Compare commits

...

18 Commits

Author SHA1 Message Date
Brandon Hancock
41a0d7cab2 try again 2024-10-29 11:46:24 -04:00
Brandon Hancock
f6e3ebf6f0 adding more error logs to test thats failing 2024-10-29 11:40:36 -04:00
Brandon Hancock
c22e191417 fix failing test 2024-10-29 11:17:30 -04:00
Brandon Hancock
0e36d35409 Update flows cli to allow you to easily add additional crews to a flow 2024-10-28 15:30:57 -05:00
Brandon Hancock (bhancock_ai)
26afee9bed improve tool text description and args (#1512)
* improve tool text descriptoin and args

* fix lint

* Drop print

* add back in docstring
2024-10-25 18:42:55 -04:00
Vini Brasil
f29f4abdd7 Forward install command options to uv sync (#1510)
Allow passing additional options from `crewai install` directly to
`uv sync`. This enables commands like `crewai install --locked` to work
as expected by forwarding all flags and options to the underlying uv
command.
2024-10-25 11:20:41 -03:00
Eduardo Chiarotti
4589d6fe9d feat: add tomli so we can support 3.10 (#1506)
* feat: add tomli so we can support 3.10

* feat: add validation for poetry data
2024-10-25 10:33:21 -03:00
Brandon Hancock (bhancock_ai)
201e652fa2 update plot command (#1504) 2024-10-24 14:44:30 -04:00
João Moura
8bc07e6071 new version 2024-10-23 18:10:37 -03:00
João Moura
6baaad045a new version 2024-10-23 18:08:49 -03:00
João Moura
74c1703310 updating crewai version 2024-10-23 17:58:58 -03:00
Brandon Hancock (bhancock_ai)
a921828e51 Fix memory imports for embedding functions (#1497) 2024-10-23 11:21:27 -04:00
Brandon Hancock (bhancock_ai)
e1fd83e6a7 support unsafe code execution. add in docker install and running checks. (#1496)
* support unsafe code execution. add in docker install and running checks.

* Update return type
2024-10-23 11:01:00 -04:00
Maicon Peixinho
7d68e287cc chore(readme-fix): fixing step for 'running tests' in the contribution section (#1490)
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
2024-10-23 11:38:41 -03:00
Rip&Tear
f39a975e20 fix/fixed missing API prompt + CLI docs update (#1464)
* updated CLI to allow for submitting API keys

* updated click prompt to remove default number

* removed all unnecessary comments

* feat: implement crew creation CLI command

- refactor code to multiple functions
- Added ability for users to select provider and model when uing crewai create command and ave API key to .env

* refactered select_choice function for early return

* refactored  select_provider to have an ealry return

* cleanup of comments

* refactor/Move functions into utils file, added new provider file and migrated fucntions thre, new constants file + general function refactor

* small comment cleanup

* fix unnecessary deps

* Added docs for new CLI provider + fixed missing API prompt

* Minor doc updates

* allow user to bypass api key entry + incorect number selected logic + ruff formatting

* ruff updates

* Fix spelling mistake

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-10-23 09:41:14 -04:00
João Moura
b8a3c29745 preparing new verison 2024-10-23 05:34:34 -03:00
Brandon Hancock (bhancock_ai)
9cd4ff05c9 use copy to split testing and training on crews (#1491)
* use copy to split testing and training on crews

* make tests handle new copy functionality on train and test

* fix last test

* fix test
2024-10-22 21:31:44 -04:00
Lorenze Jay
4687779702 ensure original embedding config works (#1476)
* ensure original embedding config works

* some fixes

* raise error on unsupported provider

* WIP: brandons notes

* fixes

* rm prints

* fixed docs

* fixed run types

* updates to add more docs and correct imports with huggingface embedding server enabled

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-10-22 12:30:30 -07:00
28 changed files with 1602 additions and 1230 deletions

View File

@@ -351,7 +351,7 @@ pre-commit install
### Running Tests
```bash
uvx pytest
uv run pytest .
```
### Running static type checks

