wip restrcuturing agent executor and liteagent

This commit is contained in:
lorenzejay
2026-01-09 14:42:50 -08:00
parent 46846bcace
commit 0029f8193c
6 changed files with 367 additions and 109 deletions

View File

@@ -35,6 +35,11 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.events.event_bus import crewai_event_bus
from crewai.events.types.agent_events import (
LiteAgentExecutionCompletedEvent,
LiteAgentExecutionErrorEvent,
LiteAgentExecutionStartedEvent,
)
from crewai.events.types.knowledge_events import (
KnowledgeQueryCompletedEvent,
KnowledgeQueryFailedEvent,
@@ -44,10 +49,10 @@ from crewai.events.types.memory_events import (
MemoryRetrievalCompletedEvent,
MemoryRetrievalStartedEvent,
)
from crewai.experimental.crew_agent_executor_flow import CrewAgentExecutorFlow
from crewai.experimental.agent_executor import AgentExecutor
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.lite_agent import LiteAgent
from crewai.lite_agent_output import LiteAgentOutput
from crewai.llms.base_llm import BaseLLM
from crewai.mcp import (
MCPClient,
@@ -70,10 +75,12 @@ from crewai.utilities.agent_utils import (
render_text_description_and_args,
)
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import Converter
from crewai.utilities.converter import Converter, ConverterError
from crewai.utilities.guardrail import process_guardrail
from crewai.utilities.guardrail_types import GuardrailType
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.prompts import Prompts
from crewai.utilities.pydantic_schema_utils import generate_model_description
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
@@ -82,7 +89,6 @@ if TYPE_CHECKING:
from crewai_tools import CodeInterpreterTool
from crewai.agents.agent_builder.base_agent import PlatformAppOrAction
from crewai.lite_agent_output import LiteAgentOutput
from crewai.task import Task
from crewai.tools.base_tool import BaseTool
from crewai.utilities.types import LLMMessage
@@ -106,7 +112,7 @@ class Agent(BaseAgent):
The agent can also have memory, can operate in verbose mode, and can delegate tasks to other agents.
Attributes:
agent_executor: An instance of the CrewAgentExecutor or CrewAgentExecutorFlow class.
agent_executor: An instance of the CrewAgentExecutor or AgentExecutor class.
role: The role of the agent.
goal: The objective of the agent.
backstory: The backstory of the agent.
@@ -222,9 +228,9 @@ class Agent(BaseAgent):
default=None,
description="A2A (Agent-to-Agent) configuration for delegating tasks to remote agents. Can be a single A2AConfig or a dict mapping agent IDs to configs.",
)
executor_class: type[CrewAgentExecutor] | type[CrewAgentExecutorFlow] = Field(
executor_class: type[CrewAgentExecutor] | type[AgentExecutor] = Field(
default=CrewAgentExecutor,
description="Class to use for the agent executor. Defaults to CrewAgentExecutor, can optionally use CrewAgentExecutorFlow.",
description="Class to use for the agent executor. Defaults to CrewAgentExecutor, can optionally use AgentExecutor.",
)
@model_validator(mode="before")
@@ -1573,10 +1579,10 @@ class Agent(BaseAgent):
response_format: type[Any] | None = None,
) -> LiteAgentOutput:
"""
Execute the agent with the given messages using a LiteAgent instance.
Execute the agent with the given messages using the AgentExecutor.
This method is useful when you want to use the Agent configuration but
with the simpler and more direct execution flow of LiteAgent.
This method provides standalone agent execution without requiring a Crew.
It supports tools, response formatting, and guardrails.
Args:
messages: Either a string query or a list of message dictionaries.
@@ -1587,6 +1593,7 @@ class Agent(BaseAgent):
Returns:
LiteAgentOutput: The result of the agent execution.
"""
# Process platform apps and MCP tools
if self.apps:
platform_tools = self.get_platform_tools(self.apps)
if platform_tools and self.tools is not None:
@@ -1596,25 +1603,264 @@ class Agent(BaseAgent):
if mcps and self.tools is not None:
self.tools.extend(mcps)
lite_agent = LiteAgent(
id=self.id,
role=self.role,
goal=self.goal,
backstory=self.backstory,
llm=self.llm,
tools=self.tools or [],
max_iterations=self.max_iter,
max_execution_time=self.max_execution_time,
respect_context_window=self.respect_context_window,
verbose=self.verbose,
response_format=response_format,
# Prepare tools
raw_tools: list[BaseTool] = self.tools or []
parsed_tools = parse_tools(raw_tools)
# Build agent_info for backward-compatible event emission
agent_info = {
"id": self.id,
"role": self.role,
"goal": self.goal,
"backstory": self.backstory,
"tools": raw_tools,
"verbose": self.verbose,
}
# Build prompt for standalone execution
prompt = Prompts(
agent=self,
has_tools=len(raw_tools) > 0,
i18n=self.i18n,
original_agent=self,
guardrail=self.guardrail,
guardrail_max_retries=self.guardrail_max_retries,
use_system_prompt=self.use_system_prompt,
system_template=self.system_template,
prompt_template=self.prompt_template,
response_template=self.response_template,
).task_execution()
# Prepare stop words
stop_words = [self.i18n.slice("observation")]
if self.response_template:
stop_words.append(
self.response_template.split("{{ .Response }}")[1].strip()
)
# Get RPM limit function
rpm_limit_fn = (
self._rpm_controller.check_or_wait if self._rpm_controller else None
)
return lite_agent.kickoff(messages)
# Create the executor for standalone mode (no crew, no task)
executor = AgentExecutor(
llm=cast(BaseLLM, self.llm),
agent=self,
prompt=prompt,
max_iter=self.max_iter,
tools=parsed_tools,
tools_names=get_tool_names(parsed_tools),
stop_words=stop_words,
tools_description=render_text_description_and_args(parsed_tools),
tools_handler=self.tools_handler,
task=None, # Standalone mode
crew=None, # Standalone mode
original_tools=raw_tools,
step_callback=self.step_callback,
function_calling_llm=self.function_calling_llm,
respect_context_window=self.respect_context_window,
request_within_rpm_limit=rpm_limit_fn,
callbacks=[TokenCalcHandler(self._token_process)],
response_model=response_format,
i18n=self.i18n,
)
# Format messages for the executor
if isinstance(messages, str):
formatted_messages = messages
else:
# Convert list of messages to a single input string
formatted_messages = "\n".join(
str(msg.get("content", "")) for msg in messages if msg.get("content")
)
# Build the input dict for the executor
inputs = {
"input": formatted_messages,
"tool_names": get_tool_names(parsed_tools),
"tools": render_text_description_and_args(parsed_tools),
}
try:
# Emit started event for backward compatibility with LiteAgent listeners
crewai_event_bus.emit(
self,
event=LiteAgentExecutionStartedEvent(
agent_info=agent_info,
tools=parsed_tools,
messages=messages,
),
)
# Execute and build output
output = self._execute_and_build_output(executor, inputs, response_format)
# Process guardrail if configured
if self.guardrail is not None:
output = self._process_kickoff_guardrail(
output=output,
executor=executor,
inputs=inputs,
response_format=response_format,
)
# Emit completed event for backward compatibility with LiteAgent listeners
crewai_event_bus.emit(
self,
event=LiteAgentExecutionCompletedEvent(
agent_info=agent_info,
output=output.raw,
),
)
return output
except Exception as e:
# Emit error event for backward compatibility with LiteAgent listeners
crewai_event_bus.emit(
self,
event=LiteAgentExecutionErrorEvent(
agent_info=agent_info,
error=str(e),
),
)
raise
def _execute_and_build_output(
self,
executor: AgentExecutor,
inputs: dict[str, str],
response_format: type[Any] | None = None,
) -> LiteAgentOutput:
"""Execute the agent and build the output object.
Args:
executor: The executor instance.
inputs: Input dictionary for execution.
response_format: Optional response format.
Returns:
LiteAgentOutput with raw output, formatted result, and metrics.
"""
import json
# Execute the agent
result = executor.invoke(inputs)
raw_output = result.get("output", "")
