Compare commits

...

129 Commits

Author SHA1 Message Date
Devin AI
d2c4040dd6 fix: properly complete Future when async task execution fails
This fixes GitHub issue #4072 where an async task that errors would keep
its thread alive because the Future was never completed.

The issue was in the _execute_task_async method which didn't handle
exceptions from _execute_core. When an exception was raised, the
future.set_result() was never called, leaving the Future in an incomplete
state. This caused future.result() to block forever.

The fix wraps the _execute_core call in a try-except block and calls
future.set_exception(e) when an exception occurs, ensuring the Future
is always properly completed.

Added tests:
- test_execute_async_basic: Basic threaded async execution
- test_execute_async_exception_completes_future: Regression test for #4072
- test_execute_async_exception_sets_end_time: Verify end_time is set on error
- test_execute_async_exception_does_not_hang: Verify no hang on error

Co-Authored-By: João <joao@crewai.com>
2025-12-11 14:19:23 +00:00
Greyson LaLonde
8ef9fe2cab fix: check platform compat for windows signals 2025-12-11 08:38:19 -05:00
Alex Larionov
807f97114f fix: set rpm controller timer as daemon to prevent process hang
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-12-11 02:59:55 -05:00
Greyson LaLonde
bdafe0fac7 fix: ensure token usage recording, validate response model on stream
Some checks failed
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
2025-12-10 20:32:10 -05:00
Greyson LaLonde
8e99d490b0 chore: add translated docs for async
* chore: add translated docs for async

* chore: add missing pages
2025-12-10 14:17:10 -05:00
Gil Feig
34b909367b Add docs for the agent handler connector (#4012)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* Add docs for the agent handler connector

* Fix links

* Update docs
2025-12-09 15:49:52 -08:00
Greyson LaLonde
22684b513e chore: add docs on native async
Some checks failed
Mark stale issues and pull requests / stale (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
2025-12-08 20:49:18 -05:00
Lorenze Jay
3e3b9df761 feat: bump versions to 1.7.0 (#4051)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
* feat: bump versions to 1.7.0

* bump
2025-12-08 16:42:12 -08:00
Greyson LaLonde
177294f588 fix: ensure nonetypes are not passed to otel (#4052)
* fix: ensure nonetypes are not passed to otel

* fix: ensure attribute is always set in span
2025-12-08 16:27:42 -08:00
Greyson LaLonde
beef712646 fix: ensure token store file ops do not deadlock
* fix: ensure token store file ops do not deadlock
* chore: update test method reference
2025-12-08 19:04:21 -05:00
Lorenze Jay
6125b866fd supporting thinking for anthropic models (#3978)
* supporting thinking for anthropic models

* drop comments here

* thinking and tool calling support

* fix: properly mock tool use and text block types in Anthropic tests

- Updated the test for the Anthropic tool use conversation flow to include type attributes for mocked ToolUseBlock and text blocks, ensuring accurate simulation of tool interactions during testing.

* feat: add AnthropicThinkingConfig for enhanced thinking capabilities

This update introduces the AnthropicThinkingConfig class to manage thinking parameters for the Anthropic completion model. The LLM and AnthropicCompletion classes have been updated to utilize this new configuration. Additionally, new test cassettes have been added to validate the functionality of thinking blocks across interactions.
2025-12-08 15:34:54 -08:00
Greyson LaLonde
f2f994612c fix: ensure otel span is closed
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-12-05 13:23:26 -05:00
Greyson LaLonde
7fff2b654c fix: use HuggingFaceEmbeddingFunction for embeddings, update keys and add tests (#4005)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-12-04 15:05:50 -08:00
Greyson LaLonde
34e09162ba feat: async flow kickoff
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Introduces akickoff alias to flows, improves tool decorator typing, ensures _run backward compatibility, updates docs and docstrings, adds tests, and removes duplicated logic.
2025-12-04 17:08:08 -05:00
Greyson LaLonde
24d1fad7ab feat: async crew support
native async crew execution. Improves tool decorator typing, ensures _run backward compatibility, updates docs and docstrings, adds tests, and removes duplicated logic.
2025-12-04 16:53:19 -05:00
Greyson LaLonde
9b8f31fa07 feat: async task support (#4024)
* feat: add async support for tools, add async tool tests

* chore: improve tool decorator typing

* fix: ensure _run backward compat

* chore: update docs

* chore: make docstrings a little more readable

* feat: add async execution support to agent executor

* chore: add tests

* feat: add aiosqlite dep; regenerate lockfile

* feat: add async ops to memory feat; create tests

* feat: async knowledge support; add tests

* feat: add async task support

* chore: dry out duplicate logic
2025-12-04 13:34:29 -08:00
Greyson LaLonde
d898d7c02c feat: async knowledge support (#4023)
* feat: add async support for tools, add async tool tests

* chore: improve tool decorator typing

* fix: ensure _run backward compat

* chore: update docs

* chore: make docstrings a little more readable

* feat: add async execution support to agent executor

* chore: add tests

* feat: add aiosqlite dep; regenerate lockfile

* feat: add async ops to memory feat; create tests

* feat: async knowledge support; add tests

* chore: regenerate lockfile
2025-12-04 10:27:52 -08:00
Greyson LaLonde
f04c40babf feat: async memory support
Adds async support for tools with tests, async execution in the agent executor, and async operations for memory (with aiosqlite). Improves tool decorator typing, ensures _run backward compatibility, updates docs and docstrings, adds tests, and regenerates lockfiles.
2025-12-04 12:54:49 -05:00
Lorenze Jay
c456e5c5fa Lorenze/ensure hooks work with lite agents flows (#3981)
* liteagent support hooks

* wip llm.call hooks work - needs tests for this

* fix tests

* fixed more

* more tool hooks test cassettes
2025-12-04 09:38:39 -08:00
Greyson LaLonde
633e279b51 feat: add async support for tools and agent executor; improve typing and docs
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Introduces async tool support with new tests, adds async execution to the agent executor, improves tool decorator typing, ensures _run backward compatibility, updates docs and docstrings, and adds additional tests.
2025-12-03 20:13:03 -05:00
Greyson LaLonde
a25778974d feat: a2a extensions API and async agent card caching; fix task propagation & streaming
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Adds initial extensions API (with registry temporarily no-op), introduces aiocache for async caching, ensures reference task IDs propagate correctly, fixes streamed response model handling, updates streaming tests, and regenerates lockfiles.
2025-12-03 16:29:48 -05:00
Greyson LaLonde
09f1ba6956 feat: native async tool support
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
- add async support for tools
- add async tool tests
- improve tool decorator typing
- fix _run backward compatibility
- update docs and improve readability of docstrings
2025-12-02 16:39:58 -05:00
Greyson LaLonde
20704742e2 feat: async llm support
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
feat: introduce async contract to BaseLLM

feat: add async call support for:

Azure provider

Anthropic provider

OpenAI provider

Gemini provider

Bedrock provider

LiteLLM provider

chore: expand scrubbed header fields (conftest, anthropic, bedrock)

chore: update docs to cover async functionality

chore: update and harden tests to support acall; re-add uri for cassette compatibility

chore: generate missing cassette

fix: ensure acall is non-abstract and set supports_tools = true for supported Anthropic models

chore: improve Bedrock async docstring and general test robustness
2025-12-01 18:56:56 -05:00
Greyson LaLonde
59180e9c9f fix: ensure supports_tools is true for all supported anthropic models
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
2025-12-01 07:21:09 -05:00
Greyson LaLonde
3ce019b07b chore: pin dependencies in crewai, crewai-tools, devtools
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-11-30 19:51:20 -05:00
Greyson LaLonde
2355ec0733 feat: create sys event types and handler
feat: add system event types and handler

chore: add tests and improve signal-related error logging
2025-11-30 17:44:40 -05:00
Greyson LaLonde
c925d2d519 chore: restructure test env, cassettes, and conftest; fix flaky tests
Some checks failed
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Consolidates pytest config, standardizes env handling, reorganizes cassette layout, removes outdated VCR configs, improves sync with threading.Condition, updates event-waiting logic, ensures cleanup, regenerates Gemini cassettes, and reverts unintended test changes.
2025-11-29 16:55:24 -05:00
Lorenze Jay
bc4e6a3127 feat: bump versions to 1.6.1 (#3993)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: bump versions to 1.6.1

* chore: update crewAI dependency version to 1.6.1 in project templates
2025-11-28 17:57:15 -08:00
Vidit Ostwal
37526c693b Fixing ChatCompletionsClinet call (#3910)
* Fixing ChatCompletionsClinet call

* Moving from json-object -> JsonSchemaFormat

* Regex handling

* Adding additionalProperties explicitly

* fix: ensure additionalProperties is recursive

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-11-28 17:33:53 -08:00
Greyson LaLonde
c59173a762 fix: ensure async methods are executable for annotations 2025-11-28 19:54:40 -05:00
Lorenze Jay
4d8eec96e8 refactor: enhance model validation and provider inference in LLM class (#3976)
* refactor: enhance model validation and provider inference in LLM class

- Updated the model validation logic to support pattern matching for new models and "latest" versions, improving flexibility for various providers.
- Refactored the `_validate_model_in_constants` method to first check hardcoded constants and then fall back to pattern matching.
- Introduced `_matches_provider_pattern` to streamline provider-specific model checks.
- Enhanced the `_infer_provider_from_model` method to utilize pattern matching for better provider inference.

This refactor aims to improve the extensibility of the LLM class, allowing it to accommodate new models without requiring constant updates to the hardcoded lists.

* feat: add new Anthropic model versions to constants

- Introduced "claude-opus-4-5-20251101" and "claude-opus-4-5" to the AnthropicModels and ANTHROPIC_MODELS lists for enhanced model support.
- Added "anthropic.claude-opus-4-5-20251101-v1:0" to BedrockModels and BEDROCK_MODELS to ensure compatibility with the latest model offerings.
- Updated test cases to ensure proper environment variable handling for model validation, improving robustness in testing scenarios.

* dont infer this way - dropped
2025-11-28 13:54:40 -08:00
Greyson LaLonde
2025a26fc3 fix: ensure parameters in RagTool.add, add typing, tests (#3979)
Some checks failed
Mark stale issues and pull requests / stale (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
* fix: ensure parameters in RagTool.add, add typing, tests

* feat: substitute pymupdf for pypdf, better parsing performance

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-11-26 22:32:43 -08:00
Greyson LaLonde
bed9a3847a fix: remove invalid param from sse client (#3980) 2025-11-26 21:37:55 -08:00
Heitor Carvalho
5239dc9859 fix: erase 'oauth2_extra' setting on 'crewai config reset' command
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
2025-11-26 18:43:44 -05:00
Lorenze Jay
52444ad390 feat: bump versions to 1.6.0 (#3974)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
* feat: bump versions to 1.6.0

* bump project templates
2025-11-24 17:56:30 -08:00
Greyson LaLonde
f070595e65 fix: ensure custom rag store persist path is set if passed
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-11-24 20:03:57 -05:00
Lorenze Jay
69c5eace2d Update references from AMP to AOP in documentation (#3972)
- Changed "AMP" to "AOP" in multiple locations across JSON and MDX files to reflect the correct terminology for the Agent Operations Platform.
- Updated the introduction sections in English, Korean, and Portuguese to ensure consistency in the platform's naming.
2025-11-24 16:43:30 -08:00
Vidit Ostwal
d88ac338d5 Adding drop parameters in ChatCompletionsClient
* Adding drop parameters

* Adding test case

* Just some spacing addition

* Adding drop params to maintain consistency

* Changing variable name

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-11-24 19:16:36 -05:00
Lorenze Jay
4ae8c36815 feat: enhance flow event state management (#3952)
* feat: enhance flow event state management

- Added `state` attribute to `FlowFinishedEvent` to capture the flow's state as a JSON-serialized dictionary.
- Updated flow event emissions to include the serialized state, improving traceability and debugging capabilities during flow execution.

* fix: improve state serialization in Flow class

- Enhanced the `_copy_and_serialize_state` method to handle exceptions during JSON serialization of Pydantic models, ensuring robustness in state management.
- Updated test assertions to access the state as a dictionary, aligning with the new state structure.

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-11-24 15:55:49 -08:00
Greyson LaLonde
b049b73f2e fix: ensure fuzzy returns are more strict, show type warning 2025-11-24 17:35:12 -05:00
Greyson LaLonde
d2b9c54931 fix: re-add openai response_format param, add test 2025-11-24 17:13:20 -05:00
Greyson LaLonde
a928cde6ee fix: rag tool embeddings config
* fix: ensure config is not flattened, add tests

* chore: refactor inits to model_validator

* chore: refactor rag tool config parsing

* chore: add initial docs

* chore: add additional validation aliases for provider env vars

* chore: add solid docs

* chore: move imports to top

* fix: revert circular import

* fix: lazy import qdrant-client

* fix: allow collection name config

* chore: narrow model names for google

* chore: update additional docs

* chore: add backward compat on model name aliases

* chore: add tests for config changes
2025-11-24 16:51:28 -05:00
João Moura
9c84475691 Update AMP to AOP (#3941)
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-11-24 13:15:24 -08:00
Greyson LaLonde
f3c5d1e351 feat: add streaming result support to flows and crews
* feat: add streaming result support to flows and crews
* docs: add streaming execution documentation and integration tests
2025-11-24 15:43:48 -05:00
Mark McDonald
a978267fa2 feat: Add gemini-3-pro-preview (#3950)
* Add gemini-3-pro-preview

Also refactors the tool support check for better forward compatibility.

* Add cassette for Gemini 3 Pro

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-11-24 14:49:29 -05:00
Heitor Carvalho
b759654e7d feat: support CLI login with Entra ID (#3943) 2025-11-24 15:35:59 -03:00
Greyson LaLonde
9da1f0c0aa fix: ensure flow execution start panel is not shown on plot 2025-11-24 12:50:18 -05:00
Greyson LaLonde
a559cedbd1 chore: ensure proper cassettes for agent tests
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
* chore: ensure proper cassettes for agent tests
* chore: tweak eval test to avoid race condition
2025-11-24 12:29:11 -05:00
Gil Feig
bcc3e358cb feat: Add Merge Agent Handler tool (#3911)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: Add Merge Agent Handler tool

* Fix linting issues

* Empty
2025-11-20 16:58:41 -08:00
Greyson LaLonde
d160f0874a chore: don't fail on cleanup error
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
2025-11-19 01:28:25 -05:00
Lorenze Jay
9fcf55198f feat: bump versions to 1.5.0 (#3924)
Some checks failed
Update Test Durations / update-durations (3.13) (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: bump versions to 1.5.0

* chore: update crewAI tools dependency to version 1.5.0 in project templates
2025-11-15 18:00:11 -08:00
Lorenze Jay
f46a846ddc chore: remove unused hooks test file (#3923)
- Deleted the `__init__.py` file from the tests/hooks directory as it contained no tests or functionality. This cleanup helps maintain a tidy test structure.
2025-11-15 17:51:42 -08:00
Greyson LaLonde
b546982690 fix: ensure instrumentation flags 2025-11-15 20:48:40 -05:00
Greyson LaLonde
d7bdac12a2 feat: a2a trust remote completion status flag
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Update Test Durations / update-durations (3.13) (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
- add trust_remote_completion_status flag to A2AConfig, Adds configuration flag to control whether to trust A2A agent completion status. Resolves #3899
- update docs
2025-11-13 13:43:09 -05:00
Lorenze Jay
528d812263 Lorenze/feat hooks (#3902)
* feat: implement LLM call hooks and enhance agent execution context

- Introduced LLM call hooks to allow modification of messages and responses during LLM interactions.
- Added support for before and after hooks in the CrewAgentExecutor, enabling dynamic adjustments to the execution flow.
- Created LLMCallHookContext for comprehensive access to the executor state, facilitating in-place modifications.
- Added validation for hook callables to ensure proper functionality.
- Enhanced tests for LLM hooks and tool hooks to verify their behavior and error handling capabilities.
- Updated LiteAgent and CrewAgentExecutor to accommodate the new crew context in their execution processes.

* feat: implement LLM call hooks and enhance agent execution context

- Introduced LLM call hooks to allow modification of messages and responses during LLM interactions.
- Added support for before and after hooks in the CrewAgentExecutor, enabling dynamic adjustments to the execution flow.
- Created LLMCallHookContext for comprehensive access to the executor state, facilitating in-place modifications.
- Added validation for hook callables to ensure proper functionality.
- Enhanced tests for LLM hooks and tool hooks to verify their behavior and error handling capabilities.
- Updated LiteAgent and CrewAgentExecutor to accommodate the new crew context in their execution processes.

* fix verbose

* feat: introduce crew-scoped hook decorators and refactor hook registration

- Added decorators for before and after LLM and tool calls to enhance flexibility in modifying execution behavior.
- Implemented a centralized hook registration mechanism within CrewBase to automatically register crew-scoped hooks.
- Removed the obsolete base.py file as its functionality has been integrated into the new decorators and registration system.
- Enhanced tests for the new hook decorators to ensure proper registration and execution flow.
- Updated existing hook handling to accommodate the new decorator-based approach, improving code organization and maintainability.

* feat: enhance hook management with clear and unregister functions

- Introduced functions to unregister specific before and after hooks for both LLM and tool calls, improving flexibility in hook management.
- Added clear functions to remove all registered hooks of each type, facilitating easier state management and cleanup.
- Implemented a convenience function to clear all global hooks in one call, streamlining the process for testing and execution context resets.
- Enhanced tests to verify the functionality of unregistering and clearing hooks, ensuring robust behavior in various scenarios.

* refactor: enhance hook type management for LLM and tool hooks

- Updated hook type definitions to use generic protocols for better type safety and flexibility.
- Replaced Callable type annotations with specific BeforeLLMCallHookType and AfterLLMCallHookType for clarity.
- Improved the registration and retrieval functions for before and after hooks to align with the new type definitions.
- Enhanced the setup functions to handle hook execution results, allowing for blocking of LLM calls based on hook logic.
- Updated related tests to ensure proper functionality and type adherence across the hook management system.

* feat: add execution and tool hooks documentation

- Introduced new documentation for execution hooks, LLM call hooks, and tool call hooks to provide comprehensive guidance on their usage and implementation in CrewAI.
- Updated existing documentation to include references to the new hooks, enhancing the learning resources available for users.
- Ensured consistency across multiple languages (English, Portuguese, Korean) for the new documentation, improving accessibility for a wider audience.
- Added examples and troubleshooting sections to assist users in effectively utilizing hooks for agent operations.

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-11-13 10:11:50 -08:00
Greyson LaLonde
ffd717c51a fix: custom tool docs links, add mintlify broken links action (#3903)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
* fix: update docs links to point to correct endpoints

* fix: update all broken doc links
2025-11-12 22:55:10 -08:00
Heitor Carvalho
fbe4aa4bd1 feat: fetch and store more data about okta authorization server (#3894)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-11-12 15:28:00 -03:00
Lorenze Jay
c205d2e8de feat: implement before and after LLM call hooks in CrewAgentExecutor (#3893)
- Added support for before and after LLM call hooks to allow modification of messages and responses during LLM interactions.
- Introduced LLMCallHookContext to provide hooks with access to the executor state, enabling in-place modifications of messages.
- Updated get_llm_response function to utilize the new hooks, ensuring that modifications persist across iterations.
- Enhanced tests to verify the functionality of the hooks and their error handling capabilities, ensuring robust execution flow.
2025-11-12 08:38:13 -08:00
Daniel Barreto
fcb5b19b2e Enhance schema description of QdrantVectorSearchTool (#3891)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-11-11 14:33:33 -08:00
Rip&Tear
01f0111d52 dependabot.yml creation (#3868)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* dependabot.yml creation

* Configure dependabot for pip package updates

Co-authored-by: matt <matt@crewai.com>

* Fix Dependabot package ecosystem

* Refactor: Use uv package-ecosystem in dependabot

Co-authored-by: matt <matt@crewai.com>

* fix: ensure dependabot uses uv ecosystem

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
Co-authored-by: Cursor Agent <cursoragent@cursor.com>
Co-authored-by: matt <matt@crewai.com>
2025-11-11 12:14:16 +08:00
Lorenze Jay
6b52587c67 feat: expose messages to TaskOutput and LiteAgentOutputs (#3880)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
* feat: add messages to task and agent outputs

- Introduced a new  field in  and  to capture messages from the last task execution.
- Updated the  class to store the last messages and provide a property for easy access.
- Enhanced the  and  classes to include messages in their outputs.
- Added tests to ensure that messages are correctly included in task outputs and agent outputs during execution.

* using typing_extensions for 3.10 compatability

* feat: add last_messages attribute to agent for improved task tracking

- Introduced a new `last_messages` attribute in the agent class to store messages from the last task execution.
- Updated the `Crew` class to handle the new messages attribute in task outputs.
- Enhanced existing tests to ensure that the `last_messages` attribute is correctly initialized and utilized across various guardrail scenarios.

* fix: add messages field to TaskOutput in tests for consistency

- Updated multiple test cases to include the new `messages` field in the `TaskOutput` instances.
- Ensured that all relevant tests reflect the latest changes in the TaskOutput structure, maintaining consistency across the test suite.
- This change aligns with the recent addition of the `last_messages` attribute in the agent class for improved task tracking.

