mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 12:28:30 +00:00
Compare commits
2 Commits
lorenze/pa
...
devin/1735
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
82f9b26848 | ||
|
|
09fd6058b0 |
222
docs/tools/brave-search-tool.mdx
Normal file
222
docs/tools/brave-search-tool.mdx
Normal file
@@ -0,0 +1,222 @@
|
||||
---
|
||||
title: BraveSearchTool
|
||||
description: A tool for performing web searches using the Brave Search API
|
||||
icon: search
|
||||
---
|
||||
|
||||
## BraveSearchTool
|
||||
|
||||
The BraveSearchTool enables web searches using the Brave Search API, providing customizable result counts, country-specific searches, and rate-limited operations. It formats search results with titles, URLs, and snippets for easy consumption.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Authentication
|
||||
|
||||
Set up your Brave Search API key:
|
||||
```bash
|
||||
export BRAVE_API_KEY='your-brave-api-key'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import BraveSearchTool
|
||||
|
||||
# Basic initialization
|
||||
search_tool = BraveSearchTool()
|
||||
|
||||
# Advanced initialization with custom parameters
|
||||
search_tool = BraveSearchTool(
|
||||
country="US", # Country-specific search
|
||||
n_results=5, # Number of results to return
|
||||
save_file=True # Save results to file
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Web Researcher',
|
||||
goal='Search and analyze web content',
|
||||
backstory='Expert at finding relevant information online.',
|
||||
tools=[search_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class BraveSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query you want to use to search the internet"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
country: Optional[str] = "",
|
||||
n_results: int = 10,
|
||||
save_file: bool = False,
|
||||
*args,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the Brave search tool.
|
||||
|
||||
Args:
|
||||
country (Optional[str]): Country code for region-specific search
|
||||
n_results (int): Number of results to return (default: 10)
|
||||
save_file (bool): Whether to save results to file (default: False)
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Execute web search using Brave Search API.
|
||||
|
||||
Args:
|
||||
search_query (str): Query to search
|
||||
save_file (bool, optional): Override save_file setting
|
||||
n_results (int, optional): Override n_results setting
|
||||
|
||||
Returns:
|
||||
str: Formatted search results with titles, URLs, and snippets
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. API Authentication:
|
||||
- Securely store BRAVE_API_KEY
|
||||
- Keep API key confidential
|
||||
- Handle authentication errors
|
||||
|
||||
2. Rate Limiting:
|
||||
- Tool automatically handles rate limiting
|
||||
- Minimum 1-second interval between requests
|
||||
- Consider implementing additional rate limits
|
||||
|
||||
3. Search Optimization:
|
||||
- Use specific search queries
|
||||
- Adjust result count based on needs
|
||||
- Consider regional search requirements
|
||||
|
||||
4. Error Handling:
|
||||
- Handle API request failures
|
||||
- Manage parsing errors
|
||||
- Monitor rate limit errors
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import BraveSearchTool
|
||||
|
||||
# Initialize tool with custom configuration
|
||||
search_tool = BraveSearchTool(
|
||||
country="GB", # UK-specific search
|
||||
n_results=3, # Limit to 3 results
|
||||
save_file=True # Save results to file
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='Web Researcher',
|
||||
goal='Research latest AI developments',
|
||||
backstory='Expert at finding and analyzing tech news.',
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
research_task = Task(
|
||||
description="""Find the latest news about artificial
|
||||
intelligence developments in quantum computing.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "search_query": "latest quantum computing AI developments"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Country-Specific Search
|
||||
```python
|
||||
# Initialize tools for different regions
|
||||
us_search = BraveSearchTool(country="US")
|
||||
uk_search = BraveSearchTool(country="GB")
|
||||
jp_search = BraveSearchTool(country="JP")
|
||||
|
||||
# Compare results across regions
|
||||
us_results = us_search.run(
|
||||
search_query="local news"
|
||||
)
|
||||
uk_results = uk_search.run(
|
||||
search_query="local news"
|
||||
)
|
||||
jp_results = jp_search.run(
|
||||
search_query="local news"
|
||||
)
|
||||
```
|
||||
|
||||
### Result Management
|
||||
```python
|
||||
# Save results to file
|
||||
archival_search = BraveSearchTool(
|
||||
save_file=True,
|
||||
n_results=20
|
||||
)
|
||||
|
||||
# Search and save
|
||||
results = archival_search.run(
|
||||
search_query="historical events 2023"
|
||||
)
|
||||
# Results saved to search_results_YYYY-MM-DD_HH-MM-SS.txt
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
search_tool = BraveSearchTool()
|
||||
results = search_tool.run(
|
||||
search_query="important topic"
|
||||
)
|
||||
print(results)
|
||||
except ValueError as e: # API key missing
|
||||
print(f"Authentication error: {str(e)}")
|
||||
except Exception as e:
|
||||
print(f"Search error: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Requires Brave Search API key
|
||||
- Implements automatic rate limiting
|
||||
- Supports country-specific searches
|
||||
- Customizable result count
|
||||
- Optional file saving feature
|
||||
- Thread-safe operations
|
||||
- Efficient result formatting
|
||||
- Handles API errors gracefully
|
||||
- Supports parallel searches
|
||||
- Maintains search context
|
||||
164
docs/tools/code-docs-search-tool.mdx
Normal file
164
docs/tools/code-docs-search-tool.mdx
Normal file
@@ -0,0 +1,164 @@
|
||||
---
|
||||
title: CodeDocsSearchTool
|
||||
description: A semantic search tool for code documentation websites using RAG capabilities
|
||||
icon: book-open
|
||||
---
|
||||
|
||||
## CodeDocsSearchTool
|
||||
|
||||
The CodeDocsSearchTool is a specialized Retrieval-Augmented Generation (RAG) tool that enables semantic search within code documentation websites. It inherits from the base RagTool class and provides both fixed and dynamic documentation URL searching capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import CodeDocsSearchTool
|
||||
|
||||
# Method 1: Dynamic documentation URL
|
||||
docs_search = CodeDocsSearchTool()
|
||||
|
||||
# Method 2: Fixed documentation URL
|
||||
fixed_docs_search = CodeDocsSearchTool(
|
||||
docs_url="https://docs.example.com"
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Documentation Researcher',
|
||||
goal='Search through code documentation semantically',
|
||||
backstory='Expert at finding relevant information in technical documentation.',
|
||||
tools=[docs_search],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
The tool supports two input schemas depending on initialization:
|
||||
|
||||
### Dynamic URL Schema
|
||||
```python
|
||||
class CodeDocsSearchToolSchema(BaseModel):
|
||||
search_query: str # The semantic search query
|
||||
docs_url: str # URL of the documentation site to search
|
||||
```
|
||||
|
||||
### Fixed URL Schema
|
||||
```python
|
||||
class FixedCodeDocsSearchToolSchema(BaseModel):
|
||||
search_query: str # The semantic search query
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(self, docs_url: Optional[str] = None, **kwargs):
|
||||
"""
|
||||
Initialize the documentation search tool.
|
||||
|
||||
Args:
|
||||
docs_url (Optional[str]): Fixed URL to a documentation site. If provided,
|
||||
the tool will only search this documentation.
|
||||
**kwargs: Additional arguments passed to the parent RagTool
|
||||
"""
|
||||
|
||||
def _run(self, search_query: str, **kwargs: Any) -> Any:
|
||||
"""
|
||||
Perform semantic search on the documentation site.
|
||||
|
||||
Args:
|
||||
search_query (str): The semantic search query
|
||||
**kwargs: Additional arguments (including 'docs_url' for dynamic mode)
|
||||
|
||||
Returns:
|
||||
str: Relevant documentation passages based on semantic search
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Choose initialization method based on use case:
|
||||
- Use fixed URL when repeatedly searching the same documentation
|
||||
- Use dynamic URL when searching different documentation sites
|
||||
2. Write clear, semantic search queries
|
||||
3. Ensure documentation sites are accessible
|
||||
4. Consider documentation structure and size
|
||||
5. Handle potential URL access errors in agent prompts
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import CodeDocsSearchTool
|
||||
|
||||
# Example 1: Fixed documentation search
|
||||
api_docs_search = CodeDocsSearchTool(
|
||||
docs_url="https://api.example.com/docs"
|
||||
)
|
||||
|
||||
# Example 2: Dynamic documentation search
|
||||
flexible_docs_search = CodeDocsSearchTool()
|
||||
|
||||
# Create agents
|
||||
api_analyst = Agent(
|
||||
role='API Documentation Analyst',
|
||||
goal='Find relevant API endpoints and usage examples',
|
||||
backstory='Expert at analyzing API documentation.',
|
||||
tools=[api_docs_search]
|
||||
)
|
||||
|
||||
docs_researcher = Agent(
|
||||
role='Documentation Researcher',
|
||||
goal='Search through various documentation sites',
|
||||
backstory='Specialist in finding information across multiple docs.',
|
||||
tools=[flexible_docs_search]
|
||||
)
|
||||
|
||||
# Define tasks
|
||||
fixed_search_task = Task(
|
||||
description="""Find all authentication-related endpoints
|
||||
in the API documentation.""",
|
||||
agent=api_analyst
|
||||
)
|
||||
|
||||
# The agent will use:
|
||||
# {
|
||||
# "search_query": "authentication endpoints and methods"
|
||||
# }
|
||||
|
||||
dynamic_search_task = Task(
|
||||
description="""Search through the Python documentation at
|
||||
docs.python.org for information about async/await.""",
|
||||
agent=docs_researcher
|
||||
)
|
||||
|
||||
# The agent will use:
|
||||
# {
|
||||
# "search_query": "async await syntax and usage",
|
||||
# "docs_url": "https://docs.python.org"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[api_analyst, docs_researcher],
|
||||
tasks=[fixed_search_task, dynamic_search_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool for semantic search capabilities
|
||||
- Supports both fixed and dynamic documentation URLs
|
||||
- Uses embeddings for semantic search
|
||||
- Thread-safe operations
|
||||
- Automatically handles documentation loading and embedding
|
||||
- Optimized for technical documentation search
|
||||
224
docs/tools/code-interpreter-tool.mdx
Normal file
224
docs/tools/code-interpreter-tool.mdx
Normal file
@@ -0,0 +1,224 @@
|
||||
---
|
||||
title: CodeInterpreterTool
|
||||
description: A tool for secure Python code execution in isolated Docker environments
|
||||
icon: code
|
||||
---
|
||||
|
||||
## CodeInterpreterTool
|
||||
|
||||
The CodeInterpreterTool provides secure Python code execution capabilities using Docker containers. It supports dynamic library installation and offers both safe (Docker-based) and unsafe (direct) execution modes.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
|
||||
# Initialize the tool
|
||||
code_tool = CodeInterpreterTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
programmer = Agent(
|
||||
role='Code Executor',
|
||||
goal='Execute and analyze Python code',
|
||||
backstory='Expert at writing and executing Python code.',
|
||||
tools=[code_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class CodeInterpreterSchema(BaseModel):
|
||||
code: str = Field(
|
||||
description="Python3 code used to be interpreted in the Docker container. ALWAYS PRINT the final result and the output of the code"
|
||||
)
|
||||
libraries_used: List[str] = Field(
|
||||
description="List of libraries used in the code with proper installing names separated by commas. Example: numpy,pandas,beautifulsoup4"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
code: Optional[str] = None,
|
||||
user_dockerfile_path: Optional[str] = None,
|
||||
user_docker_base_url: Optional[str] = None,
|
||||
unsafe_mode: bool = False,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the code interpreter tool.
|
||||
|
||||
Args:
|
||||
code (Optional[str]): Default code to execute
|
||||
user_dockerfile_path (Optional[str]): Custom Dockerfile path
|
||||
user_docker_base_url (Optional[str]): Custom Docker daemon URL
|
||||
unsafe_mode (bool): Enable direct code execution
|
||||
**kwargs: Additional arguments for base tool
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
code: str,
|
||||
libraries_used: List[str],
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Execute Python code in Docker container or directly.
|
||||
|
||||
Args:
|
||||
code (str): Python code to execute
|
||||
libraries_used (List[str]): Required libraries
|
||||
**kwargs: Additional arguments
|
||||
|
||||
Returns:
|
||||
str: Execution output or error message
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Security Considerations:
|
||||
- Use Docker mode by default
|
||||
- Validate input code
|
||||
- Control library access
|
||||
- Monitor execution time
|
||||
|
||||
2. Docker Configuration:
|
||||
- Use custom Dockerfile when needed
|
||||
- Handle container lifecycle
|
||||
- Manage resource limits
|
||||
- Clean up after execution
|
||||
|
||||
3. Library Management:
|
||||
- Specify exact versions
|
||||
- Use trusted packages
|
||||
- Handle dependencies
|
||||
- Verify installations
|
||||
|
||||
4. Error Handling:
|
||||
- Catch execution errors
|
||||
- Handle timeouts
|
||||
- Manage Docker errors
|
||||
- Provide clear messages
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
|
||||
# Initialize tool
|
||||
code_tool = CodeInterpreterTool()
|
||||
|
||||
# Create agent
|
||||
programmer = Agent(
|
||||
role='Code Executor',
|
||||
goal='Execute data analysis code',
|
||||
backstory='Expert Python programmer specializing in data analysis.',
|
||||
tools=[code_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
analysis_task = Task(
|
||||
description="""Analyze the dataset using pandas and
|
||||
create a summary visualization with matplotlib.""",
|
||||
agent=programmer
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "code": """
|
||||
# import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
#
|
||||
# # Load and analyze data
|
||||
# df = pd.read_csv('data.csv')
|
||||
# summary = df.describe()
|
||||
#
|
||||
# # Create visualization
|
||||
# plt.figure(figsize=(10, 6))
|
||||
# df['column'].hist()
|
||||
# plt.savefig('output.png')
|
||||
#
|
||||
# print(summary)
|
||||
# """,
|
||||
# "libraries_used": "pandas,matplotlib"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[programmer],
|
||||
tasks=[analysis_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Custom Docker Configuration
|
||||
```python
|
||||
# Use custom Dockerfile
|
||||
tool = CodeInterpreterTool(
|
||||
user_dockerfile_path="/path/to/Dockerfile"
|
||||
)
|
||||
|
||||
# Use custom Docker daemon
|
||||
tool = CodeInterpreterTool(
|
||||
user_docker_base_url="tcp://remote-docker:2375"
|
||||
)
|
||||
```
|
||||
|
||||
### Direct Execution Mode
|
||||
```python
|
||||
# Enable unsafe mode (not recommended)
|
||||
tool = CodeInterpreterTool(unsafe_mode=True)
|
||||
|
||||
# Execute code directly
|
||||
result = tool.run(
|
||||
code="print('Hello, World!')",
|
||||
libraries_used=[]
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
code_tool = CodeInterpreterTool()
|
||||
result = code_tool.run(
|
||||
code="""
|
||||
import numpy as np
|
||||
arr = np.array([1, 2, 3])
|
||||
print(f"Array mean: {arr.mean()}")
|
||||
""",
|
||||
libraries_used=["numpy"]
|
||||
)
|
||||
print(result)
|
||||
except Exception as e:
|
||||
print(f"Error executing code: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from BaseTool
|
||||
- Docker-based isolation
|
||||
- Dynamic library installation
|
||||
- Secure code execution
|
||||
- Custom Docker support
|
||||
- Comprehensive error handling
|
||||
- Resource management
|
||||
- Container cleanup
|
||||
- Library dependency handling
|
||||
- Execution output capture
|
||||
207
docs/tools/csv-search-tool.mdx
Normal file
207
docs/tools/csv-search-tool.mdx
Normal file
@@ -0,0 +1,207 @@
|
||||
---
|
||||
title: CSVSearchTool
|
||||
description: A tool for semantic search within CSV files using RAG capabilities
|
||||
icon: table
|
||||
---
|
||||
|
||||
## CSVSearchTool
|
||||
|
||||
The CSVSearchTool enables semantic search capabilities for CSV files using Retrieval-Augmented Generation (RAG). It can process CSV files either specified during initialization or at runtime, making it flexible for various use cases.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import CSVSearchTool
|
||||
|
||||
# Method 1: Initialize with specific CSV file
|
||||
csv_tool = CSVSearchTool(csv="path/to/data.csv")
|
||||
|
||||
# Method 2: Initialize without CSV (specify at runtime)
|
||||
flexible_csv_tool = CSVSearchTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
data_analyst = Agent(
|
||||
role='Data Analyst',
|
||||
goal='Search and analyze CSV data semantically',
|
||||
backstory='Expert at analyzing and extracting insights from CSV data.',
|
||||
tools=[csv_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
### Fixed CSV Schema (when CSV path provided during initialization)
|
||||
```python
|
||||
class FixedCSVSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query you want to use to search the CSV's content"
|
||||
)
|
||||
```
|
||||
|
||||
### Flexible CSV Schema (when CSV path provided at runtime)
|
||||
```python
|
||||
class CSVSearchToolSchema(FixedCSVSearchToolSchema):
|
||||
csv: str = Field(
|
||||
description="Mandatory csv path you want to search"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
csv: Optional[str] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the CSV search tool.
|
||||
|
||||
Args:
|
||||
csv (Optional[str]): Path to CSV file (optional)
|
||||
**kwargs: Additional arguments for RAG tool configuration
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
search_query: str,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Execute semantic search on CSV content.
|
||||
|
||||
Args:
|
||||
search_query (str): Query to search in the CSV
|
||||
**kwargs: Additional arguments including csv path if not initialized
|
||||
|
||||
Returns:
|
||||
str: Relevant content from the CSV matching the query
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. CSV File Handling:
|
||||
- Ensure CSV files are properly formatted
|
||||
- Use absolute paths for reliability
|
||||
- Verify file permissions before processing
|
||||
|
||||
2. Search Optimization:
|
||||
- Use specific, focused search queries
|
||||
- Consider column names and data structure
|
||||
- Test with sample queries first
|
||||
|
||||
3. Performance Considerations:
|
||||
- Pre-initialize with CSV for repeated searches
|
||||
- Handle large CSV files appropriately
|
||||
- Monitor memory usage with big datasets
|
||||
|
||||
4. Error Handling:
|
||||
- Verify CSV file existence
|
||||
- Handle malformed CSV data
|
||||
- Manage file access permissions
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import CSVSearchTool
|
||||
|
||||
# Initialize tool with specific CSV
|
||||
csv_tool = CSVSearchTool(csv="/path/to/sales_data.csv")
|
||||
|
||||
# Create agent
|
||||
analyst = Agent(
|
||||
role='Data Analyst',
|
||||
goal='Extract insights from sales data',
|
||||
backstory='Expert at analyzing sales data and trends.',
|
||||
tools=[csv_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
analysis_task = Task(
|
||||
description="""Find all sales records from the CSV
|
||||
that relate to product returns in Q4 2023.""",
|
||||
agent=analyst
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "search_query": "product returns Q4 2023"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[analyst],
|
||||
tasks=[analysis_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Dynamic CSV Selection
|
||||
```python
|
||||
# Initialize without CSV
|
||||
flexible_tool = CSVSearchTool()
|
||||
|
||||
# Search different CSVs
|
||||
result1 = flexible_tool.run(
|
||||
search_query="revenue 2023",
|
||||
csv="/path/to/finance.csv"
|
||||
)
|
||||
|
||||
result2 = flexible_tool.run(
|
||||
search_query="customer feedback",
|
||||
csv="/path/to/surveys.csv"
|
||||
)
|
||||
```
|
||||
|
||||
### Multiple CSV Analysis
|
||||
```python
|
||||
# Create tools for different CSVs
|
||||
sales_tool = CSVSearchTool(csv="/path/to/sales.csv")
|
||||
inventory_tool = CSVSearchTool(csv="/path/to/inventory.csv")
|
||||
|
||||
# Create agent with multiple tools
|
||||
analyst = Agent(
|
||||
role='Business Analyst',
|
||||
goal='Cross-reference sales and inventory data',
|
||||
tools=[sales_tool, inventory_tool]
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
csv_tool = CSVSearchTool(csv="/path/to/data.csv")
|
||||
result = csv_tool.run(
|
||||
search_query="important metrics"
|
||||
)
|
||||
print(result)
|
||||
except Exception as e:
|
||||
print(f"Error processing CSV: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool for semantic search
|
||||
- Supports dynamic CSV file specification
|
||||
- Uses embedchain for data processing
|
||||
- Maintains search context across queries
|
||||
- Thread-safe operations
|
||||
- Efficient semantic search capabilities
|
||||
- Supports various CSV formats
|
||||
- Handles large datasets effectively
|
||||
- Preserves CSV structure in search
|
||||
- Enables natural language queries
|
||||
217
docs/tools/directory-read-tool.mdx
Normal file
217
docs/tools/directory-read-tool.mdx
Normal file
@@ -0,0 +1,217 @@
|
||||
---
|
||||
title: Directory Read Tool
|
||||
description: A tool for recursively listing directory contents
|
||||
---
|
||||
|
||||
# Directory Read Tool
|
||||
|
||||
The Directory Read Tool provides functionality to recursively list all files within a directory. It supports both fixed and dynamic directory path modes, allowing you to specify the directory at initialization or runtime.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
You can use the Directory Read Tool in two ways:
|
||||
|
||||
### 1. Fixed Directory Path
|
||||
|
||||
Initialize the tool with a specific directory path:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import DirectoryReadTool
|
||||
|
||||
# Initialize with a fixed directory
|
||||
tool = DirectoryReadTool(directory="/path/to/your/directory")
|
||||
|
||||
# Create an agent with the tool
|
||||
agent = Agent(
|
||||
role='File System Analyst',
|
||||
goal='Analyze directory contents',
|
||||
backstory='I help analyze and organize file systems',
|
||||
tools=[tool]
|
||||
)
|
||||
|
||||
# Use in a task
|
||||
task = Task(
|
||||
description="List all files in the project directory",
|
||||
agent=agent
|
||||
)
|
||||
```
|
||||
|
||||
### 2. Dynamic Directory Path
|
||||
|
||||
Initialize the tool without a specific directory path to provide it at runtime:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import DirectoryReadTool
|
||||
|
||||
# Initialize without a fixed directory
|
||||
tool = DirectoryReadTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
agent = Agent(
|
||||
role='File System Explorer',
|
||||
goal='Explore different directories',
|
||||
backstory='I analyze various directory structures',
|
||||
tools=[tool]
|
||||
)
|
||||
|
||||
# Use in a task with dynamic directory path
|
||||
task = Task(
|
||||
description="List all files in the specified directory",
|
||||
agent=agent,
|
||||
context={
|
||||
"directory": "/path/to/explore"
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
### Fixed Directory Mode
|
||||
```python
|
||||
class FixedDirectoryReadToolSchema(BaseModel):
|
||||
pass # No additional parameters needed when directory is fixed
|
||||
```
|
||||
|
||||
### Dynamic Directory Mode
|
||||
```python
|
||||
class DirectoryReadToolSchema(BaseModel):
|
||||
directory: str # The path to the directory to list contents
|
||||
```
|
||||
|
||||
## Function Signatures
|
||||
|
||||
```python
|
||||
def __init__(self, directory: Optional[str] = None, **kwargs):
|
||||
"""
|
||||
Initialize the Directory Read Tool.
