mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 12:28:30 +00:00
Compare commits
33 Commits
bugfix/res
...
devin/1744
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4748597667 | ||
|
|
409892d65f | ||
|
|
62f3df7ed5 | ||
|
|
4cf8913d31 | ||
|
|
82647358b2 | ||
|
|
6cc2f510bf | ||
|
|
9a65abf6b8 | ||
|
|
b3185ad90c | ||
|
|
c887ff1f47 | ||
|
|
22e5d39884 | ||
|
|
9ee6824ccd | ||
|
|
da73865f25 | ||
|
|
627b9f1abb | ||
|
|
1b8001bf98 | ||
|
|
e59e07e4f7 | ||
|
|
ee239b1c06 | ||
|
|
bf459bf983 | ||
|
|
94eaa6740e | ||
|
|
6d7c1b0743 | ||
|
|
6b864ee21d | ||
|
|
1ffa8904db | ||
|
|
ad916abd76 | ||
|
|
9702711094 | ||
|
|
8094754239 | ||
|
|
bc5e303d5f | ||
|
|
ec89e003c8 | ||
|
|
0b0f2d30ab | ||
|
|
1df61aba4c | ||
|
|
da9220fa81 | ||
|
|
da4f356fab | ||
|
|
d932b20c6e | ||
|
|
2f9a2afd9e | ||
|
|
c1df7c410e |
2
.github/workflows/linter.yml
vendored
2
.github/workflows/linter.yml
vendored
@@ -13,4 +13,4 @@ jobs:
|
||||
pip install ruff
|
||||
|
||||
- name: Run Ruff Linter
|
||||
run: ruff check --exclude "templates","__init__.py"
|
||||
run: ruff check
|
||||
|
||||
8
.github/workflows/stale.yml
vendored
8
.github/workflows/stale.yml
vendored
@@ -1,5 +1,10 @@
|
||||
name: Mark stale issues and pull requests
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
issues: write
|
||||
pull-requests: write
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: '10 12 * * *'
|
||||
@@ -8,9 +13,6 @@ on:
|
||||
jobs:
|
||||
stale:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/stale@v9
|
||||
with:
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
repos:
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.4.4
|
||||
rev: v0.8.2
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: ["--fix"]
|
||||
exclude: "templates"
|
||||
- id: ruff-format
|
||||
exclude: "templates"
|
||||
|
||||
9
.ruff.toml
Normal file
9
.ruff.toml
Normal file
@@ -0,0 +1,9 @@
|
||||
exclude = [
|
||||
"templates",
|
||||
"__init__.py",
|
||||
]
|
||||
|
||||
[lint]
|
||||
select = [
|
||||
"I", # isort rules
|
||||
]
|
||||
@@ -44,7 +44,7 @@ To get started with CrewAI, follow these simple steps:
|
||||
|
||||
### 1. Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.12 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, install CrewAI:
|
||||
|
||||
|
||||
@@ -32,7 +32,6 @@ A crew in crewAI represents a collaborative group of agents working together to
|
||||
| **Share Crew** _(optional)_ | `share_crew` | Whether you want to share the complete crew information and execution with the crewAI team to make the library better, and allow us to train models. |
|
||||
| **Output Log File** _(optional)_ | `output_log_file` | Whether you want to have a file with the complete crew output and execution. You can set it using True and it will default to the folder you are currently in and it will be called logs.txt or passing a string with the full path and name of the file. |
|
||||
| **Manager Agent** _(optional)_ | `manager_agent` | `manager` sets a custom agent that will be used as a manager. |
|
||||
| **Manager Callbacks** _(optional)_ | `manager_callbacks` | `manager_callbacks` takes a list of callback handlers to be executed by the manager agent when a hierarchical process is used. |
|
||||
| **Prompt File** _(optional)_ | `prompt_file` | Path to the prompt JSON file to be used for the crew. |
|
||||
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
|
||||
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
|
||||
|
||||
@@ -79,6 +79,55 @@ crew = Crew(
|
||||
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
|
||||
```
|
||||
|
||||
|
||||
Here's another example with the `CrewDoclingSource`
|
||||
```python Code
|
||||
from crewai import LLM, Agent, Crew, Process, Task
|
||||
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
|
||||
|
||||
# Create a knowledge source
|
||||
content_source = CrewDoclingSource(
|
||||
file_paths=[
|
||||
"https://lilianweng.github.io/posts/2024-11-28-reward-hacking",
|
||||
"https://lilianweng.github.io/posts/2024-07-07-hallucination",
|
||||
],
|
||||
)
|
||||
|
||||
# Create an LLM with a temperature of 0 to ensure deterministic outputs
|
||||
llm = LLM(model="gpt-4o-mini", temperature=0)
|
||||
|
||||
# Create an agent with the knowledge store
|
||||
agent = Agent(
|
||||
role="About papers",
|
||||
goal="You know everything about the papers.",
|
||||
backstory="""You are a master at understanding papers and their content.""",
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
llm=llm,
|
||||
)
|
||||
task = Task(
|
||||
description="Answer the following questions about the papers: {question}",
|
||||
expected_output="An answer to the question.",
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
verbose=True,
|
||||
process=Process.sequential,
|
||||
knowledge_sources=[
|
||||
content_source
|
||||
], # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
|
||||
)
|
||||
|
||||
result = crew.kickoff(
|
||||
inputs={
|
||||
"question": "What is the reward hacking paper about? Be sure to provide sources."
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Knowledge Configuration
|
||||
|
||||
### Chunking Configuration
|
||||
|
||||
@@ -29,7 +29,7 @@ Large Language Models (LLMs) are the core intelligence behind CrewAI agents. The
|
||||
|
||||
## Available Models and Their Capabilities
|
||||
|
||||
Here's a detailed breakdown of supported models and their capabilities:
|
||||
Here's a detailed breakdown of supported models and their capabilities, you can compare performance at [lmarena.ai](https://lmarena.ai/?leaderboard) and [artificialanalysis.ai](https://artificialanalysis.ai/):
|
||||
|
||||
<Tabs>
|
||||
<Tab title="OpenAI">
|
||||
@@ -43,13 +43,104 @@ Here's a detailed breakdown of supported models and their capabilities:
|
||||
1 token ≈ 4 characters in English. For example, 8,192 tokens ≈ 32,768 characters or about 6,000 words.
|
||||
</Note>
|
||||
</Tab>
|
||||
<Tab title="Nvidia NIM">
|
||||
| Model | Context Window | Best For |
|
||||
|-------|---------------|-----------|
|
||||
| nvidia/mistral-nemo-minitron-8b-8k-instruct | 8,192 tokens | State-of-the-art small language model delivering superior accuracy for chatbot, virtual assistants, and content generation. |
|
||||
| nvidia/nemotron-4-mini-hindi-4b-instruct| 4,096 tokens | A bilingual Hindi-English SLM for on-device inference, tailored specifically for Hindi Language. |
|
||||
| "nvidia/llama-3.1-nemotron-70b-instruct | 128k tokens | Llama-3.1-Nemotron-70B-Instruct is a large language model customized by NVIDIA in order to improve the helpfulness of LLM generated responses. |
|
||||
| nvidia/llama3-chatqa-1.5-8b | 128k tokens | Advanced LLM to generate high-quality, context-aware responses for chatbots and search engines. |
|
||||
| nvidia/llama3-chatqa-1.5-70b | 128k tokens | Advanced LLM to generate high-quality, context-aware responses for chatbots and search engines. |
|
||||
| nvidia/vila | 128k tokens | Multi-modal vision-language model that understands text/img/video and creates informative responses |
|
||||
| nvidia/neva-22| 4,096 tokens | Multi-modal vision-language model that understands text/images and generates informative responses |
|
||||
| nvidia/nemotron-mini-4b-instruct | 8,192 tokens | General-purpose tasks |
|
||||
| nvidia/usdcode-llama3-70b-instruct | 128k tokens | State-of-the-art LLM that answers OpenUSD knowledge queries and generates USD-Python code. |
|
||||
| nvidia/nemotron-4-340b-instruct | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| meta/codellama-70b | 100k tokens | LLM capable of generating code from natural language and vice versa. |
|
||||
| meta/llama2-70b | 4,096 tokens | Cutting-edge large language AI model capable of generating text and code in response to prompts. |
|
||||
| meta/llama3-8b-instruct | 8,192 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama3-70b-instruct | 8,192 tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
|
||||
| meta/llama-3.1-8b-instruct | 128k tokens | Advanced state-of-the-art model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.1-70b-instruct | 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
|
||||
| meta/llama-3.1-405b-instruct | 128k tokens | Advanced LLM for synthetic data generation, distillation, and inference for chatbots, coding, and domain-specific tasks. |
|
||||
| meta/llama-3.2-1b-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.2-3b-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.2-11b-vision-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.2-90b-vision-instruct | 128k tokens | Advanced state-of-the-art small language model with language understanding, superior reasoning, and text generation. |
|
||||
| meta/llama-3.1-70b-instruct | 128k tokens | Powers complex conversations with superior contextual understanding, reasoning and text generation. |
|
||||
| google/gemma-7b | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/gemma-2b | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/codegemma-7b | 8,192 tokens | Cutting-edge model built on Google's Gemma-7B specialized for code generation and code completion. |
|
||||
| google/codegemma-1.1-7b | 8,192 tokens | Advanced programming model for code generation, completion, reasoning, and instruction following. |
|
||||
| google/recurrentgemma-2b | 8,192 tokens | Novel recurrent architecture based language model for faster inference when generating long sequences. |
|
||||
| google/gemma-2-9b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/gemma-2-27b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/gemma-2-2b-it | 8,192 tokens | Cutting-edge text generation model text understanding, transformation, and code generation. |
|
||||
| google/deplot | 512 tokens | One-shot visual language understanding model that translates images of plots into tables. |
|
||||
| google/paligemma | 8,192 tokens | Vision language model adept at comprehending text and visual inputs to produce informative responses. |
|
||||
| mistralai/mistral-7b-instruct-v0.2 | 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
|
||||
| mistralai/mixtral-8x7b-instruct-v0.1 | 8,192 tokens | An MOE LLM that follows instructions, completes requests, and generates creative text. |
|
||||
| mistralai/mistral-large | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| mistralai/mixtral-8x22b-instruct-v0.1 | 8,192 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| mistralai/mistral-7b-instruct-v0.3 | 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
|
||||
| nv-mistralai/mistral-nemo-12b-instruct | 128k tokens | Most advanced language model for reasoning, code, multilingual tasks; runs on a single GPU. |
|
||||
| mistralai/mamba-codestral-7b-v0.1 | 256k tokens | Model for writing and interacting with code across a wide range of programming languages and tasks. |
|
||||
| microsoft/phi-3-mini-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-mini-4k-instruct | 4,096 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-small-8k-instruct | 8,192 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-small-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-medium-4k-instruct | 4,096 tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3-medium-128k-instruct | 128K tokens | Lightweight, state-of-the-art open LLM with strong math and logical reasoning skills. |
|
||||
| microsoft/phi-3.5-mini-instruct | 128K tokens | Lightweight multilingual LLM powering AI applications in latency bound, memory/compute constrained environments |
|
||||
| microsoft/phi-3.5-moe-instruct | 128K tokens | Advanced LLM based on Mixture of Experts architecure to deliver compute efficient content generation |
|
||||
| microsoft/kosmos-2 | 1,024 tokens | Groundbreaking multimodal model designed to understand and reason about visual elements in images. |
|
||||
| microsoft/phi-3-vision-128k-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
|
||||
| microsoft/phi-3.5-vision-instruct | 128k tokens | Cutting-edge open multimodal model exceling in high-quality reasoning from images. |
|
||||
| databricks/dbrx-instruct | 12k tokens | A general-purpose LLM with state-of-the-art performance in language understanding, coding, and RAG. |
|
||||
| snowflake/arctic | 1,024 tokens | Delivers high efficiency inference for enterprise applications focused on SQL generation and coding. |
|
||||
| aisingapore/sea-lion-7b-instruct | 4,096 tokens | LLM to represent and serve the linguistic and cultural diversity of Southeast Asia |
|
||||
| ibm/granite-8b-code-instruct | 4,096 tokens | Software programming LLM for code generation, completion, explanation, and multi-turn conversion. |
|
||||
| ibm/granite-34b-code-instruct | 8,192 tokens | Software programming LLM for code generation, completion, explanation, and multi-turn conversion. |
|
||||
| ibm/granite-3.0-8b-instruct | 4,096 tokens | Advanced Small Language Model supporting RAG, summarization, classification, code, and agentic AI |
|
||||
| ibm/granite-3.0-3b-a800m-instruct | 4,096 tokens | Highly efficient Mixture of Experts model for RAG, summarization, entity extraction, and classification |
|
||||
| mediatek/breeze-7b-instruct | 4,096 tokens | Creates diverse synthetic data that mimics the characteristics of real-world data. |
|
||||
| upstage/solar-10.7b-instruct | 4,096 tokens | Excels in NLP tasks, particularly in instruction-following, reasoning, and mathematics. |
|
||||
| writer/palmyra-med-70b-32k | 32k tokens | Leading LLM for accurate, contextually relevant responses in the medical domain. |
|
||||
| writer/palmyra-med-70b | 32k tokens | Leading LLM for accurate, contextually relevant responses in the medical domain. |
|
||||
| writer/palmyra-fin-70b-32k | 32k tokens | Specialized LLM for financial analysis, reporting, and data processing |
|
||||
| 01-ai/yi-large | 32k tokens | Powerful model trained on English and Chinese for diverse tasks including chatbot and creative writing. |
|
||||
| deepseek-ai/deepseek-coder-6.7b-instruct | 2k tokens | Powerful coding model offering advanced capabilities in code generation, completion, and infilling |
|
||||
| rakuten/rakutenai-7b-instruct | 1,024 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
|
||||
| rakuten/rakutenai-7b-chat | 1,024 tokens | Advanced state-of-the-art LLM with language understanding, superior reasoning, and text generation. |
|
||||
| baichuan-inc/baichuan2-13b-chat | 4,096 tokens | Support Chinese and English chat, coding, math, instruction following, solving quizzes |
|
||||
|
||||
<Note>
|
||||
NVIDIA's NIM support for models is expanding continuously! For the most up-to-date list of available models, please visit build.nvidia.com.
|
||||
</Note>
|
||||
</Tab>
|
||||
<Tab title="Gemini">
|
||||
| Model | Context Window | Best For |
|
||||
|-------|---------------|-----------|
|
||||
| gemini-2.0-flash-exp | 1M tokens | Higher quality at faster speed, multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
|
||||
<Tip>
|
||||
Google's Gemini models are all multimodal, supporting audio, images, video and text, supporting context caching, json schema, function calling, etc.
|
||||
|
||||
These models are available via API_KEY from
|
||||
[The Gemini API](https://ai.google.dev/gemini-api/docs) and also from
|
||||
[Google Cloud Vertex](https://cloud.google.com/vertex-ai/generative-ai/docs/migrate/migrate-google-ai) as part of the
|
||||
[Model Garden](https://cloud.google.com/vertex-ai/generative-ai/docs/model-garden/explore-models).
|
||||
</Tip>
|
||||
</Tab>
|
||||
<Tab title="Groq">
|
||||
| Model | Context Window | Best For |
|
||||
|-------|---------------|-----------|
|
||||
| Llama 3.1 70B/8B | 131,072 tokens | High-performance, large context tasks |
|
||||
| Llama 3.2 Series | 8,192 tokens | General-purpose tasks |
|
||||
| Mixtral 8x7B | 32,768 tokens | Balanced performance and context |
|
||||
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
|
||||
|
||||
<Tip>
|
||||
Groq is known for its fast inference speeds, making it suitable for real-time applications.
|
||||
@@ -60,7 +151,7 @@ Here's a detailed breakdown of supported models and their capabilities:
|
||||
|----------|---------------|--------------|
|
||||
| Deepseek Chat | 128,000 tokens | Specialized in technical discussions |
|
||||
| Claude 3 | Up to 200K tokens | Strong reasoning, code understanding |
|
||||
| Gemini | Varies by model | Multimodal capabilities |
|
||||
| Gemma Series | 8,192 tokens | Efficient, smaller-scale tasks |
|
||||
|
||||
<Info>
|
||||
Provider selection should consider factors like:
|
||||
@@ -128,10 +219,10 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
|
||||
# llm: anthropic/claude-2.1
|
||||
# llm: anthropic/claude-2.0
|
||||
|
||||
# Google Models - Good for general tasks
|
||||
# llm: gemini/gemini-pro
|
||||
# Google Models - Strong reasoning, large cachable context window, multimodal
|
||||
# llm: gemini/gemini-1.5-pro-latest
|
||||
# llm: gemini/gemini-1.0-pro-latest
|
||||
# llm: gemini/gemini-1.5-flash-latest
|
||||
# llm: gemini/gemini-1.5-flash-8b-latest
|
||||
|
||||
# AWS Bedrock Models - Enterprise-grade
|
||||
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
|
||||
@@ -350,13 +441,18 @@ Learn how to get the most out of your LLM configuration:
|
||||
|
||||
<Accordion title="Google">
|
||||
```python Code
|
||||
# Option 1. Gemini accessed with an API key.
|
||||
# https://ai.google.dev/gemini-api/docs/api-key
|
||||
GEMINI_API_KEY=<your-api-key>
|
||||
|
||||
# Option 2. Vertex AI IAM credentials for Gemini, Anthropic, and anything in the Model Garden.
|
||||
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="gemini/gemini-pro",
|
||||
model="gemini/gemini-1.5-pro-latest",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
@@ -412,6 +508,20 @@ Learn how to get the most out of your LLM configuration:
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Nvidia NIM">
|
||||
```python Code
|
||||
NVIDIA_API_KEY=<your-api-key>
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="nvidia_nim/meta/llama3-70b-instruct",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Groq">
|
||||
```python Code
|
||||
GROQ_API_KEY=<your-api-key>
|
||||
@@ -502,20 +612,6 @@ Learn how to get the most out of your LLM configuration:
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Nvidia NIM">
|
||||
```python Code
|
||||
NVIDIA_API_KEY=<your-api-key>
|
||||
```
|
||||
|
||||
Example usage:
|
||||
```python Code
|
||||
llm = LLM(
|
||||
model="nvidia_nim/meta/llama3-70b-instruct",
|
||||
temperature=0.7
|
||||
)
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="SambaNova">
|
||||
```python Code
|
||||
SAMBANOVA_API_KEY=<your-api-key>
|
||||
|
||||
@@ -6,7 +6,7 @@ icon: list-check
|
||||
|
||||
## Overview of a Task
|
||||
|
||||
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
|
||||
In the CrewAI framework, a `Task` is a specific assignment completed by an `Agent`.
|
||||
|
||||
Tasks provide all necessary details for execution, such as a description, the agent responsible, required tools, and more, facilitating a wide range of action complexities.
|
||||
|
||||
@@ -263,8 +263,148 @@ analysis_task = Task(
|
||||
)
|
||||
```
|
||||
|
||||
## Task Guardrails
|
||||
|
||||
Task guardrails provide a way to validate and transform task outputs before they
|
||||
are passed to the next task. This feature helps ensure data quality and provides
|
||||
efeedback to agents when their output doesn't meet specific criteria.
|
||||
|
||||
### Using Task Guardrails
|
||||
|
||||
To add a guardrail to a task, provide a validation function through the `guardrail` parameter:
|
||||
|
||||
```python Code
|
||||
from typing import Tuple, Union, Dict, Any
|
||||
|
||||
def validate_blog_content(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
|
||||
"""Validate blog content meets requirements."""
|
||||
try:
|
||||
# Check word count
|
||||
word_count = len(result.split())
|
||||
if word_count > 200:
|
||||
return (False, {
|
||||
"error": "Blog content exceeds 200 words",
|
||||
"code": "WORD_COUNT_ERROR",
|
||||
"context": {"word_count": word_count}
|
||||
})
|
||||
|
||||
# Additional validation logic here
|
||||
return (True, result.strip())
|
||||
except Exception as e:
|
||||
return (False, {
|
||||
"error": "Unexpected error during validation",
|
||||
"code": "SYSTEM_ERROR"
|
||||
})
|
||||
|
||||
blog_task = Task(
|
||||
description="Write a blog post about AI",
|
||||
expected_output="A blog post under 200 words",
|
||||
agent=blog_agent,
|
||||
guardrail=validate_blog_content # Add the guardrail function
|
||||
)
|
||||
```
|
||||
|
||||
### Guardrail Function Requirements
|
||||
|
||||
1. **Function Signature**:
|
||||
- Must accept exactly one parameter (the task output)
|
||||
- Should return a tuple of `(bool, Any)`
|
||||
- Type hints are recommended but optional
|
||||
|
||||
2. **Return Values**:
|
||||
- Success: Return `(True, validated_result)`
|
||||
- Failure: Return `(False, error_details)`
|
||||
|
||||
### Error Handling Best Practices
|
||||
|
||||
1. **Structured Error Responses**:
|
||||
```python Code
|
||||
def validate_with_context(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
|
||||
try:
|
||||
# Main validation logic
|
||||
validated_data = perform_validation(result)
|
||||
return (True, validated_data)
|
||||
except ValidationError as e:
|
||||
return (False, {
|
||||
"error": str(e),
|
||||
"code": "VALIDATION_ERROR",
|
||||
"context": {"input": result}
|
||||
})
|
||||
except Exception as e:
|
||||
return (False, {
|
||||
"error": "Unexpected error",
|
||||
"code": "SYSTEM_ERROR"
|
||||
})
|
||||
```
|
||||
|
||||
2. **Error Categories**:
|
||||
- Use specific error codes
|
||||
- Include relevant context
|
||||
- Provide actionable feedback
|
||||
|
||||
3. **Validation Chain**:
|
||||
```python Code
|
||||
from typing import Any, Dict, List, Tuple, Union
|
||||
|
||||
def complex_validation(result: str) -> Tuple[bool, Union[str, Dict[str, Any]]]:
|
||||
"""Chain multiple validation steps."""
|
||||
# Step 1: Basic validation
|
||||
if not result:
|
||||
return (False, {"error": "Empty result", "code": "EMPTY_INPUT"})
|
||||
|
||||
# Step 2: Content validation
|
||||
try:
|
||||
validated = validate_content(result)
|
||||
if not validated:
|
||||
return (False, {"error": "Invalid content", "code": "CONTENT_ERROR"})
|
||||
|
||||
# Step 3: Format validation
|
||||
formatted = format_output(validated)
|
||||
return (True, formatted)
|
||||
except Exception as e:
|
||||
return (False, {
|
||||
"error": str(e),
|
||||
"code": "VALIDATION_ERROR",
|
||||
"context": {"step": "content_validation"}
|
||||
})
|
||||
```
|
||||
|
||||
### Handling Guardrail Results
|
||||
|
||||
When a guardrail returns `(False, error)`:
|
||||
1. The error is sent back to the agent
|
||||
2. The agent attempts to fix the issue
|
||||
3. The process repeats until:
|
||||
- The guardrail returns `(True, result)`
|
||||
- Maximum retries are reached
|
||||
|
||||
Example with retry handling:
|
||||
```python Code
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
def validate_json_output(result: str) -> Tuple[bool, Union[Dict[str, Any], str]]:
|
||||
"""Validate and parse JSON output."""
|
||||
try:
|
||||
# Try to parse as JSON
|
||||
data = json.loads(result)
|
||||
return (True, data)
|
||||
except json.JSONDecodeError as e:
|
||||
return (False, {
|
||||
"error": "Invalid JSON format",
|
||||
"code": "JSON_ERROR",
|
||||
"context": {"line": e.lineno, "column": e.colno}
|
||||
})
|
||||
|
||||
task = Task(
|
||||
description="Generate a JSON report",
|
||||
expected_output="A valid JSON object",
|
||||
agent=analyst,
|
||||
guardrail=validate_json_output,
|
||||
max_retries=3 # Limit retry attempts
|
||||
)
|
||||
```
|
||||
|
||||
## Getting Structured Consistent Outputs from Tasks
|
||||
When you need to ensure that a task outputs a structured and consistent format, you can use the `output_pydantic` or `output_json` properties on a task. These properties allow you to define the expected output structure, making it easier to parse and utilize the results in your application.
|
||||
|
||||
<Note>
|
||||
It's also important to note that the output of the final task of a crew becomes the final output of the actual crew itself.
|
||||
@@ -608,6 +748,114 @@ While creating and executing tasks, certain validation mechanisms are in place t
|
||||
|
||||
These validations help in maintaining the consistency and reliability of task executions within the crewAI framework.
|
||||
|
||||
## Task Guardrails
|
||||
|
||||
Task guardrails provide a powerful way to validate, transform, or filter task outputs before they are passed to the next task. Guardrails are optional functions that execute before the next task starts, allowing you to ensure that task outputs meet specific requirements or formats.
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```python Code
|
||||
from typing import Tuple, Union
|
||||
from crewai import Task
|
||||
|
||||
def validate_json_output(result: str) -> Tuple[bool, Union[dict, str]]:
|
||||
"""Validate that the output is valid JSON."""
|
||||
try:
|
||||
json_data = json.loads(result)
|
||||
return (True, json_data)
|
||||
except json.JSONDecodeError:
|
||||
return (False, "Output must be valid JSON")
|
||||
|
||||
task = Task(
|
||||
description="Generate JSON data",
|
||||
expected_output="Valid JSON object",
|
||||
guardrail=validate_json_output
|
||||
)
|
||||
```
|
||||
|
||||
### How Guardrails Work
|
||||
|
||||
1. **Optional Attribute**: Guardrails are an optional attribute at the task level, allowing you to add validation only where needed.
|
||||
2. **Execution Timing**: The guardrail function is executed before the next task starts, ensuring valid data flow between tasks.
|
||||
3. **Return Format**: Guardrails must return a tuple of `(success, data)`:
|
||||
- If `success` is `True`, `data` is the validated/transformed result
|
||||
- If `success` is `False`, `data` is the error message
|
||||
4. **Result Routing**:
|
||||
- On success (`True`), the result is automatically passed to the next task
|
||||
- On failure (`False`), the error is sent back to the agent to generate a new answer
|
||||
|
||||
### Common Use Cases
|
||||
|
||||
#### Data Format Validation
|
||||
```python Code
|
||||
def validate_email_format(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Ensure the output contains a valid email address."""
|
||||
import re
|
||||
email_pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'
|
||||
if re.match(email_pattern, result.strip()):
|
||||
return (True, result.strip())
|
||||
return (False, "Output must be a valid email address")
|
||||
```
|
||||
|
||||
#### Content Filtering
|
||||
```python Code
|
||||
def filter_sensitive_info(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Remove or validate sensitive information."""
|
||||
sensitive_patterns = ['SSN:', 'password:', 'secret:']
|
||||
for pattern in sensitive_patterns:
|
||||
if pattern.lower() in result.lower():
|
||||
return (False, f"Output contains sensitive information ({pattern})")
|
||||
return (True, result)
|
||||
```
|
||||
|
||||
#### Data Transformation
|
||||
```python Code
|
||||
def normalize_phone_number(result: str) -> Tuple[bool, Union[str, str]]:
|
||||
"""Ensure phone numbers are in a consistent format."""
|
||||
import re
|
||||
digits = re.sub(r'\D', '', result)
|
||||
if len(digits) == 10:
|
||||
formatted = f"({digits[:3]}) {digits[3:6]}-{digits[6:]}"
|
||||
return (True, formatted)
|
||||
return (False, "Output must be a 10-digit phone number")
|
||||
```
|
||||
|
||||
### Advanced Features
|
||||
|
||||
#### Chaining Multiple Validations
|
||||
```python Code
|
||||
def chain_validations(*validators):
|
||||
"""Chain multiple validators together."""
|
||||
def combined_validator(result):
|
||||
for validator in validators:
|
||||
success, data = validator(result)
|
||||
if not success:
|
||||
return (False, data)
|
||||
result = data
|
||||
return (True, result)
|
||||
return combined_validator
|
||||
|
||||
# Usage
|
||||
task = Task(
|
||||
description="Get user contact info",
|
||||
expected_output="Email and phone",
|
||||
guardrail=chain_validations(
|
||||
validate_email_format,
|
||||
filter_sensitive_info
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
#### Custom Retry Logic
|
||||
```python Code
|
||||
task = Task(
|
||||
description="Generate data",
|
||||
expected_output="Valid data",
|
||||
guardrail=validate_data,
|
||||
max_retries=5 # Override default retry limit
|
||||
)
|
||||
```
|
||||
|
||||
## Creating Directories when Saving Files
|
||||
|
||||
You can now specify if a task should create directories when saving its output to a file. This is particularly useful for organizing outputs and ensuring that file paths are correctly structured.
|
||||
@@ -629,7 +877,7 @@ save_output_task = Task(
|
||||
|
||||
## Conclusion
|
||||
|
||||
Tasks are the driving force behind the actions of agents in CrewAI.
|
||||
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
|
||||
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
|
||||
Tasks are the driving force behind the actions of agents in CrewAI.
|
||||
By properly defining tasks and their outcomes, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit.
|
||||
Equipping tasks with appropriate tools, understanding the execution process, and following robust validation practices are crucial for maximizing CrewAI's potential,
|
||||
ensuring agents are effectively prepared for their assignments and that tasks are executed as intended.
|
||||
|
||||
211
docs/how-to/Portkey-Observability-and-Guardrails.md
Normal file
211
docs/how-to/Portkey-Observability-and-Guardrails.md
Normal file
@@ -0,0 +1,211 @@
|
||||
# Portkey Integration with CrewAI
|
||||
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
|
||||
|
||||
|
||||
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a 2-line upgrade to make your CrewAI agents reliable, cost-efficient, and fast.
|
||||
|
||||
Portkey adds 4 core production capabilities to any CrewAI agent:
|
||||
1. Routing to **200+ LLMs**
|
||||
2. Making each LLM call more robust
|
||||
3. Full-stack tracing & cost, performance analytics
|
||||
4. Real-time guardrails to enforce behavior
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## Getting Started
|
||||
|
||||
1. **Install Required Packages:**
|
||||
|
||||
```bash
|
||||
pip install -qU crewai portkey-ai
|
||||
```
|
||||
|
||||
2. **Configure the LLM Client:**
|
||||
|
||||
To build CrewAI Agents with Portkey, you'll need two keys:
|
||||
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
|
||||
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
|
||||
|
||||
```python
|
||||
from crewai import LLM
|
||||
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
|
||||
|
||||
gpt_llm = LLM(
|
||||
model="gpt-4",
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
api_key="dummy", # We are using Virtual key
|
||||
extra_headers=createHeaders(
|
||||
api_key="YOUR_PORTKEY_API_KEY",
|
||||
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
3. **Create and Run Your First Agent:**
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Define your agents with roles and goals
|
||||
coder = Agent(
|
||||
role='Software developer',
|
||||
goal='Write clear, concise code on demand',
|
||||
backstory='An expert coder with a keen eye for software trends.',
|
||||
llm=gpt_llm
|
||||
)
|
||||
|
||||
# Create tasks for your agents
|
||||
task1 = Task(
|
||||
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
|
||||
expected_output="A clear and concise HTML code",
|
||||
agent=coder
|
||||
)
|
||||
|
||||
# Instantiate your crew
|
||||
crew = Crew(
|
||||
agents=[coder],
|
||||
tasks=[task1],
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
|
||||
## Key Features
|
||||
|
||||
| Feature | Description |
|
||||
|---------|-------------|
|
||||
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
|
||||
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
|
||||
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
|
||||
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
|
||||
| 🚧 Security Controls | Set budget limits and implement role-based access control |
|
||||
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
|
||||
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
|
||||
|
||||
|
||||
## Production Features with Portkey Configs
|
||||
|
||||
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
|
||||
|
||||
<Frame>
|
||||
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
|
||||
</Frame>
|
||||
|
||||
|
||||
### 1. Use 250+ LLMs
|
||||
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
|
||||
|
||||
|
||||
Easily switch between different LLM providers:
|
||||
|
||||
```python
|
||||
# Anthropic Configuration
|
||||
anthropic_llm = LLM(
|
||||
model="claude-3-5-sonnet-latest",
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
api_key="dummy",
|
||||
extra_headers=createHeaders(
|
||||
api_key="YOUR_PORTKEY_API_KEY",
|
||||
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY", #You don't need provider when using Virtual keys
|
||||
trace_id="anthropic_agent"
|
||||
)
|
||||
)
|
||||
|
||||
# Azure OpenAI Configuration
|
||||
azure_llm = LLM(
|
||||
model="gpt-4",
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
api_key="dummy",
|
||||
extra_headers=createHeaders(
|
||||
api_key="YOUR_PORTKEY_API_KEY",
|
||||
virtual_key="YOUR_AZURE_VIRTUAL_KEY", #You don't need provider when using Virtual keys
|
||||
trace_id="azure_agent"
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
### 2. Caching
|
||||
Improve response times and reduce costs with two powerful caching modes:
|
||||
- **Simple Cache**: Perfect for exact matches
|
||||
- **Semantic Cache**: Matches responses for requests that are semantically similar
|
||||
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
|
||||
|
||||
```py
|
||||
config = {
|
||||
"cache": {
|
||||
"mode": "semantic", # or "simple" for exact matching
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 3. Production Reliability
|
||||
Portkey provides comprehensive reliability features:
|
||||
- **Automatic Retries**: Handle temporary failures gracefully
|
||||
- **Request Timeouts**: Prevent hanging operations
|
||||
- **Conditional Routing**: Route requests based on specific conditions
|
||||
- **Fallbacks**: Set up automatic provider failovers
|
||||
- **Load Balancing**: Distribute requests efficiently
|
||||
|
||||
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
|
||||
|
||||
|
||||
|
||||
### 4. Metrics
|
||||
|
||||
Agent runs are complex. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need.
