mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 12:28:30 +00:00
Compare commits
4 Commits
fix/unsafe
...
brandon/im
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
75bd0310f3 | ||
|
|
3de4653023 | ||
|
|
ce6ffb1570 | ||
|
|
47b3d8f3fa |
@@ -720,6 +720,30 @@ Learn how to get the most out of your LLM configuration:
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
## Structured LLM Calls
|
||||
|
||||
CrewAI supports structured responses from LLM calls by allowing you to define a `response_format` using a Pydantic model. This enables the framework to automatically parse and validate the output, making it easier to integrate the response into your application without manual post-processing.
|
||||
|
||||
For example, you can define a Pydantic model to represent the expected response structure and pass it as the `response_format` when instantiating the LLM. The model will then be used to convert