* feat: preserve messages in task outputs during replay

- Added functionality to the Crew class to store and retrieve messages in task outputs.
- Enhanced the replay mechanism to ensure that messages from stored task outputs are preserved and accessible.
- Introduced a new test case to verify that messages are correctly stored and replayed, ensuring consistency in task execution and output handling.
- This change improves the overall tracking and context retention of task interactions within the CrewAI framework.

* fix original test, prev was debugging
2025-11-10 17:38:30 -08:00
Lorenze Jay
629f7f34ce docs: enhance task guardrail documentation with LLM-based validation support (#3879)
- Added section on LLM-based guardrails, explaining their usage and requirements.
- Updated examples to demonstrate the implementation of multiple guardrails, including both function-based and LLM-based approaches.
- Clarified the distinction between single and multiple guardrails in task configurations.
- Improved explanations of guardrail functionality to ensure better understanding of validation processes.
2025-11-10 15:35:42 -08:00
Lorenze Jay
0f1c173d02 feat: bump versions to 1.4.1 (#3862)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
* feat: bump versions to 1.4.1

* chore: update crewAI tools dependency to version 1.4.1 in project templates
2025-11-07 11:19:07 -08:00
Greyson LaLonde
19c5b9a35e fix: properly handle agent max iterations
fixes #3847
2025-11-07 13:54:11 -05:00
Greyson LaLonde
1ed307b58c fix: route llm model syntax to litellm
* fix: route llm model syntax to litellm

* wip: add list of supported models
2025-11-07 13:34:15 -05:00
Lorenze Jay
d29867bbb6 chore: update version numbers to 1.4.0
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-11-06 23:04:44 -05:00
Lorenze Jay
b2c278ed22 refactor: improve MCP tool execution handling with concurrent futures (#3854)
- Enhanced the MCP tool execution in both synchronous and asynchronous contexts by utilizing  for better event loop management.
- Updated error handling to provide clearer messages for connection issues and task cancellations.
- Added tests to validate MCP tool execution in both sync and async scenarios, ensuring robust functionality across different contexts.
2025-11-06 19:28:08 -08:00
Greyson LaLonde
f6aed9798b feat: allow non-ast plot routes 2025-11-06 21:17:29 -05:00
Greyson LaLonde
40a2d387a1 fix: keep stopwords updated 2025-11-06 21:10:25 -05:00
Lorenze Jay
6f36d7003b Lorenze/feat mcp first class support (#3850)
* WIP transport support mcp

* refactor: streamline MCP tool loading and error handling

* linted

* Self type from typing with typing_extensions in MCP transport modules

* added tests for mcp setup

* added tests for mcp setup

* docs: enhance MCP overview with detailed integration examples and structured configurations

* feat: implement MCP event handling and logging in event listener and client

- Added MCP event types and handlers for connection and tool execution events.
- Enhanced MCPClient to emit events on connection status and tool execution.
- Updated ConsoleFormatter to handle MCP event logging.
- Introduced new MCP event types for better integration and monitoring.
2025-11-06 17:45:16 -08:00
Greyson LaLonde
9e5906c52f feat: add pydantic validation dunder to BaseInterceptor
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
2025-11-06 15:27:07 -05:00
Lorenze Jay
fc521839e4 Lorenze/fix duplicating doc ids for knowledge (#3840)
* fix: update document ID handling in ChromaDB utility functions to use SHA-256 hashing and include index for uniqueness

* test: add tests for hash-based ID generation in ChromaDB utility functions

* drop idx for preventing dups, upsert should handle dups

* fix: update document ID extraction logic in ChromaDB utility functions to check for doc_id at the top level of the document

* fix: enhance document ID generation in ChromaDB utility functions to deduplicate documents and ensure unique hash-based IDs without suffixes

* fix: improve error handling and document ID generation in ChromaDB utility functions to ensure robust processing and uniqueness
2025-11-06 10:59:52 -08:00
Greyson LaLonde
e4cc9a664c fix: handle unpickleable values in flow state
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-11-06 01:29:21 -05:00
Greyson LaLonde
7e6171d5bc fix: ensure lite agents course-correct on validation errors
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
* fix: ensure lite agents course-correct on validation errors

* chore: update cassettes and test expectations

* fix: ensure multiple guardrails propogate
2025-11-05 19:02:11 -05:00
Greyson LaLonde
61ad1fb112 feat: add support for llm message interceptor hooks 2025-11-05 11:38:44 -05:00
Greyson LaLonde
54710a8711 fix: hash callback args correctly to ensure caching works
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
2025-11-05 07:19:09 -05:00
Lucas Gomide
5abf976373 fix: allow adding RAG source content from valid URLs (#3831)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-11-04 07:58:40 -05:00
Greyson LaLonde
329567153b fix: make plot node selection smoother
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-11-03 07:49:31 -05:00
Greyson LaLonde
60332e0b19 feat: cache i18n prompts for efficient use 2025-11-03 07:39:05 -05:00
Lorenze Jay
40932af3fa feat: bump versions to 1.3.0 (#3820)
Some checks failed
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: bump versions to 1.3.0

* chore: update crew and flow templates to use crewai[tools] version 1.3.0
2025-10-31 18:54:02 -07:00
Greyson LaLonde
e134e5305b Gl/feat/a2a refactor (#3793)
* feat: agent metaclass, refactor a2a to wrappers

* feat: a2a schemas and utils

* chore: move agent class, update imports

* refactor: organize imports to avoid circularity, add a2a to console

* feat: pass response_model through call chain

* feat: add standard openapi spec serialization to tools and structured output

* feat: a2a events

* chore: add a2a to pyproject

* docs: minimal base for learn docs

* fix: adjust a2a conversation flow, allow llm to decide exit until max_retries

* fix: inject agent skills into initial prompt

* fix: format agent card as json in prompt

* refactor: simplify A2A agent prompt formatting and improve skill display

* chore: wide cleanup

* chore: cleanup logic, add auth cache, use json for messages in prompt

* chore: update docs

* fix: doc snippets formatting

* feat: optimize A2A agent card fetching and improve error reporting

* chore: move imports to top of file

* chore: refactor hasattr check

* chore: add httpx-auth, update lockfile

* feat: create base public api

* chore: cleanup modules, add docstrings, types

* fix: exclude extra fields in prompt

* chore: update docs

* tests: update to correct import

* chore: lint for ruff, add missing import

* fix: tweak openai streaming logic for response model

* tests: add reimport for test

* tests: add reimport for test

* fix: don't set a2a attr if not set

* fix: don't set a2a attr if not set

* chore: update cassettes

* tests: fix tests

* fix: use instructor and dont pass response_format for litellm

* chore: consolidate event listeners, add typing

* fix: address race condition in test, update cassettes

* tests: add correct mocks, rerun cassette for json

* tests: update cassette

* chore: regenerate cassette after new run

* fix: make token manager access-safe

* fix: make token manager access-safe

* merge

* chore: update test and cassete for output pydantic

* fix: tweak to disallow deadlock

* chore: linter

* fix: adjust event ordering for threading

* fix: use conditional for batch check

* tests: tweak for emission

* tests: simplify api + event check

* fix: ensure non-function calling llms see json formatted string

* tests: tweak message comparison

* fix: use internal instructor for litellm structure responses

---------

Co-authored-by: Mike Plachta <mike@crewai.com>
2025-10-31 18:42:03 -07:00
Greyson LaLonde
e229ef4e19 refactor: improve flow handling, typing, and logging; update UI and tests
fix: refine nested flow conditionals and ensure router methods and routes are fully parsed
fix: improve docstrings, typing, and logging coverage across all events
feat: update flow.plot feature with new UI enhancements
chore: apply Ruff linting, reorganize imports, and remove deprecated utilities/files
chore: split constants and utils, clean JS comments, and add typing for linters
tests: strengthen test coverage for flow execution paths and router logic
2025-10-31 21:15:06 -04:00
Greyson LaLonde
2e9eb8c32d fix: refactor use_stop_words to property, add check for stop words
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
2025-10-29 19:14:01 +01:00
Lucas Gomide
4ebb5114ed Fix Firecrawl tools & adding tests (#3810)
* fix: fix Firecrawl Scrape tool

* fix: fix Firecrawl Search tool

* fix: fix Firecrawl Website tool

* tests: adding tests for Firecrawl
2025-10-29 13:37:57 -04:00
Daniel Barreto
70b083945f Enhance QdrantVectorSearchTool (#3806)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-10-28 13:42:40 -04:00
Tony Kipkemboi
410db1ff39 docs: migrate embedder→embedding_model and require vectordb across tool docs; add provider examples (en/ko/pt-BR) (#3804)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* docs(tools): migrate embedder->embedding_model, require vectordb; add Chroma/Qdrant examples across en/ko/pt-BR PDF/TXT/XML/MDX/DOCX/CSV/Directory docs

* docs(observability): apply latest Datadog tweaks in ko and pt-BR
2025-10-27 13:29:21 -04:00
Lorenze Jay
5d6b4c922b feat: bump versions to 1.2.1 (#3800)
* feat: bump versions to 1.2.1

* updated templates too
2025-10-27 09:12:04 -07:00
Lucas Gomide
b07c0fc45c docs: describe mandatory env-var to call Platform tools for each integration (#3803) 2025-10-27 10:01:41 -04:00
Sam Brenner
97853199c7 Add Datadog Integration Documentation (#3642)
* add datadog llm observability integration guide

* spacing fix

* wording changes

* alphabetize docs listing

* Update docs/en/observability/datadog.mdx

Co-authored-by: Barry Eom <31739208+barieom@users.noreply.github.com>

* add translations

* fix korean code block

---------

Co-authored-by: Barry Eom <31739208+barieom@users.noreply.github.com>
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-10-27 09:48:38 -04:00
Lorenze Jay
494ed7e671 liteagent supports apps and mcps (#3794)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
* liteagent supports apps and mcps

* generated cassettes for these
2025-10-24 18:42:08 -07:00
Lorenze Jay
a83c57a2f2 feat: bump versions to 1.2.0 (#3787)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* feat: bump versions to 1.2.0

* also include projects
2025-10-23 18:04:34 -07:00
Lorenze Jay
08e15ab267 fix: update default LLM model and improve error logging in LLM utilities (#3785)
* fix: update default LLM model and improve error logging in LLM utilities

* Updated the default LLM model from "gpt-4o-mini" to "gpt-4.1-mini" for better performance.
* Enhanced error logging in the LLM utilities to use logger.error instead of logger.debug, ensuring that errors are properly reported and raised.
* Added tests to verify behavior when OpenAI API key is missing and when Anthropic dependency is not available, improving robustness and error handling in LLM creation.

* fix: update test for default LLM model usage

* Refactored the test_create_llm_with_none_uses_default_model to use the imported DEFAULT_LLM_MODEL constant instead of a hardcoded string.
* Ensured that the test correctly asserts the model used is the current default, improving maintainability and consistency across tests.

* change default model to gpt-4.1-mini

* change default model use defualt
2025-10-23 17:54:11 -07:00
Greyson LaLonde
9728388ea7 fix: change flow viz del dir; method inspection
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
* chore: update flow viz deletion dir, add typing
* tests: add flow viz tests to ensure lib dir is not deleted
2025-10-22 19:32:38 -04:00
Greyson LaLonde
4371cf5690 chore: remove aisuite
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Little usage + blocking some features
2025-10-21 23:18:06 -04:00
Lorenze Jay
d28daa26cd feat: bump versions to 1.1.0 (#3770)
Some checks failed
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
* feat: bump versions to 1.1.0

* chore: bump template versions

---------

Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>
2025-10-21 15:52:44 -07:00
Lorenze Jay
a850813f2b feat: enhance InternalInstructor to support multiple LLM providers (#3767)
* feat: enhance InternalInstructor to support multiple LLM providers

- Updated InternalInstructor to conditionally create an instructor client based on the LLM provider.
- Introduced a new method _create_instructor_client to handle client creation using the modern from_provider pattern.
- Added functionality to extract the provider from the LLM model name.
- Implemented tests for InternalInstructor with various LLM providers including OpenAI, Anthropic, Gemini, and Azure, ensuring robust integration and error handling.

This update improves flexibility and extensibility for different LLM integrations.

* fix test
2025-10-21 15:24:59 -07:00
Cameron Warren
5944a39629 fix: correct broken integration documentation links
Fix navigation paths for two integration tool cards that were redirecting to the
introduction page instead of their intended documentation pages.

Fixes #3516

Co-authored-by: Cwarre33 <cwarre33@charlotte.edu>
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-10-21 18:12:08 -04:00
Greyson LaLonde
c594859ed0 feat: mypy plugin base
* feat: base mypy plugin with CrewBase

* fix: add crew method to protocol
2025-10-21 17:36:08 -04:00
Daniel Barreto
2ee27efca7 feat: improvements on QdrantVectorSearchTool
* Implement improvements on QdrantVectorSearchTool

- Allow search filters to be set at the constructor level
- Fix issue that prevented multiple records from being returned

* Implement improvements on QdrantVectorSearchTool

- Allow search filters to be set at the constructor level
- Fix issue that prevented multiple records from being returned

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-10-21 16:50:08 -04:00
Greyson LaLonde
f6e13eb890 chore: update codeql config paths to new folders
* chore: update codeql config paths to new folders

* tests: use threading.Condition for event check

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-10-21 14:43:25 -04:00
Lorenze Jay
e7b3ce27ca docs: update LLM integration details and examples
* docs: update LLM integration details and examples

- Changed references from LiteLLM to native SDKs for LLM providers.
- Enhanced OpenAI and AWS Bedrock sections with new usage examples and advanced configuration options.
- Added structured output examples and supported environment variables for better clarity.
- Improved documentation on additional parameters and features for LLM configurations.

* drop this example - should use strucutred output from task instead

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-10-21 14:39:50 -04:00
Greyson LaLonde
dba27cf8b5 fix: fix double trace call; add types
* fix: fix double trace call; add types

* tests: skip long running uv install test, refactor in future

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-10-21 14:15:39 -04:00
Greyson LaLonde
6469f224f6 chore: improve CrewBase typing 2025-10-21 13:58:35 -04:00
Greyson LaLonde
f3a63be215 tests: cassettes, threading for flow tests 2025-10-21 13:48:21 -04:00
Greyson LaLonde
01d8c189f0 fix: pin template versions to latest
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
2025-10-21 10:56:41 -04:00
Lorenze Jay
cc83c1ead5 feat: bump versions to 1.0.0
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Update Test Durations / update-durations (3.13) (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-10-20 17:34:38 -04:00
Greyson LaLonde
7578901f6d chore: use main for devtools branch 2025-10-20 17:29:09 -04:00
Lorenze Jay
d1343b96ed Release/v1.0.0 (#3618)
* feat: add `apps` & `actions` attributes to Agent (#3504)

* feat: add app attributes to Agent

* feat: add actions attribute to Agent

* chore: resolve linter issues

* refactor: merge the apps and actions parameters into a single one

* fix: remove unnecessary print

* feat: logging error when CrewaiPlatformTools fails

* chore: export CrewaiPlatformTools directly from crewai_tools

* style: resolver linter issues

* test: fix broken tests

* style: solve linter issues

* fix: fix broken test

* feat: monorepo restructure and test/ci updates

- Add crewai workspace member
- Fix vcr cassette paths and restore test dirs
- Resolve ci failures and update linter/pytest rules

* chore: update python version to 3.13 and package metadata

* feat: add crewai-tools workspace and fix tests/dependencies

* feat: add crewai-tools workspace structure

* Squashed 'temp-crewai-tools/' content from commit 9bae5633

git-subtree-dir: temp-crewai-tools
git-subtree-split: 9bae56339096cb70f03873e600192bd2cd207ac9

* feat: configure crewai-tools workspace package with dependencies

* fix: apply ruff auto-formatting to crewai-tools code

* chore: update lockfile

* fix: don't allow tool tests yet

* fix: comment out extra pytest flags for now

* fix: remove conflicting conftest.py from crewai-tools tests

* fix: resolve dependency conflicts and test issues

- Pin vcrpy to 7.0.0 to fix pytest-recording compatibility
- Comment out types-requests to resolve urllib3 conflict
- Update requests requirement in crewai-tools to >=2.32.0

* chore: update CI workflows and docs for monorepo structure

* chore: update CI workflows and docs for monorepo structure

* fix: actions syntax

* chore: ci publish and pin versions

* fix: add permission to action

* chore: bump version to 1.0.0a1 across all packages

- Updated version to 1.0.0a1 in pyproject.toml for crewai and crewai-tools
- Adjusted version in __init__.py files for consistency

* WIP: v1 docs (#3626)

(cherry picked from commit d46e20fa09bcd2f5916282f5553ddeb7183bd92c)

* docs: parity for all translations

* docs: full name of acronym AMP

* docs: fix lingering unused code

* docs: expand contextual options in docs.json

* docs: add contextual action to request feature on GitHub (#3635)

* chore: apply linting fixes to crewai-tools

* feat: add required env var validation for brightdata

Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>

* fix: handle properly anyOf oneOf allOf schema's props

Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>

* feat: bump version to 1.0.0a2

* Lorenze/native inference sdks (#3619)

* ruff linted

* using native sdks with litellm fallback

* drop exa

* drop print on completion

* Refactor LLM and utility functions for type consistency

- Updated `max_tokens` parameter in `LLM` class to accept `float` in addition to `int`.
- Modified `create_llm` function to ensure consistent type hints and return types, now returning `LLM | BaseLLM | None`.
- Adjusted type hints for various parameters in `create_llm` and `_llm_via_environment_or_fallback` functions for improved clarity and type safety.
- Enhanced test cases to reflect changes in type handling and ensure proper instantiation of LLM instances.

* fix agent_tests

* fix litellm tests and usagemetrics fix

* drop print

* Refactor LLM event handling and improve test coverage

- Removed commented-out event emission for LLM call failures in `llm.py`.
- Added `from_agent` parameter to `CrewAgentExecutor` for better context in LLM responses.
- Enhanced test for LLM call failure to simulate OpenAI API failure and updated assertions for clarity.
- Updated agent and task ID assertions in tests to ensure they are consistently treated as strings.

* fix test_converter

* fixed tests/agents/test_agent.py

* Refactor LLM context length exception handling and improve provider integration

- Renamed `LLMContextLengthExceededException` to `LLMContextLengthExceededExceptionError` for clarity and consistency.
- Updated LLM class to pass the provider parameter correctly during initialization.
- Enhanced error handling in various LLM provider implementations to raise the new exception type.
- Adjusted tests to reflect the updated exception name and ensure proper error handling in context length scenarios.

* Enhance LLM context window handling across providers

- Introduced CONTEXT_WINDOW_USAGE_RATIO to adjust context window sizes dynamically for Anthropic, Azure, Gemini, and OpenAI LLMs.
- Added validation for context window sizes in Azure and Gemini providers to ensure they fall within acceptable limits.
- Updated context window size calculations to use the new ratio, improving consistency and adaptability across different models.
- Removed hardcoded context window sizes in favor of ratio-based calculations for better flexibility.

* fix test agent again

* fix test agent

* feat: add native LLM providers for Anthropic, Azure, and Gemini

- Introduced new completion implementations for Anthropic, Azure, and Gemini, integrating their respective SDKs.
- Added utility functions for tool validation and extraction to support function calling across LLM providers.
- Enhanced context window management and token usage extraction for each provider.
- Created a common utility module for shared functionality among LLM providers.

* chore: update dependencies and improve context management

- Removed direct dependency on `litellm` from the main dependencies and added it under extras for better modularity.
- Updated the `litellm` dependency specification to allow for greater flexibility in versioning.
- Refactored context length exception handling across various LLM providers to use a consistent error class.
- Enhanced platform-specific dependency markers for NVIDIA packages to ensure compatibility across different systems.

* refactor(tests): update LLM instantiation to include is_litellm flag in test cases

- Modified multiple test cases in test_llm.py to set the is_litellm parameter to True when instantiating the LLM class.
- This change ensures that the tests are aligned with the latest LLM configuration requirements and improves consistency across test scenarios.
- Adjusted relevant assertions and comments to reflect the updated LLM behavior.

* linter

* linted

* revert constants

* fix(tests): correct type hint in expected model description

- Updated the expected description in the test_generate_model_description_dict_field function to use 'Dict' instead of 'dict' for consistency with type hinting conventions.
- This change ensures that the test accurately reflects the expected output format for model descriptions.

* refactor(llm): enhance LLM instantiation and error handling

- Updated the LLM class to include validation for the model parameter, ensuring it is a non-empty string.
- Improved error handling by logging warnings when the native SDK fails, allowing for a fallback to LiteLLM.
- Adjusted the instantiation of LLM in test cases to consistently include the is_litellm flag, aligning with recent changes in LLM configuration.
- Modified relevant tests to reflect these updates, ensuring better coverage and accuracy in testing scenarios.

* fixed test

* refactor(llm): enhance token usage tracking and add copy methods

- Updated the LLM class to track token usage and log callbacks in streaming mode, improving monitoring capabilities.
- Introduced shallow and deep copy methods for the LLM instance, allowing for better management of LLM configurations and parameters.
- Adjusted test cases to instantiate LLM with the is_litellm flag, ensuring alignment with recent changes in LLM configuration.

* refactor(tests): reorganize imports and enhance error messages in test cases

- Cleaned up import statements in test_crew.py for better organization and readability.
- Enhanced error messages in test cases to use `re.escape` for improved regex matching, ensuring more robust error handling.
- Adjusted comments for clarity and consistency across test scenarios.
- Ensured that all necessary modules are imported correctly to avoid potential runtime issues.