# Handle response format conversion
formatted_result: BaseModel | None = None
if response_format:
try:
model_schema = generate_model_description(response_format)
schema = json.dumps(model_schema, indent=2)
instructions = self.i18n.slice("formatted_task_instructions").format(
output_format=schema
)
converter = Converter(
llm=self.llm,
text=raw_output,
model=response_format,
instructions=instructions,
)
conversion_result = converter.to_pydantic()
if isinstance(conversion_result, BaseModel):
formatted_result = conversion_result
except ConverterError:
pass # Keep raw output if conversion fails
# Get token usage metrics
if isinstance(self.llm, BaseLLM):
usage_metrics = self.llm.get_token_usage_summary()
else:
usage_metrics = self._token_process.get_summary()
return LiteAgentOutput(
raw=raw_output,
pydantic=formatted_result,
agent_role=self.role,
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
messages=executor.messages,
)
def _process_kickoff_guardrail(
self,
output: LiteAgentOutput,
executor: AgentExecutor,
inputs: dict[str, str],
response_format: type[Any] | None = None,
retry_count: int = 0,
) -> LiteAgentOutput:
"""Process guardrail for kickoff execution with retry logic.
Args:
output: Current agent output.
executor: The executor instance.
inputs: Input dictionary for re-execution.
response_format: Optional response format.
retry_count: Current retry count.
Returns:
Validated/updated output.
"""
from crewai.utilities.guardrail_types import GuardrailCallable
# Ensure guardrail is callable
guardrail_callable: GuardrailCallable
if isinstance(self.guardrail, str):
from crewai.tasks.llm_guardrail import LLMGuardrail
guardrail_callable = cast(
GuardrailCallable,
LLMGuardrail(description=self.guardrail, llm=cast(BaseLLM, self.llm)),
)
elif callable(self.guardrail):
guardrail_callable = self.guardrail
else:
# Should not happen if called from kickoff with guardrail check
return output
guardrail_result = process_guardrail(
output=output,
guardrail=guardrail_callable,
retry_count=retry_count,
event_source=self,
from_agent=self,
)
if not guardrail_result.success:
if retry_count >= self.guardrail_max_retries:
raise ValueError(
f"Agent's guardrail failed validation after {self.guardrail_max_retries} retries. "
f"Last error: {guardrail_result.error}"
)
# Add feedback and re-execute
executor._append_message_to_state(
guardrail_result.error or "Guardrail validation failed",
role="user",
)
# Re-execute and build new output
output = self._execute_and_build_output(executor, inputs, response_format)
# Recursively retry guardrail
return self._process_kickoff_guardrail(
output=output,
executor=executor,
inputs=inputs,
response_format=response_format,
retry_count=retry_count + 1,
)
# Apply guardrail result if available
if guardrail_result.result is not None:
if isinstance(guardrail_result.result, str):
output.raw = guardrail_result.result
elif isinstance(guardrail_result.result, BaseModel):
output.pydantic = guardrail_result.result
return output
async def kickoff_async(
self,
@@ -1622,7 +1868,7 @@ class Agent(BaseAgent):
response_format: type[Any] | None = None,
) -> LiteAgentOutput:
"""
Execute the agent asynchronously with the given messages using a LiteAgent instance.
Execute the agent asynchronously with the given messages.
This is the async version of the kickoff method.
@@ -1635,21 +1881,4 @@ class Agent(BaseAgent):
Returns:
LiteAgentOutput: The result of the agent execution.
"""
lite_agent = LiteAgent(
role=self.role,
goal=self.goal,
backstory=self.backstory,
llm=self.llm,
tools=self.tools or [],
max_iterations=self.max_iter,
max_execution_time=self.max_execution_time,
respect_context_window=self.respect_context_window,
verbose=self.verbose,
response_format=response_format,
i18n=self.i18n,
original_agent=self,
guardrail=self.guardrail,
guardrail_max_retries=self.guardrail_max_retries,
)
return await lite_agent.kickoff_async(messages)
return await asyncio.to_thread(self.kickoff, messages, response_format)