|
||||
|
||||
|
||||
- Cost per agent interaction
|
||||
- Response times and latency
|
||||
- Token usage and efficiency
|
||||
- Success/failure rates
|
||||
- Cache hit rates
|
||||
|
||||
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
|
||||
|
||||
### 5. Detailed Logging
|
||||
Logs are essential for understanding agent behavior, diagnosing issues, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.
|
||||
|
||||
|
||||
Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.
|
||||
|
||||
<details>
|
||||
<summary><b>Traces</b></summary>
|
||||
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><b>Logs</b></summary>
|
||||
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
|
||||
</details>
|
||||
|
||||
### 6. Enterprise Security Features
|
||||
- Set budget limit and rate limts per Virtual Key (disposable API keys)
|
||||
- Implement role-based access control
|
||||
- Track system changes with audit logs
|
||||
- Configure data retention policies
|
||||
|
||||
|
||||
|
||||
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://docs.portkey.ai/product/ai-gateway/configs).
|
||||
|
||||
## Resources
|
||||
|
||||
- [📘 Portkey Documentation](https://docs.portkey.ai)
|
||||
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
|
||||
- [🐦 Twitter](https://twitter.com/portkeyai)
|
||||
- [💬 Discord Community](https://discord.gg/DD7vgKK299)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
138
docs/how-to/multimodal-agents.mdx
Normal file
138
docs/how-to/multimodal-agents.mdx
Normal file
@@ -0,0 +1,138 @@
|
||||
---
|
||||
title: Using Multimodal Agents
|
||||
description: Learn how to enable and use multimodal capabilities in your agents for processing images and other non-text content within the CrewAI framework.
|
||||
icon: image
|
||||
---
|
||||
|
||||
# Using Multimodal Agents
|
||||
|
||||
CrewAI supports multimodal agents that can process both text and non-text content like images. This guide will show you how to enable and use multimodal capabilities in your agents.
|
||||
|
||||
## Enabling Multimodal Capabilities
|
||||
|
||||
To create a multimodal agent, simply set the `multimodal` parameter to `True` when initializing your agent:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
|
||||
agent = Agent(
|
||||
role="Image Analyst",
|
||||
goal="Analyze and extract insights from images",
|
||||
backstory="An expert in visual content interpretation with years of experience in image analysis",
|
||||
multimodal=True # This enables multimodal capabilities
|
||||
)
|
||||
```
|
||||
|
||||
When you set `multimodal=True`, the agent is automatically configured with the necessary tools for handling non-text content, including the `AddImageTool`.
|
||||
|
||||
## Working with Images
|
||||
|
||||
The multimodal agent comes pre-configured with the `AddImageTool`, which allows it to process images. You don't need to manually add this tool - it's automatically included when you enable multimodal capabilities.
|
||||
|
||||
Here's a complete example showing how to use a multimodal agent to analyze an image:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Create a multimodal agent
|
||||
image_analyst = Agent(
|
||||
role="Product Analyst",
|
||||
goal="Analyze product images and provide detailed descriptions",
|
||||
backstory="Expert in visual product analysis with deep knowledge of design and features",
|
||||
multimodal=True
|
||||
)
|
||||
|
||||
# Create a task for image analysis
|
||||
task = Task(
|
||||
description="Analyze the product image at https://example.com/product.jpg and provide a detailed description",
|
||||
agent=image_analyst
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[image_analyst],
|
||||
tasks=[task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Advanced Usage with Context
|
||||
|
||||
You can provide additional context or specific questions about the image when creating tasks for multimodal agents. The task description can include specific aspects you want the agent to focus on:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Create a multimodal agent for detailed analysis
|
||||
expert_analyst = Agent(
|
||||
role="Visual Quality Inspector",
|
||||
goal="Perform detailed quality analysis of product images",
|
||||
backstory="Senior quality control expert with expertise in visual inspection",
|
||||
multimodal=True # AddImageTool is automatically included
|
||||
)
|
||||
|
||||
# Create a task with specific analysis requirements
|
||||
inspection_task = Task(
|
||||
description="""
|
||||
Analyze the product image at https://example.com/product.jpg with focus on:
|
||||
1. Quality of materials
|
||||
2. Manufacturing defects
|
||||
3. Compliance with standards
|
||||
Provide a detailed report highlighting any issues found.
|
||||
""",
|
||||
agent=expert_analyst
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[expert_analyst],
|
||||
tasks=[inspection_task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Tool Details
|
||||
|
||||
When working with multimodal agents, the `AddImageTool` is automatically configured with the following schema:
|
||||
|
||||
```python
|
||||
class AddImageToolSchema:
|
||||
image_url: str # Required: The URL or path of the image to process
|
||||
action: Optional[str] = None # Optional: Additional context or specific questions about the image
|
||||
```
|
||||
|
||||
The multimodal agent will automatically handle the image processing through its built-in tools, allowing it to:
|
||||
- Access images via URLs or local file paths
|
||||
- Process image content with optional context or specific questions
|
||||
- Provide analysis and insights based on the visual information and task requirements
|
||||
|
||||
## Best Practices
|
||||
|
||||
When working with multimodal agents, keep these best practices in mind:
|
||||
|
||||
1. **Image Access**
|
||||
- Ensure your images are accessible via URLs that the agent can reach
|
||||
- For local images, consider hosting them temporarily or using absolute file paths
|
||||
- Verify that image URLs are valid and accessible before running tasks
|
||||
|
||||
2. **Task Description**
|
||||
- Be specific about what aspects of the image you want the agent to analyze
|
||||
- Include clear questions or requirements in the task description
|
||||
- Consider using the optional `action` parameter for focused analysis
|
||||
|
||||
3. **Resource Management**
|
||||
- Image processing may require more computational resources than text-only tasks
|
||||
- Some language models may require base64 encoding for image data
|
||||
- Consider batch processing for multiple images to optimize performance
|
||||
|
||||
4. **Environment Setup**
|
||||
- Verify that your environment has the necessary dependencies for image processing
|
||||
- Ensure your language model supports multimodal capabilities
|
||||
- Test with small images first to validate your setup
|
||||
|
||||
5. **Error Handling**
|
||||
- Implement proper error handling for image loading failures
|
||||
- Have fallback strategies for when image processing fails
|
||||
- Monitor and log image processing operations for debugging
|
||||
@@ -7,7 +7,7 @@ icon: wrench
|
||||
<Note>
|
||||
**Python Version Requirements**
|
||||
|
||||
CrewAI requires `Python >=3.10 and <=3.12`. Here's how to check your version:
|
||||
CrewAI requires `Python >=3.10 and <3.13`. Here's how to check your version:
|
||||
```bash
|
||||
python3 --version
|
||||
```
|
||||
|
||||
@@ -3,7 +3,7 @@ name = "crewai"
|
||||
version = "0.86.0"
|
||||
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.12"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
authors = [
|
||||
{ name = "Joao Moura", email = "joao@crewai.com" }
|
||||
]
|
||||
@@ -15,7 +15,6 @@ dependencies = [
|
||||
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
|
||||
"instructor>=1.3.3",
|
||||
"regex>=2024.9.11",
|
||||
"crewai-tools>=0.17.0",
|
||||
"click>=8.1.7",
|
||||
"python-dotenv>=1.0.0",
|
||||
"appdirs>=1.4.4",
|
||||
@@ -27,9 +26,10 @@ dependencies = [
|
||||
"uv>=0.4.25",
|
||||
"tomli-w>=1.1.0",
|
||||
"tomli>=2.0.2",
|
||||
"chromadb>=0.5.18",
|
||||
"chromadb>=0.5.23",
|
||||
"pdfplumber>=0.11.4",
|
||||
"openpyxl>=3.1.5",
|
||||
"blinker>=1.9.0",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
@@ -38,7 +38,7 @@ Documentation = "https://docs.crewai.com"
|
||||
Repository = "https://github.com/crewAIInc/crewAI"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tools = ["crewai-tools>=0.14.0"]
|
||||
tools = ["crewai-tools>=0.17.0"]
|
||||
agentops = ["agentops>=0.3.0"]
|
||||
fastembed = ["fastembed>=0.4.1"]
|
||||
pdfplumber = [
|
||||
@@ -51,10 +51,13 @@ openpyxl = [
|
||||
"openpyxl>=3.1.5",
|
||||
]
|
||||
mem0 = ["mem0ai>=0.1.29"]
|
||||
docling = [
|
||||
"docling>=2.12.0",
|
||||
]
|
||||
|
||||
[tool.uv]
|
||||
dev-dependencies = [
|
||||
"ruff>=0.4.10",
|
||||
"ruff>=0.8.2",
|
||||
"mypy>=1.10.0",
|
||||
"pre-commit>=3.6.0",
|
||||
"mkdocs>=1.4.3",
|
||||
@@ -64,7 +67,6 @@ dev-dependencies = [
|
||||
"mkdocs-material-extensions>=1.3.1",
|
||||
"pillow>=10.2.0",
|
||||
"cairosvg>=2.7.1",
|
||||
"crewai-tools>=0.14.0",
|
||||
"pytest>=8.0.0",
|
||||
"pytest-vcr>=1.0.2",
|
||||
"python-dotenv>=1.0.0",
|
||||
|
||||
@@ -17,33 +17,26 @@ from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
from crewai.task import Task
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
|
||||
from crewai.utilities.converter import generate_model_description
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
|
||||
def mock_agent_ops_provider():
|
||||
def track_agent(*args, **kwargs):
|
||||
try:
|
||||
import agentops # type: ignore # Name "agentops" is already defined
|
||||
from agentops import track_agent # type: ignore
|
||||
except ImportError:
|
||||
|
||||
def track_agent():
|
||||
def noop(f):
|
||||
return f
|
||||
|
||||
return noop
|
||||
|
||||
return track_agent
|
||||
|
||||
|
||||
agentops = None
|
||||
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
else:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
|
||||
|
||||
@track_agent()
|
||||
class Agent(BaseAgent):
|
||||
@@ -122,6 +115,10 @@ class Agent(BaseAgent):
|
||||
default=2,
|
||||
description="Maximum number of retries for an agent to execute a task when an error occurs.",
|
||||
)
|
||||
multimodal: bool = Field(
|
||||
default=False,
|
||||
description="Whether the agent is multimodal.",
|
||||
)
|
||||
code_execution_mode: Literal["safe", "unsafe"] = Field(
|
||||
default="safe",
|
||||
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
|
||||
@@ -414,6 +411,10 @@ class Agent(BaseAgent):
|
||||
tools = agent_tools.tools()
|
||||
return tools
|
||||
|
||||
def get_multimodal_tools(self) -> List[Tool]:
|
||||
from crewai.tools.agent_tools.add_image_tool import AddImageTool
|
||||
return [AddImageTool()]
|
||||
|
||||
def get_code_execution_tools(self):
|
||||
try:
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
|
||||
@@ -143,10 +143,20 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
tool_result = self._execute_tool_and_check_finality(
|
||||
formatted_answer
|
||||
)
|
||||
if self.step_callback:
|
||||
self.step_callback(tool_result)
|
||||
|
||||
formatted_answer.text += f"\nObservation: {tool_result.result}"
|
||||
# Directly append the result to the messages if the
|
||||
# tool is "Add image to content" in case of multimodal
|
||||
# agents
|
||||
if formatted_answer.tool == self._i18n.tools("add_image")["name"]:
|
||||
self.messages.append(tool_result.result)
|
||||
continue
|
||||
|
||||
else:
|
||||
if self.step_callback:
|
||||
self.step_callback(tool_result)
|
||||
|
||||
formatted_answer.text += f"\nObservation: {tool_result.result}"
|
||||
|
||||
formatted_answer.result = tool_result.result
|
||||
if tool_result.result_as_answer:
|
||||
return AgentFinish(
|
||||
@@ -413,7 +423,6 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
"""
|
||||
while self.ask_for_human_input:
|
||||
human_feedback = self._ask_human_input(formatted_answer.output)
|
||||
print("Human feedback: ", human_feedback)
|
||||
|
||||
if self.crew and self.crew._train:
|
||||
self._handle_crew_training_output(formatted_answer, human_feedback)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import re
|
||||
from typing import Any, Union
|
||||
|
||||
from json_repair import repair_json
|
||||
|
||||
from crewai.utilities import I18N
|
||||
|
||||
@@ -5,9 +5,10 @@ from typing import Any, Dict
|
||||
import requests
|
||||
from rich.console import Console
|
||||
|
||||
from crewai.cli.tools.main import ToolCommand
|
||||
|
||||
from .constants import AUTH0_AUDIENCE, AUTH0_CLIENT_ID, AUTH0_DOMAIN
|
||||
from .utils import TokenManager, validate_token
|
||||
from crewai.cli.tools.main import ToolCommand
|
||||
|
||||
console = Console()
|
||||
|
||||
@@ -79,7 +80,9 @@ class AuthenticationCommand:
|
||||
style="yellow",
|
||||
)
|
||||
|
||||
console.print("\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n")
|
||||
console.print(
|
||||
"\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n"
|
||||
)
|
||||
return
|
||||
|
||||
if token_data["error"] not in ("authorization_pending", "slow_down"):
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
from .utils import TokenManager
|
||||
|
||||
|
||||
def get_auth_token() -> str:
|
||||
"""Get the authentication token."""
|
||||
access_token = TokenManager().get_token()
|
||||
if not access_token:
|
||||
raise Exception()
|
||||
return access_token
|
||||
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from importlib.metadata import version as get_version
|
||||
from typing import Optional
|
||||
|
||||
import click
|
||||
import pkg_resources
|
||||
|
||||
from crewai.cli.add_crew_to_flow import add_crew_to_flow
|
||||
from crewai.cli.create_crew import create_crew
|
||||
@@ -25,7 +25,7 @@ from .update_crew import update_crew
|
||||
|
||||
|
||||
@click.group()
|
||||
@click.version_option(pkg_resources.get_distribution("crewai").version)
|
||||
@click.version_option(get_version("crewai"))
|
||||
def crewai():
|
||||
"""Top-level command group for crewai."""
|
||||
|
||||
@@ -52,16 +52,16 @@ def create(type, name, provider, skip_provider=False):
|
||||
def version(tools):
|
||||
"""Show the installed version of crewai."""
|
||||
try:
|
||||
crewai_version = pkg_resources.get_distribution("crewai").version
|
||||
crewai_version = get_version("crewai")
|
||||
except Exception:
|
||||
crewai_version = "unknown version"
|
||||
click.echo(f"crewai version: {crewai_version}")
|
||||
|
||||
if tools:
|
||||
try:
|
||||
tools_version = pkg_resources.get_distribution("crewai-tools").version
|
||||
tools_version = get_version("crewai")
|
||||
click.echo(f"crewai tools version: {tools_version}")
|
||||
except pkg_resources.DistributionNotFound:
|
||||
except Exception:
|
||||
click.echo("crewai tools not installed")
|
||||
|
||||
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import requests
|
||||
from requests.exceptions import JSONDecodeError
|
||||
from rich.console import Console
|
||||
from crewai.cli.plus_api import PlusAPI
|
||||
|
||||
from crewai.cli.authentication.token import get_auth_token
|
||||
from crewai.cli.plus_api import PlusAPI
|
||||
from crewai.telemetry.telemetry import Telemetry
|
||||
|
||||
console = Console()
|
||||
|
||||
@@ -1,13 +1,19 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
DEFAULT_CONFIG_PATH = Path.home() / ".config" / "crewai" / "settings.json"
|
||||
|
||||
|
||||
class Settings(BaseModel):
|
||||
tool_repository_username: Optional[str] = Field(None, description="Username for interacting with the Tool Repository")
|
||||
tool_repository_password: Optional[str] = Field(None, description="Password for interacting with the Tool Repository")
|
||||
tool_repository_username: Optional[str] = Field(
|
||||
None, description="Username for interacting with the Tool Repository"
|
||||
)
|
||||
tool_repository_password: Optional[str] = Field(
|
||||
None, description="Password for interacting with the Tool Repository"
|
||||
)
|
||||
config_path: Path = Field(default=DEFAULT_CONFIG_PATH, exclude=True)
|
||||
|
||||
def __init__(self, config_path: Path = DEFAULT_CONFIG_PATH, **data):
|
||||
|
||||
@@ -1,9 +1,11 @@
|
||||
from typing import Optional
|
||||
import requests
|
||||
from os import getenv
|
||||
from crewai.cli.version import get_crewai_version
|
||||
from typing import Optional
|
||||
from urllib.parse import urljoin
|
||||
|
||||
import requests
|
||||
|
||||
from crewai.cli.version import get_crewai_version
|
||||
|
||||
|
||||
class PlusAPI:
|
||||
"""
|
||||
|
||||
@@ -1,11 +1,12 @@
|
||||
import subprocess
|
||||
|
||||
import click
|
||||
|
||||
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
|
||||
from crewai.memory.entity.entity_memory import EntityMemory
|
||||
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
||||
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
|
||||
|
||||
|
||||
def reset_memories_command(
|
||||
|
||||
@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.12 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install uv:
|
||||
|
||||
|
||||
@@ -3,7 +3,7 @@ name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.12"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.86.0,<1.0.0"
|
||||
]
|
||||
@@ -18,3 +18,6 @@ test = "{{folder_name}}.main:test"
|
||||
[build-system]
|
||||
requires = ["hatchling"]
|
||||
build-backend = "hatchling.build"
|
||||
|
||||
[tool.crewai]
|
||||
type = "crew"
|
||||
|
||||
@@ -10,7 +10,7 @@ class MyCustomToolInput(BaseModel):
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
"Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ Welcome to the {{crew_name}} Crew project, powered by [crewAI](https://crewai.co
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure you have Python >=3.10 <=3.12 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. This project uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
|
||||
|
||||
First, if you haven't already, install uv:
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ from pydantic import BaseModel
|
||||
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
|
||||
from .crews.poem_crew.poem_crew import PoemCrew
|
||||
from {{folder_name}}.crews.poem_crew.poem_crew import PoemCrew
|
||||
|
||||
|
||||
class PoemState(BaseModel):
|
||||
|
||||
@@ -3,7 +3,7 @@ name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = [{ name = "Your Name", email = "you@example.com" }]
|
||||
requires-python = ">=3.10,<=3.12"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.86.0,<1.0.0",
|
||||
]
|
||||
@@ -15,3 +15,6 @@ plot = "{{folder_name}}.main:plot"
|
||||
[build-system]
|
||||
requires = ["hatchling"]
|
||||
build-backend = "hatchling.build"
|
||||
|
||||
[tool.crewai]
|
||||
type = "flow"
|
||||
|
||||
@@ -13,7 +13,7 @@ class MyCustomToolInput(BaseModel):
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
description: str = (
|
||||
"Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
"Clear description for what this tool is useful for, your agent will need this information to use it."
|
||||
)
|
||||
args_schema: Type[BaseModel] = MyCustomToolInput
|
||||
|
||||
|
||||
@@ -1,17 +0,0 @@
|
||||
[tool.poetry]
|
||||
name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "{{name}} using crewAI"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<=3.12"
|
||||
crewai = { extras = ["tools"], version = ">=0.86.0,<1.0.0" }
|
||||
asyncio = "*"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
{{folder_name}} = "{{folder_name}}.main:main"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
@@ -5,7 +5,7 @@ custom tools to power up your crews.
|
||||
|
||||
## Installing
|
||||
|
||||
Ensure you have Python >=3.10 <=3.12 installed on your system. This project
|
||||
Ensure you have Python >=3.10 <3.13 installed on your system. This project
|
||||
uses [UV](https://docs.astral.sh/uv/) for dependency management and package
|
||||
handling, offering a seamless setup and execution experience.
|
||||
|
||||
|
||||
@@ -3,8 +3,10 @@ name = "{{folder_name}}"
|
||||
version = "0.1.0"
|
||||
description = "Power up your crews with {{folder_name}}"
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.10,<=3.12"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = [
|
||||
"crewai[tools]>=0.86.0"
|
||||
]
|
||||
|
||||
[tool.crewai]
|
||||
type = "tool"
|
||||
|
||||
@@ -117,7 +117,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
|
||||
published_handle = publish_response.json()["handle"]
|
||||
console.print(
|
||||
f"Succesfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
|
||||
f"Successfully published {published_handle} ({project_version}).\nInstall it in other projects with crewai tool install {published_handle}",
|
||||
style="bold green",
|
||||
)
|
||||
|
||||
@@ -138,7 +138,7 @@ class ToolCommand(BaseCommand, PlusAPIMixin):
|
||||
|
||||
self._add_package(get_response.json())
|
||||
|
||||
console.print(f"Succesfully installed {handle}", style="bold green")
|
||||
console.print(f"Successfully installed {handle}", style="bold green")
|
||||
|
||||
def login(self):
|
||||
login_response = self.plus_api_client.login_to_tool_repository()
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import importlib.metadata
|
||||
|
||||
|
||||
def get_crewai_version() -> str:
|
||||
"""Get the version number of CrewAI running the CLI"""
|
||||
return importlib.metadata.version("crewai")
|
||||
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
import uuid
|
||||
import warnings
|
||||
from concurrent.futures import Future
|
||||
@@ -36,6 +35,7 @@ from crewai.tasks.conditional_task import ConditionalTask
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
@@ -49,12 +49,10 @@ from crewai.utilities.planning_handler import CrewPlanner
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
agentops = None
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
pass
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
agentops = None
|
||||
|
||||
|
||||
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
|
||||
@@ -536,9 +534,6 @@ class Crew(BaseModel):
|
||||
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
|
||||
if agent.allow_code_execution: # type: ignore # BaseAgent" has no attribute "allow_code_execution"
|
||||
agent.tools += agent.get_code_execution_tools() # type: ignore # "BaseAgent" has no attribute "get_code_execution_tools"; maybe "get_delegation_tools"?
|
||||
|
||||
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
|
||||
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
|
||||
|
||||
@@ -675,7 +670,6 @@ class Crew(BaseModel):
|
||||
)
|
||||
manager.tools = []
|
||||
raise Exception("Manager agent should not have tools")
|
||||
manager.tools = self.manager_agent.get_delegation_tools(self.agents)
|
||||
else:
|
||||
self.manager_llm = (
|
||||
getattr(self.manager_llm, "model_name", None)
|
||||
@@ -687,6 +681,7 @@ class Crew(BaseModel):
|
||||
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
|
||||
backstory=i18n.retrieve("hierarchical_manager_agent", "backstory"),
|
||||
tools=AgentTools(agents=self.agents).tools(),
|
||||
allow_delegation=True,
|
||||
llm=self.manager_llm,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
@@ -729,7 +724,14 @@ class Crew(BaseModel):
|
||||
f"No agent available for task: {task.description}. Ensure that either the task has an assigned agent or a manager agent is provided."
|
||||
)
|
||||
|
||||
self._prepare_agent_tools(task)
|
||||
# Determine which tools to use - task tools take precedence over agent tools
|
||||
tools_for_task = task.tools or agent_to_use.tools or []
|
||||
tools_for_task = self._prepare_tools(
|
||||
agent_to_use,
|
||||
task,
|
||||
tools_for_task
|
||||
)
|
||||
|
||||
self._log_task_start(task, agent_to_use.role)
|
||||
|
||||
if isinstance(task, ConditionalTask):
|
||||
@@ -746,7 +748,7 @@ class Crew(BaseModel):
|
||||
future = task.execute_async(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=agent_to_use.tools,
|
||||
tools=tools_for_task,
|
||||
)
|
||||
futures.append((task, future, task_index))
|
||||
else:
|
||||
@@ -758,7 +760,7 @@ class Crew(BaseModel):
|
||||
task_output = task.execute_sync(
|
||||
agent=agent_to_use,
|
||||
context=context,
|
||||
tools=agent_to_use.tools,
|
||||
tools=tools_for_task,
|
||||
)
|
||||
task_outputs = [task_output]
|
||||
self._process_task_result(task, task_output)
|
||||
@@ -795,45 +797,67 @@ class Crew(BaseModel):
|
||||
return skipped_task_output
|
||||
return None
|
||||
|
||||
def _prepare_agent_tools(self, task: Task):
|
||||
if self.process == Process.hierarchical:
|
||||
if self.manager_agent:
|
||||
self._update_manager_tools(task)
|
||||
else:
|
||||
raise ValueError("Manager agent is required for hierarchical process.")
|
||||
elif task.agent and task.agent.allow_delegation:
|
||||
self._add_delegation_tools(task)
|
||||
def _prepare_tools(self, agent: BaseAgent, task: Task, tools: List[Tool]) -> List[Tool]:
|
||||
# Add delegation tools if agent allows delegation
|
||||
if agent.allow_delegation:
|
||||
if self.process == Process.hierarchical:
|
||||
if self.manager_agent:
|
||||
tools = self._update_manager_tools(task, tools)
|
||||
else:
|
||||
raise ValueError("Manager agent is required for hierarchical process.")
|
||||
|
||||
elif agent and agent.allow_delegation:
|
||||
tools = self._add_delegation_tools(task, tools)
|
||||
|
||||
# Add code execution tools if agent allows code execution
|
||||
if agent.allow_code_execution:
|
||||
tools = self._add_code_execution_tools(agent, tools)
|
||||
|
||||
if agent and agent.multimodal:
|
||||
tools = self._add_multimodal_tools(agent, tools)
|
||||
|
||||
return tools
|
||||
|
||||
def _get_agent_to_use(self, task: Task) -> Optional[BaseAgent]:
|
||||
if self.process == Process.hierarchical:
|
||||
return self.manager_agent
|
||||
return task.agent
|
||||
|
||||
def _add_delegation_tools(self, task: Task):
|
||||
def _merge_tools(self, existing_tools: List[Tool], new_tools: List[Tool]) -> List[Tool]:
|
||||
"""Merge new tools into existing tools list, avoiding duplicates by tool name."""
|
||||
if not new_tools:
|
||||
return existing_tools
|
||||
|
||||
# Create mapping of tool names to new tools
|
||||
new_tool_map = {tool.name: tool for tool in new_tools}
|
||||
|
||||
# Remove any existing tools that will be replaced
|
||||
tools = [tool for tool in existing_tools if tool.name not in new_tool_map]
|
||||
|
||||
# Add all new tools
|
||||
tools.extend(new_tools)
|
||||
|
||||
return tools
|
||||
|
||||
def _inject_delegation_tools(self, tools: List[Tool], task_agent: BaseAgent, agents: List[BaseAgent]):
|
||||
delegation_tools = task_agent.get_delegation_tools(agents)
|
||||
return self._merge_tools(tools, delegation_tools)
|
||||
|
||||
def _add_multimodal_tools(self, agent: BaseAgent, tools: List[Tool]):
|
||||
multimodal_tools = agent.get_multimodal_tools()
|
||||
return self._merge_tools(tools, multimodal_tools)
|
||||
|
||||
def _add_code_execution_tools(self, agent: BaseAgent, tools: List[Tool]):
|
||||
code_tools = agent.get_code_execution_tools()
|
||||
return self._merge_tools(tools, code_tools)
|
||||
|
||||
def _add_delegation_tools(self, task: Task, tools: List[Tool]):
|
||||
agents_for_delegation = [agent for agent in self.agents if agent != task.agent]
|
||||
if len(self.agents) > 1 and len(agents_for_delegation) > 0 and task.agent:
|
||||
delegation_tools = task.agent.get_delegation_tools(agents_for_delegation)
|
||||
|
||||
# Add tools if they are not already in task.tools
|
||||
for new_tool in delegation_tools:
|
||||
# Find the index of the tool with the same name
|
||||
existing_tool_index = next(
|
||||
(
|
||||
index
|
||||
for index, tool in enumerate(task.tools or [])
|
||||
if tool.name == new_tool.name
|
||||
),
|
||||
None,
|
||||
)
|
||||
if not task.tools:
|
||||
task.tools = []
|
||||
|
||||
if existing_tool_index is not None:
|
||||
# Replace the existing tool
|
||||
task.tools[existing_tool_index] = new_tool
|
||||
else:
|
||||
# Add the new tool
|
||||
task.tools.append(new_tool)
|
||||
if not tools:
|
||||
tools = []
|
||||
tools = self._inject_delegation_tools(tools, task.agent, agents_for_delegation)
|
||||
return tools
|
||||
|
||||
def _log_task_start(self, task: Task, role: str = "None"):
|
||||
if self.output_log_file:
|
||||
@@ -841,14 +865,13 @@ class Crew(BaseModel):
|
||||
task_name=task.name, task=task.description, agent=role, status="started"
|
||||
)
|
||||
|
||||
def _update_manager_tools(self, task: Task):
|
||||
def _update_manager_tools(self, task: Task, tools: List[Tool]):
|
||||
if self.manager_agent:
|
||||
if task.agent:
|
||||
self.manager_agent.tools = task.agent.get_delegation_tools([task.agent])
|
||||
tools = self._inject_delegation_tools(tools, task.agent, [task.agent])
|
||||
else:
|
||||
self.manager_agent.tools = self.manager_agent.get_delegation_tools(
|
||||
self.agents
|
||||
)
|
||||
tools = self._inject_delegation_tools(tools, self.manager_agent, self.agents)
|
||||
return tools
|
||||
|
||||
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
|
||||
context = (
|
||||
@@ -1032,6 +1055,7 @@ class Crew(BaseModel):
|
||||
agentops.end_session(
|
||||
end_state="Success",
|
||||
end_state_reason="Finished Execution",
|
||||
is_auto_end=True,
|
||||
)
|
||||
self._telemetry.end_crew(self, final_string_output)
|
||||
|
||||
|
||||
@@ -14,8 +14,15 @@ from typing import (
|
||||
cast,
|
||||
)
|
||||
|
||||
from blinker import Signal
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from crewai.flow.flow_events import (
|
||||
FlowFinishedEvent,
|
||||
FlowStartedEvent,
|
||||
MethodExecutionFinishedEvent,
|
||||
MethodExecutionStartedEvent,
|
||||
)
|
||||
from crewai.flow.flow_visualizer import plot_flow
|
||||
from crewai.flow.utils import get_possible_return_constants
|
||||
from crewai.telemetry import Telemetry
|
||||
@@ -73,10 +80,27 @@ def listen(condition):
|
||||
return decorator
|
||||
|
||||
|
||||
def router(method):
|
||||
def router(condition):
|
||||
def decorator(func):
|
||||
func.__is_router__ = True
|
||||
func.__router_for__ = method.__name__
|
||||
# Handle conditions like listen/start
|
||||
if isinstance(condition, str):
|
||||
func.__trigger_methods__ = [condition]
|
||||
func.__condition_type__ = "OR"
|
||||
elif (
|
||||
isinstance(condition, dict)
|
||||
and "type" in condition
|
||||
and "methods" in condition
|
||||
):
|
||||
func.__trigger_methods__ = condition["methods"]
|
||||
func.__condition_type__ = condition["type"]
|
||||
elif callable(condition) and hasattr(condition, "__name__"):
|
||||
func.__trigger_methods__ = [condition.__name__]
|
||||
func.__condition_type__ = "OR"
|
||||
else:
|
||||
raise ValueError(
|
||||
"Condition must be a method, string, or a result of or_() or and_()"
|
||||
)
|
||||
return func
|
||||
|
||||
return decorator
|
||||
@@ -116,8 +140,8 @@ class FlowMeta(type):
|
||||
|
||||
start_methods = []
|
||||
listeners = {}
|
||||
routers = {}
|
||||
router_paths = {}
|
||||
routers = set()
|
||||
|
||||
for attr_name, attr_value in dct.items():
|
||||
if hasattr(attr_value, "__is_start_method__"):
|
||||
@@ -130,18 +154,11 @@ class FlowMeta(type):
|
||||
methods = attr_value.__trigger_methods__
|
||||
condition_type = getattr(attr_value, "__condition_type__", "OR")
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
|
||||
elif hasattr(attr_value, "__is_router__"):
|
||||
routers[attr_value.__router_for__] = attr_name
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
|
||||
# Register router as a listener to its triggering method
|
||||
trigger_method_name = attr_value.__router_for__
|
||||
methods = [trigger_method_name]
|
||||
condition_type = "OR"
|
||||
listeners[attr_name] = (condition_type, methods)
|
||||
if hasattr(attr_value, "__is_router__") and attr_value.__is_router__:
|
||||
routers.add(attr_name)
|
||||
possible_returns = get_possible_return_constants(attr_value)
|
||||
if possible_returns:
|
||||
router_paths[attr_name] = possible_returns
|
||||
|
||||
setattr(cls, "_start_methods", start_methods)
|
||||
setattr(cls, "_listeners", listeners)
|
||||
@@ -156,9 +173,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
|
||||
_start_methods: List[str] = []
|
||||
_listeners: Dict[str, tuple[str, List[str]]] = {}
|
||||
_routers: Dict[str, str] = {}
|
||||
_routers: Set[str] = set()
|
||||
_router_paths: Dict[str, List[str]] = {}
|
||||
initial_state: Union[Type[T], T, None] = None
|
||||
event_emitter = Signal("event_emitter")
|
||||
|
||||
def __class_getitem__(cls: Type["Flow"], item: Type[T]) -> Type["Flow"]:
|
||||
class _FlowGeneric(cls): # type: ignore
|
||||
@@ -202,20 +220,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
return self._method_outputs
|
||||
|
||||
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Initializes or updates the state with the provided inputs.
|
||||
|
||||
Args:
|
||||
inputs: Dictionary of inputs to initialize or update the state.
|
||||
|
||||
Raises:
|
||||
ValueError: If inputs do not match the structured state model.
|
||||
TypeError: If state is neither a BaseModel instance nor a dictionary.
|
||||
"""
|
||||
if isinstance(self._state, BaseModel):
|
||||
# Structured state management
|
||||
# Structured state
|
||||
try:
|
||||
# Define a function to create the dynamic class
|
||||
|
||||
def create_model_with_extra_forbid(
|
||||
base_model: Type[BaseModel],
|
||||
) -> Type[BaseModel]:
|
||||
@@ -225,50 +233,33 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
|
||||
return ModelWithExtraForbid
|
||||
|
||||
# Create the dynamic class
|
||||
ModelWithExtraForbid = create_model_with_extra_forbid(
|
||||
self._state.__class__
|
||||
)
|
||||
|
||||
# Create a new instance using the combined state and inputs
|
||||
self._state = cast(
|
||||
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
|
||||
)
|
||||
|
||||
except ValidationError as e:
|
||||
raise ValueError(f"Invalid inputs for structured state: {e}") from e
|
||||
elif isinstance(self._state, dict):
|
||||
# Unstructured state management
|
||||
self._state.update(inputs)
|
||||
else:
|
||||
raise TypeError("State must be a BaseModel instance or a dictionary.")
|
||||
|
||||
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow synchronously.
