mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-17 03:58:33 +00:00
Compare commits
21 Commits
main
...
lorenze/en
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
64052745b7 | ||
|
|
7f7b5094cc | ||
|
|
ad83e8a2bf | ||
|
|
601eda9095 | ||
|
|
83c62a65dd | ||
|
|
3a1deb193a | ||
|
|
09185acc0d | ||
|
|
6541f01b1b | ||
|
|
3a6702e9c8 | ||
|
|
e4bd7889fd | ||
|
|
842a1db16f | ||
|
|
e9b86100c7 | ||
|
|
341812d58e | ||
|
|
38db734561 | ||
|
|
5048d54981 | ||
|
|
ae17178e86 | ||
|
|
b7a13e15ff | ||
|
|
13dc7e25e0 | ||
|
|
5cef85c643 | ||
|
|
dc3ae9396d | ||
|
|
0029f8193c |
@@ -3,10 +3,9 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import TYPE_CHECKING, Any, TypedDict
|
||||
from typing import TYPE_CHECKING, TypedDict
|
||||
import uuid
|
||||
|
||||
from a2a.client.errors import A2AClientHTTPError
|
||||
from a2a.types import (
|
||||
AgentCard,
|
||||
Message,
|
||||
@@ -21,10 +20,7 @@ from a2a.types import (
|
||||
from typing_extensions import NotRequired
|
||||
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import (
|
||||
A2AConnectionErrorEvent,
|
||||
A2AResponseReceivedEvent,
|
||||
)
|
||||
from crewai.events.types.a2a_events import A2AResponseReceivedEvent
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -59,8 +55,7 @@ class TaskStateResult(TypedDict):
|
||||
history: list[Message]
|
||||
result: NotRequired[str]
|
||||
error: NotRequired[str]
|
||||
agent_card: NotRequired[dict[str, Any]]
|
||||
a2a_agent_name: NotRequired[str | None]
|
||||
agent_card: NotRequired[AgentCard]
|
||||
|
||||
|
||||
def extract_task_result_parts(a2a_task: A2ATask) -> list[str]:
|
||||
@@ -136,69 +131,50 @@ def process_task_state(
|
||||
is_multiturn: bool,
|
||||
agent_role: str | None,
|
||||
result_parts: list[str] | None = None,
|
||||
endpoint: str | None = None,
|
||||
a2a_agent_name: str | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
is_final: bool = True,
|
||||
) -> TaskStateResult | None:
|
||||
"""Process A2A task state and return result dictionary.
|
||||
|
||||
Shared logic for both polling and streaming handlers.
|
||||
|
||||
Args:
|
||||
a2a_task: The A2A task to process.
|
||||
new_messages: List to collect messages (modified in place).
|
||||
agent_card: The agent card.
|
||||
turn_number: Current turn number.
|
||||
is_multiturn: Whether multi-turn conversation.
|
||||
agent_role: Agent role for logging.
|
||||
a2a_task: The A2A task to process
|
||||
new_messages: List to collect messages (modified in place)
|
||||
agent_card: The agent card
|
||||
turn_number: Current turn number
|
||||
is_multiturn: Whether multi-turn conversation
|
||||
agent_role: Agent role for logging
|
||||
result_parts: Accumulated result parts (streaming passes accumulated,
|
||||
polling passes None to extract from task).
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
from_task: Optional CrewAI Task for event metadata.
|
||||
from_agent: Optional CrewAI Agent for event metadata.
|
||||
is_final: Whether this is the final response in the stream.
|
||||
polling passes None to extract from task)
|
||||
|
||||
Returns:
|
||||
Result dictionary if terminal/actionable state, None otherwise.
|
||||
Result dictionary if terminal/actionable state, None otherwise
|
||||
"""
|
||||
should_extract = result_parts is None
|
||||
if result_parts is None:
|
||||
result_parts = []
|
||||
|
||||
if a2a_task.status.state == TaskState.completed:
|
||||
if not result_parts:
|
||||
if should_extract:
|
||||
extracted_parts = extract_task_result_parts(a2a_task)
|
||||
result_parts.extend(extracted_parts)
|
||||
if a2a_task.history:
|
||||
new_messages.extend(a2a_task.history)
|
||||
|
||||
response_text = " ".join(result_parts) if result_parts else ""
|
||||
message_id = None
|
||||
if a2a_task.status and a2a_task.status.message:
|
||||
message_id = a2a_task.status.message.message_id
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AResponseReceivedEvent(
|
||||
response=response_text,
|
||||
turn_number=turn_number,
|
||||
context_id=a2a_task.context_id,
|
||||
message_id=message_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="completed",
|
||||
final=is_final,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
return TaskStateResult(
|
||||
status=TaskState.completed,
|
||||
agent_card=agent_card.model_dump(exclude_none=True),
|
||||
agent_card=agent_card,
|
||||
result=response_text,
|
||||
history=new_messages,
|
||||
)
|
||||
@@ -218,24 +194,14 @@ def process_task_state(
|
||||
)
|
||||
new_messages.append(agent_message)
|
||||
|
||||
input_message_id = None
|
||||
if a2a_task.status and a2a_task.status.message:
|
||||
input_message_id = a2a_task.status.message.message_id
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AResponseReceivedEvent(
|
||||
response=response_text,
|
||||
turn_number=turn_number,
|
||||
context_id=a2a_task.context_id,
|
||||
message_id=input_message_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="input_required",
|
||||
final=is_final,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -243,7 +209,7 @@ def process_task_state(
|
||||
status=TaskState.input_required,
|
||||
error=response_text,
|
||||
history=new_messages,
|
||||
agent_card=agent_card.model_dump(exclude_none=True),
|
||||
agent_card=agent_card,
|
||||
)
|
||||
|
||||
if a2a_task.status.state in {TaskState.failed, TaskState.rejected}:
|
||||
@@ -282,11 +248,6 @@ async def send_message_and_get_task_id(
|
||||
turn_number: int,
|
||||
is_multiturn: bool,
|
||||
agent_role: str | None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
endpoint: str | None = None,
|
||||
a2a_agent_name: str | None = None,
|
||||
context_id: str | None = None,
|
||||
) -> str | TaskStateResult:
|
||||
"""Send message and process initial response.
|
||||
|
||||
@@ -301,11 +262,6 @@ async def send_message_and_get_task_id(
|
||||
turn_number: Current turn number
|
||||
is_multiturn: Whether multi-turn conversation
|
||||
agent_role: Agent role for logging
|
||||
from_task: Optional CrewAI Task object for event metadata.
|
||||
from_agent: Optional CrewAI Agent object for event metadata.
|
||||
endpoint: Optional A2A endpoint URL.
|
||||
a2a_agent_name: Optional A2A agent name.
|
||||
context_id: Optional A2A context ID for correlation.
|
||||
|
||||
Returns:
|
||||
Task ID string if agent needs polling/waiting, or TaskStateResult if done.
|
||||
@@ -324,16 +280,9 @@ async def send_message_and_get_task_id(
|
||||
A2AResponseReceivedEvent(
|
||||
response=response_text,
|
||||
turn_number=turn_number,
|
||||
context_id=event.context_id,
|
||||
message_id=event.message_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="completed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -341,7 +290,7 @@ async def send_message_and_get_task_id(
|
||||
status=TaskState.completed,
|
||||
result=response_text,
|
||||
history=new_messages,
|
||||
agent_card=agent_card.model_dump(exclude_none=True),
|
||||
agent_card=agent_card,
|
||||
)
|
||||
|
||||
if isinstance(event, tuple):
|
||||
@@ -355,10 +304,6 @@ async def send_message_and_get_task_id(
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
if result:
|
||||
return result
|
||||
@@ -371,99 +316,6 @@ async def send_message_and_get_task_id(
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
except A2AClientHTTPError as e:
|
||||
error_msg = f"HTTP Error {e.status_code}: {e!s}"
|
||||
|
||||
error_message = Message(
|
||||
role=Role.agent,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=[Part(root=TextPart(text=error_msg))],
|
||||
context_id=context_id,
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type="http_error",
|
||||
status_code=e.status_code,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="send_message",
|
||||
context_id=context_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
status=TaskState.failed,
|
||||
error=error_msg,
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Unexpected error during send_message: {e!s}"
|
||||
|
||||
error_message = Message(
|
||||
role=Role.agent,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=[Part(root=TextPart(text=error_msg))],
|
||||
context_id=context_id,
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type="unexpected_error",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="send_message",
|
||||
context_id=context_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
status=TaskState.failed,
|
||||
error=error_msg,
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
finally:
|
||||
aclose = getattr(event_stream, "aclose", None)
|
||||
if aclose:
|
||||
|
||||
@@ -22,13 +22,6 @@ class BaseHandlerKwargs(TypedDict, total=False):
|
||||
turn_number: int
|
||||
is_multiturn: bool
|
||||
agent_role: str | None
|
||||
context_id: str | None
|
||||
task_id: str | None
|
||||
endpoint: str | None
|
||||
agent_branch: Any
|
||||
a2a_agent_name: str | None
|
||||
from_task: Any
|
||||
from_agent: Any
|
||||
|
||||
|
||||
class PollingHandlerKwargs(BaseHandlerKwargs, total=False):
|
||||
@@ -36,6 +29,8 @@ class PollingHandlerKwargs(BaseHandlerKwargs, total=False):
|
||||
|
||||
polling_interval: float
|
||||
polling_timeout: float
|
||||
endpoint: str
|
||||
agent_branch: Any
|
||||
history_length: int
|
||||
max_polls: int | None
|
||||
|
||||
@@ -43,6 +38,9 @@ class PollingHandlerKwargs(BaseHandlerKwargs, total=False):
|
||||
class StreamingHandlerKwargs(BaseHandlerKwargs, total=False):
|
||||
"""Kwargs for streaming handler."""
|
||||
|
||||
context_id: str | None
|
||||
task_id: str | None
|
||||
|
||||
|
||||
class PushNotificationHandlerKwargs(BaseHandlerKwargs, total=False):
|
||||
"""Kwargs for push notification handler."""
|
||||
@@ -51,6 +49,7 @@ class PushNotificationHandlerKwargs(BaseHandlerKwargs, total=False):
|
||||
result_store: PushNotificationResultStore
|
||||
polling_timeout: float
|
||||
polling_interval: float
|
||||
agent_branch: Any
|
||||
|
||||
|
||||
class PushNotificationResultStore(Protocol):
|
||||
|
||||
@@ -31,7 +31,6 @@ from crewai.a2a.task_helpers import (
|
||||
from crewai.a2a.updates.base import PollingHandlerKwargs
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import (
|
||||
A2AConnectionErrorEvent,
|
||||
A2APollingStartedEvent,
|
||||
A2APollingStatusEvent,
|
||||
A2AResponseReceivedEvent,
|
||||
@@ -50,33 +49,23 @@ async def _poll_task_until_complete(
|
||||
agent_branch: Any | None = None,
|
||||
history_length: int = 100,
|
||||
max_polls: int | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
context_id: str | None = None,
|
||||
endpoint: str | None = None,
|
||||
a2a_agent_name: str | None = None,
|
||||
) -> A2ATask:
|
||||
"""Poll task status until terminal state reached.
|
||||
|
||||
Args:
|
||||
client: A2A client instance.
|
||||
task_id: Task ID to poll.
|
||||
polling_interval: Seconds between poll attempts.
|
||||
polling_timeout: Max seconds before timeout.
|
||||
agent_branch: Agent tree branch for logging.
|
||||
history_length: Number of messages to retrieve per poll.
|
||||
max_polls: Max number of poll attempts (None = unlimited).
|
||||
from_task: Optional CrewAI Task object for event metadata.
|
||||
from_agent: Optional CrewAI Agent object for event metadata.
|
||||
context_id: A2A context ID for correlation.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
client: A2A client instance
|
||||
task_id: Task ID to poll
|
||||
polling_interval: Seconds between poll attempts
|
||||
polling_timeout: Max seconds before timeout
|
||||
agent_branch: Agent tree branch for logging
|
||||
history_length: Number of messages to retrieve per poll
|
||||
max_polls: Max number of poll attempts (None = unlimited)
|
||||
|
||||
Returns:
|
||||
Final task object in terminal state.
|
||||
Final task object in terminal state
|
||||
|
||||
Raises:
|
||||
A2APollingTimeoutError: If polling exceeds timeout or max_polls.
|
||||
A2APollingTimeoutError: If polling exceeds timeout or max_polls
|
||||
"""
|
||||
start_time = time.monotonic()
|
||||
poll_count = 0
|
||||
@@ -88,19 +77,13 @@ async def _poll_task_until_complete(
|
||||
)
|
||||
|
||||
elapsed = time.monotonic() - start_time
|
||||
effective_context_id = task.context_id or context_id
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2APollingStatusEvent(
|
||||
task_id=task_id,
|
||||
context_id=effective_context_id,
|
||||
state=str(task.status.state.value) if task.status.state else "unknown",
|
||||
elapsed_seconds=elapsed,
|
||||
poll_count=poll_count,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -154,9 +137,6 @@ class PollingHandler:
|
||||
max_polls = kwargs.get("max_polls")
|
||||
context_id = kwargs.get("context_id")
|
||||
task_id = kwargs.get("task_id")
|
||||
a2a_agent_name = kwargs.get("a2a_agent_name")
|
||||
from_task = kwargs.get("from_task")
|
||||
from_agent = kwargs.get("from_agent")
|
||||
|
||||
try:
|
||||
result_or_task_id = await send_message_and_get_task_id(
|
||||
@@ -166,11 +146,6 @@ class PollingHandler:
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
context_id=context_id,
|
||||
)
|
||||
|
||||
if not isinstance(result_or_task_id, str):
|
||||
@@ -182,12 +157,8 @@ class PollingHandler:
|
||||
agent_branch,
|
||||
A2APollingStartedEvent(
|
||||
task_id=task_id,
|
||||
context_id=context_id,
|
||||
polling_interval=polling_interval,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -199,11 +170,6 @@ class PollingHandler:
|
||||
agent_branch=agent_branch,
|
||||
history_length=history_length,
|
||||
max_polls=max_polls,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
context_id=context_id,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
)
|
||||
|
||||
result = process_task_state(
|
||||
@@ -213,10 +179,6 @@ class PollingHandler:
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
if result:
|
||||
return result
|
||||
@@ -244,15 +206,9 @@ class PollingHandler:
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
@@ -273,83 +229,14 @@ class PollingHandler:
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint,
|
||||
error=str(e),
|
||||
error_type="http_error",
|
||||
status_code=e.status_code,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="polling",
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
status=TaskState.failed,
|
||||
error=error_msg,
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Unexpected error during polling: {e!s}"
|
||||
|
||||
error_message = Message(
|
||||
role=Role.agent,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=[Part(root=TextPart(text=error_msg))],
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type="unexpected_error",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="polling",
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
|
||||
@@ -29,7 +29,6 @@ from crewai.a2a.updates.base import (
|
||||
)
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import (
|
||||
A2AConnectionErrorEvent,
|
||||
A2APushNotificationRegisteredEvent,
|
||||
A2APushNotificationTimeoutEvent,
|
||||
A2AResponseReceivedEvent,
|
||||
@@ -49,11 +48,6 @@ async def _wait_for_push_result(
|
||||
timeout: float,
|
||||
poll_interval: float,
|
||||
agent_branch: Any | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
context_id: str | None = None,
|
||||
endpoint: str | None = None,
|
||||
a2a_agent_name: str | None = None,
|
||||
) -> A2ATask | None:
|
||||
"""Wait for push notification result.
|
||||
|
||||
@@ -63,11 +57,6 @@ async def _wait_for_push_result(
|
||||
timeout: Max seconds to wait.
|
||||
poll_interval: Seconds between polling attempts.
|
||||
agent_branch: Agent tree branch for logging.
|
||||
from_task: Optional CrewAI Task object for event metadata.
|
||||
from_agent: Optional CrewAI Agent object for event metadata.
|
||||
context_id: A2A context ID for correlation.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent.
|
||||
|
||||
Returns:
|
||||
Final task object, or None if timeout.
|
||||
@@ -83,12 +72,7 @@ async def _wait_for_push_result(
|
||||
agent_branch,
|
||||
A2APushNotificationTimeoutEvent(
|
||||
task_id=task_id,
|
||||
context_id=context_id,
|
||||
timeout_seconds=timeout,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -131,56 +115,18 @@ class PushNotificationHandler:
|
||||
agent_role = kwargs.get("agent_role")
|
||||
context_id = kwargs.get("context_id")
|
||||
task_id = kwargs.get("task_id")
|
||||
endpoint = kwargs.get("endpoint")
|
||||
a2a_agent_name = kwargs.get("a2a_agent_name")
|
||||
from_task = kwargs.get("from_task")
|
||||
from_agent = kwargs.get("from_agent")
|
||||
|
||||
if config is None:
|
||||
error_msg = (
|
||||
"PushNotificationConfig is required for push notification handler"
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=error_msg,
|
||||
error_type="configuration_error",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="push_notification",
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
status=TaskState.failed,
|
||||
error=error_msg,
|
||||
error="PushNotificationConfig is required for push notification handler",
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
if result_store is None:
|
||||
error_msg = (
|
||||
"PushNotificationResultStore is required for push notification handler"
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=error_msg,
|
||||
error_type="configuration_error",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="push_notification",
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
status=TaskState.failed,
|
||||
error=error_msg,
|
||||
error="PushNotificationResultStore is required for push notification handler",
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
@@ -192,11 +138,6 @@ class PushNotificationHandler:
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
context_id=context_id,
|
||||
)
|
||||
|
||||
if not isinstance(result_or_task_id, str):
|
||||
@@ -208,12 +149,7 @@ class PushNotificationHandler:
|
||||
agent_branch,
|
||||
A2APushNotificationRegisteredEvent(
|
||||
task_id=task_id,
|
||||
context_id=context_id,
|
||||
callback_url=str(config.url),
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -229,11 +165,6 @@ class PushNotificationHandler:
|
||||
timeout=polling_timeout,
|
||||
poll_interval=polling_interval,
|
||||
agent_branch=agent_branch,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
context_id=context_id,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
)
|
||||
|
||||
if final_task is None:
|
||||
@@ -250,10 +181,6 @@ class PushNotificationHandler:
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
if result:
|
||||
return result
|
||||
@@ -276,83 +203,14 @@ class PushNotificationHandler:
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type="http_error",
|
||||
status_code=e.status_code,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="push_notification",
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
status=TaskState.failed,
|
||||
error=error_msg,
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Unexpected error during push notification: {e!s}"
|
||||
|
||||
error_message = Message(
|
||||
role=Role.agent,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=[Part(root=TextPart(text=error_msg))],
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type="unexpected_error",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="push_notification",
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
|
||||
@@ -26,13 +26,7 @@ from crewai.a2a.task_helpers import (
|
||||
)
|
||||
from crewai.a2a.updates.base import StreamingHandlerKwargs
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import (
|
||||
A2AArtifactReceivedEvent,
|
||||
A2AConnectionErrorEvent,
|
||||
A2AResponseReceivedEvent,
|
||||
A2AStreamingChunkEvent,
|
||||
A2AStreamingStartedEvent,
|
||||
)
|
||||
from crewai.events.types.a2a_events import A2AResponseReceivedEvent
|
||||
|
||||
|
||||
class StreamingHandler:
|
||||
@@ -63,57 +57,19 @@ class StreamingHandler:
|
||||
turn_number = kwargs.get("turn_number", 0)
|
||||
is_multiturn = kwargs.get("is_multiturn", False)
|
||||
agent_role = kwargs.get("agent_role")
|
||||
endpoint = kwargs.get("endpoint")
|
||||
a2a_agent_name = kwargs.get("a2a_agent_name")
|
||||
from_task = kwargs.get("from_task")
|
||||
from_agent = kwargs.get("from_agent")
|
||||
agent_branch = kwargs.get("agent_branch")
|
||||
|
||||
result_parts: list[str] = []
|
||||
final_result: TaskStateResult | None = None
|
||||
event_stream = client.send_message(message)
|
||||
chunk_index = 0
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AStreamingStartedEvent(
|
||||
task_id=task_id,
|
||||
context_id=context_id,
|
||||
endpoint=endpoint or "",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
try:
|
||||
async for event in event_stream:
|
||||
if isinstance(event, Message):
|
||||
new_messages.append(event)
|
||||
message_context_id = event.context_id or context_id
|
||||
for part in event.parts:
|
||||
if part.root.kind == "text":
|
||||
text = part.root.text
|
||||
result_parts.append(text)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AStreamingChunkEvent(
|
||||
task_id=event.task_id or task_id,
|
||||
context_id=message_context_id,
|
||||
chunk=text,
|
||||
chunk_index=chunk_index,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
chunk_index += 1
|
||||
|
||||
elif isinstance(event, tuple):
|
||||
a2a_task, update = event
|
||||
@@ -125,51 +81,10 @@ class StreamingHandler:
|
||||
for part in artifact.parts
|
||||
if part.root.kind == "text"
|
||||
)
|
||||
artifact_size = None
|
||||
if artifact.parts:
|
||||
artifact_size = sum(
|
||||
len(p.root.text.encode("utf-8"))
|
||||
if p.root.kind == "text"
|
||||
else len(getattr(p.root, "data", b""))
|
||||
for p in artifact.parts
|
||||
)
|
||||
effective_context_id = a2a_task.context_id or context_id
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AArtifactReceivedEvent(
|
||||
task_id=a2a_task.id,
|
||||
artifact_id=artifact.artifact_id,
|
||||
artifact_name=artifact.name,
|
||||
artifact_description=artifact.description,
|
||||
mime_type=artifact.parts[0].root.kind
|
||||
if artifact.parts
|
||||
else None,
|
||||
size_bytes=artifact_size,
|
||||
append=update.append or False,
|
||||
last_chunk=update.last_chunk or False,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
context_id=effective_context_id,
|
||||
turn_number=turn_number,
|
||||
is_multiturn=is_multiturn,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
is_final_update = False
|
||||
if isinstance(update, TaskStatusUpdateEvent):
|
||||
is_final_update = update.final
|
||||
if (
|
||||
update.status
|
||||
and update.status.message
|
||||
and update.status.message.parts
|
||||
):
|
||||
result_parts.extend(
|
||||
part.root.text
|
||||
for part in update.status.message.parts
|
||||
if part.root.kind == "text" and part.root.text
|
||||
)
|
||||
|
||||
if (
|
||||
not is_final_update
|
||||
@@ -186,11 +101,6 @@ class StreamingHandler:
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
result_parts=result_parts,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
is_final=is_final_update,
|
||||
)
|
||||
if final_result:
|
||||
break
|
||||
@@ -208,82 +118,13 @@ class StreamingHandler:
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type="http_error",
|
||||
status_code=e.status_code,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="streaming",
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
None,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
status=TaskState.failed,
|
||||
error=error_msg,
|
||||
history=new_messages,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Unexpected error during streaming: {e!s}"
|
||||
|
||||
error_message = Message(
|
||||
role=Role.agent,
|
||||
message_id=str(uuid.uuid4()),
|
||||
parts=[Part(root=TextPart(text=error_msg))],
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
new_messages.append(error_message)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=str(e),
|
||||
error_type="unexpected_error",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="streaming",
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AResponseReceivedEvent(
|
||||
response=error_msg,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
status="failed",
|
||||
final=True,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
return TaskStateResult(
|
||||
@@ -295,23 +136,7 @@ class StreamingHandler:
|
||||
finally:
|
||||
aclose = getattr(event_stream, "aclose", None)
|
||||
if aclose:
|
||||
try:
|
||||
await aclose()
|
||||
except Exception as close_error:
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint or "",
|
||||
error=str(close_error),
|
||||
error_type="stream_close_error",
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
operation="stream_close",
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
await aclose()
|
||||
|
||||
if final_result:
|
||||
return final_result
|
||||
@@ -320,5 +145,5 @@ class StreamingHandler:
|
||||
status=TaskState.completed,
|
||||
result=" ".join(result_parts) if result_parts else "",
|
||||
history=new_messages,
|
||||
agent_card=agent_card.model_dump(exclude_none=True),
|
||||
agent_card=agent_card,
|
||||
)
|
||||
|
||||
@@ -23,12 +23,6 @@ from crewai.a2a.auth.utils import (
|
||||
)
|
||||
from crewai.a2a.config import A2AServerConfig
|
||||
from crewai.crew import Crew
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.a2a_events import (
|
||||
A2AAgentCardFetchedEvent,
|
||||
A2AAuthenticationFailedEvent,
|
||||
A2AConnectionErrorEvent,
|
||||
)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -189,8 +183,6 @@ async def _afetch_agent_card_impl(
|
||||
timeout: int,
|
||||
) -> AgentCard:
|
||||
"""Internal async implementation of AgentCard fetching."""
