mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 23:58:34 +00:00
- Added documentation for file operation tools - Added documentation for search tools - Added documentation for web scraping tools - Added documentation for specialized tools (RAG, code interpreter) - Added documentation for API-based tools (SerpApi, Serply) Link to Devin run: https://app.devin.ai/sessions/d2f72a2dfb214659aeb3e9f67ed961f7 Co-Authored-By: Joe Moura <joao@crewai.com>
182 lines
4.1 KiB
Plaintext
182 lines
4.1 KiB
Plaintext
---
|
|
title: PGSearchTool
|
|
description: A RAG-based semantic search tool for PostgreSQL database content
|
|
icon: database-search
|
|
---
|
|
|
|
## PGSearchTool
|
|
|
|
The PGSearchTool provides semantic search capabilities for PostgreSQL database content using RAG (Retrieval-Augmented Generation). It allows for natural language queries over database table content by leveraging embeddings and semantic search.
|
|
|
|
## Installation
|
|
|
|
```bash
|
|
pip install 'crewai[tools]'
|
|
pip install embedchain # Required dependency
|
|
```
|
|
|
|
## Usage Example
|
|
|
|
```python
|
|
from crewai import Agent
|
|
from crewai_tools import PGSearchTool
|
|
|
|
# Initialize the tool with database configuration
|
|
search_tool = PGSearchTool(
|
|
db_uri="postgresql://user:password@localhost:5432/dbname",
|
|
table_name="your_table"
|
|
)
|
|
|
|
# Create an agent with the tool
|
|
researcher = Agent(
|
|
role='Database Researcher',
|
|
goal='Find relevant information in database content',
|
|
backstory='Expert at searching and analyzing database content.',
|
|
tools=[search_tool],
|
|
verbose=True
|
|
)
|
|
```
|
|
|
|
## Input Schema
|
|
|
|
```python
|
|
class PGSearchToolSchema(BaseModel):
|
|
search_query: str = Field(
|
|
description="Mandatory semantic search query for searching the database's content"
|
|
)
|
|
```
|
|
|
|
## Function Signature
|
|
|
|
```python
|
|
def __init__(self, table_name: str, **kwargs):
|
|
"""
|
|
Initialize the PostgreSQL search tool.
|
|
|
|
Args:
|
|
table_name (str): Name of the table to search
|
|
db_uri (str): PostgreSQL database URI (required in kwargs)
|
|
**kwargs: Additional arguments for RagTool initialization
|
|
"""
|
|
|
|
def _run(
|
|
self,
|
|
search_query: str,
|
|
**kwargs: Any
|
|
) -> Any:
|
|
"""
|
|
Perform semantic search on database content.
|
|
|
|
Args:
|
|
search_query (str): Semantic search query
|
|
**kwargs: Additional search parameters
|
|
|
|
Returns:
|
|
Any: Relevant database content based on semantic search
|
|
"""
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
1. Secure database credentials:
|
|
```python
|
|
# Use environment variables for sensitive data
|
|
import os
|
|
|
|
db_uri = (
|
|
f"postgresql://{os.getenv('DB_USER')}:{os.getenv('DB_PASS')}"
|
|
f"@{os.getenv('DB_HOST')}:{os.getenv('DB_PORT')}/{os.getenv('DB_NAME')}"
|
|
)
|
|
```
|
|
|
|
2. Optimize table selection
|
|
3. Use specific semantic queries
|
|
4. Handle database connection errors
|
|
5. Consider table size and query performance
|
|
|
|
## Integration Example
|
|
|
|
```python
|
|
from crewai import Agent, Task, Crew
|
|
from crewai_tools import PGSearchTool
|
|
|
|
# Initialize tool with database configuration
|
|
db_search = PGSearchTool(
|
|
db_uri="postgresql://user:password@localhost:5432/dbname",
|
|
table_name="customer_feedback"
|
|
)
|
|
|
|
# Create agent
|
|
analyst = Agent(
|
|
role='Database Analyst',
|
|
goal='Analyze customer feedback data',
|
|
backstory='Expert at finding insights in customer feedback.',
|
|
tools=[db_search]
|
|
)
|
|
|
|
# Define task
|
|
analysis_task = Task(
|
|
description="""Find all customer feedback related to product usability
|
|
and ease of use. Focus on common patterns and issues.""",
|
|
agent=analyst
|
|
)
|
|
|
|
# The tool will use:
|
|
# {
|
|
# "search_query": "product usability feedback ease of use issues"
|
|
# }
|
|
|
|
# Create crew
|
|
crew = Crew(
|
|
agents=[analyst],
|
|
tasks=[analysis_task]
|
|
)
|
|
|
|
# Execute
|
|
result = crew.kickoff()
|
|
```
|
|
|
|
## Advanced Usage
|
|
|
|
### Multiple Table Search
|
|
```python
|
|
# Create tools for different tables
|
|
customer_search = PGSearchTool(
|
|
db_uri="postgresql://user:password@localhost:5432/dbname",
|
|
table_name="customers"
|
|
)
|
|
|
|
orders_search = PGSearchTool(
|
|
db_uri="postgresql://user:password@localhost:5432/dbname",
|
|
table_name="orders"
|
|
)
|
|
|
|
# Use both tools in an agent
|
|
analyst = Agent(
|
|
role='Multi-table Analyst',
|
|
goal='Analyze customer and order data',
|
|
tools=[customer_search, orders_search]
|
|
)
|
|
```
|
|
|
|
### Error Handling
|
|
```python
|
|
try:
|
|
results = search_tool._run(
|
|
search_query="customer satisfaction ratings"
|
|
)
|
|
# Process results
|
|
except Exception as e:
|
|
print(f"Database search error: {str(e)}")
|
|
```
|
|
|
|
## Notes
|
|
|
|
- Inherits from RagTool for semantic search
|
|
- Uses embedchain's PostgresLoader
|
|
- Requires valid PostgreSQL connection
|
|
- Supports semantic natural language queries
|
|
- Thread-safe operations
|
|
- Efficient for large tables
|
|
- Handles connection pooling automatically
|