|
||||
|
||||
Args:
|
||||
directory (Optional[str]): Path to the directory (optional)
|
||||
**kwargs: Additional arguments passed to BaseTool
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""
|
||||
Execute the directory listing.
|
||||
|
||||
Args:
|
||||
**kwargs: Arguments including 'directory' for dynamic mode
|
||||
|
||||
Returns:
|
||||
str: A formatted string containing all file paths in the directory
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Path Handling**:
|
||||
- Use absolute paths to avoid path resolution issues
|
||||
- Handle trailing slashes appropriately
|
||||
- Verify directory existence before listing
|
||||
|
||||
2. **Performance Considerations**:
|
||||
- Be mindful of directory size when listing large directories
|
||||
- Consider implementing pagination for large directories
|
||||
- Handle symlinks appropriately
|
||||
|
||||
3. **Error Handling**:
|
||||
- Handle directory not found errors gracefully
|
||||
- Manage permission issues appropriately
|
||||
- Validate input parameters before processing
|
||||
|
||||
## Example Integration
|
||||
|
||||
Here's a complete example showing how to integrate the Directory Read Tool with CrewAI:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import DirectoryReadTool
|
||||
|
||||
# Initialize the tool
|
||||
dir_tool = DirectoryReadTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
file_analyst = Agent(
|
||||
role='File System Analyst',
|
||||
goal='Analyze and report on directory structures',
|
||||
backstory='I am an expert at analyzing file system organization',
|
||||
tools=[dir_tool]
|
||||
)
|
||||
|
||||
# Create tasks
|
||||
analysis_task = Task(
|
||||
description="""
|
||||
Analyze the project directory structure:
|
||||
1. List all files recursively
|
||||
2. Identify key file types
|
||||
3. Report on directory organization
|
||||
|
||||
Provide a comprehensive analysis of the findings.
|
||||
""",
|
||||
agent=file_analyst,
|
||||
context={
|
||||
"directory": "/path/to/project"
|
||||
}
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[file_analyst],
|
||||
tasks=[analysis_task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
The tool handles various error scenarios:
|
||||
|
||||
1. **Directory Not Found**:
|
||||
```python
|
||||
try:
|
||||
tool = DirectoryReadTool(directory="/nonexistent/path")
|
||||
except FileNotFoundError:
|
||||
print("Directory not found. Please verify the path.")
|
||||
```
|
||||
|
||||
2. **Permission Issues**:
|
||||
```python
|
||||
try:
|
||||
tool = DirectoryReadTool(directory="/restricted/path")
|
||||
except PermissionError:
|
||||
print("Insufficient permissions to access the directory.")
|
||||
```
|
||||
|
||||
3. **Invalid Path**:
|
||||
```python
|
||||
try:
|
||||
result = tool._run(directory="invalid/path")
|
||||
except ValueError:
|
||||
print("Invalid directory path provided.")
|
||||
```
|
||||
|
||||
## Output Format
|
||||
|
||||
The tool returns a formatted string containing all file paths in the directory:
|
||||
|
||||
```
|
||||
File paths:
|
||||
- /path/to/directory/file1.txt
|
||||
- /path/to/directory/subdirectory/file2.txt
|
||||
- /path/to/directory/subdirectory/file3.py
|
||||
```
|
||||
|
||||
|
||||
Each file path is listed on a new line with a hyphen prefix, making it easy to parse and read the output.
|
||||
214
docs/tools/directory-search-tool.mdx
Normal file
214
docs/tools/directory-search-tool.mdx
Normal file
@@ -0,0 +1,214 @@
|
||||
---
|
||||
title: DirectorySearchTool
|
||||
description: A tool for semantic search within directory contents using RAG capabilities
|
||||
icon: folder-search
|
||||
---
|
||||
|
||||
## DirectorySearchTool
|
||||
|
||||
The DirectorySearchTool enables semantic search capabilities for directory contents using Retrieval-Augmented Generation (RAG). It processes files recursively within a directory and allows searching through their contents using natural language queries.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import DirectorySearchTool
|
||||
|
||||
# Method 1: Initialize with specific directory
|
||||
dir_tool = DirectorySearchTool(directory="/path/to/documents")
|
||||
|
||||
# Method 2: Initialize without directory (specify at runtime)
|
||||
flexible_dir_tool = DirectorySearchTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Directory Researcher',
|
||||
goal='Search and analyze directory contents',
|
||||
backstory='Expert at finding relevant information in document collections.',
|
||||
tools=[dir_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
### Fixed Directory Schema (when path provided during initialization)
|
||||
```python
|
||||
class FixedDirectorySearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query you want to use to search the directory's content"
|
||||
)
|
||||
```
|
||||
|
||||
### Flexible Directory Schema (when path provided at runtime)
|
||||
```python
|
||||
class DirectorySearchToolSchema(FixedDirectorySearchToolSchema):
|
||||
directory: str = Field(
|
||||
description="Mandatory directory you want to search"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
directory: Optional[str] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the directory search tool.
|
||||
|
||||
Args:
|
||||
directory (Optional[str]): Path to directory (optional)
|
||||
**kwargs: Additional arguments for RAG tool configuration
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
search_query: str,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Execute semantic search on directory contents.
|
||||
|
||||
Args:
|
||||
search_query (str): Query to search in the directory
|
||||
**kwargs: Additional arguments including directory if not initialized
|
||||
|
||||
Returns:
|
||||
str: Relevant content from the directory matching the query
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Directory Management:
|
||||
- Use absolute paths
|
||||
- Verify directory existence
|
||||
- Handle permissions properly
|
||||
|
||||
2. Search Optimization:
|
||||
- Use specific queries
|
||||
- Consider file types
|
||||
- Test with sample queries
|
||||
|
||||
3. Performance Considerations:
|
||||
- Pre-initialize for repeated searches
|
||||
- Handle large directories
|
||||
- Monitor processing time
|
||||
|
||||
4. Error Handling:
|
||||
- Verify directory access
|
||||
- Handle missing files
|
||||
- Manage permissions
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import DirectorySearchTool
|
||||
|
||||
# Initialize tool with specific directory
|
||||
dir_tool = DirectorySearchTool(
|
||||
directory="/path/to/documents"
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='Directory Researcher',
|
||||
goal='Extract insights from document collections',
|
||||
backstory='Expert at analyzing document collections.',
|
||||
tools=[dir_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
research_task = Task(
|
||||
description="""Find all mentions of machine learning
|
||||
applications from the directory contents.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "search_query": "machine learning applications"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Dynamic Directory Selection
|
||||
```python
|
||||
# Initialize without directory path
|
||||
flexible_tool = DirectorySearchTool()
|
||||
|
||||
# Search different directories
|
||||
docs_results = flexible_tool.run(
|
||||
search_query="technical specifications",
|
||||
directory="/path/to/docs"
|
||||
)
|
||||
|
||||
reports_results = flexible_tool.run(
|
||||
search_query="financial metrics",
|
||||
directory="/path/to/reports"
|
||||
)
|
||||
```
|
||||
|
||||
### Multiple Directory Analysis
|
||||
```python
|
||||
# Create tools for different directories
|
||||
docs_tool = DirectorySearchTool(
|
||||
directory="/path/to/docs"
|
||||
)
|
||||
reports_tool = DirectorySearchTool(
|
||||
directory="/path/to/reports"
|
||||
)
|
||||
|
||||
# Create agent with multiple tools
|
||||
analyst = Agent(
|
||||
role='Content Analyst',
|
||||
goal='Cross-reference multiple document collections',
|
||||
tools=[docs_tool, reports_tool]
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
dir_tool = DirectorySearchTool()
|
||||
results = dir_tool.run(
|
||||
search_query="key concepts",
|
||||
directory="/path/to/documents"
|
||||
)
|
||||
print(results)
|
||||
except Exception as e:
|
||||
print(f"Error processing directory: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool
|
||||
- Uses DirectoryLoader
|
||||
- Supports recursive search
|
||||
- Dynamic directory specification
|
||||
- Efficient content retrieval
|
||||
- Thread-safe operations
|
||||
- Maintains search context
|
||||
- Processes multiple file types
|
||||
- Handles nested directories
|
||||
- Memory-efficient processing
|
||||
224
docs/tools/docx-search-tool.mdx
Normal file
224
docs/tools/docx-search-tool.mdx
Normal file
@@ -0,0 +1,224 @@
|
||||
---
|
||||
title: DOCXSearchTool
|
||||
description: A tool for semantic search within DOCX documents using RAG capabilities
|
||||
icon: file-text
|
||||
---
|
||||
|
||||
## DOCXSearchTool
|
||||
|
||||
The DOCXSearchTool enables semantic search capabilities for Microsoft Word (DOCX) documents using Retrieval-Augmented Generation (RAG). It supports both fixed and dynamic document selection modes.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import DOCXSearchTool
|
||||
|
||||
# Method 1: Fixed document (specified at initialization)
|
||||
fixed_tool = DOCXSearchTool(
|
||||
docx="path/to/document.docx"
|
||||
)
|
||||
|
||||
# Method 2: Dynamic document (specified at runtime)
|
||||
dynamic_tool = DOCXSearchTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Document Researcher',
|
||||
goal='Search and analyze document contents',
|
||||
backstory='Expert at finding relevant information in documents.',
|
||||
tools=[fixed_tool], # or [dynamic_tool]
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
### Fixed Document Mode
|
||||
```python
|
||||
class FixedDOCXSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query you want to use to search the DOCX's content"
|
||||
)
|
||||
```
|
||||
|
||||
### Dynamic Document Mode
|
||||
```python
|
||||
class DOCXSearchToolSchema(BaseModel):
|
||||
docx: str = Field(
|
||||
description="Mandatory docx path you want to search"
|
||||
)
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query you want to use to search the DOCX's content"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
docx: Optional[str] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the DOCX search tool.
|
||||
|
||||
Args:
|
||||
docx (Optional[str]): Path to DOCX file (optional for dynamic mode)
|
||||
**kwargs: Additional arguments for RAG tool configuration
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
search_query: str,
|
||||
docx: Optional[str] = None,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Execute semantic search on document contents.
|
||||
|
||||
Args:
|
||||
search_query (str): Query to search in the document
|
||||
docx (Optional[str]): Document path (required for dynamic mode)
|
||||
**kwargs: Additional arguments
|
||||
|
||||
Returns:
|
||||
str: Relevant content from the document matching the query
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Document Handling:
|
||||
- Use absolute file paths
|
||||
- Verify file existence
|
||||
- Handle large documents
|
||||
- Monitor memory usage
|
||||
|
||||
2. Query Optimization:
|
||||
- Structure queries clearly
|
||||
- Consider document size
|
||||
- Handle formatting
|
||||
- Monitor performance
|
||||
|
||||
3. Error Handling:
|
||||
- Check file access
|
||||
- Validate file format
|
||||
- Handle corrupted files
|
||||
- Log issues
|
||||
|
||||
4. Mode Selection:
|
||||
- Choose fixed mode for static documents
|
||||
- Use dynamic mode for runtime selection
|
||||
- Consider memory implications
|
||||
- Manage document lifecycle
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import DOCXSearchTool
|
||||
|
||||
# Initialize tool
|
||||
docx_tool = DOCXSearchTool(
|
||||
docx="reports/annual_report_2023.docx"
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='Document Analyst',
|
||||
goal='Extract insights from annual report',
|
||||
backstory='Expert at analyzing business documents.',
|
||||
tools=[docx_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
analysis_task = Task(
|
||||
description="""Find all mentions of revenue growth
|
||||
and market expansion.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[analysis_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Multiple Document Analysis
|
||||
```python
|
||||
# Create tools for different documents
|
||||
report_tool = DOCXSearchTool(
|
||||
docx="reports/annual_report.docx"
|
||||
)
|
||||
|
||||
policy_tool = DOCXSearchTool(
|
||||
docx="policies/compliance.docx"
|
||||
)
|
||||
|
||||
# Create agent with multiple tools
|
||||
analyst = Agent(
|
||||
role='Document Analyst',
|
||||
goal='Cross-reference reports and policies',
|
||||
tools=[report_tool, policy_tool]
|
||||
)
|
||||
```
|
||||
|
||||
### Dynamic Document Loading
|
||||
```python
|
||||
# Initialize dynamic tool
|
||||
dynamic_tool = DOCXSearchTool()
|
||||
|
||||
# Use with different documents
|
||||
result1 = dynamic_tool.run(
|
||||
docx="document1.docx",
|
||||
search_query="project timeline"
|
||||
)
|
||||
|
||||
result2 = dynamic_tool.run(
|
||||
docx="document2.docx",
|
||||
search_query="budget allocation"
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
docx_tool = DOCXSearchTool(
|
||||
docx="reports/quarterly_report.docx"
|
||||
)
|
||||
results = docx_tool.run(
|
||||
search_query="Q3 performance metrics"
|
||||
)
|
||||
print(results)
|
||||
except FileNotFoundError as e:
|
||||
print(f"Document not found: {str(e)}")
|
||||
except Exception as e:
|
||||
print(f"Error processing document: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool
|
||||
- Supports fixed/dynamic modes
|
||||
- Document path validation
|
||||
- Memory management
|
||||
- Performance optimization
|
||||
- Error handling
|
||||
- Search capabilities
|
||||
- Content extraction
|
||||
- Format handling
|
||||
- Security features
|
||||
193
docs/tools/file-read-tool.mdx
Normal file
193
docs/tools/file-read-tool.mdx
Normal file
@@ -0,0 +1,193 @@
|
||||
---
|
||||
title: FileReadTool
|
||||
description: A tool for reading file contents with flexible path specification
|
||||
icon: file-text
|
||||
---
|
||||
|
||||
## FileReadTool
|
||||
|
||||
The FileReadTool provides functionality to read file contents with support for both fixed and dynamic file path specification. It includes comprehensive error handling for common file operations and maintains clear descriptions of its configured state.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import FileReadTool
|
||||
|
||||
# Method 1: Initialize with specific file
|
||||
reader = FileReadTool(file_path="/path/to/data.txt")
|
||||
|
||||
# Method 2: Initialize without file (specify at runtime)
|
||||
flexible_reader = FileReadTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
file_processor = Agent(
|
||||
role='File Processor',
|
||||
goal='Read and process file contents',
|
||||
backstory='Expert at handling file operations and content processing.',
|
||||
tools=[reader],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class FileReadToolSchema(BaseModel):
|
||||
file_path: str = Field(
|
||||
description="Mandatory file full path to read the file"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
file_path: Optional[str] = None,
|
||||
**kwargs: Any
|
||||
) -> None:
|
||||
"""
|
||||
Initialize the file read tool.
|
||||
|
||||
Args:
|
||||
file_path (Optional[str]): Path to file to read (optional)
|
||||
**kwargs: Additional arguments passed to BaseTool
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Read and return file contents.
|
||||
|
||||
Args:
|
||||
file_path (str, optional): Override default file path
|
||||
**kwargs: Additional arguments
|
||||
|
||||
Returns:
|
||||
str: File contents or error message
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. File Path Management:
|
||||
- Use absolute paths for reliability
|
||||
- Verify file existence before operations
|
||||
- Handle path resolution properly
|
||||
|
||||
2. Error Handling:
|
||||
- Check for file existence
|
||||
- Handle permission issues
|
||||
- Manage encoding errors
|
||||
- Process file access failures
|
||||
|
||||
3. Performance Considerations:
|
||||
- Close files after reading
|
||||
- Handle large files appropriately
|
||||
- Consider memory constraints
|
||||
|
||||
4. Security Practices:
|
||||
- Validate file paths
|
||||
- Check file permissions
|
||||
- Avoid path traversal issues
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import FileReadTool
|
||||
|
||||
# Initialize tool with specific file
|
||||
reader = FileReadTool(file_path="/path/to/config.txt")
|
||||
|
||||
# Create agent
|
||||
processor = Agent(
|
||||
role='File Processor',
|
||||
goal='Process configuration files',
|
||||
backstory='Expert at reading and analyzing configuration files.',
|
||||
tools=[reader]
|
||||
)
|
||||
|
||||
# Define task
|
||||
read_task = Task(
|
||||
description="""Read and analyze the contents of
|
||||
the configuration file.""",
|
||||
agent=processor
|
||||
)
|
||||
|
||||
# The tool will use the default file path
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[processor],
|
||||
tasks=[read_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Dynamic File Selection
|
||||
```python
|
||||
# Initialize without file path
|
||||
flexible_reader = FileReadTool()
|
||||
|
||||
# Read different files
|
||||
config_content = flexible_reader.run(
|
||||
file_path="/path/to/config.txt"
|
||||
)
|
||||
|
||||
log_content = flexible_reader.run(
|
||||
file_path="/path/to/logs.txt"
|
||||
)
|
||||
```
|
||||
|
||||
### Multiple File Processing
|
||||
```python
|
||||
# Create tools for different files
|
||||
config_reader = FileReadTool(file_path="/path/to/config.txt")
|
||||
log_reader = FileReadTool(file_path="/path/to/logs.txt")
|
||||
|
||||
# Create agent with multiple tools
|
||||
processor = Agent(
|
||||
role='File Analyst',
|
||||
goal='Analyze multiple file types',
|
||||
tools=[config_reader, log_reader]
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
reader = FileReadTool()
|
||||
content = reader.run(
|
||||
file_path="/path/to/file.txt"
|
||||
)
|
||||
print(content)
|
||||
except Exception as e:
|
||||
print(f"Error reading file: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from BaseTool
|
||||
- Supports fixed or dynamic file paths
|
||||
- Comprehensive error handling
|
||||
- Thread-safe operations
|
||||
- Clear error messages
|
||||
- Flexible path specification
|
||||
- Maintains tool description
|
||||
- Handles common file errors
|
||||
- Supports various file types
|
||||
- Memory-efficient operations
|
||||
141
docs/tools/filewritertool.mdx
Normal file
141
docs/tools/filewritertool.mdx
Normal file
@@ -0,0 +1,141 @@
|
||||
---
|
||||
title: FileWriterTool
|
||||
description: A tool for writing content to files with support for various file formats.
