(Al Nassr)\n - Position: Forward\n - Country: Portugal\n - Highlights:
Despite moving to the Saudi Pro League, Ronaldo''s extraordinary talent and
goal-scoring ability keep him in the conversation among the best, having had
a legendary career across multiple leagues.\n\n6. **Neymar Jr.** (Al Hilal)\n -
Position: Forward\n - Country: Brazil\n - Highlights: Neymar''s agility,
creativity, and skill have kept him as a top performer in soccer, now showcasing
his talents in the Saudi Pro League while maintaining a strong national team
presence.\n\n7. **Robert Lewandowski** (Barcelona)\n - Position: Forward\n -
Country: Poland\n - Highlights: The prolific striker continues to score consistently
in La Liga, known for his finishing, positioning, and aerial ability, contributing
to Barcelona\u2019s successes.\n\n8. **Karim Benzema** (Al Ittihad)\n - Position:
Forward\n - Country: France\n - Highlights: The former Real Madrid star
remains a top talent, displaying leadership and technical skills, now continuing
his career in the Saudi Pro League.\n\n9. **Luka Modri\u0107** (Real Madrid)\n -
Position: Midfielder\n - Country: Croatia\n - Highlights: A master of midfield
control and passing, Modri\u0107 remains an influential figure at Real Madrid,
showcasing his experience and football intelligence.\n\n10. **Mohamed Salah**
(Liverpool)\n - Position: Forward\n - Country: Egypt\n - Highlights:
Salah''s explosive pace and goal-scoring ability keep him as a central figure
for Liverpool in the Premier League and European competitions, maintaining his
status as one of the elite forwards.\n\nThese players have demonstrated exceptional
skill, consistency, and impact in their respective teams and leagues, solidifying
their positions among the best in the world.\n\n Guardrail:\n Only
include Brazilian players, both women and men\n \n Your task:\n -
Confirm if the Task result complies with the guardrail.\n - If not, provide
clear feedback explaining what is wrong (e.g., by how much it violates the rule,
or what specific part fails).\n - Focus only on identifying issues \u2014
do not propose corrections.\n - If the Task result complies with the
guardrail, saying that is valid\n "}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '4676'
content-type:
- application/json
cookie:
- __cf_bm=UscrLNUFPQp17ivpT2nYqbIb8GsK9e0GpWC7sIKWwnU-1749566007-1.0.1.1-fCm5jdN02Agxc9.Ep4aAnKukyBp9S3iOLK9NY51NLG1zib3MnfjyCm5HhsWtUvr2lIjQpD_EWosVk4JuLbGxrKYZBa4WTendGsY9lCU9naU;
_cfuvid=CGbpwQsAGlm5OcWs4NP0JuyqJh.mIqHyUZjIdKm8_.I-1749566007688-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xUwWobMRC9+ysGnVqwjZ3YjuNbQim0hULBtIc6mLE0uzuxVtpqtHbckH8v2o29
TpNCLwuapzfzZvRmH3sAio1agNIFRl1WdnCb119+LIvZh+/+h9zM55Op3Wzv5dt4rKei+onhN/ek
45E11L6sLEX2roV1IIyUso6vJtfT2Ww0mjdA6Q3ZRMurOJj4QcmOBxeji8lgdDUYz5/ZhWdNohbw
swcA8Nh8k05n6EEtYNQ/RkoSwZzU4nQJQAVvU0ShCEtEF1W/A7V3kVwjfVn4Oi/iAj6B83vQ6CDn
HQFCnvQDOtlTAFi5j+zQwk1zXsDjygGs1A4tm5VaQIZWqN8GMyKzQb1N8ZVaFgQRZQuBpLYRjCcB
5yM0AzvAnmMBsSDIawwmIFtAAY7ATtvakEBl8UBBIAu+hB0G9rWA9rWLgUkAnQHv7AFKcmn8AnHv
4Tbgb7aM7kR/95UOJQb4HIYNpz2+h33BloAeUjV2+Rlz70vq+Cl7IHsYwvKFWqlIc8YarT1AoF81
SRSI/thAK+6Vnj5sfCyeayQ9Jbl+EqML4HZCWW0ztpbMcKVW7un8CQNltWCykautPQPQOR+xmUMy
z90z8nSyi/V5FfxG/qKqjB1LsQ6E4l2yhkRfqQZ96gHcNbasXzhNVcGXVVxHv6Wm3PV01uZT3TZ0
6PwIRh/RdvHxaHLRfyPh2lBEtnLmbKVRF2Q6brcGWBv2Z0DvrO3Xct7K3bbOLv+f9B2gNVWRzLoK
ZFi/bLm7Fij9Lf517TTmRrASCjvWtI5MIT2FoQxr2+6wkoNEKtcZu5xCFbhd5KxaX05wOkG6vtSq
99T7AwAA//8DABZK9w/WBAAA
headers:
CF-RAY:
- 94d9957c4b46f1fe-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 10 Jun 2025 14:33:46 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '18280'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '18287'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149998889'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_853da6b9ca8f386ff1427c837346290d
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
are an expert at gathering and organizing information. You carefully collect
details and present them in a structured way.\nYour personal goal is: Gather
information about the best soccer players\n\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
in the world?"}, {"role": "assistant", "content": "Thought: I now can give a
great answer \nFinal Answer: Here are the top 10 best soccer players in the
world as of October 2023, based on their performance, impact, and overall contributions
to the game:\n\n1. **Lionel Messi** (Inter Miami)\n - Position: Forward\n -
Country: Argentina\n - Highlights: Messi continues to showcase his exceptional
dribbling, vision, and playmaking ability, leading Argentina to victory in the
2022 FIFA World Cup and significantly contributing to his club''s successes.\n\n2.
**Kylian Mbapp\u00e9** (Paris Saint-Germain)\n - Position: Forward\n - Country:
France\n - Highlights: Known for his blistering speed and clinical finishing,
Mbapp\u00e9 is a key player for both PSG and the French national team, known
for his performances in Ligue 1 and international tournaments.\n\n3. **Erling
Haaland** (Manchester City)\n - Position: Forward\n - Country: Norway\n -
Highlights: Haaland''s goal-scoring prowess and strength have made him one of
the most feared strikers in Europe, helping Manchester City secure several titles
including the UEFA Champions League.\n\n4. **Kevin De Bruyne** (Manchester City)\n -
Position: Midfielder\n - Country: Belgium\n - Highlights: De Bruyne\u2019s
exceptional passing, control, and vision make him one of the best playmakers
in the world, instrumental in Manchester City\u2019s dominance in domestic and
European competitions.\n\n5. **Cristiano Ronaldo** (Al Nassr)\n - Position:
Forward\n - Country: Portugal\n - Highlights: Despite moving to the Saudi
Pro League, Ronaldo''s extraordinary talent and goal-scoring ability keep him
in the conversation among the best, having had a legendary career across multiple
leagues.\n\n6. **Neymar Jr.** (Al Hilal)\n - Position: Forward\n - Country:
Brazil\n - Highlights: Neymar''s agility, creativity, and skill have kept
him as a top performer in soccer, now showcasing his talents in the Saudi Pro
League while maintaining a strong national team presence.\n\n7. **Robert Lewandowski**
(Barcelona)\n - Position: Forward\n - Country: Poland\n - Highlights:
The prolific striker continues to score consistently in La Liga, known for his
finishing, positioning, and aerial ability, contributing to Barcelona\u2019s
successes.\n\n8. **Karim Benzema** (Al Ittihad)\n - Position: Forward\n -
Country: France\n - Highlights: The former Real Madrid star remains a top
talent, displaying leadership and technical skills, now continuing his career
in the Saudi Pro League.\n\n9. **Luka Modri\u0107** (Real Madrid)\n - Position:
Midfielder\n - Country: Croatia\n - Highlights: A master of midfield control
and passing, Modri\u0107 remains an influential figure at Real Madrid, showcasing
his experience and football intelligence.\n\n10. **Mohamed Salah** (Liverpool)\n -
Position: Forward\n - Country: Egypt\n - Highlights: Salah''s explosive
pace and goal-scoring ability keep him as a central figure for Liverpool in
the Premier League and European competitions, maintaining his status as one
of the elite forwards.\n\nThese players have demonstrated exceptional skill,
consistency, and impact in their respective teams and leagues, solidifying their
positions among the best in the world."}, {"role": "user", "content": "The task
result does not comply with the guardrail as it includes players from various
countries and only mentions two Brazilian players (Neymar Jr. and Neymar) while
excluding Brazilian women players entirely. The guardrail specifically requests
to include only Brazilian players, both women and men, which is not fulfilled."}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '4338'
content-type:
- application/json
cookie:
- __cf_bm=UscrLNUFPQp17ivpT2nYqbIb8GsK9e0GpWC7sIKWwnU-1749566007-1.0.1.1-fCm5jdN02Agxc9.Ep4aAnKukyBp9S3iOLK9NY51NLG1zib3MnfjyCm5HhsWtUvr2lIjQpD_EWosVk4JuLbGxrKYZBa4WTendGsY9lCU9naU;
_cfuvid=CGbpwQsAGlm5OcWs4NP0JuyqJh.mIqHyUZjIdKm8_.I-1749566007688-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//lFfNbhxHDr7rKYi5BDBagiTLsj032QvHceC1ExubIOtAYFdzuhlVs3pZ
1TMeBwb2Nfa857xArnqTfZIFq2e6R9J417oImmYVfz5+JIu/HwDMuJrNYeYaTK7t/OGzuv8+vPuu
O/2H+9k//vnF8flP4Zcf6uclPj35dlbYjVD+Ri5tbx250HaeEgcZxE4JE5nWk8dnTx+dnx+fnmdB
Gyrydq3u0uFZOGxZ+PD0+PTs8Pjx4cmTze0msKM4m8PfDwAAfs9/zU+p6ONsDsfF9ktLMWJNs/l4
CGCmwduXGcbIMaGkWTEJXZBEkl1/34S+btIcvgMJK3AoUPOSAKE2/wElrkgBPsgLFvRwkX/P4SUp
ASpBaghS6ODkGEqKCWJwjhQ6j2vSCCz5xCqorwpYBNdHlhroo/N95CX5NQSBZ4qf2DPK9l4BZUgN
rEJLAigVtCQFlBipsvOpIVboSBdBWxRH+Qy3Hbq0NVljS4ARwgLeuBRKUjg9Pn04/yAf5OQIHjz4
K61bVHilRw8eWIAAcAhvQ2TL4RxeBF2hVqPkue/LOVx4eMke/fj5JdeN57pJcQ5vhMycWW+DYXHF
3lMFi0FVhNqHEr1fF7Axbplg6SlCClDhp0+eYMWpgYYjVMpl6VnqIsPS4lX+30KtA/rD6IIamFiy
57QuoMFl/g2Ra+EFO5S0RSXIAKkpdr4vsxrzdMJe0CJHD4mwPTKcTg2nv7Fc/+G4j/Dq+k/hoPeA
60dCD6+xUq72IjbpbjACtaQ1VZY1hCtab9hg+O1qKkBCGmDN4cSOqCogkWuEHfoB9zgg5bR3jD4j
lunIbRfUKgJaTK6hWEBswsphJqbpS+hJJsRGtFgS6QiSpyX5mGF6aDD9yK5B9RyD3AOg9yElkgZb
eBlS7HrdC9P3ElYyxrskjZhyzrNfSGoRjjTY8STDWpILVguw5IQeWmqtGDZEvZH0rM6umMRht1Fp
5HQNSk1TZY0s7XBTfrfomJE5M2Reoya8ByZv1KNUAd4qV7QXjwtI2hN4qkkqiyQ3im/ipvsUkE3m
SFwQ64Akya+3iaYKGtKBJgV4woo0Ntztqa1Ow4piLIBQxT5I35KGPgIOJZ0T4FzwWFkVN2r9NPQp
WxgcRF2DQyXSjMkjw+RCKrW+DRd+SXEvOK+5WjD5ivR2UYUWvwBLx8tgOd4UDssdZEbDBk7FMZ8c
8KCPjroNG4YSGpoEupTLyiImoRiHumAZSsM05IPGz//XUc5z8B4F4R1KCvtD/wstSO4G/ozEmtr+
2LNOjqDkQi38adsgSKEydTZttukcsrZD7iBJueyTzbIcA6aE7qoAiglLz7HJzYE0kl/s7U9DcyW9
2VzvAvDYAPgWS2Xy8IpiH+8zfTSSfGH4/GQFibDwyINHYz1arPkZkMfHDdsGGApQjCTJmkiHmva2
hgKubjShVdArUEw0tkbvuSabxcOAhkzeHPMTi/k9Xv8R4ULx+s/fwv0I/+763wHeYu/DF2ivnJt3
TJg5PxHwNvsHJ4z6NbJQtWWLOTDSJSYNVvrT8yIPjnbj3o15kdOei2UzbQgTL7ft72kOvGGsA7xj
v8T7sP15Qz7SF9guQB87UjbAq2xayTOWnsCRzanDMvM3W/3PP/8Vd9pcPj7VxFAHTIbLkqDFiqDh
FhBcUCGNKQhlcLYefc3T4eTYYn/GCL+gkGJKU9L/B9PH6N+ib4kV4yS4NQHylJ5eVwWYsZ15t8NX
0ptdfRxtFrVFM72vxsfD2BPyx+lB5XPH+Npyf2+14jkmaEbv81EWp1SxJWzz3sj8GY0GyU/XOy9j
Y+KWzTs8HF7E267tNGy79MB/072tBRvfsYDU9NYsO6Vc+1JvbH0TQdk124e8pxrd+mh3fVBa9BFt
hZHe+x0BioSUIciLy68byedxVfGh7jSU8dbV2YKFY3OphDGIrSUxhW6WpZ8PAH7NK1F/Y8uZdRra
Ll2mcEXZ3JMnJ4O+2bSJTdLz883CNEs2ICfByaOz7b0bGi8rSsg+7qxVM4euoWq6O+1g2FccdgQH
O3Hf9Wef7iF2lvpr1E8CZyObqsvOyORuxjwdU7JV9UvHRpyzw7NIumRHl4lJLRcVLbD3wwI5i+uY
qL1csNSknfKwRS66y4dn+OgM6elDNzv4fPBfAAAA//8DAGsE37hTDwAA
headers:
CF-RAY:
