Compare commits

...

10 Commits

Author SHA1 Message Date
Brandon Hancock (bhancock_ai)
8c507288be Merge branch 'main' into feat/add-event-emitters-to-flows 2024-12-11 10:14:21 -05:00
Paul Cowgill
da9220fa81 Remove manager_callbacks reference (#1741) 2024-12-11 10:13:57 -05:00
Brandon Hancock (bhancock_ai)
b98cead08d Merge branch 'main' into feat/add-event-emitters-to-flows 2024-12-10 16:28:44 -05:00
Brandon Hancock
d4801d2551 Fix linter 2024-12-10 16:27:12 -05:00
Brandon Hancock
d5e06cbda6 Clean up 2024-12-10 16:25:32 -05:00
Brandon Hancock
bc3fd789d9 include event emitter in flows 2024-12-10 16:22:01 -05:00
Archkon
da4f356fab fix:typo error (#1738)
* Update base_agent_tools.py

typo error

* Update main.py

typo error

* Update base_file_knowledge_source.py

typo error

* Update test_main.py

typo error

* Update en.json

* Update prompts.json

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-12-10 11:18:45 -05:00
Brandon Hancock (bhancock_ai)
d932b20c6e copy googles changes. Fix tests. Improve LLM file (#1737)
* copy googles changes. Fix tests. Improve LLM file

* Fix type issue
2024-12-10 11:14:37 -05:00
Brandon Hancock (bhancock_ai)
2f9a2afd9e Update pyproject.toml and uv.lock to drop crewai-tools as a default requirement (#1711) 2024-12-09 14:17:46 -05:00
Brandon Hancock (bhancock_ai)
c1df7c410e Bugfix/restrict python version compatibility (#1736)
* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip

* drop pipeline
2024-12-09 14:07:57 -05:00
15 changed files with 141 additions and 44 deletions

View File

@@ -32,7 +32,6 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
| **Output Log File** _(optional)_ | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |

View File

@@ -29,7 +29,7 @@ Large Language Models (LLMs) are the core intelligence behind CrewAI agents. The
## Available Models and Their Capabilities
Here's a detailed breakdown of supported models and their capabilities:
Here's a detailed breakdown of supported models and their capabilities, you can compare performance at [lmarena.ai](https://lmarena.ai/):
<Tabs>
<Tab title="OpenAI">
@@ -43,6 +43,17 @@ Here's a detailed breakdown of supported models and their capabilities:
1 token ≈ 4 characters in English. For example, 8,192 tokens ≈ 32,768 characters or about 6,000 words.
</Note>
</Tab>
<Tab title="Gemini">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| Gemini 1.5 Flash | 1M tokens | Balanced multimodal model, good for most tasks |
| Gemini 1.5 Flash 8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
| Gemini 1.5 Pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
<Tip>
Google's Gemini models are all multimodal, supporting audio, images, video and text, supporting context caching, json schema, function calling, etc.
</Tip>
</Tab>
<Tab title="Groq">
| Model | Context Window | Best For |
|-------|---------------|-----------|
@@ -128,10 +139,10 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
# llm: anthropic/claude-2.1
# llm: anthropic/claude-2.0
# Google Models - Good for general tasks
# llm: gemini/gemini-pro
# Google Models - Strong reasoning, large cachable context window, multimodal
# llm: gemini/gemini-1.5-pro-latest
# llm: gemini/gemini-1.0-pro-latest
# llm: gemini/gemini-1.5-flash-latest
# llm: gemini/gemini-1.5-flash-8b-latest
# AWS Bedrock Models - Enterprise-grade
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
@@ -350,13 +361,18 @@ Learn how to get the most out of your LLM configuration:
<Accordion title="Google">
```python Code
# Option 1. Gemini accessed with an API key.
# https://ai.google.dev/gemini-api/docs/api-key
GEMINI_API_KEY=<your-api-key>
# Option 2. Vertex AI IAM credentials for Gemini, Anthropic, and anything in the Model Garden.
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
```
Example usage:
```python Code
llm = LLM(
model="gemini/gemini-pro",
model="gemini/gemini-1.5-pro-latest",
temperature=0.7
)
```

View File

@@ -15,7 +15,6 @@ dependencies = [
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
"instructor>=1.3.3",
"regex>=2024.9.11",
"crewai-tools>=0.17.0",
"click>=8.1.7",
"python-dotenv>=1.0.0",
"appdirs>=1.4.4",
@@ -30,6 +29,7 @@ dependencies = [
"chromadb>=0.5.18",
"pdfplumber>=0.11.4",
"openpyxl>=3.1.5",
"blinker>=1.9.0",
]
[project.urls]

View File

@@ -144,7 +144,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer
)
if self.step_callback:
self.step_callback(tool_result)
self.step_callback(tool_result)
formatted_answer.text += f"\nObservation: {tool_result.result}"
formatted_answer.result = tool_result.result
@@ -413,7 +413,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
"""
while self.ask_for_human_input:
human_feedback = self._ask_human_input(formatted_answer.output)
print("Human feedback: ", human_feedback)
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer, human_feedback)