|
||||
icon: file-pen
|
||||
---
|
||||
|
||||
## FileWriterTool
|
||||
|
||||
The FileWriterTool provides agents with the capability to write content to files, supporting various file formats and ensuring proper file handling.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import FileWriterTool
|
||||
|
||||
# Initialize the tool
|
||||
file_writer = FileWriterTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
writer_agent = Agent(
|
||||
role='Content Writer',
|
||||
goal='Write and save content to files',
|
||||
backstory='Expert at creating and managing file content.',
|
||||
tools=[file_writer],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Use in a task
|
||||
task = Task(
|
||||
description='Write a report and save it to report.txt',
|
||||
agent=writer_agent
|
||||
)
|
||||
```
|
||||
|
||||
## Tool Attributes
|
||||
|
||||
| Attribute | Type | Description |
|
||||
| :-------- | :--- | :---------- |
|
||||
| name | str | "File Writer Tool" |
|
||||
| description | str | "A tool that writes content to a file." |
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class FileWriterToolInput(BaseModel):
|
||||
filename: str # Name of the file to write
|
||||
directory: str = "./" # Optional directory path, defaults to current directory
|
||||
overwrite: str = "False" # Whether to overwrite existing file ("True"/"False")
|
||||
content: str # Content to write to the file
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def _run(self, **kwargs: Any) -> str:
|
||||
"""
|
||||
Write content to a file with specified parameters.
|
||||
|
||||
Args:
|
||||
filename (str): Name of the file to write
|
||||
content (str): Content to write to the file
|
||||
directory (str, optional): Directory path. Defaults to "./".
|
||||
overwrite (str, optional): Whether to overwrite existing file. Defaults to "False".
|
||||
|
||||
Returns:
|
||||
str: Success message with filepath or error message
|
||||
"""
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
The tool includes error handling for common file operations:
|
||||
- FileExistsError: When file exists and overwrite is not allowed
|
||||
- KeyError: When required parameters are missing
|
||||
- Directory Creation: Automatically creates directories if they don't exist
|
||||
- General Exceptions: Catches and reports any other file operation errors
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Always provide absolute file paths
|
||||
2. Ensure proper file permissions
|
||||
3. Handle potential errors in your agent prompts
|
||||
4. Verify file contents after writing
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import FileWriterTool
|
||||
|
||||
# Initialize tool
|
||||
file_writer = FileWriterTool()
|
||||
|
||||
# Create agent
|
||||
writer = Agent(
|
||||
role='Technical Writer',
|
||||
goal='Create and save technical documentation',
|
||||
backstory='Expert technical writer with experience in documentation.',
|
||||
tools=[file_writer]
|
||||
)
|
||||
|
||||
# Define task
|
||||
writing_task = Task(
|
||||
description="""Write a technical guide about Python best practices and save it
|
||||
to the docs directory. The file should be named 'python_guide.md'.
|
||||
Include sections on code style, documentation, and testing.
|
||||
If a file already exists, overwrite it.""",
|
||||
agent=writer
|
||||
)
|
||||
|
||||
# The agent can use the tool with these parameters:
|
||||
# {
|
||||
# "filename": "python_guide.md",
|
||||
# "directory": "docs",
|
||||
# "overwrite": "True",
|
||||
# "content": "# Python Best Practices\n\n## Code Style\n..."
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[writer],
|
||||
tasks=[writing_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- The tool automatically creates directories in the file path if they don't exist
|
||||
- Supports various file formats (txt, md, json, etc.)
|
||||
- Returns descriptive error messages for better debugging
|
||||
- Thread-safe file operations
|
||||
181
docs/tools/firecrawl-crawl-website-tool.mdx
Normal file
181
docs/tools/firecrawl-crawl-website-tool.mdx
Normal file
@@ -0,0 +1,181 @@
|
||||
---
|
||||
title: FirecrawlCrawlWebsiteTool
|
||||
description: A web crawling tool powered by Firecrawl API for comprehensive website content extraction
|
||||
icon: spider-web
|
||||
---
|
||||
|
||||
## FirecrawlCrawlWebsiteTool
|
||||
|
||||
The FirecrawlCrawlWebsiteTool provides website crawling capabilities using the Firecrawl API. It allows for customizable crawling with options for polling intervals, idempotency, and URL parameters.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
pip install firecrawl-py # Required dependency
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import FirecrawlCrawlWebsiteTool
|
||||
|
||||
# Method 1: Using environment variable
|
||||
# export FIRECRAWL_API_KEY='your-api-key'
|
||||
crawler = FirecrawlCrawlWebsiteTool()
|
||||
|
||||
# Method 2: Providing API key directly
|
||||
crawler = FirecrawlCrawlWebsiteTool(
|
||||
api_key="your-firecrawl-api-key"
|
||||
)
|
||||
|
||||
# Method 3: With custom configuration
|
||||
crawler = FirecrawlCrawlWebsiteTool(
|
||||
api_key="your-firecrawl-api-key",
|
||||
url="https://example.com", # Base URL
|
||||
poll_interval=5, # Custom polling interval
|
||||
idempotency_key="unique-key"
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Web Crawler',
|
||||
goal='Extract and analyze website content',
|
||||
backstory='Expert at crawling and analyzing web content.',
|
||||
tools=[crawler],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class FirecrawlCrawlWebsiteToolSchema(BaseModel):
|
||||
url: str = Field(description="Website URL")
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
api_key: Optional[str] = None,
|
||||
url: Optional[str] = None,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
poll_interval: Optional[int] = 2,
|
||||
idempotency_key: Optional[str] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the website crawling tool.
|
||||
|
||||
Args:
|
||||
api_key (Optional[str]): Firecrawl API key. If not provided, checks FIRECRAWL_API_KEY env var
|
||||
url (Optional[str]): Base URL to crawl. Can be overridden in _run
|
||||
params (Optional[Dict[str, Any]]): Additional parameters for FirecrawlApp
|
||||
poll_interval (Optional[int]): Poll interval for FirecrawlApp
|
||||
idempotency_key (Optional[str]): Idempotency key for FirecrawlApp
|
||||
**kwargs: Additional arguments for tool creation
|
||||
"""
|
||||
|
||||
def _run(self, url: str) -> Any:
|
||||
"""
|
||||
Crawl a website using Firecrawl.
|
||||
|
||||
Args:
|
||||
url (str): Website URL to crawl (overrides constructor URL if provided)
|
||||
|
||||
Returns:
|
||||
Any: Crawled website content from Firecrawl API
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Set up API authentication:
|
||||
- Use environment variable: `export FIRECRAWL_API_KEY='your-api-key'`
|
||||
- Or provide directly in constructor
|
||||
2. Configure crawling parameters:
|
||||
- Set appropriate poll intervals
|
||||
- Use idempotency keys for retry safety
|
||||
- Customize URL parameters as needed
|
||||
3. Handle rate limits and quotas
|
||||
4. Consider website robots.txt policies
|
||||
5. Handle potential crawling errors in agent prompts
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import FirecrawlCrawlWebsiteTool
|
||||
|
||||
# Initialize crawler with configuration
|
||||
crawler = FirecrawlCrawlWebsiteTool(
|
||||
api_key="your-firecrawl-api-key",
|
||||
poll_interval=5,
|
||||
params={
|
||||
"max_depth": 3,
|
||||
"follow_links": True
|
||||
}
|
||||
)
|
||||
|
||||
# Create agent
|
||||
web_analyst = Agent(
|
||||
role='Web Content Analyst',
|
||||
goal='Extract and analyze website content comprehensively',
|
||||
backstory='Expert at web crawling and content analysis.',
|
||||
tools=[crawler]
|
||||
)
|
||||
|
||||
# Define task
|
||||
crawl_task = Task(
|
||||
description="""Crawl the documentation website at docs.example.com
|
||||
and extract all API-related content.""",
|
||||
agent=web_analyst
|
||||
)
|
||||
|
||||
# The agent will use:
|
||||
# {
|
||||
# "url": "https://docs.example.com"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[web_analyst],
|
||||
tasks=[crawl_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Configuration Options
|
||||
|
||||
### URL Parameters
|
||||
```python
|
||||
params = {
|
||||
"max_depth": 3, # Maximum crawl depth
|
||||
"follow_links": True, # Follow internal links
|
||||
"exclude_patterns": [], # URL patterns to exclude
|
||||
"include_patterns": [] # URL patterns to include
|
||||
}
|
||||
```
|
||||
|
||||
### Polling Configuration
|
||||
```python
|
||||
crawler = FirecrawlCrawlWebsiteTool(
|
||||
poll_interval=5, # Poll every 5 seconds
|
||||
idempotency_key="unique-key-123" # For retry safety
|
||||
)
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Requires valid Firecrawl API key
|
||||
- Supports both environment variable and direct API key configuration
|
||||
- Configurable polling intervals for crawl status
|
||||
- Idempotency support for safe retries
|
||||
- Thread-safe operations
|
||||
- Customizable crawling parameters
|
||||
- Respects robots.txt by default
|
||||
154
docs/tools/firecrawl-search-tool.mdx
Normal file
154
docs/tools/firecrawl-search-tool.mdx
Normal file
@@ -0,0 +1,154 @@
|
||||
---
|
||||
title: FirecrawlSearchTool
|
||||
description: A web search tool powered by Firecrawl API for comprehensive web search capabilities
|
||||
icon: magnifying-glass-chart
|
||||
---
|
||||
|
||||
## FirecrawlSearchTool
|
||||
|
||||
The FirecrawlSearchTool provides web search capabilities using the Firecrawl API. It allows for customizable search queries with options for result formatting and search parameters.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
pip install firecrawl-py # Required dependency
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import FirecrawlSearchTool
|
||||
|
||||
# Initialize the tool with your API key
|
||||
search_tool = FirecrawlSearchTool(api_key="your-firecrawl-api-key")
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Web Researcher',
|
||||
goal='Find relevant information across the web',
|
||||
backstory='Expert at web research and information gathering.',
|
||||
tools=[search_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class FirecrawlSearchToolSchema(BaseModel):
|
||||
query: str = Field(description="Search query")
|
||||
page_options: Optional[Dict[str, Any]] = Field(
|
||||
default=None,
|
||||
description="Options for result formatting"
|
||||
)
|
||||
search_options: Optional[Dict[str, Any]] = Field(
|
||||
default=None,
|
||||
description="Options for searching"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(self, api_key: Optional[str] = None, **kwargs):
|
||||
"""
|
||||
Initialize the Firecrawl search tool.
|
||||
|
||||
Args:
|
||||
api_key (Optional[str]): Firecrawl API key
|
||||
**kwargs: Additional arguments for tool creation
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
query: str,
|
||||
page_options: Optional[Dict[str, Any]] = None,
|
||||
result_options: Optional[Dict[str, Any]] = None,
|
||||
) -> Any:
|
||||
"""
|
||||
Perform a web search using Firecrawl.
|
||||
|
||||
Args:
|
||||
query (str): Search query string
|
||||
page_options (Optional[Dict[str, Any]]): Options for result formatting
|
||||
result_options (Optional[Dict[str, Any]]): Options for search results
|
||||
|
||||
Returns:
|
||||
Any: Search results from Firecrawl API
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Always provide a valid API key
|
||||
2. Use specific, focused search queries
|
||||
3. Customize page and result options for better results
|
||||
4. Handle potential API errors in agent prompts
|
||||
5. Consider rate limits and usage quotas
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import FirecrawlSearchTool
|
||||
|
||||
# Initialize tool with API key
|
||||
search_tool = FirecrawlSearchTool(api_key="your-firecrawl-api-key")
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='Market Researcher',
|
||||
goal='Research market trends and competitor analysis',
|
||||
backstory='Expert market analyst with deep research skills.',
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
research_task = Task(
|
||||
description="""Research the latest developments in electric vehicles,
|
||||
focusing on market leaders and emerging technologies. Format the results
|
||||
in a structured way.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# The agent will use:
|
||||
# {
|
||||
# "query": "electric vehicle market leaders emerging technologies",
|
||||
# "page_options": {
|
||||
# "format": "structured",
|
||||
# "maxLength": 1000
|
||||
# },
|
||||
# "result_options": {
|
||||
# "limit": 5,
|
||||
# "sortBy": "relevance"
|
||||
# }
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
The tool includes error handling for:
|
||||
- Missing API key
|
||||
- Missing firecrawl-py package
|
||||
- API request failures
|
||||
- Invalid options parameters
|
||||
|
||||
## Notes
|
||||
|
||||
- Requires valid Firecrawl API key
|
||||
- Supports customizable search parameters
|
||||
- Provides structured web search results
|
||||
- Thread-safe operations
|
||||
- Efficient for large-scale web searches
|
||||
- Handles rate limiting automatically
|
||||
233
docs/tools/github-search-tool.mdx
Normal file
233
docs/tools/github-search-tool.mdx
Normal file
@@ -0,0 +1,233 @@
|
||||
---
|
||||
title: GithubSearchTool
|
||||
description: A tool for semantic search within GitHub repositories using RAG capabilities
|
||||
icon: github
|
||||
---
|
||||
|
||||
## GithubSearchTool
|
||||
|
||||
The GithubSearchTool enables semantic search capabilities for GitHub repositories using Retrieval-Augmented Generation (RAG). It processes various content types including code, repository information, pull requests, and issues, allowing natural language queries across repository content.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import GithubSearchTool
|
||||
|
||||
# Method 1: Initialize with specific repository
|
||||
github_tool = GithubSearchTool(
|
||||
github_repo="owner/repo",
|
||||
gh_token="your_github_token",
|
||||
content_types=["code", "pr", "issue"]
|
||||
)
|
||||
|
||||
# Method 2: Initialize without repository (specify at runtime)
|
||||
flexible_github_tool = GithubSearchTool(
|
||||
gh_token="your_github_token",
|
||||
content_types=["code", "repo"]
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='GitHub Researcher',
|
||||
goal='Search and analyze repository contents',
|
||||
backstory='Expert at finding relevant information in GitHub repositories.',
|
||||
tools=[github_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
### Fixed Repository Schema (when repo provided during initialization)
|
||||
```python
|
||||
class FixedGithubSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query you want to use to search the github repo's content"
|
||||
)
|
||||
```
|
||||
|
||||
### Flexible Repository Schema (when repo provided at runtime)
|
||||
```python
|
||||
class GithubSearchToolSchema(FixedGithubSearchToolSchema):
|
||||
github_repo: str = Field(
|
||||
description="Mandatory github you want to search"
|
||||
)
|
||||
content_types: List[str] = Field(
|
||||
description="Mandatory content types you want to be included search, options: [code, repo, pr, issue]"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
github_repo: Optional[str] = None,
|
||||
gh_token: str,
|
||||
content_types: List[str],
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the GitHub search tool.
|
||||
|
||||
Args:
|
||||
github_repo (Optional[str]): Repository to search (optional)
|
||||
gh_token (str): GitHub authentication token
|
||||
content_types (List[str]): Content types to search
|
||||
**kwargs: Additional arguments for RAG tool configuration
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
search_query: str,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Execute semantic search on repository contents.
|
||||
|
||||
Args:
|
||||
search_query (str): Query to search in the repository
|
||||
**kwargs: Additional arguments including github_repo and content_types if not initialized
|
||||
|
||||
Returns:
|
||||
str: Relevant content from the repository matching the query
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Authentication:
|
||||
- Secure token management
|
||||
- Use environment variables
|
||||
- Handle token expiration
|
||||
|
||||
2. Search Optimization:
|
||||
- Target specific content types
|
||||
- Use focused queries
|
||||
- Consider rate limits
|
||||
|
||||
3. Performance Considerations:
|
||||
- Pre-initialize for repeated searches
|
||||
- Handle large repositories
|
||||
- Monitor API usage
|
||||
|
||||
4. Error Handling:
|
||||
- Verify repository access
|
||||
- Handle API limits
|
||||
- Manage authentication errors
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import GithubSearchTool
|
||||
|
||||
# Initialize tool with specific repository
|
||||
github_tool = GithubSearchTool(
|
||||
github_repo="owner/repo",
|
||||
gh_token="your_github_token",
|
||||
content_types=["code", "pr", "issue"]
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='GitHub Researcher',
|
||||
goal='Extract insights from repository content',
|
||||
backstory='Expert at analyzing GitHub repositories.',
|
||||
tools=[github_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
research_task = Task(
|
||||
description="""Find all implementations of
|
||||
machine learning algorithms in the codebase.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "search_query": "machine learning implementation"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Dynamic Repository Selection
|
||||
```python
|
||||
# Initialize without repository
|
||||
flexible_tool = GithubSearchTool(
|
||||
gh_token="your_github_token",
|
||||
content_types=["code", "repo"]
|
||||
)
|
||||
|
||||
# Search different repositories
|
||||
backend_results = flexible_tool.run(
|
||||
search_query="authentication implementation",
|
||||
github_repo="owner/backend-repo"
|
||||
)
|
||||
|
||||
frontend_results = flexible_tool.run(
|
||||
search_query="component architecture",
|
||||
github_repo="owner/frontend-repo"
|
||||
)
|
||||
```
|
||||
|
||||
### Multiple Content Type Analysis
|
||||
```python
|
||||
# Create tool with multiple content types
|
||||
multi_tool = GithubSearchTool(
|
||||
github_repo="owner/repo",
|
||||
gh_token="your_github_token",
|
||||
content_types=["code", "pr", "issue", "repo"]
|
||||
)
|
||||
|
||||
# Search across all content types
|
||||
results = multi_tool.run(
|
||||
search_query="feature implementation status"
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
github_tool = GithubSearchTool(
|
||||
gh_token="your_github_token",
|
||||
content_types=["code"]
|
||||
)
|
||||
results = github_tool.run(
|
||||
search_query="api endpoints",
|
||||
github_repo="owner/repo"
|
||||
)
|
||||
print(results)
|
||||
except Exception as e:
|
||||
print(f"Error searching repository: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool
|
||||
- Uses GithubLoader
|
||||
- Requires authentication
|
||||
- Supports multiple content types
|
||||
- Dynamic repository specification
|
||||
- Efficient content retrieval
|
||||
- Thread-safe operations
|
||||
- Maintains search context
|
||||
- Handles API rate limits
|
||||
- Memory-efficient processing
|
||||
220
docs/tools/jina-scrape-website-tool.mdx
Normal file
220
docs/tools/jina-scrape-website-tool.mdx
Normal file
@@ -0,0 +1,220 @@
|
||||
---
|
||||
title: JinaScrapeWebsiteTool
|
||||
description: A tool for scraping website content using Jina.ai's reader service with markdown output
|
||||
icon: globe
|
||||
---
|
||||
|
||||
## JinaScrapeWebsiteTool
|
||||
|
||||
The JinaScrapeWebsiteTool provides website content scraping capabilities using Jina.ai's reader service. It converts web content into clean markdown format and supports both fixed and dynamic URL modes with optional authentication.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import JinaScrapeWebsiteTool
|
||||
|
||||
# Method 1: Fixed URL (specified at initialization)
|
||||
fixed_tool = JinaScrapeWebsiteTool(
|
||||
website_url="https://example.com",
|
||||
api_key="your-jina-api-key" # Optional
|
||||
)
|
||||
|
||||
# Method 2: Dynamic URL (specified at runtime)
|
||||
dynamic_tool = JinaScrapeWebsiteTool(
|
||||
api_key="your-jina-api-key" # Optional
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Web Content Researcher',
|
||||
goal='Extract and analyze website content',
|
||||
backstory='Expert at gathering and processing web information.',
|
||||
tools=[fixed_tool], # or [dynamic_tool]
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class JinaScrapeWebsiteToolInput(BaseModel):
|
||||
website_url: str = Field(
|
||||
description="Mandatory website url to read the file"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
website_url: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
custom_headers: Optional[dict] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the website scraping tool.
|
||||
|
||||
Args:
|
||||
website_url (Optional[str]): URL to scrape (optional for dynamic mode)
|
||||
api_key (Optional[str]): Jina.ai API key for authentication
|
||||
custom_headers (Optional[dict]): Custom HTTP headers
|
||||
**kwargs: Additional arguments for base tool
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
website_url: Optional[str] = None
|
||||
) -> str:
|
||||
"""
|
||||
Execute website scraping.