- 94d995f0ca0cf1fe-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 10 Jun 2025 14:34:22 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '35941'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '35946'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149998983'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_c874fed664f962f5ee90decb8ebad875
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Guardrail Agent. You
are a expert at validating the output of a task. By providing effective feedback
if the output is not valid.\nYour personal goal is: Validate the output of the
task\n\nTo give my best complete final answer to the task respond using the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!\nIMPORTANT:
Your final answer MUST contain all the information requested in the following
format: {\n \"valid\": bool,\n \"feedback\": str | None\n}\n\nIMPORTANT: Ensure
the final output does not include any code block markers like ```json or ```python."},
{"role": "user", "content": "\n Ensure the following task result complies
with the given guardrail.\n\n Task result:\n Here are the top
10 best soccer players in the world, focusing exclusively on Brazilian players,
both women and men, based on their performance and impact in the game as of
October 2023:\n\n1. **Neymar Jr.** \n - Position: Forward \n - Club: Al
Hilal \n - Highlights: One of the most skilled forwards globally, Neymar
continues to dazzle with his dribbling, playmaking, and goal-scoring ability,
having a significant impact on both his club and the Brazilian national team.\n\n2.
**Vin\u00edcius J\u00fanior** \n - Position: Forward \n - Club: Real Madrid \n -
Highlights: Vin\u00edcius has emerged as a key player for Real Madrid, noted
for his speed, technical skills, and crucial goals in important matches, showcasing
his talent on both club and international levels.\n\n3. **Richarlison** \n -
Position: Forward \n - Club: Tottenham Hotspur \n - Highlights: Known
for his versatility and aerial ability, Richarlison has become a vital member
of the national team and has the capability to change the game with his pace
and scoring ability.\n\n4. **Marta** \n - Position: Forward \n - Club:
Orlando Pride \n - Highlights: A true legend of women''s soccer, Marta has
consistently showcased her skill, leadership, and goal-scoring prowess, earning
numerous awards and accolades throughout her legendary career.\n\n5. **Andressa
Alves** \n - Position: Midfielder \n - Club: Roma \n - Highlights:
A pivotal player in women''s soccer, Andressa has displayed her exceptional
skills and tactical awareness both in club play and for the Brazilian national
team.\n\n6. **Alana Santos** \n - Position: Defender \n - Club: Benfica \n -
Highlights: Alana is recognized for her defensive prowess and ability to contribute
to the attack, establishing herself as a key player for both her club and the
national team.\n\n7. **Gabriel Jesus** \n - Position: Forward \n - Club:
Arsenal \n - Highlights: With a flair for scoring and assisting, Gabriel
Jesus is an essential part of the national team, known for his work rate and
intelligence on the field.\n\n8. **Ta\u00eds Ara\u00fajo** \n - Position:
Midfielder \n - Club: S\u00e3o Paulo \n - Highlights: A rising star in
Brazilian women''s soccer, Ta\u00eds has gained recognition for her strong performances
in midfield, showcasing both skill and creativity.\n\n9. **Thiago Silva** \n -
Position: Defender \n - Club: Chelsea \n - Highlights: An experienced
and reliable center-back, Silva\u2019s leadership and defensive abilities have
made him a cornerstone for Chelsea and the Brazilian national team.\n\n10. **Bia
Zaneratto** \n - Position: Forward \n - Club: Palmeiras \n - Highlights:
A talented forward, Bia has become known for her goal-scoring capabilities and
playmaking skills, contributing significantly to both her club and the national
team.\n\nThis list highlights the incredible talent and contributions of Brazilian
players in soccer, showcasing their skills across both men''s and women''s games,
thus representing Brazil''s rich soccer legacy.\n\n Guardrail:\n Only
include Brazilian players, both women and men\n \n Your task:\n -
Confirm if the Task result complies with the guardrail.\n - If not, provide
clear feedback explaining what is wrong (e.g., by how much it violates the rule,
or what specific part fails).\n - Focus only on identifying issues \u2014
do not propose corrections.\n - If the Task result complies with the
guardrail, saying that is valid\n "}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '4571'
content-type:
- application/json
cookie:
- __cf_bm=UscrLNUFPQp17ivpT2nYqbIb8GsK9e0GpWC7sIKWwnU-1749566007-1.0.1.1-fCm5jdN02Agxc9.Ep4aAnKukyBp9S3iOLK9NY51NLG1zib3MnfjyCm5HhsWtUvr2lIjQpD_EWosVk4JuLbGxrKYZBa4WTendGsY9lCU9naU;
_cfuvid=CGbpwQsAGlm5OcWs4NP0JuyqJh.mIqHyUZjIdKm8_.I-1749566007688-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4ySTW/bMAyG7/4VhM72kLj5WHxrDwEKtNilGDYshcFItK1WlgRJTjYE+e+D7DR2
tw7YxYD58KX4kjwlAEwKVgDjDQbeWpXd1d3Dl+5Yfb3dPD6K7bri26cw899f5vruG0ujwuxfiIc3
1SduWqsoSKMHzB1hoFh1vl5slqvVbJX3oDWCVJTVNmQLk7VSyyyf5Ytsts7mny/qxkhOnhXwIwEA
OPXf2KcW9JMVMEvfIi15jzWx4poEwJxRMcLQe+kD6sDSEXKjA+m+9afGdHUTCrgHbY7AUUMtDwQI
dewfUPsjOYCd3kqNCm77/wJOOw2wYwdUUuxYAcF1lA6xikjskb/GsO6U2unz9HFHVedRXeAEoNYm
YBxgb/v5Qs5Xo8rU1pm9/0PKKqmlb0pH6I2OpnwwlvX0nAA89wPt3s2IWWdaG8pgXql/bpMvh3ps
3ONI8/UFBhNQTVTLPP2gXikooFR+shLGkTckRum4P+yENBOQTFz/3c1HtQfnUtf/U34EnJMNJErr
SEj+3vGY5iie+b/SrlPuG2ae3EFyKoMkFzchqMJODcfH/C8fqC0rqWty1snhAitb3ixwuUDa3HCW
nJPfAAAA//8DAOHOvQuPAwAA
headers:
CF-RAY:
- 94d996d2b877f1fe-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 10 Jun 2025 14:34:38 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '15341'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '15343'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149998917'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_22419b91d42cf1e03278a29f3093ed3d
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,726 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
are an expert at gathering and organizing information. You carefully collect
details and present them in a structured way.\nYour personal goal is: Gather
information about the best soccer players\n\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
in the world?"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '694'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA5yXzVIbORDH7zxF11xiqLHLNp/xDUhMssEJm49N1S4pqq1pz/SikYaWxo6Tynmf
ZQ/7AnvNPtiWZIMNGAK5UHhaLfVPrW799XUNIOEs6UGiCvSqrHTzIK9HH/yzi6Mv44uT3z93X5fn
Fxefs49bR3vya5IGDzv8k5S/9GopW1aaPFszMysh9BRm7exuPd3e2d1s70VDaTPSwS2vfHPLNks2
3Oy2u1vN9m6zszf3LiwrckkP/lgDAPga/4Y4TUafkx6008svJTmHOSW9q0EAiVgdviToHDuPxifp
wqis8WRi6O8LW+eF78FLMHYCCg3kPCZAyEP8gMZNSABOTZ8NatiPv3vwviDwtoJOG4bkPDirFAlU
GqckDtiALwgmVnSWAjqwI3ijvB2SQLfd3UzjSkMCzsh4HjFlMERHGdjoyQJCioyHimRkpUSjyKXg
zllrlwKXFSofBudYBgOaDOyYBLWGgCc8rEMuHHg7n9ATlq4FL0gI2MX4nJda+VooA83O907Nqem0
YGPjmK0hDQNyjqHx0ngSGDCWDIf99Y2NUwMATTixjsMiPehbmaBk8++vaAr7fhYDuR48Ex4ONZs8
hTE7tiaF3KJuOmWFTQ44ZM1+2pq776uCaUwlGe96MKi150oTHKDW1kD25I3AhI0hSeHQVgj7JQkr
BFVgWcXZP4Z9h8O6uvoGjW67211vBcJuIHw11YwGBkOsqu9/Q+MEhR28Qza+eURSIpvHg76riLIU
PKnC8EVNKYzYsCvY5Kvh+i/7+3dE29lbT+GY85qgA569DmkuLzcjsyU5zwpUXblItRmonkvYZniB
qMOJaAzQqIJcSN8h++njiU7sJOyzm4Fdyxob59kov5rsoDYZOc05xjoJTmGiD8/7+3A4x3RwTBgA
Z+mMOdpcT+FEqGSSS+sMPkJuxdTRmA08IziQemroQZQDzkZMOiO5CzR0iuUTGvsXj398LldGm0Lg
rCv3IOTIth3ZULiEAzJfqERo7OvmS++5wOzxqTtaSlYaO1OJ5/F/j8qzQg1sPGnNORlFqylD1ays
vKuTeJPMwYR9AW8JNQwwE84i3U6ge03TEgV+kVZAgxesUT8erK+RJYVs0VUenKurstHXk3UrPVIH
zGZdxeB3Q/BvQ/f2cEwTNJmduHOGRv8QDlAUaWvwJ0Aum0MK1dwl/kASRn1/W4yd4yBcPQMyTxyc
xJtnKS/LBTinPMbQUPB6U5yfvr2AOLAFlpTBO9RYQOOYxySVtfqnO+FoQXiVrtU8N6po0ctndXR/
GUWCp4HgNzbf/1FcO/jl+7+GrUBj6ST+NMcjztoPy727fn8mOu14A9fnCAObCf/310qG+9rbQ/rb
PU3g7vq5xXV5tG63iPkdFpHeF+yiwgjCIwhF1rcFj6pFguIJcieFCt1N8RNutDu0jZCrSPmg3KLM
CQJsaH2xKPjgHEjFYPBFHeMgHzfQteb1A4Im9EgX9dkYZbqIsiJx0dFWbELOwpRhWR6Fe1jYh7KF
OgwfWQEao67jYikMax8idXSlEAscU6AJ8pSM11MYEhkQylEyyoJmdLakIByDUosic1lVrhCVrWWN
KzSqHQadbWqtlwxojPUxrKiuP80t3670tLZ5JXbobrgms1o+E0JnTdDOztsqidZvawCfom6vr0nx
pBJbVv7M23OKy3W63dl8yeK5sLDubG3Ord561AvD7s52umLCs4w8snZL0j9RqArKFq6LdwLWGdsl
w9oS9u1wVs09Q2eTP2T6hUEpqjxlZ5VQxuo68mKYUHhO3TXsaptjwIkjGbOiM88kIRUZjbDWs0dO
4qbOU3k2YpOTVMKzl86oOtvcwu0tpKebKln7tvY/AAAA//8DAJ67Vp33DQAA
headers:
CF-RAY:
- 94d9b5400dcd624b-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 10 Jun 2025 14:55:42 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU;
path=/; expires=Tue, 10-Jun-25 15:25:42 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '33288'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '33292'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999859'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_6a587ea22edef774ecdada790a320cab
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
are an expert at gathering and organizing information. You carefully collect
details and present them in a structured way.\nYour personal goal is: Gather
information about the best soccer players\n\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
in the world?"}, {"role": "assistant", "content": "Thought: I now can give a
great answer \nFinal Answer: The top 10 best soccer players in the world, as
of October 2023, can be identified based on their recent performances, skills,
impact on games, and overall contributions to their teams. Here is the structured
list:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland
(Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed,
goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions
League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester
City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n -
Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League
winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n -
Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6.
**Neymar Jr. (Al Hilal)**\n - Position: Forward\n - Key Attributes: Flair,
dribbling, creativity.\n - Achievements: Multiple domestic league titles,
Champions League runner-up.\n\n7. **Robert Lewandowski (FC Barcelona)**\n -
Position: Forward\n - Key Attributes: Finishing, positioning, aerial ability.\n -
Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion
(2023).\n\n8. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key
