Compare commits

...

136 Commits

Author SHA1 Message Date
Brandon Hancock (bhancock_ai)
8c507288be Merge branch 'main' into feat/add-event-emitters-to-flows 2024-12-11 10:14:21 -05:00
Paul Cowgill
da9220fa81 Remove manager_callbacks reference (#1741) 2024-12-11 10:13:57 -05:00
Brandon Hancock (bhancock_ai)
b98cead08d Merge branch 'main' into feat/add-event-emitters-to-flows 2024-12-10 16:28:44 -05:00
Brandon Hancock
d4801d2551 Fix linter 2024-12-10 16:27:12 -05:00
Brandon Hancock
d5e06cbda6 Clean up 2024-12-10 16:25:32 -05:00
Brandon Hancock
bc3fd789d9 include event emitter in flows 2024-12-10 16:22:01 -05:00
Archkon
da4f356fab fix:typo error (#1738)
* Update base_agent_tools.py

typo error

* Update main.py

typo error

* Update base_file_knowledge_source.py

typo error

* Update test_main.py

typo error

* Update en.json

* Update prompts.json

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-10 11:18:45 -05:00
Brandon Hancock (bhancock_ai)
d932b20c6e copy googles changes. Fix tests. Improve LLM file (#1737)
* copy googles changes. Fix tests. Improve LLM file

* Fix type issue
2024-12-10 11:14:37 -05:00
Brandon Hancock (bhancock_ai)
2f9a2afd9e Update pyproject.toml and uv.lock to drop crewai-tools as a default requirement (#1711) 2024-12-09 14:17:46 -05:00
Brandon Hancock (bhancock_ai)
c1df7c410e Bugfix/restrict python version compatibility (#1736)
* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip

* drop pipeline
2024-12-09 14:07:57 -05:00
Brandon Hancock (bhancock_ai)
54ebd6cf90 restrict python version compatibility (#1731)
* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip
2024-12-09 14:00:18 -05:00
Carlos Souza
6b87d22a70 Fix disk I/O error when resetting short-term memory. (#1724)
* Fix disk I/O error when resetting short-term memory.

Reset chromadb client and nullifies references before
removing directory.

* Nit for clarity

* did the same for knowledge_storage

* cleanup

* cleanup order

* Cleanup after the rm of the directories

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2024-12-09 10:30:51 -08:00
Piotr Mardziel
c4f7eaf259 Add missing @functools.wraps when wrapping functions and preserve wrapped class name in @CrewBase. (#1560)
* Update annotations.py

* Update utils.py

* Update crew_base.py

* Update utils.py

* Update crew_base.py

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:51:12 -05:00
Tony Kipkemboi
236e42d0bc format bullet points (#1734)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:40:01 -05:00
fuckqqcom
8c90db04b5 _execute_tool_and_check_finality 结果给回调参数,这样就可以提前拿到结果信息,去做数据解析判断做预判 (#1716)
Co-authored-by: xiaohan <fuck@qq.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:37:54 -05:00
lgesuellip
1261ce513f Add doc structured tool (#1713)
* Add doc structured tool

* Fix example

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 11:34:07 -05:00
Tony Kipkemboi
b07c51532c Merge pull request #1733 from rokbenko/main
[DOCS] Fix Spaceflight News API docs link on Knowledge docs page
2024-12-09 11:27:01 -05:00
Tony Kipkemboi
d763eefc2e Merge branch 'main' into main 2024-12-09 11:23:36 -05:00
Aviral Jain
e01c0a0f4c call storage.search in user context search instead of memory.search (#1692)
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-12-09 08:07:52 -08:00
Rok Benko
5a7a323f3a Fix Knowledge docs Spaceflight News API dead link 2024-12-09 10:58:51 -05:00
Archkon
46be5e8097 fix:typo error (#1732)
* Update crew_agent_executor.py

typo error

* Update en.json

typo error
2024-12-09 10:53:55 -05:00
Frieda Huang
bc2a86d66a Fixed output_file not respecting system path (#1726)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-09 10:05:54 -05:00
Eduardo Chiarotti
11a3d4b840 docs: Add quotes to agentops installing command (#1729)
* docs: Add quotes to agentops installing command

* feat: Add ContextualMemory to __init__

* feat: remove import due to circular improt

* feat: update tasks config main template typos
2024-12-09 11:42:36 -03:00
Brandon Hancock (bhancock_ai)
6930b68484 add support for langfuse with litellm (#1721) 2024-12-06 13:57:28 -05:00
Brandon Hancock (bhancock_ai)
c7c0647dd2 drop metadata requirement (#1712)
* drop metadata requirement

* fix linting

* Update docs for new knowledge

* more linting

* more linting

* make save_documents private

* update docs to the new way we use knowledge and include clearing memory
2024-12-05 14:59:52 -05:00
Brandon Hancock (bhancock_ai)
7b276e6797 Incorporate Stale PRs that have feedback (#1693)
* incorporate #1683

* add in --version flag to cli. closes #1679.

* Fix env issue

* Add in suggestions from @caike to make sure ragstorage doesnt exceed os file limit. Also, included additional checks to support windows.

* remove poetry.lock as pointed out by @sanders41 in #1574.

* Incorporate feedback from crewai reviewer

* Incorporate @lorenzejay feedback
2024-12-05 12:17:23 -05:00
João Moura
3daba0c79e curting new verson 2024-12-05 13:53:10 -03:00
João Moura
2c85e8e23a updating tools 2024-12-05 13:51:20 -03:00
Brandon Hancock (bhancock_ai)
b0f1d1fcf0 New docs about yaml crew with decorators. Simplify template crew with… (#1701)
* New docs about yaml crew with decorators. Simplify template crew with links

* Fix spelling issues.
2024-12-05 11:23:20 -05:00
Brandon Hancock (bhancock_ai)
611526596a Brandon/cre 509 hitl multiple rounds of followup (#1702)
* v1 of HITL working

* Drop print statements

* HITL code more robust. Still needs to be refactored.

* refactor and more clear messages

* Fix type issue

* fix tests

* Fix test again

* Drop extra print
2024-12-05 10:14:04 -05:00
Tony Kipkemboi
fa373f9660 add knowledge demo + improve knowledge docs (#1706) 2024-12-05 09:49:44 -05:00
Rashmi Pawar
48bb8ef775 docs: add nvidia as provider (#1632)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-04 15:38:46 -05:00
Brandon Hancock (bhancock_ai)
bbea797b0c remove all references to pipeline and pipeline router (#1661)
* remove all references to pipeline and router

* fix linting

* drop poetry.lock
2024-12-04 12:39:34 -05:00
Tony Kipkemboi
066ad73423 Merge pull request #1698 from crewAIInc/brandon/cre-510-update-docs-to-talk-about-pydantic-and-json-outputs
Talk about getting structured consistent outputs with tasks.
2024-12-04 11:07:52 -05:00
Tony Kipkemboi
0695c26703 Merge branch 'main' into brandon/cre-510-update-docs-to-talk-about-pydantic-and-json-outputs 2024-12-04 11:05:47 -05:00
Brandon Hancock
4fb3331c6a Talk about getting structured consistent outputs with tasks. 2024-12-04 10:46:39 -05:00
Stephen
b6c6eea6f5 Update README.md (#1694)
Corrected the statement which says users can not disable telemetry, but now users can disable by setting the environment variable OTEL_SDK_DISABLED to true.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 16:08:19 -05:00
Lorenze Jay
1af95f5146 Knowledge project directory standard (#1691)
* Knowledge project directory standard

* fixed types

* comment fix

* made base file knowledge source an abstract class

* cleaner validator on model_post_init

* fix type checker

* cleaner refactor

* better template
2024-12-03 12:27:48 -08:00
Feynman Liang
ed3487aa22 Fix indentation in llm-connections.mdx code block (#1573)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:52:23 -05:00
Patcher
77af733e44 [Doc]: Add documenation for openlit observability (#1612)
* Create openlit-observability.mdx

* Update doc with images and steps

* Update mkdocs.yml and add OpenLIT guide link

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:38:49 -05:00
Tom Mahler, PhD
aaf80d1d43 [FEATURE] Support for custom path in RAGStorage (#1659)
* added path to RAGStorage

* added path to short term and entity memory

* add path for long_term_storage for completeness

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 12:22:29 -05:00
Ola Hungerford
9e9b945a46 Update using langchain tools docs (#1664)
* Update example of how to use LangChain tools with correct syntax

* Use .env

* Add  Code back

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 11:13:06 -05:00
Javier Saldaña
308a8dc925 Update reset memories command based on the SDK (#1688)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 10:09:30 -05:00
Tony Kipkemboi
7d9d0ff6f7 fix missing code in flows docs (#1690)
* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text

* docs: add code snippet to Getting Started section in flows.mdx

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-03 10:02:06 -05:00
João Moura
f8a8e7b2a5 preparing new version 2024-12-02 18:28:58 -03:00
Brandon Hancock (bhancock_ai)
3285c1b196 Fixes issues with result as answer not properly exiting LLM loop (#1689)
* v1 of fix implemented. Need to confirm with tokens.

* remove print statements
2024-12-02 13:38:17 -05:00
Tony Kipkemboi
4bc23affe0 Documentation Improvements: LLM Configuration and Usage (#1684)
* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text
2024-12-02 09:50:12 -05:00
Tony Kipkemboi
bca56eea48 Merge pull request #1675 from rokbenko/rok
[DOCS] Update Agents docs to include two approaches for creating an agent
2024-11-30 11:26:10 -05:00
Rok Benko
588ad3c4a4 Update Agents docs to include two approaches for creating an agent: with and without YAML configuration 2024-11-28 17:20:53 +01:00
Lorenze Jay
c6a6c918e0 added knowledge to agent level (#1655)
* added knowledge to agent level

* linted

* added doc

* added from suggestions

* added test

* fixes from discussion

* fix docs

* fix test

* rm cassette for knowledge_sources test as its a mock and update agent doc string

* fix test

* rm unused

* linted
2024-11-27 11:33:07 -08:00
Brandon Hancock (bhancock_ai)
366bbbbea3 Feat/remove langchain (#1668)
* feat: add initial changes from langchain

* feat: remove kwargs of being processed

* feat: remove langchain, update uv.lock and fix type_hint

* feat: change docs

* feat: remove forced requirements for parameter

* feat add tests for new structure tool

* feat: fix tests and adapt code for args

* fix tool calling for langchain tools

* doc strings

---------

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-11-27 11:22:49 -05:00
Eduardo Chiarotti
293305790d Feat/remove langchain (#1654)
* feat: add initial changes from langchain

* feat: remove kwargs of being processed

* feat: remove langchain, update uv.lock and fix type_hint

* feat: change docs

* feat: remove forced requirements for parameter

* feat add tests for new structure tool

* feat: fix tests and adapt code for args
2024-11-26 16:59:52 -03:00
Ivan Peevski
8bc09eb054 Update readme for running mypy (#1614)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-26 12:45:08 -05:00
Brandon Hancock (bhancock_ai)
db1b678c3a fix spelling issue found by @Jacques-Murray (#1660) 2024-11-26 11:36:29 -05:00
Bowen Liang
6f32bf52cc update (#1638)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-26 11:24:21 -05:00
Bowen Liang
49d173a02d Update Github actions (#1639)
* actions/checkout@v4

* actions/cache@v4

* actions/setup-python@v5

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-26 11:08:50 -05:00
Brandon Hancock (bhancock_ai)
4069b621d5 Improve typed task outputs (#1651)
* V1 working

* clean up imports and prints

* more clean up and add tests

* fixing tests

* fix test

* fix linting

* Fix tests

* Fix linting

* add doc string as requested by eduardo
2024-11-26 09:41:14 -05:00
Tony Kipkemboi
a7147c99c6 Merge pull request #1652 from tonykipkemboi/main
add knowledge to mint.json
2024-11-25 16:51:48 -05:00
Tony Kipkemboi
6fe308202e add knowledge to mint.json 2024-11-25 20:37:27 +00:00
Vini Brasil
63ecb7395d Log in to Tool Repository on crewai login (#1650)
This commit adds an extra step to `crewai login` to ensure users also
log in to Tool Repository, that is, exchanging their Auth0 tokens for a
Tool Repository username and password to be used by UV downloads and API
tool uploads.
2024-11-25 15:57:47 -03:00
João Moura
8cf1cd5a62 preparing new version 2024-11-25 10:05:15 -03:00
Gui Vieira
93c0467bba Merge pull request #1640 from crewAIInc/gui/fix-threading
Fix threading
2024-11-21 15:50:46 -03:00
Gui Vieira
8f5f67de41 Fix threading 2024-11-21 15:33:20 -03:00
Andy Bromberg
f8ca49d8df Update Perplexity example in documentation (#1623) 2024-11-20 21:54:04 -03:00
Bob Conan
c119230fd6 Updated README.md, fix typo(s) (#1637) 2024-11-20 21:52:41 -03:00
Brandon Hancock (bhancock_ai)
14a36d3f5e Knowledge (#1567)
* initial knowledge

* WIP

* Adding core knowledge sources

* Improve types and better support for file paths

* added additional sources

* fix linting

* update yaml to include optional deps

* adding in lorenze feedback

* ensure embeddings are persisted

* improvements all around Knowledge class

* return this

* properly reset memory

* properly reset memory+knowledge

* consolodation and improvements

* linted

* cleanup rm unused embedder

* fix test

* fix duplicate

* generating cassettes for knowledge test

* updated default embedder

* None embedder to use default on pipeline cloning

* improvements

* fixed text_file_knowledge

* mypysrc fixes

* type check fixes

* added extra cassette

* just mocks

* linted

* mock knowledge query to not spin up db

* linted

* verbose run

* put a flag

* fix

* adding docs

* better docs

* improvements from review

* more docs

* linted

* rm print

* more fixes

* clearer docs

* added docstrings and type hints for cli

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
2024-11-20 15:40:08 -08:00
Gui Vieira
fde1ee45f9 Merge pull request #1636 from crewAIInc/gui/make-it-green
Make it green!
2024-11-20 16:12:58 -03:00
Gui Vieira
6774bc2c53 Make mypy happy 2024-11-20 16:08:08 -03:00
Gui Vieira
94c62263ed Merge pull request #1635 from crewAIInc/gui/kickoff-callbacks
Move kickoff callbacks to crew's domain
2024-11-20 14:37:52 -03:00
Gui Vieira
495c3859af Cassettes 2024-11-20 10:26:00 -03:00
Gui Vieira
3e003f5e32 Move kickoff callbacks to crew's domain 2024-11-20 10:06:49 -03:00
Tony Kipkemboi
1c8b509d7d Merge pull request #1634 from crewAIInc/github_tool_update
docs: add gh_token documentation to GithubSearchTool
2024-11-20 07:21:24 -05:00
theCyberTech
58af5c08f9 docs: add gh_token documentation to GithubSearchTool 2024-11-20 19:23:09 +08:00
Tony Kipkemboi
55e968c9e0 Update CLI Watson supported models + docs (#1628) 2024-11-19 19:42:54 -03:00
João Moura
0b9092702b adding before and after crew 2024-11-18 00:21:36 -03:00
João Moura
8376698534 preparing enw version 2024-11-18 00:21:36 -03:00
Lorenze Jay
3dc02310b6 upgrade chroma and adjust embedder function generator (#1607)
* upgrade chroma and adjust embedder function generator

* >= version

* linted
2024-11-14 14:13:12 -08:00
Dev Khant
e70bc94ab6 Add support for retrieving user preferences and memories using Mem0 (#1209)
* Integrate Mem0

* Update src/crewai/memory/contextual/contextual_memory.py

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>

* pending commit for _fetch_user_memories

* update poetry.lock

* fixes mypy issues

* fix mypy checks

* New fixes for user_id

* remove memory_provider

* handle memory_provider

* checks for memory_config

* add mem0 to dependency

* Update pyproject.toml

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>

* update docs

* update doc

* bump mem0 version

* fix api error msg and mypy issue

* mypy fix

* resolve comments

* fix memory usage without mem0

* mem0 version bump

* lazy import mem0

---------

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-14 10:59:24 -08:00
Eduardo Chiarotti
9285ebf8a2 feat: Reduce level for Bandit and fix code to adapt (#1604) 2024-11-14 13:12:35 -03:00
Thiago Moretto
4ca785eb15 Merge pull request #1597 from crewAIInc/tm-fix-crew-train-test
Fix crew_train_success test
2024-11-13 10:52:49 -03:00
Thiago Moretto
c57cbd8591 Fix crew_train_success test 2024-11-13 10:47:49 -03:00
Thiago Moretto
7fb1289205 Merge pull request #1596 from crewAIInc/tm-recording-cached-prompt-tokens
Add cached prompt tokens info on usage metrics
2024-11-13 10:37:29 -03:00
Thiago Moretto
f02681ae01 Merge branch 'main' into tm-recording-cached-prompt-tokens 2024-11-13 10:19:02 -03:00
Thiago Moretto
c725105b1f do not include cached on total 2024-11-13 10:18:30 -03:00
Thiago Moretto
36aa4bcb46 Cached prompt tokens on usage metrics 2024-11-13 10:16:30 -03:00
Eduardo Chiarotti
b98f8f9fe1 fix: Step callback issue (#1595)
* fix: Step callback issue

* fix: Add empty thought since its required
2024-11-13 10:07:28 -03:00
João Moura
bcfcf88e78 removing prints 2024-11-12 18:37:57 -03:00
Thiago Moretto
fd0de3a47e Merge pull request #1588 from crewAIInc/tm-workaround-litellm-bug
fixing LiteLLM callback replacement bug
2024-11-12 17:19:01 -03:00
Thiago Moretto
c7b9ae02fd fix test_agent_usage_metrics_are_captured_for_hierarchical_process 2024-11-12 16:43:43 -03:00
Thiago Moretto
4afb022572 fix LiteLLM callback replacement 2024-11-12 15:04:57 -03:00
João Moura
8610faef22 add missing init 2024-11-11 02:29:40 -03:00
João Moura
6d677541c7 preparing new version 2024-11-11 00:03:52 -03:00
João Moura
49220ec163 preparing new version 2024-11-10 23:46:38 -03:00
João Moura
40a676b7ac curring new version 2024-11-10 21:16:36 -03:00
João Moura
50bf146d1e preparing new version 2024-11-10 20:47:56 -03:00
João Moura
40d378abfb updating LLM docs 2024-11-10 11:36:03 -03:00
João Moura
1b09b085a7 preparing new version 2024-11-10 11:00:16 -03:00
João Moura
9f2acfe91f making sure we don't check for agents that were not used in the crew 2024-11-06 23:07:23 -03:00
Brandon Hancock (bhancock_ai)
e856359e23 fix missing config (#1557) 2024-11-05 12:07:29 -05:00
Brandon Hancock (bhancock_ai)
faa231e278 Fix flows to support cycles and added in test (#1556) 2024-11-05 12:02:54 -05:00
Brandon Hancock (bhancock_ai)
3d44795476 Feat/watson in cli (#1535)
* getting cli and .env to work together for different models

* support new models

* clean up prints

* Add support for cerebras

* Fix watson keys
2024-11-05 12:01:57 -05:00
Tony Kipkemboi
f50e709985 docs update (#1558)
* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion

* update crewai enterprise link in docs
2024-11-05 11:26:19 -05:00
Brandon Hancock (bhancock_ai)
d70c542547 Raise an error if an LLM doesnt return a response (#1548) 2024-11-04 11:42:38 -05:00
Gui Vieira
57201fb856 Increase providers fetching timeout 2024-11-01 18:54:40 -03:00
Brandon Hancock (bhancock_ai)
9b142e580b add inputs to flows (#1553)
* add inputs to flows

* fix flows lint
2024-11-01 14:37:02 -07:00
Brandon Hancock (bhancock_ai)
3878daffd6 Feat/ibm memory (#1549)
* Everything looks like its working. Waiting for lorenze review.

* Update docs as well.

* clean up for PR
2024-11-01 16:42:46 -04:00
Tony Kipkemboi
34954e6f74 Update docs (#1550)
* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion
2024-11-01 15:58:36 -04:00
C0deZ
e66a135d5d refactor: Move BaseTool to main package and centralize tool description generation (#1514)
* move base_tool to main package and consolidate tool desscription generation

* update import path

* update tests

* update doc

* add base_tool test

* migrate agent delegation tools to use BaseTool

* update tests

* update import path for tool

* fix lint

* update param signature

* add from_langchain to BaseTool for backwards support of langchain tools

* fix the case where StructuredTool doesn't have func

---------

Co-authored-by: c0dez <li@vitablehealth.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-01 12:30:48 -04:00
Vini Brasil
66698503b8 Replace .netrc with uv environment variables (#1541)
This commit replaces .netrc with uv environment variables for installing
tools from private repositories. To store credentials, I created a new
and reusable settings file for the CLI in
`$HOME/.config/crewai/settings.json`.

The issue with .netrc files is that they are applied system-wide and are
scoped by hostname, meaning we can't differentiate tool repositories
requests from regular requests to CrewAI's API.
2024-10-31 15:00:58 -03:00
Tony Kipkemboi
ec2967c362 Add llm providers accordion group (#1534)
* add llm providers accordion group

* fix numbering
2024-10-30 21:56:13 -04:00
Robin Wang
4ae07468f3 Enhance log storage to support more data types (#1530) 2024-10-30 16:45:19 -04:00
Brandon Hancock (bhancock_ai)
6193eb13fa Disable telemetry explicitly (#1536)
* Disable telemetry explicitly

* fix linting

* revert parts to og
2024-10-30 16:37:21 -04:00
Rip&Tear
55cd15bfc6 Added security.md file (#1533) 2024-10-30 12:07:38 -04:00
João Moura
5f46ff8836 prepare new version 2024-10-30 00:07:46 -03:00
Brandon Hancock (bhancock_ai)
cdfbd5f62b Bugfix/flows with multiple starts plus ands breaking (#1531)
* bugfix/flows-with-multiple-starts-plus-ands-breaking

* fix user found issue

* remove prints
2024-10-29 19:36:53 -03:00
Brandon Hancock (bhancock_ai)
b43f3987ec Update flows cli to allow you to easily add additional crews to a flow (#1525)
* Update flows cli to allow you to easily add additional crews to a flow

* fix failing test

* adding more error logs to test thats failing

* try again
2024-10-29 11:53:48 -04:00
Tony Kipkemboi
240527d06c Merge pull request #1519 from crewAIInc/feat/improve-tooling-docs
Improve tooling and flow docs
2024-10-29 11:05:17 -04:00
Brandon Hancock (bhancock_ai)
276cb7b7e8 Merge branch 'main' into feat/improve-tooling-docs 2024-10-29 10:41:04 -04:00
Brandon Hancock (bhancock_ai)
048aa6cbcc Update flows.mdx - Fix link 2024-10-29 10:40:49 -04:00
Brandon Hancock
fa9949b9d0 Update flow docs to talk about self evaluation example 2024-10-28 12:18:03 -05:00
Brandon Hancock
500072d855 Update flow docs to talk about self evaluation example 2024-10-28 12:17:44 -05:00
Brandon Hancock
04bcfa6e2d Improve tooling docs 2024-10-28 09:40:56 -05:00
Brandon Hancock (bhancock_ai)
26afee9bed improve tool text description and args (#1512)
* improve tool text descriptoin and args

* fix lint

* Drop print

* add back in docstring
2024-10-25 18:42:55 -04:00
Vini Brasil
f29f4abdd7 Forward install command options to uv sync (#1510)
Allow passing additional options from `crewai install` directly to
`uv sync`. This enables commands like `crewai install --locked` to work
as expected by forwarding all flags and options to the underlying uv
command.
2024-10-25 11:20:41 -03:00
Eduardo Chiarotti
4589d6fe9d feat: add tomli so we can support 3.10 (#1506)
* feat: add tomli so we can support 3.10

* feat: add validation for poetry data
2024-10-25 10:33:21 -03:00
Brandon Hancock (bhancock_ai)
201e652fa2 update plot command (#1504) 2024-10-24 14:44:30 -04:00
João Moura
8bc07e6071 new version 2024-10-23 18:10:37 -03:00
João Moura
6baaad045a new version 2024-10-23 18:08:49 -03:00
João Moura
74c1703310 updating crewai version 2024-10-23 17:58:58 -03:00
Brandon Hancock (bhancock_ai)
a921828e51 Fix memory imports for embedding functions (#1497) 2024-10-23 11:21:27 -04:00
Brandon Hancock (bhancock_ai)
e1fd83e6a7 support unsafe code execution. add in docker install and running checks. (#1496)
* support unsafe code execution. add in docker install and running checks.

* Update return type
2024-10-23 11:01:00 -04:00
Maicon Peixinho
7d68e287cc chore(readme-fix): fixing step for 'running tests' in the contribution section (#1490)
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-10-23 11:38:41 -03:00
Rip&Tear
f39a975e20 fix/fixed missing API prompt + CLI docs update (#1464)
* updated CLI to allow for submitting API keys

* updated click prompt to remove default number

* removed all unnecessary comments

* feat: implement crew creation CLI command

- refactor code to multiple functions
- Added ability for users to select provider and model when uing crewai create command and ave API key to .env

* refactered select_choice function for early return

* refactored  select_provider to have an ealry return

* cleanup of comments

* refactor/Move functions into utils file, added new provider file and migrated fucntions thre, new constants file + general function refactor

* small comment cleanup

* fix unnecessary deps

* Added docs for new CLI provider + fixed missing API prompt

* Minor doc updates

* allow user to bypass api key entry + incorect number selected logic + ruff formatting

* ruff updates

* Fix spelling mistake

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-10-23 09:41:14 -04:00
João Moura
b8a3c29745 preparing new verison 2024-10-23 05:34:34 -03:00
Brandon Hancock (bhancock_ai)
9cd4ff05c9 use copy to split testing and training on crews (#1491)
* use copy to split testing and training on crews

* make tests handle new copy functionality on train and test

* fix last test

* fix test
2024-10-22 21:31:44 -04:00
Lorenze Jay
4687779702 ensure original embedding config works (#1476)
* ensure original embedding config works

* some fixes

* raise error on unsupported provider

* WIP: brandons notes

* fixes

* rm prints

* fixed docs

* fixed run types

* updates to add more docs and correct imports with huggingface embedding server enabled

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-10-22 12:30:30 -07:00
222 changed files with 14078 additions and 12666 deletions

View File

@@ -65,7 +65,6 @@ body:
- '3.10'
- '3.11'
- '3.12'
- '3.13'
validations:
required: true
- type: input
@@ -113,4 +112,4 @@ body:
label: Additional context
description: Add any other context about the problem here.
validations:
required: true
required: true

19
.github/security.md vendored Normal file
View File

@@ -0,0 +1,19 @@
CrewAI takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organization.
If you believe you have found a security vulnerability in any CrewAI product or service, please report it to us as described below.
## Reporting a Vulnerability
Please do not report security vulnerabilities through public GitHub issues.
To report a vulnerability, please email us at security@crewai.com.
Please include the requested information listed below so that we can triage your report more quickly
- Type of issue (e.g. SQL injection, cross-site scripting, etc.)
- Full paths of source file(s) related to the manifestation of the issue
- The location of the affected source code (tag/branch/commit or direct URL)
- Any special configuration required to reproduce the issue
- Step-by-step instructions to reproduce the issue (please include screenshots if needed)
- Proof-of-concept or exploit code (if possible)
- Impact of the issue, including how an attacker might exploit the issue
Once we have received your report, we will respond to you at the email address you provide. If the issue is confirmed, we will release a patch as soon as possible depending on the complexity of the issue.
At this time, we are not offering a bug bounty program. Any rewards will be at our discretion.