View File

@@ -31,16 +31,17 @@ Think of an agent as a member of a team, with specific skills and a particular j
| **Max RPM** *(optional)* | `max_rpm` | Max RPM is the maximum number of requests per minute the agent can perform to avoid rate limits. It's optional and can be left unspecified, with a default value of `None`. |
| **Max Execution Time** *(optional)* | `max_execution_time` | Max Execution Time is the maximum execution time for an agent to execute a task. It's optional and can be left unspecified, with a default value of `None`, meaning no max execution time. |
| **Verbose** *(optional)* | `verbose` | Setting this to `True` configures the internal logger to provide detailed execution logs, aiding in debugging and monitoring. Default is `False`. |
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `False`.
| **Allow Delegation** *(optional)* | `allow_delegation` | Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent. Default is `False`. |
| **Step Callback** *(optional)* | `step_callback` | A function that is called after each step of the agent. This can be used to log the agent's actions or to perform other operations. It will overwrite the crew `step_callback`. |
| **Cache** *(optional)* | `cache` | Indicates if the agent should use a cache for tool usage. Default is `True`. |
| **System Template** *(optional)* | `system_template` | Specifies the system format for the agent. Default is `None`. |
| **Prompt Template** *(optional)* | `prompt_template` | Specifies the prompt format for the agent. Default is `None`. |
| **Response Template** *(optional)* | `response_template` | Specifies the response format for the agent. Default is `None`. |
| **Allow Code Execution** *(optional)* | `allow_code_execution` | Enable code execution for the agent. Default is `False`. |
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`.
| **Max Retry Limit** *(optional)* | `max_retry_limit` | Maximum number of retries for an agent to execute a task when an error occurs. Default is `2`. |
| **Use System Prompt** *(optional)* | `use_system_prompt` | Adds the ability to not use system prompt (to support o1 models). Default is `True`. |
| **Respect Context Window** *(optional)* | `respect_context_window` | Summary strategy to avoid overflowing the context window. Default is `True`. |
| **Code Execution Mode** *(optional)* | `code_execution_mode` | Determines the mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution on the host machine). Default is `safe`. |
## Creating an agent
@@ -83,6 +84,7 @@ agent = Agent(
max_retry_limit=2, # Optional
use_system_prompt=True, # Optional
respect_context_window=True, # Optional
code_execution_mode='safe', # Optional, defaults to 'safe'
)
```
@@ -156,4 +158,4 @@ crew = my_crew.kickoff(inputs={"input": "Mark Twain"})
## Conclusion
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents,
you can create sophisticated AI systems that leverage the power of collaborative intelligence.
you can create sophisticated AI systems that leverage the power of collaborative intelligence. The `code_execution_mode` attribute provides flexibility in how agents execute code, allowing for both secure and direct execution options.

View File

@@ -6,7 +6,7 @@ icon: terminal
# CrewAI CLI Documentation
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews and pipelines.
The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you to create, train, run, and manage crews & flows.
## Installation
@@ -146,3 +146,34 @@ crewai run
Make sure to run these commands from the directory where your CrewAI project is set up.
Some commands may require additional configuration or setup within your project structure.
</Note>
### 9. API Keys
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.
Once you've selected an LLM provider, you will be prompted for API keys.
#### Initial API key providers
The CLI will initially prompt for API keys for the following services:
* OpenAI
* Groq
* Anthropic
* Google Gemini
When you select a provider, the CLI will prompt you to enter your API key.
#### Other Options
If you select option 6, you will be able to select from a list of LiteLLM supported providers.
When you select a provider, the CLI will prompt you to enter the Key name and the API key.
See the following link for each provider's key name:
* [LiteLLM Providers](https://docs.litellm.ai/docs/providers)

View File

@@ -560,6 +560,40 @@ uv run kickoff
The flow will execute, and you should see the output in the console.
### Adding Additional Crews Using the CLI
Once you have created your initial flow, you can easily add additional crews to your project using the CLI. This allows you to expand your flow's capabilities by integrating new crews without starting from scratch.
To add a new crew to your existing flow, use the following command:
```bash
crewai flow add-crew <crew_name>
```
This command will create a new directory for your crew within the `crews` folder of your flow project. It will include the necessary configuration files and a crew definition file, similar to the initial setup.
#### Folder Structure
After adding a new crew, your folder structure will look like this:
name_of_flow/
├── crews/
│ ├── poem_crew/
│ │ ├── config/
│ │ │ ├── agents.yaml
│ │ │ └── tasks.yaml
│ │ └── poem_crew.py
│ └── name_of_crew/
│ ├── config/
│ │ ├── agents.yaml
│ │ └── tasks.yaml
│ └── name_of_crew.py
You can then customize the `agents.yaml` and `tasks.yaml` files to define the agents and tasks for your new crew. The `name_of_crew.py` file will contain the crew's logic, which you can modify to suit your needs.
By using the CLI to add additional crews, you can efficiently build complex AI workflows that leverage multiple crews working together.
## Plot Flows
Visualizing your AI workflows can provide valuable insights into the structure and execution paths of your flows. CrewAI offers a powerful visualization tool that allows you to generate interactive plots of your flows, making it easier to understand and optimize your AI workflows.

View File

@@ -105,9 +105,48 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
embedder={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
}
)
```
Alternatively, you can directly pass the OpenAIEmbeddingFunction to the embedder parameter.
Example:
```python Code
from crewai import Crew, Agent, Task, Process
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder=OpenAIEmbeddingFunction(api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"),
)
```
### Using Ollama embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "ollama",
"config": {
"model": "mxbai-embed-large"
}
}
)
```
@@ -122,16 +161,20 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"),
model_name="text-embedding-ada-002"
)
embedder={
"provider": "google",
"config": {
"api_key": "<YOUR_API_KEY>",
"model_name": "<model_name>"
}
}
)
```
### Using Azure OpenAI embeddings
```python Code
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
@@ -140,7 +183,7 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.OpenAIEmbeddingFunction(
embedder=OpenAIEmbeddingFunction(
api_key="YOUR_API_KEY",
api_base="YOUR_API_BASE_PATH",
api_type="azure",
@@ -153,6 +196,7 @@ my_crew = Crew(
### Using Vertex AI embeddings
```python Code
from chromadb.utils.embedding_functions import GoogleVertexEmbeddingFunction
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
@@ -161,7 +205,7 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.GoogleVertexEmbeddingFunction(
embedder=GoogleVertexEmbeddingFunction(
project_id="YOUR_PROJECT_ID",
region="YOUR_REGION",
api_key="YOUR_API_KEY",
@@ -181,10 +225,32 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.CohereEmbeddingFunction(
api_key=YOUR_API_KEY,
model_name="<model_name>"
)
embedder={
"provider": "cohere",
"config": {
"api_key": "YOUR_API_KEY",
"model_name": "<model_name>"
}
}
)
```
### Using HuggingFace embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "huggingface",
"config": {
"api_url": "<api_url>",
}
}
)
```

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.74.2"
version = "0.76.2"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<=3.13"
@@ -28,6 +28,7 @@ dependencies = [
"uv>=0.4.25",
"tomli-w>=1.1.0",
"chromadb>=0.4.24",
"tomli>=2.0.2",
]
[project.urls]

View File

@@ -14,5 +14,5 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.74.2"
__version__ = "0.76.2"
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]