Attributes: Speed, finishing, dribbling.\n - Achievements: Premier League
champion, FA Cup, UEFA Champions League winner.\n\n9. **Vin\u00edcius J\u00fanior
(Real Madrid)**\n - Position: Forward\n - Key Attributes: Speed, dribbling,
creativity.\n - Achievements: UEFA Champions League winner (2022), La Liga
champion (2023).\n\n10. **Luka Modri\u0107 (Real Madrid)**\n - Position:
Midfielder\n - Key Attributes: Passing, vision, tactical intelligence.\n -
Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\nThis
list is compiled based on their current form, past performances, and contributions
to their respective teams in both domestic and international competitions. Player
rankings can vary based on personal opinion and specific criteria used for evaluation,
but these players have consistently been regarded as some of the best in the
world as of October 2023."}, {"role": "user", "content": "You are not allowed
to include Brazilian players"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '3594'
content-type:
- application/json
cookie:
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU;
_cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//nJfNctpIEMfvfoouXYJdwgXYjm1u4JjEsam4kuzuYZ1yNaNG6njUo50Z
QUgq5zzLHvYF9pp9sK0ZwOAEx3EuFKjVTf+mP/TXpy2AhLOkC4kq0Kuy0s1+Xucvb06e+X7ndDzp
DflscN6yRBfng75O0uBhRu9J+aXXrjJlpcmzkblZWUJPIWr7cP/44Onh3sFxNJQmIx3c8so3902z
ZOFmp9XZb7YOm+2jhXdhWJFLuvDnFgDAp/gZ8pSMPiRdaKXLKyU5hzkl3dubABJrdLiSoHPsPIpP
0pVRGfEkMfW3hanzwnfhDMRMQaFAzhMChDzkDyhuShbgSgYsqKEXf3fhBVkCdoACdZUFUNDsPJgx
+ILAmwraLRiR8+CMUmSh0jgj64Al3jE1VmeALni8Ut6MyEKn1dlLgT4oXWcsOfQtfmTNKEvn7pVc
SXsXdnYu2AhpGJJzDI0z8WRhyFgynAy2d3auBACacGkch4p0YWDsFG22uH5OM+h5b3lUe3JdeGZ5
NNIseQoTdmwkhdygbjplbEgER6zZz3YX7j1VME2oJPGuC8Nae640QR+1NgLZk1cWpixCNoUTUyH0
SrKsEFSBZRWj/xHpT+rq9ho0Oq1OZ3s3EHYC4fkskg9HWFVf/4bGJVp28AZZfPM52RJZHg/6piLK
UvCkCuG/akphzMKuYMk3ww3OBr17sm0fbadwwXlN0AbPXpNLoVweRmZKcp4VqLpykWovUJ3acMzw
AlGjZNAYoqiCXCjfCfvZ44kuzTScs5uD3akai/Msym8m69eSkdOcY+zW4BQC/XY66MHJAtPBBWEA
nJcz1mhvO4VLSyWTXVrn8BFyP5aOJizwjKBv65nQT1EOORsz6YzsfaBhlNc7NC4YnjzclxuzTSFw
1pX7KeTIdhDZ0HIJfZKPVCI0erp55j0XmD2+dM/XipXGES/xJn73qDwr1MDiSWvOSRRtpgxTs3Hy
bjvxWzIHU/YFvCbUMMTMchbpnga612EPebigKUpmpu6GoTE4gT5aRdoIPh5ysJyvFKqFS/yBZBn1
jzdLHL5+2KFDkicOLuMWXENb7+FFVS8wzCTe3SuLAh4GxKEpsKQM3qDGAhoXPCFbGaN/eZmMV4TZ
co9u5vmmEVfrcN6KP+7ESHAUCH5n+fqP4trBy6//ChsLjbVi/jJHtnoIPDRaD05MZ/vHlTiOz7D6
BmFoMsv/fXkQ4fH74RFDNLxvVm7b6vsJWzwCIk67FXheoLUzOMew8fqhUwWGtbAqljz31uTB5bD2
wFrtid2l712Y50ZnJNA3xt8ug3tWYKzjaW1NRSgr+IIrsHXwbNZVBHxbsJsLnAIdjIgEMHtfu6B7
vFlIFvpesEB4yI2Nqh05MEH5GEcwLQwUOCEoMSNwnAuPWaF44LJC5ZciiS0oXY/mUcxcN4ViWsFw
hqjBecxpg4rahVNUxSKLoNMsKZMLf6SQjl0Epw+KqmWkG9bapVCRHRtboqhwQOGPce10d9dlpKVx
7TBIWam1XjOgiPExxShg3y0sn28lqzZ5Zc3IfeOazFfJtSV0RoI8dd5USbR+3gJ4F6VxfUftJpU1
ZeWvvbmh+HeHR+15vGSlyFfWp+2FcE688ahXhvbe8dLvTsTrjDyydmvyOlGoCspWvistjnXGZs2w
tcb9fT6bYs/ZWfKfCb8yqFBJyq4rSxmru8yr2yyFV5b7brs955hw4shOWNG1Z7KhFhmNsdbzF4nE
zZyn8nrMkpOtLM/fJsbV9d4+HuwjHe+pZOvz1v8AAAD//wMAVoKTVVsNAAA=
headers:
CF-RAY:
- 94d9b6782db84d3b-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 10 Jun 2025 14:56:30 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '31484'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '31490'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999166'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_aa737cf40bb76af9f458bfd35f7a77a1
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
are an expert at gathering and organizing information. You carefully collect
details and present them in a structured way.\nYour personal goal is: Gather
information about the best soccer players\n\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
in the world?"}, {"role": "assistant", "content": "Thought: I now can give a
great answer \nFinal Answer: The top 10 best soccer players in the world, as
of October 2023, can be identified based on their recent performances, skills,
impact on games, and overall contributions to their teams. Here is the structured
list:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland
(Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed,
goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions
League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester
City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n -
Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League
winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n -
Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6.
**Neymar Jr. (Al Hilal)**\n - Position: Forward\n - Key Attributes: Flair,
dribbling, creativity.\n - Achievements: Multiple domestic league titles,
Champions League runner-up.\n\n7. **Robert Lewandowski (FC Barcelona)**\n -
Position: Forward\n - Key Attributes: Finishing, positioning, aerial ability.\n -
Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion
(2023).\n\n8. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key
Attributes: Speed, finishing, dribbling.\n - Achievements: Premier League
champion, FA Cup, UEFA Champions League winner.\n\n9. **Vin\u00edcius J\u00fanior
(Real Madrid)**\n - Position: Forward\n - Key Attributes: Speed, dribbling,
creativity.\n - Achievements: UEFA Champions League winner (2022), La Liga
champion (2023).\n\n10. **Luka Modri\u0107 (Real Madrid)**\n - Position:
Midfielder\n - Key Attributes: Passing, vision, tactical intelligence.\n -
Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\nThis
list is compiled based on their current form, past performances, and contributions
to their respective teams in both domestic and international competitions. Player
rankings can vary based on personal opinion and specific criteria used for evaluation,
but these players have consistently been regarded as some of the best in the
world as of October 2023."}, {"role": "user", "content": "You are not allowed
to include Brazilian players"}, {"role": "assistant", "content": "Thought: I
now can give a great answer \nFinal Answer: Here is an updated list of the
top 10 best soccer players in the world as of October 2023, excluding Brazilian
players:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland
(Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed,
goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions
League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester
City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n -
Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League
winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n -
Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6.
**Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n - Key Attributes:
Finishing, positioning, aerial ability.\n - Achievements: FIFA Best Men''s
Player, multiple Bundesliga titles, La Liga champion (2023).\n\n7. **Mohamed
Salah (Liverpool)**\n - Position: Forward\n - Key Attributes: Speed, finishing,
dribbling.\n - Achievements: Premier League champion, FA Cup, UEFA Champions
League winner.\n\n8. **Vin\u00edcius J\u00fanior (Real Madrid)**\n - Position:
Forward\n - Key Attributes: Speed, dribbling, creativity.\n - Achievements:
UEFA Champions League winner (2022), La Liga champion (2023).\n\n9. **Luka Modri\u0107
(Real Madrid)**\n - Position: Midfielder\n - Key Attributes: Passing, vision,
tactical intelligence.\n - Achievements: Multiple Champions League titles,
Ballon d''Or winner (2018).\n\n10. **Harry Kane (Bayern Munich)**\n - Position:
Forward\n - Key Attributes: Goal-scoring, technique, playmaking.\n - Achievements:
Golden Boot winner, Premier League titles, UEFA European Championship runner-up.\n\nThis
list has been adjusted to exclude Brazilian players and focuses on those who
have made significant impacts in their clubs and on the international stage
as of October 2023. Each player is recognized for their exceptional skills,
performances, and achievements."}, {"role": "user", "content": "You are not
allowed to include Brazilian players"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '6337'
content-type:
- application/json
cookie:
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU;
_cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//rJfNbhs3EMfvforBXiIHK0OSv3WTHCsxYiFunKJo6sAYkaPdqbkkS3Il
K0HOfZY+R/tgBSnJkhPZtdteDC+HQ82P87H//bIFkLHMupCJEoOorGr2i7rwvWp2tt+qfzi4tCf2
6Pjjx5/36FX74nOWRw8z+pVEWHrtCFNZRYGNnpuFIwwUT20f7h3vHxzuHu8lQ2UkqehW2NDcM82K
NTc7rc5es3XYbB8tvEvDgnzWhV+2AAC+pL8xTi3pNutCK1+uVOQ9FpR17zYBZM6ouJKh9+wD6pDl
K6MwOpBOoX8oTV2UoQtnoM0UBGooeEKAUMT4AbWfkgO40gPWqKCXnrvwhhwBewglgaMJe5Kg2Acw
47QWjIV2C0bkA3gjBDmwCmfkPLBOO6bGKQnoo8c7EcyIHHRand0c6NYqFhzUDOhWqFqyLqDv8DMr
Rr08p3ulr3R7B16+PGejScGQvGdonOlADoaMFcPJYPvlyysNAE24MJ5jdrowMG6KTi7W39IMeiE4
HtWBfBdeOR6NFOsihwl7NjqHwqBqemFcDARHrDjMdhbuPVEyTagiHXwXhrUKbBVBH5UyGuSLdw6m
rDW5HE6MRehV5FggiBIrm07/KV3ESW3v1qDRaXU62zuRsBMJ384S+XCE1v75BzQu0LGHS2Qdmq/J
Vcj6+aCXlkjmEEiUmn+rKYcxa/Yl62Iz3OBs0Hsg2vbRdg7VEv6ci5qgDYGDIp8DagkTdGxqD9JU
5AMLELX1iXA3Ep66eOXwBlHF3Y0halGSj6k84TB7Pt2FmcY793PIexlk7QNrETZT9mstySsuMBVx
dIoH/Xg66MHJAtnDOWFknKc25Wt3O4cLRxWTW1rn/AlyL6WRJqzhFUHf1TNNT6IcshwzKUnuIdDY
4uvVmgYPT/65RjdGm0PkrK1/EnJi209s6LiCPunPVCE0eqp5FgKXKJ+futdrycpTu1d4k/4PKAIL
VMA6kFJckBa0mTJ20MYuvKvSb8k8TDmU8J5QwRClY5noDiLd+zieApzTFLU0U3/D0BicQB+dIGU0
Ph9ysOy1HOzCJT0gOUb1+JRJjdiPo3VI+oWHizQR19DWa3iR1XOMbYn3Z8wigYcRcWhKrEjCJSos
oXHOE3LWGPWvB8t4RSiXM3UzzzeFuBqN81J8vBITwVF6D9Q3CEMjHf/1OzTW8vj/9NUzim/4UI3d
peP7ylyM0YRzHHHeoHMzeItxUPRjgjUMa82i/K8dtTbxV821GeS1UZI09I0Jdw30wNhIOTqtnbGE
egVesgVXR89mbRNcuzXvKOn4wQn4WKo2vbNpTNpH3eJvWCmfg11mb9lcsaem6EiT9zvLcx4tw3tg
TxiDH0r2cw3EHkTtovqDacmKAGVJ6dUTzEIx+eBYxLii/HlE5ezAKYpy8QSs40aSUKIHSZXRPsx/
h24F2QXn/A7SW9dRhe4GR4rAkhsbV6EWEcobxZLHsxRUSezABwy1j4LMm4qWOi4JuH9QbDvr2tLR
uPYY9a2ulVozoNYmYAwxqdpPC8vXOx2rTGGdGflvXLP5HLl2hN7oqFl9MDZL1q9bAJ+SXq7vSeDM
OlPZcB3MDaWfa++1DucHZiudvjIftPYX1mACqpWh02p38g1HXksKyMqvie5MoChJrnxXCh1ryWbN
sLUG/n08m86ew7MunnL8yiBiUZC8to7kvNw2bXMUP2Qe2nZ30SngzJObsKDrwORiMiSNsVbzz4vM
z3yg6nrMuiBnHc+/Mcb2+qCDnV08atM42/q69TcAAAD//wMAvqcBwHENAAA=
headers:
CF-RAY:
- 94d9b7561f204d3b-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 10 Jun 2025 14:56:46 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '12189'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '12193'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149998513'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_1098f5a5384f4a26aecf0c9e4e4d1fc0
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Sports Analyst. You