* feat: add base devtooling

* fix: ensure dep refs are updated for devtools

* fix: allow pre-release

* feat: allow release after tag

* feat: bump versions to 1.0.0a3 

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>

* fix: match tag and release title, ignore devtools build for pypi

* fix: allow failed pypi publish

* feat: introduce trigger listing and execution commands for local development (#3643)

* chore: exclude tests from ruff linting

* chore: exclude tests from GitHub Actions linter

* fix: replace print statements with logger in agent and memory handling

* chore: add noqa for intentional print in printer utility

* fix: resolve linting errors across codebase

* feat: update docs with new approach to consume Platform Actions (#3675)

* fix: remove duplicate line and add explicit env var

* feat: bump versions to 1.0.0a4 (#3686)

* Update triggers docs (#3678)

* docs: introduce triggers list & triggers run command

* docs: add KO triggers docs

* docs: ensure CREWAI_PLATFORM_INTEGRATION_TOKEN is mentioned on docs (#3687)

* Lorenze/bedrock llm (#3693)

* feat: add AWS Bedrock support and update dependencies

- Introduced BedrockCompletion class for AWS Bedrock integration in LLM.
- Added boto3 as a new dependency in both pyproject.toml and uv.lock.
- Updated LLM class to support Bedrock provider.
- Created new files for Bedrock provider implementation.

* using converse api

* converse

* linted

* refactor: update BedrockCompletion class to improve parameter handling

- Changed max_tokens from a fixed integer to an optional integer.
- Simplified model ID assignment by removing the inference profile mapping method.
- Cleaned up comments and unnecessary code related to tool specifications and model-specific parameters.

* feat: improve event bus thread safety and async support

Add thread-safe, async-compatible event bus with read–write locking and
handler dependency ordering. Remove blinker dependency and implement
direct dispatch. Improve type safety, error handling, and deterministic
event synchronization.

Refactor tests to auto-wait for async handlers, ensure clean teardown,
and add comprehensive concurrency coverage. Replace thread-local state
in AgentEvaluator with instance-based locking for correct cross-thread
access. Enhance tracing reliability and event finalization.

* feat: enhance OpenAICompletion class with additional client parameters (#3701)

* feat: enhance OpenAICompletion class with additional client parameters

- Added support for default_headers, default_query, and client_params in the OpenAICompletion class.
- Refactored client initialization to use a dedicated method for client parameter retrieval.
- Introduced new test cases to validate the correct usage of OpenAICompletion with various parameters.

* fix: correct test case for unsupported OpenAI model

- Updated the test_openai.py to ensure that the LLM instance is created before calling the method, maintaining proper error handling for unsupported models.
- This change ensures that the test accurately checks for the NotFoundError when an invalid model is specified.

* fix: enhance error handling in OpenAICompletion class

- Added specific exception handling for NotFoundError and APIConnectionError in the OpenAICompletion class to provide clearer error messages and improve logging.
- Updated the test case for unsupported models to ensure it raises a ValueError with the appropriate message when a non-existent model is specified.
- This change improves the robustness of the OpenAI API integration and enhances the clarity of error reporting.

* fix: improve test for unsupported OpenAI model handling

- Refactored the test case in test_openai.py to create the LLM instance after mocking the OpenAI client, ensuring proper error handling for unsupported models.
- This change enhances the clarity of the test by accurately checking for ValueError when a non-existent model is specified, aligning with recent improvements in error handling for the OpenAICompletion class.

* feat: bump versions to 1.0.0b1 (#3706)

* Lorenze/tools drop litellm (#3710)

* completely drop litellm and correctly pass config for qdrant

* feat: add support for additional embedding models in EmbeddingService

- Expanded the list of supported embedding models to include Google Vertex, Hugging Face, Jina, Ollama, OpenAI, Roboflow, Watson X, custom embeddings, Sentence Transformers, Text2Vec, OpenClip, and Instructor.
- This enhancement improves the versatility of the EmbeddingService by allowing integration with a wider range of embedding providers.

* fix: update collection parameter handling in CrewAIRagAdapter

- Changed the condition for setting vectors_config in the CrewAIRagAdapter to check for QdrantConfig instance instead of using hasattr. This improves type safety and ensures proper configuration handling for Qdrant integration.

* moved stagehand as optional dep (#3712)

* feat: bump versions to 1.0.0b2 (#3713)

* feat: enhance AnthropicCompletion class with additional client parame… (#3707)

* feat: enhance AnthropicCompletion class with additional client parameters and tool handling

- Added support for client_params in the AnthropicCompletion class to allow for additional client configuration.
- Refactored client initialization to use a dedicated method for retrieving client parameters.
- Implemented a new method to handle tool use conversation flow, ensuring proper execution and response handling.
- Introduced comprehensive test cases to validate the functionality of the AnthropicCompletion class, including tool use scenarios and parameter handling.

* drop print statements

* test: add fixture to mock ANTHROPIC_API_KEY for tests

- Introduced a pytest fixture to automatically mock the ANTHROPIC_API_KEY environment variable for all tests in the test_anthropic.py module.
- This change ensures that tests can run without requiring a real API key, improving test isolation and reliability.

* refactor: streamline streaming message handling in AnthropicCompletion class

- Removed the 'stream' parameter from the API call as it is set internally by the SDK.
- Simplified the handling of tool use events and response construction by extracting token usage from the final message.
- Enhanced the flow for managing tool use conversation, ensuring proper integration with the streaming API response.

* fix streaming here too

* fix: improve error handling in tool conversion for AnthropicCompletion class

- Enhanced exception handling during tool conversion by catching KeyError and ValueError.
- Added logging for conversion errors to aid in debugging and maintain robustness in tool integration.

* feat: enhance GeminiCompletion class with client parameter support (#3717)

* feat: enhance GeminiCompletion class with client parameter support

- Added support for client_params in the GeminiCompletion class to allow for additional client configuration.
- Refactored client initialization into a dedicated method for improved parameter handling.
- Introduced a new method to retrieve client parameters, ensuring compatibility with the base class.
- Enhanced error handling during client initialization to provide clearer messages for missing configuration.
- Updated documentation to reflect the changes in client parameter usage.

* add optional dependancies

* refactor: update test fixture to mock GOOGLE_API_KEY

- Renamed the fixture from `mock_anthropic_api_key` to `mock_google_api_key` to reflect the change in the environment variable being mocked.
- This update ensures that all tests in the module can run with a mocked GOOGLE_API_KEY, improving test isolation and reliability.

* fix tests

* feat: enhance BedrockCompletion class with advanced features

* feat: enhance BedrockCompletion class with advanced features and error handling

- Added support for guardrail configuration, additional model request fields, and custom response field paths in the BedrockCompletion class.
- Improved error handling for AWS exceptions and added token usage tracking with stop reason logging.
- Enhanced streaming response handling with comprehensive event management, including tool use and content block processing.
- Updated documentation to reflect new features and initialization parameters.
- Introduced a new test suite for BedrockCompletion to validate functionality and ensure robust integration with AWS Bedrock APIs.

* chore: add boto typing

* fix: use typing_extensions.Required for Python 3.10 compatibility

---------

Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>

* feat: azure native tests

* feat: add Azure AI Inference support and related tests

- Introduced the `azure-ai-inference` package with version `1.0.0b9` and its dependencies in `uv.lock` and `pyproject.toml`.
- Added new test files for Azure LLM functionality, including tests for Azure completion and tool handling.
- Implemented comprehensive test cases to validate Azure-specific behavior and integration with the CrewAI framework.
- Enhanced the testing framework to mock Azure credentials and ensure proper isolation during tests.

* feat: enhance AzureCompletion class with Azure OpenAI support

- Added support for the Azure OpenAI endpoint in the AzureCompletion class, allowing for flexible endpoint configurations.
- Implemented endpoint validation and correction to ensure proper URL formats for Azure OpenAI deployments.
- Enhanced error handling to provide clearer messages for common HTTP errors, including authentication and rate limit issues.
- Updated tests to validate the new endpoint handling and error messaging, ensuring robust integration with Azure AI Inference.
- Refactored parameter preparation to conditionally include the model parameter based on the endpoint type.

* refactor: convert project module to metaclass with full typing

* Lorenze/OpenAI base url backwards support (#3723)

* fix: enhance OpenAICompletion class base URL handling

- Updated the base URL assignment in the OpenAICompletion class to prioritize the new `api_base` attribute and fallback to the environment variable `OPENAI_BASE_URL` if both are not set.
- Added `api_base` to the list of parameters in the OpenAICompletion class to ensure proper configuration and flexibility in API endpoint management.

* feat: enhance OpenAICompletion class with api_base support

- Added the `api_base` parameter to the OpenAICompletion class to allow for flexible API endpoint configuration.
- Updated the `_get_client_params` method to prioritize `base_url` over `api_base`, ensuring correct URL handling.
- Introduced comprehensive tests to validate the behavior of `api_base` and `base_url` in various scenarios, including environment variable fallback.
- Enhanced test coverage for client parameter retrieval, ensuring robust integration with the OpenAI API.

* fix: improve OpenAICompletion class configuration handling

- Added a debug print statement to log the client configuration parameters during initialization for better traceability.
- Updated the base URL assignment logic to ensure it defaults to None if no valid base URL is provided, enhancing robustness in API endpoint configuration.
- Refined the retrieval of the `api_base` environment variable to streamline the configuration process.

* drop print

* feat: improvements on import native sdk support (#3725)

* feat: add support for Anthropic provider and enhance logging

- Introduced the `anthropic` package with version `0.69.0` in `pyproject.toml` and `uv.lock`, allowing for integration with the Anthropic API.
- Updated logging in the LLM class to provide clearer error messages when importing native providers, enhancing debugging capabilities.
- Improved error handling in the AnthropicCompletion class to guide users on installation via the updated error message format.
- Refactored import error handling in other provider classes to maintain consistency in error messaging and installation instructions.

* feat: enhance LLM support with Bedrock provider and update dependencies

- Added support for the `bedrock` provider in the LLM class, allowing integration with AWS Bedrock APIs.
- Updated `uv.lock` to replace `boto3` with `bedrock` in the dependencies, reflecting the new provider structure.
- Introduced `SUPPORTED_NATIVE_PROVIDERS` to include `bedrock` and ensure proper error handling when instantiating native providers.
- Enhanced error handling in the LLM class to raise informative errors when native provider instantiation fails.
- Added tests to validate the behavior of the new Bedrock provider and ensure fallback mechanisms work correctly for unsupported providers.

* test: update native provider fallback tests to expect ImportError

* adjust the test with the expected bevaior - raising ImportError

* this is exoecting the litellm format, all gemini native tests are in test_google.py

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>

* fix: remove stdout prints, improve test determinism, and update trace handling

Removed `print` statements from the `LLMStreamChunkEvent` handler to prevent
LLM response chunks from being written directly to stdout. The listener now
only tracks chunks internally.

Fixes #3715

Added explicit return statements for trace-related tests.

Updated cassette for `test_failed_evaluation` to reflect new behavior where
an empty trace dict is used instead of returning early.

Ensured deterministic cleanup order in test fixtures by making
`clear_event_bus_handlers` depend on `setup_test_environment`. This guarantees
event bus shutdown and file handle cleanup occur before temporary directory
deletion, resolving intermittent “Directory not empty” errors in CI.

* chore: remove lib/crewai exclusion from pre-commit hooks

* feat: enhance task guardrail functionality and validation

* feat: enhance task guardrail functionality and validation

- Introduced support for multiple guardrails in the Task class, allowing for sequential processing of guardrails.
- Added a new `guardrails` field to the Task model to accept a list of callable guardrails or string descriptions.
- Implemented validation to ensure guardrails are processed correctly, including handling of retries and error messages.
- Enhanced the `_invoke_guardrail_function` method to manage guardrail execution and integrate with existing task output processing.
- Updated tests to cover various scenarios involving multiple guardrails, including success, failure, and retry mechanisms.

This update improves the flexibility and robustness of task execution by allowing for more complex validation scenarios.

* refactor: enhance guardrail type handling in Task model

- Updated the Task class to improve guardrail type definitions, introducing GuardrailType and GuardrailsType for better clarity and type safety.
- Simplified the validation logic for guardrails, ensuring that both single and multiple guardrails are processed correctly.
- Enhanced error messages for guardrail validation to provide clearer feedback when incorrect types are provided.
- This refactor improves the maintainability and robustness of task execution by standardizing guardrail handling.

* feat: implement per-guardrail retry tracking in Task model

- Introduced a new private attribute `_guardrail_retry_counts` to the Task class for tracking retry attempts on a per-guardrail basis.
- Updated the guardrail processing logic to utilize the new retry tracking, allowing for independent retry counts for each guardrail.
- Enhanced error handling to provide clearer feedback when guardrails fail validation after exceeding retry limits.
- Modified existing tests to validate the new retry tracking behavior, ensuring accurate assertions on guardrail retries.

This update improves the robustness and flexibility of task execution by allowing for more granular control over guardrail validation and retry mechanisms.

* chore: 1.0.0b3 bump (#3734)

* chore: full ruff and mypy

improved linting, pre-commit setup, and internal architecture. Configured Ruff to respect .gitignore, added stricter rules, and introduced a lock pre-commit hook with virtualenv activation. Fixed type shadowing in EXASearchTool using a type_ alias to avoid PEP 563 conflicts and resolved circular imports in agent executor and guardrail modules. Removed agent-ops attributes, deprecated watson alias, and dropped crewai-enterprise tools with corresponding test updates. Refactored cache and memoization for thread safety and cleaned up structured output adapters and related logic.

* New MCL DSL (#3738)

* Adding MCP implementation

* New tests for MCP implementation

* fix tests

* update docs

* Revert "New tests for MCP implementation"

This reverts commit 0bbe6dee90.

* linter

* linter

* fix

* verify mcp pacakge exists

* adjust docs to be clear only remote servers are supported

* reverted

* ensure args schema generated properly

* properly close out

---------

Co-authored-by: lorenzejay <lorenzejaytech@gmail.com>
Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>

* feat: a2a experimental

experimental a2a support

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
Co-authored-by: Mike Plachta <mplachta@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-10-20 14:10:19 -07:00
Greyson LaLonde
42f2b4d551 fix: preserve nested condition structure in Flow decorators
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Update Test Durations / update-durations (3.13) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Fixes nested boolean conditions being flattened in @listen, @start, and @router decorators. The or_() and and_() combinators now preserve their nested structure using a "conditions" key instead of flattening to a list. Added recursive evaluation logic to properly handle complex patterns like or_(and_(A, B), and_(C, D)).
2025-10-17 17:06:19 -04:00
Greyson LaLonde
0229390ad1 fix: add standard print parameters to Printer.print method
- Adds sep, end, file, and flush parameters to match Python's built-in print function signature.
2025-10-17 15:27:22 -04:00
Vidit Ostwal
f0fb349ddf Fixing copy and adding NOT_SPECIFIED check in task.py (#3690)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Update Test Durations / update-durations (3.13) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
* Fixing copy and adding NOT_SPECIFIED check:

* Fixed mypy issues

* Added test Cases

* added linting checks

* Removed the docs bot folder

* Fixed ruff checks

* Remove secret_folder from tracking

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-10-14 09:52:39 -07:00
João Moura
bf2e2a42da fix: don't error out if there it no input() available
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
- Specific to jupyter notebooks
2025-10-13 22:36:19 -04:00
Lorenze Jay
814c962196 chore: update crewAI version to 0.203.1 in multiple templates (#3699)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Update Test Durations / update-durations (3.13) (push) Has been cancelled
- Bumped the `crewai` version in `__init__.py` to 0.203.1.
- Updated the dependency versions in the crew, flow, and tool templates' `pyproject.toml` files to reflect the new `crewai` version.
2025-10-13 11:46:22 -07:00
Heitor Carvalho
2ebb2e845f fix: add a leeway of 10s when decoding jwt (#3698) 2025-10-13 12:42:03 -03:00
Greyson LaLonde
7b550ebfe8 fix: inject tool repository credentials in crewai run command
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-10-10 15:00:04 -04:00
Greyson LaLonde
29919c2d81 fix: revert bad cron sched
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
This reverts commit b71c88814f.
2025-10-09 13:52:25 -04:00
Greyson LaLonde
b71c88814f fix: correct cron schedule to run every 5 days at specific dates 2025-10-09 13:10:45 -04:00
Rip&Tear
cb8bcfe214 docs: update security policy for vulnerability reporting
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
- Revised the security policy to clarify the reporting process for vulnerabilities.
- Added detailed sections on scope, reporting requirements, and our commitment to addressing reported issues.
- Emphasized the importance of not disclosing vulnerabilities publicly and provided guidance on how to report them securely.
- Included a new section on coordinated disclosure and safe harbor provisions for ethical reporting.

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-10-09 00:57:57 -04:00
Lorenze Jay
13a514f8be chore: update crewAI and crewAI-tools dependencies to version 0.203.0 and 0.76.0 respectively (#3674)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
- Updated the `crewai-tools` dependency in `pyproject.toml` and `uv.lock` to version 0.76.0.
- Updated the `crewai` version in `__init__.py` to 0.203.0.
- Updated the dependency versions in the crew, flow, and tool templates to reflect the new `crewai` version.
2025-10-08 14:34:51 -07:00
Lorenze Jay
316b1cea69 docs: add guide for capturing telemetry logs in CrewAI AMP (#3673)
- Introduced a new documentation page detailing how to capture telemetry logs from CrewAI AMP deployments.
- Updated the main documentation to include the new guide in the enterprise section.
- Added prerequisites and step-by-step instructions for configuring OTEL collector setup.
- Included an example image for OTEL log collection capture to Datadog.
2025-10-08 14:06:10 -07:00
Lorenze Jay
6f2e39c0dd feat: enhance knowledge and guardrail event handling in Agent class (#3672)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Update Test Durations / update-durations (3.13) (push) Has been cancelled
* feat: enhance knowledge event handling in Agent class

- Updated the Agent class to include task context in knowledge retrieval events.
- Emitted new events for knowledge retrieval and query processes, capturing task and agent details.
- Refactored knowledge event classes to inherit from a base class for better structure and maintainability.
- Added tracing for knowledge events in the TraceCollectionListener to improve observability.

This change improves the tracking and management of knowledge queries and retrievals, facilitating better debugging and performance monitoring.

* refactor: remove task_id from knowledge event emissions in Agent class

- Removed the task_id parameter from various knowledge event emissions in the Agent class to streamline event handling.
- This change simplifies the event structure and focuses on the essential context of knowledge retrieval and query processes.

This refactor enhances the clarity of knowledge events and aligns with the recent improvements in event handling.

* surface association for guardrail events

* fix: improve LLM selection logic in converter

- Updated the logic for selecting the LLM in the convert_with_instructions function to handle cases where the agent may not have a function_calling_llm attribute.
- This change ensures that the converter can still function correctly by falling back to the standard LLM if necessary, enhancing robustness and preventing potential errors.

This fix improves the reliability of the conversion process when working with different agent configurations.

* fix test

* fix: enforce valid LLM instance requirement in converter

- Updated the convert_with_instructions function to ensure that a valid LLM instance is provided by the agent.
- If neither function_calling_llm nor the standard llm is available, a ValueError is raised, enhancing error handling and robustness.
- Improved error messaging for conversion failures to provide clearer feedback on issues encountered during the conversion process.

