mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-15 19:18:30 +00:00
refactor: enhance agent kickoff preparation by separating common logic
Updated the Agent class to introduce a new private method that consolidates the common setup logic for both synchronous and asynchronous kickoff executions. This change improves code clarity and maintainability by reducing redundancy in the kickoff process, while ensuring that the agent can still execute effectively within both standalone and flow contexts.
This commit is contained in:
@@ -92,6 +92,7 @@ if TYPE_CHECKING:
|
||||
from crewai.agents.agent_builder.base_agent import PlatformAppOrAction
|
||||
from crewai.task import Task
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.structured_tool import CrewStructuredTool
|
||||
from crewai.utilities.types import LLMMessage
|
||||
|
||||
|
||||
@@ -1574,34 +1575,24 @@ class Agent(BaseAgent):
|
||||
)
|
||||
return None
|
||||
|
||||
def kickoff(
|
||||
def _prepare_kickoff(
|
||||
self,
|
||||
messages: str | list[LLMMessage],
|
||||
response_format: type[Any] | None = None,
|
||||
) -> LiteAgentOutput | Coroutine[Any, Any, LiteAgentOutput]:
|
||||
"""
|
||||
Execute the agent with the given messages using the AgentExecutor.
|
||||
) -> tuple[AgentExecutor, dict[str, str], dict[str, Any], list[CrewStructuredTool]]:
|
||||
"""Prepare common setup for kickoff execution.
|
||||
|
||||
This method provides standalone agent execution without requiring a Crew.
|
||||
It supports tools, response formatting, and guardrails.
|
||||
|
||||
When called from within a Flow (inside an event loop), this method
|
||||
automatically returns a coroutine that the Flow framework will await,
|
||||
making it work seamlessly in both sync and async contexts.
|
||||
This method handles all the common preparation logic shared between
|
||||
kickoff() and kickoff_async(), including tool processing, prompt building,
|
||||
executor creation, and input formatting.
|
||||
|
||||
Args:
|
||||
messages: Either a string query or a list of message dictionaries.
|
||||
If a string is provided, it will be converted to a user message.
|
||||
If a list is provided, each dict should have 'role' and 'content' keys.
|
||||
response_format: Optional Pydantic model for structured output.
|
||||
|
||||
Returns:
|
||||
LiteAgentOutput: The result of the agent execution.
|
||||
Or a coroutine if called from within an event loop.
|
||||
Tuple of (executor, inputs, agent_info, parsed_tools) ready for execution.
|
||||
"""
|
||||
if is_inside_event_loop():
|
||||
return self.kickoff_async(messages, response_format)
|
||||
|
||||
# Process platform apps and MCP tools
|
||||
if self.apps:
|
||||
platform_tools = self.get_platform_tools(self.apps)
|
||||
@@ -1672,10 +1663,10 @@ class Agent(BaseAgent):
|
||||
i18n=self.i18n,
|
||||
)
|
||||
|
||||
# Format messages
|
||||
if isinstance(messages, str):
|
||||
formatted_messages = messages
|
||||
else:
|
||||
# Convert list of messages to a single input string
|
||||
formatted_messages = "\n".join(
|
||||
str(msg.get("content", "")) for msg in messages if msg.get("content")
|
||||
)
|
||||
@@ -1687,8 +1678,42 @@ class Agent(BaseAgent):
|
||||
"tools": render_text_description_and_args(parsed_tools),
|
||||
}
|
||||
|
||||
return executor, inputs, agent_info, parsed_tools
|
||||
|
||||
def kickoff(
|
||||
self,
|
||||
messages: str | list[LLMMessage],
|
||||
response_format: type[Any] | None = None,
|
||||
) -> LiteAgentOutput | Coroutine[Any, Any, LiteAgentOutput]:
|
||||
"""
|
||||
Execute the agent with the given messages using the AgentExecutor.
|
||||
|
||||
This method provides standalone agent execution without requiring a Crew.
|
||||
It supports tools, response formatting, and guardrails.
|
||||
|
||||
When called from within a Flow (inside an event loop), this method
|
||||
automatically returns a coroutine that the Flow framework will await,
|
||||
making it work seamlessly in both sync and async contexts.
|
||||
|
||||
Args:
|
||||
messages: Either a string query or a list of message dictionaries.
|
||||
If a string is provided, it will be converted to a user message.
|
||||
If a list is provided, each dict should have 'role' and 'content' keys.
|
||||
response_format: Optional Pydantic model for structured output.
|
||||
|
||||
Returns:
|
||||
LiteAgentOutput: The result of the agent execution.
|
||||
Or a coroutine if called from within an event loop.