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=FlowStartedEvent(
|
||||
type="flow_started",
|
||||
flow_name=self.__class__.__name__,
|
||||
),
|
||||
)
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
return asyncio.run(self.kickoff_async())
|
||||
|
||||
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
|
||||
"""
|
||||
Starts the execution of the flow asynchronously.
|
||||
|
||||
Args:
|
||||
inputs: Optional dictionary of inputs to initialize or update the state.
|
||||
|
||||
Returns:
|
||||
The final output from the flow execution.
|
||||
"""
|
||||
if inputs is not None:
|
||||
self._initialize_state(inputs)
|
||||
if not self._start_methods:
|
||||
raise ValueError("No start method defined")
|
||||
|
||||
@@ -276,20 +267,23 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
self.__class__.__name__, list(self._methods.keys())
|
||||
)
|
||||
|
||||
# Create tasks for all start methods
|
||||
tasks = [
|
||||
self._execute_start_method(start_method)
|
||||
for start_method in self._start_methods
|
||||
]
|
||||
|
||||
# Run all start methods concurrently
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
# Return the final output (from the last executed method)
|
||||
if self._method_outputs:
|
||||
return self._method_outputs[-1]
|
||||
else:
|
||||
return None # Or raise an exception if no methods were executed
|
||||
final_output = self._method_outputs[-1] if self._method_outputs else None
|
||||
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=FlowFinishedEvent(
|
||||
type="flow_finished",
|
||||
flow_name=self.__class__.__name__,
|
||||
result=final_output,
|
||||
),
|
||||
)
|
||||
return final_output
|
||||
|
||||
async def _execute_start_method(self, start_method_name: str) -> None:
|
||||
result = await self._execute_method(
|
||||
@@ -305,70 +299,105 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
if asyncio.iscoroutinefunction(method)
|
||||
else method(*args, **kwargs)
|
||||
)
|
||||
self._method_outputs.append(result) # Store the output
|
||||
|
||||
# Track method execution counts
|
||||
self._method_outputs.append(result)
|
||||
self._method_execution_counts[method_name] = (
|
||||
self._method_execution_counts.get(method_name, 0) + 1
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
|
||||
listener_tasks = []
|
||||
|
||||
if trigger_method in self._routers:
|
||||
router_method = self._methods[self._routers[trigger_method]]
|
||||
path = await self._execute_method(
|
||||
self._routers[trigger_method], router_method
|
||||
# First, handle routers repeatedly until no router triggers anymore
|
||||
while True:
|
||||
routers_triggered = self._find_triggered_methods(
|
||||
trigger_method, router_only=True
|
||||
)
|
||||
trigger_method = path
|
||||
if not routers_triggered:
|
||||
break
|
||||
for router_name in routers_triggered:
|
||||
await self._execute_single_listener(router_name, result)
|
||||
# After executing router, the router's result is the path
|
||||
# The last router executed sets the trigger_method
|
||||
# The router result is the last element in self._method_outputs
|
||||
trigger_method = self._method_outputs[-1]
|
||||
|
||||
# Now that no more routers are triggered by current trigger_method,
|
||||
# execute normal listeners
|
||||
listeners_triggered = self._find_triggered_methods(
|
||||
trigger_method, router_only=False
|
||||
)
|
||||
if listeners_triggered:
|
||||
tasks = [
|
||||
self._execute_single_listener(listener_name, result)
|
||||
for listener_name in listeners_triggered
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
|
||||
def _find_triggered_methods(
|
||||
self, trigger_method: str, router_only: bool
|
||||
) -> List[str]:
|
||||
triggered = []
|
||||
for listener_name, (condition_type, methods) in self._listeners.items():
|
||||
is_router = listener_name in self._routers
|
||||
|
||||
if router_only != is_router:
|
||||
continue
|
||||
|
||||
if condition_type == "OR":
|
||||
# If the trigger_method matches any in methods, run this
|
||||
if trigger_method in methods:
|
||||
# Schedule the listener without preventing re-execution
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
triggered.append(listener_name)
|
||||
elif condition_type == "AND":
|
||||
# Initialize pending methods for this listener if not already done
|
||||
if listener_name not in self._pending_and_listeners:
|
||||
self._pending_and_listeners[listener_name] = set(methods)
|
||||
# Remove the trigger method from pending methods
|
||||
self._pending_and_listeners[listener_name].discard(trigger_method)
|
||||
if trigger_method in self._pending_and_listeners[listener_name]:
|
||||
self._pending_and_listeners[listener_name].discard(trigger_method)
|
||||
|
||||
if not self._pending_and_listeners[listener_name]:
|
||||
# All required methods have been executed
|
||||
listener_tasks.append(
|
||||
self._execute_single_listener(listener_name, result)
|
||||
)
|
||||
triggered.append(listener_name)
|
||||
# Reset pending methods for this listener
|
||||
self._pending_and_listeners.pop(listener_name, None)
|
||||
|
||||
# Run all listener tasks concurrently and wait for them to complete
|
||||
if listener_tasks:
|
||||
await asyncio.gather(*listener_tasks)
|
||||
return triggered
|
||||
|
||||
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
|
||||
try:
|
||||
method = self._methods[listener_name]
|
||||
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=MethodExecutionStartedEvent(
|
||||
type="method_execution_started",
|
||||
method_name=listener_name,
|
||||
flow_name=self.__class__.__name__,
|
||||
),
|
||||
)
|
||||
|
||||
sig = inspect.signature(method)
|
||||
params = list(sig.parameters.values())
|
||||
|
||||
# Exclude 'self' parameter
|
||||
method_params = [p for p in params if p.name != "self"]
|
||||
|
||||
if method_params:
|
||||
# If listener expects parameters, pass the result
|
||||
listener_result = await self._execute_method(
|
||||
listener_name, method, result
|
||||
)
|
||||
else:
|
||||
# If listener does not expect parameters, call without arguments
|
||||
listener_result = await self._execute_method(listener_name, method)
|
||||
|
||||
# Execute listeners of this listener
|
||||
self.event_emitter.send(
|
||||
self,
|
||||
event=MethodExecutionFinishedEvent(
|
||||
type="method_execution_finished",
|
||||
method_name=listener_name,
|
||||
flow_name=self.__class__.__name__,
|
||||
),
|
||||
)
|
||||
|
||||
# Execute listeners (and possibly routers) of this listener
|
||||
await self._execute_listeners(listener_name, listener_result)
|
||||
|
||||
except Exception as e:
|
||||
print(
|
||||
f"[Flow._execute_single_listener] Error in method {listener_name}: {e}"
|
||||
@@ -381,5 +410,4 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
self._telemetry.flow_plotting_span(
|
||||
self.__class__.__name__, list(self._methods.keys())
|
||||
)
|
||||
|
||||
plot_flow(self, filename)
|
||||
|
||||
33
src/crewai/flow/flow_events.py
Normal file
33
src/crewai/flow/flow_events.py
Normal file
@@ -0,0 +1,33 @@
|
||||
from dataclasses import dataclass, field
|
||||
from datetime import datetime
|
||||
from typing import Any, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
class Event:
|
||||
type: str
|
||||
flow_name: str
|
||||
timestamp: datetime = field(init=False)
|
||||
|
||||
def __post_init__(self):
|
||||
self.timestamp = datetime.now()
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlowStartedEvent(Event):
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class MethodExecutionStartedEvent(Event):
|
||||
method_name: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class MethodExecutionFinishedEvent(Event):
|
||||
method_name: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlowFinishedEvent(Event):
|
||||
result: Optional[Any] = None
|
||||
@@ -31,16 +31,50 @@ def get_possible_return_constants(function):
|
||||
print(f"Source code:\n{source}")
|
||||
return None
|
||||
|
||||
return_values = []
|
||||
return_values = set()
|
||||
dict_definitions = {}
|
||||
|
||||
class DictionaryAssignmentVisitor(ast.NodeVisitor):
|
||||
def visit_Assign(self, node):
|
||||
# Check if this assignment is assigning a dictionary literal to a variable
|
||||
if isinstance(node.value, ast.Dict) and len(node.targets) == 1:
|
||||
target = node.targets[0]
|
||||
if isinstance(target, ast.Name):
|
||||
var_name = target.id
|
||||
dict_values = []
|
||||
# Extract string values from the dictionary
|
||||
for val in node.value.values:
|
||||
if isinstance(val, ast.Constant) and isinstance(val.value, str):
|
||||
dict_values.append(val.value)
|
||||
# If non-string, skip or just ignore
|
||||
if dict_values:
|
||||
dict_definitions[var_name] = dict_values
|
||||
self.generic_visit(node)
|
||||
|
||||
class ReturnVisitor(ast.NodeVisitor):
|
||||
def visit_Return(self, node):
|
||||
# Check if the return value is a constant (Python 3.8+)
|
||||
if isinstance(node.value, ast.Constant):
|
||||
return_values.append(node.value.value)
|
||||
# Direct string return
|
||||
if isinstance(node.value, ast.Constant) and isinstance(
|
||||
node.value.value, str
|
||||
):
|
||||
return_values.add(node.value.value)
|
||||
# Dictionary-based return, like return paths[result]
|
||||
elif isinstance(node.value, ast.Subscript):
|
||||
# Check if we're subscripting a known dictionary variable
|
||||
if isinstance(node.value.value, ast.Name):
|
||||
var_name = node.value.value.id
|
||||
if var_name in dict_definitions:
|
||||
# Add all possible dictionary values
|
||||
for v in dict_definitions[var_name]:
|
||||
return_values.add(v)
|
||||
self.generic_visit(node)
|
||||
|
||||
# First pass: identify dictionary assignments
|
||||
DictionaryAssignmentVisitor().visit(code_ast)
|
||||
# Second pass: identify returns
|
||||
ReturnVisitor().visit(code_ast)
|
||||
return return_values
|
||||
|
||||
return list(return_values) if return_values else None
|
||||
|
||||
|
||||
def calculate_node_levels(flow):
|
||||
@@ -61,10 +95,7 @@ def calculate_node_levels(flow):
|
||||
current_level = levels[current]
|
||||
visited.add(current)
|
||||
|
||||
for listener_name, (
|
||||
condition_type,
|
||||
trigger_methods,
|
||||
) in flow._listeners.items():
|
||||
for listener_name, (condition_type, trigger_methods) in flow._listeners.items():
|
||||
if condition_type == "OR":
|
||||
if current in trigger_methods:
|
||||
if (
|
||||
@@ -89,7 +120,7 @@ def calculate_node_levels(flow):
|
||||
queue.append(listener_name)
|
||||
|
||||
# Handle router connections
|
||||
if current in flow._routers.values():
|
||||
if current in flow._routers:
|
||||
router_method_name = current
|
||||
paths = flow._router_paths.get(router_method_name, [])
|
||||
for path in paths:
|
||||
@@ -105,6 +136,7 @@ def calculate_node_levels(flow):
|
||||
levels[listener_name] = current_level + 1
|
||||
if listener_name not in visited:
|
||||
queue.append(listener_name)
|
||||
|
||||
return levels
|
||||
|
||||
|
||||
@@ -142,7 +174,7 @@ def dfs_ancestors(node, ancestors, visited, flow):
|
||||
dfs_ancestors(listener_name, ancestors, visited, flow)
|
||||
|
||||
# Handle router methods separately
|
||||
if node in flow._routers.values():
|
||||
if node in flow._routers:
|
||||
router_method_name = node
|
||||
paths = flow._router_paths.get(router_method_name, [])
|
||||
for path in paths:
|
||||
|
||||
@@ -94,12 +94,14 @@ def add_edges(net, flow, node_positions, colors):
|
||||
ancestors = build_ancestor_dict(flow)
|
||||
parent_children = build_parent_children_dict(flow)
|
||||
|
||||
# Edges for normal listeners
|
||||
for method_name in flow._listeners:
|
||||
condition_type, trigger_methods = flow._listeners[method_name]
|
||||
is_and_condition = condition_type == "AND"
|
||||
|
||||
for trigger in trigger_methods:
|
||||
if trigger in flow._methods or trigger in flow._routers.values():
|
||||
# Check if nodes exist before adding edges
|
||||
if trigger in node_positions and method_name in node_positions:
|
||||
is_router_edge = any(
|
||||
trigger in paths for paths in flow._router_paths.values()
|
||||
)
|
||||
@@ -135,7 +137,22 @@ def add_edges(net, flow, node_positions, colors):
|
||||
}
|
||||
|
||||
net.add_edge(trigger, method_name, **edge_style)
|
||||
else:
|
||||
# Nodes not found in node_positions. Check if it's a known router outcome and a known method.
|
||||
is_router_edge = any(
|
||||
trigger in paths for paths in flow._router_paths.values()
|
||||
)
|
||||
# Check if method_name is a known method
|
||||
method_known = method_name in flow._methods
|
||||
|
||||
# If it's a known router edge and the method is known, don't warn.
|
||||
# This means the path is legitimate, just not reflected as nodes here.
|
||||
if not (is_router_edge and method_known):
|
||||
print(
|
||||
f"Warning: No node found for '{trigger}' or '{method_name}'. Skipping edge."
|
||||
)
|
||||
|
||||
# Edges for router return paths
|
||||
for router_method_name, paths in flow._router_paths.items():
|
||||
for path in paths:
|
||||
for listener_name, (
|
||||
@@ -143,36 +160,49 @@ def add_edges(net, flow, node_positions, colors):
|
||||
trigger_methods,
|
||||
) in flow._listeners.items():
|
||||
if path in trigger_methods:
|
||||
is_cycle_edge = is_ancestor(trigger, method_name, ancestors)
|
||||
parent_has_multiple_children = (
|
||||
len(parent_children.get(router_method_name, [])) > 1
|
||||
)
|
||||
needs_curvature = is_cycle_edge or parent_has_multiple_children
|
||||
if (
|
||||
router_method_name in node_positions
|
||||
and listener_name in node_positions
|
||||
):
|
||||
is_cycle_edge = is_ancestor(
|
||||
router_method_name, listener_name, ancestors
|
||||
)
|
||||
parent_has_multiple_children = (
|
||||
len(parent_children.get(router_method_name, [])) > 1
|
||||
)
|
||||
needs_curvature = is_cycle_edge or parent_has_multiple_children
|
||||
|
||||
if needs_curvature:
|
||||
source_pos = node_positions.get(router_method_name)
|
||||
target_pos = node_positions.get(listener_name)
|
||||
if needs_curvature:
|
||||
source_pos = node_positions.get(router_method_name)
|
||||
target_pos = node_positions.get(listener_name)
|
||||
|
||||
if source_pos and target_pos:
|
||||
dx = target_pos[0] - source_pos[0]
|
||||
smooth_type = "curvedCCW" if dx <= 0 else "curvedCW"
|
||||
index = get_child_index(
|
||||
router_method_name, listener_name, parent_children
|
||||
)
|
||||
edge_smooth = {
|
||||
"type": smooth_type,
|
||||
"roundness": 0.2 + (0.1 * index),
|
||||
}
|
||||
if source_pos and target_pos:
|
||||
dx = target_pos[0] - source_pos[0]
|
||||
smooth_type = "curvedCCW" if dx <= 0 else "curvedCW"
|
||||
index = get_child_index(
|
||||
router_method_name, listener_name, parent_children
|
||||
)
|
||||
edge_smooth = {
|
||||
"type": smooth_type,
|
||||
"roundness": 0.2 + (0.1 * index),
|
||||
}
|
||||
else:
|
||||
edge_smooth = {"type": "cubicBezier"}
|
||||
else:
|
||||
edge_smooth = {"type": "cubicBezier"}
|
||||
else:
|
||||
edge_smooth = False
|
||||
edge_smooth = False
|
||||
|
||||
edge_style = {
|
||||
"color": colors["router_edge"],
|
||||
"width": 2,
|
||||
"arrows": "to",
|
||||
"dashes": True,
|
||||
"smooth": edge_smooth,
|
||||
}
|
||||
net.add_edge(router_method_name, listener_name, **edge_style)
|
||||
edge_style = {
|
||||
"color": colors["router_edge"],
|
||||
"width": 2,
|
||||
"arrows": "to",
|
||||
"dashes": True,
|
||||
"smooth": edge_smooth,
|
||||
}
|
||||
net.add_edge(router_method_name, listener_name, **edge_style)
|
||||
else:
|
||||
# Same check here: known router edge and known method?
|
||||
method_known = listener_name in flow._methods
|
||||
if not method_known:
|
||||
print(
|
||||
f"Warning: No node found for '{router_method_name}' or '{listener_name}'. Skipping edge."
|
||||
)
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Union
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from pydantic import Field
|
||||
from pydantic import Field, field_validator
|
||||
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
|
||||
@@ -14,17 +14,28 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
"""Base class for knowledge sources that load content from files."""
|
||||
|
||||
_logger: Logger = Logger(verbose=True)
|
||||
file_path: Union[Path, List[Path], str, List[str]] = Field(
|
||||
..., description="The path to the file"
|
||||
file_path: Optional[Union[Path, List[Path], str, List[str]]] = Field(
|
||||
default=None,
|
||||
description="[Deprecated] The path to the file. Use file_paths instead.",
|
||||
)
|
||||
file_paths: Optional[Union[Path, List[Path], str, List[str]]] = Field(
|
||||
default_factory=list, description="The path to the file"
|
||||
)
|
||||
content: Dict[Path, str] = Field(init=False, default_factory=dict)
|
||||
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
|
||||
safe_file_paths: List[Path] = Field(default_factory=list)
|
||||
|
||||
@field_validator("file_path", "file_paths", mode="before")
|
||||
def validate_file_path(cls, v, values):
|
||||
"""Validate that at least one of file_path or file_paths is provided."""
|
||||
if v is None and ("file_path" not in values or values.get("file_path") is None):
|
||||
raise ValueError("Either file_path or file_paths must be provided")
|
||||
return v
|
||||
|
||||
def model_post_init(self, _):
|
||||
"""Post-initialization method to load content."""
|
||||
self.safe_file_paths = self._process_file_paths()
|
||||
self.validate_paths()
|
||||
self.validate_content()
|
||||
self.content = self.load_content()
|
||||
|
||||
@abstractmethod
|
||||
@@ -32,13 +43,13 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
"""Load and preprocess file content. Should be overridden by subclasses. Assume that the file path is relative to the project root in the knowledge directory."""
|
||||
pass
|
||||
|
||||
def validate_paths(self):
|
||||
def validate_content(self):
|
||||
"""Validate the paths."""
|
||||
for path in self.safe_file_paths:
|
||||
if not path.exists():
|
||||
self._logger.log(
|
||||
"error",
|
||||
f"File not found: {path}. Try adding sources to the knowledge directory. If its inside the knowledge directory, use the relative path.",
|
||||
f"File not found: {path}. Try adding sources to the knowledge directory. If it's inside the knowledge directory, use the relative path.",
|
||||
color="red",
|
||||
)
|
||||
raise FileNotFoundError(f"File not found: {path}")
|
||||
@@ -59,13 +70,30 @@ class BaseFileKnowledgeSource(BaseKnowledgeSource, ABC):
|
||||
|
||||
def _process_file_paths(self) -> List[Path]:
|
||||
"""Convert file_path to a list of Path objects."""
|
||||
paths = (
|
||||
[self.file_path]
|
||||
if isinstance(self.file_path, (str, Path))
|
||||
else self.file_path
|
||||
|
||||
if hasattr(self, "file_path") and self.file_path is not None:
|
||||
self._logger.log(
|
||||
"warning",
|
||||
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
|
||||
color="yellow",
|
||||
)
|
||||
self.file_paths = self.file_path
|
||||
|
||||
if self.file_paths is None:
|
||||
raise ValueError("Your source must be provided with a file_paths: []")
|
||||
|
||||
# Convert single path to list
|
||||
path_list: List[Union[Path, str]] = (
|
||||
[self.file_paths]
|
||||
if isinstance(self.file_paths, (str, Path))
|
||||
else list(self.file_paths)
|
||||
if isinstance(self.file_paths, list)
|
||||
else []
|
||||
)
|
||||
|
||||
if not isinstance(paths, list):
|
||||
raise ValueError("file_path must be a Path, str, or a list of these types")
|
||||
if not path_list:
|
||||
raise ValueError(
|
||||
"file_path/file_paths must be a Path, str, or a list of these types"
|
||||
)
|
||||
|
||||
return [self.convert_to_path(path) for path in paths]
|
||||
return [self.convert_to_path(path) for path in path_list]
|
||||
|
||||
@@ -21,7 +21,7 @@ class BaseKnowledgeSource(BaseModel, ABC):
|
||||
collection_name: Optional[str] = Field(default=None)
|
||||
|
||||
@abstractmethod
|
||||
def load_content(self) -> Dict[Any, str]:
|
||||
def validate_content(self) -> Any:
|
||||
"""Load and preprocess content from the source."""
|
||||
pass
|
||||
|
||||
|
||||
120
src/crewai/knowledge/source/crew_docling_source.py
Normal file
120
src/crewai/knowledge/source/crew_docling_source.py
Normal file
@@ -0,0 +1,120 @@
|
||||
from pathlib import Path
|
||||
from typing import Iterator, List, Optional, Union
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.document_converter import DocumentConverter
|
||||
from docling.exceptions import ConversionError
|
||||
from docling_core.transforms.chunker.hierarchical_chunker import HierarchicalChunker
|
||||
from docling_core.types.doc.document import DoclingDocument
|
||||
from pydantic import Field
|
||||
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
|
||||
from crewai.utilities.logger import Logger
|
||||
|
||||
|
||||
class CrewDoclingSource(BaseKnowledgeSource):
|
||||
"""Default Source class for converting documents to markdown or json
|
||||
This will auto support PDF, DOCX, and TXT, XLSX, Images, and HTML files without any additional dependencies and follows the docling package as the source of truth.
|
||||
"""
|
||||
|
||||
_logger: Logger = Logger(verbose=True)
|
||||
|
||||
file_path: Optional[List[Union[Path, str]]] = Field(default=None)
|
||||
file_paths: List[Union[Path, str]] = Field(default_factory=list)
|
||||
chunks: List[str] = Field(default_factory=list)
|
||||
safe_file_paths: List[Union[Path, str]] = Field(default_factory=list)
|
||||
content: List[DoclingDocument] = Field(default_factory=list)
|
||||
document_converter: DocumentConverter = Field(
|
||||
default_factory=lambda: DocumentConverter(
|
||||
allowed_formats=[
|
||||
InputFormat.MD,
|
||||
InputFormat.ASCIIDOC,
|
||||
InputFormat.PDF,
|
||||
InputFormat.DOCX,
|
||||
InputFormat.HTML,
|
||||
InputFormat.IMAGE,
|
||||
InputFormat.XLSX,
|
||||
InputFormat.PPTX,
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
def model_post_init(self, _) -> None:
|
||||
if self.file_path:
|
||||
self._logger.log(
|
||||
"warning",
|
||||
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
|
||||
color="yellow",
|
||||
)
|
||||
self.file_paths = self.file_path
|
||||
self.safe_file_paths = self.validate_content()
|
||||
self.content = self._load_content()
|
||||
|
||||
def _load_content(self) -> List[DoclingDocument]:
|
||||
try:
|
||||
return self._convert_source_to_docling_documents()
|
||||
except ConversionError as e:
|
||||
self._logger.log(
|
||||
"error",
|
||||
f"Error loading content: {e}. Supported formats: {self.document_converter.allowed_formats}",
|
||||
"red",
|
||||
)
|
||||
raise e
|
||||
except Exception as e:
|
||||
self._logger.log("error", f"Error loading content: {e}")
|
||||
raise e
|
||||
|
||||
def add(self) -> None:
|
||||
if self.content is None:
|
||||
return
|
||||
for doc in self.content:
|
||||
new_chunks_iterable = self._chunk_doc(doc)
|
||||
self.chunks.extend(list(new_chunks_iterable))
|
||||
self._save_documents()
|
||||
|
||||
def _convert_source_to_docling_documents(self) -> List[DoclingDocument]:
|
||||
conv_results_iter = self.document_converter.convert_all(self.safe_file_paths)
|
||||
return [result.document for result in conv_results_iter]
|
||||
|
||||
def _chunk_doc(self, doc: DoclingDocument) -> Iterator[str]:
|
||||
chunker = HierarchicalChunker()
|
||||
for chunk in chunker.chunk(doc):
|
||||
yield chunk.text
|
||||
|
||||
def validate_content(self) -> List[Union[Path, str]]:
|
||||
processed_paths: List[Union[Path, str]] = []
|
||||
for path in self.file_paths:
|
||||
if isinstance(path, str):
|
||||
if path.startswith(("http://", "https://")):
|
||||
try:
|
||||
if self._validate_url(path):
|
||||
processed_paths.append(path)
|
||||
else:
|
||||
raise ValueError(f"Invalid URL format: {path}")
|
||||
except Exception as e:
|
||||
raise ValueError(f"Invalid URL: {path}. Error: {str(e)}")
|
||||
else:
|
||||
local_path = Path(KNOWLEDGE_DIRECTORY + "/" + path)
|
||||
if local_path.exists():
|
||||
processed_paths.append(local_path)
|
||||
else:
|
||||
raise FileNotFoundError(f"File not found: {local_path}")
|
||||
else:
|
||||
# this is an instance of Path
|
||||
processed_paths.append(path)
|
||||
return processed_paths
|
||||
|
||||
def _validate_url(self, url: str) -> bool:
|
||||
try:
|
||||
result = urlparse(url)
|
||||
return all(
|
||||
[
|
||||
result.scheme in ("http", "https"),
|
||||
result.netloc,
|
||||
len(result.netloc.split(".")) >= 2, # Ensure domain has TLD
|
||||
]
|
||||
)
|
||||
except Exception:
|
||||
return False
|
||||
@@ -13,9 +13,9 @@ class StringKnowledgeSource(BaseKnowledgeSource):
|
||||
|
||||
def model_post_init(self, _):
|
||||
"""Post-initialization method to validate content."""
|
||||
self.load_content()
|
||||
self.validate_content()
|
||||
|
||||
def load_content(self):
|
||||
def validate_content(self):
|
||||
"""Validate string content."""
|
||||
if not isinstance(self.content, str):
|
||||
raise ValueError("StringKnowledgeSource only accepts string content")
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, Any, List, Optional
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
|
||||
class BaseKnowledgeStorage(ABC):
|
||||
|
||||
@@ -14,9 +14,9 @@ from chromadb.config import Settings
|
||||
|
||||
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
|
||||
from crewai.utilities import EmbeddingConfigurator
|
||||
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
@@ -124,43 +124,60 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
documents: List[str],
|
||||
metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
|
||||
):
|
||||
if self.collection:
|
||||
try:
|
||||
if metadata is None:
|
||||
metadatas: Optional[OneOrMany[chromadb.Metadata]] = None
|
||||
elif isinstance(metadata, list):
|
||||
metadatas = [cast(chromadb.Metadata, m) for m in metadata]
|
||||
else:
|
||||
metadatas = cast(chromadb.Metadata, metadata)
|
||||
|
||||
ids = [
|
||||
hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents
|
||||
]
|
||||
|
||||
self.collection.upsert(
|
||||
documents=documents,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
)
|
||||
except chromadb.errors.InvalidDimensionException as e:
|
||||
Logger(verbose=True).log(
|
||||
"error",
|
||||
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
|
||||
"red",
|
||||
)
|
||||
raise ValueError(
|
||||
"Embedding dimension mismatch. Make sure you're using the same embedding model "
|
||||
"across all operations with this collection."
|
||||
"Try resetting the collection using `crewai reset-memories -a`"
|
||||
) from e
|
||||
except Exception as e:
|
||||
Logger(verbose=True).log(
|
||||
"error", f"Failed to upsert documents: {e}", "red"
|
||||
)
|
||||
raise
|
||||
else:
|
||||
if not self.collection:
|
||||
raise Exception("Collection not initialized")
|
||||
|
||||
try:
|
||||
# Create a dictionary to store unique documents
|
||||
unique_docs = {}
|
||||
|
||||
# Generate IDs and create a mapping of id -> (document, metadata)
|
||||
for idx, doc in enumerate(documents):
|
||||
doc_id = hashlib.sha256(doc.encode("utf-8")).hexdigest()
|
||||
doc_metadata = None
|
||||
if metadata is not None:
|
||||
if isinstance(metadata, list):
|
||||
doc_metadata = metadata[idx]
|
||||
else:
|
||||
doc_metadata = metadata
|
||||
unique_docs[doc_id] = (doc, doc_metadata)
|
||||
|
||||
# Prepare filtered lists for ChromaDB
|
||||
filtered_docs = []
|
||||
filtered_metadata = []
|
||||
filtered_ids = []
|
||||
|
||||
# Build the filtered lists
|
||||
for doc_id, (doc, meta) in unique_docs.items():
|
||||
filtered_docs.append(doc)
|
||||
filtered_metadata.append(meta)
|
||||
filtered_ids.append(doc_id)
|
||||
|
||||
# If we have no metadata at all, set it to None
|
||||
final_metadata: Optional[OneOrMany[chromadb.Metadata]] = (
|
||||
None if all(m is None for m in filtered_metadata) else filtered_metadata
|
||||
)
|
||||
|
||||
self.collection.upsert(
|
||||
documents=filtered_docs,
|
||||
metadatas=final_metadata,
|
||||
ids=filtered_ids,
|
||||
)
|
||||
except chromadb.errors.InvalidDimensionException as e:
|
||||
Logger(verbose=True).log(
|
||||
"error",
|
||||
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
|
||||
"red",
|
||||
)
|
||||
raise ValueError(
|
||||
"Embedding dimension mismatch. Make sure you're using the same embedding model "
|
||||
"across all operations with this collection."
|
||||
"Try resetting the collection using `crewai reset-memories -a`"
|
||||
) from e
|
||||
except Exception as e:
|
||||
Logger(verbose=True).log("error", f"Failed to upsert documents: {e}", "red")
|
||||
raise
|
||||
|
||||
def _create_default_embedding_function(self):
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
|
||||
@@ -43,6 +43,11 @@ LLM_CONTEXT_WINDOW_SIZES = {
|
||||
"gpt-4-turbo": 128000,
|
||||
"o1-preview": 128000,
|
||||
"o1-mini": 128000,
|
||||
# gemini
|
||||
"gemini-2.0-flash": 1048576,
|
||||
"gemini-1.5-pro": 2097152,
|
||||
"gemini-1.5-flash": 1048576,
|
||||
"gemini-1.5-flash-8b": 1048576,
|
||||
# deepseek
|
||||
"deepseek-chat": 128000,
|
||||
# groq
|
||||
@@ -59,8 +64,13 @@ LLM_CONTEXT_WINDOW_SIZES = {
|
||||
"llama3-70b-8192": 8192,
|
||||
"llama3-8b-8192": 8192,
|
||||
"mixtral-8x7b-32768": 32768,
|
||||
"llama-3.3-70b-versatile": 128000,
|
||||
"llama-3.3-70b-instruct": 128000,
|
||||
}
|
||||
|
||||
DEFAULT_CONTEXT_WINDOW_SIZE = 8192
|
||||
CONTEXT_WINDOW_USAGE_RATIO = 0.75
|
||||
|
||||
|
||||
@contextmanager
|
||||
def suppress_warnings():
|
||||
@@ -124,6 +134,7 @@ class LLM:
|
||||
self.api_version = api_version
|
||||
self.api_key = api_key
|
||||
self.callbacks = callbacks
|
||||
self.context_window_size = 0
|
||||
self.kwargs = kwargs
|
||||
|
||||
litellm.drop_params = True
|
||||
@@ -191,7 +202,16 @@ class LLM:
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
# Only using 75% of the context window size to avoid cutting the message in the middle
|
||||
return int(LLM_CONTEXT_WINDOW_SIZES.get(self.model, 8192) * 0.75)
|
||||
if self.context_window_size != 0:
|
||||
return self.context_window_size
|
||||
|
||||
self.context_window_size = int(
|
||||
DEFAULT_CONTEXT_WINDOW_SIZE * CONTEXT_WINDOW_USAGE_RATIO
|
||||
)
|
||||
for key, value in LLM_CONTEXT_WINDOW_SIZES.items():
|
||||
if self.model.startswith(key):
|
||||
self.context_window_size = int(value * CONTEXT_WINDOW_USAGE_RATIO)
|
||||
return self.context_window_size
|
||||
|
||||
def set_callbacks(self, callbacks: List[Any]):
|
||||
callback_types = [type(callback) for callback in callbacks]
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Optional, Dict, Any
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory, UserMemory
|
||||
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from typing import Optional
|
||||
|
||||
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
|
||||
from crewai.memory.memory import Memory
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
@@ -38,7 +40,7 @@ class EntityMemory(Memory):
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
def save(self, item: EntityMemoryItem, custom_key: Optional[str] = None) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
"""Saves an entity item into the SQLite storage."""