|
||||
|
||||
Args:
|
||||
website_url (Optional[str]): URL to scrape (required for dynamic mode)
|
||||
|
||||
Returns:
|
||||
str: Markdown-formatted website content
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. URL Handling:
|
||||
- Use complete URLs
|
||||
- Validate URL format
|
||||
- Handle redirects
|
||||
- Monitor timeouts
|
||||
|
||||
2. Authentication:
|
||||
- Secure API key storage
|
||||
- Use environment variables
|
||||
- Manage headers properly
|
||||
- Handle auth errors
|
||||
|
||||
3. Content Processing:
|
||||
- Handle large pages
|
||||
- Process markdown output
|
||||
- Manage encoding
|
||||
- Handle errors
|
||||
|
||||
4. Mode Selection:
|
||||
- Choose fixed mode for static sites
|
||||
- Use dynamic mode for variable URLs
|
||||
- Consider caching
|
||||
- Manage timeouts
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import JinaScrapeWebsiteTool
|
||||
import os
|
||||
|
||||
# Initialize tool with API key
|
||||
scraper_tool = JinaScrapeWebsiteTool(
|
||||
api_key=os.getenv('JINA_API_KEY'),
|
||||
custom_headers={
|
||||
'User-Agent': 'CrewAI Bot 1.0'
|
||||
}
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='Web Content Analyst',
|
||||
goal='Extract and analyze website content',
|
||||
backstory='Expert at processing web information.',
|
||||
tools=[scraper_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
analysis_task = Task(
|
||||
description="""Analyze the content of
|
||||
https://example.com/blog for key insights.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[analysis_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Multiple Site Analysis
|
||||
```python
|
||||
# Initialize tool
|
||||
scraper = JinaScrapeWebsiteTool(
|
||||
api_key=os.getenv('JINA_API_KEY')
|
||||
)
|
||||
|
||||
# Analyze multiple sites
|
||||
results = []
|
||||
sites = [
|
||||
"https://site1.com",
|
||||
"https://site2.com",
|
||||
"https://site3.com"
|
||||
]
|
||||
|
||||
for site in sites:
|
||||
content = scraper.run(
|
||||
website_url=site
|
||||
)
|
||||
results.append(content)
|
||||
```
|
||||
|
||||
### Custom Headers Configuration
|
||||
```python
|
||||
# Initialize with custom headers
|
||||
tool = JinaScrapeWebsiteTool(
|
||||
custom_headers={
|
||||
'User-Agent': 'Custom Bot 1.0',
|
||||
'Accept-Language': 'en-US,en;q=0.9',
|
||||
'Accept': 'text/html,application/xhtml+xml'
|
||||
}
|
||||
)
|
||||
|
||||
# Use the tool
|
||||
content = tool.run(
|
||||
website_url="https://example.com"
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
scraper = JinaScrapeWebsiteTool()
|
||||
content = scraper.run(
|
||||
website_url="https://example.com"
|
||||
)
|
||||
print(content)
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"Error accessing website: {str(e)}")
|
||||
except Exception as e:
|
||||
print(f"Error processing content: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Uses Jina.ai reader service
|
||||
- Markdown output format
|
||||
- API key authentication
|
||||
- Custom headers support
|
||||
- Error handling
|
||||
- Timeout management
|
||||
- Content processing
|
||||
- URL validation
|
||||
- Redirect handling
|
||||
- Response formatting
|
||||
224
docs/tools/json-search-tool.mdx
Normal file
224
docs/tools/json-search-tool.mdx
Normal file
@@ -0,0 +1,224 @@
|
||||
---
|
||||
title: JSONSearchTool
|
||||
description: A tool for semantic search within JSON files using RAG capabilities
|
||||
icon: braces
|
||||
---
|
||||
|
||||
## JSONSearchTool
|
||||
|
||||
The JSONSearchTool enables semantic search capabilities for JSON files using Retrieval-Augmented Generation (RAG). It supports both fixed and dynamic file path modes, allowing flexible usage patterns.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import JSONSearchTool
|
||||
|
||||
# Method 1: Fixed path (specified at initialization)
|
||||
fixed_tool = JSONSearchTool(
|
||||
json_path="path/to/data.json"
|
||||
)
|
||||
|
||||
# Method 2: Dynamic path (specified at runtime)
|
||||
dynamic_tool = JSONSearchTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='JSON Data Researcher',
|
||||
goal='Search and analyze JSON data',
|
||||
backstory='Expert at finding relevant information in JSON files.',
|
||||
tools=[fixed_tool], # or [dynamic_tool]
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
### Fixed Path Mode
|
||||
```python
|
||||
class FixedJSONSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query you want to use to search the JSON's content"
|
||||
)
|
||||
```
|
||||
|
||||
### Dynamic Path Mode
|
||||
```python
|
||||
class JSONSearchToolSchema(BaseModel):
|
||||
json_path: str = Field(
|
||||
description="Mandatory json path you want to search"
|
||||
)
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query you want to use to search the JSON's content"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
json_path: Optional[str] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the JSON search tool.
|
||||
|
||||
Args:
|
||||
json_path (Optional[str]): Path to JSON file (optional for dynamic mode)
|
||||
**kwargs: Additional arguments for RAG tool configuration
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
search_query: str,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Execute semantic search on JSON contents.
|
||||
|
||||
Args:
|
||||
search_query (str): Query to search in the JSON
|
||||
**kwargs: Additional arguments
|
||||
|
||||
Returns:
|
||||
str: Relevant content from the JSON matching the query
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. File Handling:
|
||||
- Use absolute file paths
|
||||
- Verify file existence
|
||||
- Handle large JSON files
|
||||
- Monitor memory usage
|
||||
|
||||
2. Query Optimization:
|
||||
- Structure queries clearly
|
||||
- Consider JSON structure
|
||||
- Handle nested data
|
||||
- Monitor performance
|
||||
|
||||
3. Error Handling:
|
||||
- Check file access
|
||||
- Validate JSON format
|
||||
- Handle malformed JSON
|
||||
- Log issues
|
||||
|
||||
4. Mode Selection:
|
||||
- Choose fixed mode for static files
|
||||
- Use dynamic mode for runtime selection
|
||||
- Consider caching
|
||||
- Manage file lifecycle
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import JSONSearchTool
|
||||
|
||||
# Initialize tool
|
||||
json_tool = JSONSearchTool(
|
||||
json_path="data/config.json"
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='JSON Data Analyst',
|
||||
goal='Extract insights from JSON configuration',
|
||||
backstory='Expert at analyzing JSON data structures.',
|
||||
tools=[json_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
analysis_task = Task(
|
||||
description="""Find all configuration settings
|
||||
related to security.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[analysis_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Multiple File Analysis
|
||||
```python
|
||||
# Create tools for different JSON files
|
||||
config_tool = JSONSearchTool(
|
||||
json_path="config/settings.json"
|
||||
)
|
||||
|
||||
data_tool = JSONSearchTool(
|
||||
json_path="data/records.json"
|
||||
)
|
||||
|
||||
# Create agent with multiple tools
|
||||
analyst = Agent(
|
||||
role='JSON Data Analyst',
|
||||
goal='Cross-reference configuration and data',
|
||||
tools=[config_tool, data_tool]
|
||||
)
|
||||
```
|
||||
|
||||
### Dynamic File Loading
|
||||
```python
|
||||
# Initialize dynamic tool
|
||||
dynamic_tool = JSONSearchTool()
|
||||
|
||||
# Use with different JSON files
|
||||
result1 = dynamic_tool.run(
|
||||
json_path="file1.json",
|
||||
search_query="security settings"
|
||||
)
|
||||
|
||||
result2 = dynamic_tool.run(
|
||||
json_path="file2.json",
|
||||
search_query="user preferences"
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
json_tool = JSONSearchTool(
|
||||
json_path="config/settings.json"
|
||||
)
|
||||
results = json_tool.run(
|
||||
search_query="encryption settings"
|
||||
)
|
||||
print(results)
|
||||
except FileNotFoundError as e:
|
||||
print(f"JSON file not found: {str(e)}")
|
||||
except ValueError as e:
|
||||
print(f"Invalid JSON format: {str(e)}")
|
||||
except Exception as e:
|
||||
print(f"Error processing JSON: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool
|
||||
- Supports fixed/dynamic modes
|
||||
- JSON path validation
|
||||
- Memory management
|
||||
- Performance optimization
|
||||
- Error handling
|
||||
- Search capabilities
|
||||
- Content extraction
|
||||
- Format validation
|
||||
- Security features
|
||||
184
docs/tools/linkup-search-tool.mdx
Normal file
184
docs/tools/linkup-search-tool.mdx
Normal file
@@ -0,0 +1,184 @@
|
||||
---
|
||||
title: LinkupSearchTool
|
||||
description: A search tool powered by Linkup API for retrieving contextual information
|
||||
icon: search
|
||||
---
|
||||
|
||||
## LinkupSearchTool
|
||||
|
||||
The LinkupSearchTool provides search capabilities using the Linkup API. It allows for customizable search depth and output formatting, returning structured results with contextual information.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
pip install linkup # Required dependency
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import LinkupSearchTool
|
||||
|
||||
# Initialize the tool with your API key
|
||||
search_tool = LinkupSearchTool(api_key="your-linkup-api-key")
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Information Researcher',
|
||||
goal='Find relevant contextual information',
|
||||
backstory='Expert at retrieving and analyzing contextual data.',
|
||||
tools=[search_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(self, api_key: str):
|
||||
"""
|
||||
Initialize the Linkup search tool.
|
||||
|
||||
Args:
|
||||
api_key (str): Linkup API key for authentication
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
query: str,
|
||||
depth: str = "standard",
|
||||
output_type: str = "searchResults"
|
||||
) -> dict:
|
||||
"""
|
||||
Perform a search using the Linkup API.
|
||||
|
||||
Args:
|
||||
query (str): The search query
|
||||
depth (str): Search depth ("standard" by default)
|
||||
output_type (str): Desired result type ("searchResults" by default)
|
||||
|
||||
Returns:
|
||||
dict: {
|
||||
"success": bool,
|
||||
"results": List[Dict] | None,
|
||||
"error": str | None
|
||||
}
|
||||
|
||||
On success, results contains list of:
|
||||
{
|
||||
"name": str,
|
||||
"url": str,
|
||||
"content": str
|
||||
}
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Always provide a valid API key
|
||||
2. Use specific, focused search queries
|
||||
3. Choose appropriate search depth based on needs
|
||||
4. Handle potential API errors in agent prompts
|
||||
5. Process structured results effectively
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import LinkupSearchTool
|
||||
|
||||
# Initialize tool with API key
|
||||
search_tool = LinkupSearchTool(api_key="your-linkup-api-key")
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='Context Researcher',
|
||||
goal='Find detailed contextual information about topics',
|
||||
backstory='Expert at discovering and analyzing contextual data.',
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
research_task = Task(
|
||||
description="""Research the latest developments in quantum computing,
|
||||
focusing on recent breakthroughs and applications. Use standard depth
|
||||
for comprehensive results.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# query: "quantum computing recent breakthroughs applications"
|
||||
# depth: "standard"
|
||||
# output_type: "searchResults"
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Search Depth Options
|
||||
```python
|
||||
# Quick surface-level search
|
||||
results = search_tool._run(
|
||||
query="quantum computing",
|
||||
depth="basic"
|
||||
)
|
||||
|
||||
# Standard comprehensive search
|
||||
results = search_tool._run(
|
||||
query="quantum computing",
|
||||
depth="standard"
|
||||
)
|
||||
|
||||
# Deep detailed search
|
||||
results = search_tool._run(
|
||||
query="quantum computing",
|
||||
depth="deep"
|
||||
)
|
||||
```
|
||||
|
||||
### Output Type Options
|
||||
```python
|
||||
# Default search results
|
||||
results = search_tool._run(
|
||||
query="quantum computing",
|
||||
output_type="searchResults"
|
||||
)
|
||||
|
||||
# Custom output format
|
||||
results = search_tool._run(
|
||||
query="quantum computing",
|
||||
output_type="customFormat"
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
```python
|
||||
results = search_tool._run(query="quantum computing")
|
||||
if results["success"]:
|
||||
for result in results["results"]:
|
||||
print(f"Name: {result['name']}")
|
||||
print(f"URL: {result['url']}")
|
||||
print(f"Content: {result['content']}")
|
||||
else:
|
||||
print(f"Error: {results['error']}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Requires valid Linkup API key
|
||||
- Returns structured search results
|
||||
- Supports multiple search depths
|
||||
- Configurable output formats
|
||||
- Built-in error handling
|
||||
- Thread-safe operations
|
||||
- Efficient for contextual searches
|
||||
192
docs/tools/llamaindex-tool.mdx
Normal file
192
docs/tools/llamaindex-tool.mdx
Normal file
@@ -0,0 +1,192 @@
|
||||
---
|
||||
title: LlamaIndexTool
|
||||
description: A wrapper tool for integrating LlamaIndex tools and query engines with CrewAI
|
||||
icon: link
|
||||
---
|
||||
|
||||
## LlamaIndexTool
|
||||
|
||||
The LlamaIndexTool serves as a bridge between CrewAI and LlamaIndex, allowing you to use LlamaIndex tools and query engines within your CrewAI agents. It supports both direct tool wrapping and query engine integration.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
pip install llama-index # Required for LlamaIndex integration
|
||||
```
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Using with LlamaIndex Tools
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import LlamaIndexTool
|
||||
from llama_index.core.tools import BaseTool as LlamaBaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
# Create a LlamaIndex tool
|
||||
class CustomLlamaSchema(BaseModel):
|
||||
query: str = Field(..., description="Query to process")
|
||||
|
||||
class CustomLlamaTool(LlamaBaseTool):
|
||||
name = "Custom Llama Tool"
|
||||
description = "A custom LlamaIndex tool"
|
||||
|
||||
def __call__(self, query: str) -> str:
|
||||
return f"Processed: {query}"
|
||||
|
||||
# Wrap the LlamaIndex tool
|
||||
llama_tool = CustomLlamaTool()
|
||||
wrapped_tool = LlamaIndexTool.from_tool(llama_tool)
|
||||
|
||||
# Create an agent with the tool
|
||||
agent = Agent(
|
||||
role='LlamaIndex Integration Agent',
|
||||
goal='Process queries using LlamaIndex tools',
|
||||
backstory='Specialist in integrating LlamaIndex capabilities.',
|
||||
tools=[wrapped_tool]
|
||||
)
|
||||
```
|
||||
|
||||
### Using with Query Engines
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import LlamaIndexTool
|
||||
from llama_index.core import VectorStoreIndex, Document
|
||||
|
||||
# Create a query engine
|
||||
documents = [Document(text="Sample document content")]
|
||||
index = VectorStoreIndex.from_documents(documents)
|
||||
query_engine = index.as_query_engine()
|
||||
|
||||
# Create the tool
|
||||
query_tool = LlamaIndexTool.from_query_engine(
|
||||
query_engine,
|
||||
name="Document Search",
|
||||
description="Search through indexed documents"
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
agent = Agent(
|
||||
role='Document Researcher',
|
||||
goal='Find relevant information in documents',
|
||||
backstory='Expert at searching through document collections.',
|
||||
tools=[query_tool]
|
||||
)
|
||||
```
|
||||
|
||||
## Tool Creation Methods
|
||||
|
||||
### From LlamaIndex Tool
|
||||
|
||||
```python
|
||||
@classmethod
|
||||
def from_tool(cls, tool: Any, **kwargs: Any) -> "LlamaIndexTool":
|
||||
"""
|
||||
Create a CrewAI tool from a LlamaIndex tool.
|
||||
|
||||
Args:
|
||||
tool (LlamaBaseTool): A LlamaIndex tool to wrap
|
||||
**kwargs: Additional arguments for tool creation
|
||||
|
||||
Returns:
|
||||
LlamaIndexTool: A CrewAI-compatible tool wrapper
|
||||
|
||||
Raises:
|
||||
ValueError: If tool is not a LlamaBaseTool or lacks fn_schema
|
||||
"""
|
||||
```
|
||||
|
||||
### From Query Engine
|
||||
|
||||
```python
|
||||
@classmethod
|
||||
def from_query_engine(
|
||||
cls,
|
||||
query_engine: Any,
|
||||
name: Optional[str] = None,
|
||||
description: Optional[str] = None,
|
||||
return_direct: bool = False,
|
||||
**kwargs: Any
|
||||
) -> "LlamaIndexTool":
|
||||
"""
|
||||
Create a CrewAI tool from a LlamaIndex query engine.
|
||||
|
||||
Args:
|
||||
query_engine (BaseQueryEngine): The query engine to wrap
|
||||
name (Optional[str]): Custom name for the tool
|
||||
description (Optional[str]): Custom description
|
||||
return_direct (bool): Whether to return query engine response directly
|
||||
**kwargs: Additional arguments for tool creation
|
||||
|
||||
Returns:
|
||||
LlamaIndexTool: A CrewAI-compatible tool wrapper
|
||||
|
||||
Raises:
|
||||
ValueError: If query_engine is not a BaseQueryEngine
|
||||
"""
|
||||
```
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import LlamaIndexTool
|
||||
from llama_index.core import VectorStoreIndex, Document
|
||||
from llama_index.core.tools import QueryEngineTool
|
||||
|
||||
# Create documents and index
|
||||
documents = [
|
||||
Document(text="AI is a technology that simulates human intelligence."),
|
||||
Document(text="Machine learning is a subset of AI.")
|
||||
]
|
||||
index = VectorStoreIndex.from_documents(documents)
|
||||
query_engine = index.as_query_engine()
|
||||
|
||||
# Create the tool
|
||||
search_tool = LlamaIndexTool.from_query_engine(
|
||||
query_engine,
|
||||
name="AI Knowledge Base",
|
||||
description="Search through AI-related documents"
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='AI Researcher',
|
||||
goal='Research AI concepts',
|
||||
backstory='Expert at finding and explaining AI concepts.',
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
research_task = Task(
|
||||
description="""Find and explain what AI is and its relationship
|
||||
with machine learning.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# The agent will use:
|
||||
# {
|
||||
# "query": "What is AI and how does it relate to machine learning?"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Automatically adapts LlamaIndex tool schemas for CrewAI compatibility
|
||||
- Renames 'input' parameter to 'query' for better integration
|
||||
- Supports both direct tool wrapping and query engine integration
|
||||
- Handles schema validation and error resolution
|
||||
- Thread-safe operations
|
||||
- Compatible with all LlamaIndex tool types and query engines
|
||||
209
docs/tools/mdx-search-tool.mdx
Normal file
209
docs/tools/mdx-search-tool.mdx
Normal file
@@ -0,0 +1,209 @@
|
||||
---
|
||||
title: MDX Search Tool
|
||||
description: A tool for semantic searching within MDX files using RAG capabilities
|
||||
---
|
||||
|
||||
# MDX Search Tool
|
||||
|
||||
The MDX Search Tool enables semantic searching within MDX (Markdown with JSX) files using Retrieval-Augmented Generation (RAG) capabilities. It supports both fixed and dynamic file path modes, allowing you to specify the MDX file at initialization or runtime.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
You can use the MDX Search Tool in two ways:
|
||||
|
||||
### 1. Fixed MDX File Path
|
||||
|
||||
Initialize the tool with a specific MDX file path:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import MDXSearchTool
|
||||
|
||||
# Initialize with a fixed MDX file
|
||||
tool = MDXSearchTool(mdx="/path/to/your/document.mdx")
|
||||
|
||||
# Create an agent with the tool
|
||||
agent = Agent(
|
||||
role='Technical Writer',
|
||||
goal='Search through MDX documentation',
|
||||
backstory='I help find relevant information in MDX documentation',
|
||||
tools=[tool]
|
||||
)
|
||||
|
||||
# Use in a task
|
||||
task = Task(
|
||||
description="Find information about API endpoints in the documentation",
|
||||
agent=agent
|
||||
)
|
||||
```
|
||||
|
||||
### 2. Dynamic MDX File Path
|
||||
|
||||
Initialize the tool without a specific file path to provide it at runtime:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import MDXSearchTool
|
||||
|
||||
# Initialize without a fixed MDX file
|
||||
tool = MDXSearchTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
agent = Agent(
|
||||
role='Documentation Analyst',
|
||||
goal='Search through various MDX files',
|
||||
backstory='I analyze different MDX documentation files',
|
||||
tools=[tool]
|
||||
)
|
||||
|
||||
# Use in a task with dynamic file path
|
||||
task = Task(
|
||||
description="Search for 'authentication' in the API documentation",
|
||||
agent=agent,
|
||||
context={
|
||||
"mdx": "/path/to/api-docs.mdx",
|
||||
"search_query": "authentication"
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
### Fixed MDX File Mode
|
||||
```python
|
||||
class FixedMDXSearchToolSchema(BaseModel):
|
||||
search_query: str # The search query to find content in the MDX file
|
||||
```
|
||||
|
||||
### Dynamic MDX File Mode
|
||||
```python
|
||||
class MDXSearchToolSchema(BaseModel):
|
||||
search_query: str # The search query to find content in the MDX file
|
||||
mdx: str # The path to the MDX file to search
|
||||
```
|
||||
|
||||
## Function Signatures
|
||||
|
||||
```python
|
||||
def __init__(self, mdx: Optional[str] = None, **kwargs):
|
||||
"""
|
||||
Initialize the MDX Search Tool.