View File

@@ -6,7 +6,7 @@ jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Install Requirements
run: |

View File

@@ -13,10 +13,10 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v2
uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: '3.10'
@@ -25,7 +25,7 @@ jobs:
run: echo "::set-output name=hash::$(sha256sum requirements-doc.txt | awk '{print $1}')"
- name: Setup cache
uses: actions/cache@v3
uses: actions/cache@v4
with:
key: mkdocs-material-${{ steps.req-hash.outputs.hash }}
path: .cache
@@ -42,4 +42,4 @@ jobs:
GH_TOKEN: ${{ secrets.GH_TOKEN }}
- name: Build and deploy MkDocs
run: mkdocs gh-deploy --force
run: mkdocs gh-deploy --force

View File

@@ -11,7 +11,7 @@ jobs:
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: "3.11.9"
@@ -19,5 +19,5 @@ jobs:
run: pip install bandit
- name: Run Bandit
run: bandit -c pyproject.toml -r src/ -lll
run: bandit -c pyproject.toml -r src/ -ll

View File

@@ -23,10 +23,10 @@ jobs:
- name: Set up Python
run: uv python install 3.11.9
run: uv python install 3.12.8
- name: Install the project
run: uv sync --dev
run: uv sync --dev --all-extras
- name: Run tests
run: uv run pytest tests
run: uv run pytest tests -vv

View File

@@ -14,7 +14,7 @@ jobs:
uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: "3.11.9"

4
.gitignore vendored
View File

@@ -17,3 +17,7 @@ rc-tests/*
temp/*
.vscode/*
crew_tasks_output.json
.codesight
.mypy_cache
.ruff_cache
.venv

View File

@@ -44,7 +44,7 @@ To get started with CrewAI, follow these simple steps:
### 1. Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <=3.12 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, install CrewAI:
@@ -100,7 +100,7 @@ You can now start developing your crew by editing the files in the `src/my_proje
#### Example of a simple crew with a sequential process:
Instatiate your crew:
Instantiate your crew:
```shell
crewai create crew latest-ai-development
@@ -121,7 +121,7 @@ researcher:
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
@@ -205,7 +205,7 @@ class LatestAiDevelopmentCrew():
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)
)
```
**main.py**
@@ -351,13 +351,13 @@ pre-commit install
### Running Tests
```bash
uvx pytest
uv run pytest .
```
### Running static type checks
```bash
uvx mypy
uvx mypy src
```
### Packaging
@@ -376,7 +376,7 @@ pip install dist/*.tar.gz
CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools.
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. We don't offer a way to disable it now, but we will in the future.
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. Users can disable telemetry by setting the environment variable OTEL_SDK_DISABLED to true.
Data collected includes:
@@ -399,7 +399,7 @@ Data collected includes:
- Roles of agents in a crew
- Understand high level use cases so we can build better tools, integrations and examples about it
- Tools names available
- Understand out of the publically available tools, which ones are being used the most so we can improve them
- Understand out of the publicly available tools, which ones are being used the most so we can improve them
Users can opt-in to Further Telemetry, sharing the complete telemetry data by setting the `share_crew` attribute to `True` on their Crews. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share.

View File

@@ -1,159 +1,343 @@
---
title: Agents
description: What are CrewAI Agents and how to use them.
description: Detailed guide on creating and managing agents within the CrewAI framework.
icon: robot
---
## What is an agent?
## Overview of an Agent
An agent is an **autonomous unit** programmed to:
<ul>
<li class='leading-3'>Perform tasks</li>
<li class='leading-3'>Make decisions</li>
<li class='leading-3'>Communicate with other agents</li>
</ul>
In the CrewAI framework, an `Agent` is an autonomous unit that can:
- Perform specific tasks
- Make decisions based on its role and goal
- Use tools to accomplish objectives
- Communicate and collaborate with other agents
- Maintain memory of interactions
- Delegate tasks when allowed
<Tip>
Think of an agent as a member of a team, with specific skills and a particular job to do. Agents can have different roles like `Researcher`, `Writer`, or `Customer Support`, each contributing to the overall goal of the crew.
Think of an agent as a specialized team member with specific skills, expertise, and responsibilities. For example, a `Researcher` agent might excel at gathering and analyzing information, while a `Writer` agent might be better at creating content.
</Tip>
## Agent attributes
## Agent Attributes
| Attribute | Parameter | Description |
| :------------------------- | :--------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Role** | `role` | Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for. |
| **Goal** | `goal` | The individual objective that the agent aims to achieve. It guides the agent's decision-making process. |
| **Backstory** | `backstory`| Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics. |
| **LLM** *(optional)* | `llm` | Represents the language model that will run the agent. It dynamically fetches the model name from the `OPENAI_MODEL_NAME` environment variable, defaulting to "gpt-4" if not specified. |
| **Tools** *(optional)* | `tools` | Set of capabilities or functions that the agent can use to perform tasks. Expected to be instances of custom classes compatible with the agent's execution environment. Tools are initialized with a default value of an empty list. |
| **Function Calling LLM** *(optional)* | `function_calling_llm` | Specifies the language model that will handle the tool calling for this agent, overriding the crew function calling LLM if passed. Default is `None`. |
| **Max Iter** *(optional)* | `max_iter` | Max Iter is the maximum number of iterations the agent can perform before being forced to give its best answer. Default is `25`. |
| **Max RPM** *(optional)* | `max_rpm` | Max RPM is the maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
| **Verbose** *(optional)* | `verbose` | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `False`.
| **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
| **Cache** *(optional)* | `cache` | Indicates if the agent should use a cache for tool usage. Default is `True`. |
| **System Template** *(optional)* | `system_template` | Specifies the system format for the agent. Default is `None`. |
| **Prompt Template** *(optional)* | `prompt_template` | Specifies the prompt format for the agent. Default is `None`. |
| **Response Template** *(optional)* | `response_template` | Specifies the response format for the agent. Default is `None`. |
| **Allow Code Execution** *(optional)* | `allow_code_execution` | Enable code execution for the agent. Default is `False`. |
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`.
| **Use System Prompt** *(optional)* | `use_system_prompt` | Adds the ability to not use system prompt (to support o1 models). Default is `True`. |
| **Respect Context Window** *(optional)* | `respect_context_window` | Summary strategy to avoid overflowing the context window. Default is `True`. |
| Attribute | Parameter | Type | Description |
| :-------------------------------------- | :----------------------- | :---------------------------- | :------------------------------------------------------------------------------------------------------------------- |
| **Role** | `role` | `str` | Defines the agent's function and expertise within the crew. |
| **Goal** | `goal` | `str` | The individual objective that guides the agent's decision-making. |
| **Backstory** | `backstory` | `str` | Provides context and personality to the agent, enriching interactions. |
| **LLM** _(optional)_ | `llm` | `Union[str, LLM, Any]` | Language model that powers the agent. Defaults to the model specified in `OPENAI_MODEL_NAME` or "gpt-4". |
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | Capabilities or functions available to the agent. Defaults to an empty list. |
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | `Optional[Any]` | Language model for tool calling, overrides crew's LLM if specified. |
| **Max Iterations** _(optional)_ | `max_iter` | `int` | Maximum iterations before the agent must provide its best answer. Default is 20. |
| **Max RPM** _(optional)_ | `max_rpm` | `Optional[int]` | Maximum requests per minute to avoid rate limits. |
| **Max Execution Time** _(optional)_ | `max_execution_time` | `Optional[int]` | Maximum time (in seconds) for task execution. |
| **Memory** _(optional)_ | `memory` | `bool` | Whether the agent should maintain memory of interactions. Default is True. |
| **Verbose** _(optional)_ | `verbose` | `bool` | Enable detailed execution logs for debugging. Default is False. |
| **Allow Delegation** _(optional)_ | `allow_delegation` | `bool` | Allow the agent to delegate tasks to other agents. Default is False. |
| **Step Callback** _(optional)_ | `step_callback` | `Optional[Any]` | Function called after each agent step, overrides crew callback. |
| **Cache** _(optional)_ | `cache` | `bool` | Enable caching for tool usage. Default is True. |
| **System Template** _(optional)_ | `system_template` | `Optional[str]` | Custom system prompt template for the agent. |
| **Prompt Template** _(optional)_ | `prompt_template` | `Optional[str]` | Custom prompt template for the agent. |
| **Response Template** _(optional)_ | `response_template` | `Optional[str]` | Custom response template for the agent. |
| **Allow Code Execution** _(optional)_ | `allow_code_execution` | `Optional[bool]` | Enable code execution for the agent. Default is False. |
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
| **Embedder Config** _(optional)_ | `embedder_config` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
## Creating an agent
## Creating Agents
There are two ways to create agents in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
### YAML Configuration (Recommended)
Using YAML configuration provides a cleaner, more maintainable way to define agents. We strongly recommend using this approach in your CrewAI projects.
After creating your CrewAI project as outlined in the [Installation](/installation) section, navigate to the `src/latest_ai_development/config/agents.yaml` file and modify the template to match your requirements.
<Note>
**Agent interaction**: Agents can interact with each other using CrewAI's built-in delegation and communication mechanisms. This allows for dynamic task management and problem-solving within the crew.
Variables in your YAML files (like `{topic}`) will be replaced with values from your inputs when running the crew:
```python Code
crew.kickoff(inputs={'topic': 'AI Agents'})
```
</Note>
To create an agent, you would typically initialize an instance of the `Agent` class with the desired properties. Here's a conceptual example including all attributes:
Here's an example of how to configure agents using YAML:
```python Code example
```yaml agents.yaml
# src/latest_ai_development/config/agents.yaml
researcher:
role: >
{topic} Senior Data Researcher
goal: >
Uncover cutting-edge developments in {topic}
backstory: >
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
goal: >
Create detailed reports based on {topic} data analysis and research findings
backstory: >
You're a meticulous analyst with a keen eye for detail. You're known for
your ability to turn complex data into clear and concise reports, making
it easy for others to understand and act on the information you provide.
```
To use this YAML configuration in your code, create a crew class that inherits from `CrewBase`:
```python Code
# src/latest_ai_development/crew.py
from crewai import Agent, Crew, Process
from crewai.project import CrewBase, agent, crew
from crewai_tools import SerperDevTool
@CrewBase
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True,
tools=[SerperDevTool()]
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
```
<Note>
The names you use in your YAML files (`agents.yaml`) should match the method names in your Python code.
</Note>
### Direct Code Definition
You can create agents directly in code by instantiating the `Agent` class. Here's a comprehensive example showing all available parameters:
```python Code
from crewai import Agent
from crewai_tools import SerperDevTool
# Create an agent with all available parameters
agent = Agent(
role='Data Analyst',
goal='Extract actionable insights',
backstory="""You're a data analyst at a large company.
You're responsible for analyzing data and providing insights
to the business.
You're currently working on a project to analyze the
performance of our marketing campaigns.""",
tools=[my_tool1, my_tool2], # Optional, defaults to an empty list
llm=my_llm, # Optional
function_calling_llm=my_llm, # Optional
max_iter=15, # Optional
max_rpm=None, # Optional
max_execution_time=None, # Optional
verbose=True, # Optional
allow_delegation=False, # Optional
step_callback=my_intermediate_step_callback, # Optional
cache=True, # Optional
system_template=my_system_template, # Optional
prompt_template=my_prompt_template, # Optional
response_template=my_response_template, # Optional
config=my_config, # Optional
crew=my_crew, # Optional
tools_handler=my_tools_handler, # Optional
cache_handler=my_cache_handler, # Optional
callbacks=[callback1, callback2], # Optional
allow_code_execution=True, # Optional
max_retry_limit=2, # Optional
use_system_prompt=True, # Optional
respect_context_window=True, # Optional
role="Senior Data Scientist",
goal="Analyze and interpret complex datasets to provide actionable insights",
backstory="With over 10 years of experience in data science and machine learning, "
"you excel at finding patterns in complex datasets.",
llm="gpt-4", # Default: OPENAI_MODEL_NAME or "gpt-4"
function_calling_llm=None, # Optional: Separate LLM for tool calling
memory=True, # Default: True
verbose=False, # Default: False
allow_delegation=False, # Default: False
max_iter=20, # Default: 20 iterations
max_rpm=None, # Optional: Rate limit for API calls
max_execution_time=None, # Optional: Maximum execution time in seconds
max_retry_limit=2, # Default: 2 retries on error
allow_code_execution=False, # Default: False
code_execution_mode="safe", # Default: "safe" (options: "safe", "unsafe")
respect_context_window=True, # Default: True
use_system_prompt=True, # Default: True
tools=[SerperDevTool()], # Optional: List of tools
knowledge_sources=None, # Optional: List of knowledge sources
embedder_config=None, # Optional: Custom embedder configuration
system_template=None, # Optional: Custom system prompt template
prompt_template=None, # Optional: Custom prompt template
response_template=None, # Optional: Custom response template
step_callback=None, # Optional: Callback function for monitoring
)
```
## Setting prompt templates
Let's break down some key parameter combinations for common use cases:
Prompt templates are used to format the prompt for the agent. You can use to update the system, regular and response templates for the agent. Here's an example of how to set prompt templates:
#### Basic Research Agent
```python Code
research_agent = Agent(
role="Research Analyst",
goal="Find and summarize information about specific topics",
backstory="You are an experienced researcher with attention to detail",
tools=[SerperDevTool()],
verbose=True # Enable logging for debugging
)
```
```python Code example
agent = Agent(
role="{topic} specialist",
goal="Figure {goal} out",
backstory="I am the master of {role}",
system_template="""<|start_header_id|>system<|end_header_id|>
#### Code Development Agent
```python Code
dev_agent = Agent(
role="Senior Python Developer",
goal="Write and debug Python code",
backstory="Expert Python developer with 10 years of experience",
allow_code_execution=True,
code_execution_mode="safe", # Uses Docker for safety
max_execution_time=300, # 5-minute timeout
max_retry_limit=3 # More retries for complex code tasks
)
```
#### Long-Running Analysis Agent
```python Code
analysis_agent = Agent(
role="Data Analyst",
goal="Perform deep analysis of large datasets",
backstory="Specialized in big data analysis and pattern recognition",
memory=True,
respect_context_window=True,
max_rpm=10, # Limit API calls
function_calling_llm="gpt-4o-mini" # Cheaper model for tool calls
)
```
#### Custom Template Agent
```python Code
custom_agent = Agent(
role="Customer Service Representative",
goal="Assist customers with their inquiries",
backstory="Experienced in customer support with a focus on satisfaction",
system_template="""<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>""",
prompt_template="""<|start_header_id|>user<|end_header_id|>
prompt_template="""<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>""",
response_template="""<|start_header_id|>assistant<|end_header_id|>
response_template="""<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>""",
)
```
## Bring your third-party agents
### Parameter Details
Extend your third-party agents like LlamaIndex, Langchain, Autogen or fully custom agents using the the CrewAI's `BaseAgent` class.
#### Critical Parameters
- `role`, `goal`, and `backstory` are required and shape the agent's behavior
- `llm` determines the language model used (default: OpenAI's GPT-4)
<Note>
**BaseAgent** includes attributes and methods required to integrate with your crews to run and delegate tasks to other agents within your own crew.
#### Memory and Context
- `memory`: Enable to maintain conversation history
- `respect_context_window`: Prevents token limit issues
- `knowledge_sources`: Add domain-specific knowledge bases
#### Execution Control
- `max_iter`: Maximum attempts before giving best answer
- `max_execution_time`: Timeout in seconds
- `max_rpm`: Rate limiting for API calls
- `max_retry_limit`: Retries on error
#### Code Execution
- `allow_code_execution`: Must be True to run code
- `code_execution_mode`:
- `"safe"`: Uses Docker (recommended for production)
- `"unsafe"`: Direct execution (use only in trusted environments)
#### Templates
- `system_template`: Defines agent's core behavior
- `prompt_template`: Structures input format
- `response_template`: Formats agent responses
<Note>
When using custom templates, you can use variables like `{role}`, `{goal}`, and `{input}` in your templates. These will be automatically populated during execution.
</Note>
CrewAI is a universal multi-agent framework that allows for all agents to work together to automate tasks and solve problems.
## Agent Tools
```python Code example
from crewai import Agent, Task, Crew
from custom_agent import CustomAgent # You need to build and extend your own agent logic with the CrewAI BaseAgent class then import it here.
Agents can be equipped with various tools to enhance their capabilities. CrewAI supports tools from:
- [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools)
- [LangChain Tools](https://python.langchain.com/docs/integrations/tools)
from langchain.agents import load_tools
Here's how to add tools to an agent:
langchain_tools = load_tools(["google-serper"], llm=llm)
```python Code
from crewai import Agent
from crewai_tools import SerperDevTool, WikipediaTools
agent1 = CustomAgent(
role="agent role",
goal="who is {input}?",
backstory="agent backstory",
verbose=True,
# Create tools
search_tool = SerperDevTool()
wiki_tool = WikipediaTools()
# Add tools to agent
researcher = Agent(
role="AI Technology Researcher",
goal="Research the latest AI developments",
tools=[search_tool, wiki_tool],
verbose=True
)
task1 = Task(
expected_output="a short biography of {input}",
description="a short biography of {input}",
agent=agent1,
)
agent2 = Agent(
role="agent role",
goal="summarize the short bio for {input} and if needed do more research",
backstory="agent backstory",
verbose=True,
)
task2 = Task(
description="a tldr summary of the short biography",
expected_output="5 bullet point summary of the biography",
agent=agent2,
context=[task1],
)
my_crew = Crew(agents=[agent1, agent2], tasks=[task1, task2])
crew = my_crew.kickoff(inputs={"input": "Mark Twain"})
```
## Conclusion
## Agent Memory and Context
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents,
you can create sophisticated AI systems that leverage the power of collaborative intelligence.
Agents can maintain memory of their interactions and use context from previous tasks. This is particularly useful for complex workflows where information needs to be retained across multiple tasks.
```python Code
from crewai import Agent
analyst = Agent(
role="Data Analyst",
goal="Analyze and remember complex data patterns",
memory=True, # Enable memory
verbose=True
)
```
<Note>
When `memory` is enabled, the agent will maintain context across multiple interactions, improving its ability to handle complex, multi-step tasks.
</Note>
## Important Considerations and Best Practices
### Security and Code Execution
- When using `allow_code_execution`, be cautious with user input and always validate it
- Use `code_execution_mode: "safe"` (Docker) in production environments
- Consider setting appropriate `max_execution_time` limits to prevent infinite loops
### Performance Optimization
- Use `respect_context_window: true` to prevent token limit issues
- Set appropriate `max_rpm` to avoid rate limiting
- Enable `cache: true` to improve performance for repetitive tasks
- Adjust `max_iter` and `max_retry_limit` based on task complexity
### Memory and Context Management
- Use `memory: true` for tasks requiring historical context
- Leverage `knowledge_sources` for domain-specific information
- Configure `embedder_config` when using custom embedding models
- Use custom templates (`system_template`, `prompt_template`, `response_template`) for fine-grained control over agent behavior
### Agent Collaboration
- Enable `allow_delegation: true` when agents need to work together
- Use `step_callback` to monitor and log agent interactions
- Consider using different LLMs for different purposes:
- Main `llm` for complex reasoning
- `function_calling_llm` for efficient tool usage
### Model Compatibility
- Set `use_system_prompt: false` for older models that don't support system messages
- Ensure your chosen `llm` supports the features you need (like function calling)
## Troubleshooting Common Issues
1. **Rate Limiting**: If you're hitting API rate limits:
- Implement appropriate `max_rpm`
- Use caching for repetitive operations
- Consider batching requests
2. **Context Window Errors**: If you're exceeding context limits:
- Enable `respect_context_window`
- Use more efficient prompts
- Clear agent memory periodically
3. **Code Execution Issues**: If code execution fails:
- Verify Docker is installed for safe mode
- Check execution permissions
- Review code sandbox settings
4. **Memory Issues**: If agent responses seem inconsistent:
- Verify memory is enabled
- Check knowledge source configuration
- Review conversation history management
Remember that agents are most effective when configured according to their specific use case. Take time to understand your requirements and adjust these parameters accordingly.

View File

@@ -6,7 +6,7 @@ icon: terminal
# CrewAI CLI Documentation
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews and pipelines.
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews & flows.
## Installation
@@ -28,20 +28,19 @@ crewai [COMMAND] [OPTIONS] [ARGUMENTS]
### 1. Create
Create a new crew or pipeline.
Create a new crew or flow.
```shell
crewai create [OPTIONS] TYPE NAME
```
- `TYPE`: Choose between "crew" or "pipeline"
- `NAME`: Name of the crew or pipeline
- `--router`: (Optional) Create a pipeline with router functionality
- `TYPE`: Choose between "crew" or "flow"
- `NAME`: Name of the crew or flow
Example:
```shell
crewai create crew my_new_crew
crewai create pipeline my_new_pipeline --router
crewai create flow my_new_flow
```
### 2. Version
@@ -146,3 +145,34 @@ crewai run
Make sure to run these commands from the directory where your CrewAI project is set up.
Some commands may require additional configuration or setup within your project structure.
</Note>
### 9. API Keys
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.
Once you've selected an LLM provider, you will be prompted for API keys.
#### Initial API key providers
The CLI will initially prompt for API keys for the following services:
* OpenAI
* Groq
* Anthropic
* Google Gemini
When you select a provider, the CLI will prompt you to enter your API key.
#### Other Options
If you select option 6, you will be able to select from a list of LiteLLM supported providers.
When you select a provider, the CLI will prompt you to enter the Key name and the API key.
See the following link for each provider's key name:
* [LiteLLM Providers](https://docs.litellm.ai/docs/providers)

View File

@@ -22,7 +22,8 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. |
| **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. |
| **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). Defaults to `False`. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
| **Memory Config** _(optional)_ | `memory_config` | Configuration for the memory provider to be used by the crew. |
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. Defaults to `False`. |
@@ -31,7 +32,6 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
| **Output Log File** _(optional)_ | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
@@ -40,6 +40,155 @@ A crew in crewAI represents a collaborative group of agents working together to
**Crew Max RPM**: The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
</Tip>
## Creating Crews
There are two ways to create crews in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
### YAML Configuration (Recommended)
Using YAML configuration provides a cleaner, more maintainable way to define crews and is consistent with how agents and tasks are defined in CrewAI projects.
After creating your CrewAI project as outlined in the [Installation](/installation) section, you can define your crew in a class that inherits from `CrewBase` and uses decorators to define agents, tasks, and the crew itself.
#### Example Crew Class with Decorators
```python code
from crewai import Agent, Crew, Task, Process
from crewai.project import CrewBase, agent, task, crew, before_kickoff, after_kickoff
@CrewBase
class YourCrewName:
"""Description of your crew"""
# Paths to your YAML configuration files
# To see an example agent and task defined in YAML, checkout the following:
# - Task: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
# - Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@before_kickoff
def prepare_inputs(self, inputs):
# Modify inputs before the crew starts
inputs['additional_data'] = "Some extra information"
return inputs
@after_kickoff
def process_output(self, output):
# Modify output after the crew finishes
output.raw += "\nProcessed after kickoff."
return output
@agent
def agent_one(self) -> Agent:
return Agent(
config=self.agents_config['agent_one'],
verbose=True
)
@agent
def agent_two(self) -> Agent:
return Agent(
config=self.agents_config['agent_two'],
verbose=True
)
@task
def task_one(self) -> Task:
return Task(
config=self.tasks_config['task_one']
)
@task
def task_two(self) -> Task:
return Task(
config=self.tasks_config['task_two']
)
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents, # Automatically collected by the @agent decorator
tasks=self.tasks, # Automatically collected by the @task decorator.
process=Process.sequential,
verbose=True,
)
```
<Note>
Tasks will be executed in the order they are defined.
</Note>
The `CrewBase` class, along with these decorators, automates the collection of agents and tasks, reducing the need for manual management.
#### Decorators overview from `annotations.py`
CrewAI provides several decorators in the `annotations.py` file that are used to mark methods within your crew class for special handling:
- `@CrewBase`: Marks the class as a crew base class.
- `@agent`: Denotes a method that returns an `Agent` object.
- `@task`: Denotes a method that returns a `Task` object.
- `@crew`: Denotes the method that returns the `Crew` object.
- `@before_kickoff`: (Optional) Marks a method to be executed before the crew starts.
- `@after_kickoff`: (Optional) Marks a method to be executed after the crew finishes.
These decorators help in organizing your crew's structure and automatically collecting agents and tasks without manually listing them.
### Direct Code Definition (Alternative)
Alternatively, you can define the crew directly in code without using YAML configuration files.
```python code
from crewai import Agent, Crew, Task, Process
from crewai_tools import YourCustomTool
class YourCrewName:
def agent_one(self) -> Agent:
return Agent(
role="Data Analyst",
goal="Analyze data trends in the market",
backstory="An experienced data analyst with a background in economics",
verbose=True,
tools=[YourCustomTool()]
)
def agent_two(self) -> Agent:
return Agent(
role="Market Researcher",
goal="Gather information on market dynamics",
backstory="A diligent researcher with a keen eye for detail",
verbose=True
)
def task_one(self) -> Task:
return Task(
description="Collect recent market data and identify trends.",
expected_output="A report summarizing key trends in the market.",
agent=self.agent_one()
)
def task_two(self) -> Task:
return Task(
description="Research factors affecting market dynamics.",
expected_output="An analysis of factors influencing the market.",
agent=self.agent_two()
)
def crew(self) -> Crew:
return Crew(
agents=[self.agent_one(), self.agent_two()],
tasks=[self.task_one(), self.task_two()],
process=Process.sequential,
verbose=True
)
```
In this example:
- Agents and tasks are defined directly within the class without decorators.
- We manually create and manage the list of agents and tasks.
- This approach provides more control but can be less maintainable for larger projects.
## Crew Output
@@ -187,4 +336,4 @@ Then, to replay from a specific task, use:
crewai replay -t <task_id>
```
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.
These commands let you replay from your latest kickoff tasks, still retaining context from previously executed tasks.