are an expert at gathering and organizing information. You carefully collect
details and present them in a structured way.\nYour personal goal is: Gather
information about the best soccer players\n\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "Top 10 best players
in the world?"}, {"role": "assistant", "content": "Thought: I now can give a
great answer \nFinal Answer: The top 10 best soccer players in the world, as
of October 2023, can be identified based on their recent performances, skills,
impact on games, and overall contributions to their teams. Here is the structured
list:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland
(Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed,
goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions
League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester
City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n -
Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League
winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n -
Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6.
**Neymar Jr. (Al Hilal)**\n - Position: Forward\n - Key Attributes: Flair,
dribbling, creativity.\n - Achievements: Multiple domestic league titles,
Champions League runner-up.\n\n7. **Robert Lewandowski (FC Barcelona)**\n -
Position: Forward\n - Key Attributes: Finishing, positioning, aerial ability.\n -
Achievements: FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion
(2023).\n\n8. **Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key
Attributes: Speed, finishing, dribbling.\n - Achievements: Premier League
champion, FA Cup, UEFA Champions League winner.\n\n9. **Vin\u00edcius J\u00fanior
(Real Madrid)**\n - Position: Forward\n - Key Attributes: Speed, dribbling,
creativity.\n - Achievements: UEFA Champions League winner (2022), La Liga
champion (2023).\n\n10. **Luka Modri\u0107 (Real Madrid)**\n - Position:
Midfielder\n - Key Attributes: Passing, vision, tactical intelligence.\n -
Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\nThis
list is compiled based on their current form, past performances, and contributions
to their respective teams in both domestic and international competitions. Player
rankings can vary based on personal opinion and specific criteria used for evaluation,
but these players have consistently been regarded as some of the best in the
world as of October 2023."}, {"role": "user", "content": "You are not allowed
to include Brazilian players"}, {"role": "assistant", "content": "Thought: I
now can give a great answer \nFinal Answer: Here is an updated list of the
top 10 best soccer players in the world as of October 2023, excluding Brazilian
players:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
champion (2018), Ligue 1 titles, multiple domestic cups.\n\n3. **Erling Haaland
(Manchester City)**\n - Position: Forward\n - Key Attributes: Power, speed,
goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA Champions
League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne (Manchester
City)**\n - Position: Midfielder\n - Key Attributes: Passing, vision, creativity.\n -
Achievements: Multiple Premier League titles, FA Cups, UEFA Champions League
winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n - Position: Forward\n -
Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n - Achievements:
2022 Ballon d''Or winner, multiple Champions Leagues with Real Madrid.\n\n6.
**Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n - Key Attributes:
Finishing, positioning, aerial ability.\n - Achievements: FIFA Best Men''s
Player, multiple Bundesliga titles, La Liga champion (2023).\n\n7. **Mohamed
Salah (Liverpool)**\n - Position: Forward\n - Key Attributes: Speed, finishing,
dribbling.\n - Achievements: Premier League champion, FA Cup, UEFA Champions
League winner.\n\n8. **Vin\u00edcius J\u00fanior (Real Madrid)**\n - Position:
Forward\n - Key Attributes: Speed, dribbling, creativity.\n - Achievements:
UEFA Champions League winner (2022), La Liga champion (2023).\n\n9. **Luka Modri\u0107
(Real Madrid)**\n - Position: Midfielder\n - Key Attributes: Passing, vision,
tactical intelligence.\n - Achievements: Multiple Champions League titles,
Ballon d''Or winner (2018).\n\n10. **Harry Kane (Bayern Munich)**\n - Position:
Forward\n - Key Attributes: Goal-scoring, technique, playmaking.\n - Achievements:
Golden Boot winner, Premier League titles, UEFA European Championship runner-up.\n\nThis
list has been adjusted to exclude Brazilian players and focuses on those who
have made significant impacts in their clubs and on the international stage
as of October 2023. Each player is recognized for their exceptional skills,
performances, and achievements."}, {"role": "user", "content": "You are not
allowed to include Brazilian players"}, {"role": "assistant", "content": "Thought:
I now can give a great answer \nFinal Answer: Here is the revised list of the
top 10 best soccer players in the world as of October 2023, explicitly excluding
Brazilian players:\n\n1. **Lionel Messi (Inter Miami CF)**\n - Position: Forward\n -
Key Attributes: Dribbling, vision, goal-scoring ability.\n - Achievements:
Multiple Ballon d''Or winner, Copa America champion, World Cup champion (2022).\n\n2.
**Kylian Mbapp\u00e9 (Paris Saint-Germain)**\n - Position: Forward\n - Key
Attributes: Speed, technique, finishing.\n - Achievements: FIFA World Cup
champion (2018), multiple Ligue 1 titles, and various domestic cups.\n\n3. **Erling
Haaland (Manchester City)**\n - Position: Forward\n - Key Attributes: Power,
speed, goal-scoring instinct.\n - Achievements: Bundesliga top scorer, UEFA
Champions League winner (2023), Premier League titles.\n\n4. **Kevin De Bruyne
(Manchester City)**\n - Position: Midfielder\n - Key Attributes: Passing,
vision, creativity.\n - Achievements: Multiple Premier League titles, FA Cups,
UEFA Champions League winner (2023).\n\n5. **Karim Benzema (Al-Ittihad)**\n -
Position: Forward\n - Key Attributes: Goal-scoring, playmaking, tactical intelligence.\n -
Achievements: 2022 Ballon d''Or winner, multiple Champions Leagues with Real
Madrid.\n\n6. **Robert Lewandowski (FC Barcelona)**\n - Position: Forward\n -
Key Attributes: Finishing, positioning, aerial ability.\n - Achievements:
FIFA Best Men''s Player, multiple Bundesliga titles, La Liga champion (2023).\n\n7.
**Mohamed Salah (Liverpool)**\n - Position: Forward\n - Key Attributes:
Speed, finishing, dribbling.\n - Achievements: Premier League champion, FA
Cup, UEFA Champions League winner.\n\n8. **Luka Modri\u0107 (Real Madrid)**\n -
Position: Midfielder\n - Key Attributes: Passing, vision, tactical intelligence.\n -
Achievements: Multiple Champions League titles, Ballon d''Or winner (2018).\n\n9.
**Harry Kane (Bayern Munich)**\n - Position: Forward\n - Key Attributes:
Goal-scoring, technique, playmaking.\n - Achievements: Golden Boot winner,
Premier League titles, UEFA European Championship runner-up.\n\n10. **Rodri
(Manchester City)**\n - Position: Midfielder\n - Key Attributes: Defensive
skills, passing, positional awareness.\n - Achievements: Premier League titles,
UEFA Champions League winner (2023).\n\nThis list is curated while adhering
to the restriction of excluding Brazilian players. Each player included has
demonstrated exceptional skills and remarkable performances, solidifying their
status as some of the best in the world as of October 2023."}, {"role": "user",
"content": "You are not allowed to include Brazilian players"}], "model": "gpt-4o-mini",
"stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '9093'
content-type:
- application/json
cookie:
- __cf_bm=8Yv8F0ZCFAo2lf.qoqxao70yxyjVvIV90zQqVF6bVzQ-1749567342-1.0.1.1-fZgnv3RDfunvCO1koxwwFJrHnxSx_rwS_FHvQ6xxDPpKHwYr7dTqIQLZrNgSX5twGyK4F22rUmkuiS6KMVogcinChk8lmHtJBTUVTFjr2KU;
_cfuvid=wzh8YnmXvLq1G0RcIVijtzboQtCZyIe2uZiochkBLqE-1749567342267-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.78.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.78.0
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//rJfNThtJEMfvPEVpLjFojGxjEuIbJhCi4ASFRKvVJkLl7vJMLT3Vk+4e
O06U8z7LPsfug626bbAhJgm7e0F4aqqmfl0f858vWwAZ62wAmSoxqKo27WHRlEc0edUdv+q9pl/f
2P2jsnz38dXw7J3GLI8edvw7qXDttatsVRsKbGVhVo4wUIzafdJ/uv/4Sb/bT4bKajLRrahDu2/b
FQu3e51ev9150u4eLL1Ly4p8NoDftgAAvqS/MU/R9CkbQCe/vlKR91hQNri5CSBz1sQrGXrPPqCE
LF8ZlZVAklJ/W9qmKMMAXoDYGSgUKHhKgFDE/AHFz8gBvJcTFjRwmH4P4JQcAXtAcDRhIQ2GfQA7
gVASBFtDtwNj8gG8VYoc1Abn5DywpDtm1hkN6KPHaxXsmBz0Or29HEh841gKCCUGEAtDh5/ZMMpN
DIzPFmUaTXrwXt5Ldxd2ds7YChkYkfcMrRcSyMGIsWI4Otne2XkvANCGc+s5FmkAJ9bN0Onl9Zc0
h8MQHI+bQH4AzxyPx4alyGHKnq3kUFg0ba9syg7HbDjMd5fuh6pkmlJFEvwARo0JXBuCIRpjBfSj
1w5mLEIuhyNbIxxW5FghqBKrOkX/JZ3IUVPfXINWr9Prbe9Gwl4kfDlPxzAaY13/9Se0ztGxhwtk
Ce3n5CpkeTjoRU2kcwikSuGPDeUwYWFfshSb4U5enBzek233YDuH6hr+jIuGoAuBgyGfwxQd28aD
thX5wApUU/tEtxfpjl08bjhFNCgaWiMUVZKPZTziMH842bmdxfP2C8Bb1WPxgUWFzYTDRjR5wwWm
To5OMdC745NDOFriejgjjHyLsqZa7W3ncO6oYnLX1gV7guynEtKUBZ4RDF0zF/opyhHrCZPR5O4D
jVO+3qlp9/D0x/25MdscImdT+59CTmz7iQ0dVzAk+UwVQuvQtF+EwCXqh5fu+Vqx8jT3FV6l/wOq
wAoNsAQyhgsSRZsp4/RsnMCbDr1L5mHGoYQ3hAZGqB3rRPc40r2JOyrAGc1QtJ35K4bWyREM0Sky
VvDhkCfXc5ZDvXRJP5Aco/n+hklDOIz7dUTyyMN5Wo1raOs9vKzqGcaRxNv7ZVnAJxFxZEusSMMF
GiyhdcZTcrW15l8vlcmKUF/v0808dxpxtRYXrfj9TkwEB+kd0FwhjKx2/Pcf0Fqr4/8zVw9ovtF9
PXZTjm87c7lCE87TiHOKzs3hJcZFMYwFFhg1wqr8rxO1tu1Xw7UZ5Lk1mgSG1oZvB+ie/ZGKddw4
WxPK6gRKrsE1MUS7qRNltxMxL6zAKTVSRC0Erbc2BJISKzi1wdeNu6a9F/enOvAu6I968Lvg6++w
9SX/tmS/kEIlehgTCSh0NGmMmYOjKXvSECzQpyRfAI3ZIHBmJRuCkovScFGG+MbytqJreVVZHyCg
IQmkgUXzlHWDJqmrpd76VlrtwjGqcvmMlJ4v7UxhzMhRhe4Kx4aAJhNSgack5D3EN7G/YmNyiKox
HW9KhwvhCSuUYOYRKJTEDgJh5cEKjG0oV4cUo8SRcYKxeGjAByzI766r0nhKHqMylsaYNQOK2JAc
kx7+sLR8vVHAxha1s2N/xzVbFP/SEXorUe36YOssWb9uAXxISru5JZ6z2tmqDpfBXlF6XK/TO1gE
zFYKf2V+vBD1AFmwAc2a3+N+L98Q8lJTQDZ+Ta5nClVJeuXb7R2s5D02mu3K1tlaY/82pU3hF/ws
xVqUe8OvDEpRHUhf1o40q9vYq9scxa+g+267OeuUcObJTVnRZWBysR6aJtiYxbdJ5uc+UHU5YSnI
1Y4XHyiT+nKvj/t9pKd7Ktv6uvUPAAAA//8DAMc1SFGuDQAA
headers:
CF-RAY:
- 94d9b7d24d991d2c-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 10 Jun 2025 14:57:29 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '35291'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '35294'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149997855'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_4676152d4227ac1825d1240ddef231d6
status:
code: 200
message: OK
version: 1