|
||||
|
||||
Args:
|
||||
mdx (Optional[str]): Path to the MDX file (optional)
|
||||
**kwargs: Additional arguments passed to RagTool
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
search_query: str,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""
|
||||
Execute the search on the MDX file.
|
||||
|
||||
Args:
|
||||
search_query (str): The query to search for
|
||||
**kwargs: Additional arguments including 'mdx' for dynamic mode
|
||||
|
||||
Returns:
|
||||
str: The search results from the MDX content
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **File Path Handling**:
|
||||
- Use absolute paths to avoid path resolution issues
|
||||
- Verify file existence before searching
|
||||
- Handle file permissions appropriately
|
||||
|
||||
2. **Query Optimization**:
|
||||
- Use specific, focused search queries
|
||||
- Consider context when formulating queries
|
||||
- Break down complex searches into smaller queries
|
||||
|
||||
3. **Error Handling**:
|
||||
- Handle file not found errors gracefully
|
||||
- Manage permission issues appropriately
|
||||
- Validate input parameters before processing
|
||||
|
||||
## Example Integration
|
||||
|
||||
Here's a complete example showing how to integrate the MDX Search Tool with CrewAI:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import MDXSearchTool
|
||||
|
||||
# Initialize the tool
|
||||
mdx_tool = MDXSearchTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Documentation Researcher',
|
||||
goal='Find and analyze information in MDX documentation',
|
||||
backstory='I am an expert at finding relevant information in documentation',
|
||||
tools=[mdx_tool]
|
||||
)
|
||||
|
||||
# Create tasks
|
||||
search_task = Task(
|
||||
description="""
|
||||
Search through the API documentation for information about authentication methods.
|
||||
Look for:
|
||||
1. Authentication endpoints
|
||||
2. Security best practices
|
||||
3. Token handling
|
||||
|
||||
Provide a comprehensive summary of the findings.
|
||||
""",
|
||||
agent=researcher,
|
||||
context={
|
||||
"mdx": "/path/to/api-docs.mdx",
|
||||
"search_query": "authentication security tokens"
|
||||
}
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[search_task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
The tool handles various error scenarios:
|
||||
|
||||
1. **File Not Found**:
|
||||
```python
|
||||
try:
|
||||
tool = MDXSearchTool(mdx="/path/to/nonexistent.mdx")
|
||||
except FileNotFoundError:
|
||||
print("MDX file not found. Please verify the file path.")
|
||||
```
|
||||
|
||||
2. **Permission Issues**:
|
||||
```python
|
||||
try:
|
||||
tool = MDXSearchTool(mdx="/restricted/docs.mdx")
|
||||
except PermissionError:
|
||||
print("Insufficient permissions to access the MDX file.")
|
||||
```
|
||||
|
||||
3. **Invalid Content**:
|
||||
```python
|
||||
try:
|
||||
result = tool._run(search_query="query", mdx="/path/to/invalid.mdx")
|
||||
except ValueError:
|
||||
print("Invalid MDX content or format.")
|
||||
```
|
||||
217
docs/tools/mysql-search-tool.mdx
Normal file
217
docs/tools/mysql-search-tool.mdx
Normal file
@@ -0,0 +1,217 @@
|
||||
---
|
||||
title: MySQLSearchTool
|
||||
description: A tool for semantic search within MySQL database tables using RAG capabilities
|
||||
icon: database
|
||||
---
|
||||
|
||||
## MySQLSearchTool
|
||||
|
||||
The MySQLSearchTool enables semantic search capabilities for MySQL database tables using Retrieval-Augmented Generation (RAG). It processes table contents and allows natural language queries to search through the data.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import MySQLSearchTool
|
||||
|
||||
# Initialize the tool
|
||||
mysql_tool = MySQLSearchTool(
|
||||
table_name="users",
|
||||
db_uri="mysql://user:pass@localhost:3306/database"
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Database Researcher',
|
||||
goal='Search and analyze database contents',
|
||||
backstory='Expert at finding relevant information in databases.',
|
||||
tools=[mysql_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class MySQLSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory semantic search query you want to use to search the database's content"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
table_name: str,
|
||||
db_uri: str,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the MySQL search tool.
|
||||
|
||||
Args:
|
||||
table_name (str): Name of the table to search
|
||||
db_uri (str): Database connection URI
|
||||
**kwargs: Additional arguments for RAG tool configuration
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
search_query: str,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Execute semantic search on table contents.
|
||||
|
||||
Args:
|
||||
search_query (str): Query to search in the table
|
||||
**kwargs: Additional arguments
|
||||
|
||||
Returns:
|
||||
str: Relevant content from the table matching the query
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Database Connection:
|
||||
- Use secure connection URIs
|
||||
- Handle authentication properly
|
||||
- Manage connection lifecycle
|
||||
- Monitor timeouts
|
||||
|
||||
2. Query Optimization:
|
||||
- Structure queries clearly
|
||||
- Consider table size
|
||||
- Handle large datasets
|
||||
- Monitor performance
|
||||
|
||||
3. Security Considerations:
|
||||
- Protect credentials
|
||||
- Use environment variables
|
||||
- Limit table access
|
||||
- Validate inputs
|
||||
|
||||
4. Error Handling:
|
||||
- Handle connection errors
|
||||
- Manage query timeouts
|
||||
- Provide clear messages
|
||||
- Log issues
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import MySQLSearchTool
|
||||
|
||||
# Initialize tool
|
||||
mysql_tool = MySQLSearchTool(
|
||||
table_name="customers",
|
||||
db_uri="mysql://user:pass@localhost:3306/crm"
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='Database Analyst',
|
||||
goal='Extract customer insights from database',
|
||||
backstory='Expert at analyzing customer data.',
|
||||
tools=[mysql_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
analysis_task = Task(
|
||||
description="""Find all premium customers
|
||||
with recent purchases.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "search_query": "premium customers recent purchases"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[analysis_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Multiple Table Analysis
|
||||
```python
|
||||
# Create tools for different tables
|
||||
customers_tool = MySQLSearchTool(
|
||||
table_name="customers",
|
||||
db_uri="mysql://user:pass@localhost:3306/crm"
|
||||
)
|
||||
|
||||
orders_tool = MySQLSearchTool(
|
||||
table_name="orders",
|
||||
db_uri="mysql://user:pass@localhost:3306/crm"
|
||||
)
|
||||
|
||||
# Create agent with multiple tools
|
||||
analyst = Agent(
|
||||
role='Data Analyst',
|
||||
goal='Cross-reference customer and order data',
|
||||
tools=[customers_tool, orders_tool]
|
||||
)
|
||||
```
|
||||
|
||||
### Secure Connection Configuration
|
||||
```python
|
||||
import os
|
||||
|
||||
# Use environment variables for credentials
|
||||
db_uri = (
|
||||
f"mysql://{os.getenv('DB_USER')}:{os.getenv('DB_PASS')}"
|
||||
f"@{os.getenv('DB_HOST')}:{os.getenv('DB_PORT')}"
|
||||
f"/{os.getenv('DB_NAME')}"
|
||||
)
|
||||
|
||||
tool = MySQLSearchTool(
|
||||
table_name="sensitive_data",
|
||||
db_uri=db_uri
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
mysql_tool = MySQLSearchTool(
|
||||
table_name="users",
|
||||
db_uri="mysql://user:pass@localhost:3306/app"
|
||||
)
|
||||
results = mysql_tool.run(
|
||||
search_query="active users in California"
|
||||
)
|
||||
print(results)
|
||||
except Exception as e:
|
||||
print(f"Error querying database: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool
|
||||
- Uses MySQLLoader
|
||||
- Requires database URI
|
||||
- Table-specific search
|
||||
- Semantic query support
|
||||
- Connection management
|
||||
- Error handling
|
||||
- Performance optimization
|
||||
- Security features
|
||||
- Memory efficiency
|
||||
208
docs/tools/pdf-search-tool.mdx
Normal file
208
docs/tools/pdf-search-tool.mdx
Normal file
@@ -0,0 +1,208 @@
|
||||
---
|
||||
title: PDFSearchTool
|
||||
description: A tool for semantic search within PDF documents using RAG capabilities
|
||||
icon: file-search
|
||||
---
|
||||
|
||||
## PDFSearchTool
|
||||
|
||||
The PDFSearchTool enables semantic search capabilities for PDF documents using Retrieval-Augmented Generation (RAG). It leverages embedchain's PDFEmbedchainAdapter for efficient PDF processing and supports both fixed and dynamic PDF path specification.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import PDFSearchTool
|
||||
|
||||
# Method 1: Initialize with specific PDF
|
||||
pdf_tool = PDFSearchTool(pdf="/path/to/document.pdf")
|
||||
|
||||
# Method 2: Initialize without PDF (specify at runtime)
|
||||
flexible_pdf_tool = PDFSearchTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='PDF Researcher',
|
||||
goal='Search and analyze PDF documents',
|
||||
backstory='Expert at finding relevant information in PDFs.',
|
||||
tools=[pdf_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
### Fixed PDF Schema (when PDF path provided during initialization)
|
||||
```python
|
||||
class FixedPDFSearchToolSchema(BaseModel):
|
||||
query: str = Field(
|
||||
description="Mandatory query you want to use to search the PDF's content"
|
||||
)
|
||||
```
|
||||
|
||||
### Flexible PDF Schema (when PDF path provided at runtime)
|
||||
```python
|
||||
class PDFSearchToolSchema(FixedPDFSearchToolSchema):
|
||||
pdf: str = Field(
|
||||
description="Mandatory pdf path you want to search"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
pdf: Optional[str] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the PDF search tool.
|
||||
|
||||
Args:
|
||||
pdf (Optional[str]): Path to PDF file (optional)
|
||||
**kwargs: Additional arguments for RAG tool configuration
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
query: str,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Execute semantic search on PDF content.
|
||||
|
||||
Args:
|
||||
query (str): Search query for the PDF
|
||||
**kwargs: Additional arguments including pdf path if not initialized
|
||||
|
||||
Returns:
|
||||
str: Relevant content from the PDF matching the query
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. PDF File Handling:
|
||||
- Use absolute paths for reliability
|
||||
- Verify PDF file existence
|
||||
- Handle large PDFs appropriately
|
||||
|
||||
2. Search Optimization:
|
||||
- Use specific, focused queries
|
||||
- Consider document structure
|
||||
- Test with sample queries first
|
||||
|
||||
3. Performance Considerations:
|
||||
- Pre-initialize with PDF for repeated searches
|
||||
- Handle large documents efficiently
|
||||
- Monitor memory usage
|
||||
|
||||
4. Error Handling:
|
||||
- Verify PDF file existence
|
||||
- Handle malformed PDFs
|
||||
- Manage file access permissions
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import PDFSearchTool
|
||||
|
||||
# Initialize tool with specific PDF
|
||||
pdf_tool = PDFSearchTool(pdf="/path/to/research.pdf")
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='PDF Researcher',
|
||||
goal='Extract insights from research papers',
|
||||
backstory='Expert at analyzing research documents.',
|
||||
tools=[pdf_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
research_task = Task(
|
||||
description="""Find all mentions of machine learning
|
||||
applications in healthcare from the PDF.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "query": "machine learning applications healthcare"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Dynamic PDF Selection
|
||||
```python
|
||||
# Initialize without PDF
|
||||
flexible_tool = PDFSearchTool()
|
||||
|
||||
# Search different PDFs
|
||||
research_results = flexible_tool.run(
|
||||
query="quantum computing",
|
||||
pdf="/path/to/research.pdf"
|
||||
)
|
||||
|
||||
report_results = flexible_tool.run(
|
||||
query="financial metrics",
|
||||
pdf="/path/to/report.pdf"
|
||||
)
|
||||
```
|
||||
|
||||
### Multiple PDF Analysis
|
||||
```python
|
||||
# Create tools for different PDFs
|
||||
research_tool = PDFSearchTool(pdf="/path/to/research.pdf")
|
||||
report_tool = PDFSearchTool(pdf="/path/to/report.pdf")
|
||||
|
||||
# Create agent with multiple tools
|
||||
analyst = Agent(
|
||||
role='Document Analyst',
|
||||
goal='Cross-reference multiple documents',
|
||||
tools=[research_tool, report_tool]
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
pdf_tool = PDFSearchTool()
|
||||
results = pdf_tool.run(
|
||||
query="important findings",
|
||||
pdf="/path/to/document.pdf"
|
||||
)
|
||||
print(results)
|
||||
except Exception as e:
|
||||
print(f"Error processing PDF: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool
|
||||
- Uses PDFEmbedchainAdapter
|
||||
- Supports semantic search
|
||||
- Dynamic PDF specification
|
||||
- Efficient content retrieval
|
||||
- Thread-safe operations
|
||||
- Maintains search context
|
||||
- Handles large documents
|
||||
- Supports various PDF formats
|
||||
- Memory-efficient processing
|
||||
234
docs/tools/pdf-text-writing-tool.mdx
Normal file
234
docs/tools/pdf-text-writing-tool.mdx
Normal file
@@ -0,0 +1,234 @@
|
||||
---
|
||||
title: PDFTextWritingTool
|
||||
description: A tool for adding text to specific positions in PDF documents with custom font support
|
||||
icon: file-pdf
|
||||
---
|
||||
|
||||
## PDFTextWritingTool
|
||||
|
||||
The PDFTextWritingTool allows you to add text to specific positions in PDF documents with support for custom fonts, colors, and positioning. It's particularly useful for adding annotations, watermarks, or any text overlay to existing PDFs.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import PDFTextWritingTool
|
||||
|
||||
# Basic initialization
|
||||
pdf_tool = PDFTextWritingTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
document_processor = Agent(
|
||||
role='Document Processor',
|
||||
goal='Add text annotations to PDF documents',
|
||||
backstory='Expert at PDF document processing and text manipulation.',
|
||||
tools=[pdf_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class PDFTextWritingToolSchema(BaseModel):
|
||||
pdf_path: str = Field(
|
||||
description="Path to the PDF file to modify"
|
||||
)
|
||||
text: str = Field(
|
||||
description="Text to add to the PDF"
|
||||
)
|
||||
position: tuple = Field(
|
||||
description="Tuple of (x, y) coordinates for text placement"
|
||||
)
|
||||
font_size: int = Field(
|
||||
default=12,
|
||||
description="Font size of the text"
|
||||
)
|
||||
font_color: str = Field(
|
||||
default="0 0 0 rg",
|
||||
description="RGB color code for the text"
|
||||
)
|
||||
font_name: Optional[str] = Field(
|
||||
default="F1",
|
||||
description="Font name for standard fonts"
|
||||
)
|
||||
font_file: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Path to a .ttf font file for custom font usage"
|
||||
)
|
||||
page_number: int = Field(
|
||||
default=0,
|
||||
description="Page number to add text to"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def run(
|
||||
self,
|
||||
pdf_path: str,
|
||||
text: str,
|
||||
position: tuple,
|
||||
font_size: int,
|
||||
font_color: str,
|
||||
font_name: str = "F1",
|
||||
font_file: Optional[str] = None,
|
||||
page_number: int = 0,
|
||||
**kwargs
|
||||
) -> str:
|
||||
"""
|
||||
Add text to a specific position in a PDF document.
|
||||
|
||||
Args:
|
||||
pdf_path (str): Path to the PDF file to modify
|
||||
text (str): Text to add to the PDF
|
||||
position (tuple): (x, y) coordinates for text placement
|
||||
font_size (int): Font size of the text
|
||||
font_color (str): RGB color code for the text (e.g., "0 0 0 rg" for black)
|
||||
font_name (str, optional): Font name for standard fonts (default: "F1")
|
||||
font_file (str, optional): Path to a .ttf font file for custom font
|
||||
page_number (int, optional): Page number to add text to (default: 0)
|
||||
|
||||
Returns:
|
||||
str: Success message with output file path
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. File Handling:
|
||||
- Ensure PDF files exist before processing
|
||||
- Use absolute paths for reliability
|
||||
- Handle file permissions appropriately
|
||||
|
||||
2. Text Positioning:
|
||||
- Use appropriate coordinates based on PDF dimensions
|
||||
- Consider page orientation and margins
|
||||
- Test positioning with small changes first
|
||||
|
||||
3. Font Usage:
|
||||
- Verify custom font files exist
|
||||
- Use standard fonts when possible
|
||||
- Test font rendering before production use
|
||||
|
||||
4. Error Handling:
|
||||
- Check page numbers are valid
|
||||
- Verify font file accessibility
|
||||
- Handle file writing permissions
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import PDFTextWritingTool
|
||||
|
||||
# Initialize tool
|
||||
pdf_tool = PDFTextWritingTool()
|
||||
|
||||
# Create agent
|
||||
document_processor = Agent(
|
||||
role='Document Processor',
|
||||
goal='Process and annotate PDF documents',
|
||||
backstory='Expert at PDF manipulation and text placement.',
|
||||
tools=[pdf_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
annotation_task = Task(
|
||||
description="""Add a watermark saying 'CONFIDENTIAL' to
|
||||
the center of the first page of the document at
|
||||
'/path/to/document.pdf'.""",
|
||||
agent=document_processor
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "pdf_path": "/path/to/document.pdf",
|
||||
# "text": "CONFIDENTIAL",
|
||||
# "position": (300, 400),
|
||||
# "font_size": 24,
|
||||
# "font_color": "1 0 0 rg", # Red color
|
||||
# "page_number": 0
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[document_processor],
|
||||
tasks=[annotation_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Custom Font Example
|
||||
```python
|
||||
# Using a custom font
|
||||
result = pdf_tool.run(
|
||||
pdf_path="/path/to/input.pdf",
|
||||
text="Custom Font Text",
|
||||
position=(100, 500),
|
||||
font_size=16,
|
||||
font_color="0 0 1 rg", # Blue color
|
||||
font_file="/path/to/custom_font.ttf",
|
||||
page_number=0
|
||||
)
|
||||
```
|
||||
|
||||
### Multiple Text Elements
|
||||
```python
|
||||
# Add multiple text elements
|
||||
positions = [(100, 700), (100, 650), (100, 600)]
|
||||
texts = ["Header", "Subheader", "Body Text"]
|
||||
font_sizes = [18, 14, 12]
|
||||
|
||||
for text, position, size in zip(texts, positions, font_sizes):
|
||||
pdf_tool.run(
|
||||
pdf_path="/path/to/input.pdf",
|
||||
text=text,
|
||||
position=position,
|
||||
font_size=size,
|
||||
font_color="0 0 0 rg" # Black color
|
||||
)
|
||||
```
|
||||
|
||||
### Color Text Example
|
||||
```python
|
||||
# Add colored text
|
||||
colors = {
|
||||
"red": "1 0 0 rg",
|
||||
"green": "0 1 0 rg",
|
||||
"blue": "0 0 1 rg"
|
||||
}
|
||||
|
||||
for y_pos, (color_name, color_code) in enumerate(colors.items()):
|
||||
pdf_tool.run(
|
||||
pdf_path="/path/to/input.pdf",
|
||||
text=f"This text is {color_name}",
|
||||
position=(100, 700 - y_pos * 50),
|
||||
font_size=14,
|
||||
font_color=color_code
|
||||
)
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Supports custom TrueType fonts (.ttf)
|
||||
- Allows RGB color specifications
|
||||
- Handles multi-page PDFs
|
||||
- Preserves original PDF content
|
||||
- Supports text positioning with x,y coordinates
|
||||
- Maintains PDF structure and metadata
|
||||
- Creates new output file for safety
|
||||
- Thread-safe operations
|
||||
- Efficient PDF manipulation
|
||||
- Supports various text attributes
|
||||
181
docs/tools/pg-search-tool.mdx
Normal file
181
docs/tools/pg-search-tool.mdx
Normal file
@@ -0,0 +1,181 @@
|
||||
---
|
||||
title: PGSearchTool
|
||||
description: A RAG-based semantic search tool for PostgreSQL database content
|
||||
icon: database-search
|
||||
---
|
||||
|
||||
## PGSearchTool
|
||||
|
||||
The PGSearchTool provides semantic search capabilities for PostgreSQL database content using RAG (Retrieval-Augmented Generation). It allows for natural language queries over database table content by leveraging embeddings and semantic search.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
pip install embedchain # Required dependency
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import PGSearchTool
|
||||
|
||||
# Initialize the tool with database configuration
|
||||
search_tool = PGSearchTool(
|
||||
db_uri="postgresql://user:password@localhost:5432/dbname",
|
||||
table_name="your_table"
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Database Researcher',
|
||||
goal='Find relevant information in database content',
|
||||
backstory='Expert at searching and analyzing database content.',
|
||||
tools=[search_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class PGSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory semantic search query for searching the database's content"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(self, table_name: str, **kwargs):
|
||||
"""
|
||||
Initialize the PostgreSQL search tool.