View File

@@ -1,6 +1,7 @@
import os
from inspect import signature
from typing import Any, List, Optional, Union
import shutil
import subprocess
from typing import Any, List, Literal, Optional, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
@@ -112,6 +113,10 @@ class Agent(BaseAgent):
default=2,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
)
code_execution_mode: Literal["safe", "unsafe"] = Field(
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
@model_validator(mode="after")
def post_init_setup(self):
@@ -173,6 +178,9 @@ class Agent(BaseAgent):
if not self.agent_executor:
self._setup_agent_executor()
if self.allow_code_execution:
self._validate_docker_installation()
return self
def _setup_agent_executor(self):
@@ -308,7 +316,9 @@ class Agent(BaseAgent):
try:
from crewai_tools import CodeInterpreterTool
return [CodeInterpreterTool()]
# Set the unsafe_mode based on the code_execution_mode attribute
unsafe_mode = self.code_execution_mode == "unsafe"
return [CodeInterpreterTool(unsafe_mode=unsafe_mode)]
except ModuleNotFoundError:
self._logger.log(
"info", "Coding tools not available. Install crewai_tools. "
@@ -384,30 +394,49 @@ class Agent(BaseAgent):
def _render_text_description_and_args(self, tools: List[Any]) -> str:
"""Render the tool name, description, and args in plain text.
Output will be in the format of:
Output will be in the format of:
.. code-block:: markdown
.. code-block:: markdown
search: This tool is used for search, args: {"query": {"type": "string"}}
calculator: This tool is used for math, \
args: {"expression": {"type": "string"}}
args: {"expression": {"type": "string"}}
"""
tool_strings = []
for tool in tools:
args_schema = str(tool.model_fields)
if hasattr(tool, "func") and tool.func:
sig = signature(tool.func)
description = (
f"Tool Name: {tool.name}{sig}\nTool Description: {tool.description}"
)
else:
description = (
f"Tool Name: {tool.name}\nTool Description: {tool.description}"
)
args_schema = {
name: {
"description": field.description,
"type": field.annotation.__name__,
}
for name, field in tool.args_schema.model_fields.items()
}
description = (
f"Tool Name: {tool.name}\nTool Description: {tool.description}"
)
tool_strings.append(f"{description}\nTool Arguments: {args_schema}")
return "\n".join(tool_strings)
def _validate_docker_installation(self) -> None:
"""Check if Docker is installed and running."""
if not shutil.which("docker"):
raise RuntimeError(
f"Docker is not installed. Please install Docker to use code execution with agent: {self.role}"
)
try:
subprocess.run(
["docker", "info"],
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
except subprocess.CalledProcessError:
raise RuntimeError(
f"Docker is not running. Please start Docker to use code execution with agent: {self.role}"
)
@staticmethod
def __tools_names(tools) -> str:
return ", ".join([t.name for t in tools])

View File

@@ -0,0 +1,70 @@
from pathlib import Path
import click
from crewai.cli.utils import copy_template
def add_crew_to_flow(crew_name: str) -> None:
"""Add a new crew to the current flow."""
# Check if pyproject.toml exists in the current directory
if not Path("pyproject.toml").exists():
print("This command must be run from the root of a flow project.")
raise click.ClickException(
"This command must be run from the root of a flow project."
)
# Determine the flow folder based on the current directory
flow_folder = Path.cwd()
crews_folder = flow_folder / "src" / flow_folder.name / "crews"
if not crews_folder.exists():
print("Crews folder does not exist in the current flow.")
raise click.ClickException("Crews folder does not exist in the current flow.")
# Create the crew within the flow's crews directory
create_embedded_crew(crew_name, parent_folder=crews_folder)
click.echo(
f"Crew {crew_name} added to the current flow successfully!",
)
def create_embedded_crew(crew_name: str, parent_folder: Path) -> None:
"""Create a new crew within an existing flow project."""
folder_name = crew_name.replace(" ", "_").replace("-", "_").lower()
class_name = crew_name.replace("_", " ").replace("-", " ").title().replace(" ", "")
crew_folder = parent_folder / folder_name
if crew_folder.exists():
if not click.confirm(
f"Crew {folder_name} already exists. Do you want to override it?"
):
click.secho("Operation cancelled.", fg="yellow")
return
click.secho(f"Overriding crew {folder_name}...", fg="green", bold=True)
else:
click.secho(f"Creating crew {folder_name}...", fg="green", bold=True)
crew_folder.mkdir(parents=True)
# Create config and crew.py files
config_folder = crew_folder / "config"
config_folder.mkdir(exist_ok=True)
templates_dir = Path(__file__).parent / "templates" / "crew"
config_template_files = ["agents.yaml", "tasks.yaml"]
crew_template_file = f"{folder_name}_crew.py" # Updated file name
for file_name in config_template_files:
src_file = templates_dir / "config" / file_name
dst_file = config_folder / file_name
copy_template(src_file, dst_file, crew_name, class_name, folder_name)
src_file = templates_dir / "crew.py"
dst_file = crew_folder / crew_template_file
copy_template(src_file, dst_file, crew_name, class_name, folder_name)
click.secho(
f"Crew {crew_name} added to the flow successfully!", fg="green", bold=True
)

View File

@@ -3,6 +3,7 @@ from typing import Optional
import click
import pkg_resources
from crewai.cli.add_crew_to_flow import add_crew_to_flow
from crewai.cli.create_crew import create_crew
from crewai.cli.create_flow import create_flow
from crewai.cli.create_pipeline import create_pipeline
@@ -32,10 +33,12 @@ def crewai():
@crewai.command()
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"]))
@click.argument("name")
def create(type, name):
@click.option("--provider", type=str, help="The provider to use for the crew")
@click.option("--skip_provider", is_flag=True, help="Skip provider validation")
def create(type, name, provider, skip_provider=False):
"""Create a new crew, pipeline, or flow."""
if type == "crew":
create_crew(name)
create_crew(name, provider, skip_provider)
elif type == "pipeline":
create_pipeline(name)
elif type == "flow":
@@ -176,10 +179,16 @@ def test(n_iterations: int, model: str):
evaluate_crew(n_iterations, model)
@crewai.command()
def install():
@crewai.command(
context_settings=dict(
ignore_unknown_options=True,
allow_extra_args=True,
)
)
@click.pass_context
def install(context):
"""Install the Crew."""
install_crew()
install_crew(context.args)
@crewai.command()
@@ -318,5 +327,13 @@ def flow_plot():
plot_flow()
@flow.command(name="add-crew")
@click.argument("crew_name")
def flow_add_crew(crew_name):
"""Add a crew to an existing flow."""
click.echo(f"Adding crew {crew_name} to the flow")
add_crew_to_flow(crew_name)
if __name__ == "__main__":
crewai()