|
||||
if self.memory_provider == "mem0":
|
||||
data = f"""
|
||||
@@ -49,7 +51,7 @@ class EntityMemory(Memory):
|
||||
"""
|
||||
else:
|
||||
data = f"{item.name}({item.type}): {item.description}"
|
||||
super().save(data, item.metadata)
|
||||
super().save(data, item.metadata, custom_key=custom_key)
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
|
||||
from crewai.memory.memory import Memory
|
||||
@@ -19,9 +19,12 @@ class LongTermMemory(Memory):
|
||||
storage = LTMSQLiteStorage(db_path=path) if path else LTMSQLiteStorage()
|
||||
super().__init__(storage)
|
||||
|
||||
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
def save(self, item: LongTermMemoryItem, custom_key: Optional[str] = None) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
metadata = item.metadata
|
||||
metadata.update({"agent": item.agent, "expected_output": item.expected_output})
|
||||
if custom_key:
|
||||
metadata.update({"custom_key": custom_key})
|
||||
|
||||
self.storage.save( # type: ignore # BUG?: Unexpected keyword argument "task_description","score","datetime" for "save" of "Storage"
|
||||
task_description=item.task,
|
||||
score=metadata["quality"],
|
||||
@@ -29,8 +32,8 @@ class LongTermMemory(Memory):
|
||||
datetime=item.datetime,
|
||||
)
|
||||
|
||||
def search(self, task: str, latest_n: int = 3) -> List[Dict[str, Any]]: # type: ignore # signature of "search" incompatible with supertype "Memory"
|
||||
return self.storage.load(task, latest_n) # type: ignore # BUG?: "Storage" has no attribute "load"
|
||||
def search(self, task: str, latest_n: int = 3, custom_key: Optional[str] = None) -> List[Dict[str, Any]]: # type: ignore # signature of "search" incompatible with supertype "Memory"
|
||||
return self.storage.load(task, latest_n, custom_key) # type: ignore # BUG?: "Storage" has no attribute "load"
|
||||
|
||||
def reset(self) -> None:
|
||||
self.storage.reset()
|
||||
|
||||
@@ -1,11 +1,14 @@
|
||||
from typing import Any, Dict, Optional, List
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
|
||||
|
||||
class Memory:
|
||||
"""
|
||||
Base class for memory, now supporting agent tags and generic metadata.
|
||||
Base class for memory, now supporting agent tags, generic metadata, and custom keys.
|
||||
|
||||
Custom keys allow scoping memories to specific entities (users, accounts, sessions),
|
||||
retrieving memories contextually, and preventing data leakage across logical boundaries.
|
||||
"""
|
||||
|
||||
def __init__(self, storage: RAGStorage):
|
||||
@@ -16,10 +19,13 @@ class Memory:
|
||||
value: Any,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
agent: Optional[str] = None,
|
||||
custom_key: Optional[str] = None,
|
||||
) -> None:
|
||||
metadata = metadata or {}
|
||||
if agent:
|
||||
metadata["agent"] = agent
|
||||
if custom_key:
|
||||
metadata["custom_key"] = custom_key
|
||||
|
||||
self.storage.save(value, metadata)
|
||||
|
||||
@@ -28,7 +34,12 @@ class Memory:
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
custom_key: Optional[str] = None,
|
||||
) -> List[Any]:
|
||||
filter_dict = None
|
||||
if custom_key:
|
||||
filter_dict = {"custom_key": {"$eq": custom_key}}
|
||||
|
||||
return self.storage.search(
|
||||
query=query, limit=limit, score_threshold=score_threshold
|
||||
query=query, limit=limit, score_threshold=score_threshold, filter=filter_dict
|
||||
)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from crewai.memory.memory import Memory
|
||||
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
@@ -32,7 +33,10 @@ class ShortTermMemory(Memory):
|
||||
storage
|
||||
if storage
|
||||
else RAGStorage(
|
||||
type="short_term", embedder_config=embedder_config, crew=crew, path=path
|
||||
type="short_term",
|
||||
embedder_config=embedder_config,
|
||||
crew=crew,
|
||||
path=path,
|
||||
)
|
||||
)
|
||||
super().__init__(storage)
|
||||
@@ -42,22 +46,31 @@ class ShortTermMemory(Memory):
|
||||
value: Any,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
agent: Optional[str] = None,
|
||||
custom_key: Optional[str] = None,
|
||||
) -> None:
|
||||
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
|
||||
if self.memory_provider == "mem0":
|
||||
item.data = f"Remember the following insights from Agent run: {item.data}"
|
||||
|
||||
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
|
||||
super().save(value=item.data, metadata=item.metadata, agent=item.agent, custom_key=custom_key)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
custom_key: Optional[str] = None,
|
||||
):
|
||||
filter_dict = None
|
||||
if custom_key:
|
||||
filter_dict = {"custom_key": {"$eq": custom_key}}
|
||||
|
||||
return self.storage.search(
|
||||
query=query, limit=limit, score_threshold=score_threshold
|
||||
) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
|
||||
query=query,
|
||||
limit=limit,
|
||||
score_threshold=score_threshold,
|
||||
filter=filter_dict
|
||||
)
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
|
||||
@@ -70,22 +70,31 @@ class LTMSQLiteStorage:
|
||||
)
|
||||
|
||||
def load(
|
||||
self, task_description: str, latest_n: int
|
||||
self, task_description: str, latest_n: int, custom_key: Optional[str] = None
|
||||
) -> Optional[List[Dict[str, Any]]]:
|
||||
"""Queries the LTM table by task description with error handling."""
|
||||
try:
|
||||
with sqlite3.connect(self.db_path) as conn:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute(
|
||||
f"""
|
||||
|
||||
query = """
|
||||
SELECT metadata, datetime, score
|
||||
FROM long_term_memories
|
||||
WHERE task_description = ?
|
||||
"""
|
||||
|
||||
params = [task_description]
|
||||
|
||||
if custom_key:
|
||||
query += " AND json_extract(metadata, '$.custom_key') = ?"
|
||||
params.append(custom_key)
|
||||
|
||||
query += f"""
|
||||
ORDER BY datetime DESC, score ASC
|
||||
LIMIT {latest_n}
|
||||
""", # nosec
|
||||
(task_description,),
|
||||
)
|
||||
"""
|
||||
|
||||
cursor.execute(query, params)
|
||||
rows = cursor.fetchall()
|
||||
if rows:
|
||||
return [
|
||||
|
||||
@@ -2,6 +2,7 @@ import os
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from mem0 import MemoryClient
|
||||
|
||||
from crewai.memory.storage.interface import Storage
|
||||
|
||||
|
||||
|
||||
@@ -120,7 +120,11 @@ class RAGStorage(BaseRAGStorage):
|
||||
|
||||
try:
|
||||
with suppress_logging():
|
||||
response = self.collection.query(query_texts=query, n_results=limit)
|
||||
response = self.collection.query(
|
||||
query_texts=query,
|
||||
n_results=limit,
|
||||
where=filter
|
||||
)
|
||||
|
||||
results = []
|
||||
for i in range(len(response["ids"][0])):
|
||||
|
||||
@@ -26,20 +26,27 @@ class UserMemory(Memory):
|
||||
value,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
agent: Optional[str] = None,
|
||||
custom_key: Optional[str] = None,
|
||||
) -> None:
|
||||
# TODO: Change this function since we want to take care of the case where we save memories for the usr
|
||||
data = f"Remember the details about the user: {value}"
|
||||
super().save(data, metadata)
|
||||
super().save(data, metadata, custom_key=custom_key)
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: str,
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
custom_key: Optional[str] = None,
|
||||
):
|
||||
filter_dict = None
|
||||
if custom_key:
|
||||
filter_dict = {"custom_key": {"$eq": custom_key}}
|
||||
|
||||
results = self.storage.search(
|
||||
query=query,
|
||||
limit=limit,
|
||||
score_threshold=score_threshold,
|
||||
filter=filter_dict,
|
||||
)
|
||||
return results
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from functools import wraps
|
||||
|
||||
|
||||
def memoize(func):
|
||||
cache = {}
|
||||
|
||||
|
||||
@@ -1,12 +1,25 @@
|
||||
import datetime
|
||||
import inspect
|
||||
import json
|
||||
from pathlib import Path
|
||||
import logging
|
||||
import threading
|
||||
import uuid
|
||||
from concurrent.futures import Future
|
||||
from copy import copy
|
||||
from hashlib import md5
|
||||
from typing import Any, Dict, List, Optional, Set, Tuple, Type, Union
|
||||
from pathlib import Path
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
ClassVar,
|
||||
Dict,
|
||||
List,
|
||||
Optional,
|
||||
Set,
|
||||
Tuple,
|
||||
Type,
|
||||
Union,
|
||||
)
|
||||
|
||||
from opentelemetry.trace import Span
|
||||
from pydantic import (
|
||||
@@ -20,6 +33,7 @@ from pydantic import (
|
||||
from pydantic_core import PydanticCustomError
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.tasks.guardrail_result import GuardrailResult
|
||||
from crewai.tasks.output_format import OutputFormat
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry.telemetry import Telemetry
|
||||
@@ -49,6 +63,7 @@ class Task(BaseModel):
|
||||
"""
|
||||
|
||||
__hash__ = object.__hash__ # type: ignore
|
||||
logger: ClassVar[logging.Logger] = logging.getLogger(__name__)
|
||||
used_tools: int = 0
|
||||
tools_errors: int = 0
|
||||
delegations: int = 0
|
||||
@@ -110,6 +125,55 @@ class Task(BaseModel):
|
||||
default=None,
|
||||
)
|
||||
processed_by_agents: Set[str] = Field(default_factory=set)
|
||||
guardrail: Optional[Callable[[TaskOutput], Tuple[bool, Any]]] = Field(
|
||||
default=None,
|
||||
description="Function to validate task output before proceeding to next task"
|
||||
)
|
||||
max_retries: int = Field(
|
||||
default=3,
|
||||
description="Maximum number of retries when guardrail fails"
|
||||
)
|
||||
retry_count: int = Field(
|
||||
default=0,
|
||||
description="Current number of retries"
|
||||
)
|
||||
|
||||
@field_validator("guardrail")
|
||||
@classmethod
|
||||
def validate_guardrail_function(cls, v: Optional[Callable]) -> Optional[Callable]:
|
||||
"""Validate that the guardrail function has the correct signature and behavior.
|
||||
|
||||
While type hints provide static checking, this validator ensures runtime safety by:
|
||||
1. Verifying the function accepts exactly one parameter (the TaskOutput)
|
||||
2. Checking return type annotations match Tuple[bool, Any] if present
|
||||
3. Providing clear, immediate error messages for debugging
|
||||
|
||||
This runtime validation is crucial because:
|
||||
- Type hints are optional and can be ignored at runtime
|
||||
- Function signatures need immediate validation before task execution
|
||||
- Clear error messages help users debug guardrail implementation issues
|
||||
|
||||
Args:
|
||||
v: The guardrail function to validate
|
||||
|
||||
Returns:
|
||||
The validated guardrail function
|
||||
|
||||
Raises:
|
||||
ValueError: If the function signature is invalid or return annotation
|
||||
doesn't match Tuple[bool, Any]
|
||||
"""
|
||||
if v is not None:
|
||||
sig = inspect.signature(v)
|
||||
if len(sig.parameters) != 1:
|
||||
raise ValueError("Guardrail function must accept exactly one parameter")
|
||||
|
||||
# Check return annotation if present, but don't require it
|
||||
return_annotation = sig.return_annotation
|
||||
if return_annotation != inspect.Signature.empty:
|
||||
if not (return_annotation == Tuple[bool, Any] or str(return_annotation) == 'Tuple[bool, Any]'):
|
||||
raise ValueError("If return type is annotated, it must be Tuple[bool, Any]")
|
||||
return v
|
||||
|
||||
_telemetry: Telemetry = PrivateAttr(default_factory=Telemetry)
|
||||
_execution_span: Optional[Span] = PrivateAttr(default=None)
|
||||
@@ -254,7 +318,6 @@ class Task(BaseModel):
|
||||
)
|
||||
|
||||
pydantic_output, json_output = self._export_output(result)
|
||||
|
||||
task_output = TaskOutput(
|
||||
name=self.name,
|
||||
description=self.description,
|
||||
@@ -265,6 +328,37 @@ class Task(BaseModel):
|
||||
agent=agent.role,
|
||||
output_format=self._get_output_format(),
|
||||
)
|
||||
|
||||
if self.guardrail:
|
||||
guardrail_result = GuardrailResult.from_tuple(self.guardrail(task_output))
|
||||
if not guardrail_result.success:
|
||||
if self.retry_count >= self.max_retries:
|
||||
raise Exception(
|
||||
f"Task failed guardrail validation after {self.max_retries} retries. "
|
||||
f"Last error: {guardrail_result.error}"
|
||||
)
|
||||
|
||||
self.retry_count += 1
|
||||
context = (
|
||||
f"### Previous attempt failed validation: {guardrail_result.error}\n\n\n"
|
||||
f"### Previous result:\n{task_output.raw}\n\n\n"
|
||||
"Try again, making sure to address the validation error."
|
||||
)
|
||||
return self._execute_core(agent, context, tools)
|
||||
|
||||
if guardrail_result.result is None:
|
||||
raise Exception(
|
||||
"Task guardrail returned None as result. This is not allowed."
|
||||
)
|
||||
|
||||
if isinstance(guardrail_result.result, str):
|
||||
task_output.raw = guardrail_result.result
|
||||
pydantic_output, json_output = self._export_output(guardrail_result.result)
|
||||
task_output.pydantic = pydantic_output
|
||||
task_output.json_dict = json_output
|
||||
elif isinstance(guardrail_result.result, TaskOutput):
|
||||
task_output = guardrail_result.result
|
||||
|
||||
self.output = task_output
|
||||
|
||||
self._set_end_execution_time(start_time)
|
||||
@@ -308,7 +402,18 @@ class Task(BaseModel):
|
||||
|
||||
if inputs:
|
||||
self.description = self._original_description.format(**inputs)
|
||||
self.expected_output = self._original_expected_output.format(**inputs)
|
||||
self.expected_output = self.interpolate_only(
|
||||
input_string=self._original_expected_output, inputs=inputs
|
||||
)
|
||||
|
||||
def interpolate_only(self, input_string: str, inputs: Dict[str, Any]) -> str:
|
||||
"""Interpolate placeholders (e.g., {key}) in a string while leaving JSON untouched."""
|
||||
escaped_string = input_string.replace("{", "{{").replace("}", "}}")
|
||||
|
||||
for key in inputs.keys():
|
||||
escaped_string = escaped_string.replace(f"{{{{{key}}}}}", f"{{{key}}}")
|
||||
|
||||
return escaped_string.format(**inputs)
|
||||
|
||||
def increment_tools_errors(self) -> None:
|
||||
"""Increment the tools errors counter."""
|
||||
@@ -390,22 +495,33 @@ class Task(BaseModel):
|
||||
return OutputFormat.RAW
|
||||
|
||||
def _save_file(self, result: Any) -> None:
|
||||
"""Save task output to a file.
|
||||
|
||||
Args:
|
||||
result: The result to save to the file. Can be a dict or any stringifiable object.
|
||||
|
||||
Raises:
|
||||
ValueError: If output_file is not set
|
||||
RuntimeError: If there is an error writing to the file
|
||||
"""
|
||||
if self.output_file is None:
|
||||
raise ValueError("output_file is not set.")
|
||||
|
||||
resolved_path = Path(self.output_file).expanduser().resolve()
|
||||
directory = resolved_path.parent
|
||||
try:
|
||||
resolved_path = Path(self.output_file).expanduser().resolve()
|
||||
directory = resolved_path.parent
|
||||
|
||||
if not directory.exists():
|
||||
directory.mkdir(parents=True, exist_ok=True)
|
||||
if not directory.exists():
|
||||
directory.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with resolved_path.open("w", encoding="utf-8") as file:
|
||||
if isinstance(result, dict):
|
||||
import json
|
||||
|
||||
json.dump(result, file, ensure_ascii=False, indent=2)
|
||||
else:
|
||||
file.write(str(result))
|
||||
with resolved_path.open("w", encoding="utf-8") as file:
|
||||
if isinstance(result, dict):
|
||||
import json
|
||||
json.dump(result, file, ensure_ascii=False, indent=2)
|
||||
else:
|
||||
file.write(str(result))
|
||||
except (OSError, IOError) as e:
|
||||
raise RuntimeError(f"Failed to save output file: {e}")
|
||||
return None
|
||||
|
||||
def __repr__(self):
|
||||
|
||||
56
src/crewai/tasks/guardrail_result.py
Normal file
56
src/crewai/tasks/guardrail_result.py
Normal file
@@ -0,0 +1,56 @@
|
||||
"""
|
||||
Module for handling task guardrail validation results.
|
||||
|
||||
This module provides the GuardrailResult class which standardizes
|
||||
the way task guardrails return their validation results.
|
||||
"""
|
||||
|
||||
from typing import Any, Optional, Tuple, Union
|
||||
|
||||
from pydantic import BaseModel, field_validator
|
||||
|
||||
|
||||
class GuardrailResult(BaseModel):
|
||||
"""Result from a task guardrail execution.
|
||||
|
||||
This class standardizes the return format of task guardrails,
|
||||
converting tuple responses into a structured format that can
|
||||
be easily handled by the task execution system.
|
||||
|
||||
Attributes:
|
||||
success (bool): Whether the guardrail validation passed
|
||||
result (Any, optional): The validated/transformed result if successful
|
||||
error (str, optional): Error message if validation failed
|
||||
"""
|
||||
success: bool
|
||||
result: Optional[Any] = None
|
||||
error: Optional[str] = None
|
||||
|
||||
@field_validator("result", "error")
|
||||
@classmethod
|
||||
def validate_result_error_exclusivity(cls, v: Any, info) -> Any:
|
||||
values = info.data
|
||||
if "success" in values:
|
||||
if values["success"] and v and "error" in values and values["error"]:
|
||||
raise ValueError("Cannot have both result and error when success is True")
|
||||
if not values["success"] and v and "result" in values and values["result"]:
|
||||
raise ValueError("Cannot have both result and error when success is False")
|
||||
return v
|
||||
|
||||
@classmethod
|
||||
def from_tuple(cls, result: Tuple[bool, Union[Any, str]]) -> "GuardrailResult":
|
||||
"""Create a GuardrailResult from a validation tuple.
|
||||
|
||||
Args:
|
||||
result: A tuple of (success, data) where data is either
|
||||
the validated result or error message.
|
||||
|
||||
Returns:
|
||||
GuardrailResult: A new instance with the tuple data.
|
||||
"""
|
||||
success, data = result
|
||||
return cls(
|
||||
success=success,
|
||||
result=data if success else None,
|
||||
error=data if not success else None
|
||||
)
|
||||
@@ -6,6 +6,7 @@ import os
|
||||
import platform
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from importlib.metadata import version
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
|
||||
@@ -16,12 +17,10 @@ def suppress_warnings():
|
||||
yield
|
||||
|
||||
|
||||
with suppress_warnings():
|
||||
import pkg_resources
|
||||
|
||||
|
||||
from opentelemetry import trace # noqa: E402
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter # noqa: E402
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import (
|
||||
OTLPSpanExporter, # noqa: E402
|
||||
)
|
||||
from opentelemetry.sdk.resources import SERVICE_NAME, Resource # noqa: E402
|
||||
from opentelemetry.sdk.trace import TracerProvider # noqa: E402
|
||||
from opentelemetry.sdk.trace.export import BatchSpanProcessor # noqa: E402
|
||||
@@ -104,7 +103,7 @@ class Telemetry:
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crewai_version",
|
||||
pkg_resources.get_distribution("crewai").version,
|
||||
version("crewai"),
|
||||
)
|
||||
self._add_attribute(span, "python_version", platform.python_version())
|
||||
self._add_attribute(span, "crew_key", crew.key)
|
||||
@@ -306,7 +305,7 @@ class Telemetry:
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crewai_version",
|
||||
pkg_resources.get_distribution("crewai").version,
|
||||
version("crewai"),
|
||||
)
|
||||
self._add_attribute(span, "tool_name", tool_name)
|
||||
self._add_attribute(span, "attempts", attempts)
|
||||
@@ -326,7 +325,7 @@ class Telemetry:
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crewai_version",
|
||||
pkg_resources.get_distribution("crewai").version,
|
||||
version("crewai"),
|
||||
)
|
||||
self._add_attribute(span, "tool_name", tool_name)
|
||||
self._add_attribute(span, "attempts", attempts)
|
||||
@@ -346,7 +345,7 @@ class Telemetry:
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crewai_version",
|
||||
pkg_resources.get_distribution("crewai").version,
|
||||
version("crewai"),
|
||||
)
|
||||
if llm:
|
||||
self._add_attribute(span, "llm", llm.model)
|
||||
@@ -365,7 +364,7 @@ class Telemetry:
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crewai_version",
|
||||
pkg_resources.get_distribution("crewai").version,
|
||||
version("crewai"),
|
||||
)
|
||||
self._add_attribute(span, "crew_key", crew.key)
|
||||
self._add_attribute(span, "crew_id", str(crew.id))
|
||||
@@ -391,7 +390,7 @@ class Telemetry:
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crewai_version",
|
||||
pkg_resources.get_distribution("crewai").version,
|
||||
version("crewai"),
|
||||
)
|
||||
self._add_attribute(span, "crew_key", crew.key)
|
||||
self._add_attribute(span, "crew_id", str(crew.id))
|
||||
@@ -472,7 +471,7 @@ class Telemetry:
|
||||
self._add_attribute(
|
||||
span,
|
||||
"crewai_version",
|
||||
pkg_resources.get_distribution("crewai").version,
|
||||
version("crewai"),
|
||||
)
|
||||
self._add_attribute(span, "crew_key", crew.key)
|
||||
self._add_attribute(span, "crew_id", str(crew.id))
|
||||
@@ -541,7 +540,7 @@ class Telemetry:
|
||||
self._add_attribute(
|
||||
crew._execution_span,
|
||||
"crewai_version",
|
||||
pkg_resources.get_distribution("crewai").version,
|
||||
version("crewai"),
|
||||
)
|
||||
self._add_attribute(
|
||||
crew._execution_span, "crew_output", final_string_output
|
||||
|
||||
45
src/crewai/tools/agent_tools/add_image_tool.py
Normal file
45
src/crewai/tools/agent_tools/add_image_tool.py
Normal file
@@ -0,0 +1,45 @@
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.utilities import I18N
|
||||
|
||||
i18n = I18N()
|
||||
|
||||
class AddImageToolSchema(BaseModel):
|
||||
image_url: str = Field(..., description="The URL or path of the image to add")
|
||||
action: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Optional context or question about the image"
|
||||
)
|
||||
|
||||
|
||||
class AddImageTool(BaseTool):
|
||||
"""Tool for adding images to the content"""
|
||||
|
||||
name: str = Field(default_factory=lambda: i18n.tools("add_image")["name"]) # type: ignore
|
||||
description: str = Field(default_factory=lambda: i18n.tools("add_image")["description"]) # type: ignore
|
||||
args_schema: type[BaseModel] = AddImageToolSchema
|
||||
|
||||
def _run(
|
||||
self,
|
||||
image_url: str,
|
||||
action: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> dict:
|
||||
action = action or i18n.tools("add_image")["default_action"] # type: ignore
|
||||
content = [
|
||||
{"type": "text", "text": action},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": image_url,
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
return {
|
||||
"role": "user",
|
||||
"content": content
|
||||
}
|
||||
@@ -1,9 +1,9 @@
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.utilities import I18N
|
||||
|
||||
from .delegate_work_tool import DelegateWorkTool
|
||||
from .ask_question_tool import AskQuestionTool
|
||||
from .delegate_work_tool import DelegateWorkTool
|
||||
|
||||
|
||||
class AgentTools:
|
||||
@@ -20,13 +20,13 @@ class AgentTools:
|
||||
delegate_tool = DelegateWorkTool(
|
||||
agents=self.agents,
|
||||
i18n=self.i18n,
|
||||
description=self.i18n.tools("delegate_work").format(coworkers=coworkers),
|
||||
description=self.i18n.tools("delegate_work").format(coworkers=coworkers), # type: ignore
|
||||
)
|
||||
|
||||
ask_tool = AskQuestionTool(
|
||||
agents=self.agents,
|
||||
i18n=self.i18n,
|
||||
description=self.i18n.tools("ask_question").format(coworkers=coworkers),
|
||||
description=self.i18n.tools("ask_question").format(coworkers=coworkers), # type: ignore
|
||||
)
|
||||
|
||||
return [delegate_tool, ask_tool]
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
|
||||
|
||||
|
||||
class AskQuestionToolSchema(BaseModel):
|
||||
question: str = Field(..., description="The question to ask")
|
||||
|
||||
@@ -1,9 +1,10 @@
|
||||
from typing import Optional, Union
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.task import Task
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.utilities import I18N
|
||||
|
||||
|
||||
@@ -44,14 +45,14 @@ class BaseAgentTool(BaseTool):
|
||||
if available_agent.role.casefold().replace("\n", "") == agent_name
|
||||
]
|
||||
except Exception as _:
|
||||
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
|
||||
return self.i18n.errors("agent_tool_unexisting_coworker").format(
|
||||
coworkers="\n".join(
|
||||
[f"- {agent.role.casefold()}" for agent in self.agents]
|
||||
)
|
||||
)
|
||||
|
||||
if not agent:
|
||||
return self.i18n.errors("agent_tool_unexsiting_coworker").format(
|
||||
return self.i18n.errors("agent_tool_unexisting_coworker").format(
|
||||
coworkers="\n".join(
|
||||
[f"- {agent.role.casefold()}" for agent in self.agents]
|
||||
)
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
|
||||
|
||||
|
||||
class DelegateWorkToolSchema(BaseModel):
|
||||
task: str = Field(..., description="The task to delegate")
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import ast
|
||||
import datetime
|
||||
import os
|
||||
import time
|
||||
from difflib import SequenceMatcher
|
||||
from textwrap import dedent
|
||||
@@ -11,18 +10,16 @@ from crewai.agents.tools_handler import ToolsHandler
|
||||
from crewai.task import Task
|
||||
from crewai.telemetry import Telemetry
|
||||
from crewai.tools import BaseTool
|
||||
from crewai.tools.structured_tool import CrewStructuredTool
|
||||
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
|
||||
from crewai.tools.tool_usage_events import ToolUsageError, ToolUsageFinished
|
||||
from crewai.utilities import I18N, Converter, ConverterError, Printer
|
||||
|
||||
agentops = None
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
OPENAI_BIGGER_MODELS = ["gpt-4", "gpt-4o", "o1-preview", "o1-mini"]
|
||||
try:
|
||||
import agentops # type: ignore
|
||||
except ImportError:
|
||||
agentops = None
|
||||
OPENAI_BIGGER_MODELS = ["gpt-4", "gpt-4o", "o1-preview", "o1-mini", "o1", "o3", "o3-mini"]
|
||||
|
||||
|
||||
class ToolUsageErrorException(Exception):
|
||||
@@ -106,6 +103,19 @@ class ToolUsage:
|
||||
if self.agent.verbose:
|
||||
self._printer.print(content=f"\n\n{error}\n", color="red")
|
||||
return error
|
||||
|
||||
if isinstance(tool, CrewStructuredTool) and tool.name == self._i18n.tools("add_image")["name"]: # type: ignore
|
||||
try:
|
||||
result = self._use(tool_string=tool_string, tool=tool, calling=calling)
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
error = getattr(e, "message", str(e))
|
||||
self.task.increment_tools_errors()
|
||||
if self.agent.verbose:
|
||||
self._printer.print(content=f"\n\n{error}\n", color="red")
|
||||
return error
|
||||
|
||||
return f"{self._use(tool_string=tool_string, tool=tool, calling=calling)}" # type: ignore # BUG?: "_use" of "ToolUsage" does not return a value (it only ever returns None)
|
||||
|
||||
def _use(
|
||||
@@ -422,9 +432,10 @@ class ToolUsage:
|
||||
elif value.lower() in [
|
||||
"true",
|
||||
"false",
|
||||
"null",
|
||||
]: # Check for boolean and null values
|
||||
value = value.lower()
|
||||
value = value.lower().capitalize()
|
||||
elif value.lower() == "null":
|
||||
value = "None"
|
||||
else:
|
||||
# Assume the value is a string and needs quotes
|
||||
value = '"' + value.replace('"', '\\"') + '"'
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from typing import Any, Dict
|
||||
from pydantic import BaseModel
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ToolUsageEvent(BaseModel):
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
"tools": "\nYou ONLY have access to the following tools, and should NEVER make up tools that are not listed here:\n\n{tools}\n\nUse the following format:\n\nThought: you should always think about what to do\nAction: the action to take, only one name of [{tool_names}], just the name, exactly as it's written.\nAction Input: the input to the action, just a simple python dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce all necessary information is gathered:\n\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question\n",
|
||||
"no_tools": "\nTo give my best complete final answer to the task use the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!",
|
||||
"format": "I MUST either use a tool (use one at time) OR give my best final answer not both at the same time. To Use the following format:\n\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action, dictionary enclosed in curly braces\nObservation: the result of the action\n... (this Thought/Action/Action Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n",
|
||||
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfy the expect criteria, use the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n",
|
||||
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfies the expected criteria, use the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n",
|
||||
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nI just remembered the expected format I must follow:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Result can repeat N times)\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n",
|
||||
"task_with_context": "{task}\n\nThis is the context you're working with:\n{context}",
|
||||
"expected_output": "\nThis is the expect criteria for your final answer: {expected_output}\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
@@ -28,7 +28,7 @@
|
||||
"errors": {
|
||||
"force_final_answer_error": "You can't keep going, this was the best you could do.\n {formatted_answer.text}",
|
||||
"force_final_answer": "Now it's time you MUST give your absolute best final answer. You'll ignore all previous instructions, stop using any tools, and just return your absolute BEST Final answer.",
|
||||
"agent_tool_unexsiting_coworker": "\nError executing tool. coworker mentioned not found, it must be one of the following options:\n{coworkers}\n",
|
||||
"agent_tool_unexisting_coworker": "\nError executing tool. coworker mentioned not found, it must be one of the following options:\n{coworkers}\n",
|
||||
"task_repeated_usage": "I tried reusing the same input, I must stop using this action input. I'll try something else instead.\n\n",
|
||||
"tool_usage_error": "I encountered an error: {error}",
|
||||
"tool_arguments_error": "Error: the Action Input is not a valid key, value dictionary.",
|
||||
@@ -37,6 +37,11 @@
|
||||
},
|
||||
"tools": {
|
||||
"delegate_work": "Delegate a specific task to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to execute the task, they know nothing about the task, so share absolute everything you know, don't reference things but instead explain them.",
|
||||
"ask_question": "Ask a specific question to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolute everything you know, don't reference things but instead explain them."
|
||||
"ask_question": "Ask a specific question to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolute everything you know, don't reference things but instead explain them.",
|
||||
"add_image": {
|
||||
"name": "Add image to content",
|
||||
"description": "See image to understand it's content, you can optionally ask a question about the image",
|
||||
"default_action": "Please provide a detailed description of this image, including all visual elements, context, and any notable details you can observe."
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,15 +1,17 @@
|
||||
from datetime import datetime, date
|
||||
import json
|
||||
from uuid import UUID
|
||||
from pydantic import BaseModel
|
||||
from datetime import date, datetime
|
||||
from decimal import Decimal
|
||||
from enum import Enum
|
||||
from uuid import UUID
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class CrewJSONEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
if isinstance(obj, BaseModel):
|
||||
return self._handle_pydantic_model(obj)
|
||||
elif isinstance(obj, UUID) or isinstance(obj, Decimal):
|
||||
elif isinstance(obj, UUID) or isinstance(obj, Decimal) or isinstance(obj, Enum):
|
||||
return str(obj)
|
||||
|
||||
elif isinstance(obj, datetime) or isinstance(obj, date):
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
import json
|
||||
import regex
|
||||
from typing import Any, Type
|
||||
|
||||
from crewai.agents.parser import OutputParserException
|
||||
import regex
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from crewai.agents.parser import OutputParserException
|
||||
|
||||
|
||||
class CrewPydanticOutputParser:
|
||||
"""Parses the text into pydantic models"""
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import os
|
||||
from typing import Any, Dict, cast
|
||||
from chromadb import EmbeddingFunction, Documents, Embeddings
|
||||
|
||||
from chromadb import Documents, EmbeddingFunction, Embeddings
|
||||
from chromadb.api.types import validate_embedding_function
|
||||
|
||||
|
||||
|
||||
@@ -1,13 +1,14 @@
|
||||
from collections import defaultdict
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from rich.box import HEAVY_EDGE
|
||||
from rich.console import Console
|
||||
from rich.table import Table
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.telemetry import Telemetry
|
||||
from pydantic import BaseModel, Field
|
||||
from rich.box import HEAVY_EDGE
|
||||
from rich.console import Console
|
||||
from rich.table import Table
|
||||
|
||||
|
||||
class TaskEvaluationPydanticOutput(BaseModel):
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
@@ -6,27 +5,17 @@ from pydantic import BaseModel, Field
|
||||
from crewai.utilities import Converter
|
||||
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
||||
|
||||
agentops = None
|
||||
try:
|
||||
from agentops import track_agent # type: ignore
|
||||
except ImportError:
|
||||
|
||||
def mock_agent_ops_provider():
|
||||
def track_agent(*args, **kwargs):
|
||||
def track_agent(name):
|
||||
def noop(f):
|
||||
return f
|
||||
|
||||
return noop
|
||||
|
||||
return track_agent
|
||||
|
||||
|
||||
agentops = None
|
||||
|
||||
if os.environ.get("AGENTOPS_API_KEY"):
|
||||
try:
|
||||
from agentops import track_agent
|
||||
except ImportError:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
else:
|
||||
track_agent = mock_agent_ops_provider()
|
||||
|
||||
|
||||
class Entity(BaseModel):
|
||||
name: str = Field(description="The name of the entity.")