View File

@@ -1,17 +0,0 @@
[tool.poetry]
name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.12"
crewai = { extras = ["tools"], version = ">=0.86.0,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:main"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -117,7 +117,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
published_handle = publish_response.json()["handle"]
console.print(
f"Succesfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
f"Successfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
style="bold green",
)
@@ -138,7 +138,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
self._add_package(get_response.json())
console.print(f"Succesfully installed {handle}", style="bold green")
console.print(f"Successfully installed {handle}", style="bold green")
def login(self):
login_response = self.plus_api_client.login_to_tool_repository()

View File

@@ -14,8 +14,15 @@ from typing import (
cast,
)
from blinker import Signal
from pydantic import BaseModel, ValidationError
from crewai.flow.flow_events import (
FlowFinishedEvent,
FlowStartedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.utils import get_possible_return_constants
from crewai.telemetry import Telemetry
@@ -159,6 +166,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
_routers: Dict[str, str] = {}
_router_paths: Dict[str, List[str]] = {}
initial_state: Union[Type[T], T, None] = None
event_emitter = Signal("event_emitter")
def __class_getitem__(cls: Type["Flow"], item: Type[T]) -> Type["Flow"]:
class _FlowGeneric(cls): # type: ignore
@@ -253,6 +261,14 @@ class Flow(Generic[T], metaclass=FlowMeta):
Returns:
The final output from the flow execution.
"""
self.event_emitter.send(
self,
event=FlowStartedEvent(
type="flow_started",
flow_name=self.__class__.__name__,
),
)
if inputs is not None:
self._initialize_state(inputs)
return asyncio.run(self.kickoff_async())
@@ -267,8 +283,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
Returns:
The final output from the flow execution.
"""
if inputs is not None:
self._initialize_state(inputs)
if not self._start_methods:
raise ValueError("No start method defined")
@@ -285,11 +299,19 @@ class Flow(Generic[T], metaclass=FlowMeta):
# Run all start methods concurrently
await asyncio.gather(*tasks)
# Return the final output (from the last executed method)
if self._method_outputs:
return self._method_outputs[-1]
else:
return None # Or raise an exception if no methods were executed
# Determine the final output (from the last executed method)
final_output = self._method_outputs[-1] if self._method_outputs else None
self.event_emitter.send(
self,
event=FlowFinishedEvent(
type="flow_finished",
flow_name=self.__class__.__name__,
result=final_output,
),
)
return final_output
async def _execute_start_method(self, start_method_name: str) -> None:
result = await self._execute_method(
@@ -352,6 +374,16 @@ class Flow(Generic[T], metaclass=FlowMeta):
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
try:
method = self._methods[listener_name]
self.event_emitter.send(
self,
event=MethodExecutionStartedEvent(
type="method_execution_started",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
sig = inspect.signature(method)
params = list(sig.parameters.values())
@@ -367,6 +399,15 @@ class Flow(Generic[T], metaclass=FlowMeta):
# If listener does not expect parameters, call without arguments
listener_result = await self._execute_method(listener_name, method)
self.event_emitter.send(
self,
event=MethodExecutionFinishedEvent(
type="method_execution_finished",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
# Execute listeners of this listener
await self._execute_listeners(listener_name, listener_result)
except Exception as e:

View File

@@ -0,0 +1,33 @@
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Optional
@dataclass
class Event:
type: str
flow_name: str
timestamp: datetime = field(init=False)
def __post_init__(self):
self.timestamp = datetime.now()
@dataclass
class FlowStartedEvent(Event):
pass
@dataclass
class MethodExecutionStartedEvent(Event):
method_name: str
@dataclass
class MethodExecutionFinishedEvent(Event):
method_name: str
@dataclass
class FlowFinishedEvent(Event):
result: Optional[Any] = None

View File

@@ -38,7 +38,7 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
if not path.exists():
self._logger.log(
"error",
f"File not found: {path}. Try adding sources to the knowledge directory. If its inside the knowledge directory, use the relative path.",
f"File not found: {path}. Try adding sources to the knowledge directory. If it's inside the knowledge directory, use the relative path.",
color="red",
)
raise FileNotFoundError(f"File not found: {path}")