This change strengthens the reliability of the conversion process by ensuring that agents are properly configured with a valid LLM.
2025-10-08 11:53:13 -07:00
Lucas Gomide
8d93361cb3 docs: add missing /resume files (#3661)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-10-07 12:21:27 -04:00
Lucas Gomide
54ec245d84 docs: clarify webhook URL parameter in HITL workflows (#3660) 2025-10-07 12:06:11 -04:00
Vidit Ostwal
f589ab9b80 chore: load json tool input before console output
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-10-07 10:18:28 -04:00
Greyson LaLonde
fadb59e0f0 chore: add scheduled cache rebuild to prevent expiration
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-10-06 11:45:28 -04:00
Greyson LaLonde
1a60848425 chore: remove crewAI.excalidraw file 2025-10-06 11:03:55 -04:00
Greyson LaLonde
0135163040 chore: remove mkdocs cache directory
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Remove obsolete .cache directory from mkdocs-material social plugin as the project no longer uses mkdocs for documentation.
2025-10-05 21:41:09 -04:00
Greyson LaLonde
dac5d6d664 fix: use system PATH for Docker binary instead of hardcoded path 2025-10-05 21:36:05 -04:00
Rip&Tear
f0f94f2540 fix: add CodeQL configuration to properly exclude template directories (#3641) 2025-10-06 08:21:51 +08:00
1914 changed files with 219160 additions and 85999 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

161
.env.test Normal file
View File

@@ -0,0 +1,161 @@
# =============================================================================
# Test Environment Variables
# =============================================================================
# This file contains all environment variables needed to run tests locally
# in a way that mimics the GitHub Actions CI environment.
# =============================================================================
# -----------------------------------------------------------------------------
# LLM Provider API Keys
# -----------------------------------------------------------------------------
OPENAI_API_KEY=fake-api-key
ANTHROPIC_API_KEY=fake-anthropic-key
GEMINI_API_KEY=fake-gemini-key
AZURE_API_KEY=fake-azure-key
OPENROUTER_API_KEY=fake-openrouter-key
# -----------------------------------------------------------------------------
# AWS Credentials
# -----------------------------------------------------------------------------
AWS_ACCESS_KEY_ID=fake-aws-access-key
AWS_SECRET_ACCESS_KEY=fake-aws-secret-key
AWS_DEFAULT_REGION=us-east-1
AWS_REGION_NAME=us-east-1
# -----------------------------------------------------------------------------
# Azure OpenAI Configuration
# -----------------------------------------------------------------------------
AZURE_ENDPOINT=https://fake-azure-endpoint.openai.azure.com
AZURE_OPENAI_ENDPOINT=https://fake-azure-endpoint.openai.azure.com
AZURE_OPENAI_API_KEY=fake-azure-openai-key
AZURE_API_VERSION=2024-02-15-preview
OPENAI_API_VERSION=2024-02-15-preview
# -----------------------------------------------------------------------------
# Google Cloud Configuration
# -----------------------------------------------------------------------------
#GOOGLE_CLOUD_PROJECT=fake-gcp-project
#GOOGLE_CLOUD_LOCATION=us-central1
# -----------------------------------------------------------------------------
# OpenAI Configuration
# -----------------------------------------------------------------------------
OPENAI_BASE_URL=https://api.openai.com/v1
OPENAI_API_BASE=https://api.openai.com/v1
# -----------------------------------------------------------------------------
# Search & Scraping Tool API Keys
# -----------------------------------------------------------------------------
SERPER_API_KEY=fake-serper-key
EXA_API_KEY=fake-exa-key
BRAVE_API_KEY=fake-brave-key
FIRECRAWL_API_KEY=fake-firecrawl-key
TAVILY_API_KEY=fake-tavily-key
SERPAPI_API_KEY=fake-serpapi-key
SERPLY_API_KEY=fake-serply-key
LINKUP_API_KEY=fake-linkup-key
PARALLEL_API_KEY=fake-parallel-key
# -----------------------------------------------------------------------------
# Exa Configuration
# -----------------------------------------------------------------------------
EXA_BASE_URL=https://api.exa.ai
# -----------------------------------------------------------------------------
# Web Scraping & Automation
# -----------------------------------------------------------------------------
BRIGHT_DATA_API_KEY=fake-brightdata-key
BRIGHT_DATA_ZONE=fake-zone
BRIGHTDATA_API_URL=https://api.brightdata.com
BRIGHTDATA_DEFAULT_TIMEOUT=600
BRIGHTDATA_DEFAULT_POLLING_INTERVAL=1
OXYLABS_USERNAME=fake-oxylabs-user
OXYLABS_PASSWORD=fake-oxylabs-pass
SCRAPFLY_API_KEY=fake-scrapfly-key
SCRAPEGRAPH_API_KEY=fake-scrapegraph-key
BROWSERBASE_API_KEY=fake-browserbase-key
BROWSERBASE_PROJECT_ID=fake-browserbase-project
HYPERBROWSER_API_KEY=fake-hyperbrowser-key
MULTION_API_KEY=fake-multion-key
APIFY_API_TOKEN=fake-apify-token
# -----------------------------------------------------------------------------
# Database & Vector Store Credentials
# -----------------------------------------------------------------------------
SINGLESTOREDB_URL=mysql://fake:fake@localhost:3306/fake
SINGLESTOREDB_HOST=localhost
SINGLESTOREDB_PORT=3306
SINGLESTOREDB_USER=fake-user
SINGLESTOREDB_PASSWORD=fake-password
SINGLESTOREDB_DATABASE=fake-database
SINGLESTOREDB_CONNECT_TIMEOUT=30
SNOWFLAKE_USER=fake-snowflake-user
SNOWFLAKE_PASSWORD=fake-snowflake-password
SNOWFLAKE_ACCOUNT=fake-snowflake-account
SNOWFLAKE_WAREHOUSE=fake-snowflake-warehouse
SNOWFLAKE_DATABASE=fake-snowflake-database
SNOWFLAKE_SCHEMA=fake-snowflake-schema
WEAVIATE_URL=http://localhost:8080
WEAVIATE_API_KEY=fake-weaviate-key
EMBEDCHAIN_DB_URI=sqlite:///test.db
# Databricks Credentials
DATABRICKS_HOST=https://fake-databricks.cloud.databricks.com
DATABRICKS_TOKEN=fake-databricks-token
DATABRICKS_CONFIG_PROFILE=fake-profile
# MongoDB Credentials
MONGODB_URI=mongodb://fake:fake@localhost:27017/fake
# -----------------------------------------------------------------------------
# CrewAI Platform & Enterprise
# -----------------------------------------------------------------------------
# setting CREWAI_PLATFORM_INTEGRATION_TOKEN causes these test to fail:
#=========================== short test summary info ============================
#FAILED tests/test_context.py::TestPlatformIntegrationToken::test_platform_context_manager_basic_usage - AssertionError: assert 'fake-platform-token' is None
# + where 'fake-platform-token' = get_platform_integration_token()
#FAILED tests/test_context.py::TestPlatformIntegrationToken::test_context_var_isolation_between_tests - AssertionError: assert 'fake-platform-token' is None
# + where 'fake-platform-token' = get_platform_integration_token()
#FAILED tests/test_context.py::TestPlatformIntegrationToken::test_multiple_sequential_context_managers - AssertionError: assert 'fake-platform-token' is None
# + where 'fake-platform-token' = get_platform_integration_token()
#CREWAI_PLATFORM_INTEGRATION_TOKEN=fake-platform-token
CREWAI_PERSONAL_ACCESS_TOKEN=fake-personal-token
CREWAI_PLUS_URL=https://fake.crewai.com
# -----------------------------------------------------------------------------
# Other Service API Keys
# -----------------------------------------------------------------------------
ZAPIER_API_KEY=fake-zapier-key
PATRONUS_API_KEY=fake-patronus-key
MINDS_API_KEY=fake-minds-key
HF_TOKEN=fake-hf-token
# -----------------------------------------------------------------------------
# Feature Flags/Testing Modes
# -----------------------------------------------------------------------------
CREWAI_DISABLE_TELEMETRY=true
OTEL_SDK_DISABLED=true
CREWAI_TESTING=true
CREWAI_TRACING_ENABLED=false
# -----------------------------------------------------------------------------
# Testing/CI Configuration
# -----------------------------------------------------------------------------
# VCR recording mode: "none" (default), "new_episodes", "all", "once"
PYTEST_VCR_RECORD_MODE=none
# Set to "true" by GitHub when running in GitHub Actions
# GITHUB_ACTIONS=false
# -----------------------------------------------------------------------------
# Python Configuration
# -----------------------------------------------------------------------------
PYTHONUNBUFFERED=1

28
.github/codeql/codeql-config.yml vendored Normal file
View File

@@ -0,0 +1,28 @@
name: "CodeQL Config"
paths-ignore:
# Ignore template files - these are boilerplate code that shouldn't be analyzed
- "lib/crewai/src/crewai/cli/templates/**"
# Ignore test cassettes - these are test fixtures/recordings
- "lib/crewai/tests/cassettes/**"
- "lib/crewai-tools/tests/cassettes/**"
# Ignore cache and build artifacts
- ".cache/**"
# Ignore documentation build artifacts
- "docs/.cache/**"
# Ignore experimental code
- "lib/crewai/src/crewai/experimental/a2a/**"
paths:
# Include all Python source code from workspace packages
- "lib/crewai/src/**"
- "lib/crewai-tools/src/**"
- "lib/devtools/src/**"
# Include tests (but exclude cassettes via paths-ignore)
- "lib/crewai/tests/**"
- "lib/crewai-tools/tests/**"
- "lib/devtools/tests/**"
# Configure specific queries or packs if needed
# queries:
# - uses: security-and-quality

11
.github/dependabot.yml vendored Normal file
View File

@@ -0,0 +1,11 @@
# To get started with Dependabot version updates, you'll need to specify which
# package ecosystems to update and where the package manifests are located.
# Please see the documentation for all configuration options:
# https://docs.github.com/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file
version: 2
updates:
- package-ecosystem: uv # See documentation for possible values
directory: "/" # Location of package manifests
schedule:
interval: "weekly"

63
.github/security.md vendored
View File

@@ -1,27 +1,50 @@
## CrewAI Security Vulnerability Reporting Policy
## CrewAI Security Policy
CrewAI prioritizes the security of our software products, services, and GitHub repositories. To promptly address vulnerabilities, follow these steps for reporting security issues:
We are committed to protecting the confidentiality, integrity, and availability of the CrewAI ecosystem. This policy explains how to report potential vulnerabilities and what you can expect from us when you do.
### Reporting Process
Do **not** report vulnerabilities via public GitHub issues.
### Scope
Email all vulnerability reports directly to:
**security@crewai.com**
We welcome reports for vulnerabilities that could impact:
### Required Information
To help us quickly validate and remediate the issue, your report must include:
- CrewAI-maintained source code and repositories
- CrewAI-operated infrastructure and services
- Official CrewAI releases, packages, and distributions
- **Vulnerability Type:** Clearly state the vulnerability type (e.g., SQL injection, XSS, privilege escalation).
- **Affected Source Code:** Provide full file paths and direct URLs (branch, tag, or commit).
- **Reproduction Steps:** Include detailed, step-by-step instructions. Screenshots are recommended.
- **Special Configuration:** Document any special settings or configurations required to reproduce.
- **Proof-of-Concept (PoC):** Provide exploit or PoC code (if available).
- **Impact Assessment:** Clearly explain the severity and potential exploitation scenarios.
Issues affecting clearly unaffiliated third-party services or user-generated content are out of scope, unless you can demonstrate a direct impact on CrewAI systems or customers.
### Our Response
- We will acknowledge receipt of your report promptly via your provided email.
- Confirmed vulnerabilities will receive priority remediation based on severity.
- Patches will be released as swiftly as possible following verification.
### How to Report
### Reward Notice
Currently, we do not offer a bug bounty program. Rewards, if issued, are discretionary.
- **Please do not** disclose vulnerabilities via public GitHub issues, pull requests, or social media.
- Email detailed reports to **security@crewai.com** with the subject line `Security Report`.
- If you need to share large files or sensitive artifacts, mention it in your email and we will coordinate a secure transfer method.
### What to Include
Providing comprehensive information enables us to validate the issue quickly:
- **Vulnerability overview** — a concise description and classification (e.g., RCE, privilege escalation)
- **Affected components** — repository, branch, tag, or deployed service along with relevant file paths or endpoints
- **Reproduction steps** — detailed, step-by-step instructions; include logs, screenshots, or screen recordings when helpful
- **Proof-of-concept** — exploit details or code that demonstrates the impact (if available)
- **Impact analysis** — severity assessment, potential exploitation scenarios, and any prerequisites or special configurations
### Our Commitment
- **Acknowledgement:** We aim to acknowledge your report within two business days.
- **Communication:** We will keep you informed about triage results, remediation progress, and planned release timelines.
- **Resolution:** Confirmed vulnerabilities will be prioritized based on severity and fixed as quickly as possible.
- **Recognition:** We currently do not run a bug bounty program; any rewards or recognition are issued at CrewAI's discretion.
### Coordinated Disclosure
We ask that you allow us a reasonable window to investigate and remediate confirmed issues before any public disclosure. We will coordinate publication timelines with you whenever possible.
### Safe Harbor
We will not pursue or support legal action against individuals who, in good faith:
- Follow this policy and refrain from violating any applicable laws
- Avoid privacy violations, data destruction, or service disruption
- Limit testing to systems in scope and respect rate limits and terms of service
If you are unsure whether your testing is covered, please contact us at **security@crewai.com** before proceeding.

View File

@@ -7,6 +7,8 @@ on:
paths:
- "uv.lock"
- "pyproject.toml"
schedule:
- cron: "0 0 */5 * *" # Run every 5 days at midnight UTC to prevent cache expiration
workflow_dispatch:
permissions:

View File

@@ -15,11 +15,11 @@ on:
push:
branches: [ "main" ]
paths-ignore:
- "src/crewai/cli/templates/**"
- "lib/crewai/src/crewai/cli/templates/**"
pull_request:
branches: [ "main" ]
paths-ignore:
- "src/crewai/cli/templates/**"
- "lib/crewai/src/crewai/cli/templates/**"
jobs:
analyze:
@@ -73,6 +73,7 @@ jobs:
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
config-file: ./.github/codeql/codeql-config.yml
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.

35
.github/workflows/docs-broken-links.yml vendored Normal file
View File

@@ -0,0 +1,35 @@
name: Check Documentation Broken Links
on:
pull_request:
paths:
- "docs/**"
- "docs.json"
push:
branches:
- main
paths:
- "docs/**"
- "docs.json"
workflow_dispatch:
jobs:
check-links:
name: Check broken links
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Node
uses: actions/setup-node@v4
with:
node-version: "latest"
- name: Install Mintlify CLI
run: npm i -g mintlify
- name: Run broken link checker
run: |
# Auto-answer the prompt with yes command
yes "" | mintlify broken-links || test $? -eq 141
working-directory: ./docs

View File

@@ -52,10 +52,11 @@ jobs:
- name: Run Ruff on Changed Files
if: ${{ steps.changed-files.outputs.files != '' }}
run: |
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} uv run ruff check "{}"
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| grep -v '/tests/' \
| xargs -I{} uv run ruff check "{}"
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'

81
.github/workflows/publish.yml vendored Normal file
View File

@@ -0,0 +1,81 @@
name: Publish to PyPI
on:
release:
types: [ published ]
workflow_dispatch:
jobs:
build:
name: Build packages
runs-on: ubuntu-latest
permissions:
contents: read
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Build packages
run: |
uv build --all-packages
rm dist/.gitignore
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: dist
path: dist/
publish:
name: Publish to PyPI
needs: build
runs-on: ubuntu-latest
environment:
name: pypi
url: https://pypi.org/p/crewai
permissions:
id-token: write
contents: read
steps:
- uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: "3.12"
enable-cache: false
- name: Download artifacts
uses: actions/download-artifact@v4
with:
name: dist
path: dist
- name: Publish to PyPI
env:
UV_PUBLISH_TOKEN: ${{ secrets.PYPI_API_TOKEN }}
run: |
failed=0
for package in dist/*; do
if [[ "$package" == *"crewai_devtools"* ]]; then
echo "Skipping private package: $package"
continue
fi
echo "Publishing $package"
if ! uv publish "$package"; then
echo "Failed to publish $package"
failed=1
fi
done
if [ $failed -eq 1 ]; then
echo "Some packages failed to publish"
exit 1
fi

View File

@@ -5,10 +5,6 @@ on: [pull_request]
permissions:
contents: read
env:
OPENAI_API_KEY: fake-api-key
PYTHONUNBUFFERED: 1
jobs:
tests:
name: tests (${{ matrix.python-version }})
@@ -56,13 +52,13 @@ jobs:
- name: Run tests (group ${{ matrix.group }} of 8)
run: |
PYTHON_VERSION_SAFE=$(echo "${{ matrix.python-version }}" | tr '.' '_')
DURATION_FILE=".test_durations_py${PYTHON_VERSION_SAFE}"
DURATION_FILE="../../.test_durations_py${PYTHON_VERSION_SAFE}"
# Temporarily always skip cached durations to fix test splitting
# When durations don't match, pytest-split runs duplicate tests instead of splitting
echo "Using even test splitting (duration cache disabled until fix merged)"
DURATIONS_ARG=""
# Original logic (disabled temporarily):
# if [ ! -f "$DURATION_FILE" ]; then
# echo "No cached durations found, tests will be split evenly"
@@ -74,18 +70,25 @@ jobs:
# echo "No test changes detected, using cached test durations for optimal splitting"
# DURATIONS_ARG="--durations-path=${DURATION_FILE}"
# fi
uv run pytest \
--block-network \
--timeout=30 \
cd lib/crewai && uv run pytest \
-vv \
--splits 8 \
--group ${{ matrix.group }} \
$DURATIONS_ARG \
--durations=10 \
-n auto \
--maxfail=3
- name: Run tool tests (group ${{ matrix.group }} of 8)
run: |
cd lib/crewai-tools && uv run pytest \
-vv \
--splits 8 \
--group ${{ matrix.group }} \
--durations=10 \
--maxfail=3
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4

1
.gitignore vendored
View File

@@ -2,7 +2,6 @@
.pytest_cache
__pycache__
dist/
lib/
.env
assets/*
.idea

View File

@@ -3,17 +3,25 @@ repos:
hooks:
- id: ruff
name: ruff
entry: uv run ruff check
entry: bash -c 'source .venv/bin/activate && uv run ruff check --config pyproject.toml "$@"' --
language: system
pass_filenames: true
types: [python]
- id: ruff-format
name: ruff-format
entry: uv run ruff format
entry: bash -c 'source .venv/bin/activate && uv run ruff format --config pyproject.toml "$@"' --
language: system
pass_filenames: true
types: [python]
- id: mypy
name: mypy
entry: uv run mypy
entry: bash -c 'source .venv/bin/activate && uv run mypy --config-file pyproject.toml "$@"' --
language: system
pass_filenames: true
types: [python]
exclude: ^tests/
exclude: ^(lib/crewai/src/crewai/cli/templates/|lib/crewai/tests/|lib/crewai-tools/tests/)
- repo: https://github.com/astral-sh/uv-pre-commit
rev: 0.9.3
hooks:
- id: uv-lock

View File

@@ -62,9 +62,9 @@
With over 100,000 developers certified through our community courses at [learn.crewai.com](https://learn.crewai.com), CrewAI is rapidly becoming the
standard for enterprise-ready AI automation.
# CrewAI AMP Suite
# CrewAI AOP Suite
CrewAI AMP Suite is a comprehensive bundle tailored for organizations that require secure, scalable, and easy-to-manage agent-driven automation.
CrewAI AOP Suite is a comprehensive bundle tailored for organizations that require secure, scalable, and easy-to-manage agent-driven automation.
You can try one part of the suite the [Crew Control Plane for free](https://app.crewai.com)
@@ -76,9 +76,9 @@ You can try one part of the suite the [Crew Control Plane for free](https://app.
- **Advanced Security**: Built-in robust security and compliance measures ensuring safe deployment and management.
- **Actionable Insights**: Real-time analytics and reporting to optimize performance and decision-making.
- **24/7 Support**: Dedicated enterprise support to ensure uninterrupted operation and quick resolution of issues.
- **On-premise and Cloud Deployment Options**: Deploy CrewAI AMP on-premise or in the cloud, depending on your security and compliance requirements.
- **On-premise and Cloud Deployment Options**: Deploy CrewAI AOP on-premise or in the cloud, depending on your security and compliance requirements.
CrewAI AMP is designed for enterprises seeking a powerful, reliable solution to transform complex business processes into efficient,
CrewAI AOP is designed for enterprises seeking a powerful, reliable solution to transform complex business processes into efficient,
intelligent automations.
## Table of contents
@@ -674,9 +674,9 @@ CrewAI is released under the [MIT License](https://github.com/crewAIInc/crewAI/b
### Enterprise Features
- [What additional features does CrewAI AMP offer?](#q-what-additional-features-does-crewai-amp-offer)
- [Is CrewAI AMP available for cloud and on-premise deployments?](#q-is-crewai-amp-available-for-cloud-and-on-premise-deployments)
- [Can I try CrewAI AMP for free?](#q-can-i-try-crewai-amp-for-free)
- [What additional features does CrewAI AOP offer?](#q-what-additional-features-does-crewai-amp-offer)
- [Is CrewAI AOP available for cloud and on-premise deployments?](#q-is-crewai-amp-available-for-cloud-and-on-premise-deployments)
- [Can I try CrewAI AOP for free?](#q-can-i-try-crewai-amp-for-free)
### Q: What exactly is CrewAI?
@@ -732,17 +732,17 @@ A: Check out practical examples in the [CrewAI-examples repository](https://gith
A: Contributions are warmly welcomed! Fork the repository, create your branch, implement your changes, and submit a pull request. See the Contribution section of the README for detailed guidelines.
### Q: What additional features does CrewAI AMP offer?
### Q: What additional features does CrewAI AOP offer?
A: CrewAI AMP provides advanced features such as a unified control plane, real-time observability, secure integrations, advanced security, actionable insights, and dedicated 24/7 enterprise support.
A: CrewAI AOP provides advanced features such as a unified control plane, real-time observability, secure integrations, advanced security, actionable insights, and dedicated 24/7 enterprise support.
### Q: Is CrewAI AMP available for cloud and on-premise deployments?
### Q: Is CrewAI AOP available for cloud and on-premise deployments?
A: Yes, CrewAI AMP supports both cloud-based and on-premise deployment options, allowing enterprises to meet their specific security and compliance requirements.
A: Yes, CrewAI AOP supports both cloud-based and on-premise deployment options, allowing enterprises to meet their specific security and compliance requirements.
### Q: Can I try CrewAI AMP for free?
### Q: Can I try CrewAI AOP for free?
A: Yes, you can explore part of the CrewAI AMP Suite by accessing the [Crew Control Plane](https://app.crewai.com) for free.
A: Yes, you can explore part of the CrewAI AOP Suite by accessing the [Crew Control Plane](https://app.crewai.com) for free.
### Q: Does CrewAI support fine-tuning or training custom models?
@@ -762,7 +762,7 @@ A: CrewAI is highly scalable, supporting simple automations and large-scale ente
### Q: Does CrewAI offer debugging and monitoring tools?
A: Yes, CrewAI AMP includes advanced debugging, tracing, and real-time observability features, simplifying the management and troubleshooting of your automations.
A: Yes, CrewAI AOP includes advanced debugging, tracing, and real-time observability features, simplifying the management and troubleshooting of your automations.
### Q: What programming languages does CrewAI support?