|
||||
|
||||
Args:
|
||||
table_name (str): Name of the table to search
|
||||
db_uri (str): PostgreSQL database URI (required in kwargs)
|
||||
**kwargs: Additional arguments for RagTool initialization
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
search_query: str,
|
||||
**kwargs: Any
|
||||
) -> Any:
|
||||
"""
|
||||
Perform semantic search on database content.
|
||||
|
||||
Args:
|
||||
search_query (str): Semantic search query
|
||||
**kwargs: Additional search parameters
|
||||
|
||||
Returns:
|
||||
Any: Relevant database content based on semantic search
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Secure database credentials:
|
||||
```python
|
||||
# Use environment variables for sensitive data
|
||||
import os
|
||||
|
||||
db_uri = (
|
||||
f"postgresql://{os.getenv('DB_USER')}:{os.getenv('DB_PASS')}"
|
||||
f"@{os.getenv('DB_HOST')}:{os.getenv('DB_PORT')}/{os.getenv('DB_NAME')}"
|
||||
)
|
||||
```
|
||||
|
||||
2. Optimize table selection
|
||||
3. Use specific semantic queries
|
||||
4. Handle database connection errors
|
||||
5. Consider table size and query performance
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import PGSearchTool
|
||||
|
||||
# Initialize tool with database configuration
|
||||
db_search = PGSearchTool(
|
||||
db_uri="postgresql://user:password@localhost:5432/dbname",
|
||||
table_name="customer_feedback"
|
||||
)
|
||||
|
||||
# Create agent
|
||||
analyst = Agent(
|
||||
role='Database Analyst',
|
||||
goal='Analyze customer feedback data',
|
||||
backstory='Expert at finding insights in customer feedback.',
|
||||
tools=[db_search]
|
||||
)
|
||||
|
||||
# Define task
|
||||
analysis_task = Task(
|
||||
description="""Find all customer feedback related to product usability
|
||||
and ease of use. Focus on common patterns and issues.""",
|
||||
agent=analyst
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "search_query": "product usability feedback ease of use issues"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[analyst],
|
||||
tasks=[analysis_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Multiple Table Search
|
||||
```python
|
||||
# Create tools for different tables
|
||||
customer_search = PGSearchTool(
|
||||
db_uri="postgresql://user:password@localhost:5432/dbname",
|
||||
table_name="customers"
|
||||
)
|
||||
|
||||
orders_search = PGSearchTool(
|
||||
db_uri="postgresql://user:password@localhost:5432/dbname",
|
||||
table_name="orders"
|
||||
)
|
||||
|
||||
# Use both tools in an agent
|
||||
analyst = Agent(
|
||||
role='Multi-table Analyst',
|
||||
goal='Analyze customer and order data',
|
||||
tools=[customer_search, orders_search]
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
```python
|
||||
try:
|
||||
results = search_tool._run(
|
||||
search_query="customer satisfaction ratings"
|
||||
)
|
||||
# Process results
|
||||
except Exception as e:
|
||||
print(f"Database search error: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool for semantic search
|
||||
- Uses embedchain's PostgresLoader
|
||||
- Requires valid PostgreSQL connection
|
||||
- Supports semantic natural language queries
|
||||
- Thread-safe operations
|
||||
- Efficient for large tables
|
||||
- Handles connection pooling automatically
|
||||
282
docs/tools/rag-tool.mdx
Normal file
282
docs/tools/rag-tool.mdx
Normal file
@@ -0,0 +1,282 @@
|
||||
---
|
||||
title: RagTool
|
||||
description: Base class for Retrieval-Augmented Generation (RAG) tools with flexible adapter support
|
||||
icon: database
|
||||
---
|
||||
|
||||
## RagTool
|
||||
|
||||
The RagTool serves as the base class for all Retrieval-Augmented Generation (RAG) tools in the CrewAI ecosystem. It provides a flexible adapter-based architecture for implementing knowledge base functionality with semantic search capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import RagTool
|
||||
from crewai_tools.adapters import EmbedchainAdapter
|
||||
from embedchain import App
|
||||
|
||||
# Create custom adapter
|
||||
class CustomAdapter(RagTool.Adapter):
|
||||
def query(self, question: str) -> str:
|
||||
# Implement custom query logic
|
||||
return "Answer based on knowledge base"
|
||||
|
||||
def add(self, *args, **kwargs) -> None:
|
||||
# Implement custom add logic
|
||||
pass
|
||||
|
||||
# Method 1: Use default EmbedchainAdapter
|
||||
rag_tool = RagTool(
|
||||
name="Custom Knowledge Base",
|
||||
description="Specialized knowledge base for domain data",
|
||||
summarize=True
|
||||
)
|
||||
|
||||
# Method 2: Use custom adapter
|
||||
custom_tool = RagTool(
|
||||
name="Custom Knowledge Base",
|
||||
adapter=CustomAdapter(),
|
||||
summarize=False
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Knowledge Base Researcher',
|
||||
goal='Search and analyze knowledge base content',
|
||||
backstory='Expert at finding relevant information in specialized datasets.',
|
||||
tools=[rag_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Adapter Interface
|
||||
|
||||
```python
|
||||
class Adapter(BaseModel, ABC):
|
||||
@abstractmethod
|
||||
def query(self, question: str) -> str:
|
||||
"""
|
||||
Query the knowledge base with a question.
|
||||
|
||||
Args:
|
||||
question (str): Query to search in knowledge base
|
||||
|
||||
Returns:
|
||||
str: Answer based on knowledge base content
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def add(self, *args: Any, **kwargs: Any) -> None:
|
||||
"""
|
||||
Add content to the knowledge base.
|
||||
|
||||
Args:
|
||||
*args: Variable length argument list
|
||||
**kwargs: Arbitrary keyword arguments
|
||||
"""
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
name: str = "Knowledge base",
|
||||
description: str = "A knowledge base that can be used to answer questions.",
|
||||
summarize: bool = False,
|
||||
adapter: Optional[Adapter] = None,
|
||||
config: Optional[dict[str, Any]] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the RAG tool.
|
||||
|
||||
Args:
|
||||
name (str): Tool name
|
||||
description (str): Tool description
|
||||
summarize (bool): Enable answer summarization
|
||||
adapter (Optional[Adapter]): Custom adapter implementation
|
||||
config (Optional[dict]): Configuration for default adapter
|
||||
**kwargs: Additional arguments for base tool
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
query: str,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Execute query against knowledge base.
|
||||
|
||||
Args:
|
||||
query (str): Question to ask
|
||||
**kwargs: Additional arguments
|
||||
|
||||
Returns:
|
||||
str: Answer from knowledge base
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Adapter Implementation:
|
||||
- Define clear interfaces
|
||||
- Handle edge cases
|
||||
- Implement error handling
|
||||
- Document behavior
|
||||
|
||||
2. Knowledge Base Management:
|
||||
- Organize content logically
|
||||
- Update content regularly
|
||||
- Monitor performance
|
||||
- Handle large datasets
|
||||
|
||||
3. Query Optimization:
|
||||
- Structure queries clearly
|
||||
- Consider context
|
||||
- Handle ambiguity
|
||||
- Validate inputs
|
||||
|
||||
4. Error Handling:
|
||||
- Handle missing data
|
||||
- Manage timeouts
|
||||
- Provide clear messages
|
||||
- Log issues
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import RagTool
|
||||
from embedchain import App
|
||||
|
||||
# Initialize tool with custom configuration
|
||||
rag_tool = RagTool(
|
||||
name="Technical Documentation KB",
|
||||
description="Knowledge base for technical documentation",
|
||||
summarize=True,
|
||||
config={
|
||||
"collection_name": "tech_docs",
|
||||
"chunking": {
|
||||
"chunk_size": 500,
|
||||
"chunk_overlap": 50
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
# Add content to knowledge base
|
||||
rag_tool.add(
|
||||
"Technical documentation content here...",
|
||||
data_type="text"
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='Documentation Expert',
|
||||
goal='Extract technical information from documentation',
|
||||
backstory='Expert at analyzing technical documentation.',
|
||||
tools=[rag_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
research_task = Task(
|
||||
description="""Find all mentions of API endpoints
|
||||
and their authentication requirements.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Custom Adapter Implementation
|
||||
```python
|
||||
from typing import Any
|
||||
from pydantic import BaseModel
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
class SpecializedAdapter(RagTool.Adapter):
|
||||
def __init__(self, config: dict):
|
||||
self.config = config
|
||||
self.knowledge_base = {}
|
||||
|
||||
def query(self, question: str) -> str:
|
||||
# Implement specialized query logic
|
||||
return self._process_query(question)
|
||||
|
||||
def add(self, content: str, **kwargs: Any) -> None:
|
||||
# Implement specialized content addition
|
||||
self._process_content(content, **kwargs)
|
||||
|
||||
# Use custom adapter
|
||||
specialized_tool = RagTool(
|
||||
name="Specialized KB",
|
||||
adapter=SpecializedAdapter(config={"mode": "advanced"})
|
||||
)
|
||||
```
|
||||
|
||||
### Configuration Management
|
||||
```python
|
||||
# Configure default EmbedchainAdapter
|
||||
config = {
|
||||
"collection_name": "custom_collection",
|
||||
"embedding": {
|
||||
"model": "sentence-transformers/all-mpnet-base-v2",
|
||||
"dimensions": 768
|
||||
},
|
||||
"chunking": {
|
||||
"chunk_size": 1000,
|
||||
"chunk_overlap": 100
|
||||
}
|
||||
}
|
||||
|
||||
tool = RagTool(config=config)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
rag_tool = RagTool()
|
||||
|
||||
# Add content
|
||||
rag_tool.add(
|
||||
"Documentation content...",
|
||||
data_type="text"
|
||||
)
|
||||
|
||||
# Query content
|
||||
result = rag_tool.run(
|
||||
query="What are the system requirements?"
|
||||
)
|
||||
print(result)
|
||||
except Exception as e:
|
||||
print(f"Error using knowledge base: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Base class for RAG tools
|
||||
- Flexible adapter pattern
|
||||
- Default EmbedchainAdapter
|
||||
- Custom adapter support
|
||||
- Content management
|
||||
- Query processing
|
||||
- Error handling
|
||||
- Configuration options
|
||||
- Performance optimization
|
||||
- Memory management
|
||||
229
docs/tools/serpapi-google-search-tool.mdx
Normal file
229
docs/tools/serpapi-google-search-tool.mdx
Normal file
@@ -0,0 +1,229 @@
|
||||
---
|
||||
title: SerpApi Google Search Tool
|
||||
description: A tool for performing Google searches using the SerpApi service
|
||||
---
|
||||
|
||||
# SerpApi Google Search Tool
|
||||
|
||||
The SerpApi Google Search Tool enables performing Google searches using the SerpApi service. It provides location-aware search capabilities with comprehensive result filtering.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
pip install serpapi
|
||||
```
|
||||
|
||||
## Prerequisites
|
||||
|
||||
You need a SerpApi API key to use this tool. You can get one from [SerpApi's website](https://serpapi.com/manage-api-key).
|
||||
|
||||
Set your API key as an environment variable:
|
||||
```bash
|
||||
export SERPAPI_API_KEY="your_api_key_here"
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
Here's how to use the SerpApi Google Search Tool:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerpApiGoogleSearchTool
|
||||
|
||||
# Initialize the tool
|
||||
search_tool = SerpApiGoogleSearchTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
search_agent = Agent(
|
||||
role='Web Researcher',
|
||||
goal='Find accurate information online',
|
||||
backstory='I help research and analyze online information',
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
# Use in a task
|
||||
task = Task(
|
||||
description="Research recent AI developments",
|
||||
agent=search_agent,
|
||||
context={
|
||||
"search_query": "latest artificial intelligence breakthroughs 2024",
|
||||
"location": "United States" # Optional
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class SerpApiGoogleSearchToolSchema(BaseModel):
|
||||
search_query: str # The search query for Google Search
|
||||
location: Optional[str] = None # Optional location for localized results
|
||||
```
|
||||
|
||||
## Function Signatures
|
||||
|
||||
### Base Tool Initialization
|
||||
```python
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
Initialize the SerpApi tool with API credentials.
|
||||
|
||||
Raises:
|
||||
ImportError: If serpapi package is not installed
|
||||
ValueError: If SERPAPI_API_KEY environment variable is not set
|
||||
"""
|
||||
```
|
||||
|
||||
### Search Execution
|
||||
```python
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> dict:
|
||||
"""
|
||||
Execute the Google search.
|
||||
|
||||
Args:
|
||||
search_query (str): The search query
|
||||
location (Optional[str]): Optional location for results
|
||||
|
||||
Returns:
|
||||
dict: Filtered search results from Google
|
||||
|
||||
Raises:
|
||||
HTTPError: If the API request fails
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **API Key Management**:
|
||||
- Store the API key securely in environment variables
|
||||
- Never hardcode the API key in your code
|
||||
- Verify API key validity before making requests
|
||||
|
||||
2. **Search Optimization**:
|
||||
- Use specific, targeted search queries
|
||||
- Include relevant keywords and time frames
|
||||
- Leverage location parameter for regional results
|
||||
|
||||
3. **Error Handling**:
|
||||
- Handle API rate limits gracefully
|
||||
- Implement retry logic for failed requests
|
||||
- Validate input parameters before making requests
|
||||
|
||||
## Example Integration
|
||||
|
||||
Here's a complete example showing how to integrate the SerpApi Google Search Tool with CrewAI:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SerpApiGoogleSearchTool
|
||||
|
||||
# Initialize the tool
|
||||
search_tool = SerpApiGoogleSearchTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Find and analyze current information',
|
||||
backstory="""I am an expert at finding and analyzing
|
||||
information from various online sources.""",
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
# Create tasks
|
||||
research_task = Task(
|
||||
description="""
|
||||
Research the following topic:
|
||||
1. Latest developments in quantum computing
|
||||
2. Focus on practical applications
|
||||
3. Include major company announcements
|
||||
|
||||
Provide a comprehensive analysis of the findings.
|
||||
""",
|
||||
agent=researcher,
|
||||
context={
|
||||
"search_query": "quantum computing breakthroughs applications companies",
|
||||
"location": "United States"
|
||||
}
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
The tool handles various error scenarios:
|
||||
|
||||
1. **Missing API Key**:
|
||||
```python
|
||||
try:
|
||||
tool = SerpApiGoogleSearchTool()
|
||||
except ValueError as e:
|
||||
print("API key not found. Set SERPAPI_API_KEY environment variable.")
|
||||
```
|
||||
|
||||
2. **API Request Errors**:
|
||||
```python
|
||||
try:
|
||||
results = tool._run(
|
||||
search_query="quantum computing",
|
||||
location="United States"
|
||||
)
|
||||
except HTTPError as e:
|
||||
print(f"API request failed: {str(e)}")
|
||||
```
|
||||
|
||||
3. **Invalid Parameters**:
|
||||
```python
|
||||
try:
|
||||
results = tool._run(
|
||||
search_query="", # Empty query
|
||||
location="Invalid Location"
|
||||
)
|
||||
except ValueError as e:
|
||||
print("Invalid search parameters provided.")
|
||||
```
|
||||
|
||||
## Response Format
|
||||
|
||||
The tool returns a filtered dictionary containing Google search results. Example response structure:
|
||||
|
||||
```python
|
||||
{
|
||||
"organic_results": [
|
||||
{
|
||||
"title": "Page Title",
|
||||
"link": "https://...",
|
||||
"snippet": "Page description or excerpt...",
|
||||
"position": 1
|
||||
}
|
||||
# Additional results...
|
||||
],
|
||||
"knowledge_graph": {
|
||||
"title": "Topic Title",
|
||||
"description": "Topic description...",
|
||||
"source": {
|
||||
"name": "Source Name",
|
||||
"link": "https://..."
|
||||
}
|
||||
},
|
||||
"related_questions": [
|
||||
{
|
||||
"question": "Related question?",
|
||||
"answer": "Answer to related question..."
|
||||
}
|
||||
# Additional related questions...
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
The response is automatically filtered to remove metadata and unnecessary fields, focusing on the most relevant search information. Fields like search metadata, parameters, and pagination are omitted for clarity.
|
||||
225
docs/tools/serpapi-google-shopping-tool.mdx
Normal file
225
docs/tools/serpapi-google-shopping-tool.mdx
Normal file
@@ -0,0 +1,225 @@
|
||||
---
|
||||
title: SerpApi Google Shopping Tool
|
||||
description: A tool for searching Google Shopping using the SerpApi service
|
||||
---
|
||||
|
||||
# SerpApi Google Shopping Tool
|
||||
|
||||
The SerpApi Google Shopping Tool enables searching Google Shopping results using the SerpApi service. It provides location-aware shopping search capabilities with comprehensive result filtering.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
pip install serpapi
|
||||
```
|
||||
|
||||
## Prerequisites
|
||||
|
||||
You need a SerpApi API key to use this tool. You can get one from [SerpApi's website](https://serpapi.com/manage-api-key).
|
||||
|
||||
Set your API key as an environment variable:
|
||||
```bash
|
||||
export SERPAPI_API_KEY="your_api_key_here"
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
Here's how to use the SerpApi Google Shopping Tool:
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerpApiGoogleShoppingTool
|
||||
|
||||
# Initialize the tool
|
||||
shopping_tool = SerpApiGoogleShoppingTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
shopping_agent = Agent(
|
||||
role='Shopping Researcher',
|
||||
goal='Find the best shopping deals',
|
||||
backstory='I help find and analyze shopping options',
|
||||
tools=[shopping_tool]
|
||||
)
|
||||
|
||||
# Use in a task
|
||||
task = Task(
|
||||
description="Find best deals for gaming laptops",
|
||||
agent=shopping_agent,
|
||||
context={
|
||||
"search_query": "gaming laptop deals",
|
||||
"location": "United States" # Optional
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class SerpApiGoogleShoppingToolSchema(BaseModel):
|
||||
search_query: str # The search query for Google Shopping
|
||||
location: Optional[str] = None # Optional location for localized results
|
||||
```
|
||||
|
||||
## Function Signatures
|
||||
|
||||
### Base Tool Initialization
|
||||
```python
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
Initialize the SerpApi tool with API credentials.
|
||||
|
||||
Raises:
|
||||
ImportError: If serpapi package is not installed
|
||||
ValueError: If SERPAPI_API_KEY environment variable is not set
|
||||
"""
|
||||
```
|
||||
|
||||
### Search Execution
|
||||
```python
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> dict:
|
||||
"""
|
||||
Execute the Google Shopping search.
|
||||
|
||||
Args:
|
||||
search_query (str): The search query for Google Shopping
|
||||
location (Optional[str]): Optional location for results
|
||||
|
||||
Returns:
|
||||
dict: Filtered search results from Google Shopping
|
||||
|
||||
Raises:
|
||||
HTTPError: If the API request fails
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **API Key Management**:
|
||||
- Store the API key securely in environment variables
|
||||
- Never hardcode the API key in your code
|
||||
- Verify API key validity before making requests
|
||||
|
||||
2. **Search Optimization**:
|
||||
- Use specific, targeted search queries
|
||||
- Include relevant product details in queries
|
||||
- Leverage location parameter for regional pricing
|
||||
|
||||
3. **Error Handling**:
|
||||
- Handle API rate limits gracefully
|
||||
- Implement retry logic for failed requests
|
||||
- Validate input parameters before making requests
|
||||
|
||||
## Example Integration
|
||||
|
||||
Here's a complete example showing how to integrate the SerpApi Google Shopping Tool with CrewAI:
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SerpApiGoogleShoppingTool
|
||||
|
||||
# Initialize the tool
|
||||
shopping_tool = SerpApiGoogleShoppingTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Shopping Analyst',
|
||||
goal='Find and analyze the best shopping deals',
|
||||
backstory="""I am an expert at finding the best shopping deals
|
||||
and analyzing product offerings across different regions.""",
|
||||
tools=[shopping_tool]
|
||||
)
|
||||
|
||||
# Create tasks
|
||||
search_task = Task(
|
||||
description="""
|
||||
Research gaming laptops with the following criteria:
|
||||
1. Price range: $800-$1500
|
||||
2. Released in the last year
|
||||
3. Compare prices across different retailers
|
||||
|
||||
Provide a comprehensive analysis of the findings.
|
||||
""",
|
||||
agent=researcher,
|
||||
context={
|
||||
"search_query": "gaming laptop RTX 4060 2023",
|
||||
"location": "United States"
|
||||
}
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[search_task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
The tool handles various error scenarios:
|
||||
|
||||
1. **Missing API Key**:
|
||||
```python
|
||||
try:
|
||||
tool = SerpApiGoogleShoppingTool()
|
||||
except ValueError as e:
|
||||
print("API key not found. Set SERPAPI_API_KEY environment variable.")
