Compare commits

...

3 Commits

Author SHA1 Message Date
João Moura
b8a3c29745 preparing new verison 2024-10-23 05:34:34 -03:00
Brandon Hancock (bhancock_ai)
9cd4ff05c9 use copy to split testing and training on crews (#1491)
* use copy to split testing and training on crews

* make tests handle new copy functionality on train and test

* fix last test

* fix test
2024-10-22 21:31:44 -04:00
Lorenze Jay
4687779702 ensure original embedding config works (#1476)
* ensure original embedding config works

* some fixes

* raise error on unsupported provider

* WIP: brandons notes

* fixes

* rm prints

* fixed docs

* fixed run types

* updates to add more docs and correct imports with huggingface embedding server enabled

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-10-22 12:30:30 -07:00
15 changed files with 231 additions and 104 deletions

View File

@@ -105,9 +105,48 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
embedder={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
}
)
```
Alternatively, you can directly pass the OpenAIEmbeddingFunction to the embedder parameter.
Example:
```python Code
from crewai import Crew, Agent, Task, Process
from chromadb.utils.embedding_functions.openai_embedding_function import OpenAIEmbeddingFunction
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder=OpenAIEmbeddingFunction(api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"),
)
```
### Using Ollama embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "ollama",
"config": {
"model": "mxbai-embed-large"
}
}
)
```
@@ -122,10 +161,13 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"),
model_name="text-embedding-ada-002"
)
embedder={
"provider": "google",
"config": {
"api_key": "<YOUR_API_KEY>",
"model_name": "<model_name>"
}
}
)
```
@@ -181,10 +223,32 @@ my_crew = Crew(
process=Process.sequential,
memory=True,
verbose=True,
embedder=embedding_functions.CohereEmbeddingFunction(
api_key=YOUR_API_KEY,
model_name="<model_name>"
)
embedder={
"provider": "cohere",
"config": {
"api_key": "YOUR_API_KEY",
"model_name": "<model_name>"
}
}
)
```
### Using HuggingFace embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "huggingface",
"config": {
"api_url": "<api_url>",
}
}
)
```

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.74.2"
version = "0.75.1"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<=3.13"

View File

@@ -14,5 +14,5 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.74.2"
__version__ = "0.75.1"
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]

View File

@@ -32,10 +32,11 @@ def crewai():
@crewai.command()
@click.argument("type", type=click.Choice(["crew", "pipeline", "flow"]))
@click.argument("name")
def create(type, name):
@click.option("--provider", type=str, help="The provider to use for the crew")
def create(type, name, provider):
"""Create a new crew, pipeline, or flow."""
if type == "crew":
create_crew(name)
create_crew(name, provider)
elif type == "pipeline":
create_pipeline(name)
elif type == "flow":

View File

@@ -70,18 +70,19 @@ def copy_template_files(folder_path, name, class_name, parent_folder):
copy_template(src_file, dst_file, name, class_name, folder_path.name)
def create_crew(name, parent_folder=None):
def create_crew(name, provider=None, parent_folder=None):
folder_path, folder_name, class_name = create_folder_structure(name, parent_folder)
env_vars = load_env_vars(folder_path)
provider_models = get_provider_data()
if not provider_models:
return
if not provider:
provider_models = get_provider_data()
if not provider_models:
return
selected_provider = select_provider(provider_models)
if not selected_provider:
return
provider = selected_provider
selected_provider = select_provider(provider_models)
if not selected_provider:
return
provider = selected_provider
# selected_model = select_model(provider, provider_models)
# if not selected_model:

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.74.2,<1.0.0"
"crewai[tools]>=0.75.1,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.74.2,<1.0.0",
"crewai[tools]>=0.75.1,<1.0.0",
]
[project.scripts]

View File

@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = ">=0.74.2,<1.0.0" }
crewai = { extras = ["tools"], version = ">=0.75.1,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.74.2,<1.0.0"
"crewai[tools]>=0.75.1,<1.0.0"
]
[project.scripts]

View File

@@ -5,6 +5,6 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.74.2"
"crewai[tools]>=0.75.1"
]

View File

@@ -435,15 +435,16 @@ class Crew(BaseModel):
self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = {}
) -> None:
"""Trains the crew for a given number of iterations."""
self._setup_for_training(filename)
train_crew = self.copy()
train_crew._setup_for_training(filename)
for n_iteration in range(n_iterations):
self._train_iteration = n_iteration