View File

@@ -21,9 +21,9 @@ if TYPE_CHECKING:
class CrewAgentExecutorMixin:
crew: Crew
crew: Crew | None
agent: Agent
task: Task
task: Task | None
iterations: int
max_iter: int
messages: list[LLMMessage]

View File

@@ -1,4 +1,4 @@
from crewai.experimental.crew_agent_executor_flow import CrewAgentExecutorFlow
from crewai.experimental.agent_executor import AgentExecutor, CrewAgentExecutorFlow
from crewai.experimental.evaluation import (
AgentEvaluationResult,
AgentEvaluator,
@@ -23,8 +23,9 @@ from crewai.experimental.evaluation import (
__all__ = [
"AgentEvaluationResult",
"AgentEvaluator",
"AgentExecutor",
"BaseEvaluator",
"CrewAgentExecutorFlow",
"CrewAgentExecutorFlow", # Deprecated alias for AgentExecutor
"EvaluationScore",
"EvaluationTraceCallback",
"ExperimentResult",

View File

@@ -73,13 +73,17 @@ class AgentReActState(BaseModel):
ask_for_human_input: bool = Field(default=False)
class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
"""Flow-based executor matching CrewAgentExecutor interface.
class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
"""Flow-based agent executor for both standalone and crew-bound execution.
Inherits from:
- Flow[AgentReActState]: Provides flow orchestration capabilities
- CrewAgentExecutorMixin: Provides memory methods (short/long/external term)
This executor can operate in two modes:
- Standalone mode: When crew and task are None (used by Agent.kickoff())
- Crew mode: When crew and task are provided (used by Agent.execute_task())
Note: Multiple instances may be created during agent initialization
(cache setup, RPM controller setup, etc.) but only the final instance
should execute tasks via invoke().
@@ -88,8 +92,6 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
def __init__(
self,
llm: BaseLLM,
task: Task,
crew: Crew,
agent: Agent,
prompt: SystemPromptResult | StandardPromptResult,
max_iter: int,
@@ -98,6 +100,8 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
stop_words: list[str],
tools_description: str,
tools_handler: ToolsHandler,
task: Task | None = None,
crew: Crew | None = None,
step_callback: Any = None,
original_tools: list[BaseTool] | None = None,
function_calling_llm: BaseLLM | Any | None = None,
@@ -111,8 +115,6 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
Args:
llm: Language model instance.
task: Task to execute.
crew: Crew instance.
agent: Agent to execute.
prompt: Prompt templates.
max_iter: Maximum iterations.
@@ -121,6 +123,8 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
stop_words: Stop word list.
tools_description: Tool descriptions.
tools_handler: Tool handler instance.
task: Optional task to execute (None for standalone agent execution).
crew: Optional crew instance (None for standalone agent execution).
step_callback: Optional step callback.
original_tools: Original tool list.
function_calling_llm: Optional function calling LLM.
@@ -131,9 +135,9 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
"""
self._i18n: I18N = i18n or get_i18n()
self.llm = llm
self.task = task
self.task: Task | None = task
self.agent = agent
self.crew = crew
self.crew: Crew | None = crew
self.prompt = prompt
self.tools = tools
self.tools_names = tools_names
@@ -621,10 +625,12 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
result: Agent's final output.
human_feedback: Optional feedback from human.
"""
# Early return if no crew (standalone mode)
if self.crew is None:
return
agent_id = str(self.agent.id)
train_iteration = (
getattr(self.crew, "_train_iteration", None) if self.crew else None
)
train_iteration = getattr(self.crew, "_train_iteration", None)
if train_iteration is None or not isinstance(train_iteration, int):
train_error = Text()
@@ -806,3 +812,7 @@ class CrewAgentExecutorFlow(Flow[AgentReActState], CrewAgentExecutorMixin):
requiring arbitrary_types_allowed=True.
"""
return core_schema.any_schema()
# Backward compatibility alias (deprecated)
CrewAgentExecutorFlow = AgentExecutor