View File

@@ -1,8 +1,16 @@
import sys
from pathlib import Path
import click
from crewai.cli.utils import copy_template, load_env_vars, write_env_file
from crewai.cli.provider import get_provider_data, select_provider, PROVIDERS
from crewai.cli.constants import ENV_VARS
from crewai.cli.provider import (
PROVIDERS,
get_provider_data,
select_model,
select_provider,
)
from crewai.cli.utils import copy_template, load_env_vars, write_env_file
def create_folder_structure(name, parent_folder=None):
@@ -14,11 +22,19 @@ def create_folder_structure(name, parent_folder=None):
else:
folder_path = Path(folder_name)
click.secho(
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
fg="green",
bold=True,
)
if folder_path.exists():
if not click.confirm(
f"Folder {folder_name} already exists. Do you want to override it?"
):
click.secho("Operation cancelled.", fg="yellow")
sys.exit(0)
click.secho(f"Overriding folder {folder_name}...", fg="green", bold=True)
else:
click.secho(
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
fg="green",
bold=True,
)
if not folder_path.exists():
folder_path.mkdir(parents=True)
@@ -27,11 +43,6 @@ def create_folder_structure(name, parent_folder=None):
(folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
else:
click.secho(
f"\tFolder {folder_name} already exists.",
fg="yellow",
)
return folder_path, folder_name, class_name
@@ -70,37 +81,84 @@ def copy_template_files(folder_path, name, class_name, parent_folder):
copy_template(src_file, dst_file, name, class_name, folder_path.name)
def create_crew(name, parent_folder=None):
def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
folder_path, folder_name, class_name = create_folder_structure(name, parent_folder)
env_vars = load_env_vars(folder_path)
if not skip_provider:
if not provider:
provider_models = get_provider_data()
if not provider_models:
return
provider_models = get_provider_data()
if not provider_models:
return
existing_provider = None
for provider, env_keys in ENV_VARS.items():
if any(key in env_vars for key in env_keys):
existing_provider = provider
break
selected_provider = select_provider(provider_models)
if not selected_provider:
return
provider = selected_provider
if existing_provider:
if not click.confirm(
f"Found existing environment variable configuration for {existing_provider.capitalize()}. Do you want to override it?"
):
click.secho("Keeping existing provider configuration.", fg="yellow")
return
# selected_model = select_model(provider, provider_models)
# if not selected_model:
# return
# model = selected_model
provider_models = get_provider_data()
if not provider_models:
return
if provider in PROVIDERS:
api_key_var = ENV_VARS[provider][0]
else:
api_key_var = click.prompt(
f"Enter the environment variable name for your {provider.capitalize()} API key",
type=str,
while True:
selected_provider = select_provider(provider_models)
if selected_provider is None: # User typed 'q'
click.secho("Exiting...", fg="yellow")
sys.exit(0)
if selected_provider: # Valid selection
break
click.secho(
"No provider selected. Please try again or press 'q' to exit.", fg="red"
)
while True:
selected_model = select_model(selected_provider, provider_models)
if selected_model is None: # User typed 'q'
click.secho("Exiting...", fg="yellow")
sys.exit(0)
if selected_model: # Valid selection
break
click.secho(
"No model selected. Please try again or press 'q' to exit.", fg="red"
)
if selected_provider in PROVIDERS:
api_key_var = ENV_VARS[selected_provider][0]
else:
api_key_var = click.prompt(
f"Enter the environment variable name for your {selected_provider.capitalize()} API key",
type=str,
default="",
)
api_key_value = ""
click.echo(
f"Enter your {selected_provider.capitalize()} API key (press Enter to skip): ",
nl=False,
)
try:
api_key_value = input()
except (KeyboardInterrupt, EOFError):
api_key_value = ""
env_vars = {api_key_var: "YOUR_API_KEY_HERE"}
write_env_file(folder_path, env_vars)
if api_key_value.strip():
env_vars = {api_key_var: api_key_value}
write_env_file(folder_path, env_vars)
click.secho("API key saved to .env file", fg="green")
else:
click.secho(
"No API key provided. Skipping .env file creation.", fg="yellow"
)
# env_vars['MODEL'] = model
# click.secho(f"Selected model: {model}", fg="green")
env_vars["MODEL"] = selected_model
click.secho(f"Selected model: {selected_model}", fg="green")
package_dir = Path(__file__).parent
templates_dir = package_dir / "templates" / "crew"

View File

@@ -3,12 +3,13 @@ import subprocess
import click
def install_crew() -> None:
def install_crew(proxy_options: list[str]) -> None:
"""
Install the crew by running the UV command to lock and install.
"""
try:
subprocess.run(["uv", "sync"], check=True, capture_output=False, text=True)
command = ["uv", "sync"] + proxy_options
subprocess.run(command, check=True, capture_output=False, text=True)
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while running the crew: {e}", err=True)

View File

@@ -7,7 +7,7 @@ def plot_flow() -> None:
"""
Plot the flow by running a command in the UV environment.
"""
command = ["uv", "run", "plot_flow"]
command = ["uv", "run", "plot"]
try:
result = subprocess.run(command, capture_output=False, text=True, check=True)