View File

@@ -628,4 +628,4 @@ Also, check out our YouTube video on how to use flows in CrewAI below!
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
></iframe>

319
docs/concepts/knowledge.mdx Normal file
View File

@@ -0,0 +1,319 @@
---
title: Knowledge
description: What is knowledge in CrewAI and how to use it.
icon: book
---
# Using Knowledge in CrewAI
## What is Knowledge?
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks.
Think of it as giving your agents a reference library they can consult while working.
<Info>
Key benefits of using Knowledge:
- Enhance agents with domain-specific information
- Support decisions with real-world data
- Maintain context across conversations
- Ground responses in factual information
</Info>
## Supported Knowledge Sources
CrewAI supports various types of knowledge sources out of the box:
<CardGroup cols={2}>
<Card title="Text Sources" icon="text">
- Raw strings
- Text files (.txt)
- PDF documents
</Card>
<Card title="Structured Data" icon="table">
- CSV files
- Excel spreadsheets
- JSON documents
</Card>
</CardGroup>
## Quick Start
Here's an example using string-based knowledge:
```python Code
from crewai import Agent, Task, Crew, Process, LLM
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
# Create a knowledge source
content = "Users name is John. He is 30 years old and lives in San Francisco."
string_source = StringKnowledgeSource(
content=content,
)
# Create an LLM with a temperature of 0 to ensure deterministic outputs
llm = LLM(model="gpt-4o-mini", temperature=0)
# Create an agent with the knowledge store
agent = Agent(
role="About User",
goal="You know everything about the user.",
backstory="""You are a master at understanding people and their preferences.""",
verbose=True,
allow_delegation=False,
llm=llm,
)
task = Task(
description="Answer the following questions about the user: {question}",
expected_output="An answer to the question.",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
knowledge_sources=[string_source], # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
)
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
```
## Knowledge Configuration
### Chunking Configuration
Control how content is split for processing by setting the chunk size and overlap.
```python Code
knowledge_source = StringKnowledgeSource(
content="Long content...",
chunk_size=4000, # Characters per chunk (default)
chunk_overlap=200 # Overlap between chunks (default)
)
```
## Embedder Configuration
You can also configure the embedder for the knowledge store. This is useful if you want to use a different embedder for the knowledge store than the one used for the agents.
```python Code
...
string_source = StringKnowledgeSource(
content="Users name is John. He is 30 years old and lives in San Francisco.",
)
crew = Crew(
...
knowledge_sources=[string_source],
embedder={
"provider": "openai",
"config": {"model": "text-embedding-3-small"},
},
)
```
## Clearing Knowledge
If you need to clear the knowledge stored in CrewAI, you can use the `crewai reset-memories` command with the `--knowledge` option.
```bash Command
crewai reset-memories --knowledge
```
This is useful when you've updated your knowledge sources and want to ensure that the agents are using the most recent information.
## Custom Knowledge Sources
CrewAI allows you to create custom knowledge sources for any type of data by extending the `BaseKnowledgeSource` class. Let's create a practical example that fetches and processes space news articles.
#### Space News Knowledge Source Example
<CodeGroup>
```python Code
from crewai import Agent, Task, Crew, Process, LLM
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
import requests
from datetime import datetime
from typing import Dict, Any
from pydantic import BaseModel, Field
class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
"""Knowledge source that fetches data from Space News API."""
api_endpoint: str = Field(description="API endpoint URL")
limit: int = Field(default=10, description="Number of articles to fetch")
def load_content(self) -> Dict[Any, str]:
"""Fetch and format space news articles."""
try:
response = requests.get(
f"{self.api_endpoint}?limit={self.limit}"
)
response.raise_for_status()
data = response.json()
articles = data.get('results', [])
formatted_data = self._format_articles(articles)
return {self.api_endpoint: formatted_data}
except Exception as e:
raise ValueError(f"Failed to fetch space news: {str(e)}")
def _format_articles(self, articles: list) -> str:
"""Format articles into readable text."""
formatted = "Space News Articles:\n\n"
for article in articles:
formatted += f"""
Title: {article['title']}
Published: {article['published_at']}
Summary: {article['summary']}
News Site: {article['news_site']}
URL: {article['url']}
-------------------"""
return formatted
def add(self) -> None:
"""Process and store the articles."""
content = self.load_content()
for _, text in content.items():
chunks = self._chunk_text(text)
self.chunks.extend(chunks)
self._save_documents()
# Create knowledge source
recent_news = SpaceNewsKnowledgeSource(
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles",
limit=10,
)
# Create specialized agent
space_analyst = Agent(
role="Space News Analyst",
goal="Answer questions about space news accurately and comprehensively",
backstory="""You are a space industry analyst with expertise in space exploration,
satellite technology, and space industry trends. You excel at answering questions
about space news and providing detailed, accurate information.""",
knowledge_sources=[recent_news],
llm=LLM(model="gpt-4", temperature=0.0)
)
# Create task that handles user questions
analysis_task = Task(
description="Answer this question about space news: {user_question}",
expected_output="A detailed answer based on the recent space news articles",
agent=space_analyst
)
# Create and run the crew
crew = Crew(
agents=[space_analyst],
tasks=[analysis_task],
verbose=True,
process=Process.sequential
)
# Example usage
result = crew.kickoff(
inputs={"user_question": "What are the latest developments in space exploration?"}
)
```
```output Output
# Agent: Space News Analyst
## Task: Answer this question about space news: What are the latest developments in space exploration?
# Agent: Space News Analyst
## Final Answer:
The latest developments in space exploration, based on recent space news articles, include the following:
1. SpaceX has received the final regulatory approvals to proceed with the second integrated Starship/Super Heavy launch, scheduled for as soon as the morning of Nov. 17, 2023. This is a significant step in SpaceX's ambitious plans for space exploration and colonization. [Source: SpaceNews](https://spacenews.com/starship-cleared-for-nov-17-launch/)
2. SpaceX has also informed the US Federal Communications Commission (FCC) that it plans to begin launching its first next-generation Starlink Gen2 satellites. This represents a major upgrade to the Starlink satellite internet service, which aims to provide high-speed internet access worldwide. [Source: Teslarati](https://www.teslarati.com/spacex-first-starlink-gen2-satellite-launch-2022/)
3. AI startup Synthetaic has raised $15 million in Series B funding. The company uses artificial intelligence to analyze data from space and air sensors, which could have significant applications in space exploration and satellite technology. [Source: SpaceNews](https://spacenews.com/ai-startup-synthetaic-raises-15-million-in-series-b-funding/)
4. The Space Force has formally established a unit within the U.S. Indo-Pacific Command, marking a permanent presence in the Indo-Pacific region. This could have significant implications for space security and geopolitics. [Source: SpaceNews](https://spacenews.com/space-force-establishes-permanent-presence-in-indo-pacific-region/)
5. Slingshot Aerospace, a space tracking and data analytics company, is expanding its network of ground-based optical telescopes to increase coverage of low Earth orbit. This could improve our ability to track and analyze objects in low Earth orbit, including satellites and space debris. [Source: SpaceNews](https://spacenews.com/slingshots-space-tracking-network-to-extend-coverage-of-low-earth-orbit/)
6. The National Natural Science Foundation of China has outlined a five-year project for researchers to study the assembly of ultra-large spacecraft. This could lead to significant advancements in spacecraft technology and space exploration capabilities. [Source: SpaceNews](https://spacenews.com/china-researching-challenges-of-kilometer-scale-ultra-large-spacecraft/)
7. The Center for AEroSpace Autonomy Research (CAESAR) at Stanford University is focusing on spacecraft autonomy. The center held a kickoff event on May 22, 2024, to highlight the industry, academia, and government collaboration it seeks to foster. This could lead to significant advancements in autonomous spacecraft technology. [Source: SpaceNews](https://spacenews.com/stanford-center-focuses-on-spacecraft-autonomy/)
```
</CodeGroup>
#### Key Components Explained
1. **Custom Knowledge Source (`SpaceNewsKnowledgeSource`)**:
- Extends `BaseKnowledgeSource` for integration with CrewAI
- Configurable API endpoint and article limit
- Implements three key methods:
- `load_content()`: Fetches articles from the API
- `_format_articles()`: Structures the articles into readable text
- `add()`: Processes and stores the content
2. **Agent Configuration**:
- Specialized role as a Space News Analyst
- Uses the knowledge source to access space news
3. **Task Setup**:
- Takes a user question as input through `{user_question}`
- Designed to provide detailed answers based on the knowledge source
4. **Crew Orchestration**:
- Manages the workflow between agent and task
- Handles input/output through the kickoff method
This example demonstrates how to:
- Create a custom knowledge source that fetches real-time data
- Process and format external data for AI consumption
- Use the knowledge source to answer specific user questions
- Integrate everything seamlessly with CrewAI's agent system
#### About the Spaceflight News API
The example uses the [Spaceflight News API](https://api.spaceflightnewsapi.net/v4/docs/), which:
- Provides free access to space-related news articles
- Requires no authentication
- Returns structured data about space news
- Supports pagination and filtering
You can customize the API query by modifying the endpoint URL:
```python
# Fetch more articles
recent_news = SpaceNewsKnowledgeSource(
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles",
limit=20, # Increase the number of articles
)
# Add search parameters
recent_news = SpaceNewsKnowledgeSource(
api_endpoint="https://api.spaceflightnewsapi.net/v4/articles?search=NASA", # Search for NASA news
limit=10,
)
```
## Best Practices
<AccordionGroup>
<Accordion title="Content Organization">
- Keep chunk sizes appropriate for your content type
- Consider content overlap for context preservation
- Organize related information into separate knowledge sources
</Accordion>
<Accordion title="Performance Tips">
- Adjust chunk sizes based on content complexity
- Configure appropriate embedding models
- Consider using local embedding providers for faster processing
</Accordion>
</AccordionGroup>