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if "/.well-known/agent-card.json" in endpoint:
|
||||
base_url = endpoint.replace("/.well-known/agent-card.json", "")
|
||||
agent_card_path = "/.well-known/agent-card.json"
|
||||
@@ -225,29 +217,9 @@ async def _afetch_agent_card_impl(
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
agent_card = AgentCard.model_validate(response.json())
|
||||
fetch_time_ms = (time.perf_counter() - start_time) * 1000
|
||||
agent_card_dict = agent_card.model_dump(exclude_none=True)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AAgentCardFetchedEvent(
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=agent_card.name,
|
||||
agent_card=agent_card_dict,
|
||||
protocol_version=agent_card.protocol_version,
|
||||
provider=agent_card_dict.get("provider"),
|
||||
cached=False,
|
||||
fetch_time_ms=fetch_time_ms,
|
||||
),
|
||||
)
|
||||
|
||||
return agent_card
|
||||
return AgentCard.model_validate(response.json())
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
elapsed_ms = (time.perf_counter() - start_time) * 1000
|
||||
response_body = e.response.text[:1000] if e.response.text else None
|
||||
|
||||
if e.response.status_code == 401:
|
||||
error_details = ["Authentication failed"]
|
||||
www_auth = e.response.headers.get("WWW-Authenticate")
|
||||
@@ -256,93 +228,7 @@ async def _afetch_agent_card_impl(
|
||||
if not auth:
|
||||
error_details.append("No auth scheme provided")
|
||||
msg = " | ".join(error_details)
|
||||
|
||||
auth_type = type(auth).__name__ if auth else None
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AAuthenticationFailedEvent(
|
||||
endpoint=endpoint,
|
||||
auth_type=auth_type,
|
||||
error=msg,
|
||||
status_code=401,
|
||||
metadata={
|
||||
"elapsed_ms": elapsed_ms,
|
||||
"response_body": response_body,
|
||||
"www_authenticate": www_auth,
|
||||
"request_url": str(e.request.url),
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
raise A2AClientHTTPError(401, msg) from e
|
||||
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint,
|
||||
error=str(e),
|
||||
error_type="http_error",
|
||||
status_code=e.response.status_code,
|
||||
operation="fetch_agent_card",
|
||||
metadata={
|
||||
"elapsed_ms": elapsed_ms,
|
||||
"response_body": response_body,
|
||||
"request_url": str(e.request.url),
|
||||
},
|
||||
),
|
||||
)
|
||||
raise
|
||||
|
||||
except httpx.TimeoutException as e:
|
||||
elapsed_ms = (time.perf_counter() - start_time) * 1000
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint,
|
||||
error=str(e),
|
||||
error_type="timeout",
|
||||
operation="fetch_agent_card",
|
||||
metadata={
|
||||
"elapsed_ms": elapsed_ms,
|
||||
"timeout_config": timeout,
|
||||
"request_url": str(e.request.url) if e.request else None,
|
||||
},
|
||||
),
|
||||
)
|
||||
raise
|
||||
|
||||
except httpx.ConnectError as e:
|
||||
elapsed_ms = (time.perf_counter() - start_time) * 1000
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint,
|
||||
error=str(e),
|
||||
error_type="connection_error",
|
||||
operation="fetch_agent_card",
|
||||
metadata={
|
||||
"elapsed_ms": elapsed_ms,
|
||||
"request_url": str(e.request.url) if e.request else None,
|
||||
},
|
||||
),
|
||||
)
|
||||
raise
|
||||
|
||||
except httpx.RequestError as e:
|
||||
elapsed_ms = (time.perf_counter() - start_time) * 1000
|
||||
crewai_event_bus.emit(
|
||||
None,
|
||||
A2AConnectionErrorEvent(
|
||||
endpoint=endpoint,
|
||||
error=str(e),
|
||||
error_type="request_error",
|
||||
operation="fetch_agent_card",
|
||||
metadata={
|
||||
"elapsed_ms": elapsed_ms,
|
||||
"request_url": str(e.request.url) if e.request else None,
|
||||
},
|
||||
),
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
|
||||
@@ -88,9 +88,6 @@ def execute_a2a_delegation(
|
||||
response_model: type[BaseModel] | None = None,
|
||||
turn_number: int | None = None,
|
||||
updates: UpdateConfig | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
skill_id: str | None = None,
|
||||
) -> TaskStateResult:
|
||||
"""Execute a task delegation to a remote A2A agent synchronously.
|
||||
|
||||
@@ -132,9 +129,6 @@ def execute_a2a_delegation(
|
||||
response_model: Optional Pydantic model for structured outputs.
|
||||
turn_number: Optional turn number for multi-turn conversations.
|
||||
updates: Update mechanism config from A2AConfig.updates.
|
||||
from_task: Optional CrewAI Task object for event metadata.
|
||||
from_agent: Optional CrewAI Agent object for event metadata.
|
||||
skill_id: Optional skill ID to target a specific agent capability.
|
||||
|
||||
Returns:
|
||||
TaskStateResult with status, result/error, history, and agent_card.
|
||||
@@ -162,16 +156,10 @@ def execute_a2a_delegation(
|
||||
transport_protocol=transport_protocol,
|
||||
turn_number=turn_number,
|
||||
updates=updates,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
skill_id=skill_id,
|
||||
)
|
||||
)
|
||||
finally:
|
||||
try:
|
||||
loop.run_until_complete(loop.shutdown_asyncgens())
|
||||
finally:
|
||||
loop.close()
|
||||
loop.close()
|
||||
|
||||
|
||||
async def aexecute_a2a_delegation(
|
||||
@@ -193,9 +181,6 @@ async def aexecute_a2a_delegation(
|
||||
response_model: type[BaseModel] | None = None,
|
||||
turn_number: int | None = None,
|
||||
updates: UpdateConfig | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
skill_id: str | None = None,
|
||||
) -> TaskStateResult:
|
||||
"""Execute a task delegation to a remote A2A agent asynchronously.
|
||||
|
||||
@@ -237,9 +222,6 @@ async def aexecute_a2a_delegation(
|
||||
response_model: Optional Pydantic model for structured outputs.
|
||||
turn_number: Optional turn number for multi-turn conversations.
|
||||
updates: Update mechanism config from A2AConfig.updates.
|
||||
from_task: Optional CrewAI Task object for event metadata.
|
||||
from_agent: Optional CrewAI Agent object for event metadata.
|
||||
skill_id: Optional skill ID to target a specific agent capability.
|
||||
|
||||
Returns:
|
||||
TaskStateResult with status, result/error, history, and agent_card.
|
||||
@@ -251,6 +233,17 @@ async def aexecute_a2a_delegation(
|
||||
if turn_number is None:
|
||||
turn_number = len([m for m in conversation_history if m.role == Role.user]) + 1
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2ADelegationStartedEvent(
|
||||
endpoint=endpoint,
|
||||
task_description=task_description,
|
||||
agent_id=agent_id,
|
||||
is_multiturn=is_multiturn,
|
||||
turn_number=turn_number,
|
||||
),
|
||||
)
|
||||
|
||||
result = await _aexecute_a2a_delegation_impl(
|
||||
endpoint=endpoint,
|
||||
auth=auth,
|
||||
@@ -271,28 +264,15 @@ async def aexecute_a2a_delegation(
|
||||
response_model=response_model,
|
||||
updates=updates,
|
||||
transport_protocol=transport_protocol,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
skill_id=skill_id,
|
||||
)
|
||||
|
||||
agent_card_data: dict[str, Any] = result.get("agent_card") or {}
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2ADelegationCompletedEvent(
|
||||
status=result["status"],
|
||||
result=result.get("result"),
|
||||
error=result.get("error"),
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=result.get("a2a_agent_name"),
|
||||
agent_card=agent_card_data,
|
||||
provider=agent_card_data.get("provider"),
|
||||
metadata=metadata,
|
||||
extensions=list(extensions.keys()) if extensions else None,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -319,9 +299,6 @@ async def _aexecute_a2a_delegation_impl(
|
||||
agent_role: str | None,
|
||||
response_model: type[BaseModel] | None,
|
||||
updates: UpdateConfig | None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
skill_id: str | None = None,
|
||||
) -> TaskStateResult:
|
||||
"""Internal async implementation of A2A delegation."""
|
||||
if auth:
|
||||
@@ -354,28 +331,6 @@ async def _aexecute_a2a_delegation_impl(
|
||||
if agent_card.name:
|
||||
a2a_agent_name = agent_card.name
|
||||
|
||||
agent_card_dict = agent_card.model_dump(exclude_none=True)
|
||||
crewai_event_bus.emit(
|
||||
agent_branch,
|
||||
A2ADelegationStartedEvent(
|
||||
endpoint=endpoint,
|
||||
task_description=task_description,
|
||||
agent_id=agent_id or endpoint,
|
||||
context_id=context_id,
|
||||
is_multiturn=is_multiturn,
|
||||
turn_number=turn_number,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
agent_card=agent_card_dict,
|
||||
protocol_version=agent_card.protocol_version,
|
||||
provider=agent_card_dict.get("provider"),
|
||||
skill_id=skill_id,
|
||||
metadata=metadata,
|
||||
extensions=list(extensions.keys()) if extensions else None,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
if turn_number == 1:
|
||||
agent_id_for_event = agent_id or endpoint
|
||||
crewai_event_bus.emit(
|
||||
@@ -383,17 +338,7 @@ async def _aexecute_a2a_delegation_impl(
|
||||
A2AConversationStartedEvent(
|
||||
agent_id=agent_id_for_event,
|
||||
endpoint=endpoint,
|
||||
context_id=context_id,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
agent_card=agent_card_dict,
|
||||
protocol_version=agent_card.protocol_version,
|
||||
provider=agent_card_dict.get("provider"),
|
||||
skill_id=skill_id,
|
||||
reference_task_ids=reference_task_ids,
|
||||
metadata=metadata,
|
||||
extensions=list(extensions.keys()) if extensions else None,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -419,10 +364,6 @@ async def _aexecute_a2a_delegation_impl(
|
||||
}
|
||||
)
|
||||
|
||||
message_metadata = metadata.copy() if metadata else {}
|
||||
if skill_id:
|
||||
message_metadata["skill_id"] = skill_id
|
||||
|
||||
message = Message(
|
||||
role=Role.user,
|
||||
message_id=str(uuid.uuid4()),
|
||||
@@ -430,7 +371,7 @@ async def _aexecute_a2a_delegation_impl(
|
||||
context_id=context_id,
|
||||
task_id=task_id,
|
||||
reference_task_ids=reference_task_ids,
|
||||
metadata=message_metadata if message_metadata else None,
|
||||
metadata=metadata,
|
||||
extensions=extensions,
|
||||
)
|
||||
|
||||
@@ -440,17 +381,8 @@ async def _aexecute_a2a_delegation_impl(
|
||||
A2AMessageSentEvent(
|
||||
message=message_text,
|
||||
turn_number=turn_number,
|
||||
context_id=context_id,
|
||||
message_id=message.message_id,
|
||||
is_multiturn=is_multiturn,
|
||||
agent_role=agent_role,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
skill_id=skill_id,
|
||||
metadata=message_metadata if message_metadata else None,
|
||||
extensions=list(extensions.keys()) if extensions else None,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -465,9 +397,6 @@ async def _aexecute_a2a_delegation_impl(
|
||||
"task_id": task_id,
|
||||
"endpoint": endpoint,
|
||||
"agent_branch": agent_branch,
|
||||
"a2a_agent_name": a2a_agent_name,
|
||||
"from_task": from_task,
|
||||
"from_agent": from_agent,
|
||||
}
|
||||
|
||||
if isinstance(updates, PollingConfig):
|
||||
@@ -505,16 +434,13 @@ async def _aexecute_a2a_delegation_impl(
|
||||
use_polling=use_polling,
|
||||
push_notification_config=push_config_for_client,
|
||||
) as client:
|
||||
result = await handler.execute(
|
||||
return await handler.execute(
|
||||
client=client,
|
||||
message=message,
|
||||
new_messages=new_messages,
|
||||
agent_card=agent_card,
|
||||
**handler_kwargs,
|
||||
)
|
||||
result["a2a_agent_name"] = a2a_agent_name
|
||||
result["agent_card"] = agent_card.model_dump(exclude_none=True)
|
||||
return result
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
|
||||
@@ -3,14 +3,11 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
from collections.abc import Callable, Coroutine
|
||||
from datetime import datetime
|
||||
from functools import wraps
|
||||
import logging
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Any, ParamSpec, TypeVar, cast
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from a2a.server.agent_execution import RequestContext
|
||||
from a2a.server.events import EventQueue
|
||||
@@ -48,14 +45,7 @@ T = TypeVar("T")
|
||||
|
||||
|
||||
def _parse_redis_url(url: str) -> dict[str, Any]:
|
||||
"""Parse a Redis URL into aiocache configuration.
|
||||
|
||||
Args:
|
||||
url: Redis connection URL (e.g., redis://localhost:6379/0).
|
||||
|
||||
Returns:
|
||||
Configuration dict for aiocache.RedisCache.
|
||||
"""
|
||||
from urllib.parse import urlparse
|
||||
|
||||
parsed = urlparse(url)
|
||||
config: dict[str, Any] = {
|
||||
@@ -137,7 +127,7 @@ def cancellable(
|
||||
async for message in pubsub.listen():
|
||||
if message["type"] == "message":
|
||||
return True
|
||||
except (OSError, ConnectionError) as e:
|
||||
except Exception as e:
|
||||
logger.warning("Cancel watcher error for task_id=%s: %s", task_id, e)
|
||||
return await poll_for_cancel()
|
||||
return False
|
||||
@@ -193,12 +183,7 @@ async def execute(
|
||||
msg = "task_id and context_id are required"
|
||||
crewai_event_bus.emit(
|
||||
agent,
|
||||
A2AServerTaskFailedEvent(
|
||||
task_id="",
|
||||
context_id="",
|
||||
error=msg,
|
||||
from_agent=agent,
|
||||
),
|
||||
A2AServerTaskFailedEvent(a2a_task_id="", a2a_context_id="", error=msg),
|
||||
)
|
||||
raise ServerError(InvalidParamsError(message=msg)) from None
|
||||
|
||||
@@ -210,12 +195,7 @@ async def execute(
|
||||
|
||||
crewai_event_bus.emit(
|
||||
agent,
|
||||
A2AServerTaskStartedEvent(
|
||||
task_id=task_id,
|
||||
context_id=context_id,
|
||||
from_task=task,
|
||||
from_agent=agent,
|
||||
),
|
||||
A2AServerTaskStartedEvent(a2a_task_id=task_id, a2a_context_id=context_id),
|
||||
)
|
||||
|
||||
try:
|
||||
@@ -235,33 +215,20 @@ async def execute(
|
||||
crewai_event_bus.emit(
|
||||
agent,
|
||||
A2AServerTaskCompletedEvent(
|
||||
task_id=task_id,
|
||||
context_id=context_id,
|
||||
result=str(result),
|
||||
from_task=task,
|
||||
from_agent=agent,
|
||||
a2a_task_id=task_id, a2a_context_id=context_id, result=str(result)
|
||||
),
|
||||
)
|
||||
except asyncio.CancelledError:
|
||||
crewai_event_bus.emit(
|
||||
agent,
|
||||
A2AServerTaskCanceledEvent(
|
||||
task_id=task_id,
|
||||
context_id=context_id,
|
||||
from_task=task,
|
||||
from_agent=agent,
|
||||
),
|
||||
A2AServerTaskCanceledEvent(a2a_task_id=task_id, a2a_context_id=context_id),
|
||||
)
|
||||
raise
|
||||
except Exception as e:
|
||||
crewai_event_bus.emit(
|
||||
agent,
|
||||
A2AServerTaskFailedEvent(
|
||||
task_id=task_id,
|
||||
context_id=context_id,
|
||||
error=str(e),
|
||||
from_task=task,
|
||||
from_agent=agent,
|
||||
a2a_task_id=task_id, a2a_context_id=context_id, error=str(e)
|
||||
),
|
||||
)
|
||||
raise ServerError(
|
||||
@@ -315,85 +282,3 @@ async def cancel(
|
||||
context.current_task.status = TaskStatus(state=TaskState.canceled)
|
||||
return context.current_task
|
||||
return None
|
||||
|
||||
|
||||
def list_tasks(
|
||||
tasks: list[A2ATask],
|
||||
context_id: str | None = None,
|
||||
status: TaskState | None = None,
|
||||
status_timestamp_after: datetime | None = None,
|
||||
page_size: int = 50,
|
||||
page_token: str | None = None,
|
||||
history_length: int | None = None,
|
||||
include_artifacts: bool = False,
|
||||
) -> tuple[list[A2ATask], str | None, int]:
|
||||
"""Filter and paginate A2A tasks.
|
||||
|
||||
Provides filtering by context, status, and timestamp, along with
|
||||
cursor-based pagination. This is a pure utility function that operates
|
||||
on an in-memory list of tasks - storage retrieval is handled separately.
|
||||
|
||||
Args:
|
||||
tasks: All tasks to filter.
|
||||
context_id: Filter by context ID to get tasks in a conversation.
|
||||
status: Filter by task state (e.g., completed, working).
|
||||
status_timestamp_after: Filter to tasks updated after this time.
|
||||
page_size: Maximum tasks per page (default 50).
|
||||
page_token: Base64-encoded cursor from previous response.
|
||||
history_length: Limit history messages per task (None = full history).
|
||||
include_artifacts: Whether to include task artifacts (default False).
|
||||
|
||||
Returns:
|
||||
Tuple of (filtered_tasks, next_page_token, total_count).
|
||||
- filtered_tasks: Tasks matching filters, paginated and trimmed.
|
||||
- next_page_token: Token for next page, or None if no more pages.
|
||||
- total_count: Total number of tasks matching filters (before pagination).
|
||||
"""
|
||||
filtered: list[A2ATask] = []
|
||||
for task in tasks:
|
||||
if context_id and task.context_id != context_id:
|
||||
continue
|
||||
if status and task.status.state != status:
|
||||
continue
|
||||
if status_timestamp_after and task.status.timestamp:
|
||||
ts = datetime.fromisoformat(task.status.timestamp.replace("Z", "+00:00"))
|
||||
if ts <= status_timestamp_after:
|
||||
continue
|
||||
filtered.append(task)
|
||||
|
||||
def get_timestamp(t: A2ATask) -> datetime:
|
||||
"""Extract timestamp from task status for sorting."""
|
||||
if t.status.timestamp is None:
|
||||
return datetime.min
|
||||
return datetime.fromisoformat(t.status.timestamp.replace("Z", "+00:00"))
|
||||
|
||||
filtered.sort(key=get_timestamp, reverse=True)
|
||||
total = len(filtered)
|
||||
|
||||
start = 0
|
||||
if page_token:
|
||||
try:
|
||||
cursor_id = base64.b64decode(page_token).decode()
|
||||
for idx, task in enumerate(filtered):
|
||||
if task.id == cursor_id:
|
||||
start = idx + 1
|
||||
break
|
||||
except (ValueError, UnicodeDecodeError):
|
||||
pass
|
||||
|
||||
page = filtered[start : start + page_size]
|
||||
|
||||
result: list[A2ATask] = []
|
||||
for task in page:
|
||||
task = task.model_copy(deep=True)
|
||||
if history_length is not None and task.history:
|
||||
task.history = task.history[-history_length:]
|
||||
if not include_artifacts:
|
||||
task.artifacts = None
|
||||
result.append(task)
|
||||
|
||||
next_token: str | None = None
|
||||
if result and len(result) == page_size:
|
||||
next_token = base64.b64encode(result[-1].id.encode()).decode()
|
||||
|
||||
return result, next_token, total
|
||||
|
||||
@@ -6,10 +6,9 @@ Wraps agent classes with A2A delegation capabilities.
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
from collections.abc import Callable, Coroutine, Mapping
|
||||
from collections.abc import Callable, Coroutine
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from functools import wraps
|
||||
import json
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
@@ -190,7 +189,7 @@ def _execute_task_with_a2a(
|
||||
a2a_agents: list[A2AConfig | A2AClientConfig],
|
||||
original_fn: Callable[..., str],
|
||||
task: Task,
|
||||
agent_response_model: type[BaseModel] | None,
|
||||
agent_response_model: type[BaseModel],
|
||||
context: str | None,
|
||||
tools: list[BaseTool] | None,
|
||||
extension_registry: ExtensionRegistry,
|
||||
@@ -278,7 +277,7 @@ def _execute_task_with_a2a(
|
||||
def _augment_prompt_with_a2a(
|
||||
a2a_agents: list[A2AConfig | A2AClientConfig],
|
||||
task_description: str,
|
||||
agent_cards: Mapping[str, AgentCard | dict[str, Any]],
|
||||
agent_cards: dict[str, AgentCard],
|
||||
conversation_history: list[Message] | None = None,
|
||||
turn_num: int = 0,
|
||||
max_turns: int | None = None,
|
||||
@@ -310,15 +309,7 @@ def _augment_prompt_with_a2a(
|
||||
for config in a2a_agents:
|
||||
if config.endpoint in agent_cards:
|
||||
card = agent_cards[config.endpoint]
|
||||
if isinstance(card, dict):
|
||||
filtered = {
|
||||
k: v
|
||||
for k, v in card.items()
|
||||
if k in {"description", "url", "skills"} and v is not None
|
||||
}
|
||||
agents_text += f"\n{json.dumps(filtered, indent=2)}\n"
|
||||
else:
|
||||
agents_text += f"\n{card.model_dump_json(indent=2, exclude_none=True, include={'description', 'url', 'skills'})}\n"
|
||||
agents_text += f"\n{card.model_dump_json(indent=2, exclude_none=True, include={'description', 'url', 'skills'})}\n"
|
||||
|
||||
failed_agents = failed_agents or {}
|
||||
if failed_agents:
|
||||
@@ -386,7 +377,7 @@ IMPORTANT: You have the ability to delegate this task to remote A2A agents.
|
||||
|
||||
|
||||
def _parse_agent_response(
|
||||
raw_result: str | dict[str, Any], agent_response_model: type[BaseModel] | None
|
||||
raw_result: str | dict[str, Any], agent_response_model: type[BaseModel]
|
||||
) -> BaseModel | str | dict[str, Any]:
|
||||
"""Parse LLM output as AgentResponse or return raw agent response."""
|
||||
if agent_response_model:
|
||||
@@ -403,11 +394,6 @@ def _parse_agent_response(
|
||||
def _handle_max_turns_exceeded(
|
||||
conversation_history: list[Message],
|
||||
max_turns: int,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
endpoint: str | None = None,
|
||||
a2a_agent_name: str | None = None,
|
||||
agent_card: dict[str, Any] | None = None,
|
||||
) -> str:
|
||||
"""Handle the case when max turns is exceeded.
|
||||
|
||||
@@ -435,11 +421,6 @@ def _handle_max_turns_exceeded(
|
||||
final_result=final_message,
|
||||
error=None,
|
||||
total_turns=max_turns,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
agent_card=agent_card,
|
||||
),
|
||||
)
|
||||
return final_message
|
||||
@@ -451,11 +432,6 @@ def _handle_max_turns_exceeded(
|
||||
final_result=None,
|
||||
error=f"Conversation exceeded maximum turns ({max_turns})",
|
||||
total_turns=max_turns,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
agent_card=agent_card,
|
||||
),
|
||||
)
|
||||
raise Exception(f"A2A conversation exceeded maximum turns ({max_turns})")
|
||||
@@ -466,12 +442,7 @@ def _process_response_result(
|
||||
disable_structured_output: bool,
|
||||
turn_num: int,
|
||||
agent_role: str,
|
||||
agent_response_model: type[BaseModel] | None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
endpoint: str | None = None,
|
||||
a2a_agent_name: str | None = None,
|
||||
agent_card: dict[str, Any] | None = None,
|
||||
agent_response_model: type[BaseModel],
|
||||
) -> tuple[str | None, str | None]:
|
||||
"""Process LLM response and determine next action.
|
||||
|
||||
@@ -490,10 +461,6 @@ def _process_response_result(
|
||||
turn_number=final_turn_number,
|
||||
is_multiturn=True,
|
||||
agent_role=agent_role,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
@@ -503,11 +470,6 @@ def _process_response_result(
|
||||
final_result=result_text,
|
||||
error=None,
|
||||
total_turns=final_turn_number,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
agent_card=agent_card,
|
||||
),
|
||||
)
|
||||
return result_text, None
|
||||
@@ -528,10 +490,6 @@ def _process_response_result(
|
||||
turn_number=final_turn_number,
|
||||
is_multiturn=True,
|
||||
agent_role=agent_role,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
),
|
||||
)
|
||||
crewai_event_bus.emit(
|
||||
@@ -541,11 +499,6 @@ def _process_response_result(
|
||||
final_result=str(llm_response.message),
|
||||
error=None,
|
||||
total_turns=final_turn_number,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
agent_card=agent_card,
|
||||
),
|
||||
)
|
||||
return str(llm_response.message), None
|
||||
@@ -557,15 +510,13 @@ def _process_response_result(
|
||||
def _prepare_agent_cards_dict(
|
||||
a2a_result: TaskStateResult,
|
||||
agent_id: str,
|
||||
agent_cards: Mapping[str, AgentCard | dict[str, Any]] | None,
|
||||
) -> dict[str, AgentCard | dict[str, Any]]:
|
||||
agent_cards: dict[str, AgentCard] | None,
|
||||
) -> dict[str, AgentCard]:
|
||||
"""Prepare agent cards dictionary from result and existing cards.
|
||||
|
||||
Shared logic for both sync and async response handlers.
|
||||
"""
|
||||
agent_cards_dict: dict[str, AgentCard | dict[str, Any]] = (
|
||||
dict(agent_cards) if agent_cards else {}
|
||||
)
|
||||
agent_cards_dict = agent_cards or {}
|
||||
if "agent_card" in a2a_result and agent_id not in agent_cards_dict:
|
||||
agent_cards_dict[agent_id] = a2a_result["agent_card"]
|
||||
return agent_cards_dict
|
||||
@@ -578,7 +529,7 @@ def _prepare_delegation_context(
|
||||
original_task_description: str | None,
|
||||
) -> tuple[
|
||||
list[A2AConfig | A2AClientConfig],
|
||||
type[BaseModel] | None,
|
||||
type[BaseModel],
|
||||
str,
|
||||
str,
|
||||
A2AConfig | A2AClientConfig,
|
||||
@@ -647,11 +598,6 @@ def _handle_task_completion(
|
||||
reference_task_ids: list[str],
|
||||
agent_config: A2AConfig | A2AClientConfig,
|
||||
turn_num: int,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
endpoint: str | None = None,
|
||||
a2a_agent_name: str | None = None,
|
||||
agent_card: dict[str, Any] | None = None,
|
||||
) -> tuple[str | None, str | None, list[str]]:
|
||||
"""Handle task completion state including reference task updates.
|
||||
|
||||
@@ -678,11 +624,6 @@ def _handle_task_completion(
|
||||
final_result=result_text,
|
||||
error=None,
|
||||
total_turns=final_turn_number,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
agent_card=agent_card,
|
||||
),
|
||||
)
|
||||
return str(result_text), task_id_config, reference_task_ids
|
||||
@@ -704,11 +645,8 @@ def _handle_agent_response_and_continue(
|
||||
original_fn: Callable[..., str],
|
||||
context: str | None,
|
||||
tools: list[BaseTool] | None,
|
||||
agent_response_model: type[BaseModel] | None,
|
||||
agent_response_model: type[BaseModel],
|
||||
remote_task_completed: bool = False,
|
||||
endpoint: str | None = None,
|
||||
a2a_agent_name: str | None = None,
|
||||
agent_card: dict[str, Any] | None = None,
|
||||
) -> tuple[str | None, str | None]:
|
||||
"""Handle A2A result and get CrewAI agent's response.
|
||||
|
||||
@@ -760,11 +698,6 @@ def _handle_agent_response_and_continue(
|
||||
turn_num=turn_num,
|
||||
agent_role=self.role,
|
||||
agent_response_model=agent_response_model,
|
||||
from_task=task,
|
||||
from_agent=self,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
agent_card=agent_card,
|
||||
)
|
||||
|
||||
|
||||
@@ -817,12 +750,6 @@ def _delegate_to_a2a(
|
||||
|
||||
conversation_history: list[Message] = []
|
||||
|
||||
current_agent_card = agent_cards.get(agent_id) if agent_cards else None
|
||||
current_agent_card_dict = (
|
||||
current_agent_card.model_dump() if current_agent_card else None
|
||||
)
|
||||
current_a2a_agent_name = current_agent_card.name if current_agent_card else None
|
||||
|
||||
try:
|
||||
for turn_num in range(max_turns):
|
||||
console_formatter = getattr(crewai_event_bus, "_console", None)
|
||||
@@ -850,8 +777,6 @@ def _delegate_to_a2a(
|
||||
turn_number=turn_num + 1,
|
||||
updates=agent_config.updates,
|
||||
transport_protocol=agent_config.transport_protocol,
|
||||
from_task=task,
|
||||
from_agent=self,
|
||||
)
|
||||
|
||||
conversation_history = a2a_result.get("history", [])
|
||||
@@ -872,11 +797,6 @@ def _delegate_to_a2a(
|
||||
reference_task_ids,
|
||||
agent_config,
|
||||
turn_num,
|
||||
from_task=task,
|
||||
from_agent=self,
|
||||
endpoint=agent_config.endpoint,
|
||||
a2a_agent_name=current_a2a_agent_name,
|
||||
agent_card=current_agent_card_dict,
|
||||
)
|
||||
)
|
||||
if trusted_result is not None:
|
||||
@@ -898,9 +818,6 @@ def _delegate_to_a2a(
|
||||
tools=tools,
|
||||
agent_response_model=agent_response_model,
|
||||
remote_task_completed=(a2a_result["status"] == TaskState.completed),
|
||||
endpoint=agent_config.endpoint,
|
||||
a2a_agent_name=current_a2a_agent_name,
|
||||
agent_card=current_agent_card_dict,
|
||||
)
|
||||
|
||||
if final_result is not None:
|
||||
@@ -929,9 +846,6 @@ def _delegate_to_a2a(
|
||||
tools=tools,
|
||||
agent_response_model=agent_response_model,
|
||||
remote_task_completed=False,
|
||||
endpoint=agent_config.endpoint,
|
||||
a2a_agent_name=current_a2a_agent_name,
|
||||
agent_card=current_agent_card_dict,
|
||||
)
|
||||
|
||||
if final_result is not None:
|
||||
@@ -948,24 +862,11 @@ def _delegate_to_a2a(
|
||||
final_result=None,
|
||||
error=error_msg,
|
||||
total_turns=turn_num + 1,
|
||||
from_task=task,
|
||||
from_agent=self,
|
||||
endpoint=agent_config.endpoint,
|
||||
a2a_agent_name=current_a2a_agent_name,
|
||||
agent_card=current_agent_card_dict,
|
||||
),
|
||||
)
|
||||
return f"A2A delegation failed: {error_msg}"
|
||||
|
||||
return _handle_max_turns_exceeded(
|
||||
conversation_history,
|
||||
max_turns,
|
||||
from_task=task,
|
||||
from_agent=self,
|
||||
endpoint=agent_config.endpoint,
|
||||
a2a_agent_name=current_a2a_agent_name,
|
||||
agent_card=current_agent_card_dict,
|
||||
)
|
||||
return _handle_max_turns_exceeded(conversation_history, max_turns)
|
||||
|
||||
finally:
|
||||
task.description = original_task_description
|
||||
@@ -1015,7 +916,7 @@ async def _aexecute_task_with_a2a(
|
||||
a2a_agents: list[A2AConfig | A2AClientConfig],
|
||||
original_fn: Callable[..., Coroutine[Any, Any, str]],
|
||||
task: Task,
|
||||
agent_response_model: type[BaseModel] | None,
|
||||
agent_response_model: type[BaseModel],
|
||||
context: str | None,
|
||||
tools: list[BaseTool] | None,
|
||||
extension_registry: ExtensionRegistry,
|
||||
@@ -1100,11 +1001,8 @@ async def _ahandle_agent_response_and_continue(
|
||||
original_fn: Callable[..., Coroutine[Any, Any, str]],
|
||||
context: str | None,
|
||||
tools: list[BaseTool] | None,
|
||||
agent_response_model: type[BaseModel] | None,
|
||||
agent_response_model: type[BaseModel],
|
||||
remote_task_completed: bool = False,
|
||||
endpoint: str | None = None,
|
||||
a2a_agent_name: str | None = None,
|
||||
agent_card: dict[str, Any] | None = None,
|
||||
) -> tuple[str | None, str | None]:
|
||||
"""Async version of _handle_agent_response_and_continue."""