|
||||
```
|
||||
|
||||
2. **API Request Errors**:
|
||||
```python
|
||||
try:
|
||||
results = tool._run(
|
||||
search_query="gaming laptop",
|
||||
location="United States"
|
||||
)
|
||||
except HTTPError as e:
|
||||
print(f"API request failed: {str(e)}")
|
||||
```
|
||||
|
||||
3. **Invalid Parameters**:
|
||||
```python
|
||||
try:
|
||||
results = tool._run(
|
||||
search_query="", # Empty query
|
||||
location="Invalid Location"
|
||||
)
|
||||
except ValueError as e:
|
||||
print("Invalid search parameters provided.")
|
||||
```
|
||||
|
||||
## Response Format
|
||||
|
||||
The tool returns a filtered dictionary containing Google Shopping results. Example response structure:
|
||||
|
||||
```python
|
||||
{
|
||||
"shopping_results": [
|
||||
{
|
||||
"title": "Product Title",
|
||||
"price": "$999.99",
|
||||
"link": "https://...",
|
||||
"source": "Retailer Name",
|
||||
"rating": 4.5,
|
||||
"reviews": 123,
|
||||
"thumbnail": "https://..."
|
||||
}
|
||||
# Additional results...
|
||||
],
|
||||
"organic_results": [
|
||||
{
|
||||
"title": "Related Product",
|
||||
"link": "https://...",
|
||||
"snippet": "Product description..."
|
||||
}
|
||||
# Additional organic results...
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
The response is automatically filtered to remove metadata and unnecessary fields, focusing on the most relevant shopping information.
|
||||
184
docs/tools/serply-job-search-tool.mdx
Normal file
184
docs/tools/serply-job-search-tool.mdx
Normal file
@@ -0,0 +1,184 @@
|
||||
---
|
||||
title: SerplyJobSearchTool
|
||||
description: A tool for searching US job postings using the Serply API
|
||||
icon: briefcase
|
||||
---
|
||||
|
||||
## SerplyJobSearchTool
|
||||
|
||||
The SerplyJobSearchTool provides job search capabilities using the Serply API. It allows for searching job postings in the US market, returning structured information about positions, employers, locations, and remote work status.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerplyJobSearchTool
|
||||
|
||||
# Set environment variable
|
||||
# export SERPLY_API_KEY='your-api-key'
|
||||
|
||||
# Initialize the tool
|
||||
search_tool = SerplyJobSearchTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
job_researcher = Agent(
|
||||
role='Job Market Researcher',
|
||||
goal='Find relevant job opportunities',
|
||||
backstory='Expert at analyzing job market trends and opportunities.',
|
||||
tools=[search_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class SerplyJobSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query for fetching job postings"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
Initialize the job search tool.
|
||||
|
||||
Args:
|
||||
**kwargs: Additional arguments for RagTool initialization
|
||||
|
||||
Note:
|
||||
Requires SERPLY_API_KEY environment variable
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Perform job search using Serply API.
|
||||
|
||||
Args:
|
||||
search_query (str): Job search query
|
||||
**kwargs: Additional search parameters
|
||||
|
||||
Returns:
|
||||
str: Formatted string containing job listings with details:
|
||||
- Position
|
||||
- Employer
|
||||
- Location
|
||||
- Link
|
||||
- Highlights
|
||||
- Remote/Hybrid status
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Set up API authentication:
|
||||
```bash
|
||||
export SERPLY_API_KEY='your-serply-api-key'
|
||||
```
|
||||
|
||||
2. Use specific search queries
|
||||
3. Handle potential API errors
|
||||
4. Process structured results effectively
|
||||
5. Consider rate limits and quotas
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SerplyJobSearchTool
|
||||
|
||||
# Initialize tool
|
||||
job_search = SerplyJobSearchTool()
|
||||
|
||||
# Create agent
|
||||
recruiter = Agent(
|
||||
role='Technical Recruiter',
|
||||
goal='Find relevant job opportunities in tech',
|
||||
backstory='Expert at identifying promising tech positions.',
|
||||
tools=[job_search]
|
||||
)
|
||||
|
||||
# Define task
|
||||
search_task = Task(
|
||||
description="""Search for senior software engineer positions
|
||||
with remote work options in the US. Focus on positions
|
||||
requiring Python expertise.""",
|
||||
agent=recruiter
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "search_query": "senior software engineer python remote"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[recruiter],
|
||||
tasks=[search_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Handling Search Results
|
||||
```python
|
||||
# Example of processing structured results
|
||||
results = search_tool._run(
|
||||
search_query="machine learning engineer"
|
||||
)
|
||||
|
||||
# Results format:
|
||||
"""
|
||||
Search results:
|
||||
Position: Senior Machine Learning Engineer
|
||||
Employer: TechCorp Inc
|
||||
Location: San Francisco, CA
|
||||
Link: https://example.com/job/123
|
||||
Highlights: Python, TensorFlow, 5+ years experience
|
||||
Is Remote: True
|
||||
Is Hybrid: False
|
||||
---
|
||||
Position: ML Engineer
|
||||
...
|
||||
"""
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
```python
|
||||
try:
|
||||
results = search_tool._run(
|
||||
search_query="data scientist"
|
||||
)
|
||||
if not results:
|
||||
print("No jobs found")
|
||||
else:
|
||||
print(results)
|
||||
except Exception as e:
|
||||
print(f"Job search error: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Requires valid Serply API key
|
||||
- Currently supports US job market only
|
||||
- Returns structured job information
|
||||
- Includes remote/hybrid status
|
||||
- Thread-safe operations
|
||||
- Efficient job search capabilities
|
||||
- Handles API rate limiting automatically
|
||||
- Provides detailed job highlights
|
||||
209
docs/tools/serply-news-search-tool.mdx
Normal file
209
docs/tools/serply-news-search-tool.mdx
Normal file
@@ -0,0 +1,209 @@
|
||||
---
|
||||
title: SerplyNewsSearchTool
|
||||
description: A news article search tool powered by Serply API with configurable search parameters
|
||||
icon: newspaper
|
||||
---
|
||||
|
||||
## SerplyNewsSearchTool
|
||||
|
||||
The SerplyNewsSearchTool provides news article search capabilities using the Serply API. It allows for customizable search parameters including result limits and proxy location for region-specific news results.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerplyNewsSearchTool
|
||||
|
||||
# Set environment variable
|
||||
# export SERPLY_API_KEY='your-api-key'
|
||||
|
||||
# Basic initialization
|
||||
news_tool = SerplyNewsSearchTool()
|
||||
|
||||
# Advanced initialization with custom parameters
|
||||
news_tool = SerplyNewsSearchTool(
|
||||
limit=20, # Return 20 results
|
||||
proxy_location="FR" # Search from France
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
news_researcher = Agent(
|
||||
role='News Researcher',
|
||||
goal='Find relevant news articles',
|
||||
backstory='Expert at news research and information gathering.',
|
||||
tools=[news_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class SerplyNewsSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query for fetching news articles"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
limit: Optional[int] = 10,
|
||||
proxy_location: Optional[str] = "US",
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the news search tool.
|
||||
|
||||
Args:
|
||||
limit (int): Maximum number of results [10-100] (default: 10)
|
||||
proxy_location (str): Region for local news results (default: "US")
|
||||
Options: US, CA, IE, GB, FR, DE, SE, IN, JP, KR, SG, AU, BR
|
||||
**kwargs: Additional arguments for tool creation
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Perform news search using Serply API.
|
||||
|
||||
Args:
|
||||
search_query (str): News search query
|
||||
|
||||
Returns:
|
||||
str: Formatted string containing news results:
|
||||
- Title
|
||||
- Link
|
||||
- Source
|
||||
- Published Date
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Set up API authentication:
|
||||
```bash
|
||||
export SERPLY_API_KEY='your-serply-api-key'
|
||||
```
|
||||
|
||||
2. Configure search parameters appropriately:
|
||||
- Set reasonable result limits
|
||||
- Select relevant proxy location for regional news
|
||||
- Consider time sensitivity of news content
|
||||
|
||||
3. Handle potential API errors
|
||||
4. Process structured results effectively
|
||||
5. Consider rate limits and quotas
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SerplyNewsSearchTool
|
||||
|
||||
# Initialize tool with custom configuration
|
||||
news_tool = SerplyNewsSearchTool(
|
||||
limit=15, # 15 results
|
||||
proxy_location="US" # US news sources
|
||||
)
|
||||
|
||||
# Create agent
|
||||
news_analyst = Agent(
|
||||
role='News Analyst',
|
||||
goal='Research breaking news and developments',
|
||||
backstory='Expert at analyzing news trends and developments.',
|
||||
tools=[news_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
news_task = Task(
|
||||
description="""Research the latest developments in renewable
|
||||
energy technology and investments, focusing on major
|
||||
announcements and industry trends.""",
|
||||
agent=news_analyst
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "search_query": "renewable energy technology investments news"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[news_analyst],
|
||||
tasks=[news_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Regional News Configuration
|
||||
```python
|
||||
# French news sources
|
||||
fr_news = SerplyNewsSearchTool(
|
||||
proxy_location="FR",
|
||||
limit=20
|
||||
)
|
||||
|
||||
# Japanese news sources
|
||||
jp_news = SerplyNewsSearchTool(
|
||||
proxy_location="JP",
|
||||
limit=20
|
||||
)
|
||||
```
|
||||
|
||||
### Result Processing
|
||||
```python
|
||||
# Get news results
|
||||
try:
|
||||
results = news_tool._run(
|
||||
search_query="renewable energy investments"
|
||||
)
|
||||
print(results)
|
||||
except Exception as e:
|
||||
print(f"News search error: {str(e)}")
|
||||
```
|
||||
|
||||
### Multiple Region Search
|
||||
```python
|
||||
# Search across multiple regions
|
||||
regions = ["US", "GB", "DE"]
|
||||
all_results = []
|
||||
|
||||
for region in regions:
|
||||
regional_tool = SerplyNewsSearchTool(
|
||||
proxy_location=region,
|
||||
limit=5
|
||||
)
|
||||
results = regional_tool._run(
|
||||
search_query="global tech innovations"
|
||||
)
|
||||
all_results.append(f"Results from {region}:\n{results}")
|
||||
|
||||
combined_results = "\n\n".join(all_results)
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Requires valid Serply API key
|
||||
- Supports multiple regions for news sources
|
||||
- Configurable result limits (10-100)
|
||||
- Returns structured news article data
|
||||
- Thread-safe operations
|
||||
- Efficient news search capabilities
|
||||
- Handles API rate limiting automatically
|
||||
- Includes source attribution and publication dates
|
||||
- Follows redirects for final article URLs
|
||||
209
docs/tools/serply-scholar-search-tool.mdx
Normal file
209
docs/tools/serply-scholar-search-tool.mdx
Normal file
@@ -0,0 +1,209 @@
|
||||
---
|
||||
title: SerplyScholarSearchTool
|
||||
description: A scholarly literature search tool powered by Serply API with configurable search parameters
|
||||
icon: book
|
||||
---
|
||||
|
||||
## SerplyScholarSearchTool
|
||||
|
||||
The SerplyScholarSearchTool provides scholarly literature search capabilities using the Serply API. It allows for customizable search parameters including language and proxy location for region-specific academic results.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerplyScholarSearchTool
|
||||
|
||||
# Set environment variable
|
||||
# export SERPLY_API_KEY='your-api-key'
|
||||
|
||||
# Basic initialization
|
||||
scholar_tool = SerplyScholarSearchTool()
|
||||
|
||||
# Advanced initialization with custom parameters
|
||||
scholar_tool = SerplyScholarSearchTool(
|
||||
hl="fr", # French language results
|
||||
proxy_location="FR" # Search from France
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
academic_researcher = Agent(
|
||||
role='Academic Researcher',
|
||||
goal='Find relevant scholarly literature',
|
||||
backstory='Expert at academic research and literature review.',
|
||||
tools=[scholar_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class SerplyScholarSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query for fetching scholarly literature"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
hl: str = "us",
|
||||
proxy_location: Optional[str] = "US",
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the scholar search tool.
|
||||
|
||||
Args:
|
||||
hl (str): Host language code for results (default: "us")
|
||||
Reference: https://developers.google.com/custom-search/docs/xml_results?hl=en#wsInterfaceLanguages
|
||||
proxy_location (str): Region for local results (default: "US")
|
||||
Options: US, CA, IE, GB, FR, DE, SE, IN, JP, KR, SG, AU, BR
|
||||
**kwargs: Additional arguments for tool creation
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Perform scholarly literature search using Serply API.
|
||||
|
||||
Args:
|
||||
search_query (str): Academic search query
|
||||
|
||||
Returns:
|
||||
str: Formatted string containing scholarly results:
|
||||
- Title
|
||||
- Link
|
||||
- Description
|
||||
- Citation
|
||||
- Authors
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Set up API authentication:
|
||||
```bash
|
||||
export SERPLY_API_KEY='your-serply-api-key'
|
||||
```
|
||||
|
||||
2. Configure search parameters appropriately:
|
||||
- Use relevant language codes
|
||||
- Select appropriate proxy location
|
||||
- Provide specific academic search terms
|
||||
|
||||
3. Handle potential API errors
|
||||
4. Process structured results effectively
|
||||
5. Consider rate limits and quotas
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SerplyScholarSearchTool
|
||||
|
||||
# Initialize tool with custom configuration
|
||||
scholar_tool = SerplyScholarSearchTool(
|
||||
hl="en", # English results
|
||||
proxy_location="US" # US academic sources
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='Academic Researcher',
|
||||
goal='Research recent academic publications',
|
||||
backstory='Expert at analyzing academic literature and research trends.',
|
||||
tools=[scholar_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
research_task = Task(
|
||||
description="""Research recent academic publications on
|
||||
machine learning applications in healthcare, focusing on
|
||||
peer-reviewed articles from the last two years.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "search_query": "machine learning healthcare applications"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Language and Region Configuration
|
||||
```python
|
||||
# French academic sources
|
||||
fr_scholar = SerplyScholarSearchTool(
|
||||
hl="fr",
|
||||
proxy_location="FR"
|
||||
)
|
||||
|
||||
# German academic sources
|
||||
de_scholar = SerplyScholarSearchTool(
|
||||
hl="de",
|
||||
proxy_location="DE"
|
||||
)
|
||||
```
|
||||
|
||||
### Result Processing
|
||||
```python
|
||||
try:
|
||||
results = scholar_tool._run(
|
||||
search_query="machine learning healthcare applications"
|
||||
)
|
||||
print(results)
|
||||
except Exception as e:
|
||||
print(f"Scholar search error: {str(e)}")
|
||||
```
|
||||
|
||||
### Citation Analysis
|
||||
```python
|
||||
# Extract and analyze citations
|
||||
def analyze_citations(results):
|
||||
citations = []
|
||||
for result in results.split("---"):
|
||||
if "Cite:" in result:
|
||||
citation = result.split("Cite:")[1].split("\n")[0].strip()
|
||||
citations.append(citation)
|
||||
return citations
|
||||
|
||||
results = scholar_tool._run(
|
||||
search_query="artificial intelligence ethics"
|
||||
)
|
||||
citations = analyze_citations(results)
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Requires valid Serply API key
|
||||
- Supports multiple languages and regions
|
||||
- Returns structured academic article data
|
||||
- Includes citation information
|
||||
- Lists all authors of publications
|
||||
- Thread-safe operations
|
||||
- Efficient scholarly search capabilities
|
||||
- Handles API rate limiting automatically
|
||||
- Supports both direct and document links
|
||||
- Provides comprehensive article metadata
|
||||
213
docs/tools/serply-web-search-tool.mdx
Normal file
213
docs/tools/serply-web-search-tool.mdx
Normal file
@@ -0,0 +1,213 @@
|
||||
---
|
||||
title: SerplyWebSearchTool
|
||||
description: A Google search tool powered by Serply API with configurable search parameters
|
||||
icon: search
|
||||
---
|
||||
|
||||
## SerplyWebSearchTool
|
||||
|
||||
The SerplyWebSearchTool provides Google search capabilities using the Serply API. It allows for customizable search parameters including language, result limits, device type, and proxy location for region-specific results.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerplyWebSearchTool
|
||||
|
||||
# Set environment variable
|
||||
# export SERPLY_API_KEY='your-api-key'
|
||||
|
||||
# Basic initialization
|
||||
search_tool = SerplyWebSearchTool()
|
||||
|
||||
# Advanced initialization with custom parameters
|
||||
search_tool = SerplyWebSearchTool(
|
||||
hl="fr", # French language results
|
||||
limit=20, # Return 20 results
|
||||
device_type="mobile", # Mobile search results
|
||||
proxy_location="FR" # Search from France
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Web Researcher',
|
||||
goal='Find relevant information online',
|
||||
backstory='Expert at web research and information gathering.',
|
||||
tools=[search_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class SerplyWebSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query for Google search"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
hl: str = "us",
|
||||
limit: int = 10,
|
||||
device_type: str = "desktop",
|
||||
proxy_location: str = "US",
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the Google search tool.
|
||||
|
||||
Args:
|
||||
hl (str): Host language code for results (default: "us")
|
||||
Reference: https://developers.google.com/custom-search/docs/xml_results?hl=en#wsInterfaceLanguages
|
||||
limit (int): Maximum number of results [10-100] (default: 10)
|
||||
device_type (str): "desktop" or "mobile" results (default: "desktop")
|
||||
proxy_location (str): Region for local results (default: "US")
|
||||
Options: US, CA, IE, GB, FR, DE, SE, IN, JP, KR, SG, AU, BR
|
||||
**kwargs: Additional arguments for tool creation
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Perform Google search using Serply API.
|
||||
|
||||
Args:
|
||||
search_query (str): Search query
|
||||
|
||||
Returns:
|
||||
str: Formatted string containing search results:
|
||||
- Title
|
||||
- Link
|
||||
- Description
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Set up API authentication:
|
||||
```bash
|
||||
export SERPLY_API_KEY='your-serply-api-key'
|
||||
```
|
||||
|
||||
2. Configure search parameters appropriately:
|
||||
- Use relevant language codes
|
||||
- Set reasonable result limits
|
||||
- Choose appropriate device type
|
||||
- Select relevant proxy location
|
||||
|
||||
3. Handle potential API errors
|
||||
4. Process structured results effectively
|
||||
5. Consider rate limits and quotas
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SerplyWebSearchTool
|
||||
|
||||
# Initialize tool with custom configuration
|
||||
search_tool = SerplyWebSearchTool(
|
||||
hl="en", # English results
|
||||
limit=15, # 15 results
|
||||
device_type="desktop",
|
||||
proxy_location="US"
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='Web Researcher',
|
||||
goal='Research emerging technology trends',
|
||||
backstory='Expert at finding and analyzing tech trends.',
|
||||
tools=[search_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
research_task = Task(
|
||||
description="""Research the latest developments in artificial
|
||||
intelligence and machine learning, focusing on practical
|
||||
applications in business.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "search_query": "latest AI ML developments business applications"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Language and Region Configuration
|
||||
```python
|
||||
# French search from France
|
||||
fr_search = SerplyWebSearchTool(
|
||||
hl="fr",
|
||||
proxy_location="FR"
|
||||
)
|
||||
|
||||
# Japanese search from Japan
|
||||
jp_search = SerplyWebSearchTool(
|
||||
hl="ja",
|
||||
proxy_location="JP"
|
||||
)
|
||||
```
|
||||
|
||||
### Device-Specific Results
|
||||
```python
|
||||
# Mobile results
|
||||
mobile_search = SerplyWebSearchTool(
|
||||
device_type="mobile",
|
||||
limit=20
|
||||
)
|
||||
|
||||
# Desktop results
|
||||
desktop_search = SerplyWebSearchTool(
|
||||
device_type="desktop",
|
||||
limit=20
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
```python
|
||||
try:
|
||||
results = search_tool._run(
|
||||
search_query="artificial intelligence trends"
|
||||
)
|
||||
print(results)
|
||||
except Exception as e:
|
||||
print(f"Search error: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
|
||||
- Requires valid Serply API key
|
||||
- Supports multiple languages and regions
|
||||
- Configurable result limits (10-100)
|
||||
- Device-specific search results
|
||||
- Thread-safe operations
|
||||
- Efficient search capabilities
|
||||
- Handles API rate limiting automatically
|
||||
- Returns structured search results
|
||||
201
docs/tools/serply-webpage-to-markdown-tool.mdx
Normal file
201
docs/tools/serply-webpage-to-markdown-tool.mdx
Normal file
@@ -0,0 +1,201 @@
|
||||
---
|
||||
title: SerplyWebpageToMarkdownTool
|
||||
description: A tool for converting web pages to markdown format using Serply API
|
||||
icon: markdown
|
||||
---
|
||||
|
||||
## SerplyWebpageToMarkdownTool
|
||||
|
||||
The SerplyWebpageToMarkdownTool converts web pages to markdown format using the Serply API, making it easier for LLMs to process and understand web content. It supports configurable proxy locations for region-specific access.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import SerplyWebpageToMarkdownTool
|
||||
|
||||
# Set environment variable
|
||||
# export SERPLY_API_KEY='your-api-key'
|
||||
|
||||
# Basic initialization
|
||||
markdown_tool = SerplyWebpageToMarkdownTool()
|
||||
|
||||
# Advanced initialization with custom parameters
|
||||
markdown_tool = SerplyWebpageToMarkdownTool(
|
||||
proxy_location="FR" # Access from France
|
||||
)
|
||||
|
||||
# Create an agent with the tool
|
||||
web_processor = Agent(
|
||||
role='Web Content Processor',
|
||||
goal='Convert web content to markdown format',
|
||||
backstory='Expert at processing and formatting web content.',
|
||||
tools=[markdown_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
```python
|
||||
class SerplyWebpageToMarkdownToolSchema(BaseModel):
|
||||
url: str = Field(
|
||||
description="Mandatory URL of the webpage to convert to markdown"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
proxy_location: Optional[str] = "US",
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the webpage to markdown conversion tool.