View File

@@ -7,32 +7,45 @@ icon: link
## Using LangChain Tools
<Info>
CrewAI seamlessly integrates with LangChains comprehensive [list of tools](https://python.langchain.com/docs/integrations/tools/), all of which can be used with CrewAI.
CrewAI seamlessly integrates with LangChain's comprehensive [list of tools](https://python.langchain.com/docs/integrations/tools/), all of which can be used with CrewAI.
</Info>
```python Code
import os
from crewai import Agent
from langchain.agents import Tool
from langchain.utilities import GoogleSerperAPIWrapper
from dotenv import load_dotenv
from crewai import Agent, Task, Crew
from crewai.tools import BaseTool
from pydantic import Field
from langchain_community.utilities import GoogleSerperAPIWrapper
# Setup API keys
os.environ["SERPER_API_KEY"] = "Your Key"
# Set up your SERPER_API_KEY key in an .env file, eg:
# SERPER_API_KEY=<your api key>
load_dotenv()
search = GoogleSerperAPIWrapper()
# Create and assign the search tool to an agent
serper_tool = Tool(
name="Intermediate Answer",
func=search.run,
description="Useful for search-based queries",
)
class SearchTool(BaseTool):
name: str = "Search"
description: str = "Useful for search-based queries. Use this to find current information about markets, companies, and trends."
search: GoogleSerperAPIWrapper = Field(default_factory=GoogleSerperAPIWrapper)
agent = Agent(
role='Research Analyst',
goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.',
tools=[serper_tool]
def _run(self, query: str) -> str:
"""Execute the search query and return results"""
try:
return self.search.run(query)
except Exception as e:
return f"Error performing search: {str(e)}"
# Create Agents
researcher = Agent(
role='Research Analyst',
goal='Gather current market data and trends',
backstory="""You are an expert research analyst with years of experience in
gathering market intelligence. You're known for your ability to find
relevant and up-to-date market information and present it in a clear,
actionable format.""",
tools=[SearchTool()],
verbose=True
)
# rest of the code ...
@@ -40,6 +53,6 @@ agent = Agent(
## Conclusion
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms,
and the flexibility of tool arguments to optimize your agents' performance and capabilities.
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling, caching mechanisms,
and the flexibility of tool arguments to optimize your agents' performance and capabilities.

View File

@@ -1,180 +1,650 @@
---
title: LLMs
description: Learn how to configure and optimize LLMs for your CrewAI projects.
icon: microchip-ai
title: 'LLMs'
description: 'A comprehensive guide to configuring and using Large Language Models (LLMs) in your CrewAI projects'
icon: 'microchip-ai'
---
# Large Language Models (LLMs) in CrewAI
<Note>
CrewAI integrates with multiple LLM providers through LiteLLM, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
</Note>
Large Language Models (LLMs) are the backbone of intelligent agents in the CrewAI framework. This guide will help you understand, configure, and optimize LLM usage for your CrewAI projects.
## What are LLMs?
## Key Concepts
Large Language Models (LLMs) are the core intelligence behind CrewAI agents. They enable agents to understand context, make decisions, and generate human-like responses. Here's what you need to know:
- **LLM**: Large Language Model, the AI powering agent intelligence
- **Agent**: A CrewAI entity that uses an LLM to perform tasks
- **Provider**: A service that offers LLM capabilities (e.g., OpenAI, Anthropic, Ollama, [more providers](https://docs.litellm.ai/docs/providers))
<CardGroup cols={2}>
<Card title="LLM Basics" icon="brain">
Large Language Models are AI systems trained on vast amounts of text data. They power the intelligence of your CrewAI agents, enabling them to understand and generate human-like text.
</Card>
<Card title="Context Window" icon="window">
The context window determines how much text an LLM can process at once. Larger windows (e.g., 128K tokens) allow for more context but may be more expensive and slower.
</Card>
<Card title="Temperature" icon="temperature-three-quarters">
Temperature (0.0 to 1.0) controls response randomness. Lower values (e.g., 0.2) produce more focused, deterministic outputs, while higher values (e.g., 0.8) increase creativity and variability.
</Card>
<Card title="Provider Selection" icon="server">
Each LLM provider (e.g., OpenAI, Anthropic, Google) offers different models with varying capabilities, pricing, and features. Choose based on your needs for accuracy, speed, and cost.
</Card>
</CardGroup>
## Configuring LLMs for Agents
## Available Models and Their Capabilities
CrewAI offers flexible options for setting up LLMs:
Here's a detailed breakdown of supported models and their capabilities, you can compare performance at [lmarena.ai](https://lmarena.ai/):
### 1. Default Configuration
<Tabs>
<Tab title="OpenAI">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| GPT-4 | 8,192 tokens | High-accuracy tasks, complex reasoning |
| GPT-4 Turbo | 128,000 tokens | Long-form content, document analysis |
| GPT-4o & GPT-4o-mini | 128,000 tokens | Cost-effective large context processing |
By default, CrewAI uses the `gpt-4o-mini` model. It uses environment variables if no LLM is specified:
- `OPENAI_MODEL_NAME` (defaults to "gpt-4o-mini" if not set)
- `OPENAI_API_BASE`
- `OPENAI_API_KEY`
<Note>
1 token ≈ 4 characters in English. For example, 8,192 tokens ≈ 32,768 characters or about 6,000 words.
</Note>
</Tab>
<Tab title="Gemini">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| Gemini 1.5 Flash | 1M tokens | Balanced multimodal model, good for most tasks |
| Gemini 1.5 Flash 8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
| Gemini 1.5 Pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
### 2. String Identifier
<Tip>
Google's Gemini models are all multimodal, supporting audio, images, video and text, supporting context caching, json schema, function calling, etc.
</Tip>
</Tab>
<Tab title="Groq">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| Llama 3.1 70B/8B | 131,072 tokens | High-performance, large context tasks |
| Llama 3.2 Series | 8,192 tokens | General-purpose tasks |
| Mixtral 8x7B | 32,768 tokens | Balanced performance and context |
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
```python Code
agent = Agent(llm="gpt-4o", ...)
```
<Tip>
Groq is known for its fast inference speeds, making it suitable for real-time applications.
</Tip>
</Tab>
<Tab title="Others">
| Provider | Context Window | Key Features |
|----------|---------------|--------------|
| Deepseek Chat | 128,000 tokens | Specialized in technical discussions |
| Claude 3 | Up to 200K tokens | Strong reasoning, code understanding |
| Gemini | Varies by model | Multimodal capabilities |
### 3. LLM Instance
<Info>
Provider selection should consider factors like:
- API availability in your region
- Pricing structure
- Required features (e.g., streaming, function calling)
- Performance requirements
</Info>
</Tab>
</Tabs>
List of [more providers](https://docs.litellm.ai/docs/providers).
## Setting Up Your LLM
```python Code
from crewai import LLM
There are three ways to configure LLMs in CrewAI. Choose the method that best fits your workflow:
llm = LLM(model="gpt-4", temperature=0.7)
agent = Agent(llm=llm, ...)
```
<Tabs>
<Tab title="1. Environment Variables">
The simplest way to get started. Set these variables in your environment:
### 4. Custom LLM Objects
```bash
# Required: Your API key for authentication
OPENAI_API_KEY=<your-api-key>
Pass a custom LLM implementation or object from another library.
# Optional: Default model selection
OPENAI_MODEL_NAME=gpt-4o-mini # Default if not set
## Connecting to OpenAI-Compatible LLMs
# Optional: Organization ID (if applicable)
OPENAI_ORGANIZATION_ID=<your-org-id>
```
You can connect to OpenAI-compatible LLMs using either environment variables or by setting specific attributes on the LLM class:
<Warning>
Never commit API keys to version control. Use environment files (.env) or your system's secret management.
</Warning>
</Tab>
<Tab title="2. YAML Configuration">
Create a YAML file to define your agent configurations. This method is great for version control and team collaboration:
1. Using environment variables:
```yaml
researcher:
# Agent Definition
role: Research Specialist
goal: Conduct comprehensive research and analysis
backstory: A dedicated research professional with years of experience
verbose: true
```python Code
import os
# Model Selection (uncomment your choice)
# OpenAI Models - Known for reliability and performance
llm: openai/gpt-4o-mini
# llm: openai/gpt-4 # More accurate but expensive
# llm: openai/gpt-4-turbo # Fast with large context
# llm: openai/gpt-4o # Optimized for longer texts
# llm: openai/o1-preview # Latest features
# llm: openai/o1-mini # Cost-effective
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
```
# Azure Models - For enterprise deployments
# llm: azure/gpt-4o-mini
# llm: azure/gpt-4
# llm: azure/gpt-35-turbo
2. Using LLM class attributes:
# Anthropic Models - Strong reasoning capabilities
# llm: anthropic/claude-3-opus-20240229-v1:0
# llm: anthropic/claude-3-sonnet-20240229-v1:0
# llm: anthropic/claude-3-haiku-20240307-v1:0
# llm: anthropic/claude-2.1
# llm: anthropic/claude-2.0
```python Code
from crewai import LLM
# Google Models - Strong reasoning, large cachable context window, multimodal
# llm: gemini/gemini-1.5-pro-latest
# llm: gemini/gemini-1.5-flash-latest
# llm: gemini/gemini-1.5-flash-8b-latest
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
base_url="https://api.your-provider.com/v1"
)
agent = Agent(llm=llm, ...)
```
# AWS Bedrock Models - Enterprise-grade
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
# llm: bedrock/anthropic.claude-v2:1
# llm: bedrock/amazon.titan-text-express-v1
# llm: bedrock/meta.llama2-70b-chat-v1
## LLM Configuration Options
# Mistral Models - Open source alternative
# llm: mistral/mistral-large-latest
# llm: mistral/mistral-medium-latest
# llm: mistral/mistral-small-latest
When configuring an LLM for your agent, you have access to a wide range of parameters:
# Groq Models - Fast inference
# llm: groq/mixtral-8x7b-32768
# llm: groq/llama-3.1-70b-versatile
# llm: groq/llama-3.2-90b-text-preview
# llm: groq/gemma2-9b-it
# llm: groq/gemma-7b-it
| Parameter | Type | Description |
|:------------------|:---------------:|:-------------------------------------------------------------------------------------------------|
| **model** | `str` | Name of the model to use (e.g., "gpt-4", "gpt-3.5-turbo", "ollama/llama3.1"). For more options, visit the providers documentation. |
| **timeout** | `float, int` | Maximum time (in seconds) to wait for a response. |
| **temperature** | `float` | Controls randomness in output (0.0 to 1.0). |
| **top_p** | `float` | Controls diversity of output (0.0 to 1.0). |
| **n** | `int` | Number of completions to generate. |
| **stop** | `str, List[str]` | Sequence(s) where generation should stop. |
| **max_tokens** | `int` | Maximum number of tokens to generate. |
| **presence_penalty** | `float` | Penalizes new tokens based on their presence in prior text. |
| **frequency_penalty**| `float` | Penalizes new tokens based on their frequency in prior text. |
| **logit_bias** | `Dict[int, float]`| Modifies likelihood of specified tokens appearing. |
| **response_format** | `Dict[str, Any]` | Specifies the format of the response (e.g., JSON object). |
| **seed** | `int` | Sets a random seed for deterministic results. |
| **logprobs** | `bool` | Returns log probabilities of output tokens if enabled. |
| **top_logprobs** | `int` | Number of most likely tokens for which to return log probabilities. |
| **base_url** | `str` | The base URL for the API endpoint. |
| **api_version** | `str` | Version of the API to use. |
| **api_key** | `str` | Your API key for authentication. |
# IBM watsonx.ai Models - Enterprise features
# llm: watsonx/ibm/granite-13b-chat-v2
# llm: watsonx/meta-llama/llama-3-1-70b-instruct
# llm: watsonx/bigcode/starcoder2-15b
# Ollama Models - Local deployment
# llm: ollama/llama3:70b
# llm: ollama/codellama
# llm: ollama/mistral
# llm: ollama/mixtral
# llm: ollama/phi
## OpenAI Example Configuration
# Fireworks AI Models - Specialized tasks
# llm: fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct
# llm: fireworks_ai/accounts/fireworks/models/mixtral-8x7b
# llm: fireworks_ai/accounts/fireworks/models/zephyr-7b-beta
```python Code
from crewai import LLM
# Perplexity AI Models - Research focused
# llm: pplx/llama-3.1-sonar-large-128k-online
# llm: pplx/mistral-7b-instruct
# llm: pplx/codellama-34b-instruct
# llm: pplx/mixtral-8x7b-instruct
llm = LLM(
model="gpt-4",
temperature=0.8,
max_tokens=150,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1,
stop=["END"],
seed=42,
base_url="https://api.openai.com/v1",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
# Hugging Face Models - Community models
# llm: huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct
# llm: huggingface/mistralai/Mixtral-8x7B-Instruct-v0.1
# llm: huggingface/tiiuae/falcon-180B-chat
# llm: huggingface/google/gemma-7b-it
## Cerebras Example Configuration
# Nvidia NIM Models - GPU-optimized
# llm: nvidia_nim/meta/llama3-70b-instruct
# llm: nvidia_nim/mistral/mixtral-8x7b
# llm: nvidia_nim/google/gemma-7b
```python Code
from crewai import LLM
# SambaNova Models - Enterprise AI
# llm: sambanova/Meta-Llama-3.1-8B-Instruct
# llm: sambanova/BioMistral-7B
# llm: sambanova/Falcon-180B
```
llm = LLM(
model="cerebras/llama-3.1-70b",
base_url="https://api.cerebras.ai/v1",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
<Info>
The YAML configuration allows you to:
- Version control your agent settings
- Easily switch between different models
- Share configurations across team members
- Document model choices and their purposes
</Info>
</Tab>
<Tab title="3. Direct Code">
For maximum flexibility, configure LLMs directly in your Python code:
## Using Ollama (Local LLMs)
```python
from crewai import LLM
CrewAI supports using Ollama for running open-source models locally:
# Basic configuration
llm = LLM(model="gpt-4")
1. Install Ollama: [ollama.ai](https://ollama.ai/)
2. Run a model: `ollama run llama2`
3. Configure agent:
# Advanced configuration with detailed parameters
llm = LLM(
model="gpt-4o-mini",
temperature=0.7, # Higher for more creative outputs
timeout=120, # Seconds to wait for response
max_tokens=4000, # Maximum length of response
top_p=0.9, # Nucleus sampling parameter
frequency_penalty=0.1, # Reduce repetition
presence_penalty=0.1, # Encourage topic diversity
response_format={"type": "json"}, # For structured outputs
seed=42 # For reproducible results
)
```
```python Code
from crewai import LLM
<Info>
Parameter explanations:
- `temperature`: Controls randomness (0.0-1.0)
- `timeout`: Maximum wait time for response
- `max_tokens`: Limits response length
- `top_p`: Alternative to temperature for sampling
- `frequency_penalty`: Reduces word repetition
- `presence_penalty`: Encourages new topics
- `response_format`: Specifies output structure
- `seed`: Ensures consistent outputs
</Info>
</Tab>
</Tabs>
agent = Agent(
llm=LLM(model="ollama/llama3.1", base_url="http://localhost:11434"),
...
)
```
## Advanced Features and Optimization
## Changing the Base API URL
Learn how to get the most out of your LLM configuration:
You can change the base API URL for any LLM provider by setting the `base_url` parameter:
<AccordionGroup>
<Accordion title="Context Window Management">
CrewAI includes smart context management features:
```python Code
from crewai import LLM
```python
from crewai import LLM
llm = LLM(
model="custom-model-name",
base_url="https://api.your-provider.com/v1",
api_key="your-api-key"
)
agent = Agent(llm=llm, ...)
```
# CrewAI automatically handles:
# 1. Token counting and tracking
# 2. Content summarization when needed
# 3. Task splitting for large contexts
This is particularly useful when working with OpenAI-compatible APIs or when you need to specify a different endpoint for your chosen provider.
llm = LLM(
model="gpt-4",
max_tokens=4000, # Limit response length
)
```
## Best Practices
<Info>
Best practices for context management:
1. Choose models with appropriate context windows
2. Pre-process long inputs when possible
3. Use chunking for large documents
4. Monitor token usage to optimize costs
</Info>
</Accordion>
1. **Choose the right model**: Balance capability and cost.
2. **Optimize prompts**: Clear, concise instructions improve output.
3. **Manage tokens**: Monitor and limit token usage for efficiency.
4. **Use appropriate temperature**: Lower for factual tasks, higher for creative ones.
5. **Implement error handling**: Gracefully manage API errors and rate limits.
<Accordion title="Performance Optimization">
<Steps>
<Step title="Token Usage Optimization">
Choose the right context window for your task:
- Small tasks (up to 4K tokens): Standard models
- Medium tasks (between 4K-32K): Enhanced models
- Large tasks (over 32K): Large context models
```python
# Configure model with appropriate settings
llm = LLM(
model="openai/gpt-4-turbo-preview",
temperature=0.7, # Adjust based on task
max_tokens=4096, # Set based on output needs
timeout=300 # Longer timeout for complex tasks
)
```
<Tip>
- Lower temperature (0.1 to 0.3) for factual responses
- Higher temperature (0.7 to 0.9) for creative tasks
</Tip>
</Step>
## Troubleshooting
<Step title="Best Practices">
1. Monitor token usage
2. Implement rate limiting
3. Use caching when possible
4. Set appropriate max_tokens limits
</Step>
</Steps>
- **API Errors**: Check your API key, network connection, and rate limits.
- **Unexpected Outputs**: Refine your prompts and adjust temperature or top_p.
- **Performance Issues**: Consider using a more powerful model or optimizing your queries.
- **Timeout Errors**: Increase the `timeout` parameter or optimize your input.
<Info>
Remember to regularly monitor your token usage and adjust your configuration as needed to optimize costs and performance.
</Info>
</Accordion>
</AccordionGroup>
## Provider Configuration Examples
<AccordionGroup>
<Accordion title="OpenAI">
```python Code
# Required
OPENAI_API_KEY=sk-...
# Optional
OPENAI_API_BASE=<custom-base-url>
OPENAI_ORGANIZATION=<your-org-id>
```
Example usage:
```python Code
from crewai import LLM
llm = LLM(
model="gpt-4",
temperature=0.8,
max_tokens=150,
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1,
stop=["END"],
seed=42
)
```
</Accordion>
<Accordion title="Anthropic">
```python Code
ANTHROPIC_API_KEY=sk-ant-...
```
Example usage:
```python Code
llm = LLM(
model="anthropic/claude-3-sonnet-20240229-v1:0",
temperature=0.7
)
```
</Accordion>
<Accordion title="Google">
```python Code
# Option 1. Gemini accessed with an API key.
# https://ai.google.dev/gemini-api/docs/api-key
GEMINI_API_KEY=<your-api-key>
# Option 2. Vertex AI IAM credentials for Gemini, Anthropic, and anything in the Model Garden.
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
```
Example usage:
```python Code
llm = LLM(
model="gemini/gemini-1.5-pro-latest",
temperature=0.7
)
```
</Accordion>
<Accordion title="Azure">
```python Code
# Required
AZURE_API_KEY=<your-api-key>
AZURE_API_BASE=<your-resource-url>
AZURE_API_VERSION=<api-version>
# Optional
AZURE_AD_TOKEN=<your-azure-ad-token>
AZURE_API_TYPE=<your-azure-api-type>
```
Example usage:
```python Code
llm = LLM(
model="azure/gpt-4",
api_version="2023-05-15"
)
```
</Accordion>
<Accordion title="AWS Bedrock">
```python Code
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-key>
AWS_DEFAULT_REGION=<your-region>
```
Example usage:
```python Code
llm = LLM(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
```
</Accordion>
<Accordion title="Mistral">
```python Code
MISTRAL_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="mistral/mistral-large-latest",
temperature=0.7
)
```
</Accordion>
<Accordion title="Groq">
```python Code
GROQ_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="groq/llama-3.2-90b-text-preview",
temperature=0.7
)
```
</Accordion>
<Accordion title="IBM watsonx.ai">
```python Code
# Required
WATSONX_URL=<your-url>
WATSONX_APIKEY=<your-apikey>
WATSONX_PROJECT_ID=<your-project-id>
# Optional
WATSONX_TOKEN=<your-token>
WATSONX_DEPLOYMENT_SPACE_ID=<your-space-id>
```
Example usage:
```python Code
llm = LLM(
model="watsonx/meta-llama/llama-3-1-70b-instruct",
base_url="https://api.watsonx.ai/v1"
)
```
</Accordion>
<Accordion title="Ollama (Local LLMs)">
1. Install Ollama: [ollama.ai](https://ollama.ai/)
2. Run a model: `ollama run llama2`
3. Configure:
```python Code
llm = LLM(
model="ollama/llama3:70b",
base_url="http://localhost:11434"
)
```
</Accordion>
<Accordion title="Fireworks AI">
```python Code
FIREWORKS_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
temperature=0.7
)
```
</Accordion>
<Accordion title="Perplexity AI">
```python Code
PERPLEXITY_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="llama-3.1-sonar-large-128k-online",
base_url="https://api.perplexity.ai/"
)
```
</Accordion>
<Accordion title="Hugging Face">
```python Code
HUGGINGFACE_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct",
base_url="your_api_endpoint"
)
```
</Accordion>
<Accordion title="Nvidia NIM">
```python Code
NVIDIA_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="nvidia_nim/meta/llama3-70b-instruct",
temperature=0.7
)
```
</Accordion>
<Accordion title="SambaNova">
```python Code
SAMBANOVA_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="sambanova/Meta-Llama-3.1-8B-Instruct",
temperature=0.7
)
```
</Accordion>
<Accordion title="Cerebras">
```python Code
# Required
CEREBRAS_API_KEY=<your-api-key>
```
Example usage:
```python Code
llm = LLM(
model="cerebras/llama3.1-70b",
temperature=0.7,
max_tokens=8192
)
```
<Info>
Cerebras features:
- Fast inference speeds
- Competitive pricing
- Good balance of speed and quality
- Support for long context windows
</Info>
</Accordion>
</AccordionGroup>
## Common Issues and Solutions
<Tabs>
<Tab title="Authentication">
<Warning>
Most authentication issues can be resolved by checking API key format and environment variable names.
</Warning>
```bash
# OpenAI
OPENAI_API_KEY=sk-...
# Anthropic
ANTHROPIC_API_KEY=sk-ant-...
```
</Tab>
<Tab title="Model Names">
<Check>
Always include the provider prefix in model names
</Check>
```python
# Correct
llm = LLM(model="openai/gpt-4")
# Incorrect
llm = LLM(model="gpt-4")
```
</Tab>
<Tab title="Context Length">
<Tip>
Use larger context models for extensive tasks
</Tip>
```python
# Large context model
llm = LLM(model="openai/gpt-4o") # 128K tokens
```
</Tab>
</Tabs>
## Getting Help
If you need assistance, these resources are available:
<CardGroup cols={3}>
<Card
title="LiteLLM Documentation"
href="https://docs.litellm.ai/docs/"
icon="book"
>
Comprehensive documentation for LiteLLM integration and troubleshooting common issues.
</Card>
<Card
title="GitHub Issues"
href="https://github.com/joaomdmoura/crewAI/issues"
icon="bug"
>
Report bugs, request features, or browse existing issues for solutions.
</Card>
<Card
title="Community Forum"
href="https://community.crewai.com"
icon="comment-question"
>
Connect with other CrewAI users, share experiences, and get help from the community.
</Card>
</CardGroup>
<Note>
Best Practices for API Key Security:
- Use environment variables or secure vaults
- Never commit keys to version control
- Rotate keys regularly
- Use separate keys for development and production
- Monitor key usage for unusual patterns
</Note>

View File

@@ -18,6 +18,7 @@ reason, and learn from past interactions.
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
| **User Memory** | Stores user-specific information and preferences, enhancing personalization and user experience. |
## How Memory Systems Empower Agents
@@ -92,6 +93,47 @@ my_crew = Crew(
)
```
## Integrating Mem0 for Enhanced User Memory
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
To include user-specific memory you can get your API key [here](https://app.mem0.ai/dashboard/api-keys) and refer the [docs](https://docs.mem0.ai/platform/quickstart#4-1-create-memories) for adding user preferences.
```python Code
import os
from crewai import Crew, Process
from mem0 import MemoryClient
# Set environment variables for Mem0
os.environ["MEM0_API_KEY"] = "m0-xx"
# Step 1: Record preferences based on past conversation or user input
client = MemoryClient()
messages = [
{"role": "user", "content": "Hi there! I'm planning a vacation and could use some advice."},
{"role": "assistant", "content": "Hello! I'd be happy to help with your vacation planning. What kind of destination do you prefer?"},
{"role": "user", "content": "I am more of a beach person than a mountain person."},
{"role": "assistant", "content": "That's interesting. Do you like hotels or Airbnb?"},
{"role": "user", "content": "I like Airbnb more."},
]
client.add(messages, user_id="john")
# Step 2: Create a Crew with User Memory
crew = Crew(
agents=[...],
tasks=[...],
verbose=True,
process=Process.sequential,
memory=True,
memory_config={
"provider": "mem0",
"config": {"user_id": "john"},
},
)
```
## Additional Embedding Providers
@@ -105,9 +147,48 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
embedder={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
}
)
```
Alternatively, you can directly pass the OpenAIEmbeddingFunction to the embedder parameter.
Example:
```python Code
from crewai import Crew, Agent, Task, Process
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder=OpenAIEmbeddingFunction(api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"),
)
```
### Using Ollama embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "ollama",
"config": {
"model": "mxbai-embed-large"
}
}
)
```
@@ -122,16 +203,20 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"),
model_name="text-embedding-ada-002"
)
embedder={
"provider": "google",
"config": {
"api_key": "<YOUR_API_KEY>",
"model_name": "<model_name>"
}
}
)
```
### Using Azure OpenAI embeddings
```python Code
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
@@ -140,7 +225,7 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.OpenAIEmbeddingFunction(
embedder=OpenAIEmbeddingFunction(
api_key="YOUR_API_KEY",
api_base="YOUR_API_BASE_PATH",
api_type="azure",
@@ -153,6 +238,7 @@ my_crew = Crew(
### Using Vertex AI embeddings
```python Code
from chromadb.utils.embedding_functions import GoogleVertexEmbeddingFunction
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
@@ -161,7 +247,7 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.GoogleVertexEmbeddingFunction(
embedder=GoogleVertexEmbeddingFunction(
project_id="YOUR_PROJECT_ID",
region="YOUR_REGION",
api_key="YOUR_API_KEY",
@@ -181,10 +267,57 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.CohereEmbeddingFunction(
api_key=YOUR_API_KEY,
model_name="<model_name>"
)
embedder={
"provider": "cohere",
"config": {
"api_key": "YOUR_API_KEY",
"model_name": "<model_name>"
}
}
)
```
### Using HuggingFace embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "huggingface",
"config": {
"api_url": "<api_url>",
}
}
)
```
### Using Watson embeddings
```python Code
from crewai import Crew, Agent, Task, Process
# Note: Ensure you have installed and imported `ibm_watsonx_ai` for Watson embeddings to work.
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "watson",
"config": {
"model": "<model_name>",
"api_url": "<api_url>",
"api_key": "<YOUR_API_KEY>",
"project_id": "<YOUR_PROJECT_ID>",
}
}
)
```

View File

@@ -1,6 +1,6 @@
---
title: Tasks
description: Detailed guide on managing and creating tasks within the CrewAI framework, reflecting the latest codebase updates.
description: Detailed guide on managing and creating tasks within the CrewAI framework.
icon: list-check
---
@@ -8,41 +8,171 @@ icon: list-check
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
They provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
Tasks provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
Tasks within CrewAI can be collaborative, requiring multiple agents to work together. This is managed through the task properties and orchestrated by the Crew's process, enhancing teamwork and efficiency.
### Task Execution Flow
Tasks can be executed in two ways:
- **Sequential**: Tasks are executed in the order they are defined
- **Hierarchical**: Tasks are assigned to agents based on their roles and expertise
The execution flow is defined when creating the crew:
```python Code
crew = Crew(
agents=[agent1, agent2],
tasks=[task1, task2],
process=Process.sequential # or Process.hierarchical
)
```
## Task Attributes
| Attribute | Parameters | Type | Description |
| :------------------------------- | :---------------- | :---------------------------- | :------------------------------------------------------------------------------------------------------------------- |
| **Description** | `description` | `str` | A clear, concise statement of what the task entails. |
| **Agent** | `agent` | `Optional[BaseAgent]` | The agent responsible for the task, assigned either directly or by the crew's process. |
| **Expected Output** | `expected_output` | `str` | A detailed description of what the task's completion looks like. |
| **Tools** _(optional)_ | `tools` | `Optional[List[Any]]` | The functions or capabilities the agent can utilize to perform the task. Defaults to an empty list. |
| **Async Execution** _(optional)_ | `async_execution` | `Optional[bool]` | If set, the task executes asynchronously, allowing progression without waiting for completion. Defaults to False. |
| **Context** _(optional)_ | `context` | `Optional[List["Task"]]` | Specifies tasks whose outputs are used as context for this task. |
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Additional configuration details for the agent executing the task, allowing further customization. Defaults to None. |
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | Outputs a JSON object, requiring an OpenAI client. Only one output format can be set. |
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | Outputs a Pydantic model object, requiring an OpenAI client. Only one output format can be set. |
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | Saves the task output to a file. If used with `Output JSON` or `Output Pydantic`, specifies how the output is saved. |
| **Output** _(optional)_ | `output` | `Optional[TaskOutput]` | An instance of `TaskOutput`, containing the raw, JSON, and Pydantic output plus additional details. |
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | A callable that is executed with the task's output upon completion. |
| **Human Input** _(optional)_ | `human_input` | `Optional[bool]` | Indicates if the task should involve human review at the end, useful for tasks needing human oversight. Defaults to False.|
| **Converter Class** _(optional)_ | `converter_cls` | `Optional[Type[Converter]]` | A converter class used to export structured output. Defaults to None. |
| **Name** _(optional)_ | `name` | `Optional[str]` | A name identifier for the task. |
| **Agent** _(optional)_ | `agent` | `Optional[BaseAgent]` | The agent responsible for executing the task. |
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | The tools/resources the agent is limited to use for this task. |
| **Context** _(optional)_ | `context` | `Optional[List["Task"]]` | Other tasks whose outputs will be used as context for this task. |
| **Async Execution** _(optional)_ | `async_execution` | `Optional[bool]` | Whether the task should be executed asynchronously. Defaults to False. |
| **Config** _(optional)_ | `config` | `Optional[Dict[str, Any]]` | Task-specific configuration parameters. |
| **Output File** _(optional)_ | `output_file` | `Optional[str]` | File path for storing the task output. |
| **Output JSON** _(optional)_ | `output_json` | `Optional[Type[BaseModel]]` | A Pydantic model to structure the JSON output. |
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | A Pydantic model for task output. |
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | Function/object to be executed after task completion. |
## Creating a Task
## Creating Tasks
Creating a task involves defining its scope, responsible agent, and any additional attributes for flexibility:
There are two ways to create tasks in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
### YAML Configuration (Recommended)
Using YAML configuration provides a cleaner, more maintainable way to define tasks. We strongly recommend using this approach to define tasks in your CrewAI projects.
After creating your CrewAI project as outlined in the [Installation](/installation) section, navigate to the `src/latest_ai_development/config/tasks.yaml` file and modify the template to match your specific task requirements.
<Note>
Variables in your YAML files (like `{topic}`) will be replaced with values from your inputs when running the crew:
```python Code
crew.kickoff(inputs={'topic': 'AI Agents'})
```
</Note>
Here's an example of how to configure tasks using YAML:
```yaml tasks.yaml
research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst
output_file: report.md
```
To use this YAML configuration in your code, create a crew class that inherits from `CrewBase`:
```python crew.py
# src/latest_ai_development/crew.py
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool
@CrewBase
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True,
tools=[SerperDevTool()]
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task']
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task']
)
@crew
def crew(self) -> Crew:
return Crew(
agents=[
self.researcher(),
self.reporting_analyst()
],
tasks=[
self.research_task(),
self.reporting_task()
],
process=Process.sequential
)
```
<Note>
The names you use in your YAML files (`agents.yaml` and `tasks.yaml`) should match the method names in your Python code.
</Note>
### Direct Code Definition (Alternative)
Alternatively, you can define tasks directly in your code without using YAML configuration:
```python task.py
from crewai import Task
task = Task(
description='Find and summarize the latest and most relevant news on AI',
agent=sales_agent,
expected_output='A bullet list summary of the top 5 most important AI news',
research_task = Task(
description="""
Conduct a thorough research about AI Agents.
Make sure you find any interesting and relevant information given
the current year is 2024.
""",
expected_output="""
A list with 10 bullet points of the most relevant information about AI Agents
""",
agent=researcher
)
reporting_task = Task(
description="""
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
""",
expected_output="""
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
""",
agent=reporting_analyst,
output_file="report.md"
)
```
@@ -52,6 +182,8 @@ task = Task(
## Task Output
Understanding task outputs is crucial for building effective AI workflows. CrewAI provides a structured way to handle task results through the `TaskOutput` class, which supports multiple output formats and can be easily passed between tasks.
The output of a task in CrewAI framework is encapsulated within the `TaskOutput` class. This class provides a structured way to access results of a task, including various formats such as raw output, JSON, and Pydantic models.
By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput` will only include the `pydantic` or `json_dict` output if the original `Task` object was configured with `output_pydantic` or `output_json`, respectively.
@@ -112,6 +244,186 @@ if task_output.pydantic:
print(f"Pydantic Output: {task_output.pydantic}")
```
## Task Dependencies and Context
Tasks can depend on the output of other tasks using the `context` attribute. For example:
```python Code
research_task = Task(
description="Research the latest developments in AI",
expected_output="A list of recent AI developments",
agent=researcher
)
analysis_task = Task(
description="Analyze the research findings and identify key trends",
expected_output="Analysis report of AI trends",
agent=analyst,
context=[research_task] # This task will wait for research_task to complete
)
```
## Getting Structured Consistent Outputs from Tasks
When you need to ensure that a task outputs a structured and consistent format, you can use the `output_pydantic` or `output_json` properties on a task. These properties allow you to define the expected output structure, making it easier to parse and utilize the results in your application.
<Note>
It's also important to note that the output of the final task of a crew becomes the final output of the actual crew itself.
</Note>
### Using `output_pydantic`
The `output_pydantic` property allows you to define a Pydantic model that the task output should conform to. This ensures that the output is not only structured but also validated according to the Pydantic model.
Heres an example demonstrating how to use output_pydantic:
```python Code
import json
from crewai import Agent, Crew, Process, Task
from pydantic import BaseModel
class Blog(BaseModel):
title: str
content: str
blog_agent = Agent(
role="Blog Content Generator Agent",
goal="Generate a blog title and content",
backstory="""You are an expert content creator, skilled in crafting engaging and informative blog posts.""",
verbose=False,
allow_delegation=False,
llm="gpt-4o",
)
task1 = Task(
description="""Create a blog title and content on a given topic. Make sure the content is under 200 words.""",
expected_output="A compelling blog title and well-written content.",
agent=blog_agent,
output_pydantic=Blog,
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[blog_agent],
tasks=[task1],
verbose=True,
process=Process.sequential,
)
result = crew.kickoff()
# Option 1: Accessing Properties Using Dictionary-Style Indexing
print("Accessing Properties - Option 1")
title = result["title"]
content = result["content"]
print("Title:", title)
print("Content:", content)
# Option 2: Accessing Properties Directly from the Pydantic Model
print("Accessing Properties - Option 2")
title = result.pydantic.title
content = result.pydantic.content
print("Title:", title)
print("Content:", content)
# Option 3: Accessing Properties Using the to_dict() Method
print("Accessing Properties - Option 3")
output_dict = result.to_dict()
title = output_dict["title"]
content = output_dict["content"]
print("Title:", title)
print("Content:", content)
# Option 4: Printing the Entire Blog Object
print("Accessing Properties - Option 5")
print("Blog:", result)
```
In this example:
* A Pydantic model Blog is defined with title and content fields.
* The task task1 uses the output_pydantic property to specify that its output should conform to the Blog model.
* After executing the crew, you can access the structured output in multiple ways as shown.
#### Explanation of Accessing the Output
1. Dictionary-Style Indexing: You can directly access the fields using result["field_name"]. This works because the CrewOutput class implements the __getitem__ method.
2. Directly from Pydantic Model: Access the attributes directly from the result.pydantic object.
3. Using to_dict() Method: Convert the output to a dictionary and access the fields.
4. Printing the Entire Object: Simply print the result object to see the structured output.
### Using `output_json`
The `output_json` property allows you to define the expected output in JSON format. This ensures that the task's output is a valid JSON structure that can be easily parsed and used in your application.
Heres an example demonstrating how to use `output_json`:
```python Code
import json
from crewai import Agent, Crew, Process, Task
from pydantic import BaseModel
# Define the Pydantic model for the blog
class Blog(BaseModel):
title: str
content: str
# Define the agent
blog_agent = Agent(
role="Blog Content Generator Agent",
goal="Generate a blog title and content",
backstory="""You are an expert content creator, skilled in crafting engaging and informative blog posts.""",
verbose=False,
allow_delegation=False,
llm="gpt-4o",
)
# Define the task with output_json set to the Blog model
task1 = Task(
description="""Create a blog title and content on a given topic. Make sure the content is under 200 words.""",
expected_output="A JSON object with 'title' and 'content' fields.",
agent=blog_agent,
output_json=Blog,
)
# Instantiate the crew with a sequential process
crew = Crew(
agents=[blog_agent],
tasks=[task1],
verbose=True,
process=Process.sequential,
)
# Kickoff the crew to execute the task
result = crew.kickoff()
# Option 1: Accessing Properties Using Dictionary-Style Indexing
print("Accessing Properties - Option 1")
title = result["title"]
content = result["content"]
print("Title:", title)
print("Content:", content)
# Option 2: Printing the Entire Blog Object
print("Accessing Properties - Option 2")
print("Blog:", result)
```
In this example:
* A Pydantic model Blog is defined with title and content fields, which is used to specify the structure of the JSON output.
* The task task1 uses the output_json property to indicate that it expects a JSON output conforming to the Blog model.
* After executing the crew, you can access the structured JSON output in two ways as shown.
#### Explanation of Accessing the Output
1. Accessing Properties Using Dictionary-Style Indexing: You can access the fields directly using result["field_name"]. This is possible because the CrewOutput class implements the __getitem__ method, allowing you to treat the output like a dictionary. In this option, we're retrieving the title and content from the result.
2. Printing the Entire Blog Object: By printing result, you get the string representation of the CrewOutput object. Since the __str__ method is implemented to return the JSON output, this will display the entire output as a formatted string representing the Blog object.
---
By using output_pydantic or output_json, you ensure that your tasks produce outputs in a consistent and structured format, making it easier to process and utilize the data within your application or across multiple tasks.
## Integrating Tools with Tasks
Leverage tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools) for enhanced task performance and agent interaction.
@@ -167,16 +479,16 @@ This is useful when you have a task that depends on the output of another task t
# ...
research_ai_task = Task(
description='Find and summarize the latest AI news',
expected_output='A bullet list summary of the top 5 most important AI news',
description="Research the latest developments in AI",
expected_output="A list of recent AI developments",
async_execution=True,
agent=research_agent,
tools=[search_tool]
)
research_ops_task = Task(
description='Find and summarize the latest AI Ops news',
expected_output='A bullet list summary of the top 5 most important AI Ops news',
description="Research the latest developments in AI Ops",
expected_output="A list of recent AI Ops developments",
async_execution=True,
agent=research_agent,
tools=[search_tool]
@@ -184,7 +496,7 @@ research_ops_task = Task(
write_blog_task = Task(
description="Write a full blog post about the importance of AI and its latest news",
expected_output='Full blog post that is 4 paragraphs long',
expected_output="Full blog post that is 4 paragraphs long",
agent=writer_agent,
context=[research_ai_task, research_ops_task]
)
@@ -320,4 +632,4 @@ save_output_task = Task(
Tasks are the driving force behind the actions of agents in CrewAI.
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.

View File

@@ -5,13 +5,14 @@ icon: screwdriver-wrench
---
## Introduction
CrewAI tools empower agents with capabilities ranging from web searching and data analysis to collaboration and delegating tasks among coworkers.
CrewAI tools empower agents with capabilities ranging from web searching and data analysis to collaboration and delegating tasks among coworkers.
This documentation outlines how to create, integrate, and leverage these tools within the CrewAI framework, including a new focus on collaboration tools.
## What is a Tool?
A tool in CrewAI is a skill or function that agents can utilize to perform various actions.
This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools),
A tool in CrewAI is a skill or function that agents can utilize to perform various actions.
This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools),
enabling everything from simple searches to complex interactions and effective teamwork among agents.
## Key Characteristics of Tools
@@ -103,57 +104,53 @@ crew.kickoff()
Here is a list of the available tools and their descriptions:
| Tool | Description |
| :-------------------------- | :-------------------------------------------------------------------------------------------- |
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
| **CodeInterpreterTool** | A tool for interpreting python code. |
| **ComposioTool** | Enables use of Composio tools. |
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
| **EXASearchTool** | A tool designed for performing exhaustive searches across various data sources. |
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages URL using Firecrawl and returning its contents. |
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search.|
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
| **LlamaIndexTool** | Enables the use of LlamaIndex tools. |
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
| **Vision Tool** | A tool for generating images using the DALL-E API. |
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
| **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. |
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
| **YoutubeChannelSearchTool**| A RAG tool for searching within YouTube channels, useful for video content analysis. |
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
| Tool | Description |
| :------------------------------- | :--------------------------------------------------------------------------------------------- |
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
| **CodeInterpreterTool** | A tool for interpreting python code. |
| **ComposioTool** | Enables use of Composio tools. |
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
| **EXASearchTool** | A tool designed for performing exhaustive searches across various data sources. |
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages URL using Firecrawl and returning its contents. |
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search. |
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
| **LlamaIndexTool** | Enables the use of LlamaIndex tools. |
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
| **Vision Tool** | A tool for generating images using the DALL-E API. |
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
| **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. |
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
| **YoutubeChannelSearchTool** | A RAG tool for searching within YouTube channels, useful for video content analysis. |
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
## Creating your own Tools
<Tip>
Developers can craft `custom tools` tailored for their agents needs or utilize pre-built options.
Developers can craft `custom tools` tailored for their agents needs or
utilize pre-built options.
</Tip>
To create your own CrewAI tools you will need to install our extra tools package:
```bash
pip install 'crewai[tools]'
```
Once you do that there are two main ways for one to create a CrewAI tool:
There are two main ways for one to create a CrewAI tool:
### Subclassing `BaseTool`
```python Code
from crewai_tools import BaseTool
from crewai.tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
@@ -167,7 +164,7 @@ class MyCustomTool(BaseTool):
### Utilizing the `tool` Decorator
```python Code
from crewai_tools import tool
from crewai.tools import tool
@tool("Name of my tool")
def my_tool(question: str) -> str:
"""Clear description for what this tool is useful for, your agent will need this information to use it."""
@@ -175,14 +172,58 @@ def my_tool(question: str) -> str:
return "Result from your custom tool"
```
### Structured Tools
The `StructuredTool` class wraps functions as tools, providing flexibility and validation while reducing boilerplate. It supports custom schemas and dynamic logic for seamless integration of complex functionalities.
#### Example:
Using `StructuredTool.from_function`, you can wrap a function that interacts with an external API or system, providing a structured interface. This enables robust validation and consistent execution, making it easier to integrate complex functionalities into your applications as demonstrated in the following example:
```python
from crewai.tools.structured_tool import CrewStructuredTool
from pydantic import BaseModel
# Define the schema for the tool's input using Pydantic
class APICallInput(BaseModel):
endpoint: str
parameters: dict
# Wrapper function to execute the API call
def tool_wrapper(*args, **kwargs):
# Here, you would typically call the API using the parameters
# For demonstration, we'll return a placeholder string
return f"Call the API at {kwargs['endpoint']} with parameters {kwargs['parameters']}"
# Create and return the structured tool
def create_structured_tool():
return CrewStructuredTool.from_function(
name='Wrapper API',
description="A tool to wrap API calls with structured input.",
args_schema=APICallInput,
func=tool_wrapper,
)
# Example usage
structured_tool = create_structured_tool()
# Execute the tool with structured input
result = structured_tool._run(**{
"endpoint": "https://example.com/api",
"parameters": {"key1": "value1", "key2": "value2"}
})
print(result) # Output: Call the API at https://example.com/api with parameters {'key1': 'value1', 'key2': 'value2'}
```
### Custom Caching Mechanism
<Tip>
Tools can optionally implement a `cache_function` to fine-tune caching behavior. This function determines when to cache results based on specific conditions, offering granular control over caching logic.
Tools can optionally implement a `cache_function` to fine-tune caching
behavior. This function determines when to cache results based on specific
conditions, offering granular control over caching logic.
</Tip>
```python Code
from crewai_tools import tool
from crewai.tools import tool
@tool
def multiplication_tool(first_number: int, second_number: int) -> str:
@@ -208,6 +249,6 @@ writer1 = Agent(
## Conclusion
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling,
caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling,
caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.