View File

@@ -1,67 +1,91 @@
import json
import time
import requests
from collections import defaultdict
from pathlib import Path
import click
from pathlib import Path
from crewai.cli.constants import PROVIDERS, MODELS, JSON_URL
import requests
from crewai.cli.constants import JSON_URL, MODELS, PROVIDERS
def select_choice(prompt_message, choices):
"""
Presents a list of choices to the user and prompts them to select one.
Args:
- prompt_message (str): The message to display to the user before presenting the choices.
- choices (list): A list of options to present to the user.
Returns:
- str: The selected choice from the list, or None if the operation is aborted or an invalid selection is made.
- str: The selected choice from the list, or None if the user chooses to quit.
"""
provider_models = get_provider_data()
if not provider_models:
return
click.secho(prompt_message, fg="cyan")
for idx, choice in enumerate(choices, start=1):
click.secho(f"{idx}. {choice}", fg="cyan")
try:
selected_index = click.prompt("Enter the number of your choice", type=int) - 1
except click.exceptions.Abort:
click.secho("Operation aborted by the user.", fg="red")
return None
if not (0 <= selected_index < len(choices)):
click.secho("Invalid selection.", fg="red")
return None
return choices[selected_index]
click.secho("q. Quit", fg="cyan")
while True:
choice = click.prompt(
"Enter the number of your choice or 'q' to quit", type=str
)
if choice.lower() == "q":
return None
try:
selected_index = int(choice) - 1
if 0 <= selected_index < len(choices):
return choices[selected_index]
except ValueError:
pass
click.secho(
"Invalid selection. Please select a number between 1 and 6 or 'q' to quit.",
fg="red",
)
def select_provider(provider_models):
"""
Presents a list of providers to the user and prompts them to select one.
Args:
- provider_models (dict): A dictionary of provider models.
Returns:
- str: The selected provider, or None if the operation is aborted or an invalid selection is made.
- str: The selected provider
- None: If user explicitly quits
"""
predefined_providers = [p.lower() for p in PROVIDERS]
all_providers = sorted(set(predefined_providers + list(provider_models.keys())))
provider = select_choice("Select a provider to set up:", predefined_providers + ['other'])
if not provider:
provider = select_choice(
"Select a provider to set up:", predefined_providers + ["other"]
)
if provider is None: # User typed 'q'
return None
provider = provider.lower()
if provider == 'other':
if provider == "other":
provider = select_choice("Select a provider from the full list:", all_providers)
if not provider:
if provider is None: # User typed 'q'
return None
return provider
return provider.lower() if provider else False
def select_model(provider, provider_models):
"""
Presents a list of models for a given provider to the user and prompts them to select one.
Args:
- provider (str): The provider for which to select a model.
- provider_models (dict): A dictionary of provider models.
Returns:
- str: The selected model, or None if the operation is aborted or an invalid selection is made.
"""
@@ -76,37 +100,49 @@ def select_model(provider, provider_models):
click.secho(f"No models available for provider '{provider}'.", fg="red")
return None
selected_model = select_choice(f"Select a model to use for {provider.capitalize()}:", available_models)
selected_model = select_choice(
f"Select a model to use for {provider.capitalize()}:", available_models
)
return selected_model
def load_provider_data(cache_file, cache_expiry):
"""
Loads provider data from a cache file if it exists and is not expired. If the cache is expired or corrupted, it fetches the data from the web.
Args:
- cache_file (Path): The path to the cache file.
- cache_expiry (int): The cache expiry time in seconds.
Returns:
- dict or None: The loaded provider data or None if the operation fails.
"""
current_time = time.time()
if cache_file.exists() and (current_time - cache_file.stat().st_mtime) < cache_expiry:
if (
cache_file.exists()
and (current_time - cache_file.stat().st_mtime) < cache_expiry
):
data = read_cache_file(cache_file)
if data:
return data
click.secho("Cache is corrupted. Fetching provider data from the web...", fg="yellow")
click.secho(
"Cache is corrupted. Fetching provider data from the web...", fg="yellow"
)
else:
click.secho("Cache expired or not found. Fetching provider data from the web...", fg="cyan")
click.secho(
"Cache expired or not found. Fetching provider data from the web...",
fg="cyan",
)
return fetch_provider_data(cache_file)
def read_cache_file(cache_file):
"""
Reads and returns the JSON content from a cache file. Returns None if the file contains invalid JSON.
Args:
- cache_file (Path): The path to the cache file.
Returns:
- dict or None: The JSON content of the cache file or None if the JSON is invalid.
"""
@@ -116,13 +152,14 @@ def read_cache_file(cache_file):
except json.JSONDecodeError:
return None
def fetch_provider_data(cache_file):
"""
Fetches provider data from a specified URL and caches it to a file.
Args:
- cache_file (Path): The path to the cache file.
Returns:
- dict or None: The fetched provider data or None if the operation fails.
"""
@@ -139,38 +176,42 @@ def fetch_provider_data(cache_file):
click.secho("Error parsing provider data. Invalid JSON format.", fg="red")
return None
def download_data(response):
"""
Downloads data from a given HTTP response and returns the JSON content.
Args:
- response (requests.Response): The HTTP response object.
Returns:
- dict: The JSON content of the response.
"""
total_size = int(response.headers.get('content-length', 0))
total_size = int(response.headers.get("content-length", 0))
block_size = 8192
data_chunks = []
with click.progressbar(length=total_size, label='Downloading', show_pos=True) as progress_bar:
with click.progressbar(
length=total_size, label="Downloading", show_pos=True
) as progress_bar:
for chunk in response.iter_content(block_size):
if chunk:
data_chunks.append(chunk)
progress_bar.update(len(chunk))
data_content = b''.join(data_chunks)
return json.loads(data_content.decode('utf-8'))
data_content = b"".join(data_chunks)
return json.loads(data_content.decode("utf-8"))
def get_provider_data():
"""
Retrieves provider data from a cache file, filters out models based on provider criteria, and returns a dictionary of providers mapped to their models.
Returns:
- dict or None: A dictionary of providers mapped to their models or None if the operation fails.
"""
cache_dir = Path.home() / '.crewai'
cache_dir = Path.home() / ".crewai"
cache_dir.mkdir(exist_ok=True)
cache_file = cache_dir / 'provider_cache.json'
cache_expiry = 24 * 3600
cache_file = cache_dir / "provider_cache.json"
cache_expiry = 24 * 3600
data = load_provider_data(cache_file, cache_expiry)
if not data:
@@ -179,8 +220,8 @@ def get_provider_data():
provider_models = defaultdict(list)
for model_name, properties in data.items():
provider = properties.get("litellm_provider", "").strip().lower()
if 'http' in provider or provider == 'other':
if "http" in provider or provider == "other":
continue
if provider:
provider_models[provider].append(model_name)
return provider_models
return provider_models