197
conftest.py Normal file
View File

@@ -0,0 +1,197 @@
"""Pytest configuration for crewAI workspace."""
from collections.abc import Generator
import os
from pathlib import Path
import tempfile
from typing import Any
from dotenv import load_dotenv
import pytest
from vcr.request import Request # type: ignore[import-untyped]
env_test_path = Path(__file__).parent / ".env.test"
load_dotenv(env_test_path, override=True)
load_dotenv(override=True)
@pytest.fixture(autouse=True, scope="function")
def cleanup_event_handlers() -> Generator[None, Any, None]:
"""Clean up event bus handlers after each test to prevent test pollution."""
yield
try:
from crewai.events.event_bus import crewai_event_bus
with crewai_event_bus._rwlock.w_locked():
crewai_event_bus._sync_handlers.clear()
crewai_event_bus._async_handlers.clear()
except Exception: # noqa: S110
pass
@pytest.fixture(autouse=True, scope="function")
def setup_test_environment() -> Generator[None, Any, None]:
"""Setup test environment for crewAI workspace."""
with tempfile.TemporaryDirectory() as temp_dir:
storage_dir = Path(temp_dir) / "crewai_test_storage"
storage_dir.mkdir(parents=True, exist_ok=True)
if not storage_dir.exists() or not storage_dir.is_dir():
raise RuntimeError(
f"Failed to create test storage directory: {storage_dir}"
)
try:
test_file = storage_dir / ".permissions_test"
test_file.touch()
test_file.unlink()
except (OSError, IOError) as e:
raise RuntimeError(
f"Test storage directory {storage_dir} is not writable: {e}"
) from e
os.environ["CREWAI_STORAGE_DIR"] = str(storage_dir)
os.environ["CREWAI_TESTING"] = "true"
try:
yield
finally:
os.environ.pop("CREWAI_TESTING", "true")
os.environ.pop("CREWAI_STORAGE_DIR", None)
os.environ.pop("CREWAI_DISABLE_TELEMETRY", "true")
os.environ.pop("OTEL_SDK_DISABLED", "true")
os.environ.pop("OPENAI_BASE_URL", "https://api.openai.com/v1")
os.environ.pop("OPENAI_API_BASE", "https://api.openai.com/v1")
HEADERS_TO_FILTER = {
"authorization": "AUTHORIZATION-XXX",
"content-security-policy": "CSP-FILTERED",
"cookie": "COOKIE-XXX",
"set-cookie": "SET-COOKIE-XXX",
"permissions-policy": "PERMISSIONS-POLICY-XXX",
"referrer-policy": "REFERRER-POLICY-XXX",
"strict-transport-security": "STS-XXX",
"x-content-type-options": "X-CONTENT-TYPE-XXX",
"x-frame-options": "X-FRAME-OPTIONS-XXX",
"x-permitted-cross-domain-policies": "X-PERMITTED-XXX",
"x-request-id": "X-REQUEST-ID-XXX",
"x-runtime": "X-RUNTIME-XXX",
"x-xss-protection": "X-XSS-PROTECTION-XXX",
"x-stainless-arch": "X-STAINLESS-ARCH-XXX",
"x-stainless-os": "X-STAINLESS-OS-XXX",
"x-stainless-read-timeout": "X-STAINLESS-READ-TIMEOUT-XXX",
"cf-ray": "CF-RAY-XXX",
"etag": "ETAG-XXX",
"Strict-Transport-Security": "STS-XXX",
"access-control-expose-headers": "ACCESS-CONTROL-XXX",
"openai-organization": "OPENAI-ORG-XXX",
"openai-project": "OPENAI-PROJECT-XXX",
"x-ratelimit-limit-requests": "X-RATELIMIT-LIMIT-REQUESTS-XXX",
"x-ratelimit-limit-tokens": "X-RATELIMIT-LIMIT-TOKENS-XXX",
"x-ratelimit-remaining-requests": "X-RATELIMIT-REMAINING-REQUESTS-XXX",
"x-ratelimit-remaining-tokens": "X-RATELIMIT-REMAINING-TOKENS-XXX",
"x-ratelimit-reset-requests": "X-RATELIMIT-RESET-REQUESTS-XXX",
"x-ratelimit-reset-tokens": "X-RATELIMIT-RESET-TOKENS-XXX",
"x-goog-api-key": "X-GOOG-API-KEY-XXX",
"api-key": "X-API-KEY-XXX",
"User-Agent": "X-USER-AGENT-XXX",
"apim-request-id:": "X-API-CLIENT-REQUEST-ID-XXX",
"azureml-model-session": "AZUREML-MODEL-SESSION-XXX",
"x-ms-client-request-id": "X-MS-CLIENT-REQUEST-ID-XXX",
"x-ms-region": "X-MS-REGION-XXX",
"apim-request-id": "APIM-REQUEST-ID-XXX",
"x-api-key": "X-API-KEY-XXX",
"anthropic-organization-id": "ANTHROPIC-ORGANIZATION-ID-XXX",
"request-id": "REQUEST-ID-XXX",
"anthropic-ratelimit-input-tokens-limit": "ANTHROPIC-RATELIMIT-INPUT-TOKENS-LIMIT-XXX",
"anthropic-ratelimit-input-tokens-remaining": "ANTHROPIC-RATELIMIT-INPUT-TOKENS-REMAINING-XXX",
"anthropic-ratelimit-input-tokens-reset": "ANTHROPIC-RATELIMIT-INPUT-TOKENS-RESET-XXX",
"anthropic-ratelimit-output-tokens-limit": "ANTHROPIC-RATELIMIT-OUTPUT-TOKENS-LIMIT-XXX",
"anthropic-ratelimit-output-tokens-remaining": "ANTHROPIC-RATELIMIT-OUTPUT-TOKENS-REMAINING-XXX",
"anthropic-ratelimit-output-tokens-reset": "ANTHROPIC-RATELIMIT-OUTPUT-TOKENS-RESET-XXX",
"anthropic-ratelimit-tokens-limit": "ANTHROPIC-RATELIMIT-TOKENS-LIMIT-XXX",
"anthropic-ratelimit-tokens-remaining": "ANTHROPIC-RATELIMIT-TOKENS-REMAINING-XXX",
"anthropic-ratelimit-tokens-reset": "ANTHROPIC-RATELIMIT-TOKENS-RESET-XXX",
"x-amz-date": "X-AMZ-DATE-XXX",
"amz-sdk-invocation-id": "AMZ-SDK-INVOCATION-ID-XXX",
"accept-encoding": "ACCEPT-ENCODING-XXX",
"x-amzn-requestid": "X-AMZN-REQUESTID-XXX",
"x-amzn-RequestId": "X-AMZN-REQUESTID-XXX",
}
def _filter_request_headers(request: Request) -> Request: # type: ignore[no-any-unimported]
"""Filter sensitive headers from request before recording."""
for header_name, replacement in HEADERS_TO_FILTER.items():
for variant in [header_name, header_name.upper(), header_name.title()]:
if variant in request.headers:
request.headers[variant] = [replacement]
request.method = request.method.upper()
return request
def _filter_response_headers(response: dict[str, Any]) -> dict[str, Any]:
"""Filter sensitive headers from response before recording."""
# Remove Content-Encoding to prevent decompression issues on replay
for encoding_header in ["Content-Encoding", "content-encoding"]:
response["headers"].pop(encoding_header, None)
for header_name, replacement in HEADERS_TO_FILTER.items():
for variant in [header_name, header_name.upper(), header_name.title()]:
if variant in response["headers"]:
response["headers"][variant] = [replacement]
return response
@pytest.fixture(scope="module")
def vcr_cassette_dir(request: Any) -> str:
"""Generate cassette directory path based on test module location.
Organizes cassettes to mirror test directory structure within each package:
lib/crewai/tests/llms/google/test_google.py -> lib/crewai/tests/cassettes/llms/google/
lib/crewai-tools/tests/tools/test_search.py -> lib/crewai-tools/tests/cassettes/tools/
"""
test_file = Path(request.fspath)
for parent in test_file.parents:
if parent.name in ("crewai", "crewai-tools") and parent.parent.name == "lib":
package_root = parent
break
else:
package_root = test_file.parent
tests_root = package_root / "tests"
test_dir = test_file.parent
if test_dir != tests_root:
relative_path = test_dir.relative_to(tests_root)
cassette_dir = tests_root / "cassettes" / relative_path
else:
cassette_dir = tests_root / "cassettes"
cassette_dir.mkdir(parents=True, exist_ok=True)
return str(cassette_dir)
@pytest.fixture(scope="module")
def vcr_config(vcr_cassette_dir: str) -> dict[str, Any]:
"""Configure VCR with organized cassette storage."""
config = {
"cassette_library_dir": vcr_cassette_dir,
"record_mode": os.getenv("PYTEST_VCR_RECORD_MODE", "once"),
"filter_headers": [(k, v) for k, v in HEADERS_TO_FILTER.items()],
"before_record_request": _filter_request_headers,
"before_record_response": _filter_response_headers,
"filter_query_parameters": ["key"],
"match_on": ["method", "scheme", "host", "port", "path"],
}
if os.getenv("GITHUB_ACTIONS") == "true":
config["record_mode"] = "none"
return config

File diff suppressed because it is too large Load Diff

View File

@@ -134,6 +134,7 @@
"group": "MCP Integration",
"pages": [
"en/mcp/overview",
"en/mcp/dsl-integration",
"en/mcp/stdio",
"en/mcp/sse",
"en/mcp/streamable-http",
@@ -252,7 +253,8 @@
"pages": [
"en/tools/integration/overview",
"en/tools/integration/bedrockinvokeagenttool",
"en/tools/integration/crewaiautomationtool"
"en/tools/integration/crewaiautomationtool",
"en/tools/integration/mergeagenthandlertool"
]
},
{
@@ -275,6 +277,7 @@
"en/observability/overview",
"en/observability/arize-phoenix",
"en/observability/braintrust",
"en/observability/datadog",
"en/observability/langdb",
"en/observability/langfuse",
"en/observability/langtrace",
@@ -311,7 +314,10 @@
"en/learn/multimodal-agents",
"en/learn/replay-tasks-from-latest-crew-kickoff",
"en/learn/sequential-process",
"en/learn/using-annotations"
"en/learn/using-annotations",
"en/learn/execution-hooks",
"en/learn/llm-hooks",
"en/learn/tool-hooks"
]
},
{
@@ -321,7 +327,7 @@
]
},
{
"tab": "AMP",
"tab": "AOP",
"icon": "briefcase",
"groups": [
{
@@ -361,10 +367,20 @@
"en/enterprise/integrations/github",
"en/enterprise/integrations/gmail",
"en/enterprise/integrations/google_calendar",
"en/enterprise/integrations/google_contacts",
"en/enterprise/integrations/google_docs",
"en/enterprise/integrations/google_drive",
"en/enterprise/integrations/google_sheets",
"en/enterprise/integrations/google_slides",
"en/enterprise/integrations/hubspot",
"en/enterprise/integrations/jira",
"en/enterprise/integrations/linear",
"en/enterprise/integrations/microsoft_excel",
"en/enterprise/integrations/microsoft_onedrive",
"en/enterprise/integrations/microsoft_outlook",
"en/enterprise/integrations/microsoft_sharepoint",
"en/enterprise/integrations/microsoft_teams",
"en/enterprise/integrations/microsoft_word",
"en/enterprise/integrations/notion",
"en/enterprise/integrations/salesforce",
"en/enterprise/integrations/shopify",
@@ -397,6 +413,7 @@
"en/enterprise/guides/kickoff-crew",
"en/enterprise/guides/update-crew",
"en/enterprise/guides/enable-crew-studio",
"en/enterprise/guides/capture_telemetry_logs",
"en/enterprise/guides/azure-openai-setup",
"en/enterprise/guides/tool-repository",
"en/enterprise/guides/react-component-export",
@@ -421,6 +438,7 @@
"en/api-reference/introduction",
"en/api-reference/inputs",
"en/api-reference/kickoff",
"en/api-reference/resume",
"en/api-reference/status"
]
}
@@ -558,6 +576,7 @@
"group": "Integração MCP",
"pages": [
"pt-BR/mcp/overview",
"pt-BR/mcp/dsl-integration",
"pt-BR/mcp/stdio",
"pt-BR/mcp/sse",
"pt-BR/mcp/streamable-http",
@@ -686,6 +705,7 @@
"pt-BR/observability/overview",
"pt-BR/observability/arize-phoenix",
"pt-BR/observability/braintrust",
"pt-BR/observability/datadog",
"pt-BR/observability/langdb",
"pt-BR/observability/langfuse",
"pt-BR/observability/langtrace",
@@ -721,7 +741,10 @@
"pt-BR/learn/multimodal-agents",
"pt-BR/learn/replay-tasks-from-latest-crew-kickoff",
"pt-BR/learn/sequential-process",
"pt-BR/learn/using-annotations"
"pt-BR/learn/using-annotations",
"pt-BR/learn/execution-hooks",
"pt-BR/learn/llm-hooks",
"pt-BR/learn/tool-hooks"
]
},
{
@@ -731,7 +754,7 @@
]
},
{
"tab": "AMP",
"tab": "AOP",
"icon": "briefcase",
"groups": [
{
@@ -771,10 +794,20 @@
"pt-BR/enterprise/integrations/github",
"pt-BR/enterprise/integrations/gmail",
"pt-BR/enterprise/integrations/google_calendar",
"pt-BR/enterprise/integrations/google_contacts",
"pt-BR/enterprise/integrations/google_docs",
"pt-BR/enterprise/integrations/google_drive",
"pt-BR/enterprise/integrations/google_sheets",
"pt-BR/enterprise/integrations/google_slides",
"pt-BR/enterprise/integrations/hubspot",
"pt-BR/enterprise/integrations/jira",
"pt-BR/enterprise/integrations/linear",
"pt-BR/enterprise/integrations/microsoft_excel",
"pt-BR/enterprise/integrations/microsoft_onedrive",
"pt-BR/enterprise/integrations/microsoft_outlook",
"pt-BR/enterprise/integrations/microsoft_sharepoint",
"pt-BR/enterprise/integrations/microsoft_teams",
"pt-BR/enterprise/integrations/microsoft_word",
"pt-BR/enterprise/integrations/notion",
"pt-BR/enterprise/integrations/salesforce",
"pt-BR/enterprise/integrations/shopify",
@@ -803,6 +836,12 @@
"group": "Triggers",
"pages": [
"pt-BR/enterprise/guides/automation-triggers",
"pt-BR/enterprise/guides/gmail-trigger",
"pt-BR/enterprise/guides/google-calendar-trigger",
"pt-BR/enterprise/guides/google-drive-trigger",
"pt-BR/enterprise/guides/outlook-trigger",
"pt-BR/enterprise/guides/onedrive-trigger",
"pt-BR/enterprise/guides/microsoft-teams-trigger",
"pt-BR/enterprise/guides/slack-trigger",
"pt-BR/enterprise/guides/hubspot-trigger",
"pt-BR/enterprise/guides/salesforce-trigger",
@@ -827,6 +866,7 @@
"pt-BR/api-reference/introduction",
"pt-BR/api-reference/inputs",
"pt-BR/api-reference/kickoff",
"pt-BR/api-reference/resume",
"pt-BR/api-reference/status"
]
}
@@ -960,6 +1000,7 @@
"group": "MCP 통합",
"pages": [
"ko/mcp/overview",
"ko/mcp/dsl-integration",
"ko/mcp/stdio",
"ko/mcp/sse",
"ko/mcp/streamable-http",
@@ -1100,6 +1141,7 @@
"ko/observability/overview",
"ko/observability/arize-phoenix",
"ko/observability/braintrust",
"ko/observability/datadog",
"ko/observability/langdb",
"ko/observability/langfuse",
"ko/observability/langtrace",
@@ -1135,7 +1177,10 @@
"ko/learn/multimodal-agents",
"ko/learn/replay-tasks-from-latest-crew-kickoff",
"ko/learn/sequential-process",
"ko/learn/using-annotations"
"ko/learn/using-annotations",
"ko/learn/execution-hooks",
"ko/learn/llm-hooks",
"ko/learn/tool-hooks"
]
},
{
@@ -1185,10 +1230,20 @@
"ko/enterprise/integrations/github",
"ko/enterprise/integrations/gmail",
"ko/enterprise/integrations/google_calendar",
"ko/enterprise/integrations/google_contacts",
"ko/enterprise/integrations/google_docs",
"ko/enterprise/integrations/google_drive",
"ko/enterprise/integrations/google_sheets",
"ko/enterprise/integrations/google_slides",
"ko/enterprise/integrations/hubspot",
"ko/enterprise/integrations/jira",
"ko/enterprise/integrations/linear",
"ko/enterprise/integrations/microsoft_excel",
"ko/enterprise/integrations/microsoft_onedrive",
"ko/enterprise/integrations/microsoft_outlook",
"ko/enterprise/integrations/microsoft_sharepoint",
"ko/enterprise/integrations/microsoft_teams",
"ko/enterprise/integrations/microsoft_word",
"ko/enterprise/integrations/notion",
"ko/enterprise/integrations/salesforce",
"ko/enterprise/integrations/shopify",
@@ -1217,6 +1272,12 @@
"group": "트리거",
"pages": [
"ko/enterprise/guides/automation-triggers",
"ko/enterprise/guides/gmail-trigger",
"ko/enterprise/guides/google-calendar-trigger",
"ko/enterprise/guides/google-drive-trigger",
"ko/enterprise/guides/outlook-trigger",
"ko/enterprise/guides/onedrive-trigger",
"ko/enterprise/guides/microsoft-teams-trigger",
"ko/enterprise/guides/slack-trigger",
"ko/enterprise/guides/hubspot-trigger",
"ko/enterprise/guides/salesforce-trigger",
@@ -1239,6 +1300,7 @@
"ko/api-reference/introduction",
"ko/api-reference/inputs",
"ko/api-reference/kickoff",
"ko/api-reference/resume",
"ko/api-reference/status"
]
}

View File

@@ -1,19 +1,19 @@
---
title: "Introduction"
description: "Complete reference for the CrewAI AMP REST API"
description: "Complete reference for the CrewAI AOP REST API"
icon: "code"
mode: "wide"
---
# CrewAI AMP API
# CrewAI AOP API
Welcome to the CrewAI AMP API reference. This API allows you to programmatically interact with your deployed crews, enabling integration with your applications, workflows, and services.
Welcome to the CrewAI AOP API reference. This API allows you to programmatically interact with your deployed crews, enabling integration with your applications, workflows, and services.
## Quick Start
<Steps>
<Step title="Get Your API Credentials">
Navigate to your crew's detail page in the CrewAI AMP dashboard and copy your Bearer Token from the Status tab.
Navigate to your crew's detail page in the CrewAI AOP dashboard and copy your Bearer Token from the Status tab.
</Step>
<Step title="Discover Required Inputs">
@@ -46,7 +46,7 @@ curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
<Tip>
You can find both token types in the Status tab of your crew's detail page in the CrewAI AMP dashboard.
You can find both token types in the Status tab of your crew's detail page in the CrewAI AOP dashboard.
</Tip>
## Base URL
@@ -82,7 +82,7 @@ The API uses standard HTTP status codes:
## Interactive Testing
<Info>
**Why no "Send" button?** Since each CrewAI AMP user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
**Why no "Send" button?** Since each CrewAI AOP user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
</Info>
Each endpoint page shows you:

View File

@@ -0,0 +1,6 @@
---
title: "POST /resume"
description: "Resume crew execution with human feedback"
openapi: "/enterprise-api.en.yaml POST /resume"
mode: "wide"
---

View File

@@ -20,7 +20,7 @@ Think of an agent as a specialized team member with specific skills, expertise,
</Tip>
<Note type="info" title="Enterprise Enhancement: Visual Agent Builder">
CrewAI AMP includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
CrewAI AOP includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
![Visual Agent Builder Screenshot](/images/enterprise/crew-studio-interface.png)