View File

@@ -57,7 +57,7 @@ This feature is useful for debugging and understanding how agents interact with
<Step title="Install AgentOps">
Install AgentOps with:
```bash
pip install crewai[agentops]
pip install 'crewai[agentops]'
```
or
```bash

View File

@@ -0,0 +1,59 @@
---
title: Before and After Kickoff Hooks
description: Learn how to use before and after kickoff hooks in CrewAI
---
CrewAI provides hooks that allow you to execute code before and after a crew's kickoff. These hooks are useful for preprocessing inputs or post-processing results.
## Before Kickoff Hook
The before kickoff hook is executed before the crew starts its tasks. It receives the input dictionary and can modify it before passing it to the crew. You can use this hook to set up your environment, load necessary data, or preprocess your inputs. This is useful in scenarios where the input data might need enrichment or validation before being processed by the crew.
Here's an example of defining a before kickoff function in your `crew.py`:
```python
from crewai import CrewBase, before_kickoff
@CrewBase
class MyCrew:
@before_kickoff
def prepare_data(self, inputs):
# Preprocess or modify inputs
inputs['processed'] = True
return inputs
#...
```
In this example, the prepare_data function modifies the inputs by adding a new key-value pair indicating that the inputs have been processed.
## After Kickoff Hook
The after kickoff hook is executed after the crew has completed its tasks. It receives the result object, which contains the outputs of the crew's execution. This hook is ideal for post-processing results, such as logging, data transformation, or further analysis.
Here's how you can define an after kickoff function in your `crew.py`:
```python
from crewai import CrewBase, after_kickoff
@CrewBase
class MyCrew:
@after_kickoff
def log_results(self, result):
# Log or modify the results
print("Crew execution completed with result:", result)
return result
# ...
```
In the `log_results` function, the results of the crew execution are simply printed out. You can extend this to perform more complex operations such as sending notifications or integrating with other services.
## Utilizing Both Hooks
Both hooks can be used together to provide a comprehensive setup and teardown process for your crew's execution. They are particularly useful in maintaining clean code architecture by separating concerns and enhancing the modularity of your CrewAI implementations.
## Conclusion
Before and after kickoff hooks in CrewAI offer powerful ways to interact with the lifecycle of a crew's execution. By understanding and utilizing these hooks, you can greatly enhance the robustness and flexibility of your AI agents.

View File

@@ -6,28 +6,27 @@ icon: hammer
## Creating and Utilizing Tools in CrewAI
This guide provides detailed instructions on creating custom tools for the CrewAI framework and how to efficiently manage and utilize these tools,
incorporating the latest functionalities such as tool delegation, error handling, and dynamic tool calling. It also highlights the importance of collaboration tools,
This guide provides detailed instructions on creating custom tools for the CrewAI framework and how to efficiently manage and utilize these tools,
incorporating the latest functionalities such as tool delegation, error handling, and dynamic tool calling. It also highlights the importance of collaboration tools,
enabling agents to perform a wide range of actions.
### Prerequisites
Before creating your own tools, ensure you have the crewAI extra tools package installed:
```bash
pip install 'crewai[tools]'
```
### Subclassing `BaseTool`
To create a personalized tool, inherit from `BaseTool` and define the necessary attributes and the `_run` method.
To create a personalized tool, inherit from `BaseTool` and define the necessary attributes, including the `args_schema` for input validation, and the `_run` method.
```python Code
from crewai_tools import BaseTool
from typing import Type
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = "What this tool does. It's vital for effective utilization."
args_schema: Type[BaseModel] = MyToolInput
def _run(self, argument: str) -> str:
# Your tool's logic here
@@ -40,7 +39,7 @@ Alternatively, you can use the tool decorator `@tool`. This approach allows you
offering a concise and efficient way to create specialized tools tailored to your needs.
```python Code
from crewai_tools import tool
from crewai.tools import tool
@tool("Tool Name")
def my_simple_tool(question: str) -> str:
@@ -66,5 +65,5 @@ def my_cache_strategy(arguments: dict, result: str) -> bool:
cached_tool.cache_function = my_cache_strategy
```
By adhering to these guidelines and incorporating new functionalities and collaboration tools into your tool creation and management processes,
By adhering to these guidelines and incorporating new functionalities and collaboration tools into your tool creation and management processes,
you can leverage the full capabilities of the CrewAI framework, enhancing both the development experience and the efficiency of your AI agents.

View File

@@ -32,6 +32,7 @@ LiteLLM supports a wide range of providers, including but not limited to:
- Cloudflare Workers AI
- DeepInfra
- Groq
- [NVIDIA NIMs](https://docs.api.nvidia.com/nim/reference/models-1)
- And many more!
For a complete and up-to-date list of supported providers, please refer to the [LiteLLM Providers documentation](https://docs.litellm.ai/docs/providers).
@@ -125,10 +126,10 @@ You can connect to OpenAI-compatible LLMs using either environment variables or
</Tab>
<Tab title="Using LLM Class Attributes">
<CodeGroup>
```python Code
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
```python Code
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
base_url="https://api.your-provider.com/v1"
)
agent = Agent(llm=llm, ...)
@@ -179,4 +180,4 @@ This is particularly useful when working with OpenAI-compatible APIs or when you
## Conclusion
By leveraging LiteLLM, CrewAI offers seamless integration with a vast array of LLMs. This flexibility allows you to choose the most suitable model for your specific needs, whether you prioritize performance, cost-efficiency, or local deployment. Remember to consult the [LiteLLM documentation](https://docs.litellm.ai/docs/) for the most up-to-date information on supported models and configuration options.
By leveraging LiteLLM, CrewAI offers seamless integration with a vast array of LLMs. This flexibility allows you to choose the most suitable model for your specific needs, whether you prioritize performance, cost-efficiency, or local deployment. Remember to consult the [LiteLLM documentation](https://docs.litellm.ai/docs/) for the most up-to-date information on supported models and configuration options.

View File

@@ -0,0 +1,181 @@
---
title: Agent Monitoring with OpenLIT
description: Quickly start monitoring your Agents in just a single line of code with OpenTelemetry.
icon: magnifying-glass-chart
---
# OpenLIT Overview
[OpenLIT](https://github.com/openlit/openlit?src=crewai-docs) is an open-source tool that makes it simple to monitor the performance of AI agents, LLMs, VectorDBs, and GPUs with just **one** line of code.
It provides OpenTelemetry-native tracing and metrics to track important parameters like cost, latency, interactions and task sequences.
This setup enables you to track hyperparameters and monitor for performance issues, helping you find ways to enhance and fine-tune your agents over time.
<Frame caption="OpenLIT Dashboard">
<img src="/images/openlit1.png" alt="Overview Agent usage including cost and tokens" />
<img src="/images/openlit2.png" alt="Overview of agent otel traces and metrics" />
<img src="/images/openlit3.png" alt="Overview of agent traces in details" />
</Frame>
### Features
- **Analytics Dashboard**: Monitor your Agents health and performance with detailed dashboards that track metrics, costs, and user interactions.
- **OpenTelemetry-native Observability SDK**: Vendor-neutral SDKs to send traces and metrics to your existing observability tools like Grafana, DataDog and more.
- **Cost Tracking for Custom and Fine-Tuned Models**: Tailor cost estimations for specific models using custom pricing files for precise budgeting.
- **Exceptions Monitoring Dashboard**: Quickly spot and resolve issues by tracking common exceptions and errors with a monitoring dashboard.
- **Compliance and Security**: Detect potential threats such as profanity and PII leaks.
- **Prompt Injection Detection**: Identify potential code injection and secret leaks.
- **API Keys and Secrets Management**: Securely handle your LLM API keys and secrets centrally, avoiding insecure practices.
- **Prompt Management**: Manage and version Agent prompts using PromptHub for consistent and easy access across Agents.
- **Model Playground** Test and compare different models for your CrewAI agents before deployment.
## Setup Instructions
<Steps>
<Step title="Deploy OpenLIT">
<Steps>
<Step title="Git Clone OpenLIT Repository">
```shell
git clone git@github.com:openlit/openlit.git
```
</Step>
<Step title="Start Docker Compose">
From the root directory of the [OpenLIT Repo](https://github.com/openlit/openlit), Run the below command:
```shell
docker compose up -d
```
</Step>
</Steps>
</Step>
<Step title="Install OpenLIT SDK">
```shell
pip install openlit
```
</Step>
<Step title="Initialize OpenLIT in Your Application">
Add the following two lines to your application code:
<Tabs>
<Tab title="Setup using function arguments">
```python
import openlit
openlit.init(otlp_endpoint="http://127.0.0.1:4318")
```
Example Usage for monitoring a CrewAI Agent:
```python
from crewai import Agent, Task, Crew, Process
import openlit
openlit.init(disable_metrics=True)
# Define your agents
researcher = Agent(
role="Researcher",
goal="Conduct thorough research and analysis on AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI, and startups. You work as a freelancer and are currently researching for a new client.",
allow_delegation=False,
llm='command-r'
)
# Define your task
task = Task(
description="Generate a list of 5 interesting ideas for an article, then write one captivating paragraph for each idea that showcases the potential of a full article on this topic. Return the list of ideas with their paragraphs and your notes.",
expected_output="5 bullet points, each with a paragraph and accompanying notes.",
)
# Define the manager agent
manager = Agent(
role="Project Manager",
goal="Efficiently manage the crew and ensure high-quality task completion",
backstory="You're an experienced project manager, skilled in overseeing complex projects and guiding teams to success. Your role is to coordinate the efforts of the crew members, ensuring that each task is completed on time and to the highest standard.",
allow_delegation=True,
llm='command-r'
)
# Instantiate your crew with a custom manager
crew = Crew(
agents=[researcher],
tasks=[task],
manager_agent=manager,
process=Process.hierarchical,
)
# Start the crew's work
result = crew.kickoff()
print(result)
```
</Tab>
<Tab title="Setup using Environment Variables">
Add the following two lines to your application code:
```python
import openlit
openlit.init()
```
Run the following command to configure the OTEL export endpoint:
```shell
export OTEL_EXPORTER_OTLP_ENDPOINT = "http://127.0.0.1:4318"
```
Example Usage for monitoring a CrewAI Async Agent:
```python
import asyncio
from crewai import Crew, Agent, Task
import openlit
openlit.init(otlp_endpoint="http://127.0.0.1:4318")
# Create an agent with code execution enabled
coding_agent = Agent(
role="Python Data Analyst",
goal="Analyze data and provide insights using Python",
backstory="You are an experienced data analyst with strong Python skills.",
allow_code_execution=True,
llm="command-r"
)
# Create a task that requires code execution
data_analysis_task = Task(
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent,
expected_output="5 bullet points, each with a paragraph and accompanying notes.",
)
# Create a crew and add the task
analysis_crew = Crew(
agents=[coding_agent],
tasks=[data_analysis_task]
)
# Async function to kickoff the crew asynchronously
async def async_crew_execution():
result = await analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
print("Crew Result:", result)
# Run the async function
asyncio.run(async_crew_execution())
```
</Tab>
</Tabs>
Refer to OpenLIT [Python SDK repository](https://github.com/openlit/openlit/tree/main/sdk/python) for more advanced configurations and use cases.
</Step>
<Step title="Visualize and Analyze">
With the Agent Observability data now being collected and sent to OpenLIT, the next step is to visualize and analyze this data to get insights into your Agent's performance, behavior, and identify areas of improvement.
Just head over to OpenLIT at `127.0.0.1:3000` on your browser to start exploring. You can login using the default credentials
- **Email**: `user@openlit.io`
- **Password**: `openlituser`
<Frame caption="OpenLIT Dashboard">
<img src="/images/openlit1.png" alt="Overview Agent usage including cost and tokens" />
<img src="/images/openlit2.png" alt="Overview of agent otel traces and metrics" />
</Frame>
</Step>
</Steps>

BIN
docs/images/openlit1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 390 KiB

BIN
docs/images/openlit2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 422 KiB

BIN
docs/images/openlit3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 799 KiB

View File

@@ -1,128 +1,145 @@
---
title: Installation
description:
description: Get started with CrewAI - Install, configure, and build your first AI crew
icon: wrench
---
This guide will walk you through the installation process for CrewAI and its dependencies.
CrewAI is a flexible and powerful AI framework that enables you to create and manage AI agents, tools, and tasks efficiently.
Let's get started! 🚀
<Note>
**Python Version Requirements**
CrewAI requires `Python >=3.10 and <=3.12`. Here's how to check your version:
```bash
python3 --version
```
If you need to update Python, visit [python.org/downloads](https://python.org/downloads)
</Note>
<Tip>
Make sure you have `Python >=3.10 <=3.13` installed on your system before you proceed.
</Tip>
# Installing CrewAI
CrewAI is a flexible and powerful AI framework that enables you to create and manage AI agents, tools, and tasks efficiently.
Let's get you set up! 🚀
<Steps>
<Step title="Install CrewAI">
Install the main CrewAI package with the following command:
<CodeGroup>
```shell Terminal
pip install crewai
```
</CodeGroup>
You can also install the main CrewAI package and the tools package that include a series of helpful tools for your agents:
<CodeGroup>
```shell Terminal
pip install 'crewai[tools]'
```
</CodeGroup>
Alternatively, you can also use:
<CodeGroup>
```shell Terminal
pip install crewai crewai-tools
```
</CodeGroup>
</Step>
<Step title="Upgrade CrewAI">
To upgrade CrewAI and CrewAI Tools to the latest version, run the following command
<CodeGroup>
```shell Terminal
pip install --upgrade crewai crewai-tools
```
</CodeGroup>
<Note>
1. If you're using an older version of CrewAI, you may receive a warning about using `Poetry` for dependency management.
![Error from older versions](./images/crewai-run-poetry-error.png)
2. In this case, you'll need to run the command below to update your project.
This command will migrate your project to use [UV](https://github.com/astral-sh/uv) and update the necessary files.
Install CrewAI with all recommended tools using either method:
```shell Terminal
crewai update
pip install 'crewai[tools]'
```
or
```shell Terminal
pip install crewai crewai-tools
```
3. After running the command above, you should see the following output:
![Successfully migrated to UV](./images/crewai-update.png)
4. You're all set! You can now proceed to the next step! 🎉
</Note>
<Note>
Both methods install the core package and additional tools needed for most use cases.
</Note>
</Step>
<Step title="Verify the installation">
To verify that `crewai` and `crewai-tools` are installed correctly, run the following command
<CodeGroup>
```shell Terminal
pip freeze | grep crewai
```
</CodeGroup>
You should see the version number of `crewai` and `crewai-tools`.
<CodeGroup>
```markdown Version
crewai==X.X.X
crewai-tools==X.X.X
```
</CodeGroup>
If you see the version number, then the installation was successful! 🎉
<Step title="Upgrade CrewAI (Existing Installations Only)">
If you have an older version of CrewAI installed, you can upgrade it:
```shell Terminal
pip install --upgrade crewai crewai-tools
```
<Warning>
If you see a Poetry-related warning, you'll need to migrate to our new dependency manager:
```shell Terminal
crewai update
```
This will update your project to use [UV](https://github.com/astral-sh/uv), our new faster dependency manager.
</Warning>
<Note>
Skip this step if you're doing a fresh installation.
</Note>
</Step>
<Step title="Verify Installation">
Check your installed versions:
```shell Terminal
pip freeze | grep crewai
```
You should see something like:
```markdown Output
crewai==X.X.X
crewai-tools==X.X.X
```
<Check>Installation successful! You're ready to create your first crew.</Check>
</Step>
</Steps>
## Create a new CrewAI project
# Creating a New Project
The next step is to create a new CrewAI project.
We recommend using the YAML Template scaffolding to get started as it provides a structured approach to defining agents and tasks.
<Info>
We recommend using the YAML Template scaffolding for a structured approach to defining agents and tasks.
</Info>
<Steps>
<Step title="Create a new CrewAI project using the YAML Template Configuration">
To create a new CrewAI project, run the following CLI (Command Line Interface) command:
<CodeGroup>
```shell Terminal
crewai create crew <project_name>
```
</CodeGroup>
This command creates a new project folder with the following structure:
| File/Directory | Description |
|:------------------------|:-------------------------------------------------|
| `my_project/` | Root directory of the project |
| ├── `.gitignore` | Specifies files and directories to ignore in Git |
| ├── `pyproject.toml` | Project configuration and dependencies |
| ├── `README.md` | Project documentation |
| ├── `.env` | Environment variables |
| └── `src/` | Source code directory |
| &nbsp;&nbsp;&nbsp;&nbsp;└── `my_project/` | Main application package |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;├── `__init__.py` | Marks the directory as a Python package |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;├── `main.py` | Main application script |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;├── `crew.py` | Crew-related functionalities |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;├── `tools/` | Custom tools directory |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;│ ├── `custom_tool.py` | Custom tool implementation |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;│ └── `__init__.py` | Marks tools directory as a package |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;└── `config/` | Configuration files directory |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;├── `agents.yaml` | Agent configurations |
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;└── `tasks.yaml` | Task configurations |
<Step title="Generate Project Structure">
Run the CrewAI CLI command:
```shell Terminal
crewai create crew <project_name>
```
You can now start developing your crew by editing the files in the `src/my_project` folder.
The `main.py` file is the entry point of the project, the `crew.py` file is where you define your crew, the `agents.yaml` file is where you define your agents,
and the `tasks.yaml` file is where you define your tasks.
This creates a new project with the following structure:
<Frame>
```
my_project/
├── .gitignore
├── pyproject.toml
├── README.md
├── .env
└── src/
└── my_project/
├── __init__.py
├── main.py
├── crew.py
├── tools/
│ ├── custom_tool.py
│ └── __init__.py
└── config/
├── agents.yaml
└── tasks.yaml
```
</Frame>
</Step>
<Step title="Customize your project">
To customize your project, you can:
- Modify `src/my_project/config/agents.yaml` to define your agents.
- Modify `src/my_project/config/tasks.yaml` to define your tasks.
- Modify `src/my_project/crew.py` to add your own logic, tools, and specific arguments.
- Modify `src/my_project/main.py` to add custom inputs for your agents and tasks.
- Add your environment variables into the `.env` file.
<Step title="Customize Your Project">
Your project will contain these essential files:
| File | Purpose |
| --- | --- |
| `agents.yaml` | Define your AI agents and their roles |
| `tasks.yaml` | Set up agent tasks and workflows |
| `.env` | Store API keys and environment variables |
| `main.py` | Project entry point and execution flow |
| `crew.py` | Crew orchestration and coordination |
| `tools/` | Directory for custom agent tools |
<Tip>
Start by editing `agents.yaml` and `tasks.yaml` to define your crew's behavior.
Keep sensitive information like API keys in `.env`.
</Tip>
</Step>
</Steps>
## Next steps
## Next Steps
Now that you have installed `crewai` and `crewai-tools`, you're ready to spin up your first crew!
- 👨‍💻 Build your first agent with CrewAI by following the [Quickstart](/quickstart) guide.
- 💬 Join the [Community](https://community.crewai.com) to get help and share your feedback.
<CardGroup cols={2}>
<Card
title="Build Your First Agent"
icon="code"
href="/quickstart"
>
Follow our quickstart guide to create your first CrewAI agent and get hands-on experience.
</Card>
<Card
title="Join the Community"
icon="comments"
href="https://community.crewai.com"
>
Connect with other developers, get help, and share your CrewAI experiences.
</Card>
</CardGroup>

View File

@@ -1,49 +1,85 @@
---
title: Introduction
description: Welcome to CrewAI docs!
description: Build AI agent teams that work together to tackle complex tasks
icon: handshake
---
# What is CrewAI?
**CrewAI is a cutting-edge Python framework for orchestrating role-playing, autonomous AI agents.**
**CrewAI is a cutting-edge framework for orchestrating autonomous AI agents.**
By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
CrewAI enables you to create AI teams where each agent has specific roles, tools, and goals, working together to accomplish complex tasks.
<Frame caption="CrewAI Mindmap">
<img src="crewAI-mindmap.png" alt="CrewAI Mindmap" />
</Frame>
Think of it as assembling your dream team - each member (agent) brings unique skills and expertise, collaborating seamlessly to achieve your objectives.
## Why CrewAI?
- 🤼‍♀️ **Role-Playing Agents**: Agents can take on different roles and personas to better understand and interact with complex systems.
- 🤖 **Autonomous Decision Making**: Agents can make decisions autonomously based on the given context and available tools.
- 🤝 **Seamless Collaboration**: Agents can work together seamlessly, sharing information and resources to achieve common goals.
- 🧠 **Complex Task Tackling**: CrewAI is designed to tackle complex tasks, such as multi-step workflows, decision making, and problem solving.
## How CrewAI Works
# Get Started with CrewAI
<Note>
Just like a company has departments (Sales, Engineering, Marketing) working together under leadership to achieve business goals, CrewAI helps you create an organization of AI agents with specialized roles collaborating to accomplish complex tasks.
</Note>
<Frame caption="CrewAI Framework Overview">
<img src="crewAI-mindmap.png" alt="CrewAI Framework Overview" />
</Frame>
| Component | Description | Key Features |
|:----------|:-----------:|:------------|
| **Crew** | The top-level organization | • Manages AI agent teams<br/>• Oversees workflows<br/>• Ensures collaboration<br/>• Delivers outcomes |
| **AI Agents** | Specialized team members | • Have specific roles (researcher, writer)<br/>• Use designated tools<br/>• Can delegate tasks<br/>• Make autonomous decisions |
| **Process** | Workflow management system | • Defines collaboration patterns<br/>• Controls task assignments<br/>• Manages interactions<br/>• Ensures efficient execution |
| **Tasks** | Individual assignments | • Have clear objectives<br/>• Use specific tools<br/>• Feed into larger process<br/>• Produce actionable results |
### How It All Works Together
1. The **Crew** organizes the overall operation
2. **AI Agents** work on their specialized tasks
3. The **Process** ensures smooth collaboration
4. **Tasks** get completed to achieve the goal
## Key Features
<CardGroup cols={2}>
<Card title="Role-Based Agents" icon="users">
Create specialized agents with defined roles, expertise, and goals - from researchers to analysts to writers
</Card>
<Card title="Flexible Tools" icon="screwdriver-wrench">
Equip agents with custom tools and APIs to interact with external services and data sources
</Card>
<Card title="Intelligent Collaboration" icon="people-arrows">
Agents work together, sharing insights and coordinating tasks to achieve complex objectives
</Card>
<Card title="Task Management" icon="list-check">
Define sequential or parallel workflows, with agents automatically handling task dependencies
</Card>
</CardGroup>
## Why Choose CrewAI?
- 🧠 **Autonomous Operation**: Agents make intelligent decisions based on their roles and available tools
- 📝 **Natural Interaction**: Agents communicate and collaborate like human team members
- 🛠️ **Extensible Design**: Easy to add new tools, roles, and capabilities
- 🚀 **Production Ready**: Built for reliability and scalability in real-world applications
<CardGroup cols={3}>
<Card
title="Quickstart"
color="#F3A78B"
href="quickstart"
icon="terminal"
iconType="solid"
title="Install CrewAI"
icon="wrench"
href="/installation"
>
Getting started with CrewAI
Get started with CrewAI in your development environment.
</Card>
<Card
title="Quick Start"
icon="bolt"
href="/quickstart"
>
Follow our quickstart guide to create your first CrewAI agent and get hands-on experience.
</Card>
<Card
title="Join the Community"
color="#F3A78B"
icon="comments"
href="https://community.crewai.com"
icon="comment-question"
iconType="duotone"
>
Join the CrewAI community and get help with your project!
</Card>
</CardGroup>
## Next Step
- [Install CrewAI](/installation) to get started with your first agent.
>
Connect with other developers, get help, and share your CrewAI experiences.
</Card>
</CardGroup>

View File

@@ -68,6 +68,7 @@
"concepts/tasks",
"concepts/crews",
"concepts/flows",
"concepts/knowledge",
"concepts/llms",
"concepts/processes",
"concepts/collaboration",
@@ -98,7 +99,8 @@
"how-to/replay-tasks-from-latest-crew-kickoff",
"how-to/conditional-tasks",
"how-to/agentops-observability",
"how-to/langtrace-observability"
"how-to/langtrace-observability",
"how-to/openlit-observability"
]
},
{

View File

@@ -8,7 +8,7 @@ icon: rocket
Let's create a simple crew that will help us `research` and `report` on the `latest AI developments` for a given topic or subject.
Before we proceed, make sure you have `crewai` and `crewai-tools` installed.
Before we proceed, make sure you have `crewai` and `crewai-tools` installed.
If you haven't installed them yet, you can do so by following the [installation guide](/installation).
Follow the steps below to get crewing! 🚣‍♂️
@@ -23,7 +23,7 @@ Follow the steps below to get crewing! 🚣‍♂️
```
</CodeGroup>
</Step>
<Step title="Modify your `agents.yaml` file">
<Step title="Modify your `agents.yaml` file">
<Tip>
You can also modify the agents as needed to fit your use case or copy and paste as is to your project.
Any variable interpolated in your `agents.yaml` and `tasks.yaml` files like `{topic}` will be replaced by the value of the variable in the `main.py` file.
@@ -39,7 +39,7 @@ Follow the steps below to get crewing! 🚣‍♂️
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
@@ -51,7 +51,7 @@ Follow the steps below to get crewing! 🚣‍♂️
it easy for others to understand and act on the information you provide.
```
</Step>
<Step title="Modify your `tasks.yaml` file">
<Step title="Modify your `tasks.yaml` file">
```yaml tasks.yaml
# src/latest_ai_development/config/tasks.yaml
research_task:
@@ -73,8 +73,8 @@ Follow the steps below to get crewing! 🚣‍♂️
agent: reporting_analyst
output_file: report.md
```
</Step>
<Step title="Modify your `crew.py` file">
</Step>
<Step title="Modify your `crew.py` file">
```python crew.py
# src/latest_ai_development/crew.py
from crewai import Agent, Crew, Process, Task
@@ -121,10 +121,34 @@ Follow the steps below to get crewing! 🚣‍♂️
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)
)
```
</Step>
<Step title="Feel free to pass custom inputs to your crew">
<Step title="[Optional] Add before and after crew functions">
```python crew.py
# src/latest_ai_development/crew.py
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task, before_kickoff, after_kickoff
from crewai_tools import SerperDevTool
@CrewBase
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
@before_kickoff
def before_kickoff_function(self, inputs):
print(f"Before kickoff function with inputs: {inputs}")
return inputs # You can return the inputs or modify them as needed
@after_kickoff
def after_kickoff_function(self, result):
print(f"After kickoff function with result: {result}")
return result # You can return the result or modify it as needed
# ... remaining code
```
</Step>
<Step title="Feel free to pass custom inputs to your crew">
For example, you can pass the `topic` input to your crew to customize the research and reporting.
```python main.py
#!/usr/bin/env python
@@ -237,14 +261,14 @@ Follow the steps below to get crewing! 🚣‍♂️
### Note on Consistency in Naming
The names you use in your YAML files (`agents.yaml` and `tasks.yaml`) should match the method names in your Python code.
For example, you can reference the agent for specific tasks from `tasks.yaml` file.
For example, you can reference the agent for specific tasks from `tasks.yaml` file.
This naming consistency allows CrewAI to automatically link your configurations with your code; otherwise, your task won't recognize the reference properly.
#### Example References
<Tip>
Note how we use the same name for the agent in the `agents.yaml` (`email_summarizer`) file as the method name in the `crew.py` (`email_summarizer`) file.
</Tip>
</Tip>
```yaml agents.yaml
email_summarizer:
@@ -281,6 +305,8 @@ Use the annotations to properly reference the agent and task in the `crew.py` fi
* `@task`
* `@crew`
* `@tool`
* `@before_kickoff`
* `@after_kickoff`
* `@callback`
* `@output_json`
* `@output_pydantic`
@@ -304,7 +330,7 @@ def email_summarizer_task(self) -> Task:
<Tip>
In addition to the [sequential process](../how-to/sequential-process), you can use the [hierarchical process](../how-to/hierarchical-process),
which automatically assigns a manager to the defined crew to properly coordinate the planning and execution of tasks through delegation and validation of results.
which automatically assigns a manager to the defined crew to properly coordinate the planning and execution of tasks through delegation and validation of results.
You can learn more about the core concepts [here](/concepts).
</Tip>
@@ -323,11 +349,28 @@ Replace `<task_id>` with the ID of the task you want to replay.
If you need to reset the memory of your crew before running it again, you can do so by calling the reset memory feature:
```shell
crewai reset-memory
crewai reset-memories --all
```
This will clear the crew's memory, allowing for a fresh start.
## Deploying Your Project
The easiest way to deploy your crew is through [CrewAI Enterprise](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks.
The easiest way to deploy your crew is through CrewAI Enterprise, where you can deploy your crew in a few clicks.
<CardGroup cols={2}>
<Card
title="Deploy on Enterprise"
icon="rocket"
href="http://app.crewai.com"
>
Get started with CrewAI Enterprise and deploy your crew in a production environment with just a few clicks.
</Card>
<Card
title="Join the Community"
icon="comments"
href="https://community.crewai.com"
>
Join our open source community to discuss ideas, share your projects, and connect with other CrewAI developers.
</Card>
</CardGroup>