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from typing import Any, Callable, Generic, List, Dict, Type, TypeVar
|
||||
from functools import wraps
|
||||
from pydantic import BaseModel
|
||||
from typing import Any, Callable, Dict, Generic, List, Type, TypeVar
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
T = TypeVar("T")
|
||||
EVT = TypeVar("EVT", bound=BaseModel)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import json
|
||||
import os
|
||||
from typing import Dict, Optional
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field, PrivateAttr, model_validator
|
||||
|
||||
@@ -41,8 +41,8 @@ class I18N(BaseModel):
|
||||
def errors(self, error: str) -> str:
|
||||
return self.retrieve("errors", error)
|
||||
|
||||
def tools(self, error: str) -> str:
|
||||
return self.retrieve("tools", error)
|
||||
def tools(self, tool: str) -> Union[str, Dict[str, str]]:
|
||||
return self.retrieve("tools", tool)
|
||||
|
||||
def retrieve(self, kind, key) -> str:
|
||||
try:
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.agent import Agent
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.utilities import I18N
|
||||
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Type, get_args, get_origin, Union
|
||||
from typing import Type, Union, get_args, get_origin
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
from pydantic import BaseModel, Field
|
||||
from datetime import datetime
|
||||
from typing import Dict, Any, Optional, List
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.memory.storage.kickoff_task_outputs_storage import (
|
||||
KickoffTaskOutputsSQLiteStorage,
|
||||
)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from litellm.types.utils import Usage
|
||||
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
|
||||
|
||||
@@ -11,7 +12,7 @@ class TokenCalcHandler(CustomLogger):
|
||||
if self.token_cost_process is None:
|
||||
return
|
||||
|
||||
usage : Usage = response_obj["usage"]
|
||||
usage: Usage = response_obj["usage"]
|
||||
self.token_cost_process.sum_successful_requests(1)
|
||||
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
|
||||
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
|
||||
|
||||
@@ -1595,19 +1595,15 @@ def test_agent_execute_task_with_ollama():
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_with_knowledge_sources():
|
||||
# Create a knowledge source with some content
|
||||
content = "Brandon's favorite color is blue and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(
|
||||
content=content, metadata={"preference": "personal"}
|
||||
)
|
||||
content = "Brandon's favorite color is red and he likes Mexican food."
|
||||
string_source = StringKnowledgeSource(content=content)
|
||||
|
||||
with patch(
|
||||
"crewai.knowledge.storage.knowledge_storage.KnowledgeStorage"
|
||||
) as MockKnowledge:
|
||||
mock_knowledge_instance = MockKnowledge.return_value
|
||||
mock_knowledge_instance.sources = [string_source]
|
||||
mock_knowledge_instance.query.return_value = [
|
||||
{"content": content, "metadata": {"preference": "personal"}}
|
||||
]
|
||||
mock_knowledge_instance.query.return_value = [{"content": content}]
|
||||
|
||||
agent = Agent(
|
||||
role="Information Agent",
|
||||
@@ -1628,4 +1624,4 @@ def test_agent_with_knowledge_sources():
|
||||
result = crew.kickoff()
|
||||
|
||||
# Assert that the agent provides the correct information
|
||||
assert "blue" in result.raw.lower()
|
||||
assert "red" in result.raw.lower()
|
||||
|
||||
@@ -1,9 +1,10 @@
|
||||
import hashlib
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class TestAgent(BaseAgent):
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
import pytest
|
||||
from crewai.agents.parser import CrewAgentParser
|
||||
|
||||
from crewai.agents.crew_agent_executor import (
|
||||
AgentAction,
|
||||
AgentFinish,
|
||||
OutputParserException,
|
||||
)
|
||||
from crewai.agents.parser import CrewAgentParser
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
||||
@@ -26237,7 +26237,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}], "model": "gpt-4o"}'
|
||||
headers:
|
||||
@@ -26590,7 +26590,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -26941,7 +26941,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -27292,7 +27292,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -27647,7 +27647,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -28005,7 +28005,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -28364,7 +28364,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -28718,7 +28718,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -29082,7 +29082,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -29441,7 +29441,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -29802,7 +29802,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -30170,7 +30170,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -30533,7 +30533,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -30907,7 +30907,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -31273,7 +31273,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -31644,7 +31644,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
@@ -32015,7 +32015,7 @@ interactions:
|
||||
answer."}, {"role": "user", "content": "I did it wrong. Invalid Format: I missed
|
||||
the ''Action:'' after ''Thought:''. I will do right next, and don''t use a tool
|
||||
I have already used.\n\nIf you don''t need to use any more tools, you must give
|
||||
your best complete final answer, make sure it satisfy the expect criteria, use
|
||||
your best complete final answer, make sure it satisfies the expected criteria, use
|
||||
the EXACT format below:\n\nThought: I now can give a great answer\nFinal Answer:
|
||||
my best complete final answer to the task.\n\n"}, {"role": "user", "content":
|
||||
"I did it wrong. Tried to both perform Action and give a Final Answer at the
|
||||
|
||||
@@ -247,7 +247,7 @@ interactions:
|
||||
{"role": "user", "content": "I did it wrong. Invalid Format: I missed the ''Action:''
|
||||
after ''Thought:''. I will do right next, and don''t use a tool I have already
|
||||
used.\n\nIf you don''t need to use any more tools, you must give your best complete
|
||||
final answer, make sure it satisfy the expect criteria, use the EXACT format
|
||||
final answer, make sure it satisfies the expected criteria, use the EXACT format
|
||||
below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete
|
||||
final answer to the task.\n\n"}], "model": "o1-preview"}'
|
||||
headers:
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -3,223 +3,17 @@ interactions:
|
||||
body: '{"messages": [{"role": "system", "content": "You are CEO. You''re an long
|
||||
time CEO of a content creation agency with a Senior Writer on the team. You''re
|
||||
now working on a new project and want to make sure the content produced is amazing.\nYour
|
||||
personal goal is: Make sure the writers in your company produce amazing content.\nYou
|
||||
ONLY have access to the following tools, and should NEVER make up tools that
|
||||
are not listed here:\n\nTool Name: Delegate work to coworker(task: str, context:
|
||||
str, coworker: Optional[str] = None, **kwargs)\nTool Description: Delegate a
|
||||
specific task to one of the following coworkers: Senior Writer\nThe input to
|
||||
this tool should be the coworker, the task you want them to do, and ALL necessary
|
||||
context to execute the task, they know nothing about the task, so share absolute
|
||||
everything you know, don''t reference things but instead explain them.\nTool
|
||||
Arguments: {''task'': {''title'': ''Task'', ''type'': ''string''}, ''context'':
|
||||
{''title'': ''Context'', ''type'': ''string''}, ''coworker'': {''title'': ''Coworker'',
|
||||
''type'': ''string''}, ''kwargs'': {''title'': ''Kwargs'', ''type'': ''object''}}\nTool
|
||||
Name: Ask question to coworker(question: str, context: str, coworker: Optional[str]
|
||||
= None, **kwargs)\nTool Description: Ask a specific question to one of the following
|
||||
coworkers: Senior Writer\nThe input to this tool should be the coworker, the
|
||||
question you have for them, and ALL necessary context to ask the question properly,
|
||||
they know nothing about the question, so share absolute everything you know,
|
||||
don''t reference things but instead explain them.\nTool Arguments: {''question'':
|
||||
{''title'': ''Question'', ''type'': ''string''}, ''context'': {''title'': ''Context'',
|
||||
''type'': ''string''}, ''coworker'': {''title'': ''Coworker'', ''type'': ''string''},
|
||||
''kwargs'': {''title'': ''Kwargs'', ''type'': ''object''}}\n\nUse the following
|
||||
format:\n\nThought: you should always think about what to do\nAction: the action
|
||||
to take, only one name of [Delegate work to coworker, Ask question to coworker],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple python dictionary, enclosed in curly braces, using \" to wrap
|
||||
keys and values.\nObservation: the result of the action\n\nOnce all necessary
|
||||
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question\n"}, {"role": "user", "content":
|
||||
"\nCurrent Task: Produce and amazing 1 paragraph draft of an article about AI
|
||||
Agents.\n\nThis is the expect criteria for your final answer: A 4 paragraph
|
||||
article about AI.\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '2762'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
|
||||
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.47.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.47.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AB7ZvxqgeOayGTQWwR61ASlZp0s74\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727214103,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: To ensure the content is amazing,
|
||||
I'll delegate the task of producing a one-paragraph draft of an article about
|
||||
AI Agents to the Senior Writer with all necessary context.\\n\\nAction: Delegate
|
||||
work to coworker\\nAction Input: \\n{\\n \\\"coworker\\\": \\\"Senior Writer\\\",
|
||||
\\n \\\"task\\\": \\\"Produce a one paragraph draft of an article about AI
|
||||
Agents\\\", \\n \\\"context\\\": \\\"We need an amazing one-paragraph draft
|
||||
as the beginning of a 4-paragraph article about AI Agents. This is for a high-stakes
|
||||
project that critically impacts our company. The paragraph should highlight
|
||||
what AI Agents are, their significance, and how they are transforming various
|
||||
industries. The tone should be professional yet engaging. Make sure the content
|
||||
is original, insightful, and thoroughly researched.\\\"\\n}\",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 608,\n \"completion_tokens\":
|
||||
160,\n \"total_tokens\": 768,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8c85f0b038a71cf3-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 24 Sep 2024 21:41:45 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1826'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999325'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 1ms
|
||||
x-request-id:
|
||||
- req_79054638deeb01da76c5bba273bffc28
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: !!binary |
|
||||
Cq8OCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkShg4KEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRKQAgoQg15EMIBbDpydrcK3GAUYfBII5VYz5B10kmgqDlRhc2sgRXhlY3V0aW9uMAE5
|
||||
aGIpYwtM+BdBIO6VVRNM+BdKLgoIY3Jld19rZXkSIgogZTNmZGEwZjMxMTBmZTgwYjE4OTQ3YzAx
|
||||
NDcxNDMwYTRKMQoHY3Jld19pZBImCiRjNzM1NzdhYi0xYThhLTQzMGYtYjYyZi01MTBlYWMyMWI3
|
||||
MThKLgoIdGFza19rZXkSIgogNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYyZGRKMQoHdGFz
|
||||
a19pZBImCiQ3MjAzMjYyMC0yMzJmLTQ5ZTMtOGMyNy0xYzBlOWJhNjFiZDB6AhgBhQEAAQAAEssJ
|
||||
ChB+du4H1wHcku5blhLQBtuoEgiXVguc5KA1RyoMQ3JldyBDcmVhdGVkMAE54IJsVxNM+BdBcCN4
|
||||
VxNM+BdKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC42MS4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMu
|
||||
MTEuN0ouCghjcmV3X2tleRIiCiBlNjQ5NTczYTI2ZTU4NzkwY2FjMjFhMzdjZDQ0NDM3YUoxCgdj
|
||||
cmV3X2lkEiYKJDI4ZTY0YmQ3LWNlYWMtNDYxOS04MmM3LTIzNmRkNTQxOGM4N0ocCgxjcmV3X3By
|
||||
b2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2Zf
|
||||
dGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAJKgAUKC2NyZXdfYWdlbnRzEvAE
|
||||
Cu0EW3sia2V5IjogIjMyODIxN2I2YzI5NTliZGZjNDdjYWQwMGU4NDg5MGQwIiwgImlkIjogIjQ1
|
||||
NjMxMmU3LThkMmMtNDcyMi1iNWNkLTlhMGRhMzg5MmM3OCIsICJyb2xlIjogIkNFTyIsICJ2ZXJi
|
||||
b3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAxNSwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25f
|
||||
Y2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6
|
||||
IHRydWUsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6
|
||||
IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4ZDU0ODE4
|
||||
YmE0NDZhZjciLCAiaWQiOiAiMTM0MDg5MjAtNzVjOC00MTk3LWIwNmQtY2I4MmNkZjhkZDhhIiwg
|
||||
InJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAx
|
||||
NSwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJn
|
||||
cHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRp
|
||||
b24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dSvgB
|
||||
CgpjcmV3X3Rhc2tzEukBCuYBW3sia2V5IjogIjBiOWQ2NWRiNmI3YWVkZmIzOThjNTllMmE5Zjcx
|
||||
ZWM1IiwgImlkIjogImQ0YjVhZmE2LTczNTEtNDUxMy04NzY2LTIzOGNjYTk5ZjRlZiIsICJhc3lu
|
||||
Y19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUi
|
||||
OiAiQ0VPIiwgImFnZW50X2tleSI6ICIzMjgyMTdiNmMyOTU5YmRmYzQ3Y2FkMDBlODQ4OTBkMCIs
|
||||
ICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChCLEGLGYlBkv0YucoYjY1NeEghRpGin
|
||||
zpZUiSoMVGFzayBDcmVhdGVkMAE5KCA2WBNM+BdBaLw2WBNM+BdKLgoIY3Jld19rZXkSIgogZTY0
|
||||
OTU3M2EyNmU1ODc5MGNhYzIxYTM3Y2Q0NDQzN2FKMQoHY3Jld19pZBImCiQyOGU2NGJkNy1jZWFj
|
||||
LTQ2MTktODJjNy0yMzZkZDU0MThjODdKLgoIdGFza19rZXkSIgogMGI5ZDY1ZGI2YjdhZWRmYjM5
|
||||
OGM1OWUyYTlmNzFlYzVKMQoHdGFza19pZBImCiRkNGI1YWZhNi03MzUxLTQ1MTMtODc2Ni0yMzhj
|
||||
Y2E5OWY0ZWZ6AhgBhQEAAQAA
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '1842'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Tue, 24 Sep 2024 21:41:46 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Senior Writer. You''re
|
||||
a senior writer, specialized in technology, software engineering, AI and startups.
|
||||
You work as a freelancer and are now working on writing content for a new customer.\nYour
|
||||
personal goal is: Write the best content about AI and AI agents.\nTo give my
|
||||
best complete final answer to the task use the exact following format:\n\nThought:
|
||||
personal goal is: Make sure the writers in your company produce amazing content.\nTo
|
||||
give my best complete final answer to the task use the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described.\n\nI MUST use
|
||||
these formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent
|
||||
Task: Produce a one paragraph draft of an article about AI Agents\n\nThis is
|
||||
the expect criteria for your final answer: Your best answer to your coworker
|
||||
asking you this, accounting for the context shared.\nyou MUST return the actual
|
||||
complete content as the final answer, not a summary.\n\nThis is the context
|
||||
you''re working with:\nWe need an amazing one-paragraph draft as the beginning
|
||||
of a 4-paragraph article about AI Agents. This is for a high-stakes project
|
||||
that critically impacts our company. The paragraph should highlight what AI
|
||||
Agents are, their significance, and how they are transforming various industries.
|
||||
The tone should be professional yet engaging. Make sure the content is original,
|
||||
insightful, and thoroughly researched.\n\nBegin! This is VERY important to you,
|
||||
use the tools available and give your best Final Answer, your job depends on
|
||||
it!\n\nThought:"}], "model": "gpt-4o"}'
|
||||
Task: Produce and amazing 1 paragraph draft of an article about AI Agents.\n\nThis
|
||||
is the expect criteria for your final answer: A 4 paragraph article about AI.\nyou
|
||||
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
|
||||
["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
@@ -228,16 +22,13 @@ interactions:
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1545'
|
||||
- '1105'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
|
||||
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.47.0
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
@@ -247,9 +38,11 @@ interactions:
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.47.0
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
@@ -257,31 +50,51 @@ interactions:
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AB7ZxDYcPlSiBZsftdRs2cWbUJllW\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727214105,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
content: "{\n \"id\": \"chatcmpl-Ahe7liUPejwfqxMe8aEWmKGJ837em\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1734965705,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Artificial Intelligence (AI) Agents are sophisticated computer programs
|
||||
designed to perform tasks that typically require human intelligence, such as
|
||||
decision making, problem-solving, and learning. These agents operate autonomously,
|
||||
utilizing vast amounts of data, advanced algorithms, and machine learning techniques
|
||||
to analyze their environment, adapt to new information, and improve their performance
|
||||
over time. The significance of AI Agents lies in their transformative potential
|
||||
across various industries. In healthcare, they assist in diagnosing diseases
|
||||
with greater accuracy; in finance, they predict market trends and manage risks;
|
||||
in customer service, they provide personalized and efficient responses. As these
|
||||
AI-powered entities continue to evolve, they are not only enhancing operational
|
||||
efficiencies but also driving innovation and creating new opportunities for
|
||||
growth and development in every sector they penetrate.\",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 297,\n \"completion_tokens\":
|
||||
160,\n \"total_tokens\": 457,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
|
||||
Answer: In the rapidly evolving landscape of technology, AI agents have emerged
|
||||
as formidable tools, revolutionizing how we interact with data and automate
|
||||
tasks. These sophisticated systems leverage machine learning and natural language
|
||||
processing to perform a myriad of functions, from virtual personal assistants
|
||||
to complex decision-making companions in industries such as finance, healthcare,
|
||||
and education. By mimicking human intelligence, AI agents can analyze massive
|
||||
data sets at unparalleled speeds, enabling businesses to uncover valuable insights,
|
||||
enhance productivity, and elevate user experiences to unprecedented levels.\\n\\nOne
|
||||
of the most striking aspects of AI agents is their adaptability; they learn
|
||||
from their interactions and continuously improve their performance over time.
|
||||
This feature is particularly valuable in customer service where AI agents can
|
||||
address inquiries, resolve issues, and provide personalized recommendations
|
||||
without the limitations of human fatigue. Moreover, with intuitive interfaces,
|
||||
AI agents enhance user interactions, making technology more accessible and user-friendly,
|
||||
thereby breaking down barriers that have historically hindered digital engagement.\\n\\nDespite
|
||||
their immense potential, the deployment of AI agents raises important ethical
|
||||
and practical considerations. Issues related to privacy, data security, and
|
||||
the potential for job displacement necessitate thoughtful dialogue and proactive
|
||||
measures. Striking a balance between technological innovation and societal impact
|
||||
will be crucial as organizations integrate these agents into their operations.
|
||||
Additionally, ensuring transparency in AI decision-making processes is vital
|
||||
to maintain public trust as AI agents become an integral part of daily life.\\n\\nLooking
|
||||
ahead, the future of AI agents appears bright, with ongoing advancements promising
|
||||
even greater capabilities. As we continue to harness the power of AI, we can
|
||||
expect these agents to play a transformative role in shaping various sectors\u2014streamlining
|
||||
workflows, enabling smarter decision-making, and fostering more personalized
|
||||
experiences. Embracing this technology responsibly can lead to a future where
|
||||
AI agents not only augment human effort but also inspire creativity and efficiency
|
||||
across the board, ultimately redefining our interaction with the digital world.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 208,\n \"completion_tokens\":
|
||||
382,\n \"total_tokens\": 590,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8c85f0c0cf961cf3-GRU
|
||||
- 8f6930c97a33ae54-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
@@ -289,45 +102,77 @@ interactions:
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 24 Sep 2024 21:41:48 GMT
|
||||
- Mon, 23 Dec 2024 14:55:10 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=g58erGPkGAltcfYpDRU4IsdEEzb955dGmBOAZacFlPA-1734965710-1.0.1.1-IiodiX3uxbT5xSa4seI7M.gRM4Jj46h2d6ZW2wCkSUYUAX.ivRh_sGQN2hucEMzdG8O87pc00dCl7E5W8KkyEA;
|
||||
path=/; expires=Mon, 23-Dec-24 15:25:10 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=eQzzWvIXDS8Me1OIBdCG5F1qFyVfAo3sumvYRE7J41E-1734965710778-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2468'
|
||||
- '5401'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999625'
|
||||
- '149999746'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_66c8801b42ac865249246d98225c1492
|
||||
- req_30791533923ae20626ef35a03ae66172
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: !!binary |
|
||||
CtwBCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSswEKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRKcAQoQROg/k5NCUGdgfvfLrFlQDxIIlfh6oMbmqu0qClRvb2wgVXNhZ2UwATlws+Wj
|
||||
FEz4F0EwBeijFEz4F0oaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjYxLjBKKAoJdG9vbF9uYW1lEhsK
|
||||
GURlbGVnYXRlIHdvcmsgdG8gY293b3JrZXJKDgoIYXR0ZW1wdHMSAhgBegIYAYUBAAEAAA==
|
||||
CqYMCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS/QsKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRLVCQoQLH3VghpS+l/DatJl8rrpvRIIUpNEm7ELU08qDENyZXcgQ3JlYXRlZDABObgs
|
||||
nNId1hMYQfgVpdId1hMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoaCg5weXRob25fdmVy
|
||||
c2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogZTY0OTU3M2EyNmU1ODc5MGNhYzIxYTM3Y2Q0
|
||||
NDQzN2FKMQoHY3Jld19pZBImCiQzYjVkNDFjNC1kZWJiLTQ2MzItYmIwMC1mNTdhNmM2M2QwMThK
|
||||
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
|
||||
bnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSooFCgtjcmV3
|
||||
X2FnZW50cxL6BAr3BFt7ImtleSI6ICIzMjgyMTdiNmMyOTU5YmRmYzQ3Y2FkMDBlODQ4OTBkMCIs
|
||||
ICJpZCI6ICI1Yjk4NDA2OS03MjVlLTQxOWYtYjdiZS1mMDdjMTYyOGNkZjIiLCAicm9sZSI6ICJD
|
||||
RU8iLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwg
|
||||
ImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvLW1pbmkiLCAiZGVsZWdh
|
||||
dGlvbl9lbmFibGVkPyI6IHRydWUsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1h
|
||||
eF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOWE1MDE1ZWY0
|
||||
ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiZjkwZWI0ZmItMzUyMC00ZDAyLTlhNDYt
|
||||
NDE2ZTNlNTQ5NWYxIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNl
|
||||
LCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0i
|
||||
OiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2Us
|
||||
ICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0
|
||||
b29sc19uYW1lcyI6IFtdfV1K+AEKCmNyZXdfdGFza3MS6QEK5gFbeyJrZXkiOiAiMGI5ZDY1ZGI2
|
||||
YjdhZWRmYjM5OGM1OWUyYTlmNzFlYzUiLCAiaWQiOiAiNzdmNDY3MDYtNzRjZi00ZGVkLThlMDUt
|
||||
NmRlZGM0MmYwZDliIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6
|
||||
IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJDRU8iLCAiYWdlbnRfa2V5IjogIjMyODIxN2I2YzI5NTli
|
||||
ZGZjNDdjYWQwMGU4NDg5MGQwIiwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASjgIKEBvb
|
||||
LkoAnHiD1gUnbftefpYSCNb1+4JxldizKgxUYXNrIENyZWF0ZWQwATmwYcTSHdYTGEEQz8TSHdYT
|
||||
GEouCghjcmV3X2tleRIiCiBlNjQ5NTczYTI2ZTU4NzkwY2FjMjFhMzdjZDQ0NDM3YUoxCgdjcmV3
|
||||
X2lkEiYKJDNiNWQ0MWM0LWRlYmItNDYzMi1iYjAwLWY1N2E2YzYzZDAxOEouCgh0YXNrX2tleRIi
|
||||
CiAwYjlkNjVkYjZiN2FlZGZiMzk4YzU5ZTJhOWY3MWVjNUoxCgd0YXNrX2lkEiYKJDc3ZjQ2NzA2
|
||||
LTc0Y2YtNGRlZC04ZTA1LTZkZWRjNDJmMGQ5YnoCGAGFAQABAAA=
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
@@ -336,7 +181,7 @@ interactions:
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '223'
|
||||
- '1577'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
@@ -352,213 +197,8 @@ interactions:
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Tue, 24 Sep 2024 21:41:51 GMT
|
||||
- Mon, 23 Dec 2024 14:55:10 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are CEO. You''re an long
|
||||
time CEO of a content creation agency with a Senior Writer on the team. You''re
|
||||
now working on a new project and want to make sure the content produced is amazing.\nYour
|
||||
personal goal is: Make sure the writers in your company produce amazing content.\nYou
|
||||
ONLY have access to the following tools, and should NEVER make up tools that
|
||||
are not listed here:\n\nTool Name: Delegate work to coworker(task: str, context:
|
||||
str, coworker: Optional[str] = None, **kwargs)\nTool Description: Delegate a
|
||||
specific task to one of the following coworkers: Senior Writer\nThe input to
|
||||
this tool should be the coworker, the task you want them to do, and ALL necessary
|
||||
context to execute the task, they know nothing about the task, so share absolute
|
||||
everything you know, don''t reference things but instead explain them.\nTool
|
||||
Arguments: {''task'': {''title'': ''Task'', ''type'': ''string''}, ''context'':
|
||||
{''title'': ''Context'', ''type'': ''string''}, ''coworker'': {''title'': ''Coworker'',
|
||||
''type'': ''string''}, ''kwargs'': {''title'': ''Kwargs'', ''type'': ''object''}}\nTool
|
||||
Name: Ask question to coworker(question: str, context: str, coworker: Optional[str]
|
||||
= None, **kwargs)\nTool Description: Ask a specific question to one of the following
|
||||
coworkers: Senior Writer\nThe input to this tool should be the coworker, the
|
||||
question you have for them, and ALL necessary context to ask the question properly,
|
||||
they know nothing about the question, so share absolute everything you know,
|
||||
don''t reference things but instead explain them.\nTool Arguments: {''question'':
|
||||
{''title'': ''Question'', ''type'': ''string''}, ''context'': {''title'': ''Context'',
|
||||
''type'': ''string''}, ''coworker'': {''title'': ''Coworker'', ''type'': ''string''},
|
||||
''kwargs'': {''title'': ''Kwargs'', ''type'': ''object''}}\n\nUse the following
|
||||
format:\n\nThought: you should always think about what to do\nAction: the action
|
||||
to take, only one name of [Delegate work to coworker, Ask question to coworker],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple python dictionary, enclosed in curly braces, using \" to wrap
|
||||
keys and values.\nObservation: the result of the action\n\nOnce all necessary
|
||||
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question\n"}, {"role": "user", "content":
|
||||
"\nCurrent Task: Produce and amazing 1 paragraph draft of an article about AI
|
||||
Agents.\n\nThis is the expect criteria for your final answer: A 4 paragraph
|
||||
article about AI.\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"},
|
||||
{"role": "assistant", "content": "Thought: To ensure the content is amazing,
|
||||
I''ll delegate the task of producing a one-paragraph draft of an article about
|
||||
AI Agents to the Senior Writer with all necessary context.\n\nAction: Delegate
|
||||
work to coworker\nAction Input: \n{\n \"coworker\": \"Senior Writer\", \n \"task\":
|
||||
\"Produce a one paragraph draft of an article about AI Agents\", \n \"context\":
|
||||
\"We need an amazing one-paragraph draft as the beginning of a 4-paragraph article
|
||||
about AI Agents. This is for a high-stakes project that critically impacts our
|
||||
company. The paragraph should highlight what AI Agents are, their significance,
|
||||
and how they are transforming various industries. The tone should be professional
|
||||
yet engaging. Make sure the content is original, insightful, and thoroughly
|
||||
researched.\"\n}\nObservation: Artificial Intelligence (AI) Agents are sophisticated
|
||||
computer programs designed to perform tasks that typically require human intelligence,
|
||||
such as decision making, problem-solving, and learning. These agents operate
|
||||
autonomously, utilizing vast amounts of data, advanced algorithms, and machine
|
||||
learning techniques to analyze their environment, adapt to new information,
|
||||
and improve their performance over time. The significance of AI Agents lies
|
||||
in their transformative potential across various industries. In healthcare,
|
||||
they assist in diagnosing diseases with greater accuracy; in finance, they predict
|
||||
market trends and manage risks; in customer service, they provide personalized
|
||||
and efficient responses. As these AI-powered entities continue to evolve, they
|
||||
are not only enhancing operational efficiencies but also driving innovation
|
||||
and creating new opportunities for growth and development in every sector they
|
||||
penetrate."}], "model": "gpt-4o"}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '4536'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
|
||||
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.47.0
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.47.0
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AB7a1PO3pMNybn76wXDFc5HE7ZRsL\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1727214109,\n \"model\": \"gpt-4o-2024-05-13\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: The paragraph provided by the
|
||||
Senior Writer is well-detailed and engaging. I will now structure the 4-paragraph
|
||||
article around this draft, adding an introduction, expanding on the specific
|
||||
applications in various industries, and concluding with the potential future
|
||||
impact of AI Agents.\\n\\nFinal Answer:\\n\\nArtificial Intelligence (AI) Agents
|
||||
are sophisticated computer programs designed to perform tasks that typically
|
||||
require human intelligence, such as decision making, problem-solving, and learning.
|
||||
These agents operate autonomously, utilizing vast amounts of data, advanced
|
||||
algorithms, and machine learning techniques to analyze their environment, adapt
|
||||
to new information, and improve their performance over time.\\n\\nThe significance
|
||||
of AI Agents lies in their transformative potential across various industries.