View File

@@ -43,6 +43,10 @@ LLM_CONTEXT_WINDOW_SIZES = {
"gpt-4-turbo": 128000,
"o1-preview": 128000,
"o1-mini": 128000,
# gemini
"gemini-1.5-pro": 2097152,
"gemini-1.5-flash": 1048576,
"gemini-1.5-flash-8b": 1048576,
# deepseek
"deepseek-chat": 128000,
# groq
@@ -61,6 +65,9 @@ LLM_CONTEXT_WINDOW_SIZES = {
"mixtral-8x7b-32768": 32768,
}
DEFAULT_CONTEXT_WINDOW_SIZE = 8192
CONTEXT_WINDOW_USAGE_RATIO = 0.75
@contextmanager
def suppress_warnings():
@@ -124,6 +131,7 @@ class LLM:
self.api_version = api_version
self.api_key = api_key
self.callbacks = callbacks
self.context_window_size = 0
self.kwargs = kwargs
litellm.drop_params = True
@@ -191,7 +199,16 @@ class LLM:
def get_context_window_size(self) -> int:
# Only using 75% of the context window size to avoid cutting the message in the middle
return int(LLM_CONTEXT_WINDOW_SIZES.get(self.model, 8192) * 0.75)
if self.context_window_size != 0:
return self.context_window_size
self.context_window_size = int(
DEFAULT_CONTEXT_WINDOW_SIZE * CONTEXT_WINDOW_USAGE_RATIO
)
for key, value in LLM_CONTEXT_WINDOW_SIZES.items():
if self.model.startswith(key):
self.context_window_size = int(value * CONTEXT_WINDOW_USAGE_RATIO)
return self.context_window_size
def set_callbacks(self, callbacks: List[Any]):
callback_types = [type(callback) for callback in callbacks]

View File

@@ -44,14 +44,14 @@ class BaseAgentTool(BaseTool):
if available_agent.role.casefold().replace("\n", "") == agent_name
]
except Exception as _:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
return self.i18n.errors("agent_tool_unexisting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]
)
)
if not agent:
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
return self.i18n.errors("agent_tool_unexisting_coworker").format(
coworkers="\n".join(
[f"- {agent.role.casefold()}" for agent in self.agents]
)

View File

@@ -28,7 +28,7 @@
"errors": {
"force_final_answer_error": "You can't keep going, this was the best you could do.\n {formatted_answer.text}",
"force_final_answer": "Now it's time you MUST give your absolute best final answer. You'll ignore all previous instructions, stop using any tools, and just return your absolute BEST Final answer.",
"agent_tool_unexsiting_coworker": "\nError executing tool. coworker mentioned not found, it must be one of the following options:\n{coworkers}\n",
"agent_tool_unexisting_coworker": "\nError executing tool. coworker mentioned not found, it must be one of the following options:\n{coworkers}\n",
"task_repeated_usage": "I tried reusing the same input, I must stop using this action input. I'll try something else instead.\n\n",
"tool_usage_error": "I encountered an error: {error}",
"tool_arguments_error": "Error: the Action Input is not a valid key, value dictionary.",

View File

@@ -85,7 +85,7 @@ def test_install_success(mock_get, mock_subprocess_run):
env=unittest.mock.ANY
)
assert "Succesfully installed sample-tool" in output
assert "Successfully installed sample-tool" in output
@patch("crewai.cli.plus_api.PlusAPI.get_tool")

View File

@@ -26,7 +26,7 @@
},
"errors": {
"force_final_answer": "Lorem ipsum dolor sit amet",
"agent_tool_unexsiting_coworker": "Lorem ipsum dolor sit amet",
"agent_tool_unexisting_coworker": "Lorem ipsum dolor sit amet",
"task_repeated_usage": "Lorem ipsum dolor sit amet",
"tool_usage_error": "Lorem ipsum dolor sit amet",
"tool_arguments_error": "Lorem ipsum dolor sit amet",

13
uv.lock generated
View File

@@ -272,6 +272,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b1/fe/e8c672695b37eecc5cbf43e1d0638d88d66ba3a44c4d321c796f4e59167f/beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed", size = 147925 },
]
[[package]]
name = "blinker"
version = "1.9.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/21/28/9b3f50ce0e048515135495f198351908d99540d69bfdc8c1d15b73dc55ce/blinker-1.9.0.tar.gz", hash = "sha256:b4ce2265a7abece45e7cc896e98dbebe6cead56bcf805a3d23136d145f5445bf", size = 22460 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/10/cb/f2ad4230dc2eb1a74edf38f1a38b9b52277f75bef262d8908e60d957e13c/blinker-1.9.0-py3-none-any.whl", hash = "sha256:ba0efaa9080b619ff2f3459d1d500c57bddea4a6b424b60a91141db6fd2f08bc", size = 8458 },
]
[[package]]
name = "build"
version = "1.2.2.post1"
@@ -568,9 +577,9 @@ source = { editable = "." }
dependencies = [
{ name = "appdirs" },
{ name = "auth0-python" },
{ name = "blinker" },
{ name = "chromadb" },
{ name = "click" },
{ name = "crewai-tools" },
{ name = "instructor" },
{ name = "json-repair" },
{ name = "jsonref" },
@@ -638,9 +647,9 @@ requires-dist = [
{ name = "agentops", marker = "extra == 'agentops'", specifier = ">=0.3.0" },
{ name = "appdirs", specifier = ">=1.4.4" },
{ name = "auth0-python", specifier = ">=4.7.1" },
{ name = "blinker", specifier = ">=1.9.0" },
{ name = "chromadb", specifier = ">=0.5.18" },
{ name = "click", specifier = ">=8.1.7" },
{ name = "crewai-tools", specifier = ">=0.17.0" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.14.0" },
{ name = "fastembed", marker = "extra == 'fastembed'", specifier = ">=0.4.1" },
{ name = "instructor", specifier = ">=1.3.3" },