View File

@@ -231,7 +231,7 @@ class TestDeployCommand(unittest.TestCase):
[project]
name = "test_project"
version = "0.1.0"
requires-python = ">=3.10,<3.13"
requires-python = ">=3.10,<3.14"
dependencies = ["crewai"]
""",
)
@@ -250,7 +250,7 @@ class TestDeployCommand(unittest.TestCase):
[project]
name = "test_project"
version = "0.1.0"
requires-python = ">=3.10,<3.13"
requires-python = ">=3.10,<3.14"
dependencies = ["crewai"]
""",
)

View File

@@ -0,0 +1 @@

View File

@@ -0,0 +1,244 @@
import unittest
from unittest.mock import MagicMock, patch, call
import pytest
from click.testing import CliRunner
import requests
from crewai.cli.organization.main import OrganizationCommand
from crewai.cli.cli import list, switch, current
@pytest.fixture
def runner():
return CliRunner()
@pytest.fixture
def org_command():
with patch.object(OrganizationCommand, '__init__', return_value=None):
command = OrganizationCommand()
yield command
@pytest.fixture
def mock_settings():
with patch('crewai.cli.organization.main.Settings') as mock_settings_class:
mock_settings_instance = MagicMock()
mock_settings_class.return_value = mock_settings_instance
yield mock_settings_instance
@patch('crewai.cli.cli.OrganizationCommand')
def test_org_list_command(mock_org_command_class, runner):
mock_org_instance = MagicMock()
mock_org_command_class.return_value = mock_org_instance
result = runner.invoke(list)
assert result.exit_code == 0
mock_org_command_class.assert_called_once()
mock_org_instance.list.assert_called_once()
@patch('crewai.cli.cli.OrganizationCommand')
def test_org_switch_command(mock_org_command_class, runner):
mock_org_instance = MagicMock()
mock_org_command_class.return_value = mock_org_instance
result = runner.invoke(switch, ['test-id'])
assert result.exit_code == 0
mock_org_command_class.assert_called_once()
mock_org_instance.switch.assert_called_once_with('test-id')
@patch('crewai.cli.cli.OrganizationCommand')
def test_org_current_command(mock_org_command_class, runner):
mock_org_instance = MagicMock()
mock_org_command_class.return_value = mock_org_instance
result = runner.invoke(current)
assert result.exit_code == 0
mock_org_command_class.assert_called_once()
mock_org_instance.current.assert_called_once()
class TestOrganizationCommand(unittest.TestCase):
def setUp(self):
with patch.object(OrganizationCommand, '__init__', return_value=None):
self.org_command = OrganizationCommand()
self.org_command.plus_api_client = MagicMock()
@patch('crewai.cli.organization.main.console')
@patch('crewai.cli.organization.main.Table')
def test_list_organizations_success(self, mock_table, mock_console):
mock_response = MagicMock()
mock_response.raise_for_status = MagicMock()
mock_response.json.return_value = [
{"name": "Org 1", "uuid": "org-123"},
{"name": "Org 2", "uuid": "org-456"}
]
self.org_command.plus_api_client = MagicMock()
self.org_command.plus_api_client.get_organizations.return_value = mock_response
mock_console.print = MagicMock()
self.org_command.list()
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_table.assert_called_once_with(title="Your Organizations")
mock_table.return_value.add_column.assert_has_calls([
call("Name", style="cyan"),
call("ID", style="green")
])
mock_table.return_value.add_row.assert_has_calls([
call("Org 1", "org-123"),
call("Org 2", "org-456")
])
@patch('crewai.cli.organization.main.console')
def test_list_organizations_empty(self, mock_console):
mock_response = MagicMock()
mock_response.raise_for_status = MagicMock()
mock_response.json.return_value = []
self.org_command.plus_api_client = MagicMock()
self.org_command.plus_api_client.get_organizations.return_value = mock_response
self.org_command.list()
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_console.print.assert_called_once_with(
"You don't belong to any organizations yet.",
style="yellow"
)
@patch('crewai.cli.organization.main.console')
def test_list_organizations_api_error(self, mock_console):
self.org_command.plus_api_client = MagicMock()
self.org_command.plus_api_client.get_organizations.side_effect = requests.exceptions.RequestException("API Error")
with pytest.raises(SystemExit):
self.org_command.list()
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_console.print.assert_called_once_with(
"Failed to retrieve organization list: API Error",
style="bold red"
)
@patch('crewai.cli.organization.main.console')
@patch('crewai.cli.organization.main.Settings')
def test_switch_organization_success(self, mock_settings_class, mock_console):
mock_response = MagicMock()
mock_response.raise_for_status = MagicMock()
mock_response.json.return_value = [
{"name": "Org 1", "uuid": "org-123"},
{"name": "Test Org", "uuid": "test-id"}
]
self.org_command.plus_api_client = MagicMock()
self.org_command.plus_api_client.get_organizations.return_value = mock_response
mock_settings_instance = MagicMock()
mock_settings_class.return_value = mock_settings_instance
self.org_command.switch("test-id")
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_settings_instance.dump.assert_called_once()
assert mock_settings_instance.org_name == "Test Org"
assert mock_settings_instance.org_uuid == "test-id"
mock_console.print.assert_called_once_with(
"Successfully switched to Test Org (test-id)",
style="bold green"
)
@patch('crewai.cli.organization.main.console')
def test_switch_organization_not_found(self, mock_console):
mock_response = MagicMock()
mock_response.raise_for_status = MagicMock()
mock_response.json.return_value = [
{"name": "Org 1", "uuid": "org-123"},
{"name": "Org 2", "uuid": "org-456"}
]
self.org_command.plus_api_client = MagicMock()
self.org_command.plus_api_client.get_organizations.return_value = mock_response
self.org_command.switch("non-existent-id")
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_console.print.assert_called_once_with(
"Organization with id 'non-existent-id' not found.",
style="bold red"
)
@patch('crewai.cli.organization.main.console')
@patch('crewai.cli.organization.main.Settings')
def test_current_organization_with_org(self, mock_settings_class, mock_console):
mock_settings_instance = MagicMock()
mock_settings_instance.org_name = "Test Org"
mock_settings_instance.org_uuid = "test-id"
mock_settings_class.return_value = mock_settings_instance
self.org_command.current()
self.org_command.plus_api_client.get_organizations.assert_not_called()
mock_console.print.assert_called_once_with(
"Currently logged in to organization Test Org (test-id)",
style="bold green"
)
@patch('crewai.cli.organization.main.console')
@patch('crewai.cli.organization.main.Settings')
def test_current_organization_without_org(self, mock_settings_class, mock_console):
mock_settings_instance = MagicMock()
mock_settings_instance.org_uuid = None
mock_settings_class.return_value = mock_settings_instance
self.org_command.current()
assert mock_console.print.call_count == 3
mock_console.print.assert_any_call(
"You're not currently logged in to any organization.",
style="yellow"
)
@patch('crewai.cli.organization.main.console')
def test_list_organizations_unauthorized(self, mock_console):
mock_response = MagicMock()
mock_http_error = requests.exceptions.HTTPError(
"401 Client Error: Unauthorized",
response=MagicMock(status_code=401)
)
mock_response.raise_for_status.side_effect = mock_http_error
self.org_command.plus_api_client.get_organizations.return_value = mock_response
self.org_command.list()
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_console.print.assert_called_once_with(
"You are not logged in to any organization. Use 'crewai login' to login.",
style="bold red"
)
@patch('crewai.cli.organization.main.console')
def test_switch_organization_unauthorized(self, mock_console):
mock_response = MagicMock()
mock_http_error = requests.exceptions.HTTPError(
"401 Client Error: Unauthorized",
response=MagicMock(status_code=401)
)
mock_response.raise_for_status.side_effect = mock_http_error
self.org_command.plus_api_client.get_organizations.return_value = mock_response
self.org_command.switch("test-id")
self.org_command.plus_api_client.get_organizations.assert_called_once()
mock_console.print.assert_called_once_with(
"You are not logged in to any organization. Use 'crewai login' to login.",
style="bold red"
)