|
||||
"""
|
||||
# Magic auto-async: return coroutine for Flow to await
|
||||
if is_inside_event_loop():
|
||||
return self.kickoff_async(messages, response_format)
|
||||
|
||||
executor, inputs, agent_info, parsed_tools = self._prepare_kickoff(
|
||||
messages, response_format
|
||||
)
|
||||
|
||||
try:
|
||||
# Emit started event for backward compatibility with LiteAgent listeners
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionStartedEvent(
|
||||
@@ -1698,7 +1723,6 @@ class Agent(BaseAgent):
|
||||
),
|
||||
)
|
||||
|
||||
# Execute and build output
|
||||
output = self._execute_and_build_output(executor, inputs, response_format)
|
||||
|
||||
if self.guardrail is not None:
|
||||
@@ -1950,93 +1974,11 @@ class Agent(BaseAgent):
|
||||
Returns:
|
||||
LiteAgentOutput: The result of the agent execution.
|
||||
"""
|
||||
# Process platform apps and MCP tools
|
||||
if self.apps:
|
||||
platform_tools = self.get_platform_tools(self.apps)
|
||||
if platform_tools and self.tools is not None:
|
||||
self.tools.extend(platform_tools)
|
||||
if self.mcps:
|
||||
mcps = self.get_mcp_tools(self.mcps)
|
||||
if mcps and self.tools is not None:
|
||||
self.tools.extend(mcps)
|
||||
|
||||
# Prepare tools
|
||||
raw_tools: list[BaseTool] = self.tools or []
|
||||
parsed_tools = parse_tools(raw_tools)
|
||||
|
||||
# Build agent_info for backward-compatible event emission
|
||||
agent_info = {
|
||||
"id": self.id,
|
||||
"role": self.role,
|
||||
"goal": self.goal,
|
||||
"backstory": self.backstory,
|
||||
"tools": raw_tools,
|
||||
"verbose": self.verbose,
|
||||
}
|
||||
|
||||
# Build prompt for standalone execution
|
||||
prompt = Prompts(
|
||||
agent=self,
|
||||
has_tools=len(raw_tools) > 0,
|
||||
i18n=self.i18n,
|
||||
use_system_prompt=self.use_system_prompt,
|
||||
system_template=self.system_template,
|
||||
prompt_template=self.prompt_template,
|
||||
response_template=self.response_template,
|
||||
).task_execution()
|
||||
|
||||
# Prepare stop words
|
||||
stop_words = [self.i18n.slice("observation")]
|
||||
if self.response_template:
|
||||
stop_words.append(
|
||||
self.response_template.split("{{ .Response }}")[1].strip()
|
||||
)
|
||||
|
||||
# Get RPM limit function
|
||||
rpm_limit_fn = (
|
||||
self._rpm_controller.check_or_wait if self._rpm_controller else None
|
||||
executor, inputs, agent_info, parsed_tools = self._prepare_kickoff(
|
||||
messages, response_format
|
||||
)
|
||||
|
||||
# Create the executor for standalone mode (no crew, no task)
|
||||
executor = AgentExecutor(
|
||||
task=None,
|
||||
crew=None,
|
||||
llm=cast(BaseLLM, self.llm),
|
||||
agent=self,
|
||||
prompt=prompt,
|
||||
max_iter=self.max_iter,
|
||||
tools=parsed_tools,
|
||||
tools_names=get_tool_names(parsed_tools),
|
||||
stop_words=stop_words,
|
||||
tools_description=render_text_description_and_args(parsed_tools),
|
||||
tools_handler=self.tools_handler,
|
||||
original_tools=raw_tools,
|
||||
step_callback=self.step_callback,
|
||||
function_calling_llm=self.function_calling_llm,
|
||||
respect_context_window=self.respect_context_window,
|
||||
request_within_rpm_limit=rpm_limit_fn,
|
||||
callbacks=[TokenCalcHandler(self._token_process)],
|
||||
response_model=response_format,
|
||||
i18n=self.i18n,
|
||||
)
|
||||
|
||||
if isinstance(messages, str):
|
||||
formatted_messages = messages
|
||||
else:
|
||||
# Convert list of messages to a single input string
|
||||
formatted_messages = "\n".join(
|
||||
str(msg.get("content", "")) for msg in messages if msg.get("content")
|
||||
)
|
||||
|
||||
# Build the input dict for the executor
|
||||
inputs = {
|
||||
"input": formatted_messages,
|
||||
"tool_names": get_tool_names(parsed_tools),
|
||||
"tools": render_text_description_and_args(parsed_tools),
|
||||
}
|
||||
|
||||
try:
|
||||
# Emit started event for backward compatibility with LiteAgent listeners
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionStartedEvent(
|
||||
@@ -2046,7 +1988,6 @@ class Agent(BaseAgent):
|
||||
),
|
||||
)
|
||||
|
||||
# Execute asynchronously using invoke_async
|
||||
output = await self._execute_and_build_output_async(
|
||||
executor, inputs, response_format
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user