View File

@@ -10,6 +10,7 @@ from typing import (
get_origin,
)
import uuid
import warnings
from pydantic import (
UUID4,
@@ -80,6 +81,11 @@ class LiteAgent(FlowTrackable, BaseModel):
"""
A lightweight agent that can process messages and use tools.
.. deprecated::
LiteAgent is deprecated and will be removed in a future version.
Use ``Agent().kickoff(messages)`` instead, which provides the same
functionality with additional features like memory and knowledge support.
This agent is simpler than the full Agent class, focusing on direct execution
rather than task delegation. It's designed to be used for simple interactions
where a full crew is not needed.
@@ -164,6 +170,18 @@ class LiteAgent(FlowTrackable, BaseModel):
default_factory=get_after_llm_call_hooks
)
@model_validator(mode="after")
def emit_deprecation_warning(self) -> Self:
"""Emit deprecation warning for LiteAgent usage."""
warnings.warn(
"LiteAgent is deprecated and will be removed in a future version. "
"Use Agent().kickoff(messages) instead, which provides the same "
"functionality with additional features like memory and knowledge support.",
DeprecationWarning,
stacklevel=2,
)
return self
@model_validator(mode="after")
def setup_llm(self) -> Self:
"""Set up the LLM and other components after initialization."""

View File

@@ -1,4 +1,4 @@
"""Unit tests for CrewAgentExecutorFlow.
"""Unit tests for AgentExecutor.
Tests the Flow-based agent executor implementation including state management,
flow methods, routing logic, and error handling.
@@ -8,9 +8,9 @@ from unittest.mock import Mock, patch
import pytest
from crewai.experimental.crew_agent_executor_flow import (
from crewai.experimental.agent_executor import (
AgentReActState,
CrewAgentExecutorFlow,
AgentExecutor,
)
from crewai.agents.parser import AgentAction, AgentFinish
@@ -43,8 +43,8 @@ class TestAgentReActState:
assert state.ask_for_human_input is True
class TestCrewAgentExecutorFlow:
"""Test CrewAgentExecutorFlow class."""
class TestAgentExecutor:
"""Test AgentExecutor class."""
@pytest.fixture
def mock_dependencies(self):
@@ -87,8 +87,8 @@ class TestCrewAgentExecutorFlow:
}
def test_executor_initialization(self, mock_dependencies):
"""Test CrewAgentExecutorFlow initialization."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
"""Test AgentExecutor initialization."""
executor = AgentExecutor(**mock_dependencies)
assert executor.llm == mock_dependencies["llm"]
assert executor.task == mock_dependencies["task"]
@@ -100,9 +100,9 @@ class TestCrewAgentExecutorFlow:
def test_initialize_reasoning(self, mock_dependencies):
"""Test flow entry point."""
with patch.object(
CrewAgentExecutorFlow, "_show_start_logs"
AgentExecutor, "_show_start_logs"
) as mock_show_start:
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
result = executor.initialize_reasoning()
assert result == "initialized"
@@ -110,7 +110,7 @@ class TestCrewAgentExecutorFlow:
def test_check_max_iterations_not_reached(self, mock_dependencies):
"""Test routing when iterations < max."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
executor.state.iterations = 5
result = executor.check_max_iterations()
@@ -118,7 +118,7 @@ class TestCrewAgentExecutorFlow:
def test_check_max_iterations_reached(self, mock_dependencies):
"""Test routing when iterations >= max."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
executor.state.iterations = 10
result = executor.check_max_iterations()
@@ -126,7 +126,7 @@ class TestCrewAgentExecutorFlow:
def test_route_by_answer_type_action(self, mock_dependencies):
"""Test routing for AgentAction."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
executor.state.current_answer = AgentAction(
thought="thinking", tool="search", tool_input="query", text="action text"
)
@@ -136,7 +136,7 @@ class TestCrewAgentExecutorFlow:
def test_route_by_answer_type_finish(self, mock_dependencies):
"""Test routing for AgentFinish."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
executor.state.current_answer = AgentFinish(
thought="final thoughts", output="Final answer", text="complete"
)
@@ -146,7 +146,7 @@ class TestCrewAgentExecutorFlow:
def test_continue_iteration(self, mock_dependencies):