|
||||
agent_cards_dict = _prepare_agent_cards_dict(a2a_result, agent_id, agent_cards)
|
||||
@@ -1134,11 +1032,6 @@ async def _ahandle_agent_response_and_continue(
|
||||
turn_num=turn_num,
|
||||
agent_role=self.role,
|
||||
agent_response_model=agent_response_model,
|
||||
from_task=task,
|
||||
from_agent=self,
|
||||
endpoint=endpoint,
|
||||
a2a_agent_name=a2a_agent_name,
|
||||
agent_card=agent_card,
|
||||
)
|
||||
|
||||
|
||||
@@ -1173,12 +1066,6 @@ async def _adelegate_to_a2a(
|
||||
|
||||
conversation_history: list[Message] = []
|
||||
|
||||
current_agent_card = agent_cards.get(agent_id) if agent_cards else None
|
||||
current_agent_card_dict = (
|
||||
current_agent_card.model_dump() if current_agent_card else None
|
||||
)
|
||||
current_a2a_agent_name = current_agent_card.name if current_agent_card else None
|
||||
|
||||
try:
|
||||
for turn_num in range(max_turns):
|
||||
console_formatter = getattr(crewai_event_bus, "_console", None)
|
||||
@@ -1206,8 +1093,6 @@ async def _adelegate_to_a2a(
|
||||
turn_number=turn_num + 1,
|
||||
transport_protocol=agent_config.transport_protocol,
|
||||
updates=agent_config.updates,
|
||||
from_task=task,
|
||||
from_agent=self,
|
||||
)
|
||||
|
||||
conversation_history = a2a_result.get("history", [])
|
||||
@@ -1228,11 +1113,6 @@ async def _adelegate_to_a2a(
|
||||
reference_task_ids,
|
||||
agent_config,
|
||||
turn_num,
|
||||
from_task=task,
|
||||
from_agent=self,
|
||||
endpoint=agent_config.endpoint,
|
||||
a2a_agent_name=current_a2a_agent_name,
|
||||
agent_card=current_agent_card_dict,
|
||||
)
|
||||
)
|
||||
if trusted_result is not None:
|
||||
@@ -1254,9 +1134,6 @@ async def _adelegate_to_a2a(
|
||||
tools=tools,
|
||||
agent_response_model=agent_response_model,
|
||||
remote_task_completed=(a2a_result["status"] == TaskState.completed),
|
||||
endpoint=agent_config.endpoint,
|
||||
a2a_agent_name=current_a2a_agent_name,
|
||||
agent_card=current_agent_card_dict,
|
||||
)
|
||||
|
||||
if final_result is not None:
|
||||
@@ -1284,9 +1161,6 @@ async def _adelegate_to_a2a(
|
||||
context=context,
|
||||
tools=tools,
|
||||
agent_response_model=agent_response_model,
|
||||
endpoint=agent_config.endpoint,
|
||||
a2a_agent_name=current_a2a_agent_name,
|
||||
agent_card=current_agent_card_dict,
|
||||
)
|
||||
|
||||
if final_result is not None:
|
||||
@@ -1303,24 +1177,11 @@ async def _adelegate_to_a2a(
|
||||
final_result=None,
|
||||
error=error_msg,
|
||||
total_turns=turn_num + 1,
|
||||
from_task=task,
|
||||
from_agent=self,
|
||||
endpoint=agent_config.endpoint,
|
||||
a2a_agent_name=current_a2a_agent_name,
|
||||
agent_card=current_agent_card_dict,
|
||||
),
|
||||
)
|
||||
return f"A2A delegation failed: {error_msg}"
|
||||
|
||||
return _handle_max_turns_exceeded(
|
||||
conversation_history,
|
||||
max_turns,
|
||||
from_task=task,
|
||||
from_agent=self,
|
||||
endpoint=agent_config.endpoint,
|
||||
a2a_agent_name=current_a2a_agent_name,
|
||||
agent_card=current_agent_card_dict,
|
||||
)
|
||||
return _handle_max_turns_exceeded(conversation_history, max_turns)
|
||||
|
||||
finally:
|
||||
task.description = original_task_description
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
from collections.abc import Callable, Sequence
|
||||
from collections.abc import Callable, Coroutine, Sequence
|
||||
import shutil
|
||||
import subprocess
|
||||
import time
|
||||
@@ -34,6 +34,11 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
|
||||
from crewai.agents.cache.cache_handler import CacheHandler
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.events.event_bus import crewai_event_bus
|
||||
from crewai.events.types.agent_events import (
|
||||
LiteAgentExecutionCompletedEvent,
|
||||
LiteAgentExecutionErrorEvent,
|
||||
LiteAgentExecutionStartedEvent,
|
||||
)
|
||||
from crewai.events.types.knowledge_events import (
|
||||
KnowledgeQueryCompletedEvent,
|
||||
KnowledgeQueryFailedEvent,
|
||||
@@ -43,10 +48,10 @@ from crewai.events.types.memory_events import (
|
||||
MemoryRetrievalCompletedEvent,
|
||||
MemoryRetrievalStartedEvent,
|
||||
)
|
||||
from crewai.experimental.crew_agent_executor_flow import CrewAgentExecutorFlow
|
||||
from crewai.experimental.agent_executor import AgentExecutor
|
||||
from crewai.knowledge.knowledge import Knowledge
|
||||
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
||||
from crewai.lite_agent import LiteAgent
|
||||
from crewai.lite_agent_output import LiteAgentOutput
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.mcp import (
|
||||
MCPClient,
|
||||
@@ -64,15 +69,18 @@ from crewai.security.fingerprint import Fingerprint
|
||||
from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.utilities.agent_utils import (
|
||||
get_tool_names,
|
||||
is_inside_event_loop,
|
||||
load_agent_from_repository,
|
||||
parse_tools,
|
||||
render_text_description_and_args,
|
||||
)
|
||||
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
|
||||
from crewai.utilities.converter import Converter
|
||||
from crewai.utilities.converter import Converter, ConverterError
|
||||
from crewai.utilities.guardrail import process_guardrail
|
||||
from crewai.utilities.guardrail_types import GuardrailType
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
from crewai.utilities.prompts import Prompts, StandardPromptResult, SystemPromptResult
|
||||
from crewai.utilities.pydantic_schema_utils import generate_model_description
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
from crewai.utilities.training_handler import CrewTrainingHandler
|
||||
|
||||
@@ -89,9 +97,9 @@ if TYPE_CHECKING:
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
|
||||
from crewai.agents.agent_builder.base_agent import PlatformAppOrAction
|
||||
from crewai.lite_agent_output import LiteAgentOutput
|
||||
from crewai.task import Task
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.structured_tool import CrewStructuredTool
|
||||
from crewai.utilities.types import LLMMessage
|
||||
|
||||
|
||||
@@ -113,7 +121,7 @@ class Agent(BaseAgent):
|
||||
The agent can also have memory, can operate in verbose mode, and can delegate tasks to other agents.
|
||||
|
||||
Attributes:
|
||||
agent_executor: An instance of the CrewAgentExecutor or CrewAgentExecutorFlow class.
|
||||
agent_executor: An instance of the CrewAgentExecutor or AgentExecutor class.
|
||||
role: The role of the agent.
|
||||
goal: The objective of the agent.
|
||||
backstory: The backstory of the agent.
|
||||
@@ -238,9 +246,9 @@ class Agent(BaseAgent):
|
||||
Can be a single A2AConfig/A2AClientConfig/A2AServerConfig, or a list of any number of A2AConfig/A2AClientConfig with a single A2AServerConfig.
|
||||
""",
|
||||
)
|
||||
executor_class: type[CrewAgentExecutor] | type[CrewAgentExecutorFlow] = Field(
|
||||
executor_class: type[CrewAgentExecutor] | type[AgentExecutor] = Field(
|
||||
default=CrewAgentExecutor,
|
||||
description="Class to use for the agent executor. Defaults to CrewAgentExecutor, can optionally use CrewAgentExecutorFlow.",
|
||||
description="Class to use for the agent executor. Defaults to CrewAgentExecutor, can optionally use AgentExecutor.",
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@@ -1583,26 +1591,25 @@ class Agent(BaseAgent):
|
||||
)
|
||||
return None
|
||||
|
||||
def kickoff(
|
||||
def _prepare_kickoff(
|
||||
self,
|
||||
messages: str | list[LLMMessage],
|
||||
response_format: type[Any] | None = None,
|
||||
) -> LiteAgentOutput:
|
||||
"""
|
||||
Execute the agent with the given messages using a LiteAgent instance.
|
||||
) -> tuple[AgentExecutor, dict[str, str], dict[str, Any], list[CrewStructuredTool]]:
|
||||
"""Prepare common setup for kickoff execution.
|
||||
|
||||
This method is useful when you want to use the Agent configuration but
|
||||
with the simpler and more direct execution flow of LiteAgent.
|
||||
This method handles all the common preparation logic shared between
|
||||
kickoff() and kickoff_async(), including tool processing, prompt building,
|
||||
executor creation, and input formatting.
|
||||
|
||||
Args:
|
||||
messages: Either a string query or a list of message dictionaries.
|
||||
If a string is provided, it will be converted to a user message.
|
||||
If a list is provided, each dict should have 'role' and 'content' keys.
|
||||
response_format: Optional Pydantic model for structured output.
|
||||
|
||||
Returns:
|
||||
LiteAgentOutput: The result of the agent execution.
|
||||
Tuple of (executor, inputs, agent_info, parsed_tools) ready for execution.
|
||||
"""
|
||||
# Process platform apps and MCP tools
|
||||
if self.apps:
|
||||
platform_tools = self.get_platform_tools(self.apps)
|
||||
if platform_tools and self.tools is not None:
|
||||
@@ -1612,25 +1619,359 @@ class Agent(BaseAgent):
|
||||
if mcps and self.tools is not None:
|
||||
self.tools.extend(mcps)
|
||||
|
||||
lite_agent = LiteAgent(
|
||||
id=self.id,
|
||||
role=self.role,
|
||||
goal=self.goal,
|
||||
backstory=self.backstory,
|
||||
llm=self.llm,
|
||||
tools=self.tools or [],
|
||||
max_iterations=self.max_iter,
|
||||
max_execution_time=self.max_execution_time,
|
||||
respect_context_window=self.respect_context_window,
|
||||
verbose=self.verbose,
|
||||
response_format=response_format,
|
||||
# Prepare tools
|
||||
raw_tools: list[BaseTool] = self.tools or []
|
||||
parsed_tools = parse_tools(raw_tools)
|
||||
|
||||
# Build agent_info for backward-compatible event emission
|
||||
agent_info = {
|
||||
"id": self.id,
|
||||
"role": self.role,
|
||||
"goal": self.goal,
|
||||
"backstory": self.backstory,
|
||||
"tools": raw_tools,
|
||||
"verbose": self.verbose,
|
||||
}
|
||||
|
||||
# Build prompt for standalone execution
|
||||
prompt = Prompts(
|
||||
agent=self,
|
||||
has_tools=len(raw_tools) > 0,
|
||||
i18n=self.i18n,
|
||||
original_agent=self,
|
||||
guardrail=self.guardrail,
|
||||
guardrail_max_retries=self.guardrail_max_retries,
|
||||
use_system_prompt=self.use_system_prompt,
|
||||
system_template=self.system_template,
|
||||
prompt_template=self.prompt_template,
|
||||
response_template=self.response_template,
|
||||
).task_execution()
|
||||
|
||||
# Prepare stop words
|
||||
stop_words = [self.i18n.slice("observation")]
|
||||
if self.response_template:
|
||||
stop_words.append(
|
||||
self.response_template.split("{{ .Response }}")[1].strip()
|
||||
)
|
||||
|
||||
# Get RPM limit function
|
||||
rpm_limit_fn = (
|
||||
self._rpm_controller.check_or_wait if self._rpm_controller else None
|
||||
)
|
||||
|
||||
return lite_agent.kickoff(messages)
|
||||
# Create the executor for standalone mode (no crew, no task)
|
||||
executor = AgentExecutor(
|
||||
task=None,
|
||||
crew=None,
|
||||
llm=cast(BaseLLM, self.llm),
|
||||
agent=self,
|
||||
prompt=prompt,
|
||||
max_iter=self.max_iter,
|
||||
tools=parsed_tools,
|
||||
tools_names=get_tool_names(parsed_tools),
|
||||
stop_words=stop_words,
|
||||
tools_description=render_text_description_and_args(parsed_tools),
|
||||
tools_handler=self.tools_handler,
|
||||
original_tools=raw_tools,
|
||||
step_callback=self.step_callback,
|
||||
function_calling_llm=self.function_calling_llm,
|
||||
respect_context_window=self.respect_context_window,
|
||||
request_within_rpm_limit=rpm_limit_fn,
|
||||
callbacks=[TokenCalcHandler(self._token_process)],
|
||||
response_model=response_format,
|
||||
i18n=self.i18n,
|
||||
)
|
||||
|
||||
# Format messages
|
||||
if isinstance(messages, str):
|
||||
formatted_messages = messages
|
||||
else:
|
||||
formatted_messages = "\n".join(
|
||||
str(msg.get("content", "")) for msg in messages if msg.get("content")
|
||||
)
|
||||
|
||||
# Build the input dict for the executor
|
||||
inputs = {
|
||||
"input": formatted_messages,
|
||||
"tool_names": get_tool_names(parsed_tools),
|
||||
"tools": render_text_description_and_args(parsed_tools),
|
||||
}
|
||||
|
||||
return executor, inputs, agent_info, parsed_tools
|
||||
|
||||
def kickoff(
|
||||
self,
|
||||
messages: str | list[LLMMessage],
|
||||
response_format: type[Any] | None = None,
|
||||
) -> LiteAgentOutput | Coroutine[Any, Any, LiteAgentOutput]:
|
||||
"""
|
||||
Execute the agent with the given messages using the AgentExecutor.
|
||||
|
||||
This method provides standalone agent execution without requiring a Crew.
|
||||
It supports tools, response formatting, and guardrails.
|
||||
|
||||
When called from within a Flow (sync or async method), this automatically
|
||||
detects the event loop and returns a coroutine that the Flow framework
|
||||
awaits. Users don't need to handle async explicitly.
|
||||
|
||||
Args:
|
||||
messages: Either a string query or a list of message dictionaries.
|
||||
If a string is provided, it will be converted to a user message.
|
||||
If a list is provided, each dict should have 'role' and 'content' keys.
|
||||
response_format: Optional Pydantic model for structured output.
|
||||
|
||||
Returns:
|
||||
LiteAgentOutput: The result of the agent execution.
|
||||
When inside a Flow, returns a coroutine that resolves to LiteAgentOutput.
|
||||
|
||||
Note:
|
||||
For explicit async usage outside of Flow, use kickoff_async() directly.
|
||||
"""
|
||||
# Magic auto-async: if inside event loop (e.g., inside a Flow),
|
||||
# return coroutine for Flow to await
|
||||
if is_inside_event_loop():
|
||||
return self.kickoff_async(messages, response_format)
|
||||
|
||||
executor, inputs, agent_info, parsed_tools = self._prepare_kickoff(
|
||||
messages, response_format
|
||||
)
|
||||
|
||||
try:
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionStartedEvent(
|
||||
agent_info=agent_info,
|
||||
tools=parsed_tools,
|
||||
messages=messages,
|
||||
),
|
||||
)
|
||||
|
||||
output = self._execute_and_build_output(executor, inputs, response_format)
|
||||
|
||||
if self.guardrail is not None:
|
||||
output = self._process_kickoff_guardrail(
|
||||
output=output,
|
||||
executor=executor,
|
||||
inputs=inputs,
|
||||
response_format=response_format,
|
||||
)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionCompletedEvent(
|
||||
agent_info=agent_info,
|
||||
output=output.raw,
|
||||
),
|
||||
)
|
||||
|
||||
return output
|
||||
|
||||
except Exception as e:
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionErrorEvent(
|
||||
agent_info=agent_info,
|
||||
error=str(e),
|
||||
),
|
||||
)
|
||||
raise
|
||||
|
||||
def _execute_and_build_output(
|
||||
self,
|
||||
executor: AgentExecutor,
|
||||
inputs: dict[str, str],
|
||||
response_format: type[Any] | None = None,
|
||||
) -> LiteAgentOutput:
|
||||
"""Execute the agent and build the output object.
|
||||
|
||||
Args:
|
||||
executor: The executor instance.
|
||||
inputs: Input dictionary for execution.
|
||||
response_format: Optional response format.
|
||||
|
||||
Returns:
|
||||
LiteAgentOutput with raw output, formatted result, and metrics.
|
||||
"""
|
||||
import json
|
||||
|
||||
# Execute the agent (this is called from sync path, so invoke returns dict)
|
||||
result = cast(dict[str, Any], executor.invoke(inputs))
|
||||
raw_output = result.get("output", "")
|
||||
|
||||
# Handle response format conversion
|
||||
formatted_result: BaseModel | None = None
|
||||
if response_format:
|
||||
try:
|
||||
model_schema = generate_model_description(response_format)
|
||||
schema = json.dumps(model_schema, indent=2)
|
||||
instructions = self.i18n.slice("formatted_task_instructions").format(
|
||||
output_format=schema
|
||||
)
|
||||
|
||||
converter = Converter(
|
||||
llm=self.llm,
|
||||
text=raw_output,
|
||||
model=response_format,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
conversion_result = converter.to_pydantic()
|
||||
if isinstance(conversion_result, BaseModel):
|
||||
formatted_result = conversion_result
|
||||
except ConverterError:
|
||||
pass # Keep raw output if conversion fails
|
||||
|
||||
# Get token usage metrics
|
||||
if isinstance(self.llm, BaseLLM):
|
||||
usage_metrics = self.llm.get_token_usage_summary()
|
||||
else:
|
||||
usage_metrics = self._token_process.get_summary()
|
||||
|
||||
return LiteAgentOutput(
|
||||
raw=raw_output,
|
||||
pydantic=formatted_result,
|
||||
agent_role=self.role,
|
||||
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
|
||||
messages=executor.messages,
|
||||
)
|
||||
|
||||
async def _execute_and_build_output_async(
|
||||
self,
|
||||
executor: AgentExecutor,
|
||||
inputs: dict[str, str],
|
||||
response_format: type[Any] | None = None,
|
||||
) -> LiteAgentOutput:
|
||||
"""Execute the agent asynchronously and build the output object.
|
||||
|
||||
This is the async version of _execute_and_build_output that uses
|
||||
invoke_async() for native async execution within event loops.
|
||||
|
||||
Args:
|
||||
executor: The executor instance.
|
||||
inputs: Input dictionary for execution.
|
||||
response_format: Optional response format.
|
||||
|
||||
Returns:
|
||||
LiteAgentOutput with raw output, formatted result, and metrics.
|
||||
"""
|
||||
import json
|
||||
|
||||
# Execute the agent asynchronously
|
||||
result = await executor.invoke_async(inputs)
|
||||
raw_output = result.get("output", "")
|
||||
|
||||
# Handle response format conversion
|
||||
formatted_result: BaseModel | None = None
|
||||
if response_format:
|
||||
try:
|
||||
model_schema = generate_model_description(response_format)
|
||||
schema = json.dumps(model_schema, indent=2)
|
||||
instructions = self.i18n.slice("formatted_task_instructions").format(
|
||||
output_format=schema
|
||||
)
|
||||
|
||||
converter = Converter(
|
||||
llm=self.llm,
|
||||
text=raw_output,
|
||||
model=response_format,
|
||||
instructions=instructions,
|
||||
)
|
||||
|
||||
conversion_result = converter.to_pydantic()
|
||||
if isinstance(conversion_result, BaseModel):
|
||||
formatted_result = conversion_result
|
||||
except ConverterError:
|
||||
pass # Keep raw output if conversion fails
|
||||
|
||||
# Get token usage metrics
|
||||
if isinstance(self.llm, BaseLLM):
|
||||
usage_metrics = self.llm.get_token_usage_summary()
|
||||
else:
|
||||
usage_metrics = self._token_process.get_summary()
|
||||
|
||||
return LiteAgentOutput(
|
||||
raw=raw_output,
|
||||
pydantic=formatted_result,
|
||||
agent_role=self.role,
|
||||
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
|
||||
messages=executor.messages,
|
||||
)
|
||||
|
||||
def _process_kickoff_guardrail(
|
||||
self,
|
||||
output: LiteAgentOutput,
|
||||
executor: AgentExecutor,
|
||||
inputs: dict[str, str],
|
||||
response_format: type[Any] | None = None,
|
||||
retry_count: int = 0,
|
||||
) -> LiteAgentOutput:
|
||||
"""Process guardrail for kickoff execution with retry logic.
|
||||
|
||||
Args:
|
||||
output: Current agent output.
|
||||
executor: The executor instance.
|
||||
inputs: Input dictionary for re-execution.
|
||||
response_format: Optional response format.
|
||||
retry_count: Current retry count.
|
||||
|
||||
Returns:
|
||||
Validated/updated output.
|
||||
"""
|
||||
from crewai.utilities.guardrail_types import GuardrailCallable
|
||||
|
||||
# Ensure guardrail is callable
|
||||
guardrail_callable: GuardrailCallable
|
||||
if isinstance(self.guardrail, str):
|
||||
from crewai.tasks.llm_guardrail import LLMGuardrail
|
||||
|
||||
guardrail_callable = cast(
|
||||
GuardrailCallable,
|
||||
LLMGuardrail(description=self.guardrail, llm=cast(BaseLLM, self.llm)),
|
||||
)
|
||||
elif callable(self.guardrail):
|
||||
guardrail_callable = self.guardrail
|
||||
else:
|
||||
# Should not happen if called from kickoff with guardrail check
|
||||
return output
|
||||
|
||||
guardrail_result = process_guardrail(
|
||||
output=output,
|
||||
guardrail=guardrail_callable,
|
||||
retry_count=retry_count,
|
||||
event_source=self,
|
||||
from_agent=self,
|
||||
)
|
||||
|
||||
if not guardrail_result.success:
|
||||
if retry_count >= self.guardrail_max_retries:
|
||||
raise ValueError(
|
||||
f"Agent's guardrail failed validation after {self.guardrail_max_retries} retries. "
|
||||
f"Last error: {guardrail_result.error}"
|
||||
)
|
||||
|
||||
# Add feedback and re-execute
|
||||
executor._append_message_to_state(
|
||||
guardrail_result.error or "Guardrail validation failed",
|
||||
role="user",
|
||||
)
|
||||
|
||||
# Re-execute and build new output
|
||||
output = self._execute_and_build_output(executor, inputs, response_format)
|
||||
|
||||
# Recursively retry guardrail
|
||||
return self._process_kickoff_guardrail(
|
||||
output=output,
|
||||
executor=executor,
|
||||
inputs=inputs,
|
||||
response_format=response_format,
|
||||
retry_count=retry_count + 1,
|
||||
)
|
||||
|
||||
# Apply guardrail result if available
|
||||
if guardrail_result.result is not None:
|
||||
if isinstance(guardrail_result.result, str):
|
||||
output.raw = guardrail_result.result
|
||||
elif isinstance(guardrail_result.result, BaseModel):
|
||||
output.pydantic = guardrail_result.result
|
||||
|
||||
return output
|
||||
|
||||
async def kickoff_async(
|
||||
self,
|
||||
@@ -1638,9 +1979,11 @@ class Agent(BaseAgent):
|
||||
response_format: type[Any] | None = None,
|
||||
) -> LiteAgentOutput:
|
||||
"""
|
||||
Execute the agent asynchronously with the given messages using a LiteAgent instance.
|
||||
Execute the agent asynchronously with the given messages.
|
||||
|
||||
This is the async version of the kickoff method.
|
||||
This is the async version of the kickoff method that uses native async
|
||||
execution. It is designed for use within async contexts, such as when
|
||||
called from within an async Flow method.
|
||||
|
||||
Args:
|
||||
messages: Either a string query or a list of message dictionaries.
|
||||
@@ -1651,21 +1994,48 @@ class Agent(BaseAgent):
|
||||
Returns:
|
||||
LiteAgentOutput: The result of the agent execution.
|
||||
"""
|
||||
lite_agent = LiteAgent(
|
||||
role=self.role,
|
||||
goal=self.goal,
|
||||
backstory=self.backstory,
|
||||
llm=self.llm,
|
||||
tools=self.tools or [],
|
||||
max_iterations=self.max_iter,
|
||||
max_execution_time=self.max_execution_time,
|
||||
respect_context_window=self.respect_context_window,
|
||||
verbose=self.verbose,
|
||||
response_format=response_format,
|
||||
i18n=self.i18n,
|
||||
original_agent=self,
|
||||
guardrail=self.guardrail,
|
||||
guardrail_max_retries=self.guardrail_max_retries,
|
||||
executor, inputs, agent_info, parsed_tools = self._prepare_kickoff(
|
||||
messages, response_format
|
||||
)
|
||||
|
||||
return await lite_agent.kickoff_async(messages)
|
||||
try:
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionStartedEvent(
|
||||
agent_info=agent_info,
|
||||
tools=parsed_tools,
|
||||
messages=messages,
|
||||
),
|
||||
)
|
||||
|
||||
output = await self._execute_and_build_output_async(
|
||||
executor, inputs, response_format
|
||||
)
|
||||
|
||||
if self.guardrail is not None:
|
||||
output = self._process_kickoff_guardrail(
|
||||
output=output,
|
||||
executor=executor,
|
||||
inputs=inputs,
|
||||
response_format=response_format,
|
||||
)
|
||||
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionCompletedEvent(
|
||||
agent_info=agent_info,
|
||||
output=output.raw,
|
||||
),
|
||||
)
|
||||
|
||||
return output
|
||||
|
||||
except Exception as e:
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionErrorEvent(
|
||||
agent_info=agent_info,
|
||||
error=str(e),
|
||||
),
|
||||
)
|
||||
raise
|
||||
|
||||
@@ -21,9 +21,9 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
class CrewAgentExecutorMixin:
|
||||
crew: Crew
|
||||
crew: Crew | None
|
||||
agent: Agent
|
||||
task: Task
|
||||
task: Task | None
|
||||
iterations: int
|
||||
max_iter: int
|
||||
messages: list[LLMMessage]
|
||||
|
||||
@@ -1,28 +1,19 @@
|
||||
from crewai.events.types.a2a_events import (
|
||||
A2AAgentCardFetchedEvent,
|
||||
A2AArtifactReceivedEvent,
|
||||
A2AAuthenticationFailedEvent,
|
||||
A2AConnectionErrorEvent,
|
||||
A2AConversationCompletedEvent,
|
||||
A2AConversationStartedEvent,
|
||||
A2ADelegationCompletedEvent,
|
||||
A2ADelegationStartedEvent,
|
||||
A2AMessageSentEvent,
|
||||
A2AParallelDelegationCompletedEvent,
|
||||
A2AParallelDelegationStartedEvent,
|
||||
A2APollingStartedEvent,
|
||||
A2APollingStatusEvent,
|
||||
A2APushNotificationReceivedEvent,
|
||||
A2APushNotificationRegisteredEvent,
|
||||
A2APushNotificationSentEvent,
|
||||
A2APushNotificationTimeoutEvent,
|
||||
A2AResponseReceivedEvent,
|
||||
A2AServerTaskCanceledEvent,
|
||||
A2AServerTaskCompletedEvent,
|
||||
A2AServerTaskFailedEvent,
|
||||
A2AServerTaskStartedEvent,
|
||||
A2AStreamingChunkEvent,
|
||||
A2AStreamingStartedEvent,
|
||||
)
|
||||
from crewai.events.types.agent_events import (
|
||||
AgentExecutionCompletedEvent,
|
||||
@@ -102,11 +93,7 @@ from crewai.events.types.tool_usage_events import (
|
||||
|
||||
|
||||
EventTypes = (
|
||||
A2AAgentCardFetchedEvent
|
||||
| A2AArtifactReceivedEvent
|
||||
| A2AAuthenticationFailedEvent
|
||||
| A2AConnectionErrorEvent
|
||||
| A2AConversationCompletedEvent
|
||||
A2AConversationCompletedEvent
|
||||
| A2AConversationStartedEvent
|
||||
| A2ADelegationCompletedEvent
|
||||
| A2ADelegationStartedEvent
|
||||
@@ -115,17 +102,12 @@ EventTypes = (
|
||||
| A2APollingStatusEvent
|
||||
| A2APushNotificationReceivedEvent
|
||||
| A2APushNotificationRegisteredEvent
|
||||
| A2APushNotificationSentEvent
|
||||
| A2APushNotificationTimeoutEvent
|
||||
| A2AResponseReceivedEvent
|
||||
| A2AServerTaskCanceledEvent
|
||||
| A2AServerTaskCompletedEvent
|
||||
| A2AServerTaskFailedEvent
|
||||
| A2AServerTaskStartedEvent
|
||||
| A2AStreamingChunkEvent
|
||||
| A2AStreamingStartedEvent
|
||||
| A2AParallelDelegationStartedEvent
|
||||
| A2AParallelDelegationCompletedEvent
|
||||
| CrewKickoffStartedEvent
|
||||
| CrewKickoffCompletedEvent
|
||||
| CrewKickoffFailedEvent
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
"""Trace collection listener for orchestrating trace collection."""