|
||||
In healthcare, for example, they assist in diagnosing diseases with greater
|
||||
accuracy and speed than human practitioners, offering personalized treatment
|
||||
plans by analyzing patient data. In finance, AI Agents predict market trends,
|
||||
manage risks, and even execute trades, contributing to more stable and profitable
|
||||
financial systems. Customer service sectors benefit significantly from AI Agents,
|
||||
as they provide personalized and efficient responses, often resolving issues
|
||||
faster than traditional methods.\\n\\nMoreover, AI Agents are also making substantial
|
||||
contributions in fields like education and manufacturing. In education, they
|
||||
offer tailored learning experiences by assessing individual student needs and
|
||||
adjusting teaching methods accordingly. They help educators identify students
|
||||
who might need additional support and provide resources to enhance learning
|
||||
outcomes. In manufacturing, AI Agents optimize production lines, predict equipment
|
||||
failures, and improve supply chain management, thus boosting productivity and
|
||||
reducing downtime.\\n\\nAs these AI-powered entities continue to evolve, they
|
||||
are not only enhancing operational efficiencies but also driving innovation
|
||||
and creating new opportunities for growth and development in every sector they
|
||||
penetrate. The future of AI Agents looks promising, with the potential to revolutionize
|
||||
the way we live and work, making processes more efficient, decisions more data-driven,
|
||||
and solutions more innovative than ever before.\\n\\nThis is now a well-rounded,
|
||||
four-paragraph article that comprehensively covers the topic of AI Agents.\\n\\nFinal
|
||||
Answer: This is the complete content as specified:\\nArtificial Intelligence
|
||||
(AI) Agents are sophisticated computer programs designed to perform tasks that
|
||||
typically require human intelligence, such as decision making, problem-solving,
|
||||
and learning. These agents operate autonomously, utilizing vast amounts of data,
|
||||
advanced algorithms, and machine learning techniques to analyze their environment,
|
||||
adapt to new information, and improve their performance over time.\\n\\nThe
|
||||
significance of AI Agents lies in their transformative potential across various
|
||||
industries. In healthcare, for example, they assist in diagnosing diseases with
|
||||
greater accuracy and speed than human practitioners, offering personalized treatment
|
||||
plans by analyzing patient data. In finance, AI Agents predict market trends,
|
||||
manage risks, and even execute trades, contributing to more stable and profitable
|
||||
financial systems. Customer service sectors benefit significantly from AI Agents,
|
||||
as they provide personalized and efficient responses, often resolving issues
|
||||
faster than traditional methods.\\n\\nMoreover, AI Agents are also making substantial
|
||||
contributions in fields like education and manufacturing. In education, they
|
||||
offer tailored learning experiences by assessing individual student needs and
|
||||
adjusting teaching methods accordingly. They help educators identify students
|
||||
who might need additional support and provide resources to enhance learning
|
||||
outcomes. In manufacturing, AI Agents optimize production lines, predict equipment
|
||||
failures, and improve supply chain management, thus boosting productivity and
|
||||
reducing downtime.\\n\\nAs these AI-powered entities continue to evolve, they
|
||||
are not only enhancing operational efficiencies but also driving innovation
|
||||
and creating new opportunities for growth and development in every sector they
|
||||
penetrate. The future of AI Agents looks promising, with the potential to revolutionize
|
||||
the way we live and work, making processes more efficient, decisions more data-driven,
|
||||
and solutions more innovative than ever before.\",\n \"refusal\": null\n
|
||||
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
|
||||
\ ],\n \"usage\": {\n \"prompt_tokens\": 923,\n \"completion_tokens\":
|
||||
715,\n \"total_tokens\": 1638,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
|
||||
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8c85f0d2f90c1cf3-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Tue, 24 Sep 2024 21:41:58 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '8591'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29998895'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 2ms
|
||||
x-request-id:
|
||||
- req_2b51b5cff02148d29b04284b40ca6081
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
|
||||
@@ -0,0 +1,480 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are CEO. You''re an long
|
||||
time CEO of a content creation agency with a Senior Writer on the team. You''re
|
||||
now working on a new project and want to make sure the content produced is amazing.\nYour
|
||||
personal goal is: Make sure the writers in your company produce amazing content.\nYou
|
||||
ONLY have access to the following tools, and should NEVER make up tools that
|
||||
are not listed here:\n\nTool Name: Test Tool\nTool Arguments: {''query'': {''description'':
|
||||
''Query to process'', ''type'': ''str''}}\nTool Description: A test tool that
|
||||
just returns the input\n\nUse the following format:\n\nThought: you should always
|
||||
think about what to do\nAction: the action to take, only one name of [Test Tool],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple python dictionary, enclosed in curly braces, using \" to wrap
|
||||
keys and values.\nObservation: the result of the action\n\nOnce all necessary
|
||||
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question"}, {"role": "user", "content":
|
||||
"\nCurrent Task: Produce and amazing 1 paragraph draft of an article about AI
|
||||
Agents.\n\nThis is the expect criteria for your final answer: A 4 paragraph
|
||||
article about AI.\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1581'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AhLsKP8xKkISk8ntUscyUKL30xRXW\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1734895556,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I need to gather information to create
|
||||
an amazing paragraph draft about AI Agents that aligns with the expected criteria
|
||||
of a 4-paragraph article about AI. \\n\\nAction: Test Tool \\nAction Input:
|
||||
{\\\"query\\\": \\\"Write a captivating and informative paragraph about AI Agents,
|
||||
focusing on their capabilities, applications, and significance in modern technology.\\\"}
|
||||
\ \",\n \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 309,\n \"completion_tokens\":
|
||||
68,\n \"total_tokens\": 377,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8f62802d0b3f00d5-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sun, 22 Dec 2024 19:25:57 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=vwBNilrHRgMLd8ALWzYrBO5Lm8ieJzbQ3WCVOgmuJ.s-1734895557-1.0.1.1-z.QnDsynL_Ndu.JkWrh_wGMo57vvpK88nWDBTA8P.6prlSRmA91GQLpP62yRUbCW6yoKFbDxroSaYO6qrzZPRg;
|
||||
path=/; expires=Sun, 22-Dec-24 19:55:57 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=2u_Xw.i716TDjD2vb2mvMyWxhA4q1MM1JvbrA8CNZpI-1734895557894-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1075'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999630'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_80fbcef3505afac708a24ef167b701bb
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are CEO. You''re an long
|
||||
time CEO of a content creation agency with a Senior Writer on the team. You''re
|
||||
now working on a new project and want to make sure the content produced is amazing.\nYour
|
||||
personal goal is: Make sure the writers in your company produce amazing content.\nYou
|
||||
ONLY have access to the following tools, and should NEVER make up tools that
|
||||
are not listed here:\n\nTool Name: Test Tool\nTool Arguments: {''query'': {''description'':
|
||||
''Query to process'', ''type'': ''str''}}\nTool Description: A test tool that
|
||||
just returns the input\n\nUse the following format:\n\nThought: you should always
|
||||
think about what to do\nAction: the action to take, only one name of [Test Tool],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple python dictionary, enclosed in curly braces, using \" to wrap
|
||||
keys and values.\nObservation: the result of the action\n\nOnce all necessary
|
||||
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question"}, {"role": "user", "content":
|
||||
"\nCurrent Task: Produce and amazing 1 paragraph draft of an article about AI
|
||||
Agents.\n\nThis is the expect criteria for your final answer: A 4 paragraph
|
||||
article about AI.\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"},
|
||||
{"role": "assistant", "content": "I need to gather information to create an
|
||||
amazing paragraph draft about AI Agents that aligns with the expected criteria
|
||||
of a 4-paragraph article about AI. \n\nAction: Test Tool \nAction Input: {\"query\":
|
||||
\"Write a captivating and informative paragraph about AI Agents, focusing on
|
||||
their capabilities, applications, and significance in modern technology.\"} \nObservation:
|
||||
Processed: Write a captivating and informative paragraph about AI Agents, focusing
|
||||
on their capabilities, applications, and significance in modern technology."}],
|
||||
"model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '2153'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=vwBNilrHRgMLd8ALWzYrBO5Lm8ieJzbQ3WCVOgmuJ.s-1734895557-1.0.1.1-z.QnDsynL_Ndu.JkWrh_wGMo57vvpK88nWDBTA8P.6prlSRmA91GQLpP62yRUbCW6yoKFbDxroSaYO6qrzZPRg;
|
||||
_cfuvid=2u_Xw.i716TDjD2vb2mvMyWxhA4q1MM1JvbrA8CNZpI-1734895557894-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AhLsMt1AgrzynC2TSJZZSwr9El8FV\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1734895558,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I have received the content
|
||||
related to AI Agents, which I need to now use as a foundation for creating a
|
||||
complete 4-paragraph article about AI. \\n\\nAction: Test Tool \\nAction Input:
|
||||
{\\\"query\\\": \\\"Based on the previous paragraph about AI Agents, write a
|
||||
4-paragraph article about AI, including an introduction, discussion of AI Agents,
|
||||
their applications, and a conclusion on the future of AI.\\\"} \",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 409,\n \"completion_tokens\":
|
||||
88,\n \"total_tokens\": 497,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8f6280352b9400d5-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sun, 22 Dec 2024 19:25:59 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1346'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999498'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_e25b377af34ef03b9a6955c9cfca5738
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: !!binary |
|
||||
CtoOCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSsQ4KEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRLrCQoQHzrcBLmZm6+CB9ZGtTnz1BIISnyRX3cExT4qDENyZXcgQ3JlYXRlZDABOdCK
|
||||
UxFRlhMYQdiyWhFRlhMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoaCg5weXRob25fdmVy
|
||||
c2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogZTY0OTU3M2EyNmU1ODc5MGNhYzIxYTM3Y2Q0
|
||||
NDQzN2FKMQoHY3Jld19pZBImCiQyYWFjYzYwZC0xYzE5LTRjZGYtYmJhNy1iM2RiMGM4YzFlZWZK
|
||||
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
|
||||
bnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSpUFCgtjcmV3
|
||||
X2FnZW50cxKFBQqCBVt7ImtleSI6ICIzMjgyMTdiNmMyOTU5YmRmYzQ3Y2FkMDBlODQ4OTBkMCIs
|
||||
ICJpZCI6ICJlZmE4ZWRlNS0wN2IyLTQzOWUtYWQ4Yi1iNmQ0Nzg5NjBkNzkiLCAicm9sZSI6ICJD
|
||||
RU8iLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwg
|
||||
ImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvLW1pbmkiLCAiZGVsZWdh
|
||||
dGlvbl9lbmFibGVkPyI6IHRydWUsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1h
|
||||
eF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsidGVzdCB0b29sIl19LCB7ImtleSI6
|
||||
ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICIxMDE2MGEzMC0zM2U4
|
||||
LTRlN2YtOTAzOC1lODU3Zjc2MzI0ZTUiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJv
|
||||
c2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9j
|
||||
YWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxl
|
||||
ZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xp
|
||||
bWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUqDAgoKY3Jld190YXNrcxL0AQrxAVt7ImtleSI6
|
||||
ICIwYjlkNjVkYjZiN2FlZGZiMzk4YzU5ZTJhOWY3MWVjNSIsICJpZCI6ICJiNjYyZWVkOS1kYzcy
|
||||
LTQ1NTEtYTdmMC1kY2E4ZTk3MmU3NjciLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVt
|
||||
YW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIkNFTyIsICJhZ2VudF9rZXkiOiAiMzI4
|
||||
MjE3YjZjMjk1OWJkZmM0N2NhZDAwZTg0ODkwZDAiLCAidG9vbHNfbmFtZXMiOiBbInRlc3QgdG9v
|
||||
bCJdfV16AhgBhQEAAQAAEo4CChDkOw+7vfeJwW1bc0PIIqxeEggzmQQt0SPl+ioMVGFzayBDcmVh
|
||||
dGVkMAE5OBlxEVGWExhBwKlxEVGWExhKLgoIY3Jld19rZXkSIgogZTY0OTU3M2EyNmU1ODc5MGNh
|
||||
YzIxYTM3Y2Q0NDQzN2FKMQoHY3Jld19pZBImCiQyYWFjYzYwZC0xYzE5LTRjZGYtYmJhNy1iM2Ri
|
||||
MGM4YzFlZWZKLgoIdGFza19rZXkSIgogMGI5ZDY1ZGI2YjdhZWRmYjM5OGM1OWUyYTlmNzFlYzVK
|
||||
MQoHdGFza19pZBImCiRiNjYyZWVkOS1kYzcyLTQ1NTEtYTdmMC1kY2E4ZTk3MmU3Njd6AhgBhQEA
|
||||
AQAAEowBChDS1rm7Q+c0w96t+encwsGJEgjRF+jTQh1PCyoKVG9vbCBVc2FnZTABOaAiFGtRlhMY
|
||||
QdiVImtRlhMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoYCgl0b29sX25hbWUSCwoJVGVz
|
||||
dCBUb29sSg4KCGF0dGVtcHRzEgIYAXoCGAGFAQABAAASjAEKECYGxNLnTRLCS76uAAOuzGwSCPmX
|
||||
kSTjWKCcKgpUb29sIFVzYWdlMAE5CH3Wx1GWExhBGH/xx1GWExhKGgoOY3Jld2FpX3ZlcnNpb24S
|
||||
CAoGMC44Ni4wShgKCXRvb2xfbmFtZRILCglUZXN0IFRvb2xKDgoIYXR0ZW1wdHMSAhgBegIYAYUB
|
||||
AAEAAA==
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '1885'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Sun, 22 Dec 2024 19:26:01 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are CEO. You''re an long
|
||||
time CEO of a content creation agency with a Senior Writer on the team. You''re
|
||||
now working on a new project and want to make sure the content produced is amazing.\nYour
|
||||
personal goal is: Make sure the writers in your company produce amazing content.\nYou
|
||||
ONLY have access to the following tools, and should NEVER make up tools that
|
||||
are not listed here:\n\nTool Name: Test Tool\nTool Arguments: {''query'': {''description'':
|
||||
''Query to process'', ''type'': ''str''}}\nTool Description: A test tool that
|
||||
just returns the input\n\nUse the following format:\n\nThought: you should always
|
||||
think about what to do\nAction: the action to take, only one name of [Test Tool],
|
||||
just the name, exactly as it''s written.\nAction Input: the input to the action,
|
||||
just a simple python dictionary, enclosed in curly braces, using \" to wrap
|
||||
keys and values.\nObservation: the result of the action\n\nOnce all necessary
|
||||
information is gathered:\n\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question"}, {"role": "user", "content":
|
||||
"\nCurrent Task: Produce and amazing 1 paragraph draft of an article about AI
|
||||
Agents.\n\nThis is the expect criteria for your final answer: A 4 paragraph
|
||||
article about AI.\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"},
|
||||
{"role": "assistant", "content": "I need to gather information to create an
|
||||
amazing paragraph draft about AI Agents that aligns with the expected criteria
|
||||
of a 4-paragraph article about AI. \n\nAction: Test Tool \nAction Input: {\"query\":
|
||||
\"Write a captivating and informative paragraph about AI Agents, focusing on
|
||||
their capabilities, applications, and significance in modern technology.\"} \nObservation:
|
||||
Processed: Write a captivating and informative paragraph about AI Agents, focusing
|
||||
on their capabilities, applications, and significance in modern technology."},
|
||||
{"role": "assistant", "content": "Thought: I have received the content related
|
||||
to AI Agents, which I need to now use as a foundation for creating a complete
|
||||
4-paragraph article about AI. \n\nAction: Test Tool \nAction Input: {\"query\":
|
||||
\"Based on the previous paragraph about AI Agents, write a 4-paragraph article
|
||||
about AI, including an introduction, discussion of AI Agents, their applications,
|
||||
and a conclusion on the future of AI.\"} \nObservation: Processed: Based on
|
||||
the previous paragraph about AI Agents, write a 4-paragraph article about AI,
|
||||
including an introduction, discussion of AI Agents, their applications, and
|
||||
a conclusion on the future of AI."}], "model": "gpt-4o-mini", "stop": ["\nObservation:"],
|
||||
"stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '2820'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=vwBNilrHRgMLd8ALWzYrBO5Lm8ieJzbQ3WCVOgmuJ.s-1734895557-1.0.1.1-z.QnDsynL_Ndu.JkWrh_wGMo57vvpK88nWDBTA8P.6prlSRmA91GQLpP62yRUbCW6yoKFbDxroSaYO6qrzZPRg;
|
||||
_cfuvid=2u_Xw.i716TDjD2vb2mvMyWxhA4q1MM1JvbrA8CNZpI-1734895557894-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AhLsNJa6GxRIHF8l8eViU7D6CyBHP\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1734895559,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I have gathered the complete
|
||||
article on AI, which aligns with the expected criteria. Now I will present the
|
||||
final answer as required. \\n\\nFinal Answer: \\n\\nArtificial Intelligence
|
||||
(AI) has rapidly evolved to become an integral part of our modern world, driving
|
||||
significant advancements across various industries. AI refers to the simulation
|
||||
of human intelligence in machines programmed to think and learn like humans.
|
||||
This technology enables machines to analyze data, recognize patterns, and make
|
||||
decisions with minimal human intervention, paving the way for innovation in
|
||||
fields like healthcare, finance, and transportation.\\n\\nAI Agents, in particular,
|
||||
embody the future of artificial intelligence by acting autonomously to perform
|
||||
complex tasks. These agents leverage machine learning and natural language processing
|
||||
to interact with users and understand their needs. They're deployed in customer
|
||||
service applications, virtual assistants, and personal scheduling tools, showcasing
|
||||
their capability to streamline processes and enhance user experience. By mimicking
|
||||
human reasoning, AI Agents can adapt to changing situations and provide personalized
|
||||
solutions.\\n\\nThe applications of AI Agents extend beyond mere task completion;
|
||||
they are transforming the way businesses operate. In the realm of customer engagement,
|
||||
AI Agents analyze customer behavior to provide insights that help companies
|
||||
tailor their offerings. In healthcare, they assist in diagnosing illnesses by
|
||||
analyzing patient data and suggesting treatments. The versatility of AI Agents
|
||||
makes them invaluable assets in our increasingly automated world.\\n\\nAs we
|
||||
look to the future, the potential of AI continues to expand. With ongoing advancements
|
||||
in technology, AI Agents are set to become even more sophisticated, further
|
||||
bridging the gap between humans and machines. The prospects of AI promise not
|
||||
only to improve efficiency and productivity but also to change the way we live
|
||||
and work, promising a future where intelligent, autonomous agents support us
|
||||
in our daily lives.\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
546,\n \"completion_tokens\": 343,\n \"total_tokens\": 889,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8f62803eed8100d5-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sun, 22 Dec 2024 19:26:04 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '4897'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999342'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_65fdf94aa8bbc10f64f2a27ccdcc5cc8
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -0,0 +1,623 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are CEO. You''re an long
|
||||
time CEO of a content creation agency with a Senior Writer on the team. You''re
|
||||
now working on a new project and want to make sure the content produced is amazing.\nYour
|
||||
personal goal is: Make sure the writers in your company produce amazing content.\nYou
|
||||
ONLY have access to the following tools, and should NEVER make up tools that
|
||||
are not listed here:\n\nTool Name: Test Tool\nTool Arguments: {''query'': {''description'':
|
||||
''Query to process'', ''type'': ''str''}}\nTool Description: A test tool that
|
||||
just returns the input\nTool Name: Delegate work to coworker\nTool Arguments:
|
||||
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
|
||||
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
|
||||
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
|
||||
''str''}}\nTool Description: Delegate a specific task to one of the following
|
||||
coworkers: Senior Writer\nThe input to this tool should be the coworker, the
|
||||
task you want them to do, and ALL necessary context to execute the task, they
|
||||
know nothing about the task, so share absolute everything you know, don''t reference
|
||||
things but instead explain them.\nTool Name: Ask question to coworker\nTool
|
||||
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
|
||||
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
|
||||
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
|
||||
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
|
||||
of the following coworkers: Senior Writer\nThe input to this tool should be
|
||||
the coworker, the question you have for them, and ALL necessary context to ask
|
||||
the question properly, they know nothing about the question, so share absolute
|
||||
everything you know, don''t reference things but instead explain them.\n\nUse
|
||||
the following format:\n\nThought: you should always think about what to do\nAction:
|
||||
the action to take, only one name of [Test Tool, Delegate work to coworker,
|
||||
Ask question to coworker], just the name, exactly as it''s written.\nAction
|
||||
Input: the input to the action, just a simple python dictionary, enclosed in
|
||||
curly braces, using \" to wrap keys and values.\nObservation: the result of
|
||||
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
|
||||
know the final answer\nFinal Answer: the final answer to the original input
|
||||
question"}, {"role": "user", "content": "\nCurrent Task: Produce and amazing
|
||||
1 paragraph draft of an article about AI Agents.\n\nThis is the expect criteria
|
||||
for your final answer: A 4 paragraph article about AI.\nyou MUST return the
|
||||
actual complete content as the final answer, not a summary.\n\nBegin! This is
|
||||
VERY important to you, use the tools available and give your best Final Answer,
|
||||
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"],
|
||||
"stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '2892'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AhLQELAjJpn76wiLmWBinm3sqf32l\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1734893814,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I need to gather information and insights
|
||||
to ensure the Senior Writer produces a high-quality draft about AI Agents, which
|
||||
will then serve as a foundation for the complete article.\\n\\nAction: Ask question
|
||||
to coworker \\nAction Input: {\\\"question\\\":\\\"Can you provide a detailed
|
||||
overview of what AI Agents are, their functionalities, and their applications
|
||||
in real-world scenarios? Please include examples of how they are being used
|
||||
in various industries, and discuss their potential impact on the future of technology
|
||||
and society.\\\",\\\"context\\\":\\\"We are looking to create a comprehensive
|
||||
understanding of AI Agents as part of a four-paragraph article. This will help
|
||||
generate a high-quality draft for the article.\\\",\\\"coworker\\\":\\\"Senior
|
||||
Writer\\\"} \",\n \"refusal\": null\n },\n \"logprobs\": null,\n
|
||||
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
604,\n \"completion_tokens\": 138,\n \"total_tokens\": 742,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8f6255a1bf08a519-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sun, 22 Dec 2024 18:56:56 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=rVquIlcnYXc7wMkbKG5Ii90HxfQ_ukNJjDgSHhsWb1k-1734893816-1.0.1.1-33qDl8KNWcxLAGBuPhT8FrZ6QUnEy9oOYh2Fp2hIjDnF.cQlyrgxiWcuHljTTxG_mH7eQrf1AHJ6p8sxZJZ30A;
|
||||
path=/; expires=Sun, 22-Dec-24 19:26:56 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=xqgLJsf3h5lBKZFTADRNNUqizeChNBBFoLvWiR2WPnw-1734893816555-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '2340'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999305'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_53956b48bd1188451efc104e8a234ef4
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: !!binary |
|
||||
CrEMCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSiAwKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRLgCQoQg/HA64g3phKbzz/hvUtbahIIpu+Csq+uWc0qDENyZXcgQ3JlYXRlZDABOSDm
|
||||
Uli7lBMYQcgRXFi7lBMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoaCg5weXRob25fdmVy
|
||||
c2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogZTY0OTU3M2EyNmU1ODc5MGNhYzIxYTM3Y2Q0
|
||||
NDQzN2FKMQoHY3Jld19pZBImCiRhMWFjMTc0Ny0xMTA0LTRlZjItODZkNi02ZGRhNTFmMDlmMTdK
|
||||
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
|
||||
bnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSooFCgtjcmV3
|
||||
X2FnZW50cxL6BAr3BFt7ImtleSI6ICIzMjgyMTdiNmMyOTU5YmRmYzQ3Y2FkMDBlODQ4OTBkMCIs
|
||||
ICJpZCI6ICI4YWUwNGY0Yy0wMjNiLTRkNWQtODAwZC02ZjlkMWFmMWExOTkiLCAicm9sZSI6ICJD
|
||||
RU8iLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwg
|
||||
ImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvLW1pbmkiLCAiZGVsZWdh
|
||||
dGlvbl9lbmFibGVkPyI6IHRydWUsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1h
|
||||
eF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOWE1MDE1ZWY0
|
||||
ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiNDg2MWQ4YTMtMjMxYS00Mzc5LTk2ZmEt
|
||||
MWQwZmQyZDI1MGYxIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNl
|
||||
LCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0i
|
||||
OiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2Us
|
||||
ICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0
|
||||
b29sc19uYW1lcyI6IFtdfV1KgwIKCmNyZXdfdGFza3MS9AEK8QFbeyJrZXkiOiAiMGI5ZDY1ZGI2
|
||||
YjdhZWRmYjM5OGM1OWUyYTlmNzFlYzUiLCAiaWQiOiAiY2IyMmIxMzctZTA3ZC00NDA5LWI5NmMt
|
||||
ZWQ2ZDU3MjFhNDNiIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6
|
||||
IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJDRU8iLCAiYWdlbnRfa2V5IjogIjMyODIxN2I2YzI5NTli
|
||||
ZGZjNDdjYWQwMGU4NDg5MGQwIiwgInRvb2xzX25hbWVzIjogWyJ0ZXN0IHRvb2wiXX1degIYAYUB
|
||||
AAEAABKOAgoQB7Z9AEDI9OTStHqguBSbLxIIj9dttVFJs9cqDFRhc2sgQ3JlYXRlZDABOYDae1i7
|
||||
lBMYQeBHfFi7lBMYSi4KCGNyZXdfa2V5EiIKIGU2NDk1NzNhMjZlNTg3OTBjYWMyMWEzN2NkNDQ0
|
||||
MzdhSjEKB2NyZXdfaWQSJgokYTFhYzE3NDctMTEwNC00ZWYyLTg2ZDYtNmRkYTUxZjA5ZjE3Si4K
|
||||
CHRhc2tfa2V5EiIKIDBiOWQ2NWRiNmI3YWVkZmIzOThjNTllMmE5ZjcxZWM1SjEKB3Rhc2tfaWQS
|
||||
JgokY2IyMmIxMzctZTA3ZC00NDA5LWI5NmMtZWQ2ZDU3MjFhNDNiegIYAYUBAAEAAA==
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '1588'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Sun, 22 Dec 2024 18:56:59 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Senior Writer. You''re
|
||||
a senior writer, specialized in technology, software engineering, AI and startups.
|
||||
You work as a freelancer and are now working on writing content for a new customer.\nYour
|
||||
personal goal is: Write the best content about AI and AI agents.\nTo give my
|
||||
best complete final answer to the task use the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described.\n\nI MUST use
|
||||
these formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent
|
||||
Task: Can you provide a detailed overview of what AI Agents are, their functionalities,
|
||||
and their applications in real-world scenarios? Please include examples of how
|
||||
they are being used in various industries, and discuss their potential impact
|
||||
on the future of technology and society.\n\nThis is the expect criteria for
|
||||
your final answer: Your best answer to your coworker asking you this, accounting
|
||||
for the context shared.\nyou MUST return the actual complete content as the
|
||||
final answer, not a summary.\n\nThis is the context you''re working with:\nWe
|
||||
are looking to create a comprehensive understanding of AI Agents as part of
|
||||
a four-paragraph article. This will help generate a high-quality draft for the
|
||||
article.\n\nBegin! This is VERY important to you, use the tools available and
|
||||
give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
|
||||
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1572'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=rVquIlcnYXc7wMkbKG5Ii90HxfQ_ukNJjDgSHhsWb1k-1734893816-1.0.1.1-33qDl8KNWcxLAGBuPhT8FrZ6QUnEy9oOYh2Fp2hIjDnF.cQlyrgxiWcuHljTTxG_mH7eQrf1AHJ6p8sxZJZ30A;
|
||||
_cfuvid=xqgLJsf3h5lBKZFTADRNNUqizeChNBBFoLvWiR2WPnw-1734893816555-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AhLQG5ubl99yeBYm6TTV0sodagMND\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1734893816,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: \\n\\n**Overview of AI Agents** \\nAI agents are advanced software
|
||||
systems designed to autonomously perform tasks, make decisions, and learn from
|
||||
their environments without needing constant human intervention. They leverage
|
||||
machine learning, natural language processing, and various AI techniques to
|
||||
simulate human-like understanding and autonomy. These agents can be categorized
|
||||
into three types: reactive agents (which operate purely based on their environment),
|
||||
deliberative agents (which can make decisions based on reasoning), and hybrid
|
||||
agents that incorporate aspects of both types. Their ability to adapt and learn
|
||||
over time makes them instrumental in automating processes across various domains.\\n\\n**Functionalities
|
||||
of AI Agents** \\nThe core functionalities of AI agents include perception,
|
||||
action, learning, and interaction. They perceive data through sensors or data
|
||||
feeds, process information through algorithms, and take actions based on this
|
||||
data. Machine learning allows them to refine their performance over time by
|
||||
analyzing outcomes and adjusting their strategies accordingly. Interaction capabilities
|
||||
enable them to communicate with users, providing insights, answering queries,
|
||||
or even negotiating in some cases. These functionalities make AI agents invaluable
|
||||
for tasks such as predictive analytics, personal assistance, and real-time decision-making
|
||||
in complex systems.\\n\\n**Applications in Various Industries** \\nAI agents
|
||||
are already being utilized across multiple industries, demonstrating their versatility
|
||||
and efficiency. In healthcare, AI agents assist in diagnostics by analyzing
|
||||
medical records and suggesting treatment plans tailored to individual patients.
|
||||
In finance, they power robo-advisors that manage investment portfolios, automate
|
||||
trading strategies, and provide financial advice based on real-time market analysis.
|
||||
Furthermore, in customer service, AI chatbots serve as virtual assistants, enhancing
|
||||
user experience by providing instant support and resolving queries without human
|
||||
intervention. The logistics and supply chain industries have also seen AI agents
|
||||
optimize inventory management and route planning, significantly improving operational
|
||||
efficiency.\\n\\n**Future Impact on Technology and Society** \\nThe ongoing
|
||||
development of AI agents is poised to have a profound impact on technology and
|
||||
society. As these agents become more sophisticated, we can anticipate a shift
|
||||
towards increased automation in both professional and personal spheres, leading
|
||||
to enhanced productivity and new business models. However, this automation introduces
|
||||
challenges such as job displacement and ethical considerations regarding decision-making
|
||||
by AI. It is essential to foster an ongoing dialogue on the implications of
|
||||
AI agents to ensure responsible development and integration into our daily lives.
|
||||
As AI agents continue to evolve, they will undoubtedly play a pivotal role in
|
||||
shaping the future of technology and its intersection with societal dynamics,
|
||||
making it critical for us to engage thoughtfully with this emerging paradigm.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 289,\n \"completion_tokens\":
|
||||
506,\n \"total_tokens\": 795,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8f6255b1f832a519-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sun, 22 Dec 2024 18:57:04 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '7836'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999630'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_c14268346d6ce72ceea4b1472f73c5ae
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: !!binary |
|
||||
CtsBCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSsgEKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRKbAQoQ7U/1ZgBSTkCXtesUNPA2URIIrnRWFVT58Z8qClRvb2wgVXNhZ2UwATl4lN3i
|
||||
vZQTGEGgevzivZQTGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKJwoJdG9vbF9uYW1lEhoK
|
||||
GEFzayBxdWVzdGlvbiB0byBjb3dvcmtlckoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAA
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '222'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Sun, 22 Dec 2024 18:57:09 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are CEO. You''re an long
|
||||
time CEO of a content creation agency with a Senior Writer on the team. You''re
|
||||
now working on a new project and want to make sure the content produced is amazing.\nYour
|
||||
personal goal is: Make sure the writers in your company produce amazing content.\nYou
|
||||
ONLY have access to the following tools, and should NEVER make up tools that
|
||||
are not listed here:\n\nTool Name: Test Tool\nTool Arguments: {''query'': {''description'':
|
||||
''Query to process'', ''type'': ''str''}}\nTool Description: A test tool that
|
||||
just returns the input\nTool Name: Delegate work to coworker\nTool Arguments:
|
||||
{''task'': {''description'': ''The task to delegate'', ''type'': ''str''}, ''context'':
|
||||
{''description'': ''The context for the task'', ''type'': ''str''}, ''coworker'':
|
||||
{''description'': ''The role/name of the coworker to delegate to'', ''type'':
|
||||
''str''}}\nTool Description: Delegate a specific task to one of the following
|
||||
coworkers: Senior Writer\nThe input to this tool should be the coworker, the
|
||||
task you want them to do, and ALL necessary context to execute the task, they
|
||||
know nothing about the task, so share absolute everything you know, don''t reference
|
||||
things but instead explain them.\nTool Name: Ask question to coworker\nTool
|
||||
Arguments: {''question'': {''description'': ''The question to ask'', ''type'':
|
||||
''str''}, ''context'': {''description'': ''The context for the question'', ''type'':
|
||||
''str''}, ''coworker'': {''description'': ''The role/name of the coworker to
|
||||
ask'', ''type'': ''str''}}\nTool Description: Ask a specific question to one
|
||||
of the following coworkers: Senior Writer\nThe input to this tool should be
|
||||
the coworker, the question you have for them, and ALL necessary context to ask
|
||||
the question properly, they know nothing about the question, so share absolute
|
||||
everything you know, don''t reference things but instead explain them.\n\nUse
|
||||
the following format:\n\nThought: you should always think about what to do\nAction:
|
||||
the action to take, only one name of [Test Tool, Delegate work to coworker,
|
||||
Ask question to coworker], just the name, exactly as it''s written.\nAction
|
||||
Input: the input to the action, just a simple python dictionary, enclosed in
|
||||
curly braces, using \" to wrap keys and values.\nObservation: the result of
|
||||
the action\n\nOnce all necessary information is gathered:\n\nThought: I now
|
||||
know the final answer\nFinal Answer: the final answer to the original input
|
||||
question"}, {"role": "user", "content": "\nCurrent Task: Produce and amazing
|
||||
1 paragraph draft of an article about AI Agents.\n\nThis is the expect criteria
|
||||
for your final answer: A 4 paragraph article about AI.\nyou MUST return the
|
||||
actual complete content as the final answer, not a summary.\n\nBegin! This is
|
||||
VERY important to you, use the tools available and give your best Final Answer,
|
||||
your job depends on it!\n\nThought:"}, {"role": "assistant", "content": "I need
|
||||
to gather information and insights to ensure the Senior Writer produces a high-quality
|
||||
draft about AI Agents, which will then serve as a foundation for the complete
|
||||
article.\n\nAction: Ask question to coworker \nAction Input: {\"question\":\"Can
|
||||
you provide a detailed overview of what AI Agents are, their functionalities,
|
||||
and their applications in real-world scenarios? Please include examples of how
|
||||
they are being used in various industries, and discuss their potential impact
|
||||
on the future of technology and society.\",\"context\":\"We are looking to create
|
||||
a comprehensive understanding of AI Agents as part of a four-paragraph article.
|
||||
This will help generate a high-quality draft for the article.\",\"coworker\":\"Senior
|
||||
Writer\"} \nObservation: **Overview of AI Agents** \nAI agents are advanced
|
||||
software systems designed to autonomously perform tasks, make decisions, and
|
||||
learn from their environments without needing constant human intervention. They
|
||||
leverage machine learning, natural language processing, and various AI techniques
|
||||
to simulate human-like understanding and autonomy. These agents can be categorized
|
||||
into three types: reactive agents (which operate purely based on their environment),
|
||||
deliberative agents (which can make decisions based on reasoning), and hybrid
|
||||
agents that incorporate aspects of both types. Their ability to adapt and learn
|
||||
over time makes them instrumental in automating processes across various domains.\n\n**Functionalities
|
||||
of AI Agents** \nThe core functionalities of AI agents include perception,
|
||||
action, learning, and interaction. They perceive data through sensors or data
|
||||
feeds, process information through algorithms, and take actions based on this
|
||||
data. Machine learning allows them to refine their performance over time by
|
||||
analyzing outcomes and adjusting their strategies accordingly. Interaction capabilities
|
||||
enable them to communicate with users, providing insights, answering queries,
|
||||
or even negotiating in some cases. These functionalities make AI agents invaluable
|
||||
for tasks such as predictive analytics, personal assistance, and real-time decision-making
|
||||
in complex systems.\n\n**Applications in Various Industries** \nAI agents are
|
||||
already being utilized across multiple industries, demonstrating their versatility
|
||||
and efficiency. In healthcare, AI agents assist in diagnostics by analyzing
|
||||
medical records and suggesting treatment plans tailored to individual patients.
|
||||
In finance, they power robo-advisors that manage investment portfolios, automate
|
||||
trading strategies, and provide financial advice based on real-time market analysis.
|
||||
Furthermore, in customer service, AI chatbots serve as virtual assistants, enhancing
|
||||
user experience by providing instant support and resolving queries without human
|
||||
intervention. The logistics and supply chain industries have also seen AI agents
|
||||
optimize inventory management and route planning, significantly improving operational
|
||||
efficiency.\n\n**Future Impact on Technology and Society** \nThe ongoing development
|
||||
of AI agents is poised to have a profound impact on technology and society.
|
||||
As these agents become more sophisticated, we can anticipate a shift towards
|
||||
increased automation in both professional and personal spheres, leading to enhanced
|
||||
productivity and new business models. However, this automation introduces challenges
|
||||
such as job displacement and ethical considerations regarding decision-making
|
||||
by AI. It is essential to foster an ongoing dialogue on the implications of
|
||||
AI agents to ensure responsible development and integration into our daily lives.