"""Test iteration continuation."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
result = executor.continue_iteration()
@@ -154,8 +154,8 @@ class TestCrewAgentExecutorFlow:
def test_finalize_success(self, mock_dependencies):
"""Test finalize with valid AgentFinish."""
with patch.object(CrewAgentExecutorFlow, "_show_logs") as mock_show_logs:
executor = CrewAgentExecutorFlow(**mock_dependencies)
with patch.object(AgentExecutor, "_show_logs") as mock_show_logs:
executor = AgentExecutor(**mock_dependencies)
executor.state.current_answer = AgentFinish(
thought="final thinking", output="Done", text="complete"
)
@@ -168,7 +168,7 @@ class TestCrewAgentExecutorFlow:
def test_finalize_failure(self, mock_dependencies):
"""Test finalize skips when given AgentAction instead of AgentFinish."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
executor.state.current_answer = AgentAction(
thought="thinking", tool="search", tool_input="query", text="action text"
)
@@ -181,7 +181,7 @@ class TestCrewAgentExecutorFlow:
def test_format_prompt(self, mock_dependencies):
"""Test prompt formatting."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
inputs = {"input": "test input", "tool_names": "tool1, tool2", "tools": "desc"}
result = executor._format_prompt("Prompt {input} {tool_names} {tools}", inputs)
@@ -192,18 +192,18 @@ class TestCrewAgentExecutorFlow:
def test_is_training_mode_false(self, mock_dependencies):
"""Test training mode detection when not in training."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
assert executor._is_training_mode() is False
def test_is_training_mode_true(self, mock_dependencies):
"""Test training mode detection when in training."""
mock_dependencies["crew"]._train = True
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
assert executor._is_training_mode() is True
def test_append_message_to_state(self, mock_dependencies):
"""Test message appending to state."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
initial_count = len(executor.state.messages)
executor._append_message_to_state("test message")
@@ -216,7 +216,7 @@ class TestCrewAgentExecutorFlow:
callback = Mock()
mock_dependencies["step_callback"] = callback
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
answer = AgentFinish(thought="thinking", output="test", text="final")
executor._invoke_step_callback(answer)
@@ -226,14 +226,14 @@ class TestCrewAgentExecutorFlow:
def test_invoke_step_callback_none(self, mock_dependencies):
"""Test step callback when none provided."""
mock_dependencies["step_callback"] = None
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
# Should not raise error
executor._invoke_step_callback(
AgentFinish(thought="thinking", output="test", text="final")
)
@patch("crewai.experimental.crew_agent_executor_flow.handle_output_parser_exception")
@patch("crewai.experimental.agent_executor.handle_output_parser_exception")
def test_recover_from_parser_error(
self, mock_handle_exception, mock_dependencies
):
@@ -242,7 +242,7 @@ class TestCrewAgentExecutorFlow:
mock_handle_exception.return_value = None
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
executor._last_parser_error = OutputParserError("test error")
initial_iterations = executor.state.iterations
@@ -252,12 +252,12 @@ class TestCrewAgentExecutorFlow:
assert executor.state.iterations == initial_iterations + 1
mock_handle_exception.assert_called_once()
@patch("crewai.experimental.crew_agent_executor_flow.handle_context_length")
@patch("crewai.experimental.agent_executor.handle_context_length")
def test_recover_from_context_length(
self, mock_handle_context, mock_dependencies
):
"""Test recovery from context length error."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
executor._last_context_error = Exception("context too long")
initial_iterations = executor.state.iterations
@@ -270,16 +270,16 @@ class TestCrewAgentExecutorFlow:
def test_use_stop_words_property(self, mock_dependencies):
"""Test use_stop_words property."""
mock_dependencies["llm"].supports_stop_words.return_value = True
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
assert executor.use_stop_words is True
mock_dependencies["llm"].supports_stop_words.return_value = False