|
||||
|
||||
import os
|
||||
from typing import Any, ClassVar
|
||||
from typing import Any, ClassVar, cast
|
||||
import uuid
|
||||
|
||||
from typing_extensions import Self
|
||||
@@ -18,32 +18,6 @@ from crewai.events.listeners.tracing.types import TraceEvent
|
||||
from crewai.events.listeners.tracing.utils import (
|
||||
safe_serialize_to_dict,
|
||||
)
|
||||
from crewai.events.types.a2a_events import (
|
||||
A2AAgentCardFetchedEvent,
|
||||
A2AArtifactReceivedEvent,
|
||||
A2AAuthenticationFailedEvent,
|
||||
A2AConnectionErrorEvent,
|
||||
A2AConversationCompletedEvent,
|
||||
A2AConversationStartedEvent,
|
||||
A2ADelegationCompletedEvent,
|
||||
A2ADelegationStartedEvent,
|
||||
A2AMessageSentEvent,
|
||||
A2AParallelDelegationCompletedEvent,
|
||||
A2AParallelDelegationStartedEvent,
|
||||
A2APollingStartedEvent,
|
||||
A2APollingStatusEvent,
|
||||
A2APushNotificationReceivedEvent,
|
||||
A2APushNotificationRegisteredEvent,
|
||||
A2APushNotificationSentEvent,
|
||||
A2APushNotificationTimeoutEvent,
|
||||
A2AResponseReceivedEvent,
|
||||
A2AServerTaskCanceledEvent,
|
||||
A2AServerTaskCompletedEvent,
|
||||
A2AServerTaskFailedEvent,
|
||||
A2AServerTaskStartedEvent,
|
||||
A2AStreamingChunkEvent,
|
||||
A2AStreamingStartedEvent,
|
||||
)
|
||||
from crewai.events.types.agent_events import (
|
||||
AgentExecutionCompletedEvent,
|
||||
AgentExecutionErrorEvent,
|
||||
@@ -131,7 +105,7 @@ class TraceCollectionListener(BaseEventListener):
|
||||
"""Create or return singleton instance."""
|
||||
if cls._instance is None:
|
||||
cls._instance = super().__new__(cls)
|
||||
return cls._instance
|
||||
return cast(Self, cls._instance)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -186,7 +160,6 @@ class TraceCollectionListener(BaseEventListener):
|
||||
self._register_flow_event_handlers(crewai_event_bus)
|
||||
self._register_context_event_handlers(crewai_event_bus)
|
||||
self._register_action_event_handlers(crewai_event_bus)
|
||||
self._register_a2a_event_handlers(crewai_event_bus)
|
||||
self._register_system_event_handlers(crewai_event_bus)
|
||||
|
||||
self._listeners_setup = True
|
||||
@@ -466,147 +439,6 @@ class TraceCollectionListener(BaseEventListener):
|
||||
) -> None:
|
||||
self._handle_action_event("knowledge_query_failed", source, event)
|
||||
|
||||
def _register_a2a_event_handlers(self, event_bus: CrewAIEventsBus) -> None:
|
||||
"""Register handlers for A2A (Agent-to-Agent) events."""
|
||||
|
||||
@event_bus.on(A2ADelegationStartedEvent)
|
||||
def on_a2a_delegation_started(
|
||||
source: Any, event: A2ADelegationStartedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_delegation_started", source, event)
|
||||
|
||||
@event_bus.on(A2ADelegationCompletedEvent)
|
||||
def on_a2a_delegation_completed(
|
||||
source: Any, event: A2ADelegationCompletedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_delegation_completed", source, event)
|
||||
|
||||
@event_bus.on(A2AConversationStartedEvent)
|
||||
def on_a2a_conversation_started(
|
||||
source: Any, event: A2AConversationStartedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_conversation_started", source, event)
|
||||
|
||||
@event_bus.on(A2AMessageSentEvent)
|
||||
def on_a2a_message_sent(source: Any, event: A2AMessageSentEvent) -> None:
|
||||
self._handle_action_event("a2a_message_sent", source, event)
|
||||
|
||||
@event_bus.on(A2AResponseReceivedEvent)
|
||||
def on_a2a_response_received(
|
||||
source: Any, event: A2AResponseReceivedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_response_received", source, event)
|
||||
|
||||
@event_bus.on(A2AConversationCompletedEvent)
|
||||
def on_a2a_conversation_completed(
|
||||
source: Any, event: A2AConversationCompletedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_conversation_completed", source, event)
|
||||
|
||||
@event_bus.on(A2APollingStartedEvent)
|
||||
def on_a2a_polling_started(source: Any, event: A2APollingStartedEvent) -> None:
|
||||
self._handle_action_event("a2a_polling_started", source, event)
|
||||
|
||||
@event_bus.on(A2APollingStatusEvent)
|
||||
def on_a2a_polling_status(source: Any, event: A2APollingStatusEvent) -> None:
|
||||
self._handle_action_event("a2a_polling_status", source, event)
|
||||
|
||||
@event_bus.on(A2APushNotificationRegisteredEvent)
|
||||
def on_a2a_push_notification_registered(
|
||||
source: Any, event: A2APushNotificationRegisteredEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_push_notification_registered", source, event)
|
||||
|
||||
@event_bus.on(A2APushNotificationReceivedEvent)
|
||||
def on_a2a_push_notification_received(
|
||||
source: Any, event: A2APushNotificationReceivedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_push_notification_received", source, event)
|
||||
|
||||
@event_bus.on(A2APushNotificationSentEvent)
|
||||
def on_a2a_push_notification_sent(
|
||||
source: Any, event: A2APushNotificationSentEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_push_notification_sent", source, event)
|
||||
|
||||
@event_bus.on(A2APushNotificationTimeoutEvent)
|
||||
def on_a2a_push_notification_timeout(
|
||||
source: Any, event: A2APushNotificationTimeoutEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_push_notification_timeout", source, event)
|
||||
|
||||
@event_bus.on(A2AStreamingStartedEvent)
|
||||
def on_a2a_streaming_started(
|
||||
source: Any, event: A2AStreamingStartedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_streaming_started", source, event)
|
||||
|
||||
@event_bus.on(A2AStreamingChunkEvent)
|
||||
def on_a2a_streaming_chunk(source: Any, event: A2AStreamingChunkEvent) -> None:
|
||||
self._handle_action_event("a2a_streaming_chunk", source, event)
|
||||
|
||||
@event_bus.on(A2AAgentCardFetchedEvent)
|
||||
def on_a2a_agent_card_fetched(
|
||||
source: Any, event: A2AAgentCardFetchedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_agent_card_fetched", source, event)
|
||||
|
||||
@event_bus.on(A2AAuthenticationFailedEvent)
|
||||
def on_a2a_authentication_failed(
|
||||
source: Any, event: A2AAuthenticationFailedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_authentication_failed", source, event)
|
||||
|
||||
@event_bus.on(A2AArtifactReceivedEvent)
|
||||
def on_a2a_artifact_received(
|
||||
source: Any, event: A2AArtifactReceivedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_artifact_received", source, event)
|
||||
|
||||
@event_bus.on(A2AConnectionErrorEvent)
|
||||
def on_a2a_connection_error(
|
||||
source: Any, event: A2AConnectionErrorEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_connection_error", source, event)
|
||||
|
||||
@event_bus.on(A2AServerTaskStartedEvent)
|
||||
def on_a2a_server_task_started(
|
||||
source: Any, event: A2AServerTaskStartedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_server_task_started", source, event)
|
||||
|
||||
@event_bus.on(A2AServerTaskCompletedEvent)
|
||||
def on_a2a_server_task_completed(
|
||||
source: Any, event: A2AServerTaskCompletedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_server_task_completed", source, event)
|
||||
|
||||
@event_bus.on(A2AServerTaskCanceledEvent)
|
||||
def on_a2a_server_task_canceled(
|
||||
source: Any, event: A2AServerTaskCanceledEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_server_task_canceled", source, event)
|
||||
|
||||
@event_bus.on(A2AServerTaskFailedEvent)
|
||||
def on_a2a_server_task_failed(
|
||||
source: Any, event: A2AServerTaskFailedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_server_task_failed", source, event)
|
||||
|
||||
@event_bus.on(A2AParallelDelegationStartedEvent)
|
||||
def on_a2a_parallel_delegation_started(
|
||||
source: Any, event: A2AParallelDelegationStartedEvent
|
||||
) -> None:
|
||||
self._handle_action_event("a2a_parallel_delegation_started", source, event)
|
||||
|
||||
@event_bus.on(A2AParallelDelegationCompletedEvent)
|
||||
def on_a2a_parallel_delegation_completed(
|
||||
source: Any, event: A2AParallelDelegationCompletedEvent
|
||||
) -> None:
|
||||
self._handle_action_event(
|
||||
"a2a_parallel_delegation_completed", source, event
|
||||
)
|
||||
|
||||
def _register_system_event_handlers(self, event_bus: CrewAIEventsBus) -> None:
|
||||
"""Register handlers for system signal events (SIGTERM, SIGINT, etc.)."""
|
||||
|
||||
@@ -738,15 +570,10 @@ class TraceCollectionListener(BaseEventListener):
|
||||
if event_type not in self.complex_events:
|
||||
return safe_serialize_to_dict(event)
|
||||
if event_type == "task_started":
|
||||
task_name = event.task.name or event.task.description
|
||||
task_display_name = (
|
||||
task_name[:80] + "..." if len(task_name) > 80 else task_name
|
||||
)
|
||||
return {
|
||||
"task_description": event.task.description,
|
||||
"expected_output": event.task.expected_output,
|
||||
"task_name": task_name,
|
||||
"task_display_name": task_display_name,
|
||||
"task_name": event.task.name or event.task.description,
|
||||
"context": event.context,
|
||||
"agent_role": source.agent.role,
|
||||
"task_id": str(event.task.id),
|
||||
|
||||
@@ -4,120 +4,68 @@ This module defines events emitted during A2A protocol delegation,
|
||||
including both single-turn and multiturn conversation flows.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Literal
|
||||
|
||||
from pydantic import model_validator
|
||||
|
||||
from crewai.events.base_events import BaseEvent
|
||||
|
||||
|
||||
class A2AEventBase(BaseEvent):
|
||||
"""Base class for A2A events with task/agent context."""
|
||||
|
||||
from_task: Any = None
|
||||
from_agent: Any = None
|
||||
from_task: Any | None = None
|
||||
from_agent: Any | None = None
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def extract_task_and_agent_metadata(cls, data: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Extract task and agent metadata before validation."""
|
||||
if task := data.get("from_task"):
|
||||
def __init__(self, **data: Any) -> None:
|
||||
"""Initialize A2A event, extracting task and agent metadata."""
|
||||
if data.get("from_task"):
|
||||
task = data["from_task"]
|
||||
data["task_id"] = str(task.id)
|
||||
data["task_name"] = task.name or task.description
|
||||
data.setdefault("source_fingerprint", str(task.id))
|
||||
data.setdefault("source_type", "task")
|
||||
data.setdefault(
|
||||
"fingerprint_metadata",
|
||||
{
|
||||
"task_id": str(task.id),
|
||||
"task_name": task.name or task.description,
|
||||
},
|
||||
)
|
||||
data["from_task"] = None
|
||||
|
||||
if agent := data.get("from_agent"):
|
||||
if data.get("from_agent"):
|
||||
agent = data["from_agent"]
|
||||
data["agent_id"] = str(agent.id)
|
||||
data["agent_role"] = agent.role
|
||||
data.setdefault("source_fingerprint", str(agent.id))
|
||||
data.setdefault("source_type", "agent")
|
||||
data.setdefault(
|
||||
"fingerprint_metadata",
|
||||
{
|
||||
"agent_id": str(agent.id),
|
||||
"agent_role": agent.role,
|
||||
},
|
||||
)
|
||||
data["from_agent"] = None
|
||||
|
||||
return data
|
||||
super().__init__(**data)
|
||||
|
||||
|
||||
class A2ADelegationStartedEvent(A2AEventBase):
|
||||
"""Event emitted when A2A delegation starts.
|
||||
|
||||
Attributes:
|
||||
endpoint: A2A agent endpoint URL (AgentCard URL).
|
||||
task_description: Task being delegated to the A2A agent.
|
||||
agent_id: A2A agent identifier.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
is_multiturn: Whether this is part of a multiturn conversation.
|
||||
turn_number: Current turn number (1-indexed, 1 for single-turn).
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
agent_card: Full A2A agent card metadata.
|
||||
protocol_version: A2A protocol version being used.
|
||||
provider: Agent provider/organization info from agent card.
|
||||
skill_id: ID of the specific skill being invoked.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
extensions: List of A2A extension URIs in use.
|
||||
endpoint: A2A agent endpoint URL (AgentCard URL)
|
||||
task_description: Task being delegated to the A2A agent
|
||||
agent_id: A2A agent identifier
|
||||
is_multiturn: Whether this is part of a multiturn conversation
|
||||
turn_number: Current turn number (1-indexed, 1 for single-turn)
|
||||
"""
|
||||
|
||||
type: str = "a2a_delegation_started"
|
||||
endpoint: str
|
||||
task_description: str
|
||||
agent_id: str
|
||||
context_id: str | None = None
|
||||
is_multiturn: bool = False
|
||||
turn_number: int = 1
|
||||
a2a_agent_name: str | None = None
|
||||
agent_card: dict[str, Any] | None = None
|
||||
protocol_version: str | None = None
|
||||
provider: dict[str, Any] | None = None
|
||||
skill_id: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
extensions: list[str] | None = None
|
||||
|
||||
|
||||
class A2ADelegationCompletedEvent(A2AEventBase):
|
||||
"""Event emitted when A2A delegation completes.
|
||||
|
||||
Attributes:
|
||||
status: Completion status (completed, input_required, failed, etc.).
|
||||
result: Result message if status is completed.
|
||||
error: Error/response message (error for failed, response for input_required).
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
is_multiturn: Whether this is part of a multiturn conversation.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
agent_card: Full A2A agent card metadata.
|
||||
provider: Agent provider/organization info from agent card.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
extensions: List of A2A extension URIs in use.
|
||||
status: Completion status (completed, input_required, failed, etc.)
|
||||
result: Result message if status is completed
|
||||
error: Error/response message (error for failed, response for input_required)
|
||||
is_multiturn: Whether this is part of a multiturn conversation
|
||||
"""
|
||||
|
||||
type: str = "a2a_delegation_completed"
|
||||
status: str
|
||||
result: str | None = None
|
||||
error: str | None = None
|
||||
context_id: str | None = None
|
||||
is_multiturn: bool = False
|
||||
endpoint: str | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
agent_card: dict[str, Any] | None = None
|
||||
provider: dict[str, Any] | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
extensions: list[str] | None = None
|
||||
|
||||
|
||||
class A2AConversationStartedEvent(A2AEventBase):
|
||||
@@ -127,95 +75,51 @@ class A2AConversationStartedEvent(A2AEventBase):
|
||||
before the first message exchange.
|
||||
|
||||
Attributes:
|
||||
agent_id: A2A agent identifier.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
agent_card: Full A2A agent card metadata.
|
||||
protocol_version: A2A protocol version being used.
|
||||
provider: Agent provider/organization info from agent card.
|
||||
skill_id: ID of the specific skill being invoked.
|
||||
reference_task_ids: Related task IDs for context.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
extensions: List of A2A extension URIs in use.
|
||||
agent_id: A2A agent identifier
|
||||
endpoint: A2A agent endpoint URL
|
||||
a2a_agent_name: Name of the A2A agent from agent card
|
||||
"""
|
||||
|
||||
type: str = "a2a_conversation_started"
|
||||
agent_id: str
|
||||
endpoint: str
|
||||
context_id: str | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
agent_card: dict[str, Any] | None = None
|
||||
protocol_version: str | None = None
|
||||
provider: dict[str, Any] | None = None
|
||||
skill_id: str | None = None
|
||||
reference_task_ids: list[str] | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
extensions: list[str] | None = None
|
||||
|
||||
|
||||
class A2AMessageSentEvent(A2AEventBase):
|
||||
"""Event emitted when a message is sent to the A2A agent.
|
||||
|
||||
Attributes:
|
||||
message: Message content sent to the A2A agent.
|
||||
turn_number: Current turn number (1-indexed).
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
message_id: Unique A2A message identifier.
|
||||
is_multiturn: Whether this is part of a multiturn conversation.
|
||||
agent_role: Role of the CrewAI agent sending the message.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
skill_id: ID of the specific skill being invoked.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
extensions: List of A2A extension URIs in use.
|
||||
message: Message content sent to the A2A agent
|
||||
turn_number: Current turn number (1-indexed)
|
||||
is_multiturn: Whether this is part of a multiturn conversation
|
||||
agent_role: Role of the CrewAI agent sending the message
|
||||
"""
|
||||
|
||||
type: str = "a2a_message_sent"
|
||||
message: str
|
||||
turn_number: int
|
||||
context_id: str | None = None
|
||||
message_id: str | None = None
|
||||
is_multiturn: bool = False
|
||||
agent_role: str | None = None
|
||||
endpoint: str | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
skill_id: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
extensions: list[str] | None = None
|
||||
|
||||
|
||||
class A2AResponseReceivedEvent(A2AEventBase):
|
||||
"""Event emitted when a response is received from the A2A agent.
|
||||
|
||||
Attributes:
|
||||
response: Response content from the A2A agent.
|
||||
turn_number: Current turn number (1-indexed).
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
message_id: Unique A2A message identifier.
|
||||
is_multiturn: Whether this is part of a multiturn conversation.
|
||||
status: Response status (input_required, completed, etc.).
|
||||
final: Whether this is the final response in the stream.
|
||||
agent_role: Role of the CrewAI agent (for display).
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
extensions: List of A2A extension URIs in use.
|
||||
response: Response content from the A2A agent
|
||||
turn_number: Current turn number (1-indexed)
|
||||
is_multiturn: Whether this is part of a multiturn conversation
|
||||
status: Response status (input_required, completed, etc.)
|
||||
agent_role: Role of the CrewAI agent (for display)
|
||||
"""
|
||||
|
||||
type: str = "a2a_response_received"
|
||||
response: str
|
||||
turn_number: int
|
||||
context_id: str | None = None
|
||||
message_id: str | None = None
|
||||
is_multiturn: bool = False
|
||||
status: str
|
||||
final: bool = False
|
||||
agent_role: str | None = None
|
||||
endpoint: str | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
extensions: list[str] | None = None
|
||||
|
||||
|
||||
class A2AConversationCompletedEvent(A2AEventBase):
|
||||
@@ -224,433 +128,119 @@ class A2AConversationCompletedEvent(A2AEventBase):
|
||||
This is emitted once at the end of a multiturn conversation.
|
||||
|
||||
Attributes:
|
||||
status: Final status (completed, failed, etc.).
|
||||
final_result: Final result if completed successfully.
|
||||
error: Error message if failed.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
total_turns: Total number of turns in the conversation.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
agent_card: Full A2A agent card metadata.
|
||||
reference_task_ids: Related task IDs for context.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
extensions: List of A2A extension URIs in use.
|
||||
status: Final status (completed, failed, etc.)
|
||||
final_result: Final result if completed successfully
|
||||
error: Error message if failed
|
||||
total_turns: Total number of turns in the conversation
|
||||
"""
|
||||
|
||||
type: str = "a2a_conversation_completed"
|
||||
status: Literal["completed", "failed"]
|
||||
final_result: str | None = None
|
||||
error: str | None = None
|
||||
context_id: str | None = None
|
||||
total_turns: int
|
||||
endpoint: str | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
agent_card: dict[str, Any] | None = None
|
||||
reference_task_ids: list[str] | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
extensions: list[str] | None = None
|
||||
|
||||
|
||||
class A2APollingStartedEvent(A2AEventBase):
|
||||
"""Event emitted when polling mode begins for A2A delegation.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID being polled.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
polling_interval: Seconds between poll attempts.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
task_id: A2A task ID being polled
|
||||
polling_interval: Seconds between poll attempts
|
||||
endpoint: A2A agent endpoint URL
|
||||
"""
|
||||
|
||||
type: str = "a2a_polling_started"
|
||||
task_id: str
|
||||
context_id: str | None = None
|
||||
polling_interval: float
|
||||
endpoint: str
|
||||
a2a_agent_name: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2APollingStatusEvent(A2AEventBase):
|
||||
"""Event emitted on each polling iteration.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID being polled.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
state: Current task state from remote agent.
|
||||
elapsed_seconds: Time since polling started.
|
||||
poll_count: Number of polls completed.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
task_id: A2A task ID being polled
|
||||
state: Current task state from remote agent
|
||||
elapsed_seconds: Time since polling started
|
||||
poll_count: Number of polls completed
|
||||
"""
|
||||
|
||||
type: str = "a2a_polling_status"
|
||||
task_id: str
|
||||
context_id: str | None = None
|
||||
state: str
|
||||
elapsed_seconds: float
|
||||
poll_count: int
|
||||
endpoint: str | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2APushNotificationRegisteredEvent(A2AEventBase):
|
||||
"""Event emitted when push notification callback is registered.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID for which callback is registered.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
callback_url: URL where agent will send push notifications.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
task_id: A2A task ID for which callback is registered
|
||||
callback_url: URL where agent will send push notifications
|
||||
"""
|
||||
|
||||
type: str = "a2a_push_notification_registered"
|
||||
task_id: str
|
||||
context_id: str | None = None
|
||||
callback_url: str
|
||||
endpoint: str | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2APushNotificationReceivedEvent(A2AEventBase):
|
||||
"""Event emitted when a push notification is received.
|
||||
|
||||
This event should be emitted by the user's webhook handler when it receives
|
||||
a push notification from the remote A2A agent, before calling
|
||||
`result_store.store_result()`.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID from the notification.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
state: Current task state from the notification.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
task_id: A2A task ID from the notification
|
||||
state: Current task state from the notification
|
||||
"""
|
||||
|
||||
type: str = "a2a_push_notification_received"
|
||||
task_id: str
|
||||
context_id: str | None = None
|
||||
state: str
|
||||
endpoint: str | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2APushNotificationSentEvent(A2AEventBase):
|
||||
"""Event emitted when a push notification is sent to a callback URL.
|
||||
|
||||
Emitted by the A2A server when it sends a task status update to the
|
||||
client's registered push notification callback URL.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID being notified.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
callback_url: URL the notification was sent to.
|
||||
state: Task state being reported.
|
||||
success: Whether the notification was successfully delivered.
|
||||
error: Error message if delivery failed.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
|
||||
type: str = "a2a_push_notification_sent"
|
||||
task_id: str
|
||||
context_id: str | None = None
|
||||
callback_url: str
|
||||
state: str
|
||||
success: bool = True
|
||||
error: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2APushNotificationTimeoutEvent(A2AEventBase):
|
||||
"""Event emitted when push notification wait times out.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID that timed out.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
timeout_seconds: Timeout duration in seconds.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
task_id: A2A task ID that timed out
|
||||
timeout_seconds: Timeout duration in seconds
|
||||
"""
|
||||
|
||||
type: str = "a2a_push_notification_timeout"
|
||||
task_id: str
|
||||
context_id: str | None = None
|
||||
timeout_seconds: float
|
||||
endpoint: str | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2AStreamingStartedEvent(A2AEventBase):
|
||||
"""Event emitted when streaming mode begins for A2A delegation.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID for the streaming session.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
turn_number: Current turn number (1-indexed).
|
||||
is_multiturn: Whether this is part of a multiturn conversation.
|
||||
agent_role: Role of the CrewAI agent.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
extensions: List of A2A extension URIs in use.
|
||||
"""
|
||||
|
||||
type: str = "a2a_streaming_started"
|
||||
task_id: str | None = None
|
||||
context_id: str | None = None
|
||||
endpoint: str
|
||||
a2a_agent_name: str | None = None
|
||||
turn_number: int = 1
|
||||
is_multiturn: bool = False
|
||||
agent_role: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
extensions: list[str] | None = None
|
||||
|
||||
|
||||
class A2AStreamingChunkEvent(A2AEventBase):
|
||||
"""Event emitted when a streaming chunk is received.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID for the streaming session.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
chunk: The text content of the chunk.
|
||||
chunk_index: Index of this chunk in the stream (0-indexed).
|
||||
final: Whether this is the final chunk in the stream.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
turn_number: Current turn number (1-indexed).
|
||||
is_multiturn: Whether this is part of a multiturn conversation.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
extensions: List of A2A extension URIs in use.
|
||||
"""
|
||||
|
||||
type: str = "a2a_streaming_chunk"
|
||||
task_id: str | None = None
|
||||
context_id: str | None = None
|
||||
chunk: str
|
||||
chunk_index: int
|
||||
final: bool = False
|
||||
endpoint: str | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
turn_number: int = 1
|
||||
is_multiturn: bool = False
|
||||
metadata: dict[str, Any] | None = None
|
||||
extensions: list[str] | None = None
|
||||
|
||||
|
||||
class A2AAgentCardFetchedEvent(A2AEventBase):
|
||||
"""Event emitted when an agent card is successfully fetched.
|
||||
|
||||
Attributes:
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
agent_card: Full A2A agent card metadata.
|
||||
protocol_version: A2A protocol version from agent card.
|
||||
provider: Agent provider/organization info from agent card.
|
||||
cached: Whether the agent card was retrieved from cache.
|
||||
fetch_time_ms: Time taken to fetch the agent card in milliseconds.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
|
||||
type: str = "a2a_agent_card_fetched"
|
||||
endpoint: str
|
||||
a2a_agent_name: str | None = None
|
||||
agent_card: dict[str, Any] | None = None
|
||||
protocol_version: str | None = None
|
||||
provider: dict[str, Any] | None = None
|
||||
cached: bool = False
|
||||
fetch_time_ms: float | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2AAuthenticationFailedEvent(A2AEventBase):
|
||||
"""Event emitted when authentication to an A2A agent fails.
|
||||
|
||||
Attributes:
|
||||
endpoint: A2A agent endpoint URL.
|
||||
auth_type: Type of authentication attempted (e.g., bearer, oauth2, api_key).
|
||||
error: Error message describing the failure.
|
||||
status_code: HTTP status code if applicable.
|
||||
a2a_agent_name: Name of the A2A agent if known.
|
||||
protocol_version: A2A protocol version being used.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
|
||||
type: str = "a2a_authentication_failed"
|
||||
endpoint: str
|
||||
auth_type: str | None = None
|
||||
error: str
|
||||
status_code: int | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
protocol_version: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2AArtifactReceivedEvent(A2AEventBase):
|
||||
"""Event emitted when an artifact is received from a remote A2A agent.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID the artifact belongs to.
|
||||
artifact_id: Unique identifier for the artifact.
|
||||
artifact_name: Name of the artifact.
|
||||
artifact_description: Purpose description of the artifact.
|
||||
mime_type: MIME type of the artifact content.
|
||||
size_bytes: Size of the artifact in bytes.
|
||||
append: Whether content should be appended to existing artifact.
|
||||
last_chunk: Whether this is the final chunk of the artifact.
|
||||
endpoint: A2A agent endpoint URL.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
context_id: Context ID for correlation.
|
||||
turn_number: Current turn number (1-indexed).
|
||||
is_multiturn: Whether this is part of a multiturn conversation.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
extensions: List of A2A extension URIs in use.
|
||||
"""
|
||||
|
||||
type: str = "a2a_artifact_received"
|
||||
task_id: str
|
||||
artifact_id: str
|
||||
artifact_name: str | None = None
|
||||
artifact_description: str | None = None
|
||||
mime_type: str | None = None
|
||||
size_bytes: int | None = None
|
||||
append: bool = False
|
||||
last_chunk: bool = False
|
||||
endpoint: str | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
context_id: str | None = None
|
||||
turn_number: int = 1
|
||||
is_multiturn: bool = False
|
||||
metadata: dict[str, Any] | None = None
|
||||
extensions: list[str] | None = None
|
||||
|
||||
|
||||
class A2AConnectionErrorEvent(A2AEventBase):
|
||||
"""Event emitted when a connection error occurs during A2A communication.
|
||||
|
||||
Attributes:
|
||||
endpoint: A2A agent endpoint URL.
|
||||
error: Error message describing the connection failure.
|
||||
error_type: Type of error (e.g., timeout, connection_refused, dns_error).
|
||||
status_code: HTTP status code if applicable.
|
||||
a2a_agent_name: Name of the A2A agent from agent card.