View File

@@ -1,10 +1,9 @@
import subprocess
import click
import tomllib
from packaging import version
from crewai.cli.utils import get_crewai_version
from crewai.cli.utils import get_crewai_version, read_toml
def run_crew() -> None:
@@ -15,10 +14,9 @@ def run_crew() -> None:
crewai_version = get_crewai_version()
min_required_version = "0.71.0"
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
pyproject_data = read_toml()
if data.get("tool", {}).get("poetry") and (
if pyproject_data.get("tool", {}).get("poetry") and (
version.parse(crewai_version) < version.parse(min_required_version)
):
click.secho(
@@ -35,10 +33,7 @@ def run_crew() -> None:
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True, nl=True)
with open("pyproject.toml", "rb") as f:
data = tomllib.load(f)
if data.get("tool", {}).get("poetry"):
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry, please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.74.2,<1.0.0"
"crewai[tools]>=0.76.2,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.74.2,<1.0.0",
"crewai[tools]>=0.76.2,<1.0.0",
]
[project.scripts]

View File

@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = ">=0.74.2,<1.0.0" }
crewai = { extras = ["tools"], version = ">=0.76.2,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.74.2,<1.0.0"
"crewai[tools]>=0.76.2,<1.0.0"
]
[project.scripts]

View File

@@ -5,6 +5,6 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.74.2"
"crewai[tools]>=0.76.2"
]

View File

@@ -2,7 +2,8 @@ import os
import shutil
import tomli_w
import tomllib
from crewai.cli.utils import read_toml
def update_crew() -> None:
@@ -18,10 +19,9 @@ def migrate_pyproject(input_file, output_file):
And it will be used to migrate the pyproject.toml to the new format when uv is used.
When the time comes that uv supports the new format, this function will be deprecated.
"""
poetry_data = {}
# Read the input pyproject.toml
with open(input_file, "rb") as f:
pyproject = tomllib.load(f)
pyproject_data = read_toml()
# Initialize the new project structure
new_pyproject = {
@@ -30,30 +30,30 @@ def migrate_pyproject(input_file, output_file):
}
# Migrate project metadata
if "tool" in pyproject and "poetry" in pyproject["tool"]:
poetry = pyproject["tool"]["poetry"]
new_pyproject["project"]["name"] = poetry.get("name")
new_pyproject["project"]["version"] = poetry.get("version")
new_pyproject["project"]["description"] = poetry.get("description")
if "tool" in pyproject_data and "poetry" in pyproject_data["tool"]:
poetry_data = pyproject_data["tool"]["poetry"]
new_pyproject["project"]["name"] = poetry_data.get("name")
new_pyproject["project"]["version"] = poetry_data.get("version")
new_pyproject["project"]["description"] = poetry_data.get("description")
new_pyproject["project"]["authors"] = [
{
"name": author.split("<")[0].strip(),
"email": author.split("<")[1].strip(">").strip(),
}
for author in poetry.get("authors", [])
for author in poetry_data.get("authors", [])
]
new_pyproject["project"]["requires-python"] = poetry.get("python")
new_pyproject["project"]["requires-python"] = poetry_data.get("python")
else:
# If it's already in the new format, just copy the project section
new_pyproject["project"] = pyproject.get("project", {})
new_pyproject["project"] = pyproject_data.get("project", {})
# Migrate or copy dependencies
if "dependencies" in new_pyproject["project"]:
# If dependencies are already in the new format, keep them as is
pass
elif "dependencies" in poetry:
elif poetry_data and "dependencies" in poetry_data:
new_pyproject["project"]["dependencies"] = []
for dep, version in poetry["dependencies"].items():
for dep, version in poetry_data["dependencies"].items():
if isinstance(version, dict): # Handle extras
extras = ",".join(version.get("extras", []))
new_dep = f"{dep}[{extras}]"
@@ -67,10 +67,10 @@ def migrate_pyproject(input_file, output_file):
new_pyproject["project"]["dependencies"].append(new_dep)
# Migrate or copy scripts
if "scripts" in poetry:
new_pyproject["project"]["scripts"] = poetry["scripts"]
elif "scripts" in pyproject.get("project", {}):
new_pyproject["project"]["scripts"] = pyproject["project"]["scripts"]
if poetry_data and "scripts" in poetry_data:
new_pyproject["project"]["scripts"] = poetry_data["scripts"]
elif pyproject_data.get("project", {}) and "scripts" in pyproject_data["project"]:
new_pyproject["project"]["scripts"] = pyproject_data["project"]["scripts"]
else:
new_pyproject["project"]["scripts"] = {}
@@ -87,8 +87,8 @@ def migrate_pyproject(input_file, output_file):
new_pyproject["project"]["scripts"]["run_crew"] = f"{module_name}.main:run"
# Migrate optional dependencies
if "extras" in poetry:
new_pyproject["project"]["optional-dependencies"] = poetry["extras"]
if poetry_data and "extras" in poetry_data:
new_pyproject["project"]["optional-dependencies"] = poetry_data["extras"]
# Backup the old pyproject.toml
backup_file = "pyproject-old.toml"