|
||||
|
||||
Args:
|
||||
proxy_location (str): Region for accessing the webpage (default: "US")
|
||||
Options: US, CA, IE, GB, FR, DE, SE, IN, JP, KR, SG, AU, BR
|
||||
**kwargs: Additional arguments for tool creation
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Convert webpage to markdown using Serply API.
|
||||
|
||||
Args:
|
||||
url (str): URL of the webpage to convert
|
||||
|
||||
Returns:
|
||||
str: Markdown formatted content of the webpage
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Set up API authentication:
|
||||
```bash
|
||||
export SERPLY_API_KEY='your-serply-api-key'
|
||||
```
|
||||
|
||||
2. Configure proxy location appropriately:
|
||||
- Select relevant region for access
|
||||
- Consider content accessibility
|
||||
- Handle region-specific content
|
||||
|
||||
3. Handle potential API errors
|
||||
4. Process markdown output effectively
|
||||
5. Consider rate limits and quotas
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import SerplyWebpageToMarkdownTool
|
||||
|
||||
# Initialize tool with custom configuration
|
||||
markdown_tool = SerplyWebpageToMarkdownTool(
|
||||
proxy_location="US" # US access point
|
||||
)
|
||||
|
||||
# Create agent
|
||||
processor = Agent(
|
||||
role='Content Processor',
|
||||
goal='Convert web content to structured markdown',
|
||||
backstory='Expert at processing web content into structured formats.',
|
||||
tools=[markdown_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
conversion_task = Task(
|
||||
description="""Convert the documentation page at
|
||||
https://example.com/docs into markdown format for
|
||||
further processing.""",
|
||||
agent=processor
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "url": "https://example.com/docs"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[processor],
|
||||
tasks=[conversion_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Regional Access Configuration
|
||||
```python
|
||||
# European access points
|
||||
fr_processor = SerplyWebpageToMarkdownTool(
|
||||
proxy_location="FR"
|
||||
)
|
||||
|
||||
de_processor = SerplyWebpageToMarkdownTool(
|
||||
proxy_location="DE"
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
```python
|
||||
try:
|
||||
markdown_content = markdown_tool._run(
|
||||
url="https://example.com/page"
|
||||
)
|
||||
print(markdown_content)
|
||||
except Exception as e:
|
||||
print(f"Conversion error: {str(e)}")
|
||||
```
|
||||
|
||||
### Content Processing
|
||||
```python
|
||||
# Process multiple pages
|
||||
urls = [
|
||||
"https://example.com/page1",
|
||||
"https://example.com/page2",
|
||||
"https://example.com/page3"
|
||||
]
|
||||
|
||||
markdown_contents = []
|
||||
for url in urls:
|
||||
try:
|
||||
content = markdown_tool._run(url=url)
|
||||
markdown_contents.append(content)
|
||||
except Exception as e:
|
||||
print(f"Error processing {url}: {str(e)}")
|
||||
continue
|
||||
|
||||
# Combine contents
|
||||
combined_markdown = "\n\n---\n\n".join(markdown_contents)
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Requires valid Serply API key
|
||||
- Supports multiple proxy locations
|
||||
- Returns markdown-formatted content
|
||||
- Simplifies web content for LLM processing
|
||||
- Thread-safe operations
|
||||
- Efficient content conversion
|
||||
- Handles API rate limiting automatically
|
||||
- Preserves content structure in markdown
|
||||
- Supports various webpage formats
|
||||
- Makes web content more accessible to AI agents
|
||||
158
docs/tools/txt-search-tool.mdx
Normal file
158
docs/tools/txt-search-tool.mdx
Normal file
@@ -0,0 +1,158 @@
|
||||
---
|
||||
title: TXTSearchTool
|
||||
description: A semantic search tool for text files using RAG capabilities
|
||||
icon: magnifying-glass-document
|
||||
---
|
||||
|
||||
## TXTSearchTool
|
||||
|
||||
The TXTSearchTool is a specialized Retrieval-Augmented Generation (RAG) tool that enables semantic search within text files. It inherits from the base RagTool class and provides both fixed and dynamic text file searching capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import TXTSearchTool
|
||||
|
||||
# Method 1: Dynamic file path
|
||||
txt_search = TXTSearchTool()
|
||||
|
||||
# Method 2: Fixed file path
|
||||
fixed_txt_search = TXTSearchTool(txt="path/to/fixed/document.txt")
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Research Assistant',
|
||||
goal='Search through text documents semantically',
|
||||
backstory='Expert at finding relevant information in documents using semantic search.',
|
||||
tools=[txt_search],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
The tool supports two input schemas depending on initialization:
|
||||
|
||||
### Dynamic File Path Schema
|
||||
```python
|
||||
class TXTSearchToolSchema(BaseModel):
|
||||
search_query: str # The semantic search query
|
||||
txt: str # Path to the text file to search
|
||||
```
|
||||
|
||||
### Fixed File Path Schema
|
||||
```python
|
||||
class FixedTXTSearchToolSchema(BaseModel):
|
||||
search_query: str # The semantic search query
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(self, txt: Optional[str] = None, **kwargs):
|
||||
"""
|
||||
Initialize the TXT search tool.
|
||||
|
||||
Args:
|
||||
txt (Optional[str]): Fixed path to a text file. If provided, the tool will only search this file.
|
||||
**kwargs: Additional arguments passed to the parent RagTool
|
||||
"""
|
||||
|
||||
def _run(self, search_query: str, **kwargs: Any) -> Any:
|
||||
"""
|
||||
Perform semantic search on the text file.
|
||||
|
||||
Args:
|
||||
search_query (str): The semantic search query
|
||||
**kwargs: Additional arguments (including 'txt' for dynamic file path)
|
||||
|
||||
Returns:
|
||||
str: Relevant text passages based on semantic search
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Choose initialization method based on use case:
|
||||
- Use fixed file path when repeatedly searching the same document
|
||||
- Use dynamic file path when searching different documents
|
||||
2. Write clear, semantic search queries
|
||||
3. Handle potential file access errors in agent prompts
|
||||
4. Consider memory usage for large text files
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import TXTSearchTool
|
||||
|
||||
# Example 1: Fixed document search
|
||||
documentation_search = TXTSearchTool(txt="api_documentation.txt")
|
||||
|
||||
# Example 2: Dynamic document search
|
||||
flexible_search = TXTSearchTool()
|
||||
|
||||
# Create agents
|
||||
doc_analyst = Agent(
|
||||
role='Documentation Analyst',
|
||||
goal='Find relevant API documentation sections',
|
||||
backstory='Expert at analyzing technical documentation.',
|
||||
tools=[documentation_search]
|
||||
)
|
||||
|
||||
file_analyst = Agent(
|
||||
role='File Analyst',
|
||||
goal='Search through various text files',
|
||||
backstory='Specialist in finding information across multiple documents.',
|
||||
tools=[flexible_search]
|
||||
)
|
||||
|
||||
# Define tasks
|
||||
fixed_search_task = Task(
|
||||
description="""Find all API endpoints related to user authentication
|
||||
in the documentation.""",
|
||||
agent=doc_analyst
|
||||
)
|
||||
|
||||
# The agent will use:
|
||||
# {
|
||||
# "search_query": "user authentication API endpoints"
|
||||
# }
|
||||
|
||||
dynamic_search_task = Task(
|
||||
description="""Search through the logs.txt file for any database
|
||||
connection errors.""",
|
||||
agent=file_analyst
|
||||
)
|
||||
|
||||
# The agent will use:
|
||||
# {
|
||||
# "search_query": "database connection errors",
|
||||
# "txt": "logs.txt"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[doc_analyst, file_analyst],
|
||||
tasks=[fixed_search_task, dynamic_search_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool for semantic search capabilities
|
||||
- Supports both fixed and dynamic text file paths
|
||||
- Uses embeddings for semantic search
|
||||
- Optimized for text file analysis
|
||||
- Thread-safe operations
|
||||
- Automatically handles file loading and embedding
|
||||
159
docs/tools/youtube-channel-search-tool.mdx
Normal file
159
docs/tools/youtube-channel-search-tool.mdx
Normal file
@@ -0,0 +1,159 @@
|
||||
---
|
||||
title: YoutubeChannelSearchTool
|
||||
description: A semantic search tool for YouTube channel content using RAG capabilities
|
||||
icon: youtube
|
||||
---
|
||||
|
||||
## YoutubeChannelSearchTool
|
||||
|
||||
The YoutubeChannelSearchTool is a specialized Retrieval-Augmented Generation (RAG) tool that enables semantic search within YouTube channel content. It inherits from the base RagTool class and provides both fixed and dynamic YouTube channel searching capabilities.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import YoutubeChannelSearchTool
|
||||
|
||||
# Method 1: Dynamic channel handle
|
||||
youtube_search = YoutubeChannelSearchTool()
|
||||
|
||||
# Method 2: Fixed channel handle
|
||||
fixed_channel_search = YoutubeChannelSearchTool(youtube_channel_handle="@example_channel")
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Content Researcher',
|
||||
goal='Search through YouTube channel content semantically',
|
||||
backstory='Expert at finding relevant information in YouTube content.',
|
||||
tools=[youtube_search],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
The tool supports two input schemas depending on initialization:
|
||||
|
||||
### Dynamic Channel Schema
|
||||
```python
|
||||
class YoutubeChannelSearchToolSchema(BaseModel):
|
||||
search_query: str # The semantic search query
|
||||
youtube_channel_handle: str # YouTube channel handle (with or without @)
|
||||
```
|
||||
|
||||
### Fixed Channel Schema
|
||||
```python
|
||||
class FixedYoutubeChannelSearchToolSchema(BaseModel):
|
||||
search_query: str # The semantic search query
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(self, youtube_channel_handle: Optional[str] = None, **kwargs):
|
||||
"""
|
||||
Initialize the YouTube channel search tool.
|
||||
|
||||
Args:
|
||||
youtube_channel_handle (Optional[str]): Fixed channel handle. If provided,
|
||||
the tool will only search this channel.
|
||||
**kwargs: Additional arguments passed to the parent RagTool
|
||||
"""
|
||||
|
||||
def _run(self, search_query: str, **kwargs: Any) -> Any:
|
||||
"""
|
||||
Perform semantic search on the YouTube channel content.
|
||||
|
||||
Args:
|
||||
search_query (str): The semantic search query
|
||||
**kwargs: Additional arguments (including 'youtube_channel_handle' for dynamic mode)
|
||||
|
||||
Returns:
|
||||
str: Relevant content from the YouTube channel based on semantic search
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Choose initialization method based on use case:
|
||||
- Use fixed channel handle when repeatedly searching the same channel
|
||||
- Use dynamic handle when searching different channels
|
||||
2. Write clear, semantic search queries
|
||||
3. Channel handles can be provided with or without '@' prefix
|
||||
4. Consider content availability and channel size
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import YoutubeChannelSearchTool
|
||||
|
||||
# Example 1: Fixed channel search
|
||||
tech_channel_search = YoutubeChannelSearchTool(youtube_channel_handle="@TechChannel")
|
||||
|
||||
# Example 2: Dynamic channel search
|
||||
flexible_search = YoutubeChannelSearchTool()
|
||||
|
||||
# Create agents
|
||||
tech_analyst = Agent(
|
||||
role='Tech Content Analyst',
|
||||
goal='Find relevant tech tutorials and explanations',
|
||||
backstory='Expert at analyzing technical YouTube content.',
|
||||
tools=[tech_channel_search]
|
||||
)
|
||||
|
||||
content_researcher = Agent(
|
||||
role='Content Researcher',
|
||||
goal='Search across multiple YouTube channels',
|
||||
backstory='Specialist in finding information across various channels.',
|
||||
tools=[flexible_search]
|
||||
)
|
||||
|
||||
# Define tasks
|
||||
fixed_search_task = Task(
|
||||
description="""Find all tutorials related to machine learning
|
||||
basics in the channel.""",
|
||||
agent=tech_analyst
|
||||
)
|
||||
|
||||
# The agent will use:
|
||||
# {
|
||||
# "search_query": "machine learning basics tutorial"
|
||||
# }
|
||||
|
||||
dynamic_search_task = Task(
|
||||
description="""Search through the @AIResearch channel for
|
||||
content about neural networks.""",
|
||||
agent=content_researcher
|
||||
)
|
||||
|
||||
# The agent will use:
|
||||
# {
|
||||
# "search_query": "neural networks explanation",
|
||||
# "youtube_channel_handle": "@AIResearch"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[tech_analyst, content_researcher],
|
||||
tasks=[fixed_search_task, dynamic_search_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool for semantic search capabilities
|
||||
- Supports both fixed and dynamic YouTube channel handles
|
||||
- Automatically adds '@' prefix to channel handles if missing
|
||||
- Uses embeddings for semantic search
|
||||
- Thread-safe operations
|
||||
- Automatically handles YouTube content loading and embedding
|
||||
216
docs/tools/youtube-video-search-tool.mdx
Normal file
216
docs/tools/youtube-video-search-tool.mdx
Normal file
@@ -0,0 +1,216 @@
|
||||
---
|
||||
title: YoutubeVideoSearchTool
|
||||
description: A tool for semantic search within YouTube video content using RAG capabilities
|
||||
icon: video
|
||||
---
|
||||
|
||||
## YoutubeVideoSearchTool
|
||||
|
||||
The YoutubeVideoSearchTool enables semantic search capabilities for YouTube video content using Retrieval-Augmented Generation (RAG). It processes video content and allows searching through transcripts and metadata using natural language queries.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
from crewai import Agent
|
||||
from crewai_tools import YoutubeVideoSearchTool
|
||||
|
||||
# Method 1: Initialize with specific video
|
||||
video_tool = YoutubeVideoSearchTool(
|
||||
youtube_video_url="https://www.youtube.com/watch?v=example"
|
||||
)
|
||||
|
||||
# Method 2: Initialize without video (specify at runtime)
|
||||
flexible_video_tool = YoutubeVideoSearchTool()
|
||||
|
||||
# Create an agent with the tool
|
||||
researcher = Agent(
|
||||
role='Video Researcher',
|
||||
goal='Search and analyze video content',
|
||||
backstory='Expert at finding relevant information in videos.',
|
||||
tools=[video_tool],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Input Schema
|
||||
|
||||
### Fixed Video Schema (when URL provided during initialization)
|
||||
```python
|
||||
class FixedYoutubeVideoSearchToolSchema(BaseModel):
|
||||
search_query: str = Field(
|
||||
description="Mandatory search query you want to use to search the Youtube Video content"
|
||||
)
|
||||
```
|
||||
|
||||
### Flexible Video Schema (when URL provided at runtime)
|
||||
```python
|
||||
class YoutubeVideoSearchToolSchema(FixedYoutubeVideoSearchToolSchema):
|
||||
youtube_video_url: str = Field(
|
||||
description="Mandatory youtube_video_url path you want to search"
|
||||
)
|
||||
```
|
||||
|
||||
## Function Signature
|
||||
|
||||
```python
|
||||
def __init__(
|
||||
self,
|
||||
youtube_video_url: Optional[str] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Initialize the YouTube video search tool.
|
||||
|
||||
Args:
|
||||
youtube_video_url (Optional[str]): URL of YouTube video (optional)
|
||||
**kwargs: Additional arguments for RAG tool configuration
|
||||
"""
|
||||
|
||||
def _run(
|
||||
self,
|
||||
search_query: str,
|
||||
**kwargs: Any
|
||||
) -> str:
|
||||
"""
|
||||
Execute semantic search on video content.
|
||||
|
||||
Args:
|
||||
search_query (str): Query to search in the video
|
||||
**kwargs: Additional arguments including youtube_video_url if not initialized
|
||||
|
||||
Returns:
|
||||
str: Relevant content from the video matching the query
|
||||
"""
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. Video URL Management:
|
||||
- Use complete YouTube URLs
|
||||
- Verify video accessibility
|
||||
- Handle region restrictions
|
||||
|
||||
2. Search Optimization:
|
||||
- Use specific, focused queries
|
||||
- Consider video context
|
||||
- Test with sample queries first
|
||||
|
||||
3. Performance Considerations:
|
||||
- Pre-initialize for repeated searches
|
||||
- Handle long videos appropriately
|
||||
- Monitor processing time
|
||||
|
||||
4. Error Handling:
|
||||
- Verify video availability
|
||||
- Handle unavailable videos
|
||||
- Manage API limitations
|
||||
|
||||
## Integration Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai_tools import YoutubeVideoSearchTool
|
||||
|
||||
# Initialize tool with specific video
|
||||
video_tool = YoutubeVideoSearchTool(
|
||||
youtube_video_url="https://www.youtube.com/watch?v=example"
|
||||
)
|
||||
|
||||
# Create agent
|
||||
researcher = Agent(
|
||||
role='Video Researcher',
|
||||
goal='Extract insights from video content',
|
||||
backstory='Expert at analyzing video content.',
|
||||
tools=[video_tool]
|
||||
)
|
||||
|
||||
# Define task
|
||||
research_task = Task(
|
||||
description="""Find all mentions of machine learning
|
||||
applications from the video content.""",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
# The tool will use:
|
||||
# {
|
||||
# "search_query": "machine learning applications"
|
||||
# }
|
||||
|
||||
# Create crew
|
||||
crew = Crew(
|
||||
agents=[researcher],
|
||||
tasks=[research_task]
|
||||
)
|
||||
|
||||
# Execute
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
### Dynamic Video Selection
|
||||
```python
|
||||
# Initialize without video URL
|
||||
flexible_tool = YoutubeVideoSearchTool()
|
||||
|
||||
# Search different videos
|
||||
tech_results = flexible_tool.run(
|
||||
search_query="quantum computing",
|
||||
youtube_video_url="https://youtube.com/watch?v=tech123"
|
||||
)
|
||||
|
||||
science_results = flexible_tool.run(
|
||||
search_query="particle physics",
|
||||
youtube_video_url="https://youtube.com/watch?v=science456"
|
||||
)
|
||||
```
|
||||
|
||||
### Multiple Video Analysis
|
||||
```python
|
||||
# Create tools for different videos
|
||||
tech_tool = YoutubeVideoSearchTool(
|
||||
youtube_video_url="https://youtube.com/watch?v=tech123"
|
||||
)
|
||||
science_tool = YoutubeVideoSearchTool(
|
||||
youtube_video_url="https://youtube.com/watch?v=science456"
|
||||
)
|
||||
|
||||
# Create agent with multiple tools
|
||||
analyst = Agent(
|
||||
role='Content Analyst',
|
||||
goal='Cross-reference multiple videos',
|
||||
tools=[tech_tool, science_tool]
|
||||
)
|
||||
```
|
||||
|
||||
### Error Handling Example
|
||||
```python
|
||||
try:
|
||||
video_tool = YoutubeVideoSearchTool()
|
||||
results = video_tool.run(
|
||||
search_query="key concepts",
|
||||
youtube_video_url="https://youtube.com/watch?v=example"
|
||||
)
|
||||
print(results)
|
||||
except Exception as e:
|
||||
print(f"Error processing video: {str(e)}")
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Inherits from RagTool
|
||||
- Uses embedchain for processing
|
||||
- Supports semantic search
|
||||
- Dynamic video specification
|
||||
- Efficient content retrieval
|
||||
- Thread-safe operations
|
||||
- Maintains search context
|
||||
- Handles video transcripts
|
||||
- Processes video metadata
|
||||
- Memory-efficient processing
|
||||
Reference in New Issue
Block a user