|
||||
operation: The operation being attempted when error occurred.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
task_id: A2A task ID if applicable.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
|
||||
type: str = "a2a_connection_error"
|
||||
endpoint: str
|
||||
error: str
|
||||
error_type: str | None = None
|
||||
status_code: int | None = None
|
||||
a2a_agent_name: str | None = None
|
||||
operation: str | None = None
|
||||
context_id: str | None = None
|
||||
task_id: str | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2AServerTaskStartedEvent(A2AEventBase):
|
||||
"""Event emitted when an A2A server task execution starts.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID for this execution.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
"""Event emitted when an A2A server task execution starts."""
|
||||
|
||||
type: str = "a2a_server_task_started"
|
||||
task_id: str
|
||||
context_id: str
|
||||
metadata: dict[str, Any] | None = None
|
||||
a2a_task_id: str
|
||||
a2a_context_id: str
|
||||
|
||||
|
||||
class A2AServerTaskCompletedEvent(A2AEventBase):
|
||||
"""Event emitted when an A2A server task execution completes.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID for this execution.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
result: The task result.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
"""Event emitted when an A2A server task execution completes."""
|
||||
|
||||
type: str = "a2a_server_task_completed"
|
||||
task_id: str
|
||||
context_id: str
|
||||
a2a_task_id: str
|
||||
a2a_context_id: str
|
||||
result: str
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2AServerTaskCanceledEvent(A2AEventBase):
|
||||
"""Event emitted when an A2A server task execution is canceled.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID for this execution.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
"""Event emitted when an A2A server task execution is canceled."""
|
||||
|
||||
type: str = "a2a_server_task_canceled"
|
||||
task_id: str
|
||||
context_id: str
|
||||
metadata: dict[str, Any] | None = None
|
||||
a2a_task_id: str
|
||||
a2a_context_id: str
|
||||
|
||||
|
||||
class A2AServerTaskFailedEvent(A2AEventBase):
|
||||
"""Event emitted when an A2A server task execution fails.
|
||||
|
||||
Attributes:
|
||||
task_id: A2A task ID for this execution.
|
||||
context_id: A2A context ID grouping related tasks.
|
||||
error: Error message describing the failure.
|
||||
metadata: Custom A2A metadata key-value pairs.
|
||||
"""
|
||||
"""Event emitted when an A2A server task execution fails."""
|
||||
|
||||
type: str = "a2a_server_task_failed"
|
||||
task_id: str
|
||||
context_id: str
|
||||
a2a_task_id: str
|
||||
a2a_context_id: str
|
||||
error: str
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class A2AParallelDelegationStartedEvent(A2AEventBase):
|
||||
"""Event emitted when parallel delegation to multiple A2A agents begins.
|
||||
|
||||
Attributes:
|
||||
endpoints: List of A2A agent endpoints being delegated to.
|
||||
task_description: Description of the task being delegated.
|
||||
"""
|
||||
|
||||
type: str = "a2a_parallel_delegation_started"
|
||||
endpoints: list[str]
|
||||
task_description: str
|
||||
|
||||
|
||||
class A2AParallelDelegationCompletedEvent(A2AEventBase):
|
||||
"""Event emitted when parallel delegation to multiple A2A agents completes.
|
||||
|
||||
Attributes:
|
||||
endpoints: List of A2A agent endpoints that were delegated to.
|
||||
success_count: Number of successful delegations.
|
||||
failure_count: Number of failed delegations.
|
||||
results: Summary of results from each agent.
|
||||
"""
|
||||
|
||||
type: str = "a2a_parallel_delegation_completed"
|
||||
endpoints: list[str]
|
||||
success_count: int
|
||||
failure_count: int
|
||||
results: dict[str, str] | None = None
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from crewai.experimental.crew_agent_executor_flow import CrewAgentExecutorFlow
|
||||
from crewai.experimental.agent_executor import AgentExecutor, CrewAgentExecutorFlow
|
||||
from crewai.experimental.evaluation import (
|
||||
AgentEvaluationResult,
|
||||
AgentEvaluator,
|
||||
@@ -23,8 +23,9 @@ from crewai.experimental.evaluation import (
|
||||
__all__ = [
|
||||
"AgentEvaluationResult",
|
||||
"AgentEvaluator",
|
||||
"AgentExecutor",
|
||||
"BaseEvaluator",
|
||||
"CrewAgentExecutorFlow",
|
||||
"CrewAgentExecutorFlow", # Deprecated alias for AgentExecutor
|
||||
"EvaluationScore",
|
||||
"EvaluationTraceCallback",
|
||||
"ExperimentResult",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Callable
|
||||
from collections.abc import Callable, Coroutine
|
||||
import threading
|
||||
from typing import TYPE_CHECKING, Any, Literal, cast
|
||||
from uuid import uuid4
|
||||
@@ -37,6 +37,7 @@ from crewai.utilities.agent_utils import (
|
||||
handle_unknown_error,
|
||||
has_reached_max_iterations,
|
||||
is_context_length_exceeded,
|
||||
is_inside_event_loop,
|
||||
process_llm_response,
|
||||
)
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
@@ -73,13 +74,17 @@ class AgentReActState(BaseModel):
|
||||
ask_for_human_input: bool = Field(default=False)
|
||||
|
||||
|
||||
class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
"""Flow-based executor matching CrewAgentExecutor interface.
|
||||
class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
"""Flow-based agent executor for both standalone and crew-bound execution.
|
||||
|
||||
Inherits from:
|
||||
- Flow[AgentReActState]: Provides flow orchestration capabilities
|
||||
- CrewAgentExecutorMixin: Provides memory methods (short/long/external term)
|
||||
|
||||
This executor can operate in two modes:
|
||||
- Standalone mode: When crew and task are None (used by Agent.kickoff())
|
||||
- Crew mode: When crew and task are provided (used by Agent.execute_task())
|
||||
|
||||
Note: Multiple instances may be created during agent initialization
|
||||
(cache setup, RPM controller setup, etc.) but only the final instance
|
||||
should execute tasks via invoke().
|
||||
@@ -88,8 +93,6 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
def __init__(
|
||||
self,
|
||||
llm: BaseLLM,
|
||||
task: Task,
|
||||
crew: Crew,
|
||||
agent: Agent,
|
||||
prompt: SystemPromptResult | StandardPromptResult,
|
||||
max_iter: int,
|
||||
@@ -98,6 +101,8 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
stop_words: list[str],
|
||||
tools_description: str,
|
||||
tools_handler: ToolsHandler,
|
||||
task: Task | None = None,
|
||||
crew: Crew | None = None,
|
||||
step_callback: Any = None,
|
||||
original_tools: list[BaseTool] | None = None,
|
||||
function_calling_llm: BaseLLM | Any | None = None,
|
||||
@@ -111,8 +116,6 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
|
||||
Args:
|
||||
llm: Language model instance.
|
||||
task: Task to execute.
|
||||
crew: Crew instance.
|
||||
agent: Agent to execute.
|
||||
prompt: Prompt templates.
|
||||
max_iter: Maximum iterations.
|
||||
@@ -121,6 +124,8 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
stop_words: Stop word list.
|
||||
tools_description: Tool descriptions.
|
||||
tools_handler: Tool handler instance.
|
||||
task: Optional task to execute (None for standalone agent execution).
|
||||
crew: Optional crew instance (None for standalone agent execution).
|
||||
step_callback: Optional step callback.
|
||||
original_tools: Original tool list.
|
||||
function_calling_llm: Optional function calling LLM.
|
||||
@@ -131,9 +136,9 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
"""
|
||||
self._i18n: I18N = i18n or get_i18n()
|
||||
self.llm = llm
|
||||
self.task = task
|
||||
self.task: Task | None = task
|
||||
self.agent = agent
|
||||
self.crew = crew
|
||||
self.crew: Crew | None = crew
|
||||
self.prompt = prompt
|
||||
self.tools = tools
|
||||
self.tools_names = tools_names
|
||||
@@ -178,7 +183,6 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
else self.stop
|
||||
)
|
||||
)
|
||||
|
||||
self._state = AgentReActState()
|
||||
|
||||
def _ensure_flow_initialized(self) -> None:
|
||||
@@ -264,7 +268,7 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
printer=self._printer,
|
||||
from_task=self.task,
|
||||
from_agent=self.agent,
|
||||
response_model=self.response_model,
|
||||
response_model=None,
|
||||
executor_context=self,
|
||||
)
|
||||
|
||||
@@ -449,9 +453,99 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
|
||||
return "initialized"
|
||||
|
||||
def invoke(self, inputs: dict[str, Any]) -> dict[str, Any]:
|
||||
def invoke(
|
||||
self, inputs: dict[str, Any]
|
||||
) -> dict[str, Any] | Coroutine[Any, Any, dict[str, Any]]:
|
||||
"""Execute agent with given inputs.
|
||||
|
||||
When called from within an existing event loop (e.g., inside a Flow),
|
||||
this method returns a coroutine that should be awaited. The Flow
|
||||
framework handles this automatically.
|
||||
|
||||
Args:
|
||||
inputs: Input dictionary containing prompt variables.
|
||||
|
||||
Returns:
|
||||
Dictionary with agent output, or a coroutine if inside an event loop.
|
||||
"""
|
||||
# Magic auto-async: if inside event loop, return coroutine for Flow to await
|
||||
if is_inside_event_loop():
|
||||
return self.invoke_async(inputs)
|
||||
|
||||
self._ensure_flow_initialized()
|
||||
|
||||
with self._execution_lock:
|
||||
if self._is_executing:
|
||||
raise RuntimeError(
|
||||
"Executor is already running. "
|
||||
"Cannot invoke the same executor instance concurrently."
|
||||
)
|
||||
self._is_executing = True
|
||||
self._has_been_invoked = True
|
||||
|
||||
try:
|
||||
# Reset state for fresh execution
|
||||
self.state.messages.clear()
|
||||
self.state.iterations = 0
|
||||
self.state.current_answer = None
|
||||
self.state.is_finished = False
|
||||
|
||||
if "system" in self.prompt:
|
||||
prompt = cast("SystemPromptResult", self.prompt)
|
||||
system_prompt = self._format_prompt(prompt["system"], inputs)
|
||||
user_prompt = self._format_prompt(prompt["user"], inputs)
|
||||
self.state.messages.append(
|
||||
format_message_for_llm(system_prompt, role="system")
|
||||
)
|
||||
self.state.messages.append(format_message_for_llm(user_prompt))
|
||||
else:
|
||||
user_prompt = self._format_prompt(self.prompt["prompt"], inputs)
|
||||
self.state.messages.append(format_message_for_llm(user_prompt))
|
||||
|
||||
self.state.ask_for_human_input = bool(
|
||||
inputs.get("ask_for_human_input", False)
|
||||
)
|
||||
|
||||
self.kickoff()
|
||||
|
||||
formatted_answer = self.state.current_answer
|
||||
|
||||
if not isinstance(formatted_answer, AgentFinish):
|
||||
raise RuntimeError(
|
||||
"Agent execution ended without reaching a final answer."
|
||||
)
|
||||
|
||||
if self.state.ask_for_human_input:
|
||||
formatted_answer = self._handle_human_feedback(formatted_answer)
|
||||
|
||||
self._create_short_term_memory(formatted_answer)
|
||||
self._create_long_term_memory(formatted_answer)
|
||||
self._create_external_memory(formatted_answer)
|
||||
|
||||
return {"output": formatted_answer.output}
|
||||
|
||||
except AssertionError:
|
||||
fail_text = Text()
|
||||
fail_text.append("❌ ", style="red bold")
|
||||
fail_text.append(
|
||||
"Agent failed to reach a final answer. This is likely a bug - please report it.",
|
||||
style="red",
|
||||
)
|
||||
self._console.print(fail_text)
|
||||
raise
|
||||
except Exception as e:
|
||||
handle_unknown_error(self._printer, e)
|
||||
raise
|
||||
finally:
|
||||
self._is_executing = False
|
||||
|
||||
async def invoke_async(self, inputs: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Execute agent asynchronously with given inputs.
|
||||
|
||||
This method is designed for use within async contexts, such as when
|
||||
the agent is called from within an async Flow method. It uses
|
||||
kickoff_async() directly instead of running in a separate thread.
|
||||
|
||||
Args:
|
||||
inputs: Input dictionary containing prompt variables.
|
||||
|
||||
@@ -492,7 +586,8 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
inputs.get("ask_for_human_input", False)
|
||||
)
|
||||
|
||||
self.kickoff()
|
||||
# Use async kickoff directly since we're already in an async context
|
||||
await self.kickoff_async()
|
||||
|
||||
formatted_answer = self.state.current_answer
|
||||
|
||||
@@ -583,11 +678,14 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
if self.agent is None:
|
||||
raise ValueError("Agent cannot be None")
|
||||
|
||||
if self.task is None:
|
||||
return
|
||||
|
||||
crewai_event_bus.emit(
|
||||
self.agent,
|
||||
AgentLogsStartedEvent(
|
||||
agent_role=self.agent.role,
|
||||
task_description=(self.task.description if self.task else "Not Found"),
|
||||
task_description=self.task.description,
|
||||
verbose=self.agent.verbose
|
||||
or (hasattr(self, "crew") and getattr(self.crew, "verbose", False)),
|
||||
),
|
||||
@@ -621,10 +719,12 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
result: Agent's final output.
|
||||
human_feedback: Optional feedback from human.
|
||||
"""
|
||||
# Early return if no crew (standalone mode)
|
||||
if self.crew is None:
|
||||
return
|
||||
|
||||
agent_id = str(self.agent.id)
|
||||
train_iteration = (
|
||||
getattr(self.crew, "_train_iteration", None) if self.crew else None
|
||||
)
|
||||
train_iteration = getattr(self.crew, "_train_iteration", None)
|
||||
|
||||
if train_iteration is None or not isinstance(train_iteration, int):
|
||||
train_error = Text()
|
||||
@@ -806,3 +906,7 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
requiring arbitrary_types_allowed=True.
|
||||
"""
|
||||
return core_schema.any_schema()
|
||||
|
||||
|
||||
# Backward compatibility alias (deprecated)
|
||||
CrewAgentExecutorFlow = AgentExecutor
|
||||
@@ -73,6 +73,7 @@ from crewai.flow.utils import (
|
||||
is_simple_flow_condition,
|
||||
)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.flow.async_feedback.types import PendingFeedbackContext
|
||||
from crewai.flow.human_feedback import HumanFeedbackResult
|
||||
@@ -519,6 +520,9 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
self._methods: dict[FlowMethodName, FlowMethod[Any, Any]] = {}
|
||||
self._method_execution_counts: dict[FlowMethodName, int] = {}
|
||||
self._pending_and_listeners: dict[PendingListenerKey, set[FlowMethodName]] = {}
|
||||
self._fired_or_listeners: set[FlowMethodName] = (
|
||||
set()
|
||||
) # Track OR listeners that already fired
|
||||
self._method_outputs: list[Any] = [] # list to store all method outputs
|
||||
self._completed_methods: set[FlowMethodName] = (
|
||||
set()
|
||||
@@ -570,7 +574,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
flow_id: str,
|
||||
persistence: FlowPersistence | None = None,
|
||||
**kwargs: Any,
|
||||
) -> "Flow[Any]":
|
||||
) -> Flow[Any]:
|
||||
"""Create a Flow instance from a pending feedback state.
|
||||
|
||||
This classmethod is used to restore a flow that was paused waiting
|
||||
@@ -631,7 +635,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
return instance
|
||||
|
||||
@property
|
||||
def pending_feedback(self) -> "PendingFeedbackContext | None":
|
||||
def pending_feedback(self) -> PendingFeedbackContext | None:
|
||||
"""Get the pending feedback context if this flow is waiting for feedback.
|
||||
|
||||
Returns:
|
||||
@@ -716,9 +720,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
Raises:
|
||||
ValueError: If no pending feedback context exists
|
||||
"""
|
||||
from crewai.flow.human_feedback import HumanFeedbackResult
|
||||
from datetime import datetime
|
||||
|
||||
from crewai.flow.human_feedback import HumanFeedbackResult
|
||||
|
||||
if self._pending_feedback_context is None:
|
||||
raise ValueError(
|
||||
"No pending feedback context. Use from_pending() to restore a paused flow."
|
||||
@@ -1295,6 +1300,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
self._completed_methods.clear()
|
||||
self._method_outputs.clear()
|
||||
self._pending_and_listeners.clear()
|
||||
self._fired_or_listeners.clear()
|
||||
else:
|
||||
# We're restoring from persistence, set the flag
|
||||
self._is_execution_resuming = True
|
||||
@@ -1346,9 +1352,26 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
self._initialize_state(inputs)
|
||||
|
||||
try:
|
||||
# Determine which start methods to execute at kickoff
|
||||
# Conditional start methods (with __trigger_methods__) are only triggered by their conditions
|
||||
# UNLESS there are no unconditional starts (then all starts run as entry points)
|
||||
unconditional_starts = [
|
||||
start_method
|
||||
for start_method in self._start_methods
|
||||
if not getattr(
|
||||
self._methods.get(start_method), "__trigger_methods__", None
|
||||
)
|
||||
]
|
||||
# If there are unconditional starts, only run those at kickoff
|
||||
# If there are NO unconditional starts, run all starts (including conditional ones)
|
||||
starts_to_execute = (
|
||||
unconditional_starts
|
||||
if unconditional_starts
|
||||
else self._start_methods
|
||||
)
|
||||
tasks = [
|
||||
self._execute_start_method(start_method)
|
||||
for start_method in self._start_methods
|
||||
for start_method in starts_to_execute
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
except Exception as e:
|
||||
@@ -1481,6 +1504,8 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
return
|
||||
# For cyclic flows, clear from completed to allow re-execution
|
||||
self._completed_methods.discard(start_method_name)
|
||||
# Also clear fired OR listeners to allow them to fire again in new cycle
|
||||
self._fired_or_listeners.clear()
|
||||
|
||||
method = self._methods[start_method_name]
|
||||
enhanced_method = self._inject_trigger_payload_for_start_method(method)
|
||||
@@ -1503,11 +1528,9 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
if self.last_human_feedback is not None
|
||||
else result
|
||||
)
|
||||
tasks = [
|
||||
self._execute_single_listener(listener_name, listener_result)
|
||||
for listener_name in listeners_for_result
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
# Execute listeners sequentially to prevent race conditions on shared state
|
||||
for listener_name in listeners_for_result:
|
||||
await self._execute_single_listener(listener_name, listener_result)
|
||||
else:
|
||||
await self._execute_listeners(start_method_name, result)
|
||||
|
||||
@@ -1573,11 +1596,19 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
if future:
|
||||
self._event_futures.append(future)
|
||||
|
||||
result = (
|
||||
await method(*args, **kwargs)
|
||||
if asyncio.iscoroutinefunction(method)
|
||||
else method(*args, **kwargs)
|
||||
)
|
||||
if asyncio.iscoroutinefunction(method):
|
||||
result = await method(*args, **kwargs)
|
||||
else:
|
||||
# Run sync methods in thread pool for isolation
|
||||
# This allows Agent.kickoff() to work synchronously inside Flow methods
|
||||
import contextvars
|
||||
|
||||
ctx = contextvars.copy_context()
|
||||
result = await asyncio.to_thread(ctx.run, method, *args, **kwargs)
|
||||
|
||||
# Auto-await coroutines returned from sync methods (enables AgentExecutor pattern)
|
||||
if asyncio.iscoroutine(result):
|
||||
result = await result
|
||||
|
||||
self._method_outputs.append(result)
|
||||
self._method_execution_counts[method_name] = (
|
||||
@@ -1724,11 +1755,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
listener_result = router_result_to_feedback.get(
|
||||
str(current_trigger), result
|
||||
)
|
||||
tasks = [
|
||||
self._execute_single_listener(listener_name, listener_result)
|
||||
for listener_name in listeners_triggered
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
# Execute listeners sequentially to prevent race conditions on shared state
|
||||
for listener_name in listeners_triggered:
|
||||
await self._execute_single_listener(
|
||||
listener_name, listener_result
|
||||
)
|
||||
|
||||
if current_trigger in router_results:
|
||||
# Find start methods triggered by this router result
|
||||
@@ -1745,14 +1776,16 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
should_trigger = current_trigger in all_methods
|
||||
|
||||
if should_trigger:
|
||||
# Only execute if this is a cycle (method was already completed)
|
||||
# Execute conditional start method triggered by router result
|
||||
if method_name in self._completed_methods:
|
||||
# For router-triggered start methods in cycles, temporarily clear resumption flag
|
||||
# to allow cyclic execution
|
||||
# For cyclic re-execution, temporarily clear resumption flag
|
||||
was_resuming = self._is_execution_resuming
|
||||
self._is_execution_resuming = False
|
||||
await self._execute_start_method(method_name)
|
||||
self._is_execution_resuming = was_resuming
|
||||
else:
|
||||
# First-time execution of conditional start
|
||||
await self._execute_start_method(method_name)
|
||||
|
||||
def _evaluate_condition(
|
||||
self,
|
||||
@@ -1850,8 +1883,21 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
condition_type, methods = condition_data
|
||||
|
||||
if condition_type == OR_CONDITION:
|
||||
if trigger_method in methods:
|
||||
triggered.append(listener_name)
|
||||
# Only trigger multi-source OR listeners (or_(A, B, C)) once - skip if already fired
|
||||
# Simple single-method listeners fire every time their trigger occurs
|
||||
# Routers also fire every time - they're decision points
|
||||
has_multiple_triggers = len(methods) > 1
|
||||
should_check_fired = has_multiple_triggers and not is_router
|
||||
|
||||
if (
|
||||
not should_check_fired
|
||||
or listener_name not in self._fired_or_listeners
|
||||
):
|
||||
if trigger_method in methods:
|
||||
triggered.append(listener_name)
|
||||
# Only track multi-source OR listeners (not single-method or routers)
|
||||
if should_check_fired:
|
||||
self._fired_or_listeners.add(listener_name)
|
||||
elif condition_type == AND_CONDITION:
|
||||
pending_key = PendingListenerKey(listener_name)
|
||||
if pending_key not in self._pending_and_listeners:
|
||||
@@ -1864,10 +1910,26 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
self._pending_and_listeners.pop(pending_key, None)
|
||||
|
||||
elif is_flow_condition_dict(condition_data):
|
||||
# For complex conditions, check if top-level is OR and track accordingly
|
||||
top_level_type = condition_data.get("type", OR_CONDITION)
|
||||
is_or_based = top_level_type == OR_CONDITION
|
||||
|
||||
# Only track multi-source OR conditions (multiple sub-conditions), not routers
|
||||
sub_conditions = condition_data.get("conditions", [])
|
||||
has_multiple_triggers = is_or_based and len(sub_conditions) > 1
|
||||
should_check_fired = has_multiple_triggers and not is_router
|
||||
|
||||
# Skip compound OR-based listeners that have already fired
|
||||
if should_check_fired and listener_name in self._fired_or_listeners:
|
||||
continue
|
||||
|
||||
if self._evaluate_condition(
|
||||
condition_data, trigger_method, listener_name
|
||||
):
|
||||
triggered.append(listener_name)
|
||||
# Track compound OR-based listeners so they only fire once
|
||||
if should_check_fired:
|
||||
self._fired_or_listeners.add(listener_name)
|
||||
|
||||
return triggered
|
||||
|
||||
@@ -1896,9 +1958,22 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
if self._is_execution_resuming:
|
||||
# During resumption, skip execution but continue listeners
|
||||
await self._execute_listeners(listener_name, None)
|
||||
|
||||
# For routers, also check if any conditional starts they triggered are completed
|
||||
# If so, continue their chains
|
||||
if listener_name in self._routers:
|
||||
for start_method_name in self._start_methods:
|
||||
if (
|
||||
start_method_name in self._listeners
|
||||
and start_method_name in self._completed_methods
|
||||
):
|
||||
# This conditional start was executed, continue its chain
|
||||
await self._execute_start_method(start_method_name)
|
||||
return
|
||||
# For cyclic flows, clear from completed to allow re-execution
|
||||
self._completed_methods.discard(listener_name)
|
||||
# Also clear from fired OR listeners for cyclic flows
|
||||
self._fired_or_listeners.discard(listener_name)
|
||||
|
||||
try:
|
||||
method = self._methods[listener_name]
|
||||
@@ -1931,11 +2006,9 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
if self.last_human_feedback is not None
|
||||
else listener_result
|
||||
)
|
||||
tasks = [
|
||||
self._execute_single_listener(name, feedback_result)
|
||||
for name in listeners_for_result
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
# Execute listeners sequentially to prevent race conditions on shared state
|
||||
for name in listeners_for_result:
|
||||
await self._execute_single_listener(name, feedback_result)
|
||||
|
||||
except Exception as e:
|
||||
# Don't log HumanFeedbackPending as an error - it's expected control flow
|
||||
|
||||
@@ -10,6 +10,7 @@ from typing import (
|
||||
get_origin,
|
||||
)
|
||||
import uuid
|
||||
import warnings
|
||||
|
||||
from pydantic import (
|
||||
UUID4,
|
||||
@@ -80,6 +81,11 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
"""
|
||||
A lightweight agent that can process messages and use tools.
|
||||
|
||||
.. deprecated::
|
||||
LiteAgent is deprecated and will be removed in a future version.
|
||||
Use ``Agent().kickoff(messages)`` instead, which provides the same
|
||||
functionality with additional features like memory and knowledge support.
|
||||
|
||||
This agent is simpler than the full Agent class, focusing on direct execution
|
||||
rather than task delegation. It's designed to be used for simple interactions
|
||||
where a full crew is not needed.
|
||||
@@ -164,6 +170,18 @@ class LiteAgent(FlowTrackable, BaseModel):
|
||||
default_factory=get_after_llm_call_hooks
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def emit_deprecation_warning(self) -> Self:
|
||||
"""Emit deprecation warning for LiteAgent usage."""
|
||||
warnings.warn(
|
||||
"LiteAgent is deprecated and will be removed in a future version. "
|
||||
"Use Agent().kickoff(messages) instead, which provides the same "
|
||||
"functionality with additional features like memory and knowledge support.",
|
||||
DeprecationWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
return self
|
||||
|
||||
@model_validator(mode="after")
|
||||
def setup_llm(self) -> Self:
|
||||
"""Set up the LLM and other components after initialization."""