View File

@@ -6,6 +6,7 @@ from functools import reduce
from typing import Any, Dict, List
import click
import tomli
from rich.console import Console
from crewai.cli.authentication.utils import TokenManager
@@ -54,6 +55,13 @@ def simple_toml_parser(content):
return result
def read_toml(file_path: str = "pyproject.toml"):
"""Read the content of a TOML file and return it as a dictionary."""
with open(file_path, "rb") as f:
toml_dict = tomli.load(f)
return toml_dict
def parse_toml(content):
if sys.version_info >= (3, 11):
return tomllib.loads(content)

View File

@@ -435,15 +435,16 @@ class Crew(BaseModel):
self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = {}
) -> None:
"""Trains the crew for a given number of iterations."""
self._setup_for_training(filename)
train_crew = self.copy()
train_crew._setup_for_training(filename)
for n_iteration in range(n_iterations):
self._train_iteration = n_iteration
self.kickoff(inputs=inputs)
train_crew._train_iteration = n_iteration
train_crew.kickoff(inputs=inputs)
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
for agent in self.agents:
for agent in train_crew.agents:
result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id)
)
@@ -987,17 +988,19 @@ class Crew(BaseModel):
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
self._test_execution_span = self._telemetry.test_execution_span(
self,
test_crew = self.copy()
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(self, openai_model_name) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
self.kickoff(inputs=inputs)
test_crew.kickoff(inputs=inputs)
evaluator.print_crew_evaluation_result()

View File

@@ -16,7 +16,7 @@ class EntityMemory(Memory):
if storage
else RAGStorage(
type="entities",
allow_reset=False,
allow_reset=True,
embedder_config=embedder_config,
crew=crew,
)

View File

@@ -8,6 +8,9 @@ from typing import Any, Dict, List, Optional
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities.paths import db_storage_path
from chromadb.api import ClientAPI
from chromadb.api.types import validate_embedding_function
from chromadb import Documents, EmbeddingFunction, Embeddings
from typing import cast
@contextlib.contextmanager
@@ -41,16 +44,93 @@ class RAGStorage(BaseRAGStorage):
self.agents = agents
self.type = type
self.embedder_config = embedder_config or self._create_embedding_function()
self.allow_reset = allow_reset
self._initialize_app()
def _set_embedder_config(self):
import chromadb.utils.embedding_functions as embedding_functions
if self.embedder_config is None:
self.embedder_config = self._create_default_embedding_function()
if isinstance(self.embedder_config, dict):
provider = self.embedder_config.get("provider")
config = self.embedder_config.get("config", {})
model_name = config.get("model")
if provider == "openai":
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
model_name=model_name,
)
elif provider == "azure":
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
api_key=config.get("api_key"),
api_base=config.get("api_base"),
api_type=config.get("api_type", "azure"),
api_version=config.get("api_version"),
model_name=model_name,
)
elif provider == "ollama":
from openai import OpenAI
class OllamaEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
client = OpenAI(
base_url="http://localhost:11434/v1",
api_key=config.get("api_key", "ollama"),
)
try:
response = client.embeddings.create(
input=input, model=model_name
)
embeddings = [item.embedding for item in response.data]
return cast(Embeddings, embeddings)
except Exception as e:
raise e
self.embedder_config = OllamaEmbeddingFunction()
elif provider == "vertexai":
self.embedder_config = (
embedding_functions.GoogleVertexEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
)
elif provider == "google":
self.embedder_config = (
embedding_functions.GoogleGenerativeAiEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
)
elif provider == "cohere":
self.embedder_config = embedding_functions.CohereEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
elif provider == "huggingface":
self.embedder_config = embedding_functions.HuggingFaceEmbeddingServer(
url=config.get("api_url"),
)
else:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: [openai, azure, ollama, vertexai, google, cohere, huggingface]"
)
else:
validate_embedding_function(self.embedder_config) # type: ignore # used for validating embedder_config if defined a embedding function/class
self.embedder_config = self.embedder_config
def _initialize_app(self):
import chromadb
from chromadb.config import Settings
self._set_embedder_config()
chroma_client = chromadb.PersistentClient(
path=f"{db_storage_path()}/{self.type}/{self.agents}"
path=f"{db_storage_path()}/{self.type}/{self.agents}",
settings=Settings(allow_reset=self.allow_reset),
)
self.app = chroma_client
try:
@@ -122,11 +202,15 @@ class RAGStorage(BaseRAGStorage):
if self.app:
self.app.reset()
except Exception as e:
raise Exception(
f"An error occurred while resetting the {self.type} memory: {e}"
)
if "attempt to write a readonly database" in str(e):
# Ignore this specific error
pass
else:
raise Exception(
f"An error occurred while resetting the {self.type} memory: {e}"
)
def _create_embedding_function(self):
def _create_default_embedding_function(self):
import chromadb.utils.embedding_functions as embedding_functions
return embedding_functions.OpenAIEmbeddingFunction(

View File

@@ -1,7 +1,9 @@
from pathlib import Path
from unittest import mock
import pytest
from click.testing import CliRunner
from crewai.cli.cli import (
deploy_create,
deploy_list,
@@ -9,6 +11,7 @@ from crewai.cli.cli import (
deploy_push,
deploy_remove,
deply_status,
flow_add_crew,
reset_memories,
signup,
test,
@@ -277,3 +280,42 @@ def test_deploy_remove_no_uuid(command, runner):
assert result.exit_code == 0
mock_deploy.remove_crew.assert_called_once_with(uuid=None)
@mock.patch("crewai.cli.add_crew_to_flow.create_embedded_crew")
@mock.patch("pathlib.Path.exists", return_value=True) # Mock the existence check
def test_flow_add_crew(mock_path_exists, mock_create_embedded_crew, runner):
crew_name = "new_crew"
result = runner.invoke(flow_add_crew, [crew_name])
# Log the output for debugging
print(result.output)
assert result.exit_code == 0, f"Command failed with output: {result.output}"
assert f"Adding crew {crew_name} to the flow" in result.output
# Verify that create_embedded_crew was called with the correct arguments
mock_create_embedded_crew.assert_called_once()
call_args, call_kwargs = mock_create_embedded_crew.call_args
assert call_args[0] == crew_name
assert "parent_folder" in call_kwargs
assert isinstance(call_kwargs["parent_folder"], Path)
def test_add_crew_to_flow_not_in_root(runner):
# Simulate not being in the root of a flow project
with mock.patch("pathlib.Path.exists", autospec=True) as mock_exists:
# Mock Path.exists to return False when checking for pyproject.toml
def exists_side_effect(self):
if self.name == "pyproject.toml":
return False # Simulate that pyproject.toml does not exist
return True # All other paths exist
mock_exists.side_effect = exists_side_effect
result = runner.invoke(flow_add_crew, ["new_crew"])
assert result.exit_code != 0
assert "This command must be run from the root of a flow project." in str(
result.output
)