View File

@@ -5,7 +5,7 @@ icon: terminal
mode: "wide"
---
<Warning>Since release 0.140.0, CrewAI AMP started a process of migrating their login provider. As such, the authentication flow via CLI was updated. Users that use Google to login, or that created their account after July 3rd, 2025 will be unable to log in with older versions of the `crewai` library.</Warning>
<Warning>Since release 0.140.0, CrewAI AOP started a process of migrating their login provider. As such, the authentication flow via CLI was updated. Users that use Google to login, or that created their account after July 3rd, 2025 will be unable to log in with older versions of the `crewai` library.</Warning>
## Overview
@@ -186,9 +186,9 @@ def crew(self) -> Crew:
### 10. Deploy
Deploy the crew or flow to [CrewAI AMP](https://app.crewai.com).
Deploy the crew or flow to [CrewAI AOP](https://app.crewai.com).
- **Authentication**: You need to be authenticated to deploy to CrewAI AMP.
- **Authentication**: You need to be authenticated to deploy to CrewAI AOP.
You can login or create an account with:
```shell Terminal
crewai login
@@ -203,7 +203,7 @@ Deploy the crew or flow to [CrewAI AMP](https://app.crewai.com).
### 11. Organization Management
Manage your CrewAI AMP organizations.
Manage your CrewAI AOP organizations.
```shell Terminal
crewai org [COMMAND] [OPTIONS]
@@ -227,17 +227,17 @@ crewai org switch <organization_id>
```
<Note>
You must be authenticated to CrewAI AMP to use these organization management commands.
You must be authenticated to CrewAI AOP to use these organization management commands.
</Note>
- **Create a deployment** (continued):
- Links the deployment to the corresponding remote GitHub repository (it usually detects this automatically).
- **Deploy the Crew**: Once you are authenticated, you can deploy your crew or flow to CrewAI AMP.
- **Deploy the Crew**: Once you are authenticated, you can deploy your crew or flow to CrewAI AOP.
```shell Terminal
crewai deploy push
```
- Initiates the deployment process on the CrewAI AMP platform.
- Initiates the deployment process on the CrewAI AOP platform.
- Upon successful initiation, it will output the Deployment created successfully! message along with the Deployment Name and a unique Deployment ID (UUID).
- **Deployment Status**: You can check the status of your deployment with:
@@ -262,7 +262,7 @@ You must be authenticated to CrewAI AMP to use these organization management com
```shell Terminal
crewai deploy remove
```
This deletes the deployment from the CrewAI AMP platform.
This deletes the deployment from the CrewAI AOP platform.
- **Help Command**: You can get help with the CLI with:
```shell Terminal
@@ -270,7 +270,7 @@ You must be authenticated to CrewAI AMP to use these organization management com
```
This shows the help message for the CrewAI Deploy CLI.
Watch this video tutorial for a step-by-step demonstration of deploying your crew to [CrewAI AMP](http://app.crewai.com) using the CLI.
Watch this video tutorial for a step-by-step demonstration of deploying your crew to [CrewAI AOP](http://app.crewai.com) using the CLI.
<iframe
className="w-full aspect-video rounded-xl"
@@ -283,7 +283,7 @@ Watch this video tutorial for a step-by-step demonstration of deploying your cre
### 11. Login
Authenticate with CrewAI AMP using a secure device code flow (no email entry required).
Authenticate with CrewAI AOP using a secure device code flow (no email entry required).
```shell Terminal
crewai login
@@ -354,7 +354,7 @@ crewai config reset
#### Available Configuration Parameters
- `enterprise_base_url`: Base URL of the CrewAI AMP instance
- `enterprise_base_url`: Base URL of the CrewAI AOP instance
- `oauth2_provider`: OAuth2 provider used for authentication (e.g., workos, okta, auth0)
- `oauth2_audience`: OAuth2 audience value, typically used to identify the target API or resource
- `oauth2_client_id`: OAuth2 client ID issued by the provider, used during authentication requests
@@ -370,7 +370,7 @@ crewai config list
Example output:
| Setting | Value | Description |
| :------------------ | :----------------------- | :---------------------------------------------------------- |
| enterprise_base_url | https://app.crewai.com | Base URL of the CrewAI AMP instance |
| enterprise_base_url | https://app.crewai.com | Base URL of the CrewAI AOP instance |
| org_name | Not set | Name of the currently active organization |
| org_uuid | Not set | UUID of the currently active organization |
| oauth2_provider | workos | OAuth2 provider (e.g., workos, okta, auth0) |
@@ -402,6 +402,77 @@ crewai config reset
After resetting configuration, re-run `crewai login` to authenticate again.
</Tip>
### 14. Trace Management
Manage trace collection preferences for your Crew and Flow executions.
```shell Terminal
crewai traces [COMMAND]
```
#### Commands:
- `enable`: Enable trace collection for crew/flow executions
```shell Terminal
crewai traces enable
```
- `disable`: Disable trace collection for crew/flow executions
```shell Terminal
crewai traces disable
```
- `status`: Show current trace collection status
```shell Terminal
crewai traces status
```
#### How Tracing Works
Trace collection is controlled by checking three settings in priority order:
1. **Explicit flag in code** (highest priority - can enable OR disable):
```python
crew = Crew(agents=[...], tasks=[...], tracing=True) # Always enable
crew = Crew(agents=[...], tasks=[...], tracing=False) # Always disable
crew = Crew(agents=[...], tasks=[...]) # Check lower priorities (default)
```
- `tracing=True` will **always enable** tracing (overrides everything)
- `tracing=False` will **always disable** tracing (overrides everything)
- `tracing=None` or omitted will check lower priority settings
2. **Environment variable** (second priority):
```env
CREWAI_TRACING_ENABLED=true
```
- Checked only if `tracing` is not explicitly set to `True` or `False` in code
- Set to `true` or `1` to enable tracing
3. **User preference** (lowest priority):
```shell Terminal
crewai traces enable
```
- Checked only if `tracing` is not set in code and `CREWAI_TRACING_ENABLED` is not set to `true`
- Running `crewai traces enable` is sufficient to enable tracing by itself
<Note>
**To enable tracing**, use any one of these methods:
- Set `tracing=True` in your Crew/Flow code, OR
- Add `CREWAI_TRACING_ENABLED=true` to your `.env` file, OR
- Run `crewai traces enable`
**To disable tracing**, use any ONE of these methods:
- Set `tracing=False` in your Crew/Flow code (overrides everything), OR
- Remove or set to `false` the `CREWAI_TRACING_ENABLED` env var, OR
- Run `crewai traces disable`
Higher priority settings override lower ones.
</Note>
<Tip>
For more information about tracing, see the [Tracing documentation](/observability/tracing).
</Tip>
<Tip>
CrewAI CLI handles authentication to the Tool Repository automatically when adding packages to your project. Just append `crewai` before any `uv` command to use it. E.g. `crewai uv add requests`. For more information, see [Tool Repository](https://docs.crewai.com/enterprise/features/tool-repository) docs.
</Tip>

View File

@@ -33,6 +33,7 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Planning** *(optional)* | `planning` | Adds planning ability to the Crew. When activated before each Crew iteration, all Crew data is sent to an AgentPlanner that will plan the tasks and this plan will be added to each task description. |
| **Planning LLM** *(optional)* | `planning_llm` | The language model used by the AgentPlanner in a planning process. |
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | Knowledge sources available at the crew level, accessible to all the agents. |
| **Stream** _(optional)_ | `stream` | Enable streaming output to receive real-time updates during crew execution. Returns a `CrewStreamingOutput` object that can be iterated for chunks. Defaults to `False`. |
<Tip>
**Crew Max RPM**: The `max_rpm` attribute sets the maximum number of requests per minute the crew can perform to avoid rate limits and will override individual agents' `max_rpm` settings if you set it.
@@ -306,12 +307,27 @@ print(result)
### Different Ways to Kick Off a Crew
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process: `kickoff()`, `kickoff_for_each()`, `kickoff_async()`, and `kickoff_for_each_async()`.
Once your crew is assembled, initiate the workflow with the appropriate kickoff method. CrewAI provides several methods for better control over the kickoff process.
#### Synchronous Methods
- `kickoff()`: Starts the execution process according to the defined process flow.
- `kickoff_for_each()`: Executes tasks sequentially for each provided input event or item in the collection.
- `kickoff_async()`: Initiates the workflow asynchronously.
- `kickoff_for_each_async()`: Executes tasks concurrently for each provided input event or item, leveraging asynchronous processing.
#### Asynchronous Methods
CrewAI offers two approaches for async execution:
| Method | Type | Description |
|--------|------|-------------|
| `akickoff()` | Native async | True async/await throughout the entire execution chain |
| `akickoff_for_each()` | Native async | Native async execution for each input in a list |
| `kickoff_async()` | Thread-based | Wraps synchronous execution in `asyncio.to_thread` |
| `kickoff_for_each_async()` | Thread-based | Thread-based async for each input in a list |
<Note>
For high-concurrency workloads, `akickoff()` and `akickoff_for_each()` are recommended as they use native async for task execution, memory operations, and knowledge retrieval.
</Note>
```python Code
# Start the crew's task execution
@@ -324,19 +340,53 @@ results = my_crew.kickoff_for_each(inputs=inputs_array)
for result in results:
print(result)
# Example of using kickoff_async
# Example of using native async with akickoff
inputs = {'topic': 'AI in healthcare'}
async_result = await my_crew.akickoff(inputs=inputs)
print(async_result)
# Example of using native async with akickoff_for_each
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
async_results = await my_crew.akickoff_for_each(inputs=inputs_array)
for async_result in async_results:
print(async_result)
# Example of using thread-based kickoff_async
inputs = {'topic': 'AI in healthcare'}
async_result = await my_crew.kickoff_async(inputs=inputs)
print(async_result)
# Example of using kickoff_for_each_async
# Example of using thread-based kickoff_for_each_async
inputs_array = [{'topic': 'AI in healthcare'}, {'topic': 'AI in finance'}]
async_results = await my_crew.kickoff_for_each_async(inputs=inputs_array)
for async_result in async_results:
print(async_result)
```
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs.
These methods provide flexibility in how you manage and execute tasks within your crew, allowing for both synchronous and asynchronous workflows tailored to your needs. For detailed async examples, see the [Kickoff Crew Asynchronously](/en/learn/kickoff-async) guide.
### Streaming Crew Execution
For real-time visibility into crew execution, you can enable streaming to receive output as it's generated:
```python Code
# Enable streaming
crew = Crew(
agents=[researcher],
tasks=[task],
stream=True
)
# Iterate over streaming output
streaming = crew.kickoff(inputs={"topic": "AI"})
for chunk in streaming:
print(chunk.content, end="", flush=True)
# Access final result
result = streaming.result
```
Learn more about streaming in the [Streaming Crew Execution](/en/learn/streaming-crew-execution) guide.
### Replaying from a Specific Task

View File

@@ -20,7 +20,7 @@ CrewAI uses an event bus architecture to emit events throughout the execution li
When specific actions occur in CrewAI (like a Crew starting execution, an Agent completing a task, or a tool being used), the system emits corresponding events. You can register handlers for these events to execute custom code when they occur.
<Note type="info" title="Enterprise Enhancement: Prompt Tracing">
CrewAI AMP provides a built-in Prompt Tracing feature that leverages the event system to track, store, and visualize all prompts, completions, and associated metadata. This provides powerful debugging capabilities and transparency into your agent operations.
CrewAI AOP provides a built-in Prompt Tracing feature that leverages the event system to track, store, and visualize all prompts, completions, and associated metadata. This provides powerful debugging capabilities and transparency into your agent operations.
![Prompt Tracing Dashboard](/images/enterprise/traces-overview.png)

View File

@@ -897,6 +897,31 @@ flow = ExampleFlow()
result = flow.kickoff()
```
### Streaming Flow Execution
For real-time visibility into flow execution, you can enable streaming to receive output as it's generated:
```python
class StreamingFlow(Flow):
stream = True # Enable streaming
@start()
def research(self):
# Your flow implementation
pass
# Iterate over streaming output
flow = StreamingFlow()
streaming = flow.kickoff()
for chunk in streaming:
print(chunk.content, end="", flush=True)
# Access final result
result = streaming.result
```
Learn more about streaming in the [Streaming Flow Execution](/en/learn/streaming-flow-execution) guide.
### Using the CLI
Starting from version 0.103.0, you can run flows using the `crewai run` command:

View File

@@ -388,8 +388,8 @@ crew = Crew(
agents=[sales_agent, tech_agent, support_agent],
tasks=[...],
embedder={ # Fallback embedder for agents without their own
"provider": "google",
"config": {"model": "text-embedding-004"}
"provider": "google-generativeai",
"config": {"model_name": "gemini-embedding-001"}
}
)
@@ -629,9 +629,9 @@ agent = Agent(
backstory="Expert researcher",
knowledge_sources=[knowledge_source],
embedder={
"provider": "google",
"provider": "google-generativeai",
"config": {
"model": "models/text-embedding-004",
"model_name": "gemini-embedding-001",
"api_key": "your-google-key"
}
}
@@ -739,7 +739,7 @@ class KnowledgeMonitorListener(BaseEventListener):
knowledge_monitor = KnowledgeMonitorListener()
```
For more information on using events, see the [Event Listeners](https://docs.crewai.com/concepts/event-listener) documentation.
For more information on using events, see the [Event Listeners](/en/concepts/event-listener) documentation.
### Custom Knowledge Sources