View File

@@ -34,6 +34,7 @@ from crewai_tools import GithubSearchTool
# Initialize the tool for semantic searches within a specific GitHub repository
tool = GithubSearchTool(
github_repo='https://github.com/example/repo',
gh_token='your_github_personal_access_token',
content_types=['code', 'issue'] # Options: code, repo, pr, issue
)
@@ -41,6 +42,7 @@ tool = GithubSearchTool(
# Initialize the tool for semantic searches within a specific GitHub repository, so the agent can search any repository if it learns about during its execution
tool = GithubSearchTool(
gh_token='your_github_personal_access_token',
content_types=['code', 'issue'] # Options: code, repo, pr, issue
)
```
@@ -48,6 +50,7 @@ tool = GithubSearchTool(
## Arguments
- `github_repo` : The URL of the GitHub repository where the search will be conducted. This is a mandatory field and specifies the target repository for your search.
- `gh_token` : Your GitHub Personal Access Token (PAT) required for authentication. You can create one in your GitHub account settings under Developer Settings > Personal Access Tokens.
- `content_types` : Specifies the types of content to include in your search. You must provide a list of content types from the following options: `code` for searching within the code,
`repo` for searching within the repository's general information, `pr` for searching within pull requests, and `issue` for searching within issues.
This field is mandatory and allows tailoring the search to specific content types within the GitHub repository.
@@ -77,5 +80,4 @@ tool = GithubSearchTool(
),
),
)
)
```
)

View File

@@ -129,7 +129,6 @@ nav:
- Processes: 'core-concepts/Processes.md'
- Crews: 'core-concepts/Crews.md'
- Collaboration: 'core-concepts/Collaboration.md'
- Pipeline: 'core-concepts/Pipeline.md'
- Training: 'core-concepts/Training-Crew.md'
- Memory: 'core-concepts/Memory.md'
- Planning: 'core-concepts/Planning.md'
@@ -152,6 +151,7 @@ nav:
- Conditional Tasks: 'how-to/Conditional-Tasks.md'
- Agent Monitoring with AgentOps: 'how-to/AgentOps-Observability.md'
- Agent Monitoring with LangTrace: 'how-to/Langtrace-Observability.md'
- Agent Monitoring with OpenLIT: 'how-to/openlit-Observability.md'
- Tools Docs:
- Browserbase Web Loader: 'tools/BrowserbaseLoadTool.md'
- Code Docs RAG Search: 'tools/CodeDocsSearchTool.md'

7507
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,22 +1,20 @@
[project]
name = "crewai"
version = "0.74.2"
version = "0.86.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<=3.13"
requires-python = ">=3.10,<=3.12"
authors = [
{ name = "Joao Moura", email = "joao@crewai.com" }
]
dependencies = [
"pydantic>=2.4.2",
"langchain>=0.2.16",
"openai>=1.13.3",
"opentelemetry-api>=1.22.0",
"opentelemetry-sdk>=1.22.0",
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
"instructor>=1.3.3",
"regex>=2024.9.11",
"crewai-tools>=0.13.2",
"click>=8.1.7",
"python-dotenv>=1.0.0",
"appdirs>=1.4.4",
@@ -27,7 +25,11 @@ dependencies = [
"pyvis>=0.3.2",
"uv>=0.4.25",
"tomli-w>=1.1.0",
"chromadb>=0.4.24",
"tomli>=2.0.2",
"chromadb>=0.5.18",
"pdfplumber>=0.11.4",
"openpyxl>=3.1.5",
"blinker>=1.9.0",
]
[project.urls]
@@ -36,8 +38,19 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.13.2"]
tools = ["crewai-tools>=0.14.0"]
agentops = ["agentops>=0.3.0"]
fastembed = ["fastembed>=0.4.1"]
pdfplumber = [
"pdfplumber>=0.11.4",
]
pandas = [
"pandas>=2.2.3",
]
openpyxl = [
"openpyxl>=3.1.5",
]
mem0 = ["mem0ai>=0.1.29"]
[tool.uv]
dev-dependencies = [
@@ -51,7 +64,7 @@ dev-dependencies = [
"mkdocs-material-extensions>=1.3.1",
"pillow>=10.2.0",
"cairosvg>=2.7.1",
"crewai-tools>=0.13.2",
"crewai-tools>=0.14.0",
"pytest>=8.0.0",
"pytest-vcr>=1.0.2",
"python-dotenv>=1.0.0",

View File

@@ -1,11 +1,11 @@
import warnings
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.flow.flow import Flow
from crewai.knowledge.knowledge import Knowledge
from crewai.llm import LLM
from crewai.pipeline import Pipeline
from crewai.process import Process
from crewai.routers import Router
from crewai.task import Task
warnings.filterwarnings(
@@ -14,5 +14,13 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.74.2"
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]
__version__ = "0.86.0"
__all__ = [
"Agent",
"Crew",
"Process",
"Task",
"LLM",
"Flow",
"Knowledge",
]

View File

@@ -1,17 +1,25 @@
import os
from inspect import signature
from typing import Any, List, Optional, Union
import shutil
import subprocess
from typing import Any, Dict, List, Literal, Optional, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents import CacheHandler
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.cli.constants import ENV_VARS, LITELLM_PARAMS
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.tools.agent_tools import AgentTools
from crewai.task import Task
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
@@ -49,6 +57,7 @@ class Agent(BaseAgent):
role: The role of the agent.
goal: The objective of the agent.
backstory: The backstory of the agent.
knowledge: The knowledge base of the agent.
config: Dict representation of agent configuration.
llm: The language model that will run the agent.
function_calling_llm: The language model that will handle the tool calling for this agent, it overrides the crew function_calling_llm.
@@ -59,6 +68,7 @@ class Agent(BaseAgent):
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution.
knowledge_sources: Knowledge sources for the agent.
"""
_times_executed: int = PrivateAttr(default=0)
@@ -112,10 +122,31 @@ class Agent(BaseAgent):
default=2,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
)
code_execution_mode: Literal["safe", "unsafe"] = Field(
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
embedder_config: Optional[Dict[str, Any]] = Field(
default=None,
description="Embedder configuration for the agent.",
)
knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(
default=None,
description="Knowledge sources for the agent.",
)
_knowledge: Optional[Knowledge] = PrivateAttr(
default=None,
)
@model_validator(mode="after")
def post_init_setup(self):
self._set_knowledge()
self.agent_ops_agent_name = self.role
unaccepted_attributes = [
"AWS_ACCESS_KEY_ID",
"AWS_SECRET_ACCESS_KEY",
"AWS_REGION_NAME",
]
# Handle different cases for self.llm
if isinstance(self.llm, str):
@@ -125,8 +156,12 @@ class Agent(BaseAgent):
# If it's already an LLM instance, keep it as is
pass
elif self.llm is None:
# If it's None, use environment variables or default
model_name = os.environ.get("OPENAI_MODEL_NAME", "gpt-4o-mini")
# Determine the model name from environment variables or use default
model_name = (
os.environ.get("OPENAI_MODEL_NAME")
or os.environ.get("MODEL")
or "gpt-4o-mini"
)
llm_params = {"model": model_name}
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
@@ -135,9 +170,30 @@ class Agent(BaseAgent):
if api_base:
llm_params["base_url"] = api_base
api_key = os.environ.get("OPENAI_API_KEY")
if api_key:
llm_params["api_key"] = api_key
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
# Iterate over all environment variables to find matching API keys or use defaults
for provider, env_vars in ENV_VARS.items():
if provider == set_provider:
for env_var in env_vars:
# Check if the environment variable is set
key_name = env_var.get("key_name")
if key_name and key_name not in unaccepted_attributes:
env_value = os.environ.get(key_name)
if env_value:
key_name = key_name.lower()
for pattern in LITELLM_PARAMS:
if pattern in key_name:
key_name = pattern
break
llm_params[key_name] = env_value
# Check for default values if the environment variable is not set
elif env_var.get("default", False):
for key, value in env_var.items():
if key not in ["prompt", "key_name", "default"]:
# Only add default if the key is already set in os.environ
if key in os.environ:
llm_params[key] = value
self.llm = LLM(**llm_params)
else:
@@ -173,6 +229,9 @@ class Agent(BaseAgent):
if not self.agent_executor:
self._setup_agent_executor()
if self.allow_code_execution:
self._validate_docker_installation()
return self
def _setup_agent_executor(self):
@@ -180,11 +239,26 @@ class Agent(BaseAgent):
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
def _set_knowledge(self):
try:
if self.knowledge_sources:
knowledge_agent_name = f"{self.role.replace(' ', '_')}"
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self._knowledge = Knowledge(
sources=self.knowledge_sources,
embedder_config=self.embedder_config,
collection_name=knowledge_agent_name,
)
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
def execute_task(
self,
task: Any,
task: Task,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
"""Execute a task with the agent.
@@ -201,6 +275,22 @@ class Agent(BaseAgent):
task_prompt = task.prompt()
# If the task requires output in JSON or Pydantic format,
# append specific instructions to the task prompt to ensure
# that the final answer does not include any code block markers
if task.output_json or task.output_pydantic:
# Generate the schema based on the output format
if task.output_json:
# schema = json.dumps(task.output_json, indent=2)
schema = generate_model_description(task.output_json)
elif task.output_pydantic:
schema = generate_model_description(task.output_pydantic)
task_prompt += "\n" + self.i18n.slice("formatted_task_instructions").format(
output_format=schema
)
if context:
task_prompt = self.i18n.slice("task_with_context").format(
task=task_prompt, context=context
@@ -208,14 +298,32 @@ class Agent(BaseAgent):
if self.crew and self.crew.memory:
contextual_memory = ContextualMemory(
self.crew.memory_config,
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
self.crew._user_memory,
)
memory = contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
if self._knowledge:
agent_knowledge_snippets = self._knowledge.query([task.prompt()])
if agent_knowledge_snippets:
agent_knowledge_context = extract_knowledge_context(
agent_knowledge_snippets
)
if agent_knowledge_context:
task_prompt += agent_knowledge_context
if self.crew:
knowledge_snippets = self.crew.query_knowledge([task.prompt()])
if knowledge_snippets:
crew_knowledge_context = extract_knowledge_context(knowledge_snippets)
if crew_knowledge_context:
task_prompt += crew_knowledge_context
tools = tools or self.tools or []
self.create_agent_executor(tools=tools, task=task)
@@ -251,7 +359,9 @@ class Agent(BaseAgent):
return result
def create_agent_executor(self, tools=None, task=None) -> None:
def create_agent_executor(
self, tools: Optional[List[BaseTool]] = None, task=None
) -> None:
"""Create an agent executor for the agent.
Returns:
@@ -308,7 +418,9 @@ class Agent(BaseAgent):
try:
from crewai_tools import CodeInterpreterTool
return [CodeInterpreterTool()]
# Set the unsafe_mode based on the code_execution_mode attribute
unsafe_mode = self.code_execution_mode == "unsafe"
return [CodeInterpreterTool(unsafe_mode=unsafe_mode)]
except ModuleNotFoundError:
self._logger.log(
"info", "Coding tools not available. Install crewai_tools. "
@@ -322,11 +434,11 @@ class Agent(BaseAgent):
tools_list = []
try:
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
from crewai_tools import BaseTool as CrewAITool
from crewai.tools import BaseTool as CrewAITool
for tool in tools:
if isinstance(tool, CrewAITool):
tools_list.append(tool.to_langchain())
tools_list.append(tool.to_structured_tool())
else:
tools_list.append(tool)
except ModuleNotFoundError:
@@ -381,33 +493,42 @@ class Agent(BaseAgent):
return description
def _render_text_description_and_args(self, tools: List[Any]) -> str:
def _render_text_description_and_args(self, tools: List[BaseTool]) -> str:
"""Render the tool name, description, and args in plain text.
Output will be in the format of:
Output will be in the format of:
.. code-block:: markdown
.. code-block:: markdown
search: This tool is used for search, args: {"query": {"type": "string"}}
calculator: This tool is used for math, \
args: {"expression": {"type": "string"}}
args: {"expression": {"type": "string"}}
"""
tool_strings = []
for tool in tools:
args_schema = str(tool.model_fields)
if hasattr(tool, "func") and tool.func:
sig = signature(tool.func)
description = (
f"Tool Name: {tool.name}{sig}\nTool Description: {tool.description}"
)
else:
description = (
f"Tool Name: {tool.name}\nTool Description: {tool.description}"
)
tool_strings.append(f"{description}\nTool Arguments: {args_schema}")
tool_strings.append(tool.description)
return "\n".join(tool_strings)
def _validate_docker_installation(self) -> None:
"""Check if Docker is installed and running."""
if not shutil.which("docker"):
raise RuntimeError(
f"Docker is not installed. Please install Docker to use code execution with agent: {self.role}"
)
try:
subprocess.run(
["docker", "info"],
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
except subprocess.CalledProcessError:
raise RuntimeError(
f"Docker is not running. Please start Docker to use code execution with agent: {self.role}"
)
@staticmethod
def __tools_names(tools) -> str:
return ", ".join([t.name for t in tools])

View File

@@ -18,6 +18,8 @@ from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools import BaseTool
from crewai.tools.base_tool import Tool
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
@@ -49,11 +51,11 @@ class BaseAgent(ABC, BaseModel):
Methods:
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[Any]] = None) -> str:
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[BaseTool]] = None) -> str:
Abstract method to execute a task.
create_agent_executor(tools=None) -> None:
Abstract method to create an agent executor.
_parse_tools(tools: List[Any]) -> List[Any]:
_parse_tools(tools: List[BaseTool]) -> List[Any]:
Abstract method to parse tools.
get_delegation_tools(agents: List["BaseAgent"]):
Abstract method to set the agents task tools for handling delegation and question asking to other agents in crew.
@@ -134,6 +136,35 @@ class BaseAgent(ABC, BaseModel):
def process_model_config(cls, values):
return process_config(values, cls)
@field_validator("tools")
@classmethod
def validate_tools(cls, tools: List[Any]) -> List[BaseTool]:
"""Validate and process the tools provided to the agent.
This method ensures that each tool is either an instance of BaseTool
or an object with 'name', 'func', and 'description' attributes. If the
tool meets these criteria, it is processed and added to the list of
tools. Otherwise, a ValueError is raised.
"""
processed_tools = []
for tool in tools:
if isinstance(tool, BaseTool):
processed_tools.append(tool)
elif (
hasattr(tool, "name")
and hasattr(tool, "func")
and hasattr(tool, "description")
):
# Tool has the required attributes, create a Tool instance
processed_tools.append(Tool.from_langchain(tool))
else:
raise ValueError(
f"Invalid tool type: {type(tool)}. "
"Tool must be an instance of BaseTool or "
"an object with 'name', 'func', and 'description' attributes."
)
return processed_tools
@model_validator(mode="after")
def validate_and_set_attributes(self):
# Validate required fields
@@ -188,7 +219,7 @@ class BaseAgent(ABC, BaseModel):
self,
task: Any,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
pass
@@ -197,11 +228,11 @@ class BaseAgent(ABC, BaseModel):
pass
@abstractmethod
def _parse_tools(self, tools: List[Any]) -> List[Any]:
def _parse_tools(self, tools: List[BaseTool]) -> List[BaseTool]:
pass
@abstractmethod
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[Any]:
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[BaseTool]:
"""Set the task tools that init BaseAgenTools class."""
pass

View File

@@ -3,16 +3,15 @@ from typing import TYPE_CHECKING, Optional
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.utilities import I18N
from crewai.utilities.converter import ConverterError
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities import I18N
from crewai.utilities.printer import Printer
if TYPE_CHECKING:
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.crew import Crew
from crewai.task import Task
from crewai.agents.agent_builder.base_agent import BaseAgent
class CrewAgentExecutorMixin:
@@ -100,14 +99,19 @@ class CrewAgentExecutorMixin:
print(f"Failed to add to long term memory: {e}")
pass
def _ask_human_input(self, final_answer: dict) -> str:
def _ask_human_input(self, final_answer: str) -> str:
"""Prompt human input for final decision making."""
self._printer.print(
content=f"\033[1m\033[95m ## Final Result:\033[00m \033[92m{final_answer}\033[00m"
)
self._printer.print(
content="\n\n=====\n## Please provide feedback on the Final Result and the Agent's actions:",
content=(
"\n\n=====\n"
"## Please provide feedback on the Final Result and the Agent's actions. "
"Respond with 'looks good' or a similar phrase when you're satisfied.\n"
"=====\n"
),
color="bold_yellow",
)
return input()

View File

@@ -4,6 +4,7 @@ from crewai.types.usage_metrics import UsageMetrics
class TokenProcess:
total_tokens: int = 0
prompt_tokens: int = 0
cached_prompt_tokens: int = 0
completion_tokens: int = 0
successful_requests: int = 0
@@ -15,6 +16,9 @@ class TokenProcess:
self.completion_tokens = self.completion_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_cached_prompt_tokens(self, tokens: int):
self.cached_prompt_tokens = self.cached_prompt_tokens + tokens
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
@@ -22,6 +26,7 @@ class TokenProcess:
return UsageMetrics(
total_tokens=self.total_tokens,
prompt_tokens=self.prompt_tokens,
cached_prompt_tokens=self.cached_prompt_tokens,
completion_tokens=self.completion_tokens,
successful_requests=self.successful_requests,
)

View File

@@ -1,5 +1,6 @@
import json
import re
from dataclasses import dataclass
from typing import Any, Dict, List, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
@@ -12,9 +13,10 @@ from crewai.agents.parser import (
OutputParserException,
)
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N, Printer
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
@@ -22,6 +24,12 @@ from crewai.utilities.logger import Logger
from crewai.utilities.training_handler import CrewTrainingHandler
@dataclass
class ToolResult:
result: Any
result_as_answer: bool
class CrewAgentExecutor(CrewAgentExecutorMixin):
_logger: Logger = Logger()
@@ -33,7 +41,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
agent: BaseAgent,
prompt: dict[str, str],
max_iter: int,
tools: List[Any],
tools: List[BaseTool],
tools_names: str,
stop_words: List[str],
tools_description: str,
@@ -70,7 +78,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.iterations = 0
self.log_error_after = 3
self.have_forced_answer = False
self.name_to_tool_map = {tool.name: tool for tool in self.tools}
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
tool.name: tool for tool in self.tools
}
if self.llm.stop:
self.llm.stop = list(set(self.llm.stop + self.stop))
else:
@@ -80,7 +90,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if "system" in self.prompt:
system_prompt = self._format_prompt(self.prompt.get("system", ""), inputs)
user_prompt = self._format_prompt(self.prompt.get("user", ""), inputs)
self.messages.append(self._format_msg(system_prompt, role="system"))
self.messages.append(self._format_msg(user_prompt))
else:
@@ -93,17 +102,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer = self._invoke_loop()
if self.ask_for_human_input:
human_feedback = self._ask_human_input(formatted_answer.output)
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer, human_feedback)
formatted_answer = self._handle_human_feedback(formatted_answer)
# Making sure we only ask for it once, so disabling for the next thought loop
self.ask_for_human_input = False
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
formatted_answer = self._invoke_loop()
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer)
self._create_short_term_memory(formatted_answer)
self._create_long_term_memory(formatted_answer)
return {"output": formatted_answer.output}
@@ -117,6 +117,15 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
callbacks=self.callbacks,
)
if answer is None or answer == "":
self._printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError(
"Invalid response from LLM call - None or empty."
)
if not self.use_stop_words:
try:
self._format_answer(answer)
@@ -131,30 +140,42 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer = self._format_answer(answer)
if isinstance(formatted_answer, AgentAction):
action_result = self._use_tool(formatted_answer)
formatted_answer.text += f"\nObservation: {action_result}"
formatted_answer.result = action_result
tool_result = self._execute_tool_and_check_finality(
formatted_answer
)
if self.step_callback:
self.step_callback(tool_result)
formatted_answer.text += f"\nObservation: {tool_result.result}"
formatted_answer.result = tool_result.result
if tool_result.result_as_answer:
return AgentFinish(
thought="",
output=tool_result.result,
text=formatted_answer.text,
)
self._show_logs(formatted_answer)
if self.step_callback:
self.step_callback(formatted_answer)
if self.step_callback:
self.step_callback(formatted_answer)
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="assistant")
)
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
thought="",
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="assistant")
)
except OutputParserException as e:
self.messages.append({"role": "user", "content": e.error})
@@ -229,7 +250,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
content=f"\033[95m## Final Answer:\033[00m \033[92m\n{formatted_answer.output}\033[00m\n\n"
)
def _use_tool(self, agent_action: AgentAction) -> Any:
def _execute_tool_and_check_finality(self, agent_action: AgentAction) -> ToolResult:
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
@@ -245,19 +266,25 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.name_to_tool_map
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.name_to_tool_map
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
return tool_result
return ToolResult(result=tool_result, result_as_answer=False)
def _summarize_messages(self) -> None:
messages_groups = []
@@ -275,7 +302,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._i18n.slice("summarizer_system_message"), role="system"
),
self._format_msg(
self._i18n.slice("sumamrize_instruction").format(group=group),
self._i18n.slice("summarize_instruction").format(group=group),
),
],
callbacks=self.callbacks,
@@ -292,16 +319,14 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
def _handle_context_length(self) -> None:
if self.respect_context_window:
self._logger.log(
"debug",
"Context length exceeded. Summarizing content to fit the model context window.",
self._printer.print(
content="Context length exceeded. Summarizing content to fit the model context window.",
color="yellow",
)
self._summarize_messages()
else:
self._logger.log(
"debug",
"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
self._printer.print(
content="Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
color="red",
)
raise SystemExit(
@@ -328,15 +353,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
] = result.output
training_handler.save(training_data)
else:
self._logger.log(
"error",
"Invalid train iteration type or agent_id not in training data.",
self._printer.print(
content="Invalid train iteration type or agent_id not in training data.",
color="red",
)
else:
self._logger.log(
"error",
"Crew is None or does not have _train_iteration attribute.",
self._printer.print(
content="Crew is None or does not have _train_iteration attribute.",
color="red",
)
@@ -354,15 +377,13 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
train_iteration, agent_id, training_data
)
else:
self._logger.log(
"error",
"Invalid train iteration type. Expected int.",
self._printer.print(
content="Invalid train iteration type. Expected int.",
color="red",
)
else:
self._logger.log(
"error",
"Crew is None or does not have _train_iteration attribute.",
self._printer.print(
content="Crew is None or does not have _train_iteration attribute.",
color="red",
)
@@ -376,4 +397,83 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
return CrewAgentParser(agent=self.agent).parse(answer)
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
prompt = prompt.rstrip()
return {"role": role, "content": prompt}
def _handle_human_feedback(self, formatted_answer: AgentFinish) -> AgentFinish:
"""
Handles the human feedback loop, allowing the user to provide feedback
on the agent's output and determining if additional iterations are needed.
Parameters:
formatted_answer (AgentFinish): The initial output from the agent.
Returns:
AgentFinish: The final output after incorporating human feedback.
"""
while self.ask_for_human_input:
human_feedback = self._ask_human_input(formatted_answer.output)
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer, human_feedback)
# Make an LLM call to verify if additional changes are requested based on human feedback
additional_changes_prompt = self._i18n.slice(
"human_feedback_classification"
).format(feedback=human_feedback)
retry_count = 0
llm_call_successful = False
additional_changes_response = None
while retry_count < MAX_LLM_RETRY and not llm_call_successful:
try:
additional_changes_response = (
self.llm.call(
[
self._format_msg(
additional_changes_prompt, role="system"
)
],
callbacks=self.callbacks,
)
.strip()
.lower()
)
llm_call_successful = True
except Exception as e:
retry_count += 1
self._printer.print(
content=f"Error during LLM call to classify human feedback: {e}. Retrying... ({retry_count}/{MAX_LLM_RETRY})",
color="red",
)
if not llm_call_successful:
self._printer.print(
content="Error processing feedback after multiple attempts.",
color="red",
)
self.ask_for_human_input = False
break
if additional_changes_response == "false":
self.ask_for_human_input = False
elif additional_changes_response == "true":
self.ask_for_human_input = True
# Add human feedback to messages
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
# Invoke the loop again with updated messages
formatted_answer = self._invoke_loop()
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer)
else:
# Unexpected response
self._printer.print(
content=f"Unexpected response from LLM: '{additional_changes_response}'. Assuming no additional changes requested.",
color="red",
)
self.ask_for_human_input = False
return formatted_answer

View File

@@ -1,6 +1,6 @@
from typing import Any, Optional, Union
from ..tools.cache_tools import CacheTools
from ..tools.cache_tools.cache_tools import CacheTools
from ..tools.tool_calling import InstructorToolCalling, ToolCalling
from .cache.cache_handler import CacheHandler

View File

@@ -0,0 +1,70 @@
from pathlib import Path
import click
from crewai.cli.utils import copy_template
def add_crew_to_flow(crew_name: str) -> None:
"""Add a new crew to the current flow."""
# Check if pyproject.toml exists in the current directory
if not Path("pyproject.toml").exists():
print("This command must be run from the root of a flow project.")
raise click.ClickException(
"This command must be run from the root of a flow project."
)
# Determine the flow folder based on the current directory
flow_folder = Path.cwd()
crews_folder = flow_folder / "src" / flow_folder.name / "crews"
if not crews_folder.exists():
print("Crews folder does not exist in the current flow.")
raise click.ClickException("Crews folder does not exist in the current flow.")
# Create the crew within the flow's crews directory
create_embedded_crew(crew_name, parent_folder=crews_folder)
click.echo(
f"Crew {crew_name} added to the current flow successfully!",
)
def create_embedded_crew(crew_name: str, parent_folder: Path) -> None:
"""Create a new crew within an existing flow project."""
folder_name = crew_name.replace(" ", "_").replace("-", "_").lower()
class_name = crew_name.replace("_", " ").replace("-", " ").title().replace(" ", "")
crew_folder = parent_folder / folder_name
if crew_folder.exists():
if not click.confirm(
f"Crew {folder_name} already exists. Do you want to override it?"
):
click.secho("Operation cancelled.", fg="yellow")
return
click.secho(f"Overriding crew {folder_name}...", fg="green", bold=True)
else:
click.secho(f"Creating crew {folder_name}...", fg="green", bold=True)
crew_folder.mkdir(parents=True)
# Create config and crew.py files
config_folder = crew_folder / "config"
config_folder.mkdir(exist_ok=True)
templates_dir = Path(__file__).parent / "templates" / "crew"
config_template_files = ["agents.yaml", "tasks.yaml"]
crew_template_file = f"{folder_name}.py" # Updated file name
for file_name in config_template_files:
src_file = templates_dir / "config" / file_name
dst_file = config_folder / file_name
copy_template(src_file, dst_file, crew_name, class_name, folder_name)
src_file = templates_dir / "crew.py"
dst_file = crew_folder / crew_template_file
copy_template(src_file, dst_file, crew_name, class_name, folder_name)
click.secho(
f"Crew {crew_name} added to the flow successfully!", fg="green", bold=True
)