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
from collections.abc import Callable, Sequence
|
||||
import json
|
||||
import re
|
||||
@@ -54,6 +55,23 @@ console = Console()
|
||||
_MULTIPLE_NEWLINES: Final[re.Pattern[str]] = re.compile(r"\n+")
|
||||
|
||||
|
||||
def is_inside_event_loop() -> bool:
|
||||
"""Check if code is currently running inside an asyncio event loop.
|
||||
|
||||
This is used to detect when code is being called from within an async context
|
||||
(e.g., inside a Flow). In such cases, callers should return a coroutine
|
||||
instead of executing synchronously to avoid nested event loop errors.
|
||||
|
||||
Returns:
|
||||
True if inside a running event loop, False otherwise.
|
||||
"""
|
||||
try:
|
||||
asyncio.get_running_loop()
|
||||
return True
|
||||
except RuntimeError:
|
||||
return False
|
||||
|
||||
|
||||
def parse_tools(tools: list[BaseTool]) -> list[CrewStructuredTool]:
|
||||
"""Parse tools to be used for the task.
|
||||
|
||||
|
||||
@@ -26,13 +26,9 @@ def mock_agent() -> MagicMock:
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_task(mock_context: MagicMock) -> MagicMock:
|
||||
def mock_task() -> MagicMock:
|
||||
"""Create a mock Task."""
|
||||
task = MagicMock()
|
||||
task.id = mock_context.task_id
|
||||
task.name = "Mock Task"
|
||||
task.description = "Mock task description"
|
||||
return task
|
||||
return MagicMock()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@@ -183,8 +179,8 @@ class TestExecute:
|
||||
event = first_call[0][1]
|
||||
|
||||
assert event.type == "a2a_server_task_started"
|
||||
assert event.task_id == mock_context.task_id
|
||||
assert event.context_id == mock_context.context_id
|
||||
assert event.a2a_task_id == mock_context.task_id
|
||||
assert event.a2a_context_id == mock_context.context_id
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_emits_completed_event(
|
||||
@@ -205,7 +201,7 @@ class TestExecute:
|
||||
event = second_call[0][1]
|
||||
|
||||
assert event.type == "a2a_server_task_completed"
|
||||
assert event.task_id == mock_context.task_id
|
||||
assert event.a2a_task_id == mock_context.task_id
|
||||
assert event.result == "Task completed successfully"
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -254,7 +250,7 @@ class TestExecute:
|
||||
event = canceled_call[0][1]
|
||||
|
||||
assert event.type == "a2a_server_task_canceled"
|
||||
assert event.task_id == mock_context.task_id
|
||||
assert event.a2a_task_id == mock_context.task_id
|
||||
|
||||
|
||||
class TestCancel:
|
||||
|
||||
@@ -14,16 +14,6 @@ except ImportError:
|
||||
A2A_SDK_INSTALLED = False
|
||||
|
||||
|
||||
def _create_mock_agent_card(name: str = "Test", url: str = "http://test-endpoint.com/"):
|
||||
"""Create a mock agent card with proper model_dump behavior."""
|
||||
mock_card = MagicMock()
|
||||
mock_card.name = name
|
||||
mock_card.url = url
|
||||
mock_card.model_dump.return_value = {"name": name, "url": url}
|
||||
mock_card.model_dump_json.return_value = f'{{"name": "{name}", "url": "{url}"}}'
|
||||
return mock_card
|
||||
|
||||
|
||||
@pytest.mark.skipif(not A2A_SDK_INSTALLED, reason="Requires a2a-sdk to be installed")
|
||||
def test_trust_remote_completion_status_true_returns_directly():
|
||||
"""When trust_remote_completion_status=True and A2A returns completed, return result directly."""
|
||||
@@ -54,7 +44,8 @@ def test_trust_remote_completion_status_true_returns_directly():
|
||||
patch("crewai.a2a.wrapper.execute_a2a_delegation") as mock_execute,
|
||||
patch("crewai.a2a.wrapper._fetch_agent_cards_concurrently") as mock_fetch,
|
||||
):
|
||||
mock_card = _create_mock_agent_card()
|
||||
mock_card = MagicMock()
|
||||
mock_card.name = "Test"
|
||||
mock_fetch.return_value = ({"http://test-endpoint.com/": mock_card}, {})
|
||||
|
||||
# A2A returns completed
|
||||
@@ -119,7 +110,8 @@ def test_trust_remote_completion_status_false_continues_conversation():
|
||||
patch("crewai.a2a.wrapper.execute_a2a_delegation") as mock_execute,
|
||||
patch("crewai.a2a.wrapper._fetch_agent_cards_concurrently") as mock_fetch,
|
||||
):
|
||||
mock_card = _create_mock_agent_card()
|
||||
mock_card = MagicMock()
|
||||
mock_card.name = "Test"
|
||||
mock_fetch.return_value = ({"http://test-endpoint.com/": mock_card}, {})
|
||||
|
||||
# A2A returns completed
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
"""Unit tests for CrewAgentExecutorFlow.
|
||||
"""Unit tests for AgentExecutor.
|
||||
|
||||
Tests the Flow-based agent executor implementation including state management,
|
||||
flow methods, routing logic, and error handling.
|
||||
@@ -8,9 +8,9 @@ from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai.experimental.crew_agent_executor_flow import (
|
||||
from crewai.experimental.agent_executor import (
|
||||
AgentReActState,
|
||||
CrewAgentExecutorFlow,
|
||||
AgentExecutor,
|
||||
)
|
||||
from crewai.agents.parser import AgentAction, AgentFinish
|
||||
|
||||
@@ -43,8 +43,8 @@ class TestAgentReActState:
|
||||
assert state.ask_for_human_input is True
|
||||
|
||||
|
||||
class TestCrewAgentExecutorFlow:
|
||||
"""Test CrewAgentExecutorFlow class."""
|
||||
class TestAgentExecutor:
|
||||
"""Test AgentExecutor class."""
|
||||
|
||||
@pytest.fixture
|
||||
def mock_dependencies(self):
|
||||
@@ -87,8 +87,8 @@ class TestCrewAgentExecutorFlow:
|
||||
}
|
||||
|
||||
def test_executor_initialization(self, mock_dependencies):
|
||||
"""Test CrewAgentExecutorFlow initialization."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
"""Test AgentExecutor initialization."""
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
|
||||
assert executor.llm == mock_dependencies["llm"]
|
||||
assert executor.task == mock_dependencies["task"]
|
||||
@@ -100,9 +100,9 @@ class TestCrewAgentExecutorFlow:
|
||||
def test_initialize_reasoning(self, mock_dependencies):
|
||||
"""Test flow entry point."""
|
||||
with patch.object(
|
||||
CrewAgentExecutorFlow, "_show_start_logs"
|
||||
AgentExecutor, "_show_start_logs"
|
||||
) as mock_show_start:
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
result = executor.initialize_reasoning()
|
||||
|
||||
assert result == "initialized"
|
||||
@@ -110,7 +110,7 @@ class TestCrewAgentExecutorFlow:
|
||||
|
||||
def test_check_max_iterations_not_reached(self, mock_dependencies):
|
||||
"""Test routing when iterations < max."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
executor.state.iterations = 5
|
||||
|
||||
result = executor.check_max_iterations()
|
||||
@@ -118,7 +118,7 @@ class TestCrewAgentExecutorFlow:
|
||||
|
||||
def test_check_max_iterations_reached(self, mock_dependencies):
|
||||
"""Test routing when iterations >= max."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
executor.state.iterations = 10
|
||||
|
||||
result = executor.check_max_iterations()
|
||||
@@ -126,7 +126,7 @@ class TestCrewAgentExecutorFlow:
|
||||
|
||||
def test_route_by_answer_type_action(self, mock_dependencies):
|
||||
"""Test routing for AgentAction."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
executor.state.current_answer = AgentAction(
|
||||
thought="thinking", tool="search", tool_input="query", text="action text"
|
||||
)
|
||||
@@ -136,7 +136,7 @@ class TestCrewAgentExecutorFlow:
|
||||
|
||||
def test_route_by_answer_type_finish(self, mock_dependencies):
|
||||
"""Test routing for AgentFinish."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
executor.state.current_answer = AgentFinish(
|
||||
thought="final thoughts", output="Final answer", text="complete"
|
||||
)
|
||||
@@ -146,7 +146,7 @@ class TestCrewAgentExecutorFlow:
|
||||
|
||||
def test_continue_iteration(self, mock_dependencies):
|
||||
"""Test iteration continuation."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
|
||||
result = executor.continue_iteration()
|
||||
|
||||
@@ -154,8 +154,8 @@ class TestCrewAgentExecutorFlow:
|
||||
|
||||
def test_finalize_success(self, mock_dependencies):
|
||||
"""Test finalize with valid AgentFinish."""
|
||||
with patch.object(CrewAgentExecutorFlow, "_show_logs") as mock_show_logs:
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
with patch.object(AgentExecutor, "_show_logs") as mock_show_logs:
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
executor.state.current_answer = AgentFinish(
|
||||
thought="final thinking", output="Done", text="complete"
|
||||
)
|
||||
@@ -168,7 +168,7 @@ class TestCrewAgentExecutorFlow:
|
||||
|
||||
def test_finalize_failure(self, mock_dependencies):
|
||||
"""Test finalize skips when given AgentAction instead of AgentFinish."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
executor.state.current_answer = AgentAction(
|
||||
thought="thinking", tool="search", tool_input="query", text="action text"
|
||||
)
|
||||
@@ -181,7 +181,7 @@ class TestCrewAgentExecutorFlow:
|
||||
|
||||
def test_format_prompt(self, mock_dependencies):
|
||||
"""Test prompt formatting."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
inputs = {"input": "test input", "tool_names": "tool1, tool2", "tools": "desc"}
|
||||
|
||||
result = executor._format_prompt("Prompt {input} {tool_names} {tools}", inputs)
|
||||
@@ -192,18 +192,18 @@ class TestCrewAgentExecutorFlow:
|
||||
|
||||
def test_is_training_mode_false(self, mock_dependencies):
|
||||
"""Test training mode detection when not in training."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
assert executor._is_training_mode() is False
|
||||
|
||||
def test_is_training_mode_true(self, mock_dependencies):
|
||||
"""Test training mode detection when in training."""
|
||||
mock_dependencies["crew"]._train = True
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
assert executor._is_training_mode() is True
|
||||
|
||||
def test_append_message_to_state(self, mock_dependencies):
|
||||
"""Test message appending to state."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
initial_count = len(executor.state.messages)
|
||||
|
||||
executor._append_message_to_state("test message")
|
||||
@@ -216,7 +216,7 @@ class TestCrewAgentExecutorFlow:
|
||||
callback = Mock()
|
||||
mock_dependencies["step_callback"] = callback
|
||||
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
answer = AgentFinish(thought="thinking", output="test", text="final")
|
||||
|
||||
executor._invoke_step_callback(answer)
|
||||
@@ -226,14 +226,14 @@ class TestCrewAgentExecutorFlow:
|
||||
def test_invoke_step_callback_none(self, mock_dependencies):
|
||||
"""Test step callback when none provided."""
|
||||
mock_dependencies["step_callback"] = None
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
|
||||
# Should not raise error
|
||||
executor._invoke_step_callback(
|
||||
AgentFinish(thought="thinking", output="test", text="final")
|
||||
)
|
||||
|
||||
@patch("crewai.experimental.crew_agent_executor_flow.handle_output_parser_exception")
|
||||
@patch("crewai.experimental.agent_executor.handle_output_parser_exception")
|
||||
def test_recover_from_parser_error(
|
||||
self, mock_handle_exception, mock_dependencies
|
||||
):
|
||||
@@ -242,7 +242,7 @@ class TestCrewAgentExecutorFlow:
|
||||
|
||||
mock_handle_exception.return_value = None
|
||||
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
executor._last_parser_error = OutputParserError("test error")
|
||||
initial_iterations = executor.state.iterations
|
||||
|
||||
@@ -252,12 +252,12 @@ class TestCrewAgentExecutorFlow:
|
||||
assert executor.state.iterations == initial_iterations + 1
|
||||
mock_handle_exception.assert_called_once()
|
||||
|
||||
@patch("crewai.experimental.crew_agent_executor_flow.handle_context_length")
|
||||
@patch("crewai.experimental.agent_executor.handle_context_length")
|
||||
def test_recover_from_context_length(
|
||||
self, mock_handle_context, mock_dependencies
|
||||
):
|
||||
"""Test recovery from context length error."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
executor._last_context_error = Exception("context too long")
|
||||
initial_iterations = executor.state.iterations
|
||||
|
||||
@@ -270,16 +270,16 @@ class TestCrewAgentExecutorFlow:
|
||||
def test_use_stop_words_property(self, mock_dependencies):
|
||||
"""Test use_stop_words property."""
|
||||
mock_dependencies["llm"].supports_stop_words.return_value = True
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
assert executor.use_stop_words is True
|
||||
|
||||
mock_dependencies["llm"].supports_stop_words.return_value = False
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
assert executor.use_stop_words is False
|
||||
|
||||
def test_compatibility_properties(self, mock_dependencies):
|
||||
"""Test compatibility properties for mixin."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
executor.state.messages = [{"role": "user", "content": "test"}]
|
||||
executor.state.iterations = 5
|
||||
|
||||
@@ -321,8 +321,8 @@ class TestFlowErrorHandling:
|
||||
"tools_handler": Mock(),
|
||||
}
|
||||
|
||||
@patch("crewai.experimental.crew_agent_executor_flow.get_llm_response")
|
||||
@patch("crewai.experimental.crew_agent_executor_flow.enforce_rpm_limit")
|
||||
@patch("crewai.experimental.agent_executor.get_llm_response")
|
||||
@patch("crewai.experimental.agent_executor.enforce_rpm_limit")
|
||||
def test_call_llm_parser_error(
|
||||
self, mock_enforce_rpm, mock_get_llm, mock_dependencies
|
||||
):
|
||||
@@ -332,15 +332,15 @@ class TestFlowErrorHandling:
|
||||
mock_enforce_rpm.return_value = None
|
||||
mock_get_llm.side_effect = OutputParserError("parse failed")
|
||||
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
result = executor.call_llm_and_parse()
|
||||
|
||||
assert result == "parser_error"
|
||||
assert executor._last_parser_error is not None
|
||||
|
||||
@patch("crewai.experimental.crew_agent_executor_flow.get_llm_response")
|
||||
@patch("crewai.experimental.crew_agent_executor_flow.enforce_rpm_limit")
|
||||
@patch("crewai.experimental.crew_agent_executor_flow.is_context_length_exceeded")
|
||||
@patch("crewai.experimental.agent_executor.get_llm_response")
|
||||
@patch("crewai.experimental.agent_executor.enforce_rpm_limit")
|
||||
@patch("crewai.experimental.agent_executor.is_context_length_exceeded")
|
||||
def test_call_llm_context_error(
|
||||
self,
|
||||
mock_is_context_exceeded,
|
||||
@@ -353,7 +353,7 @@ class TestFlowErrorHandling:
|
||||
mock_get_llm.side_effect = Exception("context length")
|
||||
mock_is_context_exceeded.return_value = True
|
||||
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
result = executor.call_llm_and_parse()
|
||||
|
||||
assert result == "context_error"
|
||||
@@ -397,10 +397,10 @@ class TestFlowInvoke:
|
||||
"tools_handler": Mock(),
|
||||
}
|
||||
|
||||
@patch.object(CrewAgentExecutorFlow, "kickoff")
|
||||
@patch.object(CrewAgentExecutorFlow, "_create_short_term_memory")
|
||||
@patch.object(CrewAgentExecutorFlow, "_create_long_term_memory")
|
||||
@patch.object(CrewAgentExecutorFlow, "_create_external_memory")
|
||||
@patch.object(AgentExecutor, "kickoff")
|
||||
@patch.object(AgentExecutor, "_create_short_term_memory")
|
||||
@patch.object(AgentExecutor, "_create_long_term_memory")
|
||||
@patch.object(AgentExecutor, "_create_external_memory")
|
||||
def test_invoke_success(
|
||||
self,
|
||||
mock_external_memory,
|
||||
@@ -410,7 +410,7 @@ class TestFlowInvoke:
|
||||
mock_dependencies,
|
||||
):
|
||||
"""Test successful invoke without human feedback."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
|
||||
# Mock kickoff to set the final answer in state
|
||||
def mock_kickoff_side_effect():
|
||||
@@ -429,10 +429,10 @@ class TestFlowInvoke:
|
||||
mock_long_term_memory.assert_called_once()
|
||||
mock_external_memory.assert_called_once()
|
||||
|
||||
@patch.object(CrewAgentExecutorFlow, "kickoff")
|
||||
@patch.object(AgentExecutor, "kickoff")
|
||||
def test_invoke_failure_no_agent_finish(self, mock_kickoff, mock_dependencies):
|
||||
"""Test invoke fails without AgentFinish."""
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
executor.state.current_answer = AgentAction(
|
||||
thought="thinking", tool="test", tool_input="test", text="action text"
|
||||
)
|
||||
@@ -442,10 +442,10 @@ class TestFlowInvoke:
|
||||
with pytest.raises(RuntimeError, match="without reaching a final answer"):
|
||||
executor.invoke(inputs)
|
||||
|
||||
@patch.object(CrewAgentExecutorFlow, "kickoff")
|
||||
@patch.object(CrewAgentExecutorFlow, "_create_short_term_memory")
|
||||
@patch.object(CrewAgentExecutorFlow, "_create_long_term_memory")
|
||||
@patch.object(CrewAgentExecutorFlow, "_create_external_memory")
|
||||
@patch.object(AgentExecutor, "kickoff")
|
||||
@patch.object(AgentExecutor, "_create_short_term_memory")
|
||||
@patch.object(AgentExecutor, "_create_long_term_memory")
|
||||
@patch.object(AgentExecutor, "_create_external_memory")
|
||||
def test_invoke_with_system_prompt(
|
||||
self,
|
||||
mock_external_memory,
|
||||
@@ -459,7 +459,7 @@ class TestFlowInvoke:
|
||||
"system": "System: {input}",
|
||||
"user": "User: {input} {tool_names} {tools}",
|
||||
}
|
||||
executor = CrewAgentExecutorFlow(**mock_dependencies)
|
||||
executor = AgentExecutor(**mock_dependencies)
|
||||
|
||||
def mock_kickoff_side_effect():
|
||||
executor.state.current_answer = AgentFinish(
|
||||
@@ -72,62 +72,53 @@ class ResearchResult(BaseModel):
|
||||
|
||||
@pytest.mark.vcr()
|
||||
@pytest.mark.parametrize("verbose", [True, False])
|
||||
def test_lite_agent_created_with_correct_parameters(monkeypatch, verbose):
|
||||
"""Test that LiteAgent is created with the correct parameters when Agent.kickoff() is called."""
|
||||
def test_agent_kickoff_preserves_parameters(verbose):
|
||||
"""Test that Agent.kickoff() uses the correct parameters from the Agent."""
|
||||
# Create a test agent with specific parameters
|
||||
llm = LLM(model="gpt-4o-mini")
|
||||
mock_llm = Mock(spec=LLM)
|
||||
mock_llm.call.return_value = "Final Answer: Test response"
|
||||
mock_llm.stop = []
|
||||
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
|
||||
mock_usage_metrics = UsageMetrics(
|
||||
total_tokens=100,
|
||||
prompt_tokens=50,
|
||||
completion_tokens=50,
|
||||
cached_prompt_tokens=0,
|
||||
successful_requests=1,
|
||||
)
|
||||
mock_llm.get_token_usage_summary.return_value = mock_usage_metrics
|
||||
|
||||
custom_tools = [WebSearchTool(), CalculatorTool()]
|
||||
max_iter = 10
|
||||
max_execution_time = 300
|
||||
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test Goal",
|
||||
backstory="Test Backstory",
|
||||
llm=llm,
|
||||
llm=mock_llm,
|
||||
tools=custom_tools,
|
||||
max_iter=max_iter,
|
||||
max_execution_time=max_execution_time,
|
||||
verbose=verbose,
|
||||
)
|
||||
|
||||
# Create a mock to capture the created LiteAgent
|
||||
created_lite_agent = None
|
||||
original_lite_agent = LiteAgent
|
||||
# Call kickoff and verify it works
|
||||
result = agent.kickoff("Test query")
|
||||
|
||||
# Define a mock LiteAgent class that captures its arguments
|
||||
class MockLiteAgent(original_lite_agent):
|
||||
def __init__(self, **kwargs):
|
||||
nonlocal created_lite_agent
|
||||
created_lite_agent = kwargs
|
||||
super().__init__(**kwargs)
|
||||
# Verify the agent was configured correctly
|
||||
assert agent.role == "Test Agent"
|
||||
assert agent.goal == "Test Goal"
|
||||
assert agent.backstory == "Test Backstory"
|
||||
assert len(agent.tools) == 2
|
||||
assert isinstance(agent.tools[0], WebSearchTool)
|
||||
assert isinstance(agent.tools[1], CalculatorTool)
|
||||
assert agent.max_iter == max_iter
|
||||
assert agent.verbose == verbose
|
||||
|
||||
# Patch the LiteAgent class
|
||||
monkeypatch.setattr("crewai.agent.core.LiteAgent", MockLiteAgent)
|
||||
|
||||
# Call kickoff to create the LiteAgent
|
||||
agent.kickoff("Test query")
|
||||
|
||||
# Verify all parameters were passed correctly
|
||||
assert created_lite_agent is not None
|
||||
assert created_lite_agent["role"] == "Test Agent"
|
||||
assert created_lite_agent["goal"] == "Test Goal"
|
||||
assert created_lite_agent["backstory"] == "Test Backstory"
|
||||
assert created_lite_agent["llm"] == llm
|
||||
assert len(created_lite_agent["tools"]) == 2
|
||||
assert isinstance(created_lite_agent["tools"][0], WebSearchTool)
|
||||
assert isinstance(created_lite_agent["tools"][1], CalculatorTool)
|
||||
assert created_lite_agent["max_iterations"] == max_iter
|
||||
assert created_lite_agent["max_execution_time"] == max_execution_time
|
||||
assert created_lite_agent["verbose"] == verbose
|
||||
assert created_lite_agent["response_format"] is None
|
||||
|
||||
# Test with a response_format
|
||||
class TestResponse(BaseModel):
|
||||
test_field: str
|
||||
|
||||
agent.kickoff("Test query", response_format=TestResponse)
|
||||
assert created_lite_agent["response_format"] == TestResponse
|
||||
# Verify kickoff returned a result
|
||||
assert result is not None
|
||||
assert result.raw is not None
|
||||
|
||||
|
||||
@pytest.mark.vcr()
|
||||
@@ -310,7 +301,8 @@ def verify_agent_parent_flow(result, agent, flow):
|
||||
|
||||
|
||||
def test_sets_parent_flow_when_inside_flow():
|
||||
captured_agent = None
|
||||
"""Test that an Agent can be created and executed inside a Flow context."""
|
||||
captured_event = None
|
||||
|
||||
mock_llm = Mock(spec=LLM)
|
||||
mock_llm.call.return_value = "Test response"
|
||||
@@ -343,15 +335,17 @@ def test_sets_parent_flow_when_inside_flow():
|
||||
event_received = threading.Event()
|
||||
|
||||
@crewai_event_bus.on(LiteAgentExecutionStartedEvent)
|
||||
def capture_agent(source, event):
|
||||
nonlocal captured_agent
|
||||
captured_agent = source
|
||||
def capture_event(source, event):
|
||||
nonlocal captured_event
|
||||
captured_event = event
|
||||
event_received.set()
|
||||
|
||||
flow.kickoff()
|
||||
result = flow.kickoff()
|
||||
|
||||
assert event_received.wait(timeout=5), "Timeout waiting for agent execution event"
|
||||
assert captured_agent.parent_flow is flow
|
||||
assert captured_event is not None
|
||||
assert captured_event.agent_info["role"] == "Test Agent"
|
||||
assert result is not None
|
||||
|
||||
|
||||
@pytest.mark.vcr()
|
||||
@@ -373,16 +367,14 @@ def test_guardrail_is_called_using_string():
|
||||
|
||||
@crewai_event_bus.on(LLMGuardrailStartedEvent)
|
||||
def capture_guardrail_started(source, event):
|
||||
assert isinstance(source, LiteAgent)
|
||||
assert source.original_agent == agent
|
||||
assert isinstance(source, Agent)
|
||||
with condition:
|
||||
guardrail_events["started"].append(event)
|
||||
condition.notify()
|
||||
|
||||
@crewai_event_bus.on(LLMGuardrailCompletedEvent)
|
||||
def capture_guardrail_completed(source, event):
|
||||
assert isinstance(source, LiteAgent)
|
||||
assert source.original_agent == agent
|
||||
assert isinstance(source, Agent)
|
||||
with condition:
|
||||
guardrail_events["completed"].append(event)
|
||||
condition.notify()
|
||||
@@ -683,3 +675,151 @@ def test_agent_kickoff_with_mcp_tools(mock_get_mcp_tools):
|
||||
|
||||
# Verify MCP tools were retrieved
|
||||
mock_get_mcp_tools.assert_called_once_with("https://mcp.exa.ai/mcp?api_key=test_exa_key&profile=research")
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Tests for LiteAgent inside Flow (magic auto-async pattern)
|
||||
# ============================================================================
|
||||
|
||||
from crewai.flow.flow import listen
|
||||
|
||||
|
||||
@pytest.mark.vcr()
|
||||
def test_lite_agent_inside_flow_sync():
|
||||
"""Test that LiteAgent.kickoff() works magically inside a Flow.
|
||||
|
||||
This tests the "magic auto-async" pattern where calling agent.kickoff()
|
||||
from within a Flow automatically detects the event loop and returns a
|
||||
coroutine that the Flow framework awaits. Users don't need to use async/await.
|
||||
"""
|
||||
# Track execution
|
||||
execution_log = []
|
||||
|
||||
class TestFlow(Flow):
|
||||
@start()
|
||||
def run_agent(self):
|
||||
execution_log.append("flow_started")
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Answer questions",
|
||||
backstory="A helpful test assistant",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
verbose=False,
|
||||
)
|
||||
# Magic: just call kickoff() normally - it auto-detects Flow context
|
||||
result = agent.kickoff(messages="What is 2+2? Reply with just the number.")
|
||||
execution_log.append("agent_completed")
|
||||
return result
|
||||
|
||||
flow = TestFlow()
|
||||
result = flow.kickoff()
|
||||
|
||||
# Verify the flow executed successfully
|
||||
assert "flow_started" in execution_log
|
||||
assert "agent_completed" in execution_log
|
||||
assert result is not None
|
||||
assert isinstance(result, LiteAgentOutput)
|
||||
|
||||
|
||||
@pytest.mark.vcr()
|
||||
def test_lite_agent_inside_flow_with_tools():
|
||||
"""Test that LiteAgent with tools works correctly inside a Flow."""
|
||||
class TestFlow(Flow):
|
||||
@start()
|
||||
def run_agent_with_tools(self):
|
||||
agent = Agent(
|
||||
role="Calculator Agent",
|
||||
goal="Perform calculations",
|
||||
backstory="A math expert",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
tools=[CalculatorTool()],
|
||||
verbose=False,
|
||||
)
|
||||
result = agent.kickoff(messages="Calculate 10 * 5")
|
||||
return result
|
||||
|
||||
flow = TestFlow()
|
||||
result = flow.kickoff()
|
||||
|
||||
assert result is not None
|
||||
assert isinstance(result, LiteAgentOutput)
|
||||
assert result.raw is not None
|
||||
|
||||
|
||||
@pytest.mark.vcr()
|
||||
def test_multiple_agents_in_same_flow():
|
||||
"""Test that multiple LiteAgents can run sequentially in the same Flow."""
|
||||
class MultiAgentFlow(Flow):
|
||||
@start()
|
||||
def first_step(self):
|
||||
agent1 = Agent(
|
||||
role="First Agent",
|
||||
goal="Greet users",
|
||||
backstory="A friendly greeter",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
verbose=False,
|
||||
)
|
||||
return agent1.kickoff(messages="Say hello")
|
||||
|
||||
@listen(first_step)
|
||||
def second_step(self, first_result):
|
||||
agent2 = Agent(
|
||||
role="Second Agent",
|
||||
goal="Say goodbye",
|
||||
backstory="A polite farewell agent",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
verbose=False,
|
||||
)
|
||||
return agent2.kickoff(messages="Say goodbye")
|
||||
|
||||
flow = MultiAgentFlow()
|
||||
result = flow.kickoff()
|
||||
|
||||
assert result is not None
|
||||
assert isinstance(result, LiteAgentOutput)
|
||||
|
||||
|
||||
@pytest.mark.vcr()
|
||||
def test_lite_agent_kickoff_async_inside_flow():
|
||||
"""Test that Agent.kickoff_async() works correctly from async Flow methods."""
|
||||
class AsyncAgentFlow(Flow):
|
||||
@start()
|
||||
async def async_agent_step(self):
|
||||
agent = Agent(
|
||||
role="Async Test Agent",
|
||||
goal="Answer questions asynchronously",
|
||||
backstory="An async helper",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
verbose=False,
|
||||
)
|
||||
result = await agent.kickoff_async(messages="What is 3+3?")
|
||||
return result
|
||||
|
||||
flow = AsyncAgentFlow()
|
||||
result = flow.kickoff()
|
||||
|
||||
assert result is not None
|
||||
assert isinstance(result, LiteAgentOutput)
|
||||
|
||||
|
||||
@pytest.mark.vcr()
|
||||
def test_lite_agent_standalone_still_works():
|
||||
"""Test that LiteAgent.kickoff() still works normally outside of a Flow.
|
||||
|
||||
This verifies that the magic auto-async pattern doesn't break standalone usage
|
||||
where there's no event loop running.
|
||||
"""
|
||||
agent = Agent(
|
||||
role="Standalone Agent",
|
||||
goal="Answer questions",
|
||||
backstory="A helpful assistant",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
verbose=False,
|
||||
)
|
||||
|
||||
# This should work normally - no Flow, no event loop
|
||||
result = agent.kickoff(messages="What is 5+5? Reply with just the number.")