|
||||
As AI agents continue to evolve, they will undoubtedly play a pivotal role in
|
||||
shaping the future of technology and its intersection with societal dynamics,
|
||||
making it critical for us to engage thoughtfully with this emerging paradigm."}],
|
||||
"model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '6755'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=rVquIlcnYXc7wMkbKG5Ii90HxfQ_ukNJjDgSHhsWb1k-1734893816-1.0.1.1-33qDl8KNWcxLAGBuPhT8FrZ6QUnEy9oOYh2Fp2hIjDnF.cQlyrgxiWcuHljTTxG_mH7eQrf1AHJ6p8sxZJZ30A;
|
||||
_cfuvid=xqgLJsf3h5lBKZFTADRNNUqizeChNBBFoLvWiR2WPnw-1734893816555-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AhLQOmLKuevpaWtRyyhHjHVYqvNVk\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1734893824,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I have received a comprehensive
|
||||
overview from the Senior Writer that includes the necessary information about
|
||||
AI Agents, their functionalities, applications, and future implications. Now,
|
||||
I can compile this into a final answer following the specified format: a complete
|
||||
four-paragraph article.\\n\\nFinal Answer: \\n\\n**Overview of AI Agents** \\nAI
|
||||
agents are advanced software systems designed to autonomously perform tasks,
|
||||
make decisions, and learn from their environments without needing constant human
|
||||
intervention. They leverage machine learning, natural language processing, and
|
||||
various AI techniques to simulate human-like understanding and autonomy. These
|
||||
agents can be categorized into three types: reactive agents (which operate purely
|
||||
based on their environment), deliberative agents (which can make decisions based
|
||||
on reasoning), and hybrid agents that incorporate aspects of both types. Their
|
||||
ability to adapt and learn over time makes them instrumental in automating processes
|
||||
across various domains.\\n\\n**Functionalities of AI Agents** \\nThe core functionalities
|
||||
of AI agents include perception, action, learning, and interaction. They perceive
|
||||
data through sensors or data feeds, process information through algorithms,
|
||||
and take actions based on this data. Machine learning allows them to refine
|
||||
their performance over time by analyzing outcomes and adjusting their strategies
|
||||
accordingly. Interaction capabilities enable them to communicate with users,
|
||||
providing insights, answering queries, or even negotiating in some cases. These
|
||||
functionalities make AI agents invaluable for tasks such as predictive analytics,
|
||||
personal assistance, and real-time decision-making in complex systems.\\n\\n**Applications
|
||||
in Various Industries** \\nAI agents are already being utilized across multiple
|
||||
industries, demonstrating their versatility and efficiency. In healthcare, AI
|
||||
agents assist in diagnostics by analyzing medical records and suggesting treatment
|
||||
plans tailored to individual patients. In finance, they power robo-advisors
|
||||
that manage investment portfolios, automate trading strategies, and provide
|
||||
financial advice based on real-time market analysis. Furthermore, in customer
|
||||
service, AI chatbots serve as virtual assistants, enhancing user experience
|
||||
by providing instant support and resolving queries without human intervention.
|
||||
The logistics and supply chain industries have also seen AI agents optimize
|
||||
inventory management and route planning, significantly improving operational
|
||||
efficiency.\\n\\n**Future Impact on Technology and Society** \\nThe ongoing
|
||||
development of AI agents is poised to have a profound impact on technology and
|
||||
society. As these agents become more sophisticated, we can anticipate a shift
|
||||
towards increased automation in both professional and personal spheres, leading
|
||||
to enhanced productivity and new business models. However, this automation introduces
|
||||
challenges such as job displacement and ethical considerations regarding decision-making
|
||||
by AI. It is essential to foster an ongoing dialogue on the implications of
|
||||
AI agents to ensure responsible development and integration into our daily lives.
|
||||
As AI agents continue to evolve, they will undoubtedly play a pivotal role in
|
||||
shaping the future of technology and its intersection with societal dynamics,
|
||||
making it critical for us to engage thoughtfully with this emerging paradigm.\",\n
|
||||
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
|
||||
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 1242,\n \"completion_tokens\":
|
||||
550,\n \"total_tokens\": 1792,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_0aa8d3e20b\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8f6255e49b37a519-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Sun, 22 Dec 2024 18:57:12 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '7562'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149998353'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_a812bbb85b3d785660c4662212614ab9
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
File diff suppressed because it is too large
Load Diff
481
tests/cassettes/test_multimodal_agent_live_image_analysis.yaml
Normal file
481
tests/cassettes/test_multimodal_agent_live_image_analysis.yaml
Normal file
@@ -0,0 +1,481 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Image Analyst. You''re
|
||||
an expert at visual analysis, trained to notice and describe details in images.\nYour
|
||||
personal goal is: Analyze images with high attention to detail\nYou ONLY have
|
||||
access to the following tools, and should NEVER make up tools that are not listed
|
||||
here:\n\nTool Name: Add image to content\nTool Arguments: {''image_url'': {''description'':
|
||||
''The URL or path of the image to add'', ''type'': ''str''}, ''action'': {''description'':
|
||||
''Optional context or question about the image'', ''type'': ''str''}}\nTool
|
||||
Description: See image to understand it''s content, you can optionally ask a
|
||||
question about the image\n\nUse the following format:\n\nThought: you should
|
||||
always think about what to do\nAction: the action to take, only one name of
|
||||
[Add image to content], just the name, exactly as it''s written.\nAction Input:
|
||||
the input to the action, just a simple python dictionary, enclosed in curly
|
||||
braces, using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce
|
||||
all necessary information is gathered:\n\nThought: I now know the final answer\nFinal
|
||||
Answer: the final answer to the original input question"}, {"role": "user",
|
||||
"content": "\nCurrent Task: \n Analyze the provided image and describe
|
||||
what you see in detail.\n Focus on main elements, colors, composition,
|
||||
and any notable details.\n Image: https://media.istockphoto.com/id/946087016/photo/aerial-view-of-lower-manhattan-new-york.jpg?s=612x612&w=0&k=20&c=viLiMRznQ8v5LzKTt_LvtfPFUVl1oiyiemVdSlm29_k=\n \n\nThis
|
||||
is the expect criteria for your final answer: A comprehensive description of
|
||||
the image contents.\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1948'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AiuIfzzcje5KdvKIG5CkFeORroiKk\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1735266213,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Action: Add image to content\\nAction
|
||||
Input: {\\\"image_url\\\": \\\"https://media.istockphoto.com/id/946087016/photo/aerial-view-of-lower-manhattan-new-york.jpg?s=612x612&w=0&k=20&c=viLiMRznQ8v5LzKTt_LvtfPFUVl1oiyiemVdSlm29_k=\\\",
|
||||
\\\"action\\\": \\\"Analyze the provided image and describe what you see in
|
||||
detail.\\\"}\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
|
||||
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
417,\n \"completion_tokens\": 103,\n \"total_tokens\": 520,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_5f20662549\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8f85d96b280df217-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Fri, 27 Dec 2024 02:23:35 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=kJ1pw1xjCMSxjHSS8iJC5z_j2PZxl.i387KCpj9xNZU-1735266215-1.0.1.1-Ybg0wVTsrBlpVZmtQyA1ullY8m3v2Ix0N_SYlhr9z7zKfbLeqGZEVL37YSY.dvIiLVY3XPZzMtG8Xwo6UucW6A;
|
||||
path=/; expires=Fri, 27-Dec-24 02:53:35 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
- _cfuvid=v_wJZ5m7qCjrnRfks0gT2GAk9yR14BdIDAQiQR7xxI8-1735266215000-0.0.1.1-604800000;
|
||||
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1212'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29999539'
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_663a2b18099a18361d6b02befc175289
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: !!binary |
|
||||
Co4LCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS5QoKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRKjBwoQHmzzumMNXHOgpJ4zCIxJSxII72WnLlLfRyYqDENyZXcgQ3JlYXRlZDABOQjB
|
||||
gFxt5xQYQYhMiVxt5xQYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoaCg5weXRob25fdmVy
|
||||
c2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogZTM5NTY3YjUwNTI5MDljYTMzNDA5ODRiODM4
|
||||
OTgwZWFKMQoHY3Jld19pZBImCiQ4MDA0YTA1NC0zYjNkLTQ4OGEtYTlkNC1kZWQzMDVhMDIxY2FK
|
||||
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
|
||||
bnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBSs4CCgtjcmV3
|
||||
X2FnZW50cxK+Agq7Alt7ImtleSI6ICI5ZGM4Y2NlMDMwNDY4MTk2MDQxYjRjMzgwYjYxN2NiMCIs
|
||||
ICJpZCI6ICJjNTZhZGI2Mi1lMGIwLTQzYzAtYmQ4OC0xYzEwYTNhNmU5NDQiLCAicm9sZSI6ICJJ
|
||||
bWFnZSBBbmFseXN0IiwgInZlcmJvc2U/IjogdHJ1ZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBt
|
||||
IjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRvIiwgImRl
|
||||
bGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNl
|
||||
LCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUqCAgoKY3Jld190YXNr
|
||||
cxLzAQrwAVt7ImtleSI6ICJhOWE3NmNhNjk1N2QwYmZmYTY5ZWFiMjBiNjY0ODIyYiIsICJpZCI6
|
||||
ICJhNzFiZDllNC0wNzdkLTRmMTQtODg0MS03MGMwZWM4MGZkMmMiLCAiYXN5bmNfZXhlY3V0aW9u
|
||||
PyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIkltYWdlIEFu
|
||||
YWx5c3QiLCAiYWdlbnRfa2V5IjogIjlkYzhjY2UwMzA0NjgxOTYwNDFiNGMzODBiNjE3Y2IwIiwg
|
||||
InRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASjgIKEOZ5pMdq9ep85DrP1Vv8Y8MSCE7ahOkm
|
||||
2IDHKgxUYXNrIENyZWF0ZWQwATlIg85cbecUGEGQ9M5cbecUGEouCghjcmV3X2tleRIiCiBlMzk1
|
||||
NjdiNTA1MjkwOWNhMzM0MDk4NGI4Mzg5ODBlYUoxCgdjcmV3X2lkEiYKJDgwMDRhMDU0LTNiM2Qt
|
||||
NDg4YS1hOWQ0LWRlZDMwNWEwMjFjYUouCgh0YXNrX2tleRIiCiBhOWE3NmNhNjk1N2QwYmZmYTY5
|
||||
ZWFiMjBiNjY0ODIyYkoxCgd0YXNrX2lkEiYKJGE3MWJkOWU0LTA3N2QtNGYxNC04ODQxLTcwYzBl
|
||||
YzgwZmQyY3oCGAGFAQABAAASlwEKECyaQQK8JkKLh6S2mWHTeDgSCPWCpr7v9CQZKgpUb29sIFVz
|
||||
YWdlMAE5MLyst23nFBhBOJy/t23nFBhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC44Ni4wSiMKCXRv
|
||||
b2xfbmFtZRIWChRBZGQgaW1hZ2UgdG8gY29udGVudEoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAA
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '1425'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Fri, 27 Dec 2024 02:23:39 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Image Analyst. You''re
|
||||
an expert at visual analysis, trained to notice and describe details in images.\nYour
|
||||
personal goal is: Analyze images with high attention to detail\nYou ONLY have
|
||||
access to the following tools, and should NEVER make up tools that are not listed
|
||||
here:\n\nTool Name: Add image to content\nTool Arguments: {''image_url'': {''description'':
|
||||
''The URL or path of the image to add'', ''type'': ''str''}, ''action'': {''description'':
|
||||
''Optional context or question about the image'', ''type'': ''str''}}\nTool
|
||||
Description: See image to understand it''s content, you can optionally ask a
|
||||
question about the image\n\nUse the following format:\n\nThought: you should
|
||||
always think about what to do\nAction: the action to take, only one name of
|
||||
[Add image to content], just the name, exactly as it''s written.\nAction Input:
|
||||
the input to the action, just a simple python dictionary, enclosed in curly
|
||||
braces, using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce
|
||||
all necessary information is gathered:\n\nThought: I now know the final answer\nFinal
|
||||
Answer: the final answer to the original input question"}, {"role": "user",
|
||||
"content": "\nCurrent Task: \n Analyze the provided image and describe
|
||||
what you see in detail.\n Focus on main elements, colors, composition,
|
||||
and any notable details.\n Image: https://media.istockphoto.com/id/946087016/photo/aerial-view-of-lower-manhattan-new-york.jpg?s=612x612&w=0&k=20&c=viLiMRznQ8v5LzKTt_LvtfPFUVl1oiyiemVdSlm29_k=\n \n\nThis
|
||||
is the expect criteria for your final answer: A comprehensive description of
|
||||
the image contents.\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"},
|
||||
{"role": "user", "content": [{"type": "text", "text": "Analyze the provided
|
||||
image and describe what you see in detail."}, {"type": "image_url", "image_url":
|
||||
{"url": "https://media.istockphoto.com/id/946087016/photo/aerial-view-of-lower-manhattan-new-york.jpg?s=612x612&w=0&k=20&c=viLiMRznQ8v5LzKTt_LvtfPFUVl1oiyiemVdSlm29_k="}}]}],
|
||||
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '2279'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=kJ1pw1xjCMSxjHSS8iJC5z_j2PZxl.i387KCpj9xNZU-1735266215-1.0.1.1-Ybg0wVTsrBlpVZmtQyA1ullY8m3v2Ix0N_SYlhr9z7zKfbLeqGZEVL37YSY.dvIiLVY3XPZzMtG8Xwo6UucW6A;
|
||||
_cfuvid=v_wJZ5m7qCjrnRfks0gT2GAk9yR14BdIDAQiQR7xxI8-1735266215000-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AiuIiqT33ROFMdw1gNmqH9jiw6PfF\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1735266216,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"The image is an aerial view of Lower
|
||||
Manhattan in New York City. \\n\\nMain Elements:\\n- The One World Trade Center
|
||||
tower stands prominently, distinguishable by its sleek, tapering structure reaching
|
||||
into the sky, surrounded by other skyscrapers.\\n- Skyscrapers in varying heights
|
||||
and architectural styles, fill the densely packed urban landscape.\\n- A waterfront
|
||||
is visible at the edges, with docks and piers extending into the water.\\n\\nColors:\\n-
|
||||
The buildings exhibit a mix of colors, predominantly grays, whites, and browns,
|
||||
against the blues of the sky and water.\\n- There's a section of greenery visible,
|
||||
likely a park or recreational space, offering a contrast with its vibrant green
|
||||
hues.\\n\\nComposition:\\n- The angle of the photograph showcases the expanse
|
||||
of the city, highlighting the density and scale of the buildings.\\n- Water
|
||||
borders the city on two prominent sides, creating a natural boundary and enhancing
|
||||
the island's urban island feel.\\n\\nNotable Details:\\n- The image captures
|
||||
the iconic layout of Manhattan, with the surrounding Hudson River and New York
|
||||
Harbor visible in the background.\\n- Beyond Lower Manhattan, more of the cityscape
|
||||
stretches into the distance, illustrating the vastness of New York City.\\n-
|
||||
The day appears clear and sunny, with shadows casting from the buildings, indicating
|
||||
time in the morning or late afternoon.\\n\\nOverall, the image is a striking
|
||||
depiction of the dynamic and bustling environment of New York's Lower Manhattan,
|
||||
encapsulating its urban character and proximity to the water.\",\n \"refusal\":
|
||||
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 858,\n \"completion_tokens\":
|
||||
295,\n \"total_tokens\": 1153,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_5f20662549\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8f85d9741d0cf217-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Fri, 27 Dec 2024 02:23:40 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '5136'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-input-images:
|
||||
- '50000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-input-images:
|
||||
- '49999'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29998756'
|
||||
x-ratelimit-reset-input-images:
|
||||
- 1ms
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 2ms
|
||||
x-request-id:
|
||||
- req_57a7430712d4ff4a81f600ffb94d3b6e
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Image Analyst. You''re
|
||||
an expert at visual analysis, trained to notice and describe details in images.\nYour
|
||||
personal goal is: Analyze images with high attention to detail\nYou ONLY have
|
||||
access to the following tools, and should NEVER make up tools that are not listed
|
||||
here:\n\nTool Name: Add image to content\nTool Arguments: {''image_url'': {''description'':
|
||||
''The URL or path of the image to add'', ''type'': ''str''}, ''action'': {''description'':
|
||||
''Optional context or question about the image'', ''type'': ''str''}}\nTool
|
||||
Description: See image to understand it''s content, you can optionally ask a
|
||||
question about the image\n\nUse the following format:\n\nThought: you should
|
||||
always think about what to do\nAction: the action to take, only one name of
|
||||
[Add image to content], just the name, exactly as it''s written.\nAction Input:
|
||||
the input to the action, just a simple python dictionary, enclosed in curly
|
||||
braces, using \" to wrap keys and values.\nObservation: the result of the action\n\nOnce
|
||||
all necessary information is gathered:\n\nThought: I now know the final answer\nFinal
|
||||
Answer: the final answer to the original input question"}, {"role": "user",
|
||||
"content": "\nCurrent Task: \n Analyze the provided image and describe
|
||||
what you see in detail.\n Focus on main elements, colors, composition,
|
||||
and any notable details.\n Image: https://media.istockphoto.com/id/946087016/photo/aerial-view-of-lower-manhattan-new-york.jpg?s=612x612&w=0&k=20&c=viLiMRznQ8v5LzKTt_LvtfPFUVl1oiyiemVdSlm29_k=\n \n\nThis
|
||||
is the expect criteria for your final answer: A comprehensive description of
|
||||
the image contents.\nyou MUST return the actual complete content as the final
|
||||
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"},
|
||||
{"role": "user", "content": [{"type": "text", "text": "Analyze the provided
|
||||
image and describe what you see in detail."}, {"type": "image_url", "image_url":
|
||||
{"url": "https://media.istockphoto.com/id/946087016/photo/aerial-view-of-lower-manhattan-new-york.jpg?s=612x612&w=0&k=20&c=viLiMRznQ8v5LzKTt_LvtfPFUVl1oiyiemVdSlm29_k="}}]},
|
||||
{"role": "user", "content": "I did it wrong. Invalid Format: I missed the ''Action:''
|
||||
after ''Thought:''. I will do right next, and don''t use a tool I have already
|
||||
used.\n\nIf you don''t need to use any more tools, you must give your best complete
|
||||
final answer, make sure it satisfies the expected criteria, use the EXACT format
|
||||
below:\n\nThought: I now can give a great answer\nFinal Answer: my best complete
|
||||
final answer to the task.\n\n"}], "model": "gpt-4o", "stop": ["\nObservation:"],
|
||||
"stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '2717'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=kJ1pw1xjCMSxjHSS8iJC5z_j2PZxl.i387KCpj9xNZU-1735266215-1.0.1.1-Ybg0wVTsrBlpVZmtQyA1ullY8m3v2Ix0N_SYlhr9z7zKfbLeqGZEVL37YSY.dvIiLVY3XPZzMtG8Xwo6UucW6A;
|
||||
_cfuvid=v_wJZ5m7qCjrnRfks0gT2GAk9yR14BdIDAQiQR7xxI8-1735266215000-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AiuInuYNldaQVo6B1EsEquT1VFMN7\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1735266221,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I now can give a great answer\\nFinal
|
||||
Answer: The image is an aerial view of Lower Manhattan in New York City. The
|
||||
photograph prominently features the cluster of skyscrapers that characterizes
|
||||
the area, with One World Trade Center standing out as a particularly tall and
|
||||
iconic structure. The buildings vary in color, with shades of glassy blue, grey,
|
||||
and natural stone dominating the skyline. In the bottom part of the image, there
|
||||
is a green space, likely Battery Park, providing a stark contrast to the dense
|
||||
urban environment, with trees and pathways visible. The water surrounding Manhattan
|
||||
is a deep blue, and several piers jut into the harbor. The Hudson River is visible
|
||||
on the left, and the East River can be seen on the right, framing the island.
|
||||
The overall composition captures the bustling and vibrant nature of New York\u2019s
|
||||
financial hub, with bright sunlight illuminating the buildings, casting sharp
|
||||
shadows and enhancing the depth of the cityscape. The sky is clear, suggesting
|
||||
a sunny day with good visibility.\",\n \"refusal\": null\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 952,\n \"completion_tokens\": 203,\n
|
||||
\ \"total_tokens\": 1155,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_5f20662549\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8f85d995ad1ef217-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Fri, 27 Dec 2024 02:23:43 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '3108'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-input-images:
|
||||
- '50000'
|
||||
x-ratelimit-limit-requests:
|
||||
- '10000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000000'
|
||||
x-ratelimit-remaining-input-images:
|
||||
- '49999'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '9999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29998656'
|
||||
x-ratelimit-reset-input-images:
|
||||
- 1ms
|
||||
x-ratelimit-reset-requests:
|
||||
- 6ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 2ms
|
||||
x-request-id:
|
||||
- req_45f0e3d457a18f973a59074d16f137b6
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
569
tests/cassettes/test_task_tools_override_agent_tools.yaml
Normal file
569
tests/cassettes/test_task_tools_override_agent_tools.yaml
Normal file
@@ -0,0 +1,569 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Researcher. You''re
|
||||
an expert researcher, specialized in technology, software engineering, AI and
|
||||
startups. You work as a freelancer and is now working on doing research and
|
||||
analysis for a new customer.\nYour personal goal is: Make the best research
|
||||
and analysis on content about AI and AI agents\nYou ONLY have access to the
|
||||
following tools, and should NEVER make up tools that are not listed here:\n\nTool
|
||||
Name: Test Tool\nTool Arguments: {''query'': {''description'': ''Query to process'',
|
||||
''type'': ''str''}}\nTool Description: A test tool that just returns the input\n\nUse
|
||||
the following format:\n\nThought: you should always think about what to do\nAction:
|
||||
the action to take, only one name of [Test Tool], just the name, exactly as
|
||||
it''s written.\nAction Input: the input to the action, just a simple python
|
||||
dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
|
||||
I now know the final answer\nFinal Answer: the final answer to the original
|
||||
input question"}, {"role": "user", "content": "\nCurrent Task: Write a test
|
||||
task\n\nThis is the expect criteria for your final answer: Test output\nyou
|
||||
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
|
||||
["\nObservation:"], "stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1536'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=2u_Xw.i716TDjD2vb2mvMyWxhA4q1MM1JvbrA8CNZpI-1734895557894-0.0.1.1-604800000
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AhQfznhDMtsr58XvTuRDZoB1kxwfK\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1734914011,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I need to come up with a suitable test
|
||||
task that meets the criteria provided. I will focus on outlining a clear and
|
||||
effective test task related to AI and AI agents.\\n\\nAction: Test Tool\\nAction
|
||||
Input: {\\\"query\\\": \\\"Create a test task that involves evaluating the performance
|
||||
of an AI agent in a given scenario, including criteria for success, tools required,
|
||||
and process for assessment.\\\"}\",\n \"refusal\": null\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
298,\n \"completion_tokens\": 78,\n \"total_tokens\": 376,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_d02d531b47\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- 8f6442b868fda486-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Mon, 23 Dec 2024 00:33:32 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=i6jvNjhsDne300GPAeEmyiJJKYqy7OPuamFG_kht3KE-1734914012-1.0.1.1-tCeVANAF521vkXpBdgYw.ov.fYUr6t5QC4LG_DugWyzu4C60Pi2CruTVniUgfCvkcu6rdHA5DwnaEZf2jFaRCQ;
|
||||
path=/; expires=Mon, 23-Dec-24 01:03:32 GMT; domain=.api.openai.com; HttpOnly;
|
||||
Secure; SameSite=None
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '1400'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999642'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_c3e50e9ca9dc22de5572692e1a9c0f16
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
- request:
|
||||
body: !!binary |
|
||||
CrBzCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSh3MKEgoQY3Jld2FpLnRl
|
||||
bGVtZXRyeRLUCwoQEr8cFisEEEEUtXBvovq6lhIIYdkQ+ekBh3wqDENyZXcgQ3JlYXRlZDABOThc
|
||||
YLAZpxMYQfCuabAZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoaCg5weXRob25fdmVy
|
||||
c2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogZGUxMDFkODU1M2VhMDI0NTM3YTA4ZjgxMmVl
|
||||
NmI3NGFKMQoHY3Jld19pZBImCiRmNTc2MjViZC1jZmY3LTRlNGMtYWM1Zi0xZWFiNjQyMzJjMmRK
|
||||
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
|
||||
bnVtYmVyX29mX3Rhc2tzEgIYAkobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSpIFCgtjcmV3
|
||||
X2FnZW50cxKCBQr/BFt7ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIs
|
||||
ICJpZCI6ICI1Y2Y0OWVjNy05NWYzLTRkZDctODU3Mi1mODAwNDA4NjBiMjgiLCAicm9sZSI6ICJS
|
||||
ZXNlYXJjaGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6
|
||||
IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwg
|
||||
ImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZh
|
||||
bHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5
|
||||
YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICI0MTEyM2QzZC01NmEwLTRh
|
||||
NTgtYTljNi1mZjUwNjRmZjNmNTEiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/
|
||||
IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxs
|
||||
aW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8i
|
||||
OiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0
|
||||
IjogMiwgInRvb2xzX25hbWVzIjogW119XUrvAwoKY3Jld190YXNrcxLgAwrdA1t7ImtleSI6ICI5
|
||||
NDRhZWYwYmFjODQwZjFjMjdiZDgzYTkzN2JjMzYxYiIsICJpZCI6ICI3ZDM2NDFhNi1hZmM4LTRj
|
||||
NmMtYjkzMy0wNGZlZjY2NjUxN2MiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5f
|
||||
aW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlJlc2VhcmNoZXIiLCAiYWdlbnRfa2V5Ijog
|
||||
IjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1IiwgInRvb2xzX25hbWVzIjogW119LCB7
|
||||
ImtleSI6ICI5ZjJkNGU5M2FiNTkwYzcyNTg4NzAyNzUwOGFmOTI3OCIsICJpZCI6ICIzNTVjZjFh
|
||||
OS1lOTkzLTQxMTQtOWM0NC0yZDM5MDlhMDljNWYiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNl
|
||||
LCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlNlbmlvciBXcml0ZXIiLCAi
|
||||
YWdlbnRfa2V5IjogIjlhNTAxNWVmNDg5NWRjNjI3OGQ1NDgxOGJhNDQ2YWY3IiwgInRvb2xzX25h
|
||||
bWVzIjogW119XXoCGAGFAQABAAASjgIKEHbV3nDt+ndNQNix1f+5+cASCL+l6KV3+FEpKgxUYXNr
|
||||
IENyZWF0ZWQwATmgfo+wGacTGEEQE5CwGacTGEouCghjcmV3X2tleRIiCiBkZTEwMWQ4NTUzZWEw
|
||||
MjQ1MzdhMDhmODEyZWU2Yjc0YUoxCgdjcmV3X2lkEiYKJGY1NzYyNWJkLWNmZjctNGU0Yy1hYzVm
|
||||
LTFlYWI2NDIzMmMyZEouCgh0YXNrX2tleRIiCiA5NDRhZWYwYmFjODQwZjFjMjdiZDgzYTkzN2Jj
|
||||
MzYxYkoxCgd0YXNrX2lkEiYKJDdkMzY0MWE2LWFmYzgtNGM2Yy1iOTMzLTA0ZmVmNjY2NTE3Y3oC
|
||||
GAGFAQABAAASjgIKECqDENVoAz+3ybVKR/wz7dMSCKI9ILLFYx8SKgxUYXNrIENyZWF0ZWQwATng
|
||||
63CzGacTGEE4AXKzGacTGEouCghjcmV3X2tleRIiCiBkZTEwMWQ4NTUzZWEwMjQ1MzdhMDhmODEy
|
||||
ZWU2Yjc0YUoxCgdjcmV3X2lkEiYKJGY1NzYyNWJkLWNmZjctNGU0Yy1hYzVmLTFlYWI2NDIzMmMy
|
||||
ZEouCgh0YXNrX2tleRIiCiA5ZjJkNGU5M2FiNTkwYzcyNTg4NzAyNzUwOGFmOTI3OEoxCgd0YXNr
|
||||
X2lkEiYKJDM1NWNmMWE5LWU5OTMtNDExNC05YzQ0LTJkMzkwOWEwOWM1ZnoCGAGFAQABAAAS1AsK
|
||||
EOofSLF1HDmhYMt7eIAeFo8SCCaKUQMuWNdnKgxDcmV3IENyZWF0ZWQwATkYKA62GacTGEFwlhW2
|
||||
GacTGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4x
|
||||
MS43Si4KCGNyZXdfa2V5EiIKIDRlOGU0MmNmMWVhN2U2NjhhMGU5MzJhNzAyMDY1NzQ5SjEKB2Ny
|
||||
ZXdfaWQSJgokMmIzNTVjZDMtY2MwNi00Y2QxLTk0YjgtZTU5YjM5OGI3MjEzShwKDGNyZXdfcHJv
|
||||
Y2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90
|
||||
YXNrcxICGAJKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAkqSBQoLY3Jld19hZ2VudHMSggUK
|
||||
/wRbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAiaWQiOiAiNWNm
|
||||
NDllYzctOTVmMy00ZGQ3LTg1NzItZjgwMDQwODYwYjI4IiwgInJvbGUiOiAiUmVzZWFyY2hlciIs
|
||||
ICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVu
|
||||
Y3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9u
|
||||
X2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9y
|
||||
ZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOWE1MDE1ZWY0ODk1
|
||||
ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiNDExMjNkM2QtNTZhMC00YTU4LWE5YzYtZmY1
|
||||
MDY0ZmYzZjUxIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAi
|
||||
bWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAi
|
||||
IiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJh
|
||||
bGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29s
|
||||
c19uYW1lcyI6IFtdfV1K7wMKCmNyZXdfdGFza3MS4AMK3QNbeyJrZXkiOiAiNjc4NDlmZjcxN2Ri
|
||||
YWRhYmExYjk1ZDVmMmRmY2VlYTEiLCAiaWQiOiAiOGE5OTgxMDYtZjg5Zi00YTQ5LThjZjEtYjk4
|
||||
MzQ5ZDE1NDRmIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZh
|
||||
bHNlLCAiYWdlbnRfcm9sZSI6ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQyMTM5YjU5