View File

@@ -7,6 +7,7 @@ from rich.console import Console
from .constants import AUTH0_AUDIENCE, AUTH0_CLIENT_ID, AUTH0_DOMAIN
from .utils import TokenManager, validate_token
from crewai.cli.tools.main import ToolCommand
console = Console()
@@ -34,7 +35,9 @@ class AuthenticationCommand:
"scope": "openid",
"audience": AUTH0_AUDIENCE,
}
response = requests.post(url=self.DEVICE_CODE_URL, data=device_code_payload)
response = requests.post(
url=self.DEVICE_CODE_URL, data=device_code_payload, timeout=20
)
response.raise_for_status()
return response.json()
@@ -54,14 +57,29 @@ class AuthenticationCommand:
attempts = 0
while True and attempts < 5:
response = requests.post(self.TOKEN_URL, data=token_payload)
response = requests.post(self.TOKEN_URL, data=token_payload, timeout=30)
token_data = response.json()
if response.status_code == 200:
validate_token(token_data["id_token"])
expires_in = 360000 # Token expiration time in seconds
self.token_manager.save_tokens(token_data["access_token"], expires_in)
console.print("\nWelcome to CrewAI+ !!", style="green")
try:
ToolCommand().login()
except Exception:
console.print(
"\n[bold yellow]Warning:[/bold yellow] Authentication with the Tool Repository failed.",
style="yellow",
)
console.print(
"Other features will work normally, but you may experience limitations "
"with downloading and publishing tools."
"\nRun [bold]crewai login[/bold] to try logging in again.\n",
style="yellow",
)
console.print("\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n")
return
if token_data["error"] not in ("authorization_pending", "slow_down"):

View File

@@ -0,0 +1,10 @@
from .utils import TokenManager
def get_auth_token() -> str:
"""Get the authentication token."""
access_token = TokenManager().get_token()
if not access_token:
raise Exception()
return access_token

View File

@@ -3,9 +3,9 @@ from typing import Optional
import click
import pkg_resources
from crewai.cli.add_crew_to_flow import add_crew_to_flow
from crewai.cli.create_crew import create_crew
from crewai.cli.create_flow import create_flow
from crewai.cli.create_pipeline import create_pipeline
from crewai.memory.storage.kickoff_task_outputs_storage import (
KickoffTaskOutputsSQLiteStorage,
)
@@ -25,25 +25,24 @@ from .update_crew import update_crew
@click.group()
@click.version_option(pkg_resources.get_distribution("crewai").version)
def crewai():
"""Top-level command group for crewai."""
@crewai.command()
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"]))
@click.argument("type", type=click.Choice(["crew", "flow"]))
@click.argument("name")
def create(type, name):
"""Create a new crew, pipeline, or flow."""
@click.option("--provider", type=str, help="The provider to use for the crew")
@click.option("--skip_provider", is_flag=True, help="Skip provider validation")
def create(type, name, provider, skip_provider=False):
"""Create a new crew, or flow."""
if type == "crew":
create_crew(name)
elif type == "pipeline":
create_pipeline(name)
create_crew(name, provider, skip_provider)
elif type == "flow":
create_flow(name)
else:
click.secho(
"Error: Invalid type. Must be 'crew', 'pipeline', or 'flow'.", fg="red"
)
click.secho("Error: Invalid type. Must be 'crew' or 'flow'.", fg="red")
@crewai.command()
@@ -52,7 +51,10 @@ def create(type, name):
)
def version(tools):
"""Show the installed version of crewai."""
crewai_version = pkg_resources.get_distribution("crewai").version
try:
crewai_version = pkg_resources.get_distribution("crewai").version
except Exception:
crewai_version = "unknown version"
click.echo(f"crewai version: {crewai_version}")
if tools:
@@ -133,6 +135,7 @@ def log_tasks_outputs() -> None:
@click.option("-l", "--long", is_flag=True, help="Reset LONG TERM memory")
@click.option("-s", "--short", is_flag=True, help="Reset SHORT TERM memory")
@click.option("-e", "--entities", is_flag=True, help="Reset ENTITIES memory")
@click.option("-kn", "--knowledge", is_flag=True, help="Reset KNOWLEDGE storage")
@click.option(
"-k",
"--kickoff-outputs",
@@ -140,17 +143,24 @@ def log_tasks_outputs() -> None:
help="Reset LATEST KICKOFF TASK OUTPUTS",
)
@click.option("-a", "--all", is_flag=True, help="Reset ALL memories")
def reset_memories(long, short, entities, kickoff_outputs, all):
def reset_memories(
long: bool,
short: bool,
entities: bool,
knowledge: bool,
kickoff_outputs: bool,
all: bool,
) -> None:
"""
Reset the crew memories (long, short, entity, latest_crew_kickoff_ouputs). This will delete all the data saved.
"""
try:
if not all and not (long or short or entities or kickoff_outputs):
if not all and not (long or short or entities or knowledge or kickoff_outputs):
click.echo(
"Please specify at least one memory type to reset using the appropriate flags."
)
return
reset_memories_command(long, short, entities, kickoff_outputs, all)
reset_memories_command(long, short, entities, knowledge, kickoff_outputs, all)
except Exception as e:
click.echo(f"An error occurred while resetting memories: {e}", err=True)
@@ -176,10 +186,16 @@ def test(n_iterations: int, model: str):
evaluate_crew(n_iterations, model)
@crewai.command()
def install():
@crewai.command(
context_settings=dict(
ignore_unknown_options=True,
allow_extra_args=True,
)
)
@click.pass_context
def install(context):
"""Install the Crew."""
install_crew()
install_crew(context.args)
@crewai.command()
@@ -318,5 +334,13 @@ def flow_plot():
plot_flow()
@flow.command(name="add-crew")
@click.argument("crew_name")
def flow_add_crew(crew_name):
"""Add a crew to an existing flow."""
click.echo(f"Adding crew {crew_name} to the flow")
add_crew_to_flow(crew_name)
if __name__ == "__main__":
crewai()

View File

@@ -2,7 +2,7 @@ import requests
from requests.exceptions import JSONDecodeError
from rich.console import Console
from crewai.cli.plus_api import PlusAPI
from crewai.cli.utils import get_auth_token
from crewai.cli.authentication.token import get_auth_token
from crewai.telemetry.telemetry import Telemetry
console = Console()

38
src/crewai/cli/config.py Normal file
View File

@@ -0,0 +1,38 @@
import json
from pathlib import Path
from pydantic import BaseModel, Field
from typing import Optional
DEFAULT_CONFIG_PATH = Path.home() / ".config" / "crewai" / "settings.json"
class Settings(BaseModel):
tool_repository_username: Optional[str] = Field(None, description="Username for interacting with the Tool Repository")
tool_repository_password: Optional[str] = Field(None, description="Password for interacting with the Tool Repository")
config_path: Path = Field(default=DEFAULT_CONFIG_PATH, exclude=True)
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):
"""Load Settings from config path"""
config_path.parent.mkdir(parents=True, exist_ok=True)
file_data = {}
if config_path.is_file():
try:
with config_path.open("r") as f:
file_data = json.load(f)
except json.JSONDecodeError:
file_data = {}
merged_data = {**file_data, **data}
super().__init__(config_path=config_path, **merged_data)
def dump(self) -> None:
"""Save current settings to settings.json"""
if self.config_path.is_file():
with self.config_path.open("r") as f:
existing_data = json.load(f)
else:
existing_data = {}
updated_data = {**existing_data, **self.model_dump(exclude_unset=True)}
with self.config_path.open("w") as f:
json.dump(updated_data, f, indent=4)

View File

@@ -1,19 +1,164 @@
ENV_VARS = {
'openai': ['OPENAI_API_KEY'],
'anthropic': ['ANTHROPIC_API_KEY'],
'gemini': ['GEMINI_API_KEY'],
'groq': ['GROQ_API_KEY'],
'ollama': ['FAKE_KEY'],
"openai": [
{
"prompt": "Enter your OPENAI API key (press Enter to skip)",
"key_name": "OPENAI_API_KEY",
}
],
"anthropic": [
{
"prompt": "Enter your ANTHROPIC API key (press Enter to skip)",
"key_name": "ANTHROPIC_API_KEY",
}
],
"gemini": [
{
"prompt": "Enter your GEMINI API key (press Enter to skip)",
"key_name": "GEMINI_API_KEY",
}
],
"groq": [
{
"prompt": "Enter your GROQ API key (press Enter to skip)",
"key_name": "GROQ_API_KEY",
}
],
"watson": [
{
"prompt": "Enter your WATSONX URL (press Enter to skip)",
"key_name": "WATSONX_URL",
},
{
"prompt": "Enter your WATSONX API Key (press Enter to skip)",
"key_name": "WATSONX_APIKEY",
},
{
"prompt": "Enter your WATSONX Project Id (press Enter to skip)",
"key_name": "WATSONX_PROJECT_ID",
},
],
"ollama": [
{
"default": True,
"API_BASE": "http://localhost:11434",
}
],
"bedrock": [
{
"prompt": "Enter your AWS Access Key ID (press Enter to skip)",
"key_name": "AWS_ACCESS_KEY_ID",
},
{
"prompt": "Enter your AWS Secret Access Key (press Enter to skip)",
"key_name": "AWS_SECRET_ACCESS_KEY",
},
{
"prompt": "Enter your AWS Region Name (press Enter to skip)",
"key_name": "AWS_REGION_NAME",
},
],
"azure": [
{
"prompt": "Enter your Azure deployment name (must start with 'azure/')",
"key_name": "model",
},
{
"prompt": "Enter your AZURE API key (press Enter to skip)",
"key_name": "AZURE_API_KEY",
},
{
"prompt": "Enter your AZURE API base URL (press Enter to skip)",
"key_name": "AZURE_API_BASE",
},
{
"prompt": "Enter your AZURE API version (press Enter to skip)",
"key_name": "AZURE_API_VERSION",
},
],
"cerebras": [
{
"prompt": "Enter your Cerebras model name (must start with 'cerebras/')",
"key_name": "model",
},
{
"prompt": "Enter your Cerebras API version (press Enter to skip)",
"key_name": "CEREBRAS_API_KEY",
},
],
}
PROVIDERS = ['openai', 'anthropic', 'gemini', 'groq', 'ollama']
PROVIDERS = [
"openai",
"anthropic",
"gemini",
"groq",
"ollama",
"watson",
"bedrock",
"azure",
"cerebras",
]
MODELS = {
'openai': ['gpt-4', 'gpt-4o', 'gpt-4o-mini', 'o1-mini', 'o1-preview'],
'anthropic': ['claude-3-5-sonnet-20240620', 'claude-3-sonnet-20240229', 'claude-3-opus-20240229', 'claude-3-haiku-20240307'],
'gemini': ['gemini-1.5-flash', 'gemini-1.5-pro', 'gemini-gemma-2-9b-it', 'gemini-gemma-2-27b-it'],
'groq': ['llama-3.1-8b-instant', 'llama-3.1-70b-versatile', 'llama-3.1-405b-reasoning', 'gemma2-9b-it', 'gemma-7b-it'],
'ollama': ['llama3.1', 'mixtral'],
"openai": ["gpt-4", "gpt-4o", "gpt-4o-mini", "o1-mini", "o1-preview"],
"anthropic": [
"claude-3-5-sonnet-20240620",
"claude-3-sonnet-20240229",
"claude-3-opus-20240229",
"claude-3-haiku-20240307",
],
"gemini": [
"gemini/gemini-1.5-flash",
"gemini/gemini-1.5-pro",
"gemini/gemini-gemma-2-9b-it",
"gemini/gemini-gemma-2-27b-it",
],
"groq": [
"groq/llama-3.1-8b-instant",
"groq/llama-3.1-70b-versatile",
"groq/llama-3.1-405b-reasoning",
"groq/gemma2-9b-it",
"groq/gemma-7b-it",
],
"ollama": ["ollama/llama3.1", "ollama/mixtral"],
"watson": [
"watsonx/meta-llama/llama-3-1-70b-instruct",
"watsonx/meta-llama/llama-3-1-8b-instruct",
"watsonx/meta-llama/llama-3-2-11b-vision-instruct",
"watsonx/meta-llama/llama-3-2-1b-instruct",
"watsonx/meta-llama/llama-3-2-90b-vision-instruct",
"watsonx/meta-llama/llama-3-405b-instruct",
"watsonx/mistral/mistral-large",
"watsonx/ibm/granite-3-8b-instruct",
],
"bedrock": [
"bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
"bedrock/anthropic.claude-v2:1",
"bedrock/anthropic.claude-v2",
"bedrock/anthropic.claude-instant-v1",
"bedrock/meta.llama3-1-405b-instruct-v1:0",
"bedrock/meta.llama3-1-70b-instruct-v1:0",
"bedrock/meta.llama3-1-8b-instruct-v1:0",
"bedrock/meta.llama3-70b-instruct-v1:0",
"bedrock/meta.llama3-8b-instruct-v1:0",
"bedrock/amazon.titan-text-lite-v1",
"bedrock/amazon.titan-text-express-v1",
"bedrock/cohere.command-text-v14",
"bedrock/ai21.j2-mid-v1",
"bedrock/ai21.j2-ultra-v1",
"bedrock/ai21.jamba-instruct-v1:0",
"bedrock/meta.llama2-13b-chat-v1",
"bedrock/meta.llama2-70b-chat-v1",
"bedrock/mistral.mistral-7b-instruct-v0:2",
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
],
}
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
LITELLM_PARAMS = ["api_key", "api_base", "api_version"]

View File

@@ -1,8 +1,16 @@
import shutil
import sys
from pathlib import Path
import click
from crewai.cli.constants import ENV_VARS, MODELS
from crewai.cli.provider import (
get_provider_data,
select_model,
select_provider,
)
from crewai.cli.utils import copy_template, load_env_vars, write_env_file
from crewai.cli.provider import get_provider_data, select_provider, PROVIDERS
from crewai.cli.constants import ENV_VARS
def create_folder_structure(name, parent_folder=None):
@@ -14,24 +22,28 @@ def create_folder_structure(name, parent_folder=None):
else:
folder_path = Path(folder_name)
if folder_path.exists():
if not click.confirm(
f"Folder {folder_name} already exists. Do you want to override it?"
):
click.secho("Operation cancelled.", fg="yellow")
sys.exit(0)
click.secho(f"Overriding folder {folder_name}...", fg="green", bold=True)
shutil.rmtree(folder_path) # Delete the existing folder and its contents
click.secho(
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
fg="green",
bold=True,
)
if not folder_path.exists():
folder_path.mkdir(parents=True)
(folder_path / "tests").mkdir(exist_ok=True)
if not parent_folder:
(folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
else:
click.secho(
f"\tFolder {folder_name} already exists.",
fg="yellow",
)
folder_path.mkdir(parents=True)
(folder_path / "tests").mkdir(exist_ok=True)
(folder_path / "knowledge").mkdir(exist_ok=True)
if not parent_folder:
(folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
return folder_path, folder_name, class_name
@@ -41,7 +53,14 @@ def copy_template_files(folder_path, name, class_name, parent_folder):
templates_dir = package_dir / "templates" / "crew"
root_template_files = (
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else []
[
".gitignore",
"pyproject.toml",
"README.md",
"knowledge/user_preference.txt",
]
if not parent_folder
else []
)
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
config_template_files = ["config/agents.yaml", "config/tasks.yaml"]
@@ -70,43 +89,96 @@ def copy_template_files(folder_path, name, class_name, parent_folder):
copy_template(src_file, dst_file, name, class_name, folder_path.name)
def create_crew(name, parent_folder=None):
def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
folder_path, folder_name, class_name = create_folder_structure(name, parent_folder)
env_vars = load_env_vars(folder_path)
if not skip_provider:
if not provider:
provider_models = get_provider_data()
if not provider_models:
return
provider_models = get_provider_data()
if not provider_models:
return
existing_provider = None
for provider, env_keys in ENV_VARS.items():
if any(
"key_name" in details and details["key_name"] in env_vars
for details in env_keys
):
existing_provider = provider
break
selected_provider = select_provider(provider_models)
if not selected_provider:
return
provider = selected_provider
if existing_provider:
if not click.confirm(
f"Found existing environment variable configuration for {existing_provider.capitalize()}. Do you want to override it?"
):
click.secho("Keeping existing provider configuration.", fg="yellow")
return
# selected_model = select_model(provider, provider_models)
# if not selected_model:
# return
# model = selected_model
provider_models = get_provider_data()
if not provider_models:
return
if provider in PROVIDERS:
api_key_var = ENV_VARS[provider][0]
else:
api_key_var = click.prompt(
f"Enter the environment variable name for your {provider.capitalize()} API key",
type=str,
)
while True:
selected_provider = select_provider(provider_models)
if selected_provider is None: # User typed 'q'
click.secho("Exiting...", fg="yellow")
sys.exit(0)
if selected_provider: # Valid selection
break
click.secho(
"No provider selected. Please try again or press 'q' to exit.", fg="red"
)
env_vars = {api_key_var: "YOUR_API_KEY_HERE"}
write_env_file(folder_path, env_vars)
# Check if the selected provider has predefined models
if selected_provider in MODELS and MODELS[selected_provider]:
while True:
selected_model = select_model(selected_provider, provider_models)
if selected_model is None: # User typed 'q'
click.secho("Exiting...", fg="yellow")
sys.exit(0)
if selected_model: # Valid selection
break
click.secho(
"No model selected. Please try again or press 'q' to exit.",
fg="red",
)
env_vars["MODEL"] = selected_model
# env_vars['MODEL'] = model
# click.secho(f"Selected model: {model}", fg="green")
# Check if the selected provider requires API keys
if selected_provider in ENV_VARS:
provider_env_vars = ENV_VARS[selected_provider]
for details in provider_env_vars:
if details.get("default", False):
# Automatically add default key-value pairs
for key, value in details.items():
if key not in ["prompt", "key_name", "default"]:
env_vars[key] = value
elif "key_name" in details:
# Prompt for non-default key-value pairs
prompt = details["prompt"]
key_name = details["key_name"]
api_key_value = click.prompt(prompt, default="", show_default=False)
if api_key_value.strip():
env_vars[key_name] = api_key_value
if env_vars:
write_env_file(folder_path, env_vars)
click.secho("API keys and model saved to .env file", fg="green")
else:
click.secho(
"No API keys provided. Skipping .env file creation.", fg="yellow"
)
click.secho(f"Selected model: {env_vars.get('MODEL', 'N/A')}", fg="green")
package_dir = Path(__file__).parent
templates_dir = package_dir / "templates" / "crew"
root_template_files = (
[".gitignore", "pyproject.toml", "README.md"] if not parent_folder else []
[".gitignore", "pyproject.toml", "README.md", "knowledge/user_preference.txt"]
if not parent_folder
else []
)
tools_template_files = ["tools/custom_tool.py", "tools/__init__.py"]
config_template_files = ["config/agents.yaml", "config/tasks.yaml"]

View File

@@ -1,107 +0,0 @@
import shutil
from pathlib import Path
import click
def create_pipeline(name, router=False):
"""Create a new pipeline project."""
folder_name = name.replace(" ", "_").replace("-", "_").lower()
class_name = name.replace("_", " ").replace("-", " ").title().replace(" ", "")
click.secho(f"Creating pipeline {folder_name}...", fg="green", bold=True)
project_root = Path(folder_name)
if project_root.exists():
click.secho(f"Error: Folder {folder_name} already exists.", fg="red")
return
# Create directory structure
(project_root / "src" / folder_name).mkdir(parents=True)
(project_root / "src" / folder_name / "pipelines").mkdir(parents=True)
(project_root / "src" / folder_name / "crews").mkdir(parents=True)
(project_root / "src" / folder_name / "tools").mkdir(parents=True)
(project_root / "tests").mkdir(exist_ok=True)
# Create .env file
with open(project_root / ".env", "w") as file:
file.write("OPENAI_API_KEY=YOUR_API_KEY")
package_dir = Path(__file__).parent
template_folder = "pipeline_router" if router else "pipeline"
templates_dir = package_dir / "templates" / template_folder
# List of template files to copy
root_template_files = [".gitignore", "pyproject.toml", "README.md"]
src_template_files = ["__init__.py", "main.py"]
tools_template_files = ["tools/__init__.py", "tools/custom_tool.py"]
if router:
crew_folders = [
"classifier_crew",
"normal_crew",
"urgent_crew",
]
pipelines_folders = [
"pipelines/__init__.py",
"pipelines/pipeline_classifier.py",
"pipelines/pipeline_normal.py",
"pipelines/pipeline_urgent.py",
]
else:
crew_folders = [
"research_crew",
"write_linkedin_crew",
"write_x_crew",
]
pipelines_folders = ["pipelines/__init__.py", "pipelines/pipeline.py"]
def process_file(src_file, dst_file):
with open(src_file, "r") as file:
content = file.read()
content = content.replace("{{name}}", name)
content = content.replace("{{crew_name}}", class_name)
content = content.replace("{{folder_name}}", folder_name)
content = content.replace("{{pipeline_name}}", class_name)
with open(dst_file, "w") as file:
file.write(content)
# Copy and process root template files
for file_name in root_template_files:
src_file = templates_dir / file_name
dst_file = project_root / file_name
process_file(src_file, dst_file)
# Copy and process src template files
for file_name in src_template_files:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
process_file(src_file, dst_file)
# Copy tools files
for file_name in tools_template_files:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
shutil.copy(src_file, dst_file)
# Copy pipelines folders
for file_name in pipelines_folders:
src_file = templates_dir / file_name
dst_file = project_root / "src" / folder_name / file_name
process_file(src_file, dst_file)
# Copy crew folders
for crew_folder in crew_folders:
src_crew_folder = templates_dir / "crews" / crew_folder
dst_crew_folder = project_root / "src" / folder_name / "crews" / crew_folder
if src_crew_folder.exists():
shutil.copytree(src_crew_folder, dst_crew_folder)
else:
click.secho(
f"Warning: Crew folder {crew_folder} not found in template.",
fg="yellow",
)
click.secho(f"Pipeline {name} created successfully!", fg="green", bold=True)

View File

@@ -3,12 +3,13 @@ import subprocess
import click
def install_crew() -> None:
def install_crew(proxy_options: list[str]) -> None:
"""
Install the crew by running the UV command to lock and install.
"""
try:
subprocess.run(["uv", "sync"], check=True, capture_output=False, text=True)
command = ["uv", "sync"] + proxy_options
subprocess.run(command, check=True, capture_output=False, text=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while running the crew: {e}", err=True)

View File

@@ -7,7 +7,7 @@ def plot_flow() -> None:
"""
Plot the flow by running a command in the UV environment.
"""
command = ["uv", "run", "plot_flow"]
command = ["uv", "run", "plot"]
try:
result = subprocess.run(command, capture_output=False, text=True, check=True)

View File

@@ -1,7 +1,7 @@
from typing import Optional
import requests
from os import getenv
from crewai.cli.utils import get_crewai_version
from crewai.cli.version import get_crewai_version
from urllib.parse import urljoin