|
||||
|
||||
assert result is not None
|
||||
assert isinstance(result, LiteAgentOutput)
|
||||
assert result.raw is not None
|
||||
|
||||
@@ -0,0 +1,119 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Test Agent. A helpful
|
||||
test assistant\nYour personal goal is: Answer questions\nTo give my best complete
|
||||
final answer to the task respond using the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described.\n\nI MUST use
|
||||
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
|
||||
What is 2+2? Reply with just the number.\n\nBegin! This is VERY important to
|
||||
you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
|
||||
headers:
|
||||
User-Agent:
|
||||
- X-USER-AGENT-XXX
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- ACCEPT-ENCODING-XXX
|
||||
authorization:
|
||||
- AUTHORIZATION-XXX
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '673'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
x-stainless-arch:
|
||||
- X-STAINLESS-ARCH-XXX
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- X-STAINLESS-OS-XXX
|
||||
x-stainless-package-version:
|
||||
- 1.83.0
|
||||
x-stainless-read-timeout:
|
||||
- X-STAINLESS-READ-TIMEOUT-XXX
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"id\": \"chatcmpl-Cy7b0HjL79y39EkUcMLrRhPFe3XGj\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1768444914,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: 4\",\n \"refusal\": null,\n \"annotations\": []\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 136,\n \"completion_tokens\": 13,\n
|
||||
\ \"total_tokens\": 149,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_8bbc38b4db\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- CF-RAY-XXX
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 15 Jan 2026 02:41:55 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- SET-COOKIE-XXX
|
||||
Strict-Transport-Security:
|
||||
- STS-XXX
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- X-CONTENT-TYPE-XXX
|
||||
access-control-expose-headers:
|
||||
- ACCESS-CONTROL-XXX
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
content-length:
|
||||
- '857'
|
||||
openai-organization:
|
||||
- OPENAI-ORG-XXX
|
||||
openai-processing-ms:
|
||||
- '341'
|
||||
openai-project:
|
||||
- OPENAI-PROJECT-XXX
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '358'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-requests:
|
||||
- X-RATELIMIT-LIMIT-REQUESTS-XXX
|
||||
x-ratelimit-limit-tokens:
|
||||
- X-RATELIMIT-LIMIT-TOKENS-XXX
|
||||
x-ratelimit-remaining-requests:
|
||||
- X-RATELIMIT-REMAINING-REQUESTS-XXX
|
||||
x-ratelimit-remaining-tokens:
|
||||
- X-RATELIMIT-REMAINING-TOKENS-XXX
|
||||
x-ratelimit-reset-requests:
|
||||
- X-RATELIMIT-RESET-REQUESTS-XXX
|
||||
x-ratelimit-reset-tokens:
|
||||
- X-RATELIMIT-RESET-TOKENS-XXX
|
||||
x-request-id:
|
||||
- X-REQUEST-ID-XXX
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,255 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Calculator Agent. A math
|
||||
expert\nYour personal goal is: Perform calculations\nYou ONLY have access to
|
||||
the following tools, and should NEVER make up tools that are not listed here:\n\nTool
|
||||
Name: calculate\nTool Arguments: {\n \"properties\": {\n \"expression\":
|
||||
{\n \"title\": \"Expression\",\n \"type\": \"string\"\n }\n },\n \"required\":
|
||||
[\n \"expression\"\n ],\n \"title\": \"CalculatorToolSchema\",\n \"type\":
|
||||
\"object\",\n \"additionalProperties\": false\n}\nTool Description: Calculate
|
||||
the result of a mathematical expression.\n\nIMPORTANT: Use the following format
|
||||
in your response:\n\n```\nThought: you should always think about what to do\nAction:
|
||||
the action to take, only one name of [calculate], just the name, exactly as
|
||||
it''s written.\nAction Input: the input to the action, just a simple JSON object,
|
||||
enclosed in curly braces, using \" to wrap keys and values.\nObservation: the
|
||||
result of the action\n```\n\nOnce all necessary information is gathered, return
|
||||
the following format:\n\n```\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question\n```"},{"role":"user","content":"\nCurrent
|
||||
Task: Calculate 10 * 5\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
|
||||
headers:
|
||||
User-Agent:
|
||||
- X-USER-AGENT-XXX
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- ACCEPT-ENCODING-XXX
|
||||
authorization:
|
||||
- AUTHORIZATION-XXX
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1403'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
x-stainless-arch:
|
||||
- X-STAINLESS-ARCH-XXX
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- X-STAINLESS-OS-XXX
|
||||
x-stainless-package-version:
|
||||
- 1.83.0
|
||||
x-stainless-read-timeout:
|
||||
- X-STAINLESS-READ-TIMEOUT-XXX
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"id\": \"chatcmpl-Cy7avghVPSpszLmlbHpwDQlWDoD6O\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1768444909,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I need to calculate the expression
|
||||
10 * 5.\\nAction: calculate\\nAction Input: {\\\"expression\\\":\\\"10 * 5\\\"}\\nObservation:
|
||||
50\",\n \"refusal\": null,\n \"annotations\": []\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 291,\n \"completion_tokens\": 33,\n
|
||||
\ \"total_tokens\": 324,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_c4585b5b9c\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- CF-RAY-XXX
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 15 Jan 2026 02:41:49 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- SET-COOKIE-XXX
|
||||
Strict-Transport-Security:
|
||||
- STS-XXX
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- X-CONTENT-TYPE-XXX
|
||||
access-control-expose-headers:
|
||||
- ACCESS-CONTROL-XXX
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
content-length:
|
||||
- '939'
|
||||
openai-organization:
|
||||
- OPENAI-ORG-XXX
|
||||
openai-processing-ms:
|
||||
- '579'
|
||||
openai-project:
|
||||
- OPENAI-PROJECT-XXX
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '598'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-requests:
|
||||
- X-RATELIMIT-LIMIT-REQUESTS-XXX
|
||||
x-ratelimit-limit-tokens:
|
||||
- X-RATELIMIT-LIMIT-TOKENS-XXX
|
||||
x-ratelimit-remaining-requests:
|
||||
- X-RATELIMIT-REMAINING-REQUESTS-XXX
|
||||
x-ratelimit-remaining-tokens:
|
||||
- X-RATELIMIT-REMAINING-TOKENS-XXX
|
||||
x-ratelimit-reset-requests:
|
||||
- X-RATELIMIT-RESET-REQUESTS-XXX
|
||||
x-ratelimit-reset-tokens:
|
||||
- X-RATELIMIT-RESET-TOKENS-XXX
|
||||
x-request-id:
|
||||
- X-REQUEST-ID-XXX
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Calculator Agent. A math
|
||||
expert\nYour personal goal is: Perform calculations\nYou ONLY have access to
|
||||
the following tools, and should NEVER make up tools that are not listed here:\n\nTool
|
||||
Name: calculate\nTool Arguments: {\n \"properties\": {\n \"expression\":
|
||||
{\n \"title\": \"Expression\",\n \"type\": \"string\"\n }\n },\n \"required\":
|
||||
[\n \"expression\"\n ],\n \"title\": \"CalculatorToolSchema\",\n \"type\":
|
||||
\"object\",\n \"additionalProperties\": false\n}\nTool Description: Calculate
|
||||
the result of a mathematical expression.\n\nIMPORTANT: Use the following format
|
||||
in your response:\n\n```\nThought: you should always think about what to do\nAction:
|
||||
the action to take, only one name of [calculate], just the name, exactly as
|
||||
it''s written.\nAction Input: the input to the action, just a simple JSON object,
|
||||
enclosed in curly braces, using \" to wrap keys and values.\nObservation: the
|
||||
result of the action\n```\n\nOnce all necessary information is gathered, return
|
||||
the following format:\n\n```\nThought: I now know the final answer\nFinal Answer:
|
||||
the final answer to the original input question\n```"},{"role":"user","content":"\nCurrent
|
||||
Task: Calculate 10 * 5\n\nBegin! This is VERY important to you, use the tools
|
||||
available and give your best Final Answer, your job depends on it!\n\nThought:"},{"role":"assistant","content":"Thought:
|
||||
I need to calculate the expression 10 * 5.\nAction: calculate\nAction Input:
|
||||
{\"expression\":\"10 * 5\"}\nObservation: The result of 10 * 5 is 50"}],"model":"gpt-4o-mini"}'
|
||||
headers:
|
||||
User-Agent:
|
||||
- X-USER-AGENT-XXX
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- ACCEPT-ENCODING-XXX
|
||||
authorization:
|
||||
- AUTHORIZATION-XXX
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1591'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- COOKIE-XXX
|
||||
host:
|
||||
- api.openai.com
|
||||
x-stainless-arch:
|
||||
- X-STAINLESS-ARCH-XXX
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- X-STAINLESS-OS-XXX
|
||||
x-stainless-package-version:
|
||||
- 1.83.0
|
||||
x-stainless-read-timeout:
|
||||
- X-STAINLESS-READ-TIMEOUT-XXX
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"id\": \"chatcmpl-Cy7avDhDZCLvv8v2dh8ZQRrLdci6A\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1768444909,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"Thought: I now know the final answer.\\nFinal
|
||||
Answer: 50\",\n \"refusal\": null,\n \"annotations\": []\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 337,\n \"completion_tokens\": 14,\n
|
||||
\ \"total_tokens\": 351,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_c4585b5b9c\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- CF-RAY-XXX
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 15 Jan 2026 02:41:50 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Strict-Transport-Security:
|
||||
- STS-XXX
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- X-CONTENT-TYPE-XXX
|
||||
access-control-expose-headers:
|
||||
- ACCESS-CONTROL-XXX
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
content-length:
|
||||
- '864'
|
||||
openai-organization:
|
||||
- OPENAI-ORG-XXX
|
||||
openai-processing-ms:
|
||||
- '429'
|
||||
openai-project:
|
||||
- OPENAI-PROJECT-XXX
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '457'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-requests:
|
||||
- X-RATELIMIT-LIMIT-REQUESTS-XXX
|
||||
x-ratelimit-limit-tokens:
|
||||
- X-RATELIMIT-LIMIT-TOKENS-XXX
|
||||
x-ratelimit-remaining-requests:
|
||||
- X-RATELIMIT-REMAINING-REQUESTS-XXX
|
||||
x-ratelimit-remaining-tokens:
|
||||
- X-RATELIMIT-REMAINING-TOKENS-XXX
|
||||
x-ratelimit-reset-requests:
|
||||
- X-RATELIMIT-RESET-REQUESTS-XXX
|
||||
x-ratelimit-reset-tokens:
|
||||
- X-RATELIMIT-RESET-TOKENS-XXX
|
||||
x-request-id:
|
||||
- X-REQUEST-ID-XXX
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,119 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Async Test Agent. An async
|
||||
helper\nYour personal goal is: Answer questions asynchronously\nTo give my best
|
||||
complete final answer to the task respond using the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described.\n\nI MUST use
|
||||
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
|
||||
What is 3+3?\n\nBegin! This is VERY important to you, use the tools available
|
||||
and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
|
||||
headers:
|
||||
User-Agent:
|
||||
- X-USER-AGENT-XXX
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- ACCEPT-ENCODING-XXX
|
||||
authorization:
|
||||
- AUTHORIZATION-XXX
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '657'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
x-stainless-arch:
|
||||
- X-STAINLESS-ARCH-XXX
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- X-STAINLESS-OS-XXX
|
||||
x-stainless-package-version:
|
||||
- 1.83.0
|
||||
x-stainless-read-timeout:
|
||||
- X-STAINLESS-READ-TIMEOUT-XXX
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"id\": \"chatcmpl-Cy7atOGxtc4y3oYNI62WiQ0Vogsdv\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1768444907,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: The sum of 3 + 3 is 6. Therefore, the outcome is that if you add three
|
||||
and three together, you will arrive at the total of six.\",\n \"refusal\":
|
||||
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
|
||||
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
131,\n \"completion_tokens\": 46,\n \"total_tokens\": 177,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_29330a9688\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- CF-RAY-XXX
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 15 Jan 2026 02:41:48 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- SET-COOKIE-XXX
|
||||
Strict-Transport-Security:
|
||||
- STS-XXX
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- X-CONTENT-TYPE-XXX
|
||||
access-control-expose-headers:
|
||||
- ACCESS-CONTROL-XXX
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
content-length:
|
||||
- '983'
|
||||
openai-organization:
|
||||
- OPENAI-ORG-XXX
|
||||
openai-processing-ms:
|
||||
- '944'
|
||||
openai-project:
|
||||
- OPENAI-PROJECT-XXX
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '1192'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-requests:
|
||||
- X-RATELIMIT-LIMIT-REQUESTS-XXX
|
||||
x-ratelimit-limit-tokens:
|
||||
- X-RATELIMIT-LIMIT-TOKENS-XXX
|
||||
x-ratelimit-remaining-requests:
|
||||
- X-RATELIMIT-REMAINING-REQUESTS-XXX
|
||||
x-ratelimit-remaining-tokens:
|
||||
- X-RATELIMIT-REMAINING-TOKENS-XXX
|
||||
x-ratelimit-reset-requests:
|
||||
- X-RATELIMIT-RESET-REQUESTS-XXX
|
||||
x-ratelimit-reset-tokens:
|
||||
- X-RATELIMIT-RESET-TOKENS-XXX
|
||||
x-request-id:
|
||||
- X-REQUEST-ID-XXX
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,119 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Standalone Agent. A helpful
|
||||
assistant\nYour personal goal is: Answer questions\nTo give my best complete
|
||||
final answer to the task respond using the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described.\n\nI MUST use
|
||||
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
|
||||
What is 5+5? Reply with just the number.\n\nBegin! This is VERY important to
|
||||
you, use the tools available and give your best Final Answer, your job depends
|
||||
on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
|
||||
headers:
|
||||
User-Agent:
|
||||
- X-USER-AGENT-XXX
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- ACCEPT-ENCODING-XXX
|
||||
authorization:
|
||||
- AUTHORIZATION-XXX
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '674'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
x-stainless-arch:
|
||||
- X-STAINLESS-ARCH-XXX
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- X-STAINLESS-OS-XXX
|
||||
x-stainless-package-version:
|
||||
- 1.83.0
|
||||
x-stainless-read-timeout:
|
||||
- X-STAINLESS-READ-TIMEOUT-XXX
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"id\": \"chatcmpl-Cy7azhPwUHQ0p5tdhxSAmLPoE8UgC\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1768444913,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: 10\",\n \"refusal\": null,\n \"annotations\": []\n },\n
|
||||
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
|
||||
\ \"usage\": {\n \"prompt_tokens\": 136,\n \"completion_tokens\": 13,\n
|
||||
\ \"total_tokens\": 149,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_29330a9688\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- CF-RAY-XXX
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 15 Jan 2026 02:41:54 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- SET-COOKIE-XXX
|
||||
Strict-Transport-Security:
|
||||
- STS-XXX
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- X-CONTENT-TYPE-XXX
|
||||
access-control-expose-headers:
|
||||
- ACCESS-CONTROL-XXX
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
content-length:
|
||||
- '858'
|
||||
openai-organization:
|
||||
- OPENAI-ORG-XXX
|
||||
openai-processing-ms:
|
||||
- '455'
|
||||
openai-project:
|
||||
- OPENAI-PROJECT-XXX
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '583'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-requests:
|
||||
- X-RATELIMIT-LIMIT-REQUESTS-XXX
|
||||
x-ratelimit-limit-tokens:
|
||||
- X-RATELIMIT-LIMIT-TOKENS-XXX
|
||||
x-ratelimit-remaining-requests:
|
||||
- X-RATELIMIT-REMAINING-REQUESTS-XXX
|
||||
x-ratelimit-remaining-tokens:
|
||||
- X-RATELIMIT-REMAINING-TOKENS-XXX
|
||||
x-ratelimit-reset-requests:
|
||||
- X-RATELIMIT-RESET-REQUESTS-XXX
|
||||
x-ratelimit-reset-tokens:
|
||||
- X-RATELIMIT-RESET-TOKENS-XXX
|
||||
x-request-id:
|
||||
- X-REQUEST-ID-XXX
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
@@ -0,0 +1,239 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are First Agent. A friendly
|
||||
greeter\nYour personal goal is: Greet users\nTo give my best complete final
|
||||
answer to the task respond using the exact following format:\n\nThought: I now
|
||||
can give a great answer\nFinal Answer: Your final answer must be the great and
|
||||
the most complete as possible, it must be outcome described.\n\nI MUST use these
|
||||
formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task: Say
|
||||
hello\n\nBegin! This is VERY important to you, use the tools available and give
|
||||
your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
|
||||
headers:
|
||||
User-Agent:
|
||||
- X-USER-AGENT-XXX
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- ACCEPT-ENCODING-XXX
|
||||
authorization:
|
||||
- AUTHORIZATION-XXX
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '632'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
x-stainless-arch:
|
||||
- X-STAINLESS-ARCH-XXX
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- X-STAINLESS-OS-XXX
|
||||
x-stainless-package-version:
|
||||
- 1.83.0
|
||||
x-stainless-read-timeout:
|
||||
- X-STAINLESS-READ-TIMEOUT-XXX
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"id\": \"chatcmpl-CyRKzgODZ9yn3F9OkaXsscLk2Ln3N\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1768520801,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: Hello! Welcome! I'm so glad to see you here. If you need any assistance
|
||||
or have any questions, feel free to ask. Have a wonderful day!\",\n \"refusal\":
|
||||
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
|
||||
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
127,\n \"completion_tokens\": 43,\n \"total_tokens\": 170,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_c4585b5b9c\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- CF-RAY-XXX
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 15 Jan 2026 23:46:42 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- SET-COOKIE-XXX
|
||||
Strict-Transport-Security:
|
||||
- STS-XXX
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- X-CONTENT-TYPE-XXX
|
||||
access-control-expose-headers:
|
||||
- ACCESS-CONTROL-XXX
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
content-length:
|
||||
- '990'
|
||||
openai-organization:
|
||||
- OPENAI-ORG-XXX
|
||||
openai-processing-ms:
|
||||
- '880'
|
||||
openai-project:
|
||||
- OPENAI-PROJECT-XXX
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '1160'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-requests:
|
||||
- X-RATELIMIT-LIMIT-REQUESTS-XXX
|
||||
x-ratelimit-limit-tokens:
|
||||
- X-RATELIMIT-LIMIT-TOKENS-XXX
|
||||
x-ratelimit-remaining-requests:
|
||||
- X-RATELIMIT-REMAINING-REQUESTS-XXX
|
||||
x-ratelimit-remaining-tokens:
|
||||
- X-RATELIMIT-REMAINING-TOKENS-XXX
|
||||
x-ratelimit-reset-requests:
|
||||
- X-RATELIMIT-RESET-REQUESTS-XXX
|
||||
x-ratelimit-reset-tokens:
|
||||
- X-RATELIMIT-RESET-TOKENS-XXX
|
||||
x-request-id:
|
||||
- X-REQUEST-ID-XXX
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Second Agent. A polite
|
||||
farewell agent\nYour personal goal is: Say goodbye\nTo give my best complete
|
||||
final answer to the task respond using the exact following format:\n\nThought:
|
||||
I now can give a great answer\nFinal Answer: Your final answer must be the great
|
||||
and the most complete as possible, it must be outcome described.\n\nI MUST use
|
||||
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
|
||||
Say goodbye\n\nBegin! This is VERY important to you, use the tools available
|
||||
and give your best Final Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4o-mini"}'
|
||||
headers:
|
||||
User-Agent:
|
||||
- X-USER-AGENT-XXX
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- ACCEPT-ENCODING-XXX
|
||||
authorization:
|
||||
- AUTHORIZATION-XXX
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '640'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
x-stainless-arch:
|
||||
- X-STAINLESS-ARCH-XXX
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- X-STAINLESS-OS-XXX
|
||||
x-stainless-package-version:
|
||||
- 1.83.0
|
||||
x-stainless-read-timeout:
|
||||
- X-STAINLESS-READ-TIMEOUT-XXX
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"id\": \"chatcmpl-CyRL1Ua2PkK5xXPp3KeF0AnGAk3JP\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1768520803,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
|
||||
Answer: As we reach the end of our conversation, I want to express my gratitude
|
||||
for the time we've shared. It's been a pleasure assisting you, and I hope
|
||||
you found our interaction helpful and enjoyable. Remember, whenever you need
|
||||
assistance, I'm just a message away. Wishing you all the best in your future
|
||||
endeavors. Goodbye and take care!\",\n \"refusal\": null,\n \"annotations\":
|
||||
[]\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
|
||||
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 126,\n \"completion_tokens\":
|
||||
79,\n \"total_tokens\": 205,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
|
||||
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_29330a9688\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- CF-RAY-XXX
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Thu, 15 Jan 2026 23:46:44 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- SET-COOKIE-XXX
|
||||
Strict-Transport-Security:
|
||||
- STS-XXX
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- X-CONTENT-TYPE-XXX
|
||||
access-control-expose-headers:
|
||||
- ACCESS-CONTROL-XXX
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
content-length:
|
||||
- '1189'
|
||||
openai-organization:
|
||||
- OPENAI-ORG-XXX
|
||||
openai-processing-ms:
|
||||
- '1363'
|
||||
openai-project:
|
||||
- OPENAI-PROJECT-XXX
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '1605'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-requests:
|
||||
- X-RATELIMIT-LIMIT-REQUESTS-XXX
|
||||
x-ratelimit-limit-tokens:
|
||||
- X-RATELIMIT-LIMIT-TOKENS-XXX
|
||||
x-ratelimit-remaining-requests:
|
||||
- X-RATELIMIT-REMAINING-REQUESTS-XXX
|
||||
x-ratelimit-remaining-tokens:
|
||||
- X-RATELIMIT-REMAINING-TOKENS-XXX
|
||||
x-ratelimit-reset-requests:
|
||||
- X-RATELIMIT-RESET-REQUESTS-XXX
|
||||
x-ratelimit-reset-tokens:
|
||||
- X-RATELIMIT-RESET-TOKENS-XXX
|
||||
x-request-id:
|
||||
- X-REQUEST-ID-XXX
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
version: 1
|
||||
File diff suppressed because one or more lines are too long
@@ -1,456 +1,528 @@
|
||||
interactions:
|
||||
- request:
|
||||
body: '{"trace_id": "00000000-0000-0000-0000-000000000000", "execution_type": "crew", "user_identifier": null, "execution_context": {"crew_fingerprint": null, "crew_name": "Unknown Crew", "flow_name": null, "crewai_version": "1.3.0", "privacy_level": "standard"}, "execution_metadata": {"expected_duration_estimate": 300, "agent_count": 0, "task_count": 0, "flow_method_count": 0, "execution_started_at": "2025-11-05T22:19:56.074812+00:00"}}'
|
||||
body: "{\"messages\":[{\"role\":\"system\",\"content\":\"You are Guardrail Agent.
|
||||
You are a expert at validating the output of a task. By providing effective
|
||||
feedback if the output is not valid.\\nYour personal goal is: Validate the output
|
||||
of the task\\nTo give my best complete final answer to the task respond using
|
||||
the exact following format:\\n\\nThought: I now can give a great answer\\nFinal
|
||||
Answer: Your final answer must be the great and the most complete as possible,
|
||||
it must be outcome described.\\n\\nI MUST use these formats, my job depends
|
||||
on it!\"},{\"role\":\"user\",\"content\":\"\\nCurrent Task: \\n Ensure
|
||||
the following task result complies with the given guardrail.\\n\\n Task
|
||||
result:\\n \\n Lorem Ipsum is simply dummy text of the printing
|
||||
and typesetting industry. Lorem Ipsum has been the industry's standard dummy
|
||||
text ever\\n \\n\\n Guardrail:\\n Ensure the result has
|
||||
less than 10 words\\n\\n Your task:\\n - Confirm if the Task result
|
||||
complies with the guardrail.\\n - If not, provide clear feedback explaining
|
||||
what is wrong (e.g., by how much it violates the rule, or what specific part
|
||||
fails).\\n - Focus only on identifying issues \u2014 do not propose corrections.\\n
|
||||
\ - If the Task result complies with the guardrail, saying that is valid\\n
|
||||
\ \\n\\nBegin! This is VERY important to you, use the tools available
|
||||
and give your best Final Answer, your job depends on it!\\n\\nThought:\"}],\"model\":\"gpt-4o\"}"
|
||||
headers:
|
||||
Accept:
|
||||
- '*/*'
|
||||
Accept-Encoding:
|
||||
- gzip, deflate, zstd
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '434'
|
||||
Content-Type:
|
||||
- application/json
|
||||
User-Agent:
|
||||
- CrewAI-CLI/1.3.0
|
||||
X-Crewai-Version:
|
||||
- 1.3.0
|
||||
method: POST
|
||||
uri: https://app.crewai.com/crewai_plus/api/v1/tracing/batches
|
||||
response:
|
||||
body:
|
||||
string: '{"error":"bad_credentials","message":"Bad credentials"}'
|
||||
headers:
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Length:
|
||||
- '55'
|
||||
Content-Type:
|
||||
- application/json; charset=utf-8
|
||||
Date:
|
||||
- Wed, 05 Nov 2025 22:19:56 GMT
|
||||
cache-control:
|
||||
- no-store
|
||||
content-security-policy:
|
||||
- 'default-src ''self'' *.app.crewai.com app.crewai.com; script-src ''self'' ''unsafe-inline'' *.app.crewai.com app.crewai.com https://cdn.jsdelivr.net/npm/apexcharts https://www.gstatic.com https://run.pstmn.io https://apis.google.com https://apis.google.com/js/api.js https://accounts.google.com https://accounts.google.com/gsi/client https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.min.css.map https://*.google.com https://docs.google.com https://slides.google.com https://js.hs-scripts.com https://js.sentry-cdn.com https://browser.sentry-cdn.com https://www.googletagmanager.com https://js-na1.hs-scripts.com https://js.hubspot.com http://js-na1.hs-scripts.com https://bat.bing.com https://cdn.amplitude.com https://cdn.segment.com https://d1d3n03t5zntha.cloudfront.net/ https://descriptusercontent.com https://edge.fullstory.com https://googleads.g.doubleclick.net https://js.hs-analytics.net https://js.hs-banner.com https://js.hsadspixel.net https://js.hscollectedforms.net
|
||||
https://js.usemessages.com https://snap.licdn.com https://static.cloudflareinsights.com https://static.reo.dev https://www.google-analytics.com https://share.descript.com/; style-src ''self'' ''unsafe-inline'' *.app.crewai.com app.crewai.com https://cdn.jsdelivr.net/npm/apexcharts; img-src ''self'' data: *.app.crewai.com app.crewai.com https://zeus.tools.crewai.com https://dashboard.tools.crewai.com https://cdn.jsdelivr.net https://forms.hsforms.com https://track.hubspot.com https://px.ads.linkedin.com https://px4.ads.linkedin.com https://www.google.com https://www.google.com.br; font-src ''self'' data: *.app.crewai.com app.crewai.com; connect-src ''self'' *.app.crewai.com app.crewai.com https://zeus.tools.crewai.com https://connect.useparagon.com/ https://zeus.useparagon.com/* https://*.useparagon.com/* https://run.pstmn.io https://connect.tools.crewai.com/ https://*.sentry.io https://www.google-analytics.com https://edge.fullstory.com https://rs.fullstory.com https://api.hubspot.com
|
||||
https://forms.hscollectedforms.net https://api.hubapi.com https://px.ads.linkedin.com https://px4.ads.linkedin.com https://google.com/pagead/form-data/16713662509 https://google.com/ccm/form-data/16713662509 https://www.google.com/ccm/collect https://worker-actionkit.tools.crewai.com https://api.reo.dev; frame-src ''self'' *.app.crewai.com app.crewai.com https://connect.useparagon.com/ https://zeus.tools.crewai.com https://zeus.useparagon.com/* https://connect.tools.crewai.com/ https://docs.google.com https://drive.google.com https://slides.google.com https://accounts.google.com https://*.google.com https://app.hubspot.com/ https://td.doubleclick.net https://www.googletagmanager.com/ https://www.youtube.com https://share.descript.com'
|
||||
expires:
|
||||
- '0'
|
||||
permissions-policy:
|
||||
- camera=(), microphone=(self), geolocation=()
|
||||
pragma:
|
||||
- no-cache
|
||||
referrer-policy:
|
||||
- strict-origin-when-cross-origin
|
||||
strict-transport-security:
|
||||
- max-age=63072000; includeSubDomains
|
||||
vary:
|
||||
- Accept
|
||||
x-content-type-options:
|
||||
- nosniff
|
||||
x-frame-options:
|
||||
- SAMEORIGIN
|
||||
x-permitted-cross-domain-policies:
|
||||
- none
|
||||
x-request-id:
|
||||
- 230c6cb5-92c7-448d-8c94-e5548a9f4259
|
||||
x-runtime:
|
||||
- '0.073220'
|
||||
x-xss-protection:
|
||||
- 1; mode=block
|
||||
status:
|
||||
code: 401
|
||||
message: Unauthorized
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Guardrail Agent. You are a expert at validating the output of a task. By providing effective feedback if the output is not valid.\nYour personal goal is: Validate the output of the task\n\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!Ensure your final answer strictly adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\": {\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\": {\n \"properties\": {\n \"valid\": {\n \"description\": \"Whether the task output complies with the guardrail\",\n \"title\": \"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\": {\n \"anyOf\":
|
||||
[\n {\n \"type\": \"string\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"default\": null,\n \"description\": \"A feedback about the task output if it is not valid\",\n \"title\": \"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\": \"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\": false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output. Ensure the final output does not include any code block markers like ```json or ```python."},{"role":"user","content":"\n Ensure the following task result complies with the given guardrail.\n\n Task result:\n \n Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry''s standard dummy text ever\n \n\n Guardrail:\n Ensure
|
||||
the result has less than 10 words\n\n Your task:\n - Confirm if the Task result complies with the guardrail.\n - If not, provide clear feedback explaining what is wrong (e.g., by how much it violates the rule, or what specific part fails).\n - Focus only on identifying issues — do not propose corrections.\n - If the Task result complies with the guardrail, saying that is valid\n "}],"model":"gpt-4o"}'
|
||||
headers:
|
||||
- X-USER-AGENT-XXX
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
- ACCEPT-ENCODING-XXX
|
||||
authorization:
|
||||
- AUTHORIZATION-XXX
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '2452'
|
||||
- '1467'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- X-STAINLESS-ARCH-XXX
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- X-STAINLESS-OS-XXX
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
- 1.83.0
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
- X-STAINLESS-READ-TIMEOUT-XXX
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"id\": \"chatcmpl-CYg96Riy2RJRxnBHvoROukymP9wvs\",\n \"object\": \"chat.completion\",\n \"created\": 1762381196,\n \"model\": \"gpt-4o-2024-08-06\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"Thought: I need to check if the task result meets the requirement of having less than 10 words.\\n\\nFinal Answer: {\\n \\\"valid\\\": false,\\n \\\"feedback\\\": \\\"The task result contains more than 10 words, violating the guardrail. The text provided contains about 21 words.\\\"\\n}\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 489,\n \"completion_tokens\": 61,\n \"total_tokens\": 550,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\"\
|
||||
: 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_cbf1785567\"\n}\n"
|
||||
string: "{\n \"id\": \"chatcmpl-Cy7yHRYTZi8yzRbcODnKr92keLKCb\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1768446357,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"The task result provided has more than
|
||||
10 words. I will count the words to verify this.\\n\\nThe task result is the
|
||||
following text:\\n\\\"Lorem Ipsum is simply dummy text of the printing and
|
||||
typesetting industry. Lorem Ipsum has been the industry's standard dummy text
|
||||
ever\\\"\\n\\nCounting the words:\\n\\n1. Lorem \\n2. Ipsum \\n3. is \\n4.