|
||||
NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiODRh
|
||||
ZjlmYzFjZDMzMTk5Y2ViYjlkNDE0MjE4NWY4MDIiLCAiaWQiOiAiYTViMTg0MDgtYjA1OC00ZDE1
|
||||
LTkyMmUtNDJkN2M5Y2ViYjFhIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lu
|
||||
cHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgImFnZW50X2tleSI6
|
||||
ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJ0b29sc19uYW1lcyI6IFtdfV16
|
||||
AhgBhQEAAQAAEsIJChDCLrcWQ+nu3SxOgnq50XhSEghjozRtuCFA0SoMQ3JldyBDcmVhdGVkMAE5
|
||||
CDeCthmnExhBmHiIthmnExhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC44Ni4wShoKDnB5dGhvbl92
|
||||
ZXJzaW9uEggKBjMuMTEuN0ouCghjcmV3X2tleRIiCiBlM2ZkYTBmMzExMGZlODBiMTg5NDdjMDE0
|
||||
NzE0MzBhNEoxCgdjcmV3X2lkEiYKJGM1ZDQ0YjY5LTRhNzMtNDA3Zi1iY2RhLTUzZmUxZTQ3YTU3
|
||||
M0oeCgxjcmV3X3Byb2Nlc3MSDgoMaGllcmFyY2hpY2FsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRj
|
||||
cmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAkqSBQoL
|
||||
Y3Jld19hZ2VudHMSggUK/wRbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNk
|
||||
NzUiLCAiaWQiOiAiNWNmNDllYzctOTVmMy00ZGQ3LTg1NzItZjgwMDQwODYwYjI4IiwgInJvbGUi
|
||||
OiAiUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9y
|
||||
cG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWlu
|
||||
aSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8i
|
||||
OiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXki
|
||||
OiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiNDExMjNkM2QtNTZh
|
||||
MC00YTU4LWE5YzYtZmY1MDY0ZmYzZjUxIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJi
|
||||
b3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25f
|
||||
Y2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJs
|
||||
ZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9s
|
||||
aW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K2wEKCmNyZXdfdGFza3MSzAEKyQFbeyJrZXki
|
||||
OiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYyZGQiLCAiaWQiOiAiNjNhYTVlOTYtYTM4
|
||||
Yy00YjcyLWJiZDQtYjM2NmU5NTlhOWZhIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1
|
||||
bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJOb25lIiwgImFnZW50X2tleSI6IG51
|
||||
bGwsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEuYJChA8kiyQ+AFdDSYkp0+TUWKvEgjW
|
||||
0grLw8r5KioMQ3JldyBDcmVhdGVkMAE5iLivvhmnExhBeG21vhmnExhKGgoOY3Jld2FpX3ZlcnNp
|
||||
b24SCAoGMC44Ni4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTEuN0ouCghjcmV3X2tleRIiCiBl
|
||||
M2ZkYTBmMzExMGZlODBiMTg5NDdjMDE0NzE0MzBhNEoxCgdjcmV3X2lkEiYKJGIzZGQ1MGYxLTI0
|
||||
YWQtNDE5OC04ZGFhLTMwZTU0OTQ3MTlhMEoeCgxjcmV3X3Byb2Nlc3MSDgoMaGllcmFyY2hpY2Fs
|
||||
ShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19u
|
||||
dW1iZXJfb2ZfYWdlbnRzEgIYAkqSBQoLY3Jld19hZ2VudHMSggUK/wRbeyJrZXkiOiAiOGJkMjEz
|
||||
OWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAiaWQiOiAiNWNmNDllYzctOTVmMy00ZGQ3LTg1
|
||||
NzItZjgwMDQwODYwYjI4IiwgInJvbGUiOiAiUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNl
|
||||
LCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0i
|
||||
OiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2Us
|
||||
ICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0
|
||||
b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZh
|
||||
ZjciLCAiaWQiOiAiNDExMjNkM2QtNTZhMC00YTU4LWE5YzYtZmY1MDY0ZmYzZjUxIiwgInJvbGUi
|
||||
OiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1h
|
||||
eF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8t
|
||||
bWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlv
|
||||
bj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K/wEK
|
||||
CmNyZXdfdGFza3MS8AEK7QFbeyJrZXkiOiAiNWZhNjVjMDZhOWUzMWYyYzY5NTQzMjY2OGFjZDYy
|
||||
ZGQiLCAiaWQiOiAiNzEyODlkZTAtODQ4My00NDM2LWI2OGMtNDc1MWIzNTU0ZmUzIiwgImFzeW5j
|
||||
X2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6
|
||||
ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2
|
||||
M2Q3NSIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChCTiJL+KK5ff9xnie6eZbEc
|
||||
EghbtQixNaG5DioMVGFzayBDcmVhdGVkMAE5cIXNvhmnExhBuPbNvhmnExhKLgoIY3Jld19rZXkS
|
||||
IgogZTNmZGEwZjMxMTBmZTgwYjE4OTQ3YzAxNDcxNDMwYTRKMQoHY3Jld19pZBImCiRiM2RkNTBm
|
||||
MS0yNGFkLTQxOTgtOGRhYS0zMGU1NDk0NzE5YTBKLgoIdGFza19rZXkSIgogNWZhNjVjMDZhOWUz
|
||||
MWYyYzY5NTQzMjY2OGFjZDYyZGRKMQoHdGFza19pZBImCiQ3MTI4OWRlMC04NDgzLTQ0MzYtYjY4
|
||||
Yy00NzUxYjM1NTRmZTN6AhgBhQEAAQAAEpwBChBCdDi/i+SH0kHHlJKQjmYgEgiemV9jVU5fQSoK
|
||||
VG9vbCBVc2FnZTABOVj/YL8ZpxMYQWCwZr8ZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYu
|
||||
MEooCgl0b29sX25hbWUSGwoZRGVsZWdhdGUgd29yayB0byBjb3dvcmtlckoOCghhdHRlbXB0cxIC
|
||||
GAF6AhgBhQEAAQAAEqUBChBRuZ6Z/nNag4ubLeZ8L/8pEghCX4biKNFb6SoTVG9vbCBSZXBlYXRl
|
||||
ZCBVc2FnZTABOUj9wr8ZpxMYQdg+yb8ZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoo
|
||||
Cgl0b29sX25hbWUSGwoZRGVsZWdhdGUgd29yayB0byBjb3dvcmtlckoOCghhdHRlbXB0cxICGAF6
|
||||
AhgBhQEAAQAAEpwBChDnt1bxQsOb0LVscG9GDYVtEgjf62keNMl5ZyoKVG9vbCBVc2FnZTABOdha
|
||||
6MAZpxMYQWii7cAZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEooCgl0b29sX25hbWUS
|
||||
GwoZRGVsZWdhdGUgd29yayB0byBjb3dvcmtlckoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAAEpsB
|
||||
ChDFqFA9b42EIwUxeNLTeScxEgiGFk7FwiNxVioKVG9vbCBVc2FnZTABObDAY8EZpxMYQdhIaMEZ
|
||||
pxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEonCgl0b29sX25hbWUSGgoYQXNrIHF1ZXN0
|
||||
aW9uIHRvIGNvd29ya2VySg4KCGF0dGVtcHRzEgIYAXoCGAGFAQABAAASwgkKEHpB0rbuWbSXijzV
|
||||
QdTa3oQSCNSPnbmqe2PfKgxDcmV3IENyZWF0ZWQwATmIXxTCGacTGEF4GhnCGacTGEoaCg5jcmV3
|
||||
YWlfdmVyc2lvbhIICgYwLjg2LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMS43Si4KCGNyZXdf
|
||||
a2V5EiIKIGUzZmRhMGYzMTEwZmU4MGIxODk0N2MwMTQ3MTQzMGE0SjEKB2NyZXdfaWQSJgokZGJm
|
||||
YzNjMjctMmRjZS00MjIyLThiYmQtYmMxMjU3OTVlNWI1Sh4KDGNyZXdfcHJvY2VzcxIOCgxoaWVy
|
||||
YXJjaGljYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUob
|
||||
ChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSpIFCgtjcmV3X2FnZW50cxKCBQr/BFt7ImtleSI6
|
||||
ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJpZCI6ICI1Y2Y0OWVjNy05NWYz
|
||||
LTRkZDctODU3Mi1mODAwNDA4NjBiMjgiLCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgInZlcmJvc2U/
|
||||
IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxs
|
||||
aW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8i
|
||||
OiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0
|
||||
IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4
|
||||
MThiYTQ0NmFmNyIsICJpZCI6ICI0MTEyM2QzZC01NmEwLTRhNTgtYTljNi1mZjUwNjRmZjNmNTEi
|
||||
LCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6
|
||||
IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjog
|
||||
ImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVf
|
||||
ZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjog
|
||||
W119XUrbAQoKY3Jld190YXNrcxLMAQrJAVt7ImtleSI6ICI1ZmE2NWMwNmE5ZTMxZjJjNjk1NDMy
|
||||
NjY4YWNkNjJkZCIsICJpZCI6ICIyYWFjOTllMC0yNWVmLTQzN2MtYTJmZi1jZGFlMjg2ZWU2MzQi
|
||||
LCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2Vu
|
||||
dF9yb2xlIjogIk5vbmUiLCAiYWdlbnRfa2V5IjogbnVsbCwgInRvb2xzX25hbWVzIjogW119XXoC
|
||||
GAGFAQABAAAS1QkKEM6Xt0BvAHy+TI7iLC6ovN0SCEfHP30NZESSKgxDcmV3IENyZWF0ZWQwATkg
|
||||
PdnDGacTGEFIPN/DGacTGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKGgoOcHl0aG9uX3Zl
|
||||
cnNpb24SCAoGMy4xMS43Si4KCGNyZXdfa2V5EiIKIGU2NDk1NzNhMjZlNTg3OTBjYWMyMWEzN2Nk
|
||||
NDQ0MzdhSjEKB2NyZXdfaWQSJgokNjE3MDA3NGMtYzU5OS00ODkyLTkwYzYtMTcxYjhkM2Y1OTRh
|
||||
ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3
|
||||
X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAkqKBQoLY3Jl
|
||||
d19hZ2VudHMS+gQK9wRbeyJrZXkiOiAiMzI4MjE3YjZjMjk1OWJkZmM0N2NhZDAwZTg0ODkwZDAi
|
||||
LCAiaWQiOiAiYjNmMTczZTktNjY3NS00OTFkLTgyYjctODM4NmRkMjExMDM1IiwgInJvbGUiOiAi
|
||||
Q0VPIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGws
|
||||
ICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVn
|
||||
YXRpb25fZW5hYmxlZD8iOiB0cnVlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJt
|
||||
YXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsia2V5IjogIjlhNTAxNWVm
|
||||
NDg5NWRjNjI3OGQ1NDgxOGJhNDQ2YWY3IiwgImlkIjogIjQxMTIzZDNkLTU2YTAtNGE1OC1hOWM2
|
||||
LWZmNTA2NGZmM2Y1MSIsICJyb2xlIjogIlNlbmlvciBXcml0ZXIiLCAidmVyYm9zZT8iOiBmYWxz
|
||||
ZSwgIm1heF9pdGVyIjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxt
|
||||
IjogIiIsICJsbG0iOiAiZ3B0LTRvLW1pbmkiLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNl
|
||||
LCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAi
|
||||
dG9vbHNfbmFtZXMiOiBbXX1dSvgBCgpjcmV3X3Rhc2tzEukBCuYBW3sia2V5IjogIjBiOWQ2NWRi
|
||||
NmI3YWVkZmIzOThjNTllMmE5ZjcxZWM1IiwgImlkIjogImJiNmI1Njg3LTg5NGMtNDAyNS05M2My
|
||||
LTMyYjdkZmEwZTUxMyIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8i
|
||||
OiBmYWxzZSwgImFnZW50X3JvbGUiOiAiQ0VPIiwgImFnZW50X2tleSI6ICIzMjgyMTdiNmMyOTU5
|
||||
YmRmYzQ3Y2FkMDBlODQ4OTBkMCIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChCK
|
||||
KIL9w7sqoMzG3JItjK8eEgiR4RSmJw+SMSoMVGFzayBDcmVhdGVkMAE5CCjywxmnExhByIXywxmn
|
||||
ExhKLgoIY3Jld19rZXkSIgogZTY0OTU3M2EyNmU1ODc5MGNhYzIxYTM3Y2Q0NDQzN2FKMQoHY3Jl
|
||||
d19pZBImCiQ2MTcwMDc0Yy1jNTk5LTQ4OTItOTBjNi0xNzFiOGQzZjU5NGFKLgoIdGFza19rZXkS
|
||||
IgogMGI5ZDY1ZGI2YjdhZWRmYjM5OGM1OWUyYTlmNzFlYzVKMQoHdGFza19pZBImCiRiYjZiNTY4
|
||||
Ny04OTRjLTQwMjUtOTNjMi0zMmI3ZGZhMGU1MTN6AhgBhQEAAQAAEpwBChD+/zv5udkceIEyIb7d
|
||||
ne5vEgj1My75q1O7UCoKVG9vbCBVc2FnZTABOThPfMQZpxMYQcA4g8QZpxMYShoKDmNyZXdhaV92
|
||||
ZXJzaW9uEggKBjAuODYuMEooCgl0b29sX25hbWUSGwoZRGVsZWdhdGUgd29yayB0byBjb3dvcmtl
|
||||
ckoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAAEuAJChBIzM1Xa9IhegFDHxt6rj3eEgj9z56V1hXk
|
||||
aCoMQ3JldyBDcmVhdGVkMAE5mEoMxRmnExhBoPsRxRmnExhKGgoOY3Jld2FpX3ZlcnNpb24SCAoG
|
||||
MC44Ni4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTEuN0ouCghjcmV3X2tleRIiCiBlNjQ5NTcz
|
||||
YTI2ZTU4NzkwY2FjMjFhMzdjZDQ0NDM3YUoxCgdjcmV3X2lkEiYKJGQ4MjhhZWM2LTg2N2MtNDdh
|
||||
YS04ODY4LWQwMWYwNGM0MGE0MUocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3
|
||||
X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29m
|
||||
X2FnZW50cxICGAJKigUKC2NyZXdfYWdlbnRzEvoECvcEW3sia2V5IjogIjMyODIxN2I2YzI5NTli
|
||||
ZGZjNDdjYWQwMGU4NDg5MGQwIiwgImlkIjogImIzZjE3M2U5LTY2NzUtNDkxZC04MmI3LTgzODZk
|
||||
ZDIxMTAzNSIsICJyb2xlIjogIkNFTyIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAy
|
||||
MCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJn
|
||||
cHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogdHJ1ZSwgImFsbG93X2NvZGVfZXhl
|
||||
Y3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119
|
||||
LCB7ImtleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICI0MTEy
|
||||
M2QzZC01NmEwLTRhNTgtYTljNi1mZjUwNjRmZjNmNTEiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVy
|
||||
IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJm
|
||||
dW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRp
|
||||
b25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4
|
||||
X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUqDAgoKY3Jld190YXNrcxL0AQrx
|
||||
AVt7ImtleSI6ICIwYjlkNjVkYjZiN2FlZGZiMzk4YzU5ZTJhOWY3MWVjNSIsICJpZCI6ICI5YTBj
|
||||
ODZhZi0wYTE0LTQ4MzgtOTJmZC02NDhhZGM1NzJlMDMiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZh
|
||||
bHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIkNFTyIsICJhZ2VudF9r
|
||||
ZXkiOiAiMzI4MjE3YjZjMjk1OWJkZmM0N2NhZDAwZTg0ODkwZDAiLCAidG9vbHNfbmFtZXMiOiBb
|
||||
InRlc3QgdG9vbCJdfV16AhgBhQEAAQAAEo4CChDl0EBv/8sdeV8eJ45EUBpxEgj+C7UlokySqSoM
|
||||
VGFzayBDcmVhdGVkMAE5oI8jxRmnExhBYO0jxRmnExhKLgoIY3Jld19rZXkSIgogZTY0OTU3M2Ey
|
||||
NmU1ODc5MGNhYzIxYTM3Y2Q0NDQzN2FKMQoHY3Jld19pZBImCiRkODI4YWVjNi04NjdjLTQ3YWEt
|
||||
ODg2OC1kMDFmMDRjNDBhNDFKLgoIdGFza19rZXkSIgogMGI5ZDY1ZGI2YjdhZWRmYjM5OGM1OWUy
|
||||
YTlmNzFlYzVKMQoHdGFza19pZBImCiQ5YTBjODZhZi0wYTE0LTQ4MzgtOTJmZC02NDhhZGM1NzJl
|
||||
MDN6AhgBhQEAAQAAEpsBChArkcRTKJCaWLUYbx8DLyvTEgikYuS5tmbKNioKVG9vbCBVc2FnZTAB
|
||||
OSh+MscZpxMYQdgTOMcZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEonCgl0b29sX25h
|
||||
bWUSGgoYQXNrIHF1ZXN0aW9uIHRvIGNvd29ya2VySg4KCGF0dGVtcHRzEgIYAXoCGAGFAQABAAAS
|
||||
6wkKEHxFJsjiUgQromzfQHpYYMISCBkGairjk9kkKgxDcmV3IENyZWF0ZWQwATk4/rXHGacTGEGY
|
||||
yrvHGacTGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoG
|
||||
My4xMS43Si4KCGNyZXdfa2V5EiIKIGU2NDk1NzNhMjZlNTg3OTBjYWMyMWEzN2NkNDQ0MzdhSjEK
|
||||
B2NyZXdfaWQSJgokMjY3NzEyNzItOTRlZC00NDVkLTg1MGEtYTkyYTZjOWI5YmJkShwKDGNyZXdf
|
||||
cHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9v
|
||||
Zl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAkqVBQoLY3Jld19hZ2VudHMS
|
||||
hQUKggVbeyJrZXkiOiAiMzI4MjE3YjZjMjk1OWJkZmM0N2NhZDAwZTg0ODkwZDAiLCAiaWQiOiAi
|
||||
YjNmMTczZTktNjY3NS00OTFkLTgyYjctODM4NmRkMjExMDM1IiwgInJvbGUiOiAiQ0VPIiwgInZl
|
||||
cmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlv
|
||||
bl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5h
|
||||
YmxlZD8iOiB0cnVlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlf
|
||||
bGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbInRlc3QgdG9vbCJdfSwgeyJrZXkiOiAiOWE1MDE1
|
||||
ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAiaWQiOiAiNDExMjNkM2QtNTZhMC00YTU4LWE5
|
||||
YzYtZmY1MDY0ZmYzZjUxIiwgInJvbGUiOiAiU2VuaW9yIFdyaXRlciIsICJ2ZXJib3NlPyI6IGZh
|
||||
bHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19s
|
||||
bG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFs
|
||||
c2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIs
|
||||
ICJ0b29sc19uYW1lcyI6IFtdfV1KgwIKCmNyZXdfdGFza3MS9AEK8QFbeyJrZXkiOiAiMGI5ZDY1
|
||||
ZGI2YjdhZWRmYjM5OGM1OWUyYTlmNzFlYzUiLCAiaWQiOiAiNjYzOTEwZjYtNTlkYS00NjE3LTli
|
||||
ZTMtNTBmMDdhNmQ5N2U3IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0
|
||||
PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJDRU8iLCAiYWdlbnRfa2V5IjogIjMyODIxN2I2YzI5
|
||||
NTliZGZjNDdjYWQwMGU4NDg5MGQwIiwgInRvb2xzX25hbWVzIjogWyJ0ZXN0IHRvb2wiXX1degIY
|
||||
AYUBAAEAABKOAgoQ1qBlNY8Yu1muyMaMnchyJBII0vE2y9FMwz0qDFRhc2sgQ3JlYXRlZDABObDR
|
||||
zscZpxMYQah5z8cZpxMYSi4KCGNyZXdfa2V5EiIKIGU2NDk1NzNhMjZlNTg3OTBjYWMyMWEzN2Nk
|
||||
NDQ0MzdhSjEKB2NyZXdfaWQSJgokMjY3NzEyNzItOTRlZC00NDVkLTg1MGEtYTkyYTZjOWI5YmJk
|
||||
Si4KCHRhc2tfa2V5EiIKIDBiOWQ2NWRiNmI3YWVkZmIzOThjNTllMmE5ZjcxZWM1SjEKB3Rhc2tf
|
||||
aWQSJgokNjYzOTEwZjYtNTlkYS00NjE3LTliZTMtNTBmMDdhNmQ5N2U3egIYAYUBAAEAABKMAQoQ
|
||||
a8ZDV3ZaBmcOZE5dJ87f1hII7iBRAQfEmdAqClRvb2wgVXNhZ2UwATmYcwjIGacTGEE4RxLIGacT
|
||||
GEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKGAoJdG9vbF9uYW1lEgsKCVRlc3QgVG9vbEoO
|
||||
CghhdHRlbXB0cxICGAF6AhgBhQEAAQAAEowBChBqK4036ypaH1gZ3OIOE/0HEgiF8wTQDQGRlSoK
|
||||
VG9vbCBVc2FnZTABOYBiSsgZpxMYQRCYUsgZpxMYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYu
|
||||
MEoYCgl0b29sX25hbWUSCwoJVGVzdCBUb29sSg4KCGF0dGVtcHRzEgIYAXoCGAGFAQABAAASwQcK
|
||||
EIWSiNjtKgeNQ6oIv8gjJ+MSCG8YnypCXfw1KgxDcmV3IENyZWF0ZWQwATnYUW/KGacTGEEoenTK
|
||||
GacTGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4x
|
||||
MS43Si4KCGNyZXdfa2V5EiIKIDk4MjQ2MGVlMmRkMmNmMTJhNzEzOGI3MDg1OWZlODE3SjEKB2Ny
|
||||
ZXdfaWQSJgokZDNkODZjNmEtNWNmMi00MGI0LWExZGQtMzA5NTYyODdjNWE3ShwKDGNyZXdfcHJv
|
||||
Y2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90
|
||||
YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrcAgoLY3Jld19hZ2VudHMSzAIK
|
||||
yQJbeyJrZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAiaWQiOiAiNWNm
|
||||
NDllYzctOTVmMy00ZGQ3LTg1NzItZjgwMDQwODYwYjI4IiwgInJvbGUiOiAiUmVzZWFyY2hlciIs
|
||||
ICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVu
|
||||
Y3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9u
|
||||
X2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9y
|
||||
ZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsidGVzdCB0b29sIl19XUqSAgoKY3Jld190
|
||||
YXNrcxKDAgqAAlt7ImtleSI6ICJmODM5Yzg3YzNkNzU3Yzg4N2Y0Y2U3NGQxODY0YjAyYSIsICJp
|
||||
ZCI6ICJjM2Y2NjY2MS00YWNjLTQ5OWQtYjJkNC1kZjI0Nzg1MTJhZGYiLCAiYXN5bmNfZXhlY3V0
|
||||
aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogIlJlc2Vh
|
||||
cmNoZXIiLCAiYWdlbnRfa2V5IjogIjhiZDIxMzliNTk3NTE4MTUwNmU0MWZkOWM0NTYzZDc1Iiwg
|
||||
InRvb2xzX25hbWVzIjogWyJhbm90aGVyIHRlc3QgdG9vbCJdfV16AhgBhQEAAQAAEo4CChD8dNvp
|
||||
UItERukk59GnvESYEghtjirHyG3B3SoMVGFzayBDcmVhdGVkMAE5MAGByhmnExhBIFeByhmnExhK
|
||||
LgoIY3Jld19rZXkSIgogOTgyNDYwZWUyZGQyY2YxMmE3MTM4YjcwODU5ZmU4MTdKMQoHY3Jld19p
|
||||
ZBImCiRkM2Q4NmM2YS01Y2YyLTQwYjQtYTFkZC0zMDk1NjI4N2M1YTdKLgoIdGFza19rZXkSIgog
|
||||
ZjgzOWM4N2MzZDc1N2M4ODdmNGNlNzRkMTg2NGIwMmFKMQoHdGFza19pZBImCiRjM2Y2NjY2MS00
|
||||
YWNjLTQ5OWQtYjJkNC1kZjI0Nzg1MTJhZGZ6AhgBhQEAAQAAEowBChDdoNfQMW/Om7LQU9gZGDrl
|
||||
Egjw71DM3bnOWCoKVG9vbCBVc2FnZTABOUgPFC8apxMYQdhtKi8apxMYShoKDmNyZXdhaV92ZXJz
|
||||
aW9uEggKBjAuODYuMEoYCgl0b29sX25hbWUSCwoJVGVzdCBUb29sSg4KCGF0dGVtcHRzEgIYAXoC
|
||||
GAGFAQABAAA=
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '14771'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
User-Agent:
|
||||
- OTel-OTLP-Exporter-Python/1.27.0
|
||||
method: POST
|
||||
uri: https://telemetry.crewai.com:4319/v1/traces
|
||||
response:
|
||||
body:
|
||||
string: "\n\0"
|
||||
headers:
|
||||
Content-Length:
|
||||
- '2'
|
||||
Content-Type:
|
||||
- application/x-protobuf
|
||||
Date:
|
||||
- Mon, 23 Dec 2024 00:33:37 GMT
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages": [{"role": "system", "content": "You are Researcher. You''re
|
||||
an expert researcher, specialized in technology, software engineering, AI and
|
||||
startups. You work as a freelancer and is now working on doing research and
|
||||
analysis for a new customer.\nYour personal goal is: Make the best research
|
||||
and analysis on content about AI and AI agents\nYou ONLY have access to the
|
||||
following tools, and should NEVER make up tools that are not listed here:\n\nTool
|
||||
Name: Test Tool\nTool Arguments: {''query'': {''description'': ''Query to process'',
|
||||
''type'': ''str''}}\nTool Description: A test tool that just returns the input\n\nUse
|
||||
the following format:\n\nThought: you should always think about what to do\nAction:
|
||||
the action to take, only one name of [Test Tool], just the name, exactly as
|
||||
it''s written.\nAction Input: the input to the action, just a simple python
|
||||
dictionary, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
|
||||
the result of the action\n\nOnce all necessary information is gathered:\n\nThought:
|
||||
I now know the final answer\nFinal Answer: the final answer to the original
|
||||
input question"}, {"role": "user", "content": "\nCurrent Task: Write a test
|
||||
task\n\nThis is the expect criteria for your final answer: Test output\nyou
|
||||
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
|
||||
This is VERY important to you, use the tools available and give your best Final
|
||||
Answer, your job depends on it!\n\nThought:"}, {"role": "assistant", "content":
|
||||
"I need to come up with a suitable test task that meets the criteria provided.
|
||||
I will focus on outlining a clear and effective test task related to AI and
|
||||
AI agents.\n\nAction: Test Tool\nAction Input: {\"query\": \"Create a test task
|
||||
that involves evaluating the performance of an AI agent in a given scenario,
|
||||
including criteria for success, tools required, and process for assessment.\"}\nObservation:
|
||||
Processed: Create a test task that involves evaluating the performance of an
|
||||
AI agent in a given scenario, including criteria for success, tools required,
|
||||
and process for assessment."}], "model": "gpt-4o-mini", "stop": ["\nObservation:"],
|
||||
"stream": false}'
|
||||
headers:
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '2160'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- _cfuvid=2u_Xw.i716TDjD2vb2mvMyWxhA4q1MM1JvbrA8CNZpI-1734895557894-0.0.1.1-604800000;
|
||||
__cf_bm=i6jvNjhsDne300GPAeEmyiJJKYqy7OPuamFG_kht3KE-1734914012-1.0.1.1-tCeVANAF521vkXpBdgYw.ov.fYUr6t5QC4LG_DugWyzu4C60Pi2CruTVniUgfCvkcu6rdHA5DwnaEZf2jFaRCQ
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.52.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
x-stainless-package-version:
|
||||
- 1.52.1
|
||||
x-stainless-raw-response:
|
||||
- 'true'
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.11.7
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
content: "{\n \"id\": \"chatcmpl-AhQg0Cx1FED7gOwMpJUD5cQxVzQBK\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1734914012,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I need to compile a complete
|
||||
and detailed test task based on the processed input, ensuring it includes all
|
||||
necessary components as per the expect criteria.\\n\\nFinal Answer: \\n### Test
|
||||
Task: Evaluating the Performance of an AI Agent\\n\\n**Objective:** \\nTo evaluate
|
||||
the performance of an AI agent in simulating conversation with users in a customer
|
||||
service context.\\n\\n**Scenario:**\\nAn AI agent is tasked with handling customer
|
||||
inquiries on an e-commerce platform. The agent must respond to questions about
|
||||
product availability, order tracking, returns, and other common queries.\\n\\n**Criteria
|
||||
for Success:**\\n1. **Accuracy:** The AI should provide correct information
|
||||
in at least 90% of the interactions.\\n2. **Response Time:** The average response
|
||||
time should be under 2 seconds.\\n3. **User Satisfaction:** Aim for a user satisfaction
|
||||
score of 85% or higher based on follow-up surveys after interactions.\\n4. **Fallback
|
||||
Rate:** The AI should not default to a human agent more than 10% of the time.\\n\\n**Tools
|
||||
Required:**\\n- Chatbot development platform (e.g., Dialogflow, Rasa)\\n- Metrics
|
||||
tracking software (to measure accuracy, response times, and user satisfaction)\\n-
|
||||
Survey tool (e.g., Google Forms, SurveyMonkey) for feedback collection\\n\\n**Process
|
||||
for Assessment:**\\n1. **Setup:** Deploy the AI agent on a testing environment
|
||||
simulating real customer inquiries.\\n2. **Data Collection:** Run the test for
|
||||
a predetermined period (e.g., one week) or until a set number of interactions
|
||||
(e.g., 1000).\\n3. **Measurement:**\\n - Record the interactions and analyze
|
||||
the accuracy of the AI's responses.\\n - Measure the average response time
|
||||
for each interaction.\\n - Collect user satisfaction scores via surveys sent
|
||||
after the interaction.\\n4. **Analysis:** Compile the data to see if the AI
|
||||
met the success criteria. Identify strengths and weaknesses in the responses.\\n5.
|
||||
**Review:** Share findings with the development team to strategize improvements.\\n\\nThis
|
||||
detailed task will help assess the AI agent\u2019s capabilities and provide
|
||||
insights for further enhancements.\",\n \"refusal\": null\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 416,\n \"completion_tokens\": 422,\n
|
||||
\ \"total_tokens\": 838,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
|
||||
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
|
||||
\"fp_d02d531b47\"\n}\n"
|
||||
headers:
|
||||
CF-Cache-Status:
|
||||
- DYNAMIC
|
||||
CF-RAY:
|
||||
- 8f6442c2ba15a486-GRU
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Encoding:
|
||||
- gzip
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Mon, 23 Dec 2024 00:33:39 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
openai-organization:
|
||||
- crewai-iuxna1
|
||||
openai-processing-ms:
|
||||
- '6734'
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
strict-transport-security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
x-ratelimit-limit-requests:
|
||||
- '30000'
|
||||
x-ratelimit-limit-tokens:
|
||||
- '150000000'
|
||||
x-ratelimit-remaining-requests:
|
||||
- '29999'
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '149999497'
|
||||
x-ratelimit-reset-requests:
|
||||
- 2ms
|
||||
x-ratelimit-reset-tokens:
|
||||
- 0s
|
||||
x-request-id:
|
||||
- req_7d8df8b840e279bd64280d161d854161
|
||||
http_version: HTTP/1.1
|
||||
status_code: 200
|
||||
version: 1
|
||||
@@ -2,6 +2,7 @@ import unittest
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import requests
|
||||
|
||||
from crewai.cli.authentication.main import AuthenticationCommand
|
||||
|
||||
|
||||
@@ -47,7 +48,9 @@ class TestAuthenticationCommand(unittest.TestCase):
|
||||
@patch("crewai.cli.authentication.main.requests.post")
|
||||
@patch("crewai.cli.authentication.main.validate_token")
|
||||
@patch("crewai.cli.authentication.main.console.print")
|
||||
def test_poll_for_token_success(self, mock_print, mock_validate_token, mock_post, mock_tool):
|
||||
def test_poll_for_token_success(
|
||||
self, mock_print, mock_validate_token, mock_post, mock_tool
|
||||
):
|
||||
mock_response = MagicMock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.json.return_value = {
|
||||
@@ -62,7 +65,9 @@ class TestAuthenticationCommand(unittest.TestCase):
|
||||
self.auth_command._poll_for_token({"device_code": "123456"})
|
||||
|
||||
mock_validate_token.assert_called_once_with("TOKEN")
|
||||
mock_print.assert_called_once_with("\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n")
|
||||
mock_print.assert_called_once_with(
|
||||
"\n[bold green]Welcome to CrewAI Enterprise![/bold green]\n"
|
||||
)
|
||||
|
||||
@patch("crewai.cli.authentication.main.requests.post")
|
||||
@patch("crewai.cli.authentication.main.console.print")
|
||||
|
||||
@@ -3,9 +3,10 @@ import unittest
|
||||
from datetime import datetime, timedelta
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
from crewai.cli.authentication.utils import TokenManager, validate_token
|
||||
from cryptography.fernet import Fernet
|
||||
|
||||
from crewai.cli.authentication.utils import TokenManager, validate_token
|
||||
|
||||
|
||||
class TestValidateToken(unittest.TestCase):
|
||||
@patch("crewai.cli.authentication.utils.AsymmetricSignatureVerifier")
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
import unittest
|
||||
import json
|
||||
import tempfile
|
||||
import shutil
|
||||
import tempfile
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
|
||||
from crewai.cli.config import Settings
|
||||
|
||||
|
||||
class TestSettings(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.test_dir = Path(tempfile.mkdtemp())
|
||||
@@ -20,8 +22,7 @@ class TestSettings(unittest.TestCase):
|
||||
|
||||
def test_initialization_with_data(self):
|
||||
settings = Settings(
|
||||
config_path=self.config_path,
|
||||
tool_repository_username="user1"
|
||||
config_path=self.config_path, tool_repository_username="user1"
|
||||
)
|
||||
self.assertEqual(settings.tool_repository_username, "user1")
|
||||
self.assertIsNone(settings.tool_repository_password)
|
||||
@@ -37,22 +38,23 @@ class TestSettings(unittest.TestCase):
|
||||
def test_merge_file_and_input_data(self):
|
||||
self.config_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with self.config_path.open("w") as f:
|
||||
json.dump({
|
||||
"tool_repository_username": "file_user",
|
||||
"tool_repository_password": "file_pass"
|
||||
}, f)
|
||||
json.dump(
|
||||
{
|
||||
"tool_repository_username": "file_user",
|
||||
"tool_repository_password": "file_pass",
|
||||
},
|
||||
f,
|
||||
)
|
||||
|
||||
settings = Settings(
|
||||
config_path=self.config_path,
|
||||
tool_repository_username="new_user"
|
||||
config_path=self.config_path, tool_repository_username="new_user"
|
||||
)
|
||||
self.assertEqual(settings.tool_repository_username, "new_user")
|
||||
self.assertEqual(settings.tool_repository_password, "file_pass")
|
||||
|
||||
def test_dump_new_settings(self):
|
||||
settings = Settings(
|
||||
config_path=self.config_path,
|
||||
tool_repository_username="user1"
|
||||
config_path=self.config_path, tool_repository_username="user1"
|
||||
)
|
||||
settings.dump()
|
||||
|
||||
@@ -67,8 +69,7 @@ class TestSettings(unittest.TestCase):
|
||||
json.dump({"existing_setting": "value"}, f)
|
||||
|
||||
settings = Settings(
|
||||
config_path=self.config_path,
|
||||
tool_repository_username="user1"
|
||||
config_path=self.config_path, tool_repository_username="user1"
|
||||
)
|
||||
settings.dump()
|
||||
|
||||
@@ -79,10 +80,7 @@ class TestSettings(unittest.TestCase):
|
||||
self.assertEqual(saved_data["tool_repository_username"], "user1")
|
||||
|
||||
def test_none_values(self):
|
||||
settings = Settings(
|
||||
config_path=self.config_path,
|
||||
tool_repository_username=None
|
||||
)
|
||||
settings = Settings(config_path=self.config_path, tool_repository_username=None)
|
||||
settings.dump()
|
||||
|
||||
with self.config_path.open("r") as f:
|
||||
|
||||
@@ -231,7 +231,7 @@ class TestDeployCommand(unittest.TestCase):
|
||||
[project]
|
||||
name = "test_project"
|
||||
version = "0.1.0"
|
||||
requires-python = ">=3.10,<=3.12"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = ["crewai"]
|
||||
""",
|
||||
)
|
||||
@@ -250,7 +250,7 @@ class TestDeployCommand(unittest.TestCase):
|
||||
[project]
|
||||
name = "test_project"
|
||||
version = "0.1.0"
|
||||
requires-python = ">=3.10,<=3.12"
|
||||
requires-python = ">=3.10,<3.13"
|
||||
dependencies = ["crewai"]
|
||||
""",
|
||||
)
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from crewai.cli.git import Repository
|
||||
import pytest
|
||||
|
||||
from crewai.cli.git import Repository
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def repository(fp):
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import os
|
||||
import unittest
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
from crewai.cli.plus_api import PlusAPI
|
||||
|
||||
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
import pytest
|
||||
import os
|
||||
import shutil
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai.cli import utils
|
||||
|
||||
|
||||
|
||||
@@ -85,7 +85,7 @@ def test_install_success(mock_get, mock_subprocess_run):
|
||||
env=unittest.mock.ANY
|
||||
)
|
||||
|
||||
assert "Succesfully installed sample-tool" in output
|
||||
assert "Successfully installed sample-tool" in output
|
||||
|
||||
|
||||
@patch("crewai.cli.plus_api.PlusAPI.get_tool")
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user