View File

@@ -1,6 +1,6 @@
import os
import unittest
from unittest.mock import MagicMock, patch
from unittest.mock import MagicMock, patch, ANY
from crewai.cli.plus_api import PlusAPI
@@ -9,6 +9,7 @@ class TestPlusAPI(unittest.TestCase):
def setUp(self):
self.api_key = "test_api_key"
self.api = PlusAPI(self.api_key)
self.org_uuid = "test-org-uuid"
def test_init(self):
self.assertEqual(self.api.api_key, self.api_key)
@@ -29,17 +30,96 @@ class TestPlusAPI(unittest.TestCase):
)
self.assertEqual(response, mock_response)
def assert_request_with_org_id(self, mock_make_request, method: str, endpoint: str, **kwargs):
mock_make_request.assert_called_once_with(
method, f"https://app.crewai.com{endpoint}", headers={'Authorization': ANY, 'Content-Type': ANY, 'User-Agent': ANY, 'X-Crewai-Version': ANY, 'X-Crewai-Organization-Id': self.org_uuid}, **kwargs
)
@patch("crewai.cli.plus_api.Settings")
@patch("requests.Session.request")
def test_login_to_tool_repository_with_org_uuid(self, mock_make_request, mock_settings_class):
mock_settings = MagicMock()
mock_settings.org_uuid = self.org_uuid
mock_settings_class.return_value = mock_settings
# re-initialize Client
self.api = PlusAPI(self.api_key)
mock_response = MagicMock()
mock_make_request.return_value = mock_response
response = self.api.login_to_tool_repository()
self.assert_request_with_org_id(
mock_make_request,
'POST',
'/crewai_plus/api/v1/tools/login'
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.PlusAPI._make_request")
def test_get_agent(self, mock_make_request):
mock_response = MagicMock()
mock_make_request.return_value = mock_response
response = self.api.get_agent("test_agent_handle")
mock_make_request.assert_called_once_with(
"GET", "/crewai_plus/api/v1/agents/test_agent_handle"
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.Settings")
@patch("requests.Session.request")
def test_get_agent_with_org_uuid(self, mock_make_request, mock_settings_class):
mock_settings = MagicMock()
mock_settings.org_uuid = self.org_uuid
mock_settings_class.return_value = mock_settings
# re-initialize Client
self.api = PlusAPI(self.api_key)
mock_response = MagicMock()
mock_make_request.return_value = mock_response
response = self.api.get_agent("test_agent_handle")
self.assert_request_with_org_id(
mock_make_request,
"GET",
"/crewai_plus/api/v1/agents/test_agent_handle"
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.PlusAPI._make_request")
def test_get_tool(self, mock_make_request):
mock_response = MagicMock()
mock_make_request.return_value = mock_response
response = self.api.get_tool("test_tool_handle")
mock_make_request.assert_called_once_with(
"GET", "/crewai_plus/api/v1/tools/test_tool_handle"
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.Settings")
@patch("requests.Session.request")
def test_get_tool_with_org_uuid(self, mock_make_request, mock_settings_class):
mock_settings = MagicMock()
mock_settings.org_uuid = self.org_uuid
mock_settings_class.return_value = mock_settings
# re-initialize Client
self.api = PlusAPI(self.api_key)
# Set up mock response
mock_response = MagicMock()
mock_make_request.return_value = mock_response
response = self.api.get_tool("test_tool_handle")
self.assert_request_with_org_id(
mock_make_request,
"GET",
"/crewai_plus/api/v1/tools/test_tool_handle"
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.PlusAPI._make_request")
def test_publish_tool(self, mock_make_request):
@@ -61,11 +141,53 @@ class TestPlusAPI(unittest.TestCase):
"version": version,
"file": encoded_file,
"description": description,
"available_exports": None,
}
mock_make_request.assert_called_once_with(
"POST", "/crewai_plus/api/v1/tools", json=params
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.Settings")
@patch("requests.Session.request")
def test_publish_tool_with_org_uuid(self, mock_make_request, mock_settings_class):
mock_settings = MagicMock()
mock_settings.org_uuid = self.org_uuid
mock_settings_class.return_value = mock_settings
# re-initialize Client
self.api = PlusAPI(self.api_key)
# Set up mock response
mock_response = MagicMock()
mock_make_request.return_value = mock_response
handle = "test_tool_handle"
public = True
version = "1.0.0"
description = "Test tool description"
encoded_file = "encoded_test_file"
response = self.api.publish_tool(
handle, public, version, description, encoded_file
)
# Expected params including organization_uuid
expected_params = {
"handle": handle,
"public": public,
"version": version,
"file": encoded_file,
"description": description,
"available_exports": None,
}
self.assert_request_with_org_id(
mock_make_request,
"POST",
"/crewai_plus/api/v1/tools",
json=expected_params
)
self.assertEqual(response, mock_response)
@patch("crewai.cli.plus_api.PlusAPI._make_request")
def test_publish_tool_without_description(self, mock_make_request):
@@ -87,6 +209,7 @@ class TestPlusAPI(unittest.TestCase):
"version": version,
"file": encoded_file,
"description": description,
"available_exports": None,
}
mock_make_request.assert_called_once_with(
"POST", "/crewai_plus/api/v1/tools", json=params

View File

@@ -1,6 +1,7 @@
import os
import shutil
import tempfile
from pathlib import Path
import pytest
@@ -100,3 +101,163 @@ def test_tree_copy_to_existing_directory(temp_tree):
assert os.path.isfile(os.path.join(dest_dir, "file1.txt"))
finally:
shutil.rmtree(dest_dir)
@pytest.fixture
def temp_project_dir():
"""Create a temporary directory for testing tool extraction."""
with tempfile.TemporaryDirectory() as temp_dir:
yield Path(temp_dir)
def create_init_file(directory, content):
return create_file(directory / "__init__.py", content)
def test_extract_available_exports_empty_project(temp_project_dir, capsys):
with pytest.raises(SystemExit):
utils.extract_available_exports(dir_path=temp_project_dir)
captured = capsys.readouterr()
assert "No valid tools were exposed in your __init__.py file" in captured.out
def test_extract_available_exports_no_init_file(temp_project_dir, capsys):
(temp_project_dir / "some_file.py").write_text("print('hello')")
with pytest.raises(SystemExit):
utils.extract_available_exports(dir_path=temp_project_dir)
captured = capsys.readouterr()
assert "No valid tools were exposed in your __init__.py file" in captured.out
def test_extract_available_exports_empty_init_file(temp_project_dir, capsys):
create_init_file(temp_project_dir, "")
with pytest.raises(SystemExit):
utils.extract_available_exports(dir_path=temp_project_dir)
captured = capsys.readouterr()
assert "Warning: No __all__ defined in" in captured.out
def test_extract_available_exports_no_all_variable(temp_project_dir, capsys):
create_init_file(
temp_project_dir,
"from crewai.tools import BaseTool\n\nclass MyTool(BaseTool):\n pass",
)
with pytest.raises(SystemExit):
utils.extract_available_exports(dir_path=temp_project_dir)
captured = capsys.readouterr()
assert "Warning: No __all__ defined in" in captured.out
def test_extract_available_exports_valid_base_tool_class(temp_project_dir):
create_init_file(
temp_project_dir,
"""from crewai.tools import BaseTool
class MyTool(BaseTool):
name: str = "my_tool"
description: str = "A test tool"
__all__ = ['MyTool']
""",
)
tools = utils.extract_available_exports(dir_path=temp_project_dir)
assert [{"name": "MyTool"}] == tools
def test_extract_available_exports_valid_tool_decorator(temp_project_dir):
create_init_file(
temp_project_dir,
"""from crewai.tools import tool
@tool
def my_tool_function(text: str) -> str:
\"\"\"A test tool function\"\"\"
return text
__all__ = ['my_tool_function']
""",
)
tools = utils.extract_available_exports(dir_path=temp_project_dir)
assert [{"name": "my_tool_function"}] == tools
def test_extract_available_exports_multiple_valid_tools(temp_project_dir):
create_init_file(
temp_project_dir,
"""from crewai.tools import BaseTool, tool
class MyTool(BaseTool):
name: str = "my_tool"
description: str = "A test tool"
@tool
def my_tool_function(text: str) -> str:
\"\"\"A test tool function\"\"\"
return text
__all__ = ['MyTool', 'my_tool_function']
""",
)
tools = utils.extract_available_exports(dir_path=temp_project_dir)
assert [{"name": "MyTool"}, {"name": "my_tool_function"}] == tools
def test_extract_available_exports_with_invalid_tool_decorator(temp_project_dir):
create_init_file(
temp_project_dir,
"""from crewai.tools import BaseTool
class MyTool(BaseTool):
name: str = "my_tool"
description: str = "A test tool"
def not_a_tool():
pass
__all__ = ['MyTool', 'not_a_tool']
""",
)
tools = utils.extract_available_exports(dir_path=temp_project_dir)
assert [{"name": "MyTool"}] == tools
def test_extract_available_exports_import_error(temp_project_dir, capsys):
create_init_file(
temp_project_dir,
"""from nonexistent_module import something
class MyTool(BaseTool):
pass
__all__ = ['MyTool']
""",
)
with pytest.raises(SystemExit):
utils.extract_available_exports(dir_path=temp_project_dir)
captured = capsys.readouterr()
assert "nonexistent_module" in captured.out
def test_extract_available_exports_syntax_error(temp_project_dir, capsys):
create_init_file(
temp_project_dir,
"""from crewai.tools import BaseTool
class MyTool(BaseTool):
# Missing closing parenthesis
def __init__(self, name:
pass
__all__ = ['MyTool']
""",
)
with pytest.raises(SystemExit):
utils.extract_available_exports(dir_path=temp_project_dir)
captured = capsys.readouterr()
assert "was never closed" in captured.out

View File

@@ -56,7 +56,8 @@ def test_create_success(mock_subprocess, capsys, tool_command):
@patch("crewai.cli.tools.main.subprocess.run")
@patch("crewai.cli.plus_api.PlusAPI.get_tool")
def test_install_success(mock_get, mock_subprocess_run, capsys, tool_command):
@patch("crewai.cli.tools.main.ToolCommand._print_current_organization")
def test_install_success(mock_print_org, mock_get, mock_subprocess_run, capsys, tool_command):
mock_get_response = MagicMock()
mock_get_response.status_code = 200
mock_get_response.json.return_value = {
@@ -85,6 +86,39 @@ def test_install_success(mock_get, mock_subprocess_run, capsys, tool_command):
env=unittest.mock.ANY,
)
# Verify _print_current_organization was called
mock_print_org.assert_called_once()
@patch("crewai.cli.tools.main.subprocess.run")
@patch("crewai.cli.plus_api.PlusAPI.get_tool")
def test_install_success_from_pypi(mock_get, mock_subprocess_run, capsys, tool_command):
mock_get_response = MagicMock()
mock_get_response.status_code = 200
mock_get_response.json.return_value = {
"handle": "sample-tool",
"repository": {"handle": "sample-repo", "url": "https://example.com/repo"},
"source": "pypi",
}
mock_get.return_value = mock_get_response
mock_subprocess_run.return_value = MagicMock(stderr=None)
tool_command.install("sample-tool")
output = capsys.readouterr().out
assert "Successfully installed sample-tool" in output
mock_get.assert_has_calls([mock.call("sample-tool"), mock.call().json()])
mock_subprocess_run.assert_any_call(
[
"uv",
"add",
"sample-tool",
],
capture_output=False,
text=True,
check=True,
env=unittest.mock.ANY,
)
@patch("crewai.cli.plus_api.PlusAPI.get_tool")
def test_install_tool_not_found(mock_get, capsys, tool_command):
@@ -135,7 +169,11 @@ def test_publish_when_not_in_sync(mock_is_synced, capsys, tool_command):
)
@patch("crewai.cli.plus_api.PlusAPI.publish_tool")
@patch("crewai.cli.tools.main.git.Repository.is_synced", return_value=False)
@patch("crewai.cli.tools.main.extract_available_exports", return_value=[{"name": "SampleTool"}])
@patch("crewai.cli.tools.main.ToolCommand._print_current_organization")
def test_publish_when_not_in_sync_and_force(
mock_print_org,
mock_available_exports,
mock_is_synced,
mock_publish,
mock_open,
@@ -168,7 +206,9 @@ def test_publish_when_not_in_sync_and_force(
version="1.0.0",
description="A sample tool",
encoded_file=unittest.mock.ANY,
available_exports=[{"name": "SampleTool"}],
)
mock_print_org.assert_called_once()
@patch("crewai.cli.tools.main.get_project_name", return_value="sample-tool")
@@ -183,7 +223,9 @@ def test_publish_when_not_in_sync_and_force(
)
@patch("crewai.cli.plus_api.PlusAPI.publish_tool")
@patch("crewai.cli.tools.main.git.Repository.is_synced", return_value=True)
@patch("crewai.cli.tools.main.extract_available_exports", return_value=[{"name": "SampleTool"}])
def test_publish_success(
mock_available_exports,
mock_is_synced,
mock_publish,
mock_open,
@@ -216,6 +258,7 @@ def test_publish_success(
version="1.0.0",
description="A sample tool",
encoded_file=unittest.mock.ANY,
available_exports=[{"name": "SampleTool"}],
)
@@ -230,7 +273,9 @@ def test_publish_success(
read_data=b"sample tarball content",
)
@patch("crewai.cli.plus_api.PlusAPI.publish_tool")
@patch("crewai.cli.tools.main.extract_available_exports", return_value=[{"name": "SampleTool"}])
def test_publish_failure(
mock_available_exports,
mock_publish,
mock_open,
mock_listdir,
@@ -266,7 +311,9 @@ def test_publish_failure(
read_data=b"sample tarball content",
)
@patch("crewai.cli.plus_api.PlusAPI.publish_tool")
@patch("crewai.cli.tools.main.extract_available_exports", return_value=[{"name": "SampleTool"}])
def test_publish_api_error(
mock_available_exports,
mock_publish,
mock_open,
mock_listdir,
@@ -289,3 +336,27 @@ def test_publish_api_error(
assert "Request to Enterprise API failed" in output
mock_publish.assert_called_once()
@patch("crewai.cli.tools.main.Settings")
def test_print_current_organization_with_org(mock_settings, capsys, tool_command):
mock_settings_instance = MagicMock()
mock_settings_instance.org_uuid = "test-org-uuid"
mock_settings_instance.org_name = "Test Organization"
mock_settings.return_value = mock_settings_instance
tool_command._print_current_organization()
output = capsys.readouterr().out
assert "Current organization: Test Organization (test-org-uuid)" in output
@patch("crewai.cli.tools.main.Settings")
def test_print_current_organization_without_org(mock_settings, capsys, tool_command):
mock_settings_instance = MagicMock()
mock_settings_instance.org_uuid = None
mock_settings_instance.org_name = None
mock_settings.return_value = mock_settings_instance
tool_command._print_current_organization()
output = capsys.readouterr().out
assert "No organization currently set" in output
assert "org switch <org_id>" in output