self.kickoff(inputs=inputs)
train_crew._train_iteration = n_iteration
train_crew.kickoff(inputs=inputs)
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
for agent in self.agents:
for agent in train_crew.agents:
result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id)
)
@@ -987,17 +988,19 @@ class Crew(BaseModel):
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
self._test_execution_span = self._telemetry.test_execution_span(
self,
test_crew = self.copy()
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(self, openai_model_name) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
self.kickoff(inputs=inputs)
test_crew.kickoff(inputs=inputs)
evaluator.print_crew_evaluation_result()

View File

@@ -16,7 +16,7 @@ class EntityMemory(Memory):
if storage
else RAGStorage(
type="entities",
allow_reset=False,
allow_reset=True,
embedder_config=embedder_config,
crew=crew,
)

View File

@@ -8,6 +8,9 @@ from typing import Any, Dict, List, Optional
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities.paths import db_storage_path
from chromadb.api import ClientAPI
from chromadb.api.types import validate_embedding_function
from chromadb import Documents, EmbeddingFunction, Embeddings
from typing import cast
@contextlib.contextmanager
@@ -41,16 +44,93 @@ class RAGStorage(BaseRAGStorage):
self.agents = agents
self.type = type
self.embedder_config = embedder_config or self._create_embedding_function()
self.allow_reset = allow_reset
self._initialize_app()
def _set_embedder_config(self):
import chromadb.utils.embedding_functions as embedding_functions
if self.embedder_config is None:
self.embedder_config = self._create_default_embedding_function()
if isinstance(self.embedder_config, dict):
provider = self.embedder_config.get("provider")
config = self.embedder_config.get("config", {})
model_name = config.get("model")
if provider == "openai":
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
model_name=model_name,
)
elif provider == "azure":
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
api_key=config.get("api_key"),
api_base=config.get("api_base"),
api_type=config.get("api_type", "azure"),
api_version=config.get("api_version"),
model_name=model_name,
)
elif provider == "ollama":
from openai import OpenAI
class OllamaEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
client = OpenAI(
base_url="http://localhost:11434/v1",
api_key=config.get("api_key", "ollama"),
)
try:
response = client.embeddings.create(
input=input, model=model_name
)
embeddings = [item.embedding for item in response.data]
return cast(Embeddings, embeddings)
except Exception as e:
raise e
self.embedder_config = OllamaEmbeddingFunction()
elif provider == "vertexai":
self.embedder_config = (
embedding_functions.GoogleVertexEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
)
elif provider == "google":
self.embedder_config = (
embedding_functions.GoogleGenerativeAiEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
)
elif provider == "cohere":
self.embedder_config = embedding_functions.CohereEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
elif provider == "huggingface":
self.embedder_config = embedding_functions.HuggingFaceEmbeddingServer(
url=config.get("api_url"),
)
else:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: [openai, azure, ollama, vertexai, google, cohere, huggingface]"
)
else:
validate_embedding_function(self.embedder_config) # type: ignore # used for validating embedder_config if defined a embedding function/class
self.embedder_config = self.embedder_config
def _initialize_app(self):
import chromadb
from chromadb.config import Settings
self._set_embedder_config()
chroma_client = chromadb.PersistentClient(
path=f"{db_storage_path()}/{self.type}/{self.agents}"
path=f"{db_storage_path()}/{self.type}/{self.agents}",
settings=Settings(allow_reset=self.allow_reset),
)
self.app = chroma_client
try:
@@ -122,11 +202,15 @@ class RAGStorage(BaseRAGStorage):
if self.app:
self.app.reset()
except Exception as e:
raise Exception(
f"An error occurred while resetting the {self.type} memory: {e}"
)
if "attempt to write a readonly database" in str(e):
# Ignore this specific error
pass
else:
raise Exception(
f"An error occurred while resetting the {self.type} memory: {e}"
)
def _create_embedding_function(self):
def _create_default_embedding_function(self):
import chromadb.utils.embedding_functions as embedding_functions
return embedding_functions.OpenAIEmbeddingFunction(

View File

@@ -9,6 +9,7 @@ from unittest.mock import MagicMock, patch
import instructor
import pydantic_core
import pytest
from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
@@ -497,6 +498,7 @@ def test_cache_hitting_between_agents():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_api_calls_throttling(capsys):
from unittest.mock import patch