|
||||
simply \\n5. dummy \\n6. text \\n7. of \\n8. the \\n9. printing \\n10. and
|
||||
\\n11. typesetting \\n12. industry. \\n13. Lorem \\n14. Ipsum \\n15. has \\n16.
|
||||
been \\n17. the \\n18. industry's \\n19. standard \\n20. dummy \\n21. text
|
||||
\\n22. ever\\n\\nThe total word count is 22.\\n\\nThought: I now can give
|
||||
a great answer\\nFinal Answer: The task result does not comply with the guardrail.
|
||||
It contains 22 words, which exceeds the limit of 10 words.\",\n \"refusal\":
|
||||
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
|
||||
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
285,\n \"completion_tokens\": 195,\n \"total_tokens\": 480,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_deacdd5f6f\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- REDACTED-RAY
|
||||
- CF-RAY-XXX
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 05 Nov 2025 22:19:58 GMT
|
||||
- Thu, 15 Jan 2026 03:05:59 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=REDACTED; path=/; expires=Wed, 05-Nov-25 22:49:58 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
- _cfuvid=REDACTED; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
- SET-COOKIE-XXX
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
- STS-XXX
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
- X-CONTENT-TYPE-XXX
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
- ACCESS-CONTROL-XXX
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
content-length:
|
||||
- '1557'
|
||||
openai-organization:
|
||||
- user-hortuttj2f3qtmxyik2zxf4q
|
||||
- OPENAI-ORG-XXX
|
||||
openai-processing-ms:
|
||||
- '2201'
|
||||
- '2130'
|
||||
openai-project:
|
||||
- proj_fL4UBWR1CMpAAdgzaSKqsVvA
|
||||
- OPENAI-PROJECT-XXX
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '2401'
|
||||
- '2147'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-requests:
|
||||
- '500'
|
||||
- X-RATELIMIT-LIMIT-REQUESTS-XXX
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000'
|
||||
- X-RATELIMIT-LIMIT-TOKENS-XXX
|
||||
x-ratelimit-remaining-requests:
|
||||
- '499'
|
||||
- X-RATELIMIT-REMAINING-REQUESTS-XXX
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29439'
|
||||
- X-RATELIMIT-REMAINING-TOKENS-XXX
|
||||
x-ratelimit-reset-requests:
|
||||
- 120ms
|
||||
- X-RATELIMIT-RESET-REQUESTS-XXX
|
||||
x-ratelimit-reset-tokens:
|
||||
- 1.122s
|
||||
- X-RATELIMIT-RESET-TOKENS-XXX
|
||||
x-request-id:
|
||||
- req_REDACTED
|
||||
- X-REQUEST-ID-XXX
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"Ensure your final answer strictly adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\": {\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\": {\n \"properties\": {\n \"valid\": {\n \"description\": \"Whether the task output complies with the guardrail\",\n \"title\": \"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\": {\n \"anyOf\": [\n {\n \"type\": \"string\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"default\": null,\n \"description\": \"A feedback about the task output if it is not valid\",\n \"title\": \"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\": \"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\":
|
||||
false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output. Ensure the final output does not include any code block markers like ```json or ```python."},{"role":"user","content":"{\n \"valid\": false,\n \"feedback\": \"The task result contains more than 10 words, violating the guardrail. The text provided contains about 21 words.\"\n}"}],"model":"gpt-4o","response_format":{"type":"json_schema","json_schema":{"schema":{"properties":{"valid":{"description":"Whether the task output complies with the guardrail","title":"Valid","type":"boolean"},"feedback":{"anyOf":[{"type":"string"},{"type":"null"}],"description":"A feedback about the task output if it is not valid","title":"Feedback"}},"required":["valid","feedback"],"title":"LLMGuardrailResult","type":"object","additionalProperties":false},"name":"LLMGuardrailResult","strict":true}},"stream":false}'
|
||||
body: '{"messages":[{"role":"system","content":"Ensure your final answer strictly
|
||||
adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\":
|
||||
{\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\":
|
||||
{\n \"properties\": {\n \"valid\": {\n \"description\":
|
||||
\"Whether the task output complies with the guardrail\",\n \"title\":
|
||||
\"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\":
|
||||
{\n \"anyOf\": [\n {\n \"type\": \"string\"\n },\n {\n \"type\":
|
||||
\"null\"\n }\n ],\n \"default\": null,\n \"description\":
|
||||
\"A feedback about the task output if it is not valid\",\n \"title\":
|
||||
\"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\":
|
||||
\"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\":
|
||||
false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output.
|
||||
Ensure the final output does not include any code block markers like ```json
|
||||
or ```python."},{"role":"user","content":"The task result does not comply with
|
||||
the guardrail. It contains 22 words, which exceeds the limit of 10 words."}],"model":"gpt-4o","response_format":{"type":"json_schema","json_schema":{"schema":{"properties":{"valid":{"description":"Whether
|
||||
the task output complies with the guardrail","title":"Valid","type":"boolean"},"feedback":{"anyOf":[{"type":"string"},{"type":"null"}],"description":"A
|
||||
feedback about the task output if it is not valid","title":"Feedback"}},"required":["valid","feedback"],"title":"LLMGuardrailResult","type":"object","additionalProperties":false},"name":"LLMGuardrailResult","strict":true}},"stream":false}'
|
||||
headers:
|
||||
User-Agent:
|
||||
- X-USER-AGENT-XXX
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
- ACCEPT-ENCODING-XXX
|
||||
authorization:
|
||||
- AUTHORIZATION-XXX
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1884'
|
||||
- '1835'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=REDACTED; _cfuvid=REDACTED
|
||||
- COOKIE-XXX
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- X-STAINLESS-ARCH-XXX
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-helper-method:
|
||||
- chat.completions.parse
|
||||
- beta.chat.completions.parse
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- X-STAINLESS-OS-XXX
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
- 1.83.0
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
- X-STAINLESS-READ-TIMEOUT-XXX
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"id\": \"chatcmpl-CYg98QlZ8NTrQ69676MpXXyCoZJT8\",\n \"object\": \"chat.completion\",\n \"created\": 1762381198,\n \"model\": \"gpt-4o-2024-08-06\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"{\\\"valid\\\":false,\\\"feedback\\\":\\\"The task result contains more than 10 words, violating the guardrail. The text provided contains about 21 words.\\\"}\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 374,\n \"completion_tokens\": 32,\n \"total_tokens\": 406,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n\
|
||||
\ \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_cbf1785567\"\n}\n"
|
||||
string: "{\n \"id\": \"chatcmpl-Cy7yJiPCk4fXuogyT5e8XeGRLCSf8\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1768446359,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"{\\\"valid\\\":false,\\\"feedback\\\":\\\"The
|
||||
task output exceeds the word limit of 10 words by containing 22 words.\\\"}\",\n
|
||||
\ \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
363,\n \"completion_tokens\": 25,\n \"total_tokens\": 388,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_a0e9480a2f\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- REDACTED-RAY
|
||||
- CF-RAY-XXX
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 05 Nov 2025 22:19:59 GMT
|
||||
- Thu, 15 Jan 2026 03:05:59 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
- STS-XXX
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
- X-CONTENT-TYPE-XXX
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
- ACCESS-CONTROL-XXX
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
content-length:
|
||||
- '913'
|
||||
openai-organization:
|
||||
- user-hortuttj2f3qtmxyik2zxf4q
|
||||
- OPENAI-ORG-XXX
|
||||
openai-processing-ms:
|
||||
- '419'
|
||||
- '488'
|
||||
openai-project:
|
||||
- proj_fL4UBWR1CMpAAdgzaSKqsVvA
|
||||
- OPENAI-PROJECT-XXX
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '432'
|
||||
- '507'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-requests:
|
||||
- '500'
|
||||
- X-RATELIMIT-LIMIT-REQUESTS-XXX
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000'
|
||||
- X-RATELIMIT-LIMIT-TOKENS-XXX
|
||||
x-ratelimit-remaining-requests:
|
||||
- '499'
|
||||
- X-RATELIMIT-REMAINING-REQUESTS-XXX
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29702'
|
||||
- X-RATELIMIT-REMAINING-TOKENS-XXX
|
||||
x-ratelimit-reset-requests:
|
||||
- 120ms
|
||||
- X-RATELIMIT-RESET-REQUESTS-XXX
|
||||
x-ratelimit-reset-tokens:
|
||||
- 596ms
|
||||
- X-RATELIMIT-RESET-TOKENS-XXX
|
||||
x-request-id:
|
||||
- req_REDACTED
|
||||
- X-REQUEST-ID-XXX
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"You are Guardrail Agent. You are a expert at validating the output of a task. By providing effective feedback if the output is not valid.\nYour personal goal is: Validate the output of the task\n\nTo give my best complete final answer to the task respond using the exact following format:\n\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described.\n\nI MUST use these formats, my job depends on it!Ensure your final answer strictly adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\": {\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\": {\n \"properties\": {\n \"valid\": {\n \"description\": \"Whether the task output complies with the guardrail\",\n \"title\": \"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\": {\n \"anyOf\":
|
||||
[\n {\n \"type\": \"string\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"default\": null,\n \"description\": \"A feedback about the task output if it is not valid\",\n \"title\": \"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\": \"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\": false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output. Ensure the final output does not include any code block markers like ```json or ```python."},{"role":"user","content":"\n Ensure the following task result complies with the given guardrail.\n\n Task result:\n \n Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry''s standard dummy text ever\n \n\n Guardrail:\n Ensure
|
||||
the result has less than 500 words\n\n Your task:\n - Confirm if the Task result complies with the guardrail.\n - If not, provide clear feedback explaining what is wrong (e.g., by how much it violates the rule, or what specific part fails).\n - Focus only on identifying issues — do not propose corrections.\n - If the Task result complies with the guardrail, saying that is valid\n "}],"model":"gpt-4o"}'
|
||||
body: "{\"messages\":[{\"role\":\"system\",\"content\":\"You are Guardrail Agent.
|
||||
You are a expert at validating the output of a task. By providing effective
|
||||
feedback if the output is not valid.\\nYour personal goal is: Validate the output
|
||||
of the task\\nTo give my best complete final answer to the task respond using
|
||||
the exact following format:\\n\\nThought: I now can give a great answer\\nFinal
|
||||
Answer: Your final answer must be the great and the most complete as possible,
|
||||
it must be outcome described.\\n\\nI MUST use these formats, my job depends
|
||||
on it!\"},{\"role\":\"user\",\"content\":\"\\nCurrent Task: \\n Ensure
|
||||
the following task result complies with the given guardrail.\\n\\n Task
|
||||
result:\\n \\n Lorem Ipsum is simply dummy text of the printing
|
||||
and typesetting industry. Lorem Ipsum has been the industry's standard dummy
|
||||
text ever\\n \\n\\n Guardrail:\\n Ensure the result has
|
||||
less than 500 words\\n\\n Your task:\\n - Confirm if the Task
|
||||
result complies with the guardrail.\\n - If not, provide clear feedback
|
||||
explaining what is wrong (e.g., by how much it violates the rule, or what specific
|
||||
part fails).\\n - Focus only on identifying issues \u2014 do not propose
|
||||
corrections.\\n - If the Task result complies with the guardrail, saying
|
||||
that is valid\\n \\n\\nBegin! This is VERY important to you, use the
|
||||
tools available and give your best Final Answer, your job depends on it!\\n\\nThought:\"}],\"model\":\"gpt-4o\"}"
|
||||
headers:
|
||||
User-Agent:
|
||||
- X-USER-AGENT-XXX
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
- ACCEPT-ENCODING-XXX
|
||||
authorization:
|
||||
- AUTHORIZATION-XXX
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '2453'
|
||||
- '1468'
|
||||
content-type:
|
||||
- application/json
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- X-STAINLESS-ARCH-XXX
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- X-STAINLESS-OS-XXX
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
- 1.83.0
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
- X-STAINLESS-READ-TIMEOUT-XXX
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"id\": \"chatcmpl-CYgBMV6fu7EvV2BqzMdJaKyLAg1WW\",\n \"object\": \"chat.completion\",\n \"created\": 1762381336,\n \"model\": \"gpt-4o-2024-08-06\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"Thought: I now can give a great answer\\nFinal Answer: {\\\"valid\\\": true, \\\"feedback\\\": null}\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 489,\n \"completion_tokens\": 23,\n \"total_tokens\": 512,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\"\
|
||||
: \"fp_cbf1785567\"\n}\n"
|
||||
string: "{\n \"id\": \"chatcmpl-Cy7yKa0rmi2YoTLpyXt9hjeLt2rTI\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1768446360,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"First, I'll count the number of words
|
||||
in the Task result to ensure it complies with the guardrail. \\n\\nThe Task
|
||||
result is: \\\"Lorem Ipsum is simply dummy text of the printing and typesetting
|
||||
industry. Lorem Ipsum has been the industry's standard dummy text ever.\\\"\\n\\nBy
|
||||
counting the words: \\n1. Lorem\\n2. Ipsum\\n3. is\\n4. simply\\n5. dummy\\n6.
|
||||
text\\n7. of\\n8. the\\n9. printing\\n10. and\\n11. typesetting\\n12. industry\\n13.
|
||||
Lorem\\n14. Ipsum\\n15. has\\n16. been\\n17. the\\n18. industry's\\n19. standard\\n20.
|
||||
dummy\\n21. text\\n22. ever\\n\\nThere are 22 words total in the Task result.\\n\\nI
|
||||
need to verify if the count of 22 words is less than the guardrail limit of
|
||||
500 words.\\n\\nThought: I now can give a great answer\\nFinal Answer: The
|
||||
Task result complies with the guardrail as it contains 22 words, which is
|
||||
less than the 500-word limit. Therefore, the output is valid.\",\n \"refusal\":
|
||||
null,\n \"annotations\": []\n },\n \"logprobs\": null,\n
|
||||
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
285,\n \"completion_tokens\": 227,\n \"total_tokens\": 512,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_deacdd5f6f\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- REDACTED-RAY
|
||||
- CF-RAY-XXX
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 05 Nov 2025 22:22:16 GMT
|
||||
- Thu, 15 Jan 2026 03:06:02 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Set-Cookie:
|
||||
- __cf_bm=REDACTED; path=/; expires=Wed, 05-Nov-25 22:52:16 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
- _cfuvid=REDACTED; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
|
||||
- SET-COOKIE-XXX
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
- STS-XXX
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
- X-CONTENT-TYPE-XXX
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
- ACCESS-CONTROL-XXX
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
content-length:
|
||||
- '1668'
|
||||
openai-organization:
|
||||
- user-hortuttj2f3qtmxyik2zxf4q
|
||||
- OPENAI-ORG-XXX
|
||||
openai-processing-ms:
|
||||
- '327'
|
||||
- '2502'
|
||||
openai-project:
|
||||
- proj_fL4UBWR1CMpAAdgzaSKqsVvA
|
||||
- OPENAI-PROJECT-XXX
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '372'
|
||||
- '2522'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-requests:
|
||||
- '500'
|
||||
- X-RATELIMIT-LIMIT-REQUESTS-XXX
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000'
|
||||
- X-RATELIMIT-LIMIT-TOKENS-XXX
|
||||
x-ratelimit-remaining-requests:
|
||||
- '499'
|
||||
- X-RATELIMIT-REMAINING-REQUESTS-XXX
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29438'
|
||||
- X-RATELIMIT-REMAINING-TOKENS-XXX
|
||||
x-ratelimit-reset-requests:
|
||||
- 120ms
|
||||
- X-RATELIMIT-RESET-REQUESTS-XXX
|
||||
x-ratelimit-reset-tokens:
|
||||
- 1.124s
|
||||
- X-RATELIMIT-RESET-TOKENS-XXX
|
||||
x-request-id:
|
||||
- req_REDACTED
|
||||
- X-REQUEST-ID-XXX
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
- request:
|
||||
body: '{"messages":[{"role":"system","content":"Ensure your final answer strictly adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\": {\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\": {\n \"properties\": {\n \"valid\": {\n \"description\": \"Whether the task output complies with the guardrail\",\n \"title\": \"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\": {\n \"anyOf\": [\n {\n \"type\": \"string\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"default\": null,\n \"description\": \"A feedback about the task output if it is not valid\",\n \"title\": \"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\": \"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\":
|
||||
false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output. Ensure the final output does not include any code block markers like ```json or ```python."},{"role":"user","content":"{\"valid\": true, \"feedback\": null}"}],"model":"gpt-4o","response_format":{"type":"json_schema","json_schema":{"schema":{"properties":{"valid":{"description":"Whether the task output complies with the guardrail","title":"Valid","type":"boolean"},"feedback":{"anyOf":[{"type":"string"},{"type":"null"}],"description":"A feedback about the task output if it is not valid","title":"Feedback"}},"required":["valid","feedback"],"title":"LLMGuardrailResult","type":"object","additionalProperties":false},"name":"LLMGuardrailResult","strict":true}},"stream":false}'
|
||||
body: '{"messages":[{"role":"system","content":"Ensure your final answer strictly
|
||||
adheres to the following OpenAPI schema: {\n \"type\": \"json_schema\",\n \"json_schema\":
|
||||
{\n \"name\": \"LLMGuardrailResult\",\n \"strict\": true,\n \"schema\":
|
||||
{\n \"properties\": {\n \"valid\": {\n \"description\":
|
||||
\"Whether the task output complies with the guardrail\",\n \"title\":
|
||||
\"Valid\",\n \"type\": \"boolean\"\n },\n \"feedback\":
|
||||
{\n \"anyOf\": [\n {\n \"type\": \"string\"\n },\n {\n \"type\":
|
||||
\"null\"\n }\n ],\n \"default\": null,\n \"description\":
|
||||
\"A feedback about the task output if it is not valid\",\n \"title\":
|
||||
\"Feedback\"\n }\n },\n \"required\": [\n \"valid\",\n \"feedback\"\n ],\n \"title\":
|
||||
\"LLMGuardrailResult\",\n \"type\": \"object\",\n \"additionalProperties\":
|
||||
false\n }\n }\n}\n\nDo not include the OpenAPI schema in the final output.
|
||||
Ensure the final output does not include any code block markers like ```json
|
||||
or ```python."},{"role":"user","content":"The Task result complies with the
|
||||
guardrail as it contains 22 words, which is less than the 500-word limit. Therefore,
|
||||
the output is valid."}],"model":"gpt-4o","response_format":{"type":"json_schema","json_schema":{"schema":{"properties":{"valid":{"description":"Whether
|
||||
the task output complies with the guardrail","title":"Valid","type":"boolean"},"feedback":{"anyOf":[{"type":"string"},{"type":"null"}],"description":"A
|
||||
feedback about the task output if it is not valid","title":"Feedback"}},"required":["valid","feedback"],"title":"LLMGuardrailResult","type":"object","additionalProperties":false},"name":"LLMGuardrailResult","strict":true}},"stream":false}'
|
||||
headers:
|
||||
User-Agent:
|
||||
- X-USER-AGENT-XXX
|
||||
accept:
|
||||
- application/json
|
||||
accept-encoding:
|
||||
- gzip, deflate, zstd
|
||||
- ACCEPT-ENCODING-XXX
|
||||
authorization:
|
||||
- AUTHORIZATION-XXX
|
||||
connection:
|
||||
- keep-alive
|
||||
content-length:
|
||||
- '1762'
|
||||
- '1864'
|
||||
content-type:
|
||||
- application/json
|
||||
cookie:
|
||||
- __cf_bm=REDACTED; _cfuvid=REDACTED
|
||||
- COOKIE-XXX
|
||||
host:
|
||||
- api.openai.com
|
||||
user-agent:
|
||||
- OpenAI/Python 1.109.1
|
||||
x-stainless-arch:
|
||||
- arm64
|
||||
- X-STAINLESS-ARCH-XXX
|
||||
x-stainless-async:
|
||||
- 'false'
|
||||
x-stainless-helper-method:
|
||||
- chat.completions.parse
|
||||
- beta.chat.completions.parse
|
||||
x-stainless-lang:
|
||||
- python
|
||||
x-stainless-os:
|
||||
- MacOS
|
||||
- X-STAINLESS-OS-XXX
|
||||
x-stainless-package-version:
|
||||
- 1.109.1
|
||||
- 1.83.0
|
||||
x-stainless-read-timeout:
|
||||
- '600'
|
||||
- X-STAINLESS-READ-TIMEOUT-XXX
|
||||
x-stainless-retry-count:
|
||||
- '0'
|
||||
x-stainless-runtime:
|
||||
- CPython
|
||||
x-stainless-runtime-version:
|
||||
- 3.12.9
|
||||
- 3.13.3
|
||||
method: POST
|
||||
uri: https://api.openai.com/v1/chat/completions
|
||||
response:
|
||||
body:
|
||||
string: "{\n \"id\": \"chatcmpl-CYgBMU20R45qGGaLN6vNAmW1NR4R6\",\n \"object\": \"chat.completion\",\n \"created\": 1762381336,\n \"model\": \"gpt-4o-2024-08-06\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"{\\\"valid\\\":true,\\\"feedback\\\":null}\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 347,\n \"completion_tokens\": 9,\n \"total_tokens\": 356,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_cbf1785567\"\n}\n"
|
||||
string: "{\n \"id\": \"chatcmpl-Cy7yMAjNYSCz2foZPEcSVCuapzF8y\",\n \"object\":
|
||||
\"chat.completion\",\n \"created\": 1768446362,\n \"model\": \"gpt-4o-2024-08-06\",\n
|
||||
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
|
||||
\"assistant\",\n \"content\": \"{\\\"valid\\\":true,\\\"feedback\\\":null}\",\n
|
||||
\ \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\":
|
||||
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
|
||||
369,\n \"completion_tokens\": 9,\n \"total_tokens\": 378,\n \"prompt_tokens_details\":
|
||||
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
|
||||
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
|
||||
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
|
||||
\"default\",\n \"system_fingerprint\": \"fp_a0e9480a2f\"\n}\n"
|
||||
headers:
|
||||
CF-RAY:
|
||||
- REDACTED-RAY
|
||||
- CF-RAY-XXX
|
||||
Connection:
|
||||
- keep-alive
|
||||
Content-Type:
|
||||
- application/json
|
||||
Date:
|
||||
- Wed, 05 Nov 2025 22:22:17 GMT
|
||||
- Thu, 15 Jan 2026 03:06:03 GMT
|
||||
Server:
|
||||
- cloudflare
|
||||
Strict-Transport-Security:
|
||||
- max-age=31536000; includeSubDomains; preload
|
||||
- STS-XXX
|
||||
Transfer-Encoding:
|
||||
- chunked
|
||||
X-Content-Type-Options:
|
||||
- nosniff
|
||||
- X-CONTENT-TYPE-XXX
|
||||
access-control-expose-headers:
|
||||
- X-Request-ID
|
||||
- ACCESS-CONTROL-XXX
|
||||
alt-svc:
|
||||
- h3=":443"; ma=86400
|
||||
cf-cache-status:
|
||||
- DYNAMIC
|
||||
content-length:
|
||||
- '837'
|
||||
openai-organization:
|
||||
- user-hortuttj2f3qtmxyik2zxf4q
|
||||
- OPENAI-ORG-XXX
|
||||
openai-processing-ms:
|
||||
- '1081'
|
||||
- '413'
|
||||
openai-project:
|
||||
- proj_fL4UBWR1CMpAAdgzaSKqsVvA
|
||||
- OPENAI-PROJECT-XXX
|
||||
openai-version:
|
||||
- '2020-10-01'
|
||||
x-envoy-upstream-service-time:
|
||||
- '1241'
|
||||
- '650'
|
||||
x-openai-proxy-wasm:
|
||||
- v0.1
|
||||
x-ratelimit-limit-requests:
|
||||
- '500'
|
||||
- X-RATELIMIT-LIMIT-REQUESTS-XXX
|
||||
x-ratelimit-limit-tokens:
|
||||
- '30000'
|
||||
- X-RATELIMIT-LIMIT-TOKENS-XXX
|
||||
x-ratelimit-remaining-requests:
|
||||
- '499'
|
||||
- X-RATELIMIT-REMAINING-REQUESTS-XXX
|
||||
x-ratelimit-remaining-tokens:
|
||||
- '29478'
|
||||
- X-RATELIMIT-REMAINING-TOKENS-XXX
|
||||
x-ratelimit-reset-requests:
|
||||
- 120ms
|
||||
- X-RATELIMIT-RESET-REQUESTS-XXX
|
||||
x-ratelimit-reset-tokens:
|
||||
- 1.042s
|
||||
- X-RATELIMIT-RESET-TOKENS-XXX
|
||||
x-request-id:
|
||||
- req_REDACTED
|
||||
- X-REQUEST-ID-XXX
|
||||
status:
|
||||
code: 200
|
||||
message: OK
|
||||
|
||||
@@ -1202,8 +1202,9 @@ def test_complex_and_or_branching():
|
||||
)
|
||||
assert execution_order.index("branch_2b") > min_branch_1_index
|
||||
|
||||
# Final should be last and after both 2a and 2b
|
||||
assert execution_order[-1] == "final"
|
||||
# Final should be after both 2a and 2b
|
||||
# Note: final may not be absolutely last due to independent branches (like branch_1c)
|
||||
# that don't contribute to the final result path with sequential listener execution
|
||||
assert execution_order.index("final") > execution_order.index("branch_2a")
|
||||
assert execution_order.index("final") > execution_order.index("branch_2b")
|
||||
|
||||
|
||||
@@ -185,8 +185,8 @@ def test_task_guardrail_process_output(task_output):
|
||||
|
||||
result = guardrail(task_output)
|
||||
assert result[0] is False
|
||||
|
||||
assert result[1] == "The task result contains more than 10 words, violating the guardrail. The text provided contains about 21 words."
|
||||
# Check that feedback is provided (wording varies by LLM)
|
||||
assert result[1] and len(result[1]) > 0
|
||||
|
||||
guardrail = LLMGuardrail(
|
||||
description="Ensure the result has less than 500 words", llm=LLM(model="gpt-4o")
|
||||
|
||||
@@ -348,11 +348,11 @@ def test_agent_emits_execution_error_event(base_agent, base_task):
|
||||
|
||||
error_message = "Error happening while sending prompt to model."
|
||||
base_agent.max_retry_limit = 0
|
||||
with patch.object(
|
||||
CrewAgentExecutor, "invoke", wraps=base_agent.agent_executor.invoke
|
||||
) as invoke_mock:
|
||||
invoke_mock.side_effect = Exception(error_message)
|
||||
|
||||
# Patch at the class level since agent_executor is created lazily
|
||||
with patch.object(
|
||||
CrewAgentExecutor, "invoke", side_effect=Exception(error_message)
|
||||
):
|
||||
with pytest.raises(Exception): # noqa: B017
|
||||
base_agent.execute_task(
|
||||
task=base_task,
|
||||
|
||||
Reference in New Issue
Block a user