View File

@@ -1765,6 +1765,50 @@ def test_agent_usage_metrics_are_captured_for_hierarchical_process():
)
def test_hierarchical_kickoff_usage_metrics_include_manager(researcher):
"""Ensure Crew.kickoff() sums UsageMetrics from both regular and manager agents."""
# ── 1. Build the manager and a simple task ──────────────────────────────────
manager = Agent(
role="Manager",
goal="Coordinate everything.",
backstory="Keeps the project on track.",
allow_delegation=False,
)
task = Task(
description="Say hello",
expected_output="Hello",
agent=researcher, # *regular* agent
)
# ── 2. Stub out each agents _token_process.get_summary() ───────────────────
researcher_metrics = UsageMetrics(total_tokens=120, prompt_tokens=80, completion_tokens=40, successful_requests=2)
manager_metrics = UsageMetrics(total_tokens=30, prompt_tokens=20, completion_tokens=10, successful_requests=1)
# Replace the internal _token_process objects with simple mocks
researcher._token_process = MagicMock(get_summary=MagicMock(return_value=researcher_metrics))
manager._token_process = MagicMock(get_summary=MagicMock(return_value=manager_metrics))
# ── 3. Create the crew (hierarchical!) and kick it off ──────────────────────
crew = Crew(
agents=[researcher], # regular agents
manager_agent=manager, # manager to be included
tasks=[task],
process=Process.hierarchical,
)
# We dont care about LLM output here; patch execute_sync to avoid network
with patch.object(Task, "execute_sync", return_value=TaskOutput(description="dummy", raw="Hello", agent=researcher.role)):
crew.kickoff()
# ── 4. Assert the aggregated numbers are the *sum* of both agents ───────────
assert crew.usage_metrics.total_tokens == researcher_metrics.total_tokens + manager_metrics.total_tokens
assert crew.usage_metrics.prompt_tokens == researcher_metrics.prompt_tokens + manager_metrics.prompt_tokens
assert crew.usage_metrics.completion_tokens == researcher_metrics.completion_tokens + manager_metrics.completion_tokens
assert crew.usage_metrics.successful_requests == researcher_metrics.successful_requests + manager_metrics.successful_requests
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_crew_creation_tasks_with_agents(researcher, writer):
"""
@@ -4564,5 +4608,3 @@ def test_reset_agent_knowledge_with_only_agent_knowledge(researcher,writer):
crew.reset_memories(command_type='agent_knowledge')
mock_reset_agent_knowledge.assert_called_once_with([mock_ks_research,mock_ks_writer])

View File

@@ -9,6 +9,14 @@ from crewai.telemetry import Telemetry
from opentelemetry import trace
@pytest.fixture(autouse=True)
def cleanup_telemetry():
"""Automatically clean up Telemetry singleton between tests."""
Telemetry._instance = None
yield
Telemetry._instance = None
@pytest.mark.parametrize(
"env_var,value,expected_ready",
[

View File

@@ -1,11 +1,19 @@
import os
from unittest.mock import patch
from unittest.mock import patch, MagicMock
import pytest
from crewai.telemetry import Telemetry
@pytest.fixture(autouse=True)
def cleanup_telemetry():
"""Automatically clean up Telemetry singleton between tests."""
Telemetry._instance = None
yield
Telemetry._instance = None
@pytest.mark.parametrize("env_var,value,expected_ready", [
("OTEL_SDK_DISABLED", "true", False),
("OTEL_SDK_DISABLED", "TRUE", False),
@@ -28,3 +36,59 @@ def test_telemetry_enabled_by_default():
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry = Telemetry()
assert telemetry.ready is True
def test_telemetry_disable_after_singleton_creation():
"""Test that telemetry operations are disabled when env var is set after singleton creation."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry = Telemetry()
assert telemetry.ready is True
mock_operation = MagicMock()
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_called_once()
mock_operation.reset_mock()
os.environ['CREWAI_DISABLE_TELEMETRY'] = 'true'
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()
def test_telemetry_disable_with_multiple_instances():
"""Test that multiple telemetry instances respect dynamically changed env vars."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry1 = Telemetry()
assert telemetry1.ready is True
os.environ['CREWAI_DISABLE_TELEMETRY'] = 'true'
telemetry2 = Telemetry()
assert telemetry2 is telemetry1
assert telemetry2.ready is True
mock_operation = MagicMock()
telemetry2._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()
def test_telemetry_otel_sdk_disabled_after_creation():
"""Test that OTEL_SDK_DISABLED also works when set after singleton creation."""
with patch.dict(os.environ, {}, clear=True):
with patch("crewai.telemetry.telemetry.TracerProvider"):
telemetry = Telemetry()
assert telemetry.ready is True
mock_operation = MagicMock()
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_called_once()
mock_operation.reset_mock()
os.environ['OTEL_SDK_DISABLED'] = 'true'
telemetry._safe_telemetry_operation(mock_operation)
mock_operation.assert_not_called()

View File

@@ -0,0 +1,167 @@
import pytest
from unittest.mock import patch, MagicMock
from crewai.utilities.events.event_listener import event_listener
class TestFlowHumanInputIntegration:
"""Test integration between Flow execution and human input functionality."""
def test_console_formatter_pause_resume_methods(self):
"""Test that ConsoleFormatter pause/resume methods work correctly."""
formatter = event_listener.formatter
original_paused_state = formatter._live_paused
try:
formatter._live_paused = False
formatter.pause_live_updates()
assert formatter._live_paused
formatter.resume_live_updates()
assert not formatter._live_paused
finally:
formatter._live_paused = original_paused_state
@patch('builtins.input', return_value='')
def test_human_input_pauses_flow_updates(self, mock_input):
"""Test that human input pauses Flow status updates."""
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
executor = CrewAgentExecutorMixin()
executor.crew = MagicMock()
executor.crew._train = False
executor._printer = MagicMock()
formatter = event_listener.formatter
original_paused_state = formatter._live_paused
try:
formatter._live_paused = False
with patch.object(formatter, 'pause_live_updates') as mock_pause, \
patch.object(formatter, 'resume_live_updates') as mock_resume:
result = executor._ask_human_input("Test result")
mock_pause.assert_called_once()
mock_resume.assert_called_once()
mock_input.assert_called_once()
assert result == ''
finally:
formatter._live_paused = original_paused_state
@patch('builtins.input', side_effect=['feedback', ''])
def test_multiple_human_input_rounds(self, mock_input):
"""Test multiple rounds of human input with Flow status management."""
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
executor = CrewAgentExecutorMixin()
executor.crew = MagicMock()
executor.crew._train = False
executor._printer = MagicMock()
formatter = event_listener.formatter
original_paused_state = formatter._live_paused
try:
pause_calls = []
resume_calls = []
def track_pause():
pause_calls.append(True)
def track_resume():
resume_calls.append(True)
with patch.object(formatter, 'pause_live_updates', side_effect=track_pause), \
patch.object(formatter, 'resume_live_updates', side_effect=track_resume):
result1 = executor._ask_human_input("Test result 1")
assert result1 == 'feedback'
result2 = executor._ask_human_input("Test result 2")
assert result2 == ''
assert len(pause_calls) == 2
assert len(resume_calls) == 2
finally:
formatter._live_paused = original_paused_state
def test_pause_resume_with_no_live_session(self):
"""Test pause/resume methods handle case when no Live session exists."""
formatter = event_listener.formatter
original_live = formatter._live
original_paused_state = formatter._live_paused
try:
formatter._live = None
formatter._live_paused = False
formatter.pause_live_updates()
formatter.resume_live_updates()
assert not formatter._live_paused
finally:
formatter._live = original_live
formatter._live_paused = original_paused_state
def test_pause_resume_exception_handling(self):
"""Test that resume is called even if exception occurs during human input."""
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
executor = CrewAgentExecutorMixin()
executor.crew = MagicMock()
executor.crew._train = False
executor._printer = MagicMock()
formatter = event_listener.formatter
original_paused_state = formatter._live_paused
try:
with patch.object(formatter, 'pause_live_updates') as mock_pause, \
patch.object(formatter, 'resume_live_updates') as mock_resume, \
patch('builtins.input', side_effect=KeyboardInterrupt("Test exception")):
with pytest.raises(KeyboardInterrupt):
executor._ask_human_input("Test result")
mock_pause.assert_called_once()
mock_resume.assert_called_once()
finally:
formatter._live_paused = original_paused_state
def test_training_mode_human_input(self):
"""Test human input in training mode."""
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
executor = CrewAgentExecutorMixin()
executor.crew = MagicMock()
executor.crew._train = True
executor._printer = MagicMock()
formatter = event_listener.formatter
original_paused_state = formatter._live_paused
try:
with patch.object(formatter, 'pause_live_updates') as mock_pause, \
patch.object(formatter, 'resume_live_updates') as mock_resume, \
patch('builtins.input', return_value='training feedback'):
result = executor._ask_human_input("Test result")
mock_pause.assert_called_once()
mock_resume.assert_called_once()
assert result == 'training feedback'
executor._printer.print.assert_called()
call_args = [call[1]['content'] for call in executor._printer.print.call_args_list]
training_prompt_found = any('TRAINING MODE' in content for content in call_args)
assert training_prompt_found
finally:
formatter._live_paused = original_paused_state

View File

@@ -1,4 +1,4 @@
import asyncio
from collections import defaultdict
from typing import cast
from unittest.mock import Mock
@@ -313,5 +313,108 @@ def test_sets_parent_flow_when_inside_flow():
nonlocal captured_agent
captured_agent = source
result = flow.kickoff()
flow.kickoff()
assert captured_agent.parent_flow is flow
@pytest.mark.vcr(filter_headers=["authorization"])
def test_guardrail_is_called_using_string():
guardrail_events = defaultdict(list)
from crewai.utilities.events import LLMGuardrailCompletedEvent, LLMGuardrailStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMGuardrailStartedEvent)
def capture_guardrail_started(source, event):
guardrail_events["started"].append(event)
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
def capture_guardrail_completed(source, event):
guardrail_events["completed"].append(event)
agent = Agent(
role="Sports Analyst",
goal="Gather information about the best soccer players",
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
guardrail="""Only include Brazilian players, both women and men""",
)
result = agent.kickoff(messages="Top 10 best players in the world?")
assert len(guardrail_events['started']) == 2
assert len(guardrail_events['completed']) == 2
assert not guardrail_events['completed'][0].success
assert guardrail_events['completed'][1].success
assert "Here are the top 10 best soccer players in the world, focusing exclusively on Brazilian players" in result.raw
@pytest.mark.vcr(filter_headers=["authorization"])
def test_guardrail_is_called_using_callable():
guardrail_events = defaultdict(list)
from crewai.utilities.events import LLMGuardrailCompletedEvent, LLMGuardrailStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMGuardrailStartedEvent)
def capture_guardrail_started(source, event):
guardrail_events["started"].append(event)
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
def capture_guardrail_completed(source, event):
guardrail_events["completed"].append(event)
agent = Agent(
role="Sports Analyst",
goal="Gather information about the best soccer players",
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
guardrail=lambda output: (True, "Pelé - Santos, 1958"),
)
result = agent.kickoff(messages="Top 1 best players in the world?")
assert len(guardrail_events['started']) == 1
assert len(guardrail_events['completed']) == 1
assert guardrail_events['completed'][0].success
assert "Pelé - Santos, 1958" in result.raw
@pytest.mark.vcr(filter_headers=["authorization"])
def test_guardrail_reached_attempt_limit():
guardrail_events = defaultdict(list)
from crewai.utilities.events import LLMGuardrailCompletedEvent, LLMGuardrailStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(LLMGuardrailStartedEvent)
def capture_guardrail_started(source, event):
guardrail_events["started"].append(event)
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
def capture_guardrail_completed(source, event):
guardrail_events["completed"].append(event)
agent = Agent(
role="Sports Analyst",
goal="Gather information about the best soccer players",
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
guardrail=lambda output: (False, "You are not allowed to include Brazilian players"),
guardrail_max_retries=2,
)
with pytest.raises(Exception, match="Agent's guardrail failed validation after 2 retries"):
agent.kickoff(messages="Top 10 best players in the world?")
assert len(guardrail_events['started']) == 3 # 2 retries + 1 initial call
assert len(guardrail_events['completed']) == 3 # 2 retries + 1 initial call
assert not guardrail_events['completed'][0].success
assert not guardrail_events['completed'][1].success
assert not guardrail_events['completed'][2].success
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_output_when_guardrail_returns_base_model():
class Player(BaseModel):
name: str
country: str
agent = Agent(
role="Sports Analyst",
goal="Gather information about the best soccer players",
backstory="""You are an expert at gathering and organizing information. You carefully collect details and present them in a structured way.""",
guardrail=lambda output: (True, Player(name="Lionel Messi", country="Argentina")),
)
result = agent.kickoff(messages="Top 10 best players in the world?")
assert result.pydantic == Player(name="Lionel Messi", country="Argentina")