View File

@@ -7,7 +7,7 @@ mode: "wide"
## Overview
CrewAI integrates with multiple LLM providers through LiteLLM, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
CrewAI integrates with multiple LLM providers through providers native sdks, giving you the flexibility to choose the right model for your specific use case. This guide will help you understand how to configure and use different LLM providers in your CrewAI projects.
## What are LLMs?
@@ -113,44 +113,104 @@ In this section, you'll find detailed examples that help you select, configure,
<AccordionGroup>
<Accordion title="OpenAI">
Set the following environment variables in your `.env` file:
CrewAI provides native integration with OpenAI through the OpenAI Python SDK.
```toml Code
# Required
OPENAI_API_KEY=sk-...
# Optional
OPENAI_API_BASE=<custom-base-url>
OPENAI_ORGANIZATION=<your-org-id>
OPENAI_BASE_URL=<custom-base-url>
```
Example usage in your CrewAI project:
**Basic Usage:**
```python Code
from crewai import LLM
llm = LLM(
model="openai/gpt-4", # call model by provider/model_name
temperature=0.8,
max_tokens=150,
model="openai/gpt-4o",
api_key="your-api-key", # Or set OPENAI_API_KEY
temperature=0.7,
max_tokens=4000
)
```
**Advanced Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="openai/gpt-4o",
api_key="your-api-key",
base_url="https://api.openai.com/v1", # Optional custom endpoint
organization="org-...", # Optional organization ID
project="proj_...", # Optional project ID
temperature=0.7,
max_tokens=4000,
max_completion_tokens=4000, # For newer models
top_p=0.9,
frequency_penalty=0.1,
presence_penalty=0.1,
stop=["END"],
seed=42
seed=42, # For reproducible outputs
stream=True, # Enable streaming
timeout=60.0, # Request timeout in seconds
max_retries=3, # Maximum retry attempts
logprobs=True, # Return log probabilities
top_logprobs=5, # Number of most likely tokens
reasoning_effort="medium" # For o1 models: low, medium, high
)
```
OpenAI is one of the leading providers of LLMs with a wide range of models and features.
**Structured Outputs:**
```python Code
from pydantic import BaseModel
from crewai import LLM
class ResponseFormat(BaseModel):
name: str
age: int
summary: str
llm = LLM(
model="openai/gpt-4o",
)
```
**Supported Environment Variables:**
- `OPENAI_API_KEY`: Your OpenAI API key (required)
- `OPENAI_BASE_URL`: Custom base URL for OpenAI API (optional)
**Features:**
- Native function calling support (except o1 models)
- Structured outputs with JSON schema
- Streaming support for real-time responses
- Token usage tracking
- Stop sequences support (except o1 models)
- Log probabilities for token-level insights
- Reasoning effort control for o1 models
**Supported Models:**
| Model | Context Window | Best For |
|---------------------|------------------|-----------------------------------------------|
| GPT-4 | 8,192 tokens | High-accuracy tasks, complex reasoning |
| GPT-4 Turbo | 128,000 tokens | Long-form content, document analysis |
| GPT-4o & GPT-4o-mini | 128,000 tokens | Cost-effective large context processing |
| o3-mini | 200,000 tokens | Fast reasoning, complex reasoning |
| o1-mini | 128,000 tokens | Fast reasoning, complex reasoning |
| o1-preview | 128,000 tokens | Fast reasoning, complex reasoning |
| o1 | 200,000 tokens | Fast reasoning, complex reasoning |
| gpt-4.1 | 1M tokens | Latest model with enhanced capabilities |
| gpt-4.1-mini | 1M tokens | Efficient version with large context |
| gpt-4.1-nano | 1M tokens | Ultra-efficient variant |
| gpt-4o | 128,000 tokens | Optimized for speed and intelligence |
| gpt-4o-mini | 200,000 tokens | Cost-effective with large context |
| gpt-4-turbo | 128,000 tokens | Long-form content, document analysis |
| gpt-4 | 8,192 tokens | High-accuracy tasks, complex reasoning |
| o1 | 200,000 tokens | Advanced reasoning, complex problem-solving |
| o1-preview | 128,000 tokens | Preview of reasoning capabilities |
| o1-mini | 128,000 tokens | Efficient reasoning model |
| o3-mini | 200,000 tokens | Lightweight reasoning model |
| o4-mini | 200,000 tokens | Next-gen efficient reasoning |
**Note:** To use OpenAI, install the required dependencies:
```bash
uv add "crewai[openai]"
```
</Accordion>
<Accordion title="Meta-Llama">
@@ -187,69 +247,230 @@ In this section, you'll find detailed examples that help you select, configure,
</Accordion>
<Accordion title="Anthropic">
CrewAI provides native integration with Anthropic through the Anthropic Python SDK.
```toml Code
# Required
ANTHROPIC_API_KEY=sk-ant-...
# Optional
ANTHROPIC_API_BASE=<custom-base-url>
```
Example usage in your CrewAI project:
**Basic Usage:**
```python Code
from crewai import LLM
llm = LLM(
model="anthropic/claude-3-sonnet-20240229-v1:0",
temperature=0.7
model="anthropic/claude-3-5-sonnet-20241022",
api_key="your-api-key", # Or set ANTHROPIC_API_KEY
max_tokens=4096 # Required for Anthropic
)
```
**Advanced Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
api_key="your-api-key",
base_url="https://api.anthropic.com", # Optional custom endpoint
temperature=0.7,
max_tokens=4096, # Required parameter
top_p=0.9,
stop_sequences=["END", "STOP"], # Anthropic uses stop_sequences
stream=True, # Enable streaming
timeout=60.0, # Request timeout in seconds
max_retries=3 # Maximum retry attempts
)
```
**Extended Thinking (Claude Sonnet 4 and Beyond):**
CrewAI supports Anthropic's Extended Thinking feature, which allows Claude to think through problems in a more human-like way before responding. This is particularly useful for complex reasoning, analysis, and problem-solving tasks.
```python Code
from crewai import LLM
# Enable extended thinking with default settings
llm = LLM(
model="anthropic/claude-sonnet-4",
thinking={"type": "enabled"},
max_tokens=10000
)
# Configure thinking with budget control
llm = LLM(
model="anthropic/claude-sonnet-4",
thinking={
"type": "enabled",
"budget_tokens": 5000 # Limit thinking tokens
},
max_tokens=10000
)
```
**Thinking Configuration Options:**
- `type`: Set to `"enabled"` to activate extended thinking mode
- `budget_tokens` (optional): Maximum tokens to use for thinking (helps control costs)
**Models Supporting Extended Thinking:**
- `claude-sonnet-4` and newer models
- `claude-3-7-sonnet` (with extended thinking capabilities)
**When to Use Extended Thinking:**
- Complex reasoning and multi-step problem solving
- Mathematical calculations and proofs
- Code analysis and debugging
- Strategic planning and decision making
- Research and analytical tasks
**Note:** Extended thinking consumes additional tokens but can significantly improve response quality for complex tasks.
**Supported Environment Variables:**
- `ANTHROPIC_API_KEY`: Your Anthropic API key (required)
**Features:**
- Native tool use support for Claude 3+ models
- Extended Thinking support for Claude Sonnet 4+
- Streaming support for real-time responses
- Automatic system message handling
- Stop sequences for controlled output
- Token usage tracking
- Multi-turn tool use conversations
**Important Notes:**
- `max_tokens` is a **required** parameter for all Anthropic models
- Claude uses `stop_sequences` instead of `stop`
- System messages are handled separately from conversation messages
- First message must be from the user (automatically handled)
- Messages must alternate between user and assistant
**Supported Models:**
| Model | Context Window | Best For |
|------------------------------|----------------|-----------------------------------------------|
| claude-sonnet-4 | 200,000 tokens | Latest with extended thinking capabilities |
| claude-3-7-sonnet | 200,000 tokens | Advanced reasoning and agentic tasks |
| claude-3-5-sonnet-20241022 | 200,000 tokens | Latest Sonnet with best performance |
| claude-3-5-haiku | 200,000 tokens | Fast, compact model for quick responses |
| claude-3-opus | 200,000 tokens | Most capable for complex tasks |
| claude-3-sonnet | 200,000 tokens | Balanced intelligence and speed |
| claude-3-haiku | 200,000 tokens | Fastest for simple tasks |
| claude-2.1 | 200,000 tokens | Extended context, reduced hallucinations |
| claude-2 | 100,000 tokens | Versatile model for various tasks |
| claude-instant | 100,000 tokens | Fast, cost-effective for everyday tasks |
**Note:** To use Anthropic, install the required dependencies:
```bash
uv add "crewai[anthropic]"
```
</Accordion>
<Accordion title="Google (Gemini API)">
Set your API key in your `.env` file. If you need a key, or need to find an
existing key, check [AI Studio](https://aistudio.google.com/apikey).
CrewAI provides native integration with Google Gemini through the Google Gen AI Python SDK.
Set your API key in your `.env` file. If you need a key, check [AI Studio](https://aistudio.google.com/apikey).
```toml .env
# https://ai.google.dev/gemini-api/docs/api-key
# Required (one of the following)
GOOGLE_API_KEY=<your-api-key>
GEMINI_API_KEY=<your-api-key>
# Optional - for Vertex AI
GOOGLE_CLOUD_PROJECT=<your-project-id>
GOOGLE_CLOUD_LOCATION=<location> # Defaults to us-central1
GOOGLE_GENAI_USE_VERTEXAI=true # Set to use Vertex AI
```
Example usage in your CrewAI project:
**Basic Usage:**
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-2.0-flash",
temperature=0.7,
api_key="your-api-key", # Or set GOOGLE_API_KEY/GEMINI_API_KEY
temperature=0.7
)
```
### Gemini models
**Advanced Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-2.5-flash",
api_key="your-api-key",
temperature=0.7,
top_p=0.9,
top_k=40, # Top-k sampling parameter
max_output_tokens=8192,
stop_sequences=["END", "STOP"],
stream=True, # Enable streaming
safety_settings={
"HARM_CATEGORY_HARASSMENT": "BLOCK_NONE",
"HARM_CATEGORY_HATE_SPEECH": "BLOCK_NONE"
}
)
```
**Vertex AI Configuration:**
```python Code
from crewai import LLM
llm = LLM(
model="gemini/gemini-1.5-pro",
project="your-gcp-project-id",
location="us-central1" # GCP region
)
```
**Supported Environment Variables:**
- `GOOGLE_API_KEY` or `GEMINI_API_KEY`: Your Google API key (required for Gemini API)
- `GOOGLE_CLOUD_PROJECT`: Google Cloud project ID (for Vertex AI)
- `GOOGLE_CLOUD_LOCATION`: GCP location (defaults to `us-central1`)
- `GOOGLE_GENAI_USE_VERTEXAI`: Set to `true` to use Vertex AI
**Features:**
- Native function calling support for Gemini 1.5+ and 2.x models
- Streaming support for real-time responses
- Multimodal capabilities (text, images, video)
- Safety settings configuration
- Support for both Gemini API and Vertex AI
- Automatic system instruction handling
- Token usage tracking
**Gemini Models:**
Google offers a range of powerful models optimized for different use cases.
| Model | Context Window | Best For |
|--------------------------------|----------------|-------------------------------------------------------------------|
| gemini-2.5-flash-preview-04-17 | 1M tokens | Adaptive thinking, cost efficiency |
| gemini-2.5-pro-preview-05-06 | 1M tokens | Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more |
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking, and realtime streaming |
| gemini-2.5-flash | 1M tokens | Adaptive thinking, cost efficiency |
| gemini-2.5-pro | 1M tokens | Enhanced thinking and reasoning, multimodal understanding |
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking |
| gemini-2.0-flash-thinking | 32,768 tokens | Advanced reasoning with thinking process |
| gemini-2.0-flash-lite | 1M tokens | Cost efficiency and low latency |
| gemini-1.5-pro | 2M tokens | Best performing, logical reasoning, coding |
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
| gemini-1.5-flash-8b | 1M tokens | Fastest, most cost-efficient |
| gemini-1.0-pro | 32,768 tokens | Earlier generation model |
**Gemma Models:**
The Gemini API also supports [Gemma models](https://ai.google.dev/gemma/docs) hosted on Google infrastructure.
| Model | Context Window | Best For |
|----------------|----------------|------------------------------------|
| gemma-3-1b | 32,000 tokens | Ultra-lightweight tasks |
| gemma-3-4b | 128,000 tokens | Efficient general-purpose tasks |
| gemma-3-12b | 128,000 tokens | Balanced performance and efficiency|
| gemma-3-27b | 128,000 tokens | High-performance tasks |
**Note:** To use Google Gemini, install the required dependencies:
```bash
uv add "crewai[google-genai]"
```
The full list of models is available in the [Gemini model docs](https://ai.google.dev/gemini-api/docs/models).
### Gemma
The Gemini API also allows you to use your API key to access [Gemma models](https://ai.google.dev/gemma/docs) hosted on Google infrastructure.
| Model | Context Window |
|----------------|----------------|
| gemma-3-1b-it | 32k tokens |
| gemma-3-4b-it | 32k tokens |
| gemma-3-12b-it | 32k tokens |
| gemma-3-27b-it | 128k tokens |
</Accordion>
<Accordion title="Google (Vertex AI)">
Get credentials from your Google Cloud Console and save it to a JSON file, then load it with the following code:
@@ -291,43 +512,146 @@ In this section, you'll find detailed examples that help you select, configure,
</Accordion>
<Accordion title="Azure">
CrewAI provides native integration with Azure AI Inference and Azure OpenAI through the Azure AI Inference Python SDK.
```toml Code
# Required
AZURE_API_KEY=<your-api-key>
AZURE_API_BASE=<your-resource-url>
AZURE_API_VERSION=<api-version>
AZURE_ENDPOINT=<your-endpoint-url>
# Optional
AZURE_AD_TOKEN=<your-azure-ad-token>
AZURE_API_TYPE=<your-azure-api-type>
AZURE_API_VERSION=<api-version> # Defaults to 2024-06-01
```
Example usage in your CrewAI project:
**Endpoint URL Formats:**
For Azure OpenAI deployments:
```
https://<resource-name>.openai.azure.com/openai/deployments/<deployment-name>
```
For Azure AI Inference endpoints:
```
https://<resource-name>.inference.azure.com
```
**Basic Usage:**
```python Code
llm = LLM(
model="azure/gpt-4",
api_version="2023-05-15"
api_key="<your-api-key>", # Or set AZURE_API_KEY
endpoint="<your-endpoint-url>",
api_version="2024-06-01"
)
```
**Advanced Configuration:**
```python Code
llm = LLM(
model="azure/gpt-4o",
temperature=0.7,
max_tokens=4000,
top_p=0.9,
frequency_penalty=0.0,
presence_penalty=0.0,
stop=["END"],
stream=True,
timeout=60.0,
max_retries=3
)
```
**Supported Environment Variables:**
- `AZURE_API_KEY`: Your Azure API key (required)
- `AZURE_ENDPOINT`: Your Azure endpoint URL (required, also checks `AZURE_OPENAI_ENDPOINT` and `AZURE_API_BASE`)
- `AZURE_API_VERSION`: API version (optional, defaults to `2024-06-01`)
**Features:**
- Native function calling support for Azure OpenAI models (gpt-4, gpt-4o, gpt-3.5-turbo, etc.)
- Streaming support for real-time responses
- Automatic endpoint URL validation and correction
- Comprehensive error handling with retry logic
- Token usage tracking
**Note:** To use Azure AI Inference, install the required dependencies:
```bash
uv add "crewai[azure-ai-inference]"
```
</Accordion>
<Accordion title="AWS Bedrock">
CrewAI provides native integration with AWS Bedrock through the boto3 SDK using the Converse API.
```toml Code
# Required
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-key>
AWS_DEFAULT_REGION=<your-region>
# Optional
AWS_SESSION_TOKEN=<your-session-token> # For temporary credentials
AWS_DEFAULT_REGION=<your-region> # Defaults to us-east-1
```
Example usage in your CrewAI project:
**Basic Usage:**
```python Code
from crewai import LLM
llm = LLM(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
model="bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0",
region_name="us-east-1"
)
```
Before using Amazon Bedrock, make sure you have boto3 installed in your environment
**Advanced Configuration:**
```python Code
from crewai import LLM
[Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html) is a managed service that provides access to multiple foundation models from top AI companies through a unified API, enabling secure and responsible AI application development.
llm = LLM(
model="bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0",
aws_access_key_id="your-access-key", # Or set AWS_ACCESS_KEY_ID
aws_secret_access_key="your-secret-key", # Or set AWS_SECRET_ACCESS_KEY
aws_session_token="your-session-token", # For temporary credentials
region_name="us-east-1",
temperature=0.7,
max_tokens=4096,
top_p=0.9,
top_k=250, # For Claude models
stop_sequences=["END", "STOP"],
stream=True, # Enable streaming
guardrail_config={ # Optional content filtering
"guardrailIdentifier": "your-guardrail-id",
"guardrailVersion": "1"
},
additional_model_request_fields={ # Model-specific parameters
"top_k": 250
}
)
```
**Supported Environment Variables:**
- `AWS_ACCESS_KEY_ID`: AWS access key (required)
- `AWS_SECRET_ACCESS_KEY`: AWS secret key (required)
- `AWS_SESSION_TOKEN`: AWS session token for temporary credentials (optional)
- `AWS_DEFAULT_REGION`: AWS region (defaults to `us-east-1`)
**Features:**
- Native tool calling support via Converse API
- Streaming and non-streaming responses
- Comprehensive error handling with retry logic
- Guardrail configuration for content filtering
- Model-specific parameters via `additional_model_request_fields`
- Token usage tracking and stop reason logging
- Support for all Bedrock foundation models
- Automatic conversation format handling
**Important Notes:**
- Uses the modern Converse API for unified model access
- Automatic handling of model-specific conversation requirements
- System messages are handled separately from conversation
- First message must be from user (automatically handled)
- Some models (like Cohere) require conversation to end with user message
[Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html) is a managed service that provides access to multiple foundation models from top AI companies through a unified API.
| Model | Context Window | Best For |
|-------------------------|----------------------|-------------------------------------------------------------------|
@@ -357,7 +681,12 @@ In this section, you'll find detailed examples that help you select, configure,
| Jamba-Instruct | Up to 256k tokens | Model with extended context window optimized for cost-effective text generation, summarization, and Q&A. |
| Mistral 7B Instruct | Up to 32k tokens | This LLM follows instructions, completes requests, and generates creative text. |
| Mistral 8x7B Instruct | Up to 32k tokens | An MOE LLM that follows instructions, completes requests, and generates creative text. |
| DeepSeek R1 | 32,768 tokens | Advanced reasoning model |
**Note:** To use AWS Bedrock, install the required dependencies:
```bash
uv add "crewai[bedrock]"
```
</Accordion>
<Accordion title="Amazon SageMaker">
@@ -750,7 +1079,7 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
```
<Tip>
[Click here](https://docs.crewai.com/concepts/event-listener#event-listeners) for more details
[Click here](/en/concepts/event-listener#event-listeners) for more details
</Tip>
</Tab>
@@ -804,6 +1133,50 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
</Tab>
</Tabs>
## Async LLM Calls
CrewAI supports asynchronous LLM calls for improved performance and concurrency in your AI workflows. Async calls allow you to run multiple LLM requests concurrently without blocking, making them ideal for high-throughput applications and parallel agent operations.
<Tabs>
<Tab title="Basic Usage">
Use the `acall` method for asynchronous LLM requests:
```python
import asyncio
from crewai import LLM
async def main():
llm = LLM(model="openai/gpt-4o")
# Single async call
response = await llm.acall("What is the capital of France?")
print(response)
asyncio.run(main())
```
The `acall` method supports all the same parameters as the synchronous `call` method, including messages, tools, and callbacks.
</Tab>
<Tab title="With Streaming">
Combine async calls with streaming for real-time concurrent responses:
```python
import asyncio
from crewai import LLM
async def stream_async():
llm = LLM(model="openai/gpt-4o", stream=True)
response = await llm.acall("Write a short story about AI")
print(response)
asyncio.run(stream_async())
```
</Tab>
</Tabs>
## Structured LLM Calls
CrewAI supports structured responses from LLM calls by allowing you to define a `response_format` using a Pydantic model. This enables the framework to automatically parse and validate the output, making it easier to integrate the response into your application without manual post-processing.
@@ -899,7 +1272,7 @@ Learn how to get the most out of your LLM configuration:
</Accordion>
<Accordion title="Drop Additional Parameters">
CrewAI internally uses Litellm for LLM calls, which allows you to drop additional parameters that are not needed for your specific use case. This can help simplify your code and reduce the complexity of your LLM configuration.
CrewAI internally uses native sdks for LLM calls, which allows you to drop additional parameters that are not needed for your specific use case. This can help simplify your code and reduce the complexity of your LLM configuration.
For example, if you don't need to send the <code>stop</code> parameter, you can simply omit it from your LLM call:
```python
@@ -915,6 +1288,52 @@ Learn how to get the most out of your LLM configuration:
)
```
</Accordion>
<Accordion title="Transport Interceptors">
CrewAI provides message interceptors for several providers, allowing you to hook into request/response cycles at the transport layer.
**Supported Providers:**
- ✅ OpenAI
- ✅ Anthropic
**Basic Usage:**
```python
import httpx
from crewai import LLM
from crewai.llms.hooks import BaseInterceptor
class CustomInterceptor(BaseInterceptor[httpx.Request, httpx.Response]):
"""Custom interceptor to modify requests and responses."""
def on_outbound(self, request: httpx.Request) -> httpx.Request:
"""Print request before sending to the LLM provider."""
print(request)
return request
def on_inbound(self, response: httpx.Response) -> httpx.Response:
"""Process response after receiving from the LLM provider."""
print(f"Status: {response.status_code}")
print(f"Response time: {response.elapsed}")
return response
# Use the interceptor with an LLM
llm = LLM(
model="openai/gpt-4o",
interceptor=CustomInterceptor()
)
```
**Important Notes:**
- Both methods must return the received object or type of object.
- Modifying received objects may result in unexpected behavior or application crashes.
- Not all providers support interceptors - check the supported providers list above
<Info>
Interceptors operate at the transport layer. This is particularly useful for:
- Message transformation and filtering
- Debugging API interactions
</Info>
</Accordion>
</AccordionGroup>
## Common Issues and Solutions

View File

@@ -341,7 +341,7 @@ crew = Crew(
embedder={
"provider": "openai",
"config": {
"model": "text-embedding-3-small" # or "text-embedding-3-large"
"model_name": "text-embedding-3-small" # or "text-embedding-3-large"
}
}
)
@@ -353,7 +353,7 @@ crew = Crew(
"provider": "openai",
"config": {
"api_key": "your-openai-api-key", # Optional: override env var
"model": "text-embedding-3-large",
"model_name": "text-embedding-3-large",
"dimensions": 1536, # Optional: reduce dimensions for smaller storage
"organization_id": "your-org-id" # Optional: for organization accounts
}
@@ -375,7 +375,7 @@ crew = Crew(
"api_base": "https://your-resource.openai.azure.com/",
"api_type": "azure",
"api_version": "2023-05-15",
"model": "text-embedding-3-small",
"model_name": "text-embedding-3-small",
"deployment_id": "your-deployment-name" # Azure deployment name
}
}
@@ -390,10 +390,10 @@ Use Google's text embedding models for integration with Google Cloud services.
crew = Crew(
memory=True,
embedder={
"provider": "google",
"provider": "google-generativeai",
"config": {
"api_key": "your-google-api-key",
"model": "text-embedding-004" # or "text-embedding-preview-0409"
"model_name": "gemini-embedding-001" # or "text-embedding-005", "text-multilingual-embedding-002"
}
}
)
@@ -461,7 +461,7 @@ crew = Crew(
"provider": "cohere",
"config": {
"api_key": "your-cohere-api-key",
"model": "embed-english-v3.0" # or "embed-multilingual-v3.0"
"model_name": "embed-english-v3.0" # or "embed-multilingual-v3.0"
}
}
)
@@ -478,7 +478,7 @@ crew = Crew(
"provider": "voyageai",
"config": {
"api_key": "your-voyage-api-key",
"model": "voyage-large-2", # or "voyage-code-2" for code
"model": "voyage-3", # or "voyage-3-lite", "voyage-code-3"
"input_type": "document" # or "query"
}
}
@@ -515,8 +515,7 @@ crew = Crew(
"provider": "huggingface",
"config": {
"api_key": "your-hf-token", # Optional for public models
"model": "sentence-transformers/all-MiniLM-L6-v2",
"api_url": "https://api-inference.huggingface.co" # or your custom endpoint
"model": "sentence-transformers/all-MiniLM-L6-v2"
}
}
)
@@ -912,10 +911,10 @@ crew = Crew(
crew = Crew(
memory=True,
embedder={
"provider": "google",
"provider": "google-generativeai",
"config": {
"api_key": "your-api-key",
"model": "text-embedding-004"
"model_name": "gemini-embedding-001"
}
}
)

View File

@@ -14,7 +14,7 @@ Tasks provide all necessary details for execution, such as a description, the ag
Tasks within CrewAI can be collaborative, requiring multiple agents to work together. This is managed through the task properties and orchestrated by the Crew's process, enhancing teamwork and efficiency.
<Note type="info" title="Enterprise Enhancement: Visual Task Builder">
CrewAI AMP includes a Visual Task Builder in Crew Studio that simplifies complex task creation and chaining. Design your task flows visually and test them in real-time without writing code.
CrewAI AOP includes a Visual Task Builder in Crew Studio that simplifies complex task creation and chaining. Design your task flows visually and test them in real-time without writing code.
![Task Builder Screenshot](/images/enterprise/crew-studio-interface.png)
@@ -60,6 +60,7 @@ crew = Crew(
| **Output Pydantic** _(optional)_ | `output_pydantic` | `Optional[Type[BaseModel]]` | A Pydantic model for task output. |
| **Callback** _(optional)_ | `callback` | `Optional[Any]` | Function/object to be executed after task completion. |
| **Guardrail** _(optional)_ | `guardrail` | `Optional[Callable]` | Function to validate task output before proceeding to next task. |
| **Guardrails** _(optional)_ | `guardrails` | `Optional[List[Callable] | List[str]]` | List of guardrails to validate task output before proceeding to next task. |
| **Guardrail Max Retries** _(optional)_ | `guardrail_max_retries` | `Optional[int]` | Maximum number of retries when guardrail validation fails. Defaults to 3. |
<Note type="warning" title="Deprecated: max_retries">
@@ -223,6 +224,7 @@ By default, the `TaskOutput` will only include the `raw` output. A `TaskOutput`
| **JSON Dict** | `json_dict` | `Optional[Dict[str, Any]]` | A dictionary representing the JSON output of the task. |
| **Agent** | `agent` | `str` | The agent that executed the task. |
| **Output Format** | `output_format` | `OutputFormat` | The format of the task output, with options including RAW, JSON, and Pydantic. The default is RAW. |
| **Messages** | `messages` | `list[LLMMessage]` | The messages from the last task execution. |
### Task Methods and Properties
@@ -341,7 +343,11 @@ Task guardrails provide a way to validate and transform task outputs before they
are passed to the next task. This feature helps ensure data quality and provides
feedback to agents when their output doesn't meet specific criteria.
Guardrails are implemented as Python functions that contain custom validation logic, giving you complete control over the validation process and ensuring reliable, deterministic results.
CrewAI supports two types of guardrails:
1. **Function-based guardrails**: Python functions with custom validation logic, giving you complete control over the validation process and ensuring reliable, deterministic results.
2. **LLM-based guardrails**: String descriptions that use the agent's LLM to validate outputs based on natural language criteria. These are ideal for complex or subjective validation requirements.
### Function-Based Guardrails
@@ -355,12 +361,12 @@ def validate_blog_content(result: TaskOutput) -> Tuple[bool, Any]:
"""Validate blog content meets requirements."""
try:
# Check word count
word_count = len(result.split())
word_count = len(result.raw.split())
if word_count > 200:
return (False, "Blog content exceeds 200 words")
# Additional validation logic here
return (True, result.strip())
return (True, result.raw.strip())
except Exception as e:
return (False, "Unexpected error during validation")
@@ -372,6 +378,147 @@ blog_task = Task(
)
```
### LLM-Based Guardrails (String Descriptions)
Instead of writing custom validation functions, you can use string descriptions that leverage LLM-based validation. When you provide a string to the `guardrail` or `guardrails` parameter, CrewAI automatically creates an `LLMGuardrail` that uses the agent's LLM to validate the output based on your description.
**Requirements**:
- The task must have an `agent` assigned (the guardrail uses the agent's LLM)
- Provide a clear, descriptive string explaining the validation criteria
```python Code
from crewai import Task
# Single LLM-based guardrail
blog_task = Task(
description="Write a blog post about AI",
expected_output="A blog post under 200 words",
agent=blog_agent,
guardrail="The blog post must be under 200 words and contain no technical jargon"
)
```
LLM-based guardrails are particularly useful for:
- **Complex validation logic** that's difficult to express programmatically
- **Subjective criteria** like tone, style, or quality assessments
- **Natural language requirements** that are easier to describe than code
The LLM guardrail will:
1. Analyze the task output against your description
2. Return `(True, output)` if the output complies with the criteria
3. Return `(False, feedback)` with specific feedback if validation fails
**Example with detailed validation criteria**:
```python Code
research_task = Task(
description="Research the latest developments in quantum computing",
expected_output="A comprehensive research report",
agent=researcher_agent,
guardrail="""
The research report must:
- Be at least 1000 words long
- Include at least 5 credible sources
- Cover both technical and practical applications
- Be written in a professional, academic tone
- Avoid speculation or unverified claims
"""
)
```
### Multiple Guardrails
You can apply multiple guardrails to a task using the `guardrails` parameter. Multiple guardrails are executed sequentially, with each guardrail receiving the output from the previous one. This allows you to chain validation and transformation steps.
The `guardrails` parameter accepts:
- A list of guardrail functions or string descriptions
- A single guardrail function or string (same as `guardrail`)
**Note**: If `guardrails` is provided, it takes precedence over `guardrail`. The `guardrail` parameter will be ignored when `guardrails` is set.
```python Code
from typing import Tuple, Any
from crewai import TaskOutput, Task
def validate_word_count(result: TaskOutput) -> Tuple[bool, Any]:
"""Validate word count is within limits."""
word_count = len(result.raw.split())
if word_count < 100:
return (False, f"Content too short: {word_count} words. Need at least 100 words.")
if word_count > 500:
return (False, f"Content too long: {word_count} words. Maximum is 500 words.")
return (True, result.raw)
def validate_no_profanity(result: TaskOutput) -> Tuple[bool, Any]:
"""Check for inappropriate language."""
profanity_words = ["badword1", "badword2"] # Example list
content_lower = result.raw.lower()
for word in profanity_words:
if word in content_lower:
return (False, f"Inappropriate language detected: {word}")
return (True, result.raw)
def format_output(result: TaskOutput) -> Tuple[bool, Any]:
"""Format and clean the output."""
formatted = result.raw.strip()
# Capitalize first letter
formatted = formatted[0].upper() + formatted[1:] if formatted else formatted
return (True, formatted)
# Apply multiple guardrails sequentially
blog_task = Task(
description="Write a blog post about AI",
expected_output="A well-formatted blog post between 100-500 words",
agent=blog_agent,
guardrails=[
validate_word_count, # First: validate length
validate_no_profanity, # Second: check content
format_output # Third: format the result
],
guardrail_max_retries=3
)
```
In this example, the guardrails execute in order:
1. `validate_word_count` checks the word count
2. `validate_no_profanity` checks for inappropriate language (using the output from step 1)
3. `format_output` formats the final result (using the output from step 2)
If any guardrail fails, the error is sent back to the agent, and the task is retried up to `guardrail_max_retries` times.
**Mixing function-based and LLM-based guardrails**:
You can combine both function-based and string-based guardrails in the same list:
```python Code
from typing import Tuple, Any
from crewai import TaskOutput, Task
def validate_word_count(result: TaskOutput) -> Tuple[bool, Any]:
"""Validate word count is within limits."""
word_count = len(result.raw.split())
if word_count < 100:
return (False, f"Content too short: {word_count} words. Need at least 100 words.")
if word_count > 500:
return (False, f"Content too long: {word_count} words. Maximum is 500 words.")
return (True, result.raw)
# Mix function-based and LLM-based guardrails
blog_task = Task(
description="Write a blog post about AI",
expected_output="A well-formatted blog post between 100-500 words",
agent=blog_agent,
guardrails=[
validate_word_count, # Function-based: precise word count check
"The content must be engaging and suitable for a general audience", # LLM-based: subjective quality check
"The writing style should be clear, concise, and free of technical jargon" # LLM-based: style validation
],
guardrail_max_retries=3
)
```
This approach combines the precision of programmatic validation with the flexibility of LLM-based assessment for subjective criteria.
### Guardrail Function Requirements
1. **Function Signature**:

View File

@@ -17,7 +17,7 @@ This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/cre
enabling everything from simple searches to complex interactions and effective teamwork among agents.
<Note type="info" title="Enterprise Enhancement: Tools Repository">
CrewAI AMP provides a comprehensive Tools Repository with pre-built integrations for common business systems and APIs. Deploy agents with enterprise tools in minutes instead of days.
CrewAI AOP provides a comprehensive Tools Repository with pre-built integrations for common business systems and APIs. Deploy agents with enterprise tools in minutes instead of days.
The Enterprise Tools Repository includes:
- Pre-built connectors for popular enterprise systems

View File

@@ -37,7 +37,7 @@ you can use them locally or refine them to your needs.
<Card title="Tools & Integrations" href="/en/enterprise/features/tools-and-integrations" icon="wrench">
Connect external apps and manage internal tools your agents can use.
</Card>
<Card title="Tool Repository" href="/en/enterprise/features/tool-repository" icon="toolbox">
<Card title="Tool Repository" href="/en/enterprise/guides/tool-repository#tool-repository" icon="toolbox">
Publish and install tools to enhance your crews' capabilities.
</Card>
<Card title="Agents Repository" href="/en/enterprise/features/agent-repositories" icon="people-group">

View File

@@ -7,10 +7,10 @@ mode: "wide"
## Overview
RBAC in CrewAI AMP enables secure, scalable access management through a combination of organizationlevel roles and automationlevel visibility controls.
RBAC in CrewAI AOP enables secure, scalable access management through a combination of organizationlevel roles and automationlevel visibility controls.
<Frame>
<img src="/images/enterprise/users_and_roles.png" alt="RBAC overview in CrewAI AMP" />
<img src="/images/enterprise/users_and_roles.png" alt="RBAC overview in CrewAI AOP" />
</Frame>
@@ -28,7 +28,7 @@ You can configure users and roles in Settings → Roles.
<Steps>
<Step title="Open Roles settings">
Go to <b>Settings → Roles</b> in CrewAI AMP.
Go to <b>Settings → Roles</b> in CrewAI AOP.
</Step>
<Step title="Choose a role type">
Use a predefined role (<b>Owner</b>, <b>Member</b>) or click <b>Create role</b> to define a custom one.
@@ -93,7 +93,7 @@ The organization owner always has access. In private mode, only whitelisted user
</Tip>
<Frame>
<img src="/images/enterprise/visibility.png" alt="Automation Visibility settings in CrewAI AMP" />
<img src="/images/enterprise/visibility.png" alt="Automation Visibility settings in CrewAI AOP" />
</Frame>

View File

@@ -43,7 +43,7 @@ Tools & Integrations is the central hub for connecting thirdparty apps and ma
1. Go to <Link href="https://app.crewai.com/crewai_plus/connectors">Integrations</Link>
2. Click <b>Connect</b> on the desired service
3. Complete the OAuth flow and grant scopes
4. Copy your Enterprise Token from the <b>Integration</b> tab
4. Copy your Enterprise Token from <Link href="https://app.crewai.com/crewai_plus/settings/integrations">Integration Settings</Link>
<Frame>
![Enterprise Token](/images/enterprise/enterprise_action_auth_token.png)
@@ -57,29 +57,37 @@ Tools & Integrations is the central hub for connecting thirdparty apps and ma
uv add crewai-tools
```
### Environment Variable Setup
<Note>
To use integrations with `Agent(apps=[])`, you must set the `CREWAI_PLATFORM_INTEGRATION_TOKEN` environment variable with your Enterprise Token.
</Note>
```bash
export CREWAI_PLATFORM_INTEGRATION_TOKEN="your_enterprise_token"
```
Or add it to your `.env` file:
```
CREWAI_PLATFORM_INTEGRATION_TOKEN=your_enterprise_token
```
### Usage Example
<Tip>
All services you have authenticated will be available as tools. Add `CrewaiEnterpriseTools` to your agent and youre set.
Use the new streamlined approach to integrate enterprise apps. Simply specify the app and its actions directly in the Agent configuration.
</Tip>
```python
from crewai import Agent, Task, Crew
from crewai_tools import CrewaiEnterpriseTools
# Get enterprise tools (Gmail tool will be included)
enterprise_tools = CrewaiEnterpriseTools(
enterprise_token="your_enterprise_token"
)
# print the tools
print(enterprise_tools)
# Create an agent with Gmail capabilities
email_agent = Agent(
role="Email Manager",
goal="Manage and organize email communications",
backstory="An AI assistant specialized in email management and communication.",
tools=enterprise_tools
apps=['gmail', 'gmail/send_email'] # Using canonical name 'gmail'
)
# Task to send an email
@@ -102,21 +110,14 @@ Tools & Integrations is the central hub for connecting thirdparty apps and ma
### Filtering Tools
```python
from crewai_tools import CrewaiEnterpriseTools
enterprise_tools = CrewaiEnterpriseTools(
actions_list=["gmail_find_email"] # only gmail_find_email tool will be available
)
gmail_tool = enterprise_tools["gmail_find_email"]
from crewai import Agent, Task, Crew
# Create agent with specific Gmail actions only
gmail_agent = Agent(
role="Gmail Manager",
goal="Manage gmail communications and notifications",
backstory="An AI assistant that helps coordinate gmail communications.",
tools=[gmail_tool]
apps=['gmail/fetch_emails'] # Using canonical name with specific action
)
notification_task = Task(
@@ -188,10 +189,10 @@ Tools & Integrations is the central hub for connecting thirdparty apps and ma
## Internal Tools
Create custom tools locally, publish them on CrewAI AMP Tool Repository and use them in your agents.
Create custom tools locally, publish them on CrewAI AOP Tool Repository and use them in your agents.
<Tip>
Before running the commands below, make sure you log in to your CrewAI AMP account by running this command:
Before running the commands below, make sure you log in to your CrewAI AOP account by running this command:
```bash
crewai login
```
@@ -209,13 +210,13 @@ Tools & Integrations is the central hub for connecting thirdparty apps and ma
```
</Step>
<Step title="Publish">
Publish the tool to the CrewAI AMP Tool Repository.
Publish the tool to the CrewAI AOP Tool Repository.
```bash
crewai tool publish
```
</Step>
<Step title="Install">
Install the tool from the CrewAI AMP Tool Repository.
Install the tool from the CrewAI AOP Tool Repository.
```bash
crewai tool install your-tool
```
@@ -240,7 +241,7 @@ Tools & Integrations is the central hub for connecting thirdparty apps and ma
## Related
<CardGroup cols={2}>
<Card title="Tool Repository" href="/en/enterprise/features/tool-repository" icon="toolbox">
<Card title="Tool Repository" href="/en/enterprise/guides/tool-repository#tool-repository" icon="toolbox">
Create, publish, and version custom tools for your organization.
</Card>
<Card title="Webhook Automation" href="/en/enterprise/guides/webhook-automation" icon="bolt">

View File

@@ -11,7 +11,7 @@ Traces provide comprehensive visibility into your crew executions, helping you m
## What are Traces?
Traces in CrewAI AMP are detailed execution records that capture every aspect of your crew's operation, from initial inputs to final outputs. They record:
Traces in CrewAI AOP are detailed execution records that capture every aspect of your crew's operation, from initial inputs to final outputs. They record:
- Agent thoughts and reasoning
- Task execution details
@@ -28,7 +28,7 @@ Traces in CrewAI AMP are detailed execution records that capture every aspect of
<Steps>
<Step title="Navigate to the Traces Tab">
Once in your CrewAI AMP dashboard, click on the **Traces** to view all execution records.
Once in your CrewAI AOP dashboard, click on the **Traces** to view all execution records.
</Step>
<Step title="Select an Execution">
@@ -153,5 +153,5 @@ CrewAI batches trace uploads to reduce overhead on high-volume runs:
This yields more stable tracing under load while preserving detailed task/agent telemetry.
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with trace analysis or any other CrewAI AMP features.
Contact our support team for assistance with trace analysis or any other CrewAI AOP features.
</Card>

View File

@@ -8,7 +8,7 @@ mode: "wide"
## Overview
Enterprise Event Streaming lets you receive real-time webhook updates about your crews and flows deployed to
CrewAI AMP, such as model calls, tool usage, and flow steps.
CrewAI AOP, such as model calls, tool usage, and flow steps.
## Usage

View File

@@ -1,11 +1,11 @@
---
title: "Triggers Overview"
description: "Understand how CrewAI AMP triggers work, how to manage them, and where to find integration-specific playbooks"
description: "Understand how CrewAI AOP triggers work, how to manage them, and where to find integration-specific playbooks"
icon: "face-smile"
mode: "wide"
---
CrewAI AMP triggers connect your automations to real-time events across the tools your teams already use. Instead of polling systems or relying on manual kickoffs, triggers listen for changes—new emails, calendar updates, CRM status changes—and immediately launch the crew or flow you specify.
CrewAI AOP triggers connect your automations to real-time events across the tools your teams already use. Instead of polling systems or relying on manual kickoffs, triggers listen for changes—new emails, calendar updates, CRM status changes—and immediately launch the crew or flow you specify.
<Frame>
![Automation Triggers Overview](/images/enterprise/crew_connectors.png)
@@ -117,27 +117,50 @@ Before wiring a trigger into production, make sure you:
- Decide whether to pass trigger context automatically using `allow_crewai_trigger_context`
- Set up monitoring—webhook logs, CrewAI execution history, and optional external alerting
### Payload & Crew Examples Repository
### Testing Triggers Locally with CLI
We maintain a comprehensive repository with end-to-end trigger examples to help you build and test your automations:
The CrewAI CLI provides powerful commands to help you develop and test trigger-driven automations without deploying to production.
This repository contains:
#### List Available Triggers
- **Realistic payload samples** for every supported trigger integration
- **Ready-to-run crew implementations** that parse each payload and turn it into a business workflow
- **Multiple scenarios per integration** (e.g., new events, updates, deletions) so you can match the shape of your data
View all available triggers for your connected integrations:
| Integration | When it fires | Payload Samples | Crew Examples |
| :-- | :-- | :-- | :-- |
| Gmail | New messages, thread updates | [New alerts, thread updates](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/gmail) | [`new-email-crew.py`, `gmail-alert-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/gmail) |
| Google Calendar | Event created / updated / started / ended / cancelled | [Event lifecycle payloads](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/google_calendar) | [`calendar-event-crew.py`, `calendar-meeting-crew.py`, `calendar-working-location-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/google_calendar) |
| Google Drive | File created / updated / deleted | [File lifecycle payloads](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/google_drive) | [`drive-file-crew.py`, `drive-file-deletion-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/google_drive) |
| Outlook | New email, calendar event removed | [Outlook payloads](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/outlook) | [`outlook-message-crew.py`, `outlook-event-removal-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/outlook) |
| OneDrive | File operations (create, update, share, delete) | [OneDrive payloads](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/onedrive) | [`onedrive-file-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/onedrive) |
| HubSpot | Record created / updated (contacts, companies, deals) | [HubSpot payloads](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/hubspot) | [`hubspot-company-crew.py`, `hubspot-contact-crew.py`, `hubspot-record-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/hubspot) |
| Microsoft Teams | Chat thread created | [Teams chat payload](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/microsoft-teams) | [`teams-chat-created-crew.py`](https://github.com/crewAIInc/crewai-enterprise-trigger-examples/tree/main/microsoft-teams) |
```bash
crewai triggers list
```
This command displays all triggers available based on your connected integrations, showing:
- Integration name and connection status
- Available trigger types
- Trigger names and descriptions
#### Simulate Trigger Execution
Test your crew with realistic trigger payloads before deployment:
```bash
crewai triggers run <trigger_name>
```
For example:
```bash
crewai triggers run microsoft_onedrive/file_changed
```
This command:
- Executes your crew locally
- Passes a complete, realistic trigger payload
- Simulates exactly how your crew will be called in production
<Warning>
**Important Development Notes:**
- Use `crewai triggers run <trigger>` to simulate trigger execution during development
- Using `crewai run` will NOT simulate trigger calls and won't pass the trigger payload
- After deployment, your crew will be executed with the actual trigger payload
- If your crew expects parameters that aren't in the trigger payload, execution may fail
</Warning>
Use these samples to understand payload shape, copy the matching crew, and then replace the test payload with your live trigger data.
### Triggers with Crew
@@ -241,15 +264,20 @@ def delegate_to_crew(self, crewai_trigger_payload: dict = None):
## Troubleshooting
**Trigger not firing:**
- Verify the trigger is enabled
- Check integration connection status
- Verify the trigger is enabled in your deployment's Triggers tab
- Check integration connection status under Tools & Integrations
- Ensure all required environment variables are properly configured
**Execution failures:**
- Check the execution logs for error details
- If you are developing, make sure the inputs include the `crewai_trigger_payload` parameter with the correct payload
- Use `crewai triggers run <trigger_name>` to test locally and see the exact payload structure
- Verify your crew can handle the `crewai_trigger_payload` parameter
- Ensure your crew doesn't expect parameters that aren't included in the trigger payload
**Development issues:**
- Always test with `crewai triggers run <trigger>` before deploying to see the complete payload
- Remember that `crewai run` does NOT simulate trigger calls—use `crewai triggers run` instead
- Use `crewai triggers list` to verify which triggers are available for your connected integrations
- After deployment, your crew will receive the actual trigger payload, so test thoroughly locally first
Automation triggers transform your CrewAI deployments into responsive, event-driven systems that can seamlessly integrate with your existing business processes and tools.
<Card title="CrewAI AMP Trigger Examples" href="https://github.com/crewAIInc/crewai-enterprise-trigger-examples" icon="github">
Check them out on GitHub!
</Card>

View File

@@ -19,8 +19,8 @@ This guide walks you through connecting Azure OpenAI with Crew Studio for seamle
</Frame>
</Step>
<Step title="Configure CrewAI AMP Connection">
4. In another tab, open `CrewAI AMP > LLM Connections`. Name your LLM Connection, select Azure as the provider, and choose the same model you selected in Azure.
<Step title="Configure CrewAI AOP Connection">
4. In another tab, open `CrewAI AOP > LLM Connections`. Name your LLM Connection, select Azure as the provider, and choose the same model you selected in Azure.
5. On the same page, add environment variables from step 3:
- One named `AZURE_DEPLOYMENT_TARGET_URL` (using the Target URI). The URL should look like this: https://your-deployment.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview
- Another named `AZURE_API_KEY` (using the Key).
@@ -28,7 +28,7 @@ This guide walks you through connecting Azure OpenAI with Crew Studio for seamle
</Step>
<Step title="Set Default Configuration">
7. In `CrewAI AMP > Settings > Defaults > Crew Studio LLM Settings`, set the new LLM Connection and model as defaults.
7. In `CrewAI AOP > Settings > Defaults > Crew Studio LLM Settings`, set the new LLM Connection and model as defaults.
</Step>
<Step title="Configure Network Access">

View File

@@ -7,7 +7,7 @@ mode: "wide"
## Overview
[CrewAI AMP](https://app.crewai.com) streamlines the process of **creating**, **deploying**, and **managing** your AI agents in production environments.
[CrewAI AOP](https://app.crewai.com) streamlines the process of **creating**, **deploying**, and **managing** your AI agents in production environments.
## Getting Started

View File

@@ -0,0 +1,35 @@
---
title: "Open Telemetry Logs"
description: "Understand how to capture telemetry logs from your CrewAI AOP deployments"
icon: "magnifying-glass-chart"
mode: "wide"
---
CrewAI AOP provides a powerful way to capture telemetry logs from your deployments. This allows you to monitor the performance of your agents and workflows, and to debug issues that may arise.
## Prerequisites
<CardGroup cols={2}>
<Card title="ENTERPRISE OTEL SETUP enabled" icon="users">
Your organization should have ENTERPRISE OTEL SETUP enabled
</Card>
<Card title="OTEL collector setup" icon="server">
Your organization should have an OTEL collector setup or a provider like Datadog log intake setup
</Card>
</CardGroup>
## How to capture telemetry logs
1. Go to settings/organization tab
2. Configure your OTEL collector setup
3. Save
Example to setup OTEL log collection capture to Datadog.
<Frame>
![Capture Telemetry Logs](/images/crewai-otel-export.png)
</Frame>

View File

@@ -1,12 +1,12 @@
---
title: "Deploy Crew"
description: "Deploying a Crew on CrewAI AMP"
description: "Deploying a Crew on CrewAI AOP"
icon: "rocket"
mode: "wide"
---
<Note>
After creating a crew locally or through Crew Studio, the next step is deploying it to the CrewAI AMP platform. This guide covers multiple deployment methods to help you choose the best approach for your workflow.
After creating a crew locally or through Crew Studio, the next step is deploying it to the CrewAI AOP platform. This guide covers multiple deployment methods to help you choose the best approach for your workflow.
</Note>
## Prerequisites
@@ -39,10 +39,10 @@ The CLI provides the fastest way to deploy locally developed crews to the Enterp
</Step>
<Step title="Authenticate with the Enterprise Platform">
First, you need to authenticate your CLI with the CrewAI AMP platform:
First, you need to authenticate your CLI with the CrewAI AOP platform:
```bash
# If you already have a CrewAI AMP account, or want to create one:
# If you already have a CrewAI AOP account, or want to create one:
crewai login
```
@@ -124,7 +124,7 @@ The CrewAI CLI offers several commands to manage your deployments:
## Option 2: Deploy Directly via Web Interface
You can also deploy your crews directly through the CrewAI AMP web interface by connecting your GitHub account. This approach doesn't require using the CLI on your local machine.
You can also deploy your crews directly through the CrewAI AOP web interface by connecting your GitHub account. This approach doesn't require using the CLI on your local machine.
<Steps>
@@ -134,9 +134,9 @@ You can also deploy your crews directly through the CrewAI AMP web interface by
</Step>
<Step title="Connecting GitHub to CrewAI AMP">
<Step title="Connecting GitHub to CrewAI AOP">
1. Log in to [CrewAI AMP](https://app.crewai.com)
1. Log in to [CrewAI AOP](https://app.crewai.com)
2. Click on the button "Connect GitHub"
<Frame>
@@ -190,7 +190,7 @@ You can also deploy your crews directly through the CrewAI AMP web interface by
## ⚠️ Environment Variable Security Requirements
<Warning>
**Important**: CrewAI AMP has security restrictions on environment variable names that can cause deployment failures if not followed.
**Important**: CrewAI AOP has security restrictions on environment variable names that can cause deployment failures if not followed.
</Warning>
### Blocked Environment Variable Patterns

Some files were not shown because too many files have changed in this diff Show More