View File

@@ -1,67 +1,91 @@
import json
import time
import requests
from collections import defaultdict
from pathlib import Path
import click
from pathlib import Path
from crewai.cli.constants import PROVIDERS, MODELS, JSON_URL
import requests
from crewai.cli.constants import JSON_URL, MODELS, PROVIDERS
def select_choice(prompt_message, choices):
"""
Presents a list of choices to the user and prompts them to select one.
Args:
- prompt_message (str): The message to display to the user before presenting the choices.
- choices (list): A list of options to present to the user.
Returns:
- str: The selected choice from the list, or None if the operation is aborted or an invalid selection is made.
- str: The selected choice from the list, or None if the user chooses to quit.
"""
provider_models = get_provider_data()
if not provider_models:
return
click.secho(prompt_message, fg="cyan")
for idx, choice in enumerate(choices, start=1):
click.secho(f"{idx}. {choice}", fg="cyan")
try:
selected_index = click.prompt("Enter the number of your choice", type=int) - 1
except click.exceptions.Abort:
click.secho("Operation aborted by the user.", fg="red")
return None
if not (0 <= selected_index < len(choices)):
click.secho("Invalid selection.", fg="red")
return None
return choices[selected_index]
click.secho("q. Quit", fg="cyan")
while True:
choice = click.prompt(
"Enter the number of your choice or 'q' to quit", type=str
)
if choice.lower() == "q":
return None
try:
selected_index = int(choice) - 1
if 0 <= selected_index < len(choices):
return choices[selected_index]
except ValueError:
pass
click.secho(
"Invalid selection. Please select a number between 1 and 6 or 'q' to quit.",
fg="red",
)
def select_provider(provider_models):
"""
Presents a list of providers to the user and prompts them to select one.
Args:
- provider_models (dict): A dictionary of provider models.
Returns:
- str: The selected provider, or None if the operation is aborted or an invalid selection is made.
- str: The selected provider
- None: If user explicitly quits
"""
predefined_providers = [p.lower() for p in PROVIDERS]
all_providers = sorted(set(predefined_providers + list(provider_models.keys())))
provider = select_choice("Select a provider to set up:", predefined_providers + ['other'])
if not provider:
provider = select_choice(
"Select a provider to set up:", predefined_providers + ["other"]
)
if provider is None: # User typed 'q'
return None
provider = provider.lower()
if provider == 'other':
if provider == "other":
provider = select_choice("Select a provider from the full list:", all_providers)
if not provider:
if provider is None: # User typed 'q'
return None
return provider
return provider.lower() if provider else False
def select_model(provider, provider_models):
"""
Presents a list of models for a given provider to the user and prompts them to select one.
Args:
- provider (str): The provider for which to select a model.
- provider_models (dict): A dictionary of provider models.
Returns:
- str: The selected model, or None if the operation is aborted or an invalid selection is made.
"""
@@ -76,37 +100,49 @@ def select_model(provider, provider_models):
click.secho(f"No models available for provider '{provider}'.", fg="red")
return None
selected_model = select_choice(f"Select a model to use for {provider.capitalize()}:", available_models)
selected_model = select_choice(
f"Select a model to use for {provider.capitalize()}:", available_models
)
return selected_model
def load_provider_data(cache_file, cache_expiry):
"""
Loads provider data from a cache file if it exists and is not expired. If the cache is expired or corrupted, it fetches the data from the web.
Args:
- cache_file (Path): The path to the cache file.
- cache_expiry (int): The cache expiry time in seconds.
Returns:
- dict or None: The loaded provider data or None if the operation fails.
"""
current_time = time.time()
if cache_file.exists() and (current_time - cache_file.stat().st_mtime) < cache_expiry:
if (
cache_file.exists()
and (current_time - cache_file.stat().st_mtime) < cache_expiry
):
data = read_cache_file(cache_file)
if data:
return data
click.secho("Cache is corrupted. Fetching provider data from the web...", fg="yellow")
click.secho(
"Cache is corrupted. Fetching provider data from the web...", fg="yellow"
)
else:
click.secho("Cache expired or not found. Fetching provider data from the web...", fg="cyan")
click.secho(
"Cache expired or not found. Fetching provider data from the web...",
fg="cyan",
)
return fetch_provider_data(cache_file)
def read_cache_file(cache_file):
"""
Reads and returns the JSON content from a cache file. Returns None if the file contains invalid JSON.
Args:
- cache_file (Path): The path to the cache file.
Returns:
- dict or None: The JSON content of the cache file or None if the JSON is invalid.
"""
@@ -116,18 +152,19 @@ def read_cache_file(cache_file):
except json.JSONDecodeError:
return None
def fetch_provider_data(cache_file):
"""
Fetches provider data from a specified URL and caches it to a file.
Args:
- cache_file (Path): The path to the cache file.
Returns:
- dict or None: The fetched provider data or None if the operation fails.
"""
try:
response = requests.get(JSON_URL, stream=True, timeout=10)
response = requests.get(JSON_URL, stream=True, timeout=60)
response.raise_for_status()
data = download_data(response)
with open(cache_file, "w") as f:
@@ -139,38 +176,42 @@ def fetch_provider_data(cache_file):
click.secho("Error parsing provider data. Invalid JSON format.", fg="red")
return None
def download_data(response):
"""
Downloads data from a given HTTP response and returns the JSON content.
Args:
- response (requests.Response): The HTTP response object.
Returns:
- dict: The JSON content of the response.
"""
total_size = int(response.headers.get('content-length', 0))
total_size = int(response.headers.get("content-length", 0))
block_size = 8192
data_chunks = []
with click.progressbar(length=total_size, label='Downloading', show_pos=True) as progress_bar:
with click.progressbar(
length=total_size, label="Downloading", show_pos=True
) as progress_bar:
for chunk in response.iter_content(block_size):
if chunk:
data_chunks.append(chunk)
progress_bar.update(len(chunk))
data_content = b''.join(data_chunks)
return json.loads(data_content.decode('utf-8'))
data_content = b"".join(data_chunks)
return json.loads(data_content.decode("utf-8"))
def get_provider_data():
"""
Retrieves provider data from a cache file, filters out models based on provider criteria, and returns a dictionary of providers mapped to their models.
Returns:
- dict or None: A dictionary of providers mapped to their models or None if the operation fails.
"""
cache_dir = Path.home() / '.crewai'
cache_dir = Path.home() / ".crewai"
cache_dir.mkdir(exist_ok=True)
cache_file = cache_dir / 'provider_cache.json'
cache_expiry = 24 * 3600
cache_file = cache_dir / "provider_cache.json"
cache_expiry = 24 * 3600
data = load_provider_data(cache_file, cache_expiry)
if not data:
@@ -179,8 +220,8 @@ def get_provider_data():
provider_models = defaultdict(list)
for model_name, properties in data.items():
provider = properties.get("litellm_provider", "").strip().lower()
if 'http' in provider or provider == 'other':
if "http" in provider or provider == "other":
continue
if provider:
provider_models[provider].append(model_name)
return provider_models
return provider_models

View File

@@ -5,9 +5,17 @@ from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
def reset_memories_command(
long,
short,
entity,
knowledge,
kickoff_outputs,
all,
) -> None:
"""
Reset the crew memories.
@@ -17,6 +25,7 @@ def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
entity (bool): Whether to reset the entity memory.
kickoff_outputs (bool): Whether to reset the latest kickoff task outputs.
all (bool): Whether to reset all memories.
knowledge (bool): Whether to reset the knowledge.
"""
try:
@@ -25,6 +34,7 @@ def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
EntityMemory().reset()
LongTermMemory().reset()
TaskOutputStorageHandler().reset()
KnowledgeStorage().reset()
click.echo("All memories have been reset.")
else:
if long:
@@ -40,6 +50,9 @@ def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
if kickoff_outputs:
TaskOutputStorageHandler().reset()
click.echo("Latest Kickoff outputs stored has been reset.")
if knowledge:
KnowledgeStorage().reset()
click.echo("Knowledge has been reset.")
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while resetting the memories: {e}", err=True)

View File

@@ -1,10 +1,10 @@
import subprocess
import click
import tomllib
from packaging import version
from crewai.cli.utils import get_crewai_version
from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
def run_crew() -> None:
@@ -15,10 +15,9 @@ def run_crew() -> None:
crewai_version = get_crewai_version()
min_required_version = "0.71.0"
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
pyproject_data = read_toml()
if data.get("tool", {}).get("poetry") and (
if pyproject_data.get("tool", {}).get("poetry") and (
version.parse(crewai_version) < version.parse(min_required_version)
):
click.secho(
@@ -26,7 +25,6 @@ def run_crew() -> None:
f"Please run `crewai update` to update your pyproject.toml to use uv.",
fg="red",
)
print()
try:
subprocess.run(command, capture_output=False, text=True, check=True)
@@ -35,10 +33,7 @@ def run_crew() -> None:
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True, nl=True)
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
if data.get("tool", {}).get("poetry"):
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry, please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",

View File

@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <=3.12 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install uv:

View File

@@ -12,6 +12,6 @@ reporting_task:
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
A fully fledged report with the main topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst

View File

@@ -1,21 +1,26 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from {{folder_name}}.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
# If you want to run a snippet of code before or after the crew starts,
# you can use the @before_kickoff and @after_kickoff decorators
# https://docs.crewai.com/concepts/crews#example-crew-class-with-decorators
@CrewBase
class {{crew_name}}Crew():
class {{crew_name}}():
"""{{crew_name}} crew"""
# Learn more about YAML configuration files here:
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
# If you would like to add tools to your agents, you can learn more about it here:
# https://docs.crewai.com/concepts/agents#agent-tools
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
# tools=[MyCustomTool()], # Example of custom tool, loaded on the beginning of file
verbose=True
)
@@ -26,6 +31,9 @@ class {{crew_name}}Crew():
verbose=True
)
# To learn more about structured task outputs,
# task dependencies, and task callbacks, check out the documentation:
# https://docs.crewai.com/concepts/tasks#overview-of-a-task
@task
def research_task(self) -> Task:
return Task(
@@ -42,10 +50,13 @@ class {{crew_name}}Crew():
@crew
def crew(self) -> Crew:
"""Creates the {{crew_name}} crew"""
# To learn how to add knowledge sources to your crew, check out the documentation:
# https://docs.crewai.com/concepts/knowledge#what-is-knowledge
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
)
)

View File

@@ -0,0 +1,4 @@
User name is John Doe.
User is an AI Engineer.
User is interested in AI Agents.
User is based in San Francisco, California.

View File

@@ -1,6 +1,10 @@
#!/usr/bin/env python
import sys
from {{folder_name}}.crew import {{crew_name}}Crew
import warnings
from {{folder_name}}.crew import {{crew_name}}
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
# This main file is intended to be a way for you to run your
# crew locally, so refrain from adding unnecessary logic into this file.
@@ -14,7 +18,7 @@ def run():
inputs = {
'topic': 'AI LLMs'
}
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
{{crew_name}}().crew().kickoff(inputs=inputs)
def train():
@@ -25,7 +29,7 @@ def train():
"topic": "AI LLMs"
}
try:
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
{{crew_name}}().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
@@ -35,7 +39,7 @@ def replay():
Replay the crew execution from a specific task.
"""
try:
{{crew_name}}Crew().crew().replay(task_id=sys.argv[1])
{{crew_name}}().crew().replay(task_id=sys.argv[1])
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")
@@ -48,7 +52,7 @@ def test():
"topic": "AI LLMs"
}
try:
{{crew_name}}Crew().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")

View File

@@ -3,9 +3,9 @@ name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
requires-python = ">=3.10,<=3.12"
dependencies = [
"crewai[tools]>=0.74.2,<1.0.0"
"crewai[tools]>=0.86.0,<1.0.0"
]
[project.scripts]

View File

@@ -1,11 +1,18 @@
from crewai_tools import BaseTool
from crewai.tools import BaseTool
from typing import Type
from pydantic import BaseModel, Field
class MyCustomToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput
def _run(self, argument: str) -> str:
# Implementation goes here

View File

@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
Ensure you have Python >=3.10 <=3.12 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install uv:

View File

@@ -1,31 +1,47 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# If you want to run a snippet of code before or after the crew starts,
# you can use the @before_kickoff and @after_kickoff decorators
# https://docs.crewai.com/concepts/crews#example-crew-class-with-decorators
@CrewBase
class PoemCrew():
"""Poem Crew"""
class PoemCrew:
"""Poem Crew"""
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
# Learn more about YAML configuration files here:
# Agents: https://docs.crewai.com/concepts/agents#yaml-configuration-recommended
# Tasks: https://docs.crewai.com/concepts/tasks#yaml-configuration-recommended
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@agent
def poem_writer(self) -> Agent:
return Agent(
config=self.agents_config['poem_writer'],
)
# If you would lik to add tools to your crew, you can learn more about it here:
# https://docs.crewai.com/concepts/agents#agent-tools
@agent
def poem_writer(self) -> Agent:
return Agent(
config=self.agents_config["poem_writer"],
)
@task
def write_poem(self) -> Task:
return Task(
config=self.tasks_config['write_poem'],
)
# To learn more about structured task outputs,
# task dependencies, and task callbacks, check out the documentation:
# https://docs.crewai.com/concepts/tasks#overview-of-a-task
@task
def write_poem(self) -> Task:
return Task(
config=self.tasks_config["write_poem"],
)
@crew
def crew(self) -> Crew:
"""Creates the Research Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)
@crew
def crew(self) -> Crew:
"""Creates the Research Crew"""
# To learn how to add knowledge sources to your crew, check out the documentation:
# https://docs.crewai.com/concepts/knowledge#what-is-knowledge
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -3,9 +3,9 @@ name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
requires-python = ">=3.10,<=3.12"
dependencies = [
"crewai[tools]>=0.74.2,<1.0.0",
"crewai[tools]>=0.86.0,<1.0.0",
]
[project.scripts]

View File

@@ -1,4 +1,13 @@
from crewai_tools import BaseTool
from typing import Type
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyCustomToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
@@ -6,6 +15,7 @@ class MyCustomTool(BaseTool):
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
args_schema: Type[BaseModel] = MyCustomToolInput
def _run(self, argument: str) -> str:
# Implementation goes here

View File

@@ -1,2 +0,0 @@
.env
__pycache__/

View File

@@ -1,57 +0,0 @@
# {{crew_name}} Crew
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install Poetry:
```bash
pip install poetry
```
Next, navigate to your project directory and install the dependencies:
1. First lock the dependencies and then install them:
```bash
crewai install
```
### Customizing
**Add your `OPENAI_API_KEY` into the `.env` file**
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
## Running the Project
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
```bash
crewai run
```
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
## Understanding Your Crew
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
## Support
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
- Visit our [documentation](https://docs.crewai.com)
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
- [Chat with our docs](https://chatg.pt/DWjSBZn)
Let's create wonders together with the power and simplicity of crewAI.

View File

@@ -1,16 +0,0 @@
research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2024.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with a title, mains topics, each with a full section of information.
agent: reporting_analyst

View File

@@ -1,58 +0,0 @@
from pydantic import BaseModel
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
class ResearchReport(BaseModel):
"""Research Report"""
title: str
body: str
@CrewBase
class ResearchCrew():
"""Research Crew"""
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
output_pydantic=ResearchReport
)
@crew
def crew(self) -> Crew:
"""Creates the Research Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,51 +0,0 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from {{folder_name}}.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
@CrewBase
class WriteLinkedInCrew():
"""Research Crew"""
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
)
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
output_file='report.md'
)
@crew
def crew(self) -> Crew:
"""Creates the {{crew_name}} crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,14 +0,0 @@
x_writer_agent:
role: >
Expert Social Media Content Creator specializing in short form written content
goal: >
Create viral-worthy, engaging short form posts that distill complex {topic} information
into compelling 280-character messages
backstory: >
You're a social media virtuoso with a particular talent for short form content. Your posts
consistently go viral due to your ability to craft hooks that stop users mid-scroll.
You've studied the techniques of social media masters like Justin Welsh, Dickie Bush,
Nicolas Cole, and Shaan Puri, incorporating their best practices into your own unique style.
Your superpower is taking intricate {topic} concepts and transforming them into
bite-sized, shareable content that resonates with a wide audience. You know exactly
how to structure a post for maximum impact and engagement.

View File

@@ -1,22 +0,0 @@
write_x_task:
description: >
Using the research report provided, create an engaging short form post about {topic}.
Your post should have a great hook, summarize key points, and be structured for easy
consumption on a digital platform. The post must be under 280 characters.
Follow these guidelines:
1. Start with an attention-grabbing hook
2. Condense the main insights from the research
3. Use clear, concise language
4. Include a call-to-action or thought-provoking question if space allows
5. Ensure the post flows well and is easy to read quickly
Here is the title of the research report you will be using
Title: {title}
Research:
{body}
expected_output: >
A compelling X post under 280 characters that effectively summarizes the key findings
about {topic}, starts with a strong hook, and is optimized for engagement on the platform.
agent: x_writer_agent

View File

@@ -1,36 +0,0 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
@CrewBase
class WriteXCrew:
"""Research Crew"""
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@agent
def x_writer_agent(self) -> Agent:
return Agent(config=self.agents_config["x_writer_agent"], verbose=True)
@task
def write_x_task(self) -> Task:
return Task(
config=self.tasks_config["write_x_task"],
)
@crew
def crew(self) -> Crew:
"""Creates the Write X Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,26 +0,0 @@
#!/usr/bin/env python
import asyncio
from {{folder_name}}.pipelines.pipeline import {{pipeline_name}}Pipeline
async def run():
"""
Run the pipeline.
"""
inputs = [
{"topic": "AI wearables"},
]
pipeline = {{pipeline_name}}Pipeline()
results = await pipeline.kickoff(inputs)
# Process and print results
for result in results:
print(f"Raw output: {result.raw}")
if result.json_dict:
print(f"JSON output: {result.json_dict}")
print("\n")
def main():
asyncio.run(run())
if __name__ == "__main__":
main()

View File

@@ -1,87 +0,0 @@
"""
This pipeline file includes two different examples to demonstrate the flexibility of crewAI pipelines.
Example 1: Two-Stage Pipeline
-----------------------------
This pipeline consists of two crews:
1. ResearchCrew: Performs research on a given topic.
2. WriteXCrew: Generates an X (Twitter) post based on the research findings.
Key features:
- The ResearchCrew's final task uses output_json to store all research findings in a JSON object.
- This JSON object is then passed to the WriteXCrew, where tasks can access the research findings.
Example 2: Two-Stage Pipeline with Parallel Execution
-------------------------------------------------------
This pipeline consists of three crews:
1. ResearchCrew: Performs research on a given topic.
2. WriteXCrew and WriteLinkedInCrew: Run in parallel, using the research findings to generate posts for X and LinkedIn, respectively.
Key features:
- Demonstrates the ability to run multiple crews in parallel.
- Shows how to structure a pipeline with both sequential and parallel stages.
Usage:
- To switch between examples, comment/uncomment the respective code blocks below.
- Ensure that you have implemented all necessary crew classes (ResearchCrew, WriteXCrew, WriteLinkedInCrew) before running.
"""
# Common imports for both examples
from crewai import Pipeline
# Uncomment the crews you need for your chosen example
from ..crews.research_crew.research_crew import ResearchCrew
from ..crews.write_x_crew.write_x_crew import WriteXCrew
# from .crews.write_linkedin_crew.write_linkedin_crew import WriteLinkedInCrew # Uncomment for Example 2
# EXAMPLE 1: Two-Stage Pipeline
# -----------------------------
# Uncomment the following code block to use Example 1
class {{pipeline_name}}Pipeline:
def __init__(self):
# Initialize crews
self.research_crew = ResearchCrew().crew()
self.write_x_crew = WriteXCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.research_crew,
self.write_x_crew
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results
# EXAMPLE 2: Two-Stage Pipeline with Parallel Execution
# -------------------------------------------------------
# Uncomment the following code block to use Example 2
# @PipelineBase
# class {{pipeline_name}}Pipeline:
# def __init__(self):
# # Initialize crews
# self.research_crew = ResearchCrew().crew()
# self.write_x_crew = WriteXCrew().crew()
# self.write_linkedin_crew = WriteLinkedInCrew().crew()
# @pipeline
# def create_pipeline(self):
# return Pipeline(
# stages=[
# self.research_crew,
# [self.write_x_crew, self.write_linkedin_crew] # Parallel execution
# ]
# )
# async def run(self, inputs):
# pipeline = self.create_pipeline()
# results = await pipeline.kickoff(inputs)
# return results

View File

@@ -1,17 +0,0 @@
[tool.poetry]
name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = ">=0.74.2,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:main"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -1,12 +0,0 @@
from crewai_tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
def _run(self, argument: str) -> str:
# Implementation goes here
return "this is an example of a tool output, ignore it and move along."

View File

@@ -1,2 +0,0 @@
.env
__pycache__/

View File

@@ -1,54 +0,0 @@
# {{crew_name}} Crew
Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.com). This template is designed to help you set up a multi-agent AI system with ease, leveraging the powerful and flexible framework provided by crewAI. Our goal is to enable your agents to collaborate effectively on complex tasks, maximizing their collective intelligence and capabilities.
## Installation
Ensure you have Python >=3.10 <=3.13 installed on your system. This project uses [Poetry](https://python-poetry.org/) for dependency management and package handling, offering a seamless setup and execution experience.
First, if you haven't already, install Poetry:
```bash
pip install poetry
```
Next, navigate to your project directory and install the dependencies:
1. First lock the dependencies and then install them:
```bash
crewai install
```
### Customizing
**Add your `OPENAI_API_KEY` into the `.env` file**
- Modify `src/{{folder_name}}/config/agents.yaml` to define your agents
- Modify `src/{{folder_name}}/config/tasks.yaml` to define your tasks
- Modify `src/{{folder_name}}/crew.py` to add your own logic, tools and specific args
- Modify `src/{{folder_name}}/main.py` to add custom inputs for your agents and tasks
## Running the Project
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
```bash
crewai run
```
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.
## Understanding Your Crew
The {{name}} Crew is composed of multiple AI agents, each with unique roles, goals, and tools. These agents collaborate on a series of tasks, defined in `config/tasks.yaml`, leveraging their collective skills to achieve complex objectives. The `config/agents.yaml` file outlines the capabilities and configurations of each agent in your crew.
## Support
For support, questions, or feedback regarding the {{crew_name}} Crew or crewAI.
- Visit our [documentation](https://docs.crewai.com)
- Reach out to us through our [GitHub repository](https://github.com/joaomdmoura/crewai)
- [Join our Discord](https://discord.com/invite/X4JWnZnxPb)
- [Chat with our docs](https://chatg.pt/DWjSBZn)
Let's create wonders together with the power and simplicity of crewAI.

View File

@@ -1,19 +0,0 @@
researcher:
role: >
{topic} Senior Data Researcher
goal: >
Uncover cutting-edge developments in {topic}
backstory: >
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
goal: >
Create detailed reports based on {topic} data analysis and research findings
backstory: >
You're a meticulous analyst with a keen eye for detail. You're known for
your ability to turn complex data into clear and concise reports, making
it easy for others to understand and act on the information you provide.

View File

@@ -1,40 +0,0 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from pydantic import BaseModel
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
class UrgencyScore(BaseModel):
urgency_score: int
@CrewBase
class ClassifierCrew:
"""Email Classifier Crew"""
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@agent
def classifier(self) -> Agent:
return Agent(config=self.agents_config["classifier"], verbose=True)
@task
def urgent_task(self) -> Task:
return Task(
config=self.tasks_config["classify_email"],
output_pydantic=UrgencyScore,
)
@crew
def crew(self) -> Crew:
"""Creates the Email Classifier Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,7 +0,0 @@
classifier:
role: >
Email Classifier
goal: >
Classify the email: {email} as urgent or normal from a score of 1 to 10, where 1 is not urgent and 10 is urgent. Return the urgency score only.`
backstory: >
You are a highly efficient and experienced email classifier, trained to quickly assess and classify emails. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing normal situations and maintaining smooth operations.

View File

@@ -1,7 +0,0 @@
classify_email:
description: >
Classify the email: {email}
as urgent or normal.
expected_output: >
Classify the email from a scale of 1 to 10, where 1 is not urgent and 10 is urgent. Return the urgency score only.
agent: classifier

View File

@@ -1,7 +0,0 @@
normal_handler:
role: >
Normal Email Processor
goal: >
Process normal emails and create an email to respond to the sender.
backstory: >
You are a highly efficient and experienced normal email handler, trained to quickly assess and respond to normal communications. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing normal situations and maintaining smooth operations.

View File

@@ -1,6 +0,0 @@
normal_task:
description: >
Process and respond to normal email quickly.
expected_output: >
An email response to the normal email.
agent: normal_handler

View File

@@ -1,36 +0,0 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
@CrewBase
class NormalCrew:
"""Normal Email Crew"""
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@agent
def normal_handler(self) -> Agent:
return Agent(config=self.agents_config["normal_handler"], verbose=True)
@task
def urgent_task(self) -> Task:
return Task(
config=self.tasks_config["normal_task"],
)
@crew
def crew(self) -> Crew:
"""Creates the Normal Email Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,7 +0,0 @@
urgent_handler:
role: >
Urgent Email Processor
goal: >
Process urgent emails and create an email to respond to the sender.
backstory: >
You are a highly efficient and experienced urgent email handler, trained to quickly assess and respond to time-sensitive communications. Your ability to remain calm under pressure and provide concise, actionable responses has made you an invaluable asset in managing critical situations and maintaining smooth operations.

View File

@@ -1,6 +0,0 @@
urgent_task:
description: >
Process and respond to urgent email quickly.
expected_output: >
An email response to the urgent email.
agent: urgent_handler

View File

@@ -1,36 +0,0 @@
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
# Uncomment the following line to use an example of a custom tool
# from demo_pipeline.tools.custom_tool import MyCustomTool
# Check our tools documentations for more information on how to use them
# from crewai_tools import SerperDevTool
@CrewBase
class UrgentCrew:
"""Urgent Email Crew"""
agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
@agent
def urgent_handler(self) -> Agent:
return Agent(config=self.agents_config["urgent_handler"], verbose=True)
@task
def urgent_task(self) -> Task:
return Task(
config=self.tasks_config["urgent_task"],
)
@crew
def crew(self) -> Crew:
"""Creates the Urgent Email Crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)

View File

@@ -1,75 +0,0 @@
#!/usr/bin/env python
import asyncio
from crewai.routers.router import Route
from crewai.routers.router import Router
from {{folder_name}}.pipelines.pipeline_classifier import EmailClassifierPipeline
from {{folder_name}}.pipelines.pipeline_normal import NormalPipeline
from {{folder_name}}.pipelines.pipeline_urgent import UrgentPipeline
async def run():
"""
Run the pipeline.
"""
inputs = [
{
"email": """
Subject: URGENT: Marketing Campaign Launch - Immediate Action Required
Dear Team,
I'm reaching out regarding our upcoming marketing campaign that requires your immediate attention and swift action. We're facing a critical deadline, and our success hinges on our ability to mobilize quickly.
Key points:
Campaign launch: 48 hours from now
Target audience: 250,000 potential customers
Expected ROI: 35% increase in Q3 sales
What we need from you NOW:
Final approval on creative assets (due in 3 hours)
Confirmation of media placements (due by end of day)
Last-minute budget allocation for paid social media push
Our competitors are poised to launch similar campaigns, and we must act fast to maintain our market advantage. Delays could result in significant lost opportunities and potential revenue.
Please prioritize this campaign above all other tasks. I'll be available for the next 24 hours to address any concerns or roadblocks.
Let's make this happen!
[Your Name]
Marketing Director
P.S. I'll be scheduling an emergency team meeting in 1 hour to discuss our action plan. Attendance is mandatory.
"""
}
]
pipeline_classifier = EmailClassifierPipeline().create_pipeline()
pipeline_urgent = UrgentPipeline().create_pipeline()
pipeline_normal = NormalPipeline().create_pipeline()
router = Router(
routes={
"high_urgency": Route(
condition=lambda x: x.get("urgency_score", 0) > 7,
pipeline=pipeline_urgent
),
"low_urgency": Route(
condition=lambda x: x.get("urgency_score", 0) <= 7,
pipeline=pipeline_normal
)
},
default=pipeline_normal
)
pipeline = pipeline_classifier >> router
results = await pipeline.kickoff(inputs)
# Process and print results
for result in results:
print(f"Raw output: {result.raw}")
if result.json_dict:
print(f"JSON output: {result.json_dict}")
print("\n")
def main():
asyncio.run(run())
if __name__ == "__main__":
main()

View File

@@ -1,24 +0,0 @@
from crewai import Pipeline
from crewai.project import PipelineBase
from ..crews.classifier_crew.classifier_crew import ClassifierCrew
@PipelineBase
class EmailClassifierPipeline:
def __init__(self):
# Initialize crews
self.classifier_crew = ClassifierCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.classifier_crew
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results

View File

@@ -1,24 +0,0 @@
from crewai import Pipeline
from crewai.project import PipelineBase
from ..crews.normal_crew.normal_crew import NormalCrew
@PipelineBase
class NormalPipeline:
def __init__(self):
# Initialize crews
self.normal_crew = NormalCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.normal_crew
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results

View File

@@ -1,23 +0,0 @@
from crewai import Pipeline
from crewai.project import PipelineBase
from ..crews.urgent_crew.urgent_crew import UrgentCrew
@PipelineBase
class UrgentPipeline:
def __init__(self):
# Initialize crews
self.urgent_crew = UrgentCrew().crew()
def create_pipeline(self):
return Pipeline(
stages=[
self.urgent_crew
]
)
async def kickoff(self, inputs):
pipeline = self.create_pipeline()
results = await pipeline.kickoff(inputs)
return results

View File

@@ -1,21 +0,0 @@
[project]
name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.74.2,<1.0.0"
]
[project.scripts]
{{folder_name}} = "{{folder_name}}.main:main"
run_crew = "{{folder_name}}.main:main"
train = "{{folder_name}}.main:train"
replay = "{{folder_name}}.main:replay"
test = "{{folder_name}}.main:test"
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

View File

@@ -1,12 +0,0 @@
from crewai_tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = (
"Clear description for what this tool is useful for, you agent will need this information to use it."
)
def _run(self, argument: str) -> str:
# Implementation goes here
return "this is an example of a tool output, ignore it and move along."

View File

@@ -5,7 +5,7 @@ custom tools to power up your crews.
## Installing
Ensure you have Python >=3.10 <=3.13 installed on your system. This project
Ensure you have Python >=3.10 <=3.12 installed on your system. This project
uses [UV](https://docs.astral.sh/uv/) for dependency management and package
handling, offering a seamless setup and execution experience.

Some files were not shown because too many files have changed in this diff Show More