from crewai_tools import tool
@tool
@@ -779,11 +781,14 @@ def test_async_task_execution_call_count():
list_important_history.output = mock_task_output
write_article.output = mock_task_output
with patch.object(
Task, "execute_sync", return_value=mock_task_output
) as mock_execute_sync, patch.object(
Task, "execute_async", return_value=mock_future
) as mock_execute_async:
with (
patch.object(
Task, "execute_sync", return_value=mock_task_output
) as mock_execute_sync,
patch.object(
Task, "execute_async", return_value=mock_future
) as mock_execute_async,
):
crew.kickoff()
assert mock_execute_async.call_count == 2
@@ -1105,6 +1110,7 @@ def test_dont_set_agents_step_callback_if_already_set():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_function_calling_llm():
from unittest.mock import patch
from crewai_tools import tool
llm = "gpt-4o"
@@ -1448,52 +1454,6 @@ def test_crew_does_not_interpolate_without_inputs():
interpolate_task_inputs.assert_not_called()
# def test_crew_partial_inputs():
# agent = Agent(
# role="{topic} Researcher",
# goal="Express hot takes on {topic}.",
# backstory="You have a lot of experience with {topic}.",
# )
# task = Task(
# description="Give me an analysis around {topic}.",
# expected_output="{points} bullet points about {topic}.",
# )
# crew = Crew(agents=[agent], tasks=[task], inputs={"topic": "AI"})
# inputs = {"topic": "AI"}
# crew._interpolate_inputs(inputs=inputs) # Manual call for now
# assert crew.tasks[0].description == "Give me an analysis around AI."
# assert crew.tasks[0].expected_output == "{points} bullet points about AI."
# assert crew.agents[0].role == "AI Researcher"
# assert crew.agents[0].goal == "Express hot takes on AI."
# assert crew.agents[0].backstory == "You have a lot of experience with AI."
# def test_crew_invalid_inputs():
# agent = Agent(
# role="{topic} Researcher",
# goal="Express hot takes on {topic}.",
# backstory="You have a lot of experience with {topic}.",
# )
# task = Task(
# description="Give me an analysis around {topic}.",
# expected_output="{points} bullet points about {topic}.",
# )
# crew = Crew(agents=[agent], tasks=[task], inputs={"subject": "AI"})
# inputs = {"subject": "AI"}
# crew._interpolate_inputs(inputs=inputs) # Manual call for now
# assert crew.tasks[0].description == "Give me an analysis around {topic}."
# assert crew.tasks[0].expected_output == "{points} bullet points about {topic}."
# assert crew.agents[0].role == "{topic} Researcher"
# assert crew.agents[0].goal == "Express hot takes on {topic}."
# assert crew.agents[0].backstory == "You have a lot of experience with {topic}."
def test_task_callback_on_crew():
from unittest.mock import MagicMock, patch
@@ -1770,7 +1730,10 @@ def test_manager_agent_with_tools_raises_exception():
@patch("crewai.crew.Crew.kickoff")
@patch("crewai.crew.CrewTrainingHandler")
@patch("crewai.crew.TaskEvaluator")
def test_crew_train_success(task_evaluator, crew_training_handler, kickoff):
@patch("crewai.crew.Crew.copy")
def test_crew_train_success(
copy_mock, task_evaluator, crew_training_handler, kickoff_mock
):
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
@@ -1781,9 +1744,19 @@ def test_crew_train_success(task_evaluator, crew_training_handler, kickoff):
agents=[researcher, writer],
tasks=[task],
)
# Create a mock for the copied crew
copy_mock.return_value = crew
crew.train(
n_iterations=2, inputs={"topic": "AI"}, filename="trained_agents_data.pkl"
)
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
task_evaluator.assert_has_calls(
[
mock.call(researcher),
@@ -1822,10 +1795,6 @@ def test_crew_train_success(task_evaluator, crew_training_handler, kickoff):
]
)
kickoff.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
def test_crew_train_error():
task = Task(
@@ -1840,7 +1809,7 @@ def test_crew_train_error():
)
with pytest.raises(TypeError) as e:
crew.train()
crew.train() # type: ignore purposefully throwing err
assert "train() missing 1 required positional argument: 'n_iterations'" in str(
e
)
@@ -2536,8 +2505,9 @@ def test_conditional_should_execute():
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_function(mock_kickoff, crew_evaluator):
def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
@@ -2548,11 +2518,15 @@ def test_crew_testing_function(mock_kickoff, crew_evaluator):
agents=[researcher],
tasks=[task],
)
# Create a mock for the copied crew
copy_mock.return_value = crew
n_iterations = 2
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
assert len(mock_kickoff.mock_calls) == n_iterations
mock_kickoff.assert_has_calls(
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)

2
uv.lock generated
View File

@@ -627,7 +627,7 @@ wheels = [
[[package]]
name = "crewai"
version = "0.74.2"
version = "0.75.1"
source = { editable = "." }
dependencies = [
{ name = "appdirs" },