View File

@@ -9,6 +9,7 @@ from unittest.mock import MagicMock, patch
import instructor
import pydantic_core
import pytest
from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
@@ -497,6 +498,7 @@ def test_cache_hitting_between_agents():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_api_calls_throttling(capsys):
from unittest.mock import patch
from crewai_tools import tool
@tool
@@ -779,11 +781,14 @@ def test_async_task_execution_call_count():
list_important_history.output = mock_task_output
write_article.output = mock_task_output
with patch.object(
Task, "execute_sync", return_value=mock_task_output
) as mock_execute_sync, patch.object(
Task, "execute_async", return_value=mock_future
) as mock_execute_async:
with (
patch.object(
Task, "execute_sync", return_value=mock_task_output
) as mock_execute_sync,
patch.object(
Task, "execute_async", return_value=mock_future
) as mock_execute_async,
):
crew.kickoff()
assert mock_execute_async.call_count == 2
@@ -1105,6 +1110,7 @@ def test_dont_set_agents_step_callback_if_already_set():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_function_calling_llm():
from unittest.mock import patch
from crewai_tools import tool
llm = "gpt-4o"
@@ -1448,52 +1454,6 @@ def test_crew_does_not_interpolate_without_inputs():
interpolate_task_inputs.assert_not_called()
# def test_crew_partial_inputs():
# agent = Agent(
# role="{topic} Researcher",
# goal="Express hot takes on {topic}.",
# backstory="You have a lot of experience with {topic}.",
# )
# task = Task(
# description="Give me an analysis around {topic}.",
# expected_output="{points} bullet points about {topic}.",
# )
# crew = Crew(agents=[agent], tasks=[task], inputs={"topic": "AI"})
# inputs = {"topic": "AI"}
# crew._interpolate_inputs(inputs=inputs) # Manual call for now
# assert crew.tasks[0].description == "Give me an analysis around AI."
# assert crew.tasks[0].expected_output == "{points} bullet points about AI."
# assert crew.agents[0].role == "AI Researcher"
# assert crew.agents[0].goal == "Express hot takes on AI."
# assert crew.agents[0].backstory == "You have a lot of experience with AI."
# def test_crew_invalid_inputs():
# agent = Agent(
# role="{topic} Researcher",
# goal="Express hot takes on {topic}.",
# backstory="You have a lot of experience with {topic}.",
# )
# task = Task(
# description="Give me an analysis around {topic}.",
# expected_output="{points} bullet points about {topic}.",
# )
# crew = Crew(agents=[agent], tasks=[task], inputs={"subject": "AI"})
# inputs = {"subject": "AI"}
# crew._interpolate_inputs(inputs=inputs) # Manual call for now
# assert crew.tasks[0].description == "Give me an analysis around {topic}."
# assert crew.tasks[0].expected_output == "{points} bullet points about {topic}."
# assert crew.agents[0].role == "{topic} Researcher"
# assert crew.agents[0].goal == "Express hot takes on {topic}."
# assert crew.agents[0].backstory == "You have a lot of experience with {topic}."
def test_task_callback_on_crew():
from unittest.mock import MagicMock, patch
@@ -1770,7 +1730,10 @@ def test_manager_agent_with_tools_raises_exception():
@patch("crewai.crew.Crew.kickoff")
@patch("crewai.crew.CrewTrainingHandler")
@patch("crewai.crew.TaskEvaluator")
def test_crew_train_success(task_evaluator, crew_training_handler, kickoff):
@patch("crewai.crew.Crew.copy")
def test_crew_train_success(
copy_mock, task_evaluator, crew_training_handler, kickoff_mock
):
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
@@ -1781,9 +1744,19 @@ def test_crew_train_success(task_evaluator, crew_training_handler, kickoff):
agents=[researcher, writer],
tasks=[task],
)
# Create a mock for the copied crew
copy_mock.return_value = crew
crew.train(
n_iterations=2, inputs={"topic": "AI"}, filename="trained_agents_data.pkl"
)
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
task_evaluator.assert_has_calls(
[
mock.call(researcher),
@@ -1822,10 +1795,6 @@ def test_crew_train_success(task_evaluator, crew_training_handler, kickoff):
]
)
kickoff.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
def test_crew_train_error():
task = Task(
@@ -1840,7 +1809,7 @@ def test_crew_train_error():
)
with pytest.raises(TypeError) as e:
crew.train()
crew.train() # type: ignore purposefully throwing err
assert "train() missing 1 required positional argument: 'n_iterations'" in str(
e
)
@@ -2536,8 +2505,9 @@ def test_conditional_should_execute():
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_function(mock_kickoff, crew_evaluator):
def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
@@ -2548,11 +2518,15 @@ def test_crew_testing_function(mock_kickoff, crew_evaluator):
agents=[researcher],
tasks=[task],
)
# Create a mock for the copied crew
copy_mock.return_value = crew
n_iterations = 2
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
assert len(mock_kickoff.mock_calls) == n_iterations
mock_kickoff.assert_has_calls(
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)

1906
uv.lock generated

File diff suppressed because it is too large Load Diff