Compare commits

...

4 Commits

Author SHA1 Message Date
Brandon Hancock
c89f475c4c Fix type issue 2024-12-09 15:27:36 -05:00
Brandon Hancock
0c5789f1e8 copy googles changes. Fix tests. Improve LLM file 2024-12-09 15:18:44 -05:00
Brandon Hancock (bhancock_ai)
2f9a2afd9e Update pyproject.toml and uv.lock to drop crewai-tools as a default requirement (#1711) 2024-12-09 14:17:46 -05:00
Brandon Hancock (bhancock_ai)
c1df7c410e Bugfix/restrict python version compatibility (#1736)
* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip

* drop pipeline
2024-12-09 14:07:57 -05:00
5 changed files with 39 additions and 26 deletions

View File

@@ -29,7 +29,7 @@ Large Language Models (LLMs) are the core intelligence behind CrewAI agents. The
## Available Models and Their Capabilities
Here's a detailed breakdown of supported models and their capabilities:
Here's a detailed breakdown of supported models and their capabilities, you can compare performance at [lmarena.ai](https://lmarena.ai/):
<Tabs>
<Tab title="OpenAI">
@@ -43,6 +43,17 @@ Here's a detailed breakdown of supported models and their capabilities:
1 token ≈ 4 characters in English. For example, 8,192 tokens ≈ 32,768 characters or about 6,000 words.
</Note>
</Tab>
<Tab title="Gemini">
| Model | Context Window | Best For |
|-------|---------------|-----------|
| Gemini 1.5 Flash | 1M tokens | Balanced multimodal model, good for most tasks |
| Gemini 1.5 Flash 8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
| Gemini 1.5 Pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
<Tip>
Google's Gemini models are all multimodal, supporting audio, images, video and text, supporting context caching, json schema, function calling, etc.
</Tip>
</Tab>
<Tab title="Groq">
| Model | Context Window | Best For |
|-------|---------------|-----------|
@@ -128,10 +139,10 @@ There are three ways to configure LLMs in CrewAI. Choose the method that best fi
# llm: anthropic/claude-2.1
# llm: anthropic/claude-2.0
# Google Models - Good for general tasks
# llm: gemini/gemini-pro
# Google Models - Strong reasoning, large cachable context window, multimodal
# llm: gemini/gemini-1.5-pro-latest
# llm: gemini/gemini-1.0-pro-latest
# llm: gemini/gemini-1.5-flash-latest
# llm: gemini/gemini-1.5-flash-8b-latest
# AWS Bedrock Models - Enterprise-grade
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
@@ -350,13 +361,18 @@ Learn how to get the most out of your LLM configuration:
<Accordion title="Google">
```python Code
# Option 1. Gemini accessed with an API key.
# https://ai.google.dev/gemini-api/docs/api-key
GEMINI_API_KEY=<your-api-key>
# Option 2. Vertex AI IAM credentials for Gemini, Anthropic, and anything in the Model Garden.
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
```
Example usage:
```python Code
llm = LLM(
model="gemini/gemini-pro",
model="gemini/gemini-1.5-pro-latest",
temperature=0.7
)
```

View File

@@ -15,7 +15,6 @@ dependencies = [
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
"instructor>=1.3.3",
"regex>=2024.9.11",
"crewai-tools>=0.17.0",
"click>=8.1.7",
"python-dotenv>=1.0.0",
"appdirs>=1.4.4",

View File

@@ -1,17 +0,0 @@
[tool.poetry]
name = "{{folder_name}}"
version = "0.1.0"
description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.12"
crewai = { extras = ["tools"], version = ">=0.86.0,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]
{{folder_name}} = "{{folder_name}}.main:main"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -43,6 +43,10 @@ LLM_CONTEXT_WINDOW_SIZES = {
"gpt-4-turbo": 128000,
"o1-preview": 128000,
"o1-mini": 128000,
# gemini
"gemini-1.5-pro": 2097152,
"gemini-1.5-flash": 1048576,
"gemini-1.5-flash-8b": 1048576,
# deepseek
"deepseek-chat": 128000,
# groq
@@ -61,6 +65,9 @@ LLM_CONTEXT_WINDOW_SIZES = {
"mixtral-8x7b-32768": 32768,
}
DEFAULT_CONTEXT_WINDOW_SIZE = 8192
CONTEXT_WINDOW_USAGE_RATIO = 0.75
@contextmanager
def suppress_warnings():
@@ -124,6 +131,7 @@ class LLM:
self.api_version = api_version
self.api_key = api_key
self.callbacks = callbacks
self.context_window_size = 0
self.kwargs = kwargs
litellm.drop_params = True
@@ -191,7 +199,16 @@ class LLM:
def get_context_window_size(self) -> int:
# Only using 75% of the context window size to avoid cutting the message in the middle
return int(LLM_CONTEXT_WINDOW_SIZES.get(self.model, 8192) * 0.75)
if self.context_window_size != 0:
return self.context_window_size
self.context_window_size = int(
DEFAULT_CONTEXT_WINDOW_SIZE * CONTEXT_WINDOW_USAGE_RATIO
)
for key, value in LLM_CONTEXT_WINDOW_SIZES.items():
if self.model.startswith(key):
self.context_window_size = int(value * CONTEXT_WINDOW_USAGE_RATIO)
return self.context_window_size
def set_callbacks(self, callbacks: List[Any]):
callback_types = [type(callback) for callback in callbacks]

2
uv.lock generated
View File

@@ -570,7 +570,6 @@ dependencies = [
{ name = "auth0-python" },
{ name = "chromadb" },
{ name = "click" },
{ name = "crewai-tools" },
{ name = "instructor" },
{ name = "json-repair" },
{ name = "jsonref" },
@@ -640,7 +639,6 @@ requires-dist = [
{ name = "auth0-python", specifier = ">=4.7.1" },
{ name = "chromadb", specifier = ">=0.5.18" },
{ name = "click", specifier = ">=8.1.7" },
{ name = "crewai-tools", specifier = ">=0.17.0" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.14.0" },
{ name = "fastembed", marker = "extra == 'fastembed'", specifier = ">=0.4.1" },
{ name = "instructor", specifier = ">=1.3.3" },