View File

@@ -25,122 +25,206 @@ def schema_class():
return TestSchema
class InternalCrewStructuredTool:
def test_initialization(self, basic_function, schema_class):
"""Test basic initialization of CrewStructuredTool"""
tool = CrewStructuredTool(
name="test_tool",
description="Test tool description",
func=basic_function,
args_schema=schema_class,
)
def test_initialization(basic_function, schema_class):
"""Test basic initialization of CrewStructuredTool"""
tool = CrewStructuredTool(
name="test_tool",
description="Test tool description",
func=basic_function,
args_schema=schema_class,
)
assert tool.name == "test_tool"
assert tool.description == "Test tool description"
assert tool.func == basic_function
assert tool.args_schema == schema_class
assert tool.name == "test_tool"
assert tool.description == "Test tool description"
assert tool.func == basic_function
assert tool.args_schema == schema_class
def test_from_function(self, basic_function):
"""Test creating tool from function"""
tool = CrewStructuredTool.from_function(
func=basic_function, name="test_tool", description="Test description"
)
def test_from_function(basic_function):
"""Test creating tool from function"""
tool = CrewStructuredTool.from_function(
func=basic_function, name="test_tool", description="Test description"
)
assert tool.name == "test_tool"
assert tool.description == "Test description"
assert tool.func == basic_function
assert isinstance(tool.args_schema, type(BaseModel))
assert tool.name == "test_tool"
assert tool.description == "Test description"
assert tool.func == basic_function
assert isinstance(tool.args_schema, type(BaseModel))
def test_validate_function_signature(self, basic_function, schema_class):
"""Test function signature validation"""
tool = CrewStructuredTool(
name="test_tool",
description="Test tool",
func=basic_function,
args_schema=schema_class,
)
def test_validate_function_signature(basic_function, schema_class):
"""Test function signature validation"""
tool = CrewStructuredTool(
name="test_tool",
description="Test tool",
func=basic_function,
args_schema=schema_class,
)
# Should not raise any exceptions
tool._validate_function_signature()
# Should not raise any exceptions
tool._validate_function_signature()
@pytest.mark.asyncio
async def test_ainvoke(self, basic_function):
"""Test asynchronous invocation"""
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
@pytest.mark.asyncio
async def test_ainvoke(basic_function):
"""Test asynchronous invocation"""
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
result = await tool.ainvoke(input={"param1": "test"})
assert result == "test 0"
result = await tool.ainvoke(input={"param1": "test"})
assert result == "test 0"
def test_parse_args_dict(self, basic_function):
"""Test parsing dictionary arguments"""
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
def test_parse_args_dict(basic_function):
"""Test parsing dictionary arguments"""
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
parsed = tool._parse_args({"param1": "test", "param2": 42})
assert parsed["param1"] == "test"
assert parsed["param2"] == 42
parsed = tool._parse_args({"param1": "test", "param2": 42})
assert parsed["param1"] == "test"
assert parsed["param2"] == 42
def test_parse_args_string(self, basic_function):
"""Test parsing string arguments"""
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
def test_parse_args_string(basic_function):
"""Test parsing string arguments"""
tool = CrewStructuredTool.from_function(func=basic_function, name="test_tool")
parsed = tool._parse_args('{"param1": "test", "param2": 42}')
assert parsed["param1"] == "test"
assert parsed["param2"] == 42
parsed = tool._parse_args('{"param1": "test", "param2": 42}')
assert parsed["param1"] == "test"
assert parsed["param2"] == 42
def test_complex_types(self):
"""Test handling of complex parameter types"""
def test_complex_types():
"""Test handling of complex parameter types"""
def complex_func(nested: dict, items: list) -> str:
"""Process complex types."""
return f"Processed {len(items)} items with {len(nested)} nested keys"
def complex_func(nested: dict, items: list) -> str:
"""Process complex types."""
return f"Processed {len(items)} items with {len(nested)} nested keys"
tool = CrewStructuredTool.from_function(
func=complex_func, name="test_tool", description="Test complex types"
)
result = tool.invoke({"nested": {"key": "value"}, "items": [1, 2, 3]})
assert result == "Processed 3 items with 1 nested keys"
tool = CrewStructuredTool.from_function(
func=complex_func, name="test_tool", description="Test complex types"
)
result = tool.invoke({"nested": {"key": "value"}, "items": [1, 2, 3]})
assert result == "Processed 3 items with 1 nested keys"
def test_schema_inheritance(self):
"""Test tool creation with inherited schema"""
def test_schema_inheritance():
"""Test tool creation with inherited schema"""
def extended_func(base_param: str, extra_param: int) -> str:
"""Test function with inherited schema."""
return f"{base_param} {extra_param}"
def extended_func(base_param: str, extra_param: int) -> str:
"""Test function with inherited schema."""
return f"{base_param} {extra_param}"
class BaseSchema(BaseModel):
base_param: str
class BaseSchema(BaseModel):
base_param: str
class ExtendedSchema(BaseSchema):
extra_param: int
class ExtendedSchema(BaseSchema):
extra_param: int
tool = CrewStructuredTool.from_function(
func=extended_func, name="test_tool", args_schema=ExtendedSchema
)
tool = CrewStructuredTool.from_function(
func=extended_func, name="test_tool", args_schema=ExtendedSchema
)
result = tool.invoke({"base_param": "test", "extra_param": 42})
assert result == "test 42"
result = tool.invoke({"base_param": "test", "extra_param": 42})
assert result == "test 42"
def test_default_values_in_schema(self):
"""Test handling of default values in schema"""
def test_default_values_in_schema():
"""Test handling of default values in schema"""
def default_func(
required_param: str,
optional_param: str = "default",
nullable_param: Optional[int] = None,
) -> str:
"""Test function with default values."""
return f"{required_param} {optional_param} {nullable_param}"
def default_func(
required_param: str,
optional_param: str = "default",
nullable_param: Optional[int] = None,
) -> str:
"""Test function with default values."""
return f"{required_param} {optional_param} {nullable_param}"
tool = CrewStructuredTool.from_function(
func=default_func, name="test_tool", description="Test defaults"
)
tool = CrewStructuredTool.from_function(
func=default_func, name="test_tool", description="Test defaults"
)
# Test with minimal parameters
result = tool.invoke({"required_param": "test"})
assert result == "test default None"
# Test with minimal parameters
result = tool.invoke({"required_param": "test"})
assert result == "test default None"
# Test with all parameters
result = tool.invoke(
{"required_param": "test", "optional_param": "custom", "nullable_param": 42}
)
assert result == "test custom 42"
# Test with all parameters
result = tool.invoke(
{"required_param": "test", "optional_param": "custom", "nullable_param": 42}
)
assert result == "test custom 42"
@pytest.fixture
def custom_tool_decorator():
from crewai.tools import tool
@tool("custom_tool", result_as_answer=True)
async def custom_tool():
"""This is a tool that does something"""
return "Hello World from Custom Tool"
return custom_tool
@pytest.fixture
def custom_tool():
from crewai.tools import BaseTool
class CustomTool(BaseTool):
name: str = "my_tool"
description: str = "This is a tool that does something"
result_as_answer: bool = True
async def _run(self):
return "Hello World from Custom Tool"
return CustomTool()
def build_simple_crew(tool):
from crewai import Agent, Task, Crew
agent1 = Agent(role="Simple role", goal="Simple goal", backstory="Simple backstory", tools=[tool])
say_hi_task = Task(
description="Use the custom tool result as answer.", agent=agent1, expected_output="Use the tool result"
)
crew = Crew(agents=[agent1], tasks=[say_hi_task])
return crew
@pytest.mark.vcr(filter_headers=["authorization"])
def test_async_tool_using_within_isolated_crew(custom_tool):
crew = build_simple_crew(custom_tool)
result = crew.kickoff()
assert result.raw == "Hello World from Custom Tool"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_async_tool_using_decorator_within_isolated_crew(custom_tool_decorator):
crew = build_simple_crew(custom_tool_decorator)
result = crew.kickoff()
assert result.raw == "Hello World from Custom Tool"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_async_tool_within_flow(custom_tool):
from crewai.flow.flow import Flow
class StructuredExampleFlow(Flow):
from crewai.flow.flow import start
@start()
async def start(self):
crew = build_simple_crew(custom_tool)
result = await crew.kickoff_async()
return result
flow = StructuredExampleFlow()
result = flow.kickoff()
assert result.raw == "Hello World from Custom Tool"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_async_tool_using_decorator_within_flow(custom_tool_decorator):
from crewai.flow.flow import Flow
class StructuredExampleFlow(Flow):
from crewai.flow.flow import start
@start()
async def start(self):
crew = build_simple_crew(custom_tool_decorator)
result = await crew.kickoff_async()
return result
flow = StructuredExampleFlow()
result = flow.kickoff()
assert result.raw == "Hello World from Custom Tool"

View File

@@ -0,0 +1,116 @@
from unittest.mock import MagicMock, patch
from rich.tree import Tree
from rich.live import Live
from crewai.utilities.events.utils.console_formatter import ConsoleFormatter
class TestConsoleFormatterPauseResume:
"""Test ConsoleFormatter pause/resume functionality."""
def test_pause_live_updates_with_active_session(self):
"""Test pausing when Live session is active."""
formatter = ConsoleFormatter()
mock_live = MagicMock(spec=Live)
formatter._live = mock_live
formatter._live_paused = False
formatter.pause_live_updates()
mock_live.stop.assert_called_once()
assert formatter._live_paused
def test_pause_live_updates_when_already_paused(self):
"""Test pausing when already paused does nothing."""
formatter = ConsoleFormatter()
mock_live = MagicMock(spec=Live)
formatter._live = mock_live
formatter._live_paused = True
formatter.pause_live_updates()
mock_live.stop.assert_not_called()
assert formatter._live_paused
def test_pause_live_updates_with_no_session(self):
"""Test pausing when no Live session exists."""
formatter = ConsoleFormatter()
formatter._live = None
formatter._live_paused = False
formatter.pause_live_updates()
assert formatter._live_paused
def test_resume_live_updates_when_paused(self):
"""Test resuming when paused."""
formatter = ConsoleFormatter()
formatter._live_paused = True
formatter.resume_live_updates()
assert not formatter._live_paused
def test_resume_live_updates_when_not_paused(self):
"""Test resuming when not paused does nothing."""
formatter = ConsoleFormatter()
formatter._live_paused = False
formatter.resume_live_updates()
assert not formatter._live_paused
def test_print_after_resume_restarts_live_session(self):
"""Test that printing a Tree after resume creates new Live session."""
formatter = ConsoleFormatter()
formatter._live_paused = True
formatter._live = None
formatter.resume_live_updates()
assert not formatter._live_paused
tree = Tree("Test")
with patch('crewai.utilities.events.utils.console_formatter.Live') as mock_live_class:
mock_live_instance = MagicMock()
mock_live_class.return_value = mock_live_instance
formatter.print(tree)
mock_live_class.assert_called_once()
mock_live_instance.start.assert_called_once()
assert formatter._live == mock_live_instance
def test_multiple_pause_resume_cycles(self):
"""Test multiple pause/resume cycles work correctly."""
formatter = ConsoleFormatter()
mock_live = MagicMock(spec=Live)
formatter._live = mock_live
formatter._live_paused = False
formatter.pause_live_updates()
assert formatter._live_paused
mock_live.stop.assert_called_once()
assert formatter._live is None # Live session should be cleared
formatter.resume_live_updates()
assert not formatter._live_paused
formatter.pause_live_updates()
assert formatter._live_paused
formatter.resume_live_updates()
assert not formatter._live_paused
def test_pause_resume_state_initialization(self):
"""Test that _live_paused is properly initialized."""
formatter = ConsoleFormatter()
assert hasattr(formatter, '_live_paused')
assert not formatter._live_paused

1739
uv.lock generated

File diff suppressed because it is too large Load Diff