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
assert executor.use_stop_words is False
def test_compatibility_properties(self, mock_dependencies):
"""Test compatibility properties for mixin."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
executor.state.messages = [{"role": "user", "content": "test"}]
executor.state.iterations = 5
@@ -321,8 +321,8 @@ class TestFlowErrorHandling:
"tools_handler": Mock(),
}
@patch("crewai.experimental.crew_agent_executor_flow.get_llm_response")
@patch("crewai.experimental.crew_agent_executor_flow.enforce_rpm_limit")
@patch("crewai.experimental.agent_executor.get_llm_response")
@patch("crewai.experimental.agent_executor.enforce_rpm_limit")
def test_call_llm_parser_error(
self, mock_enforce_rpm, mock_get_llm, mock_dependencies
):
@@ -332,15 +332,15 @@ class TestFlowErrorHandling:
mock_enforce_rpm.return_value = None
mock_get_llm.side_effect = OutputParserError("parse failed")
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
result = executor.call_llm_and_parse()
assert result == "parser_error"
assert executor._last_parser_error is not None
@patch("crewai.experimental.crew_agent_executor_flow.get_llm_response")
@patch("crewai.experimental.crew_agent_executor_flow.enforce_rpm_limit")
@patch("crewai.experimental.crew_agent_executor_flow.is_context_length_exceeded")
@patch("crewai.experimental.agent_executor.get_llm_response")
@patch("crewai.experimental.agent_executor.enforce_rpm_limit")
@patch("crewai.experimental.agent_executor.is_context_length_exceeded")
def test_call_llm_context_error(
self,
mock_is_context_exceeded,
@@ -353,7 +353,7 @@ class TestFlowErrorHandling:
mock_get_llm.side_effect = Exception("context length")
mock_is_context_exceeded.return_value = True
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
result = executor.call_llm_and_parse()
assert result == "context_error"
@@ -397,10 +397,10 @@ class TestFlowInvoke:
"tools_handler": Mock(),
}
@patch.object(CrewAgentExecutorFlow, "kickoff")
@patch.object(CrewAgentExecutorFlow, "_create_short_term_memory")
@patch.object(CrewAgentExecutorFlow, "_create_long_term_memory")
@patch.object(CrewAgentExecutorFlow, "_create_external_memory")
@patch.object(AgentExecutor, "kickoff")
@patch.object(AgentExecutor, "_create_short_term_memory")
@patch.object(AgentExecutor, "_create_long_term_memory")
@patch.object(AgentExecutor, "_create_external_memory")
def test_invoke_success(
self,
mock_external_memory,
@@ -410,7 +410,7 @@ class TestFlowInvoke:
mock_dependencies,
):
"""Test successful invoke without human feedback."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
# Mock kickoff to set the final answer in state
def mock_kickoff_side_effect():
@@ -429,10 +429,10 @@ class TestFlowInvoke:
mock_long_term_memory.assert_called_once()
mock_external_memory.assert_called_once()
@patch.object(CrewAgentExecutorFlow, "kickoff")
@patch.object(AgentExecutor, "kickoff")
def test_invoke_failure_no_agent_finish(self, mock_kickoff, mock_dependencies):
"""Test invoke fails without AgentFinish."""
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
executor.state.current_answer = AgentAction(
thought="thinking", tool="test", tool_input="test", text="action text"
)
@@ -442,10 +442,10 @@ class TestFlowInvoke:
with pytest.raises(RuntimeError, match="without reaching a final answer"):
executor.invoke(inputs)
@patch.object(CrewAgentExecutorFlow, "kickoff")
@patch.object(CrewAgentExecutorFlow, "_create_short_term_memory")
@patch.object(CrewAgentExecutorFlow, "_create_long_term_memory")
@patch.object(CrewAgentExecutorFlow, "_create_external_memory")
@patch.object(AgentExecutor, "kickoff")
@patch.object(AgentExecutor, "_create_short_term_memory")
@patch.object(AgentExecutor, "_create_long_term_memory")
@patch.object(AgentExecutor, "_create_external_memory")
def test_invoke_with_system_prompt(
self,
mock_external_memory,
@@ -459,7 +459,7 @@ class TestFlowInvoke:
"system": "System: {input}",
"user": "User: {input} {tool_names} {tools}",
}
executor = CrewAgentExecutorFlow(**mock_dependencies)
executor = AgentExecutor(**mock_dependencies)
def mock_kickoff_side_effect():
executor.state.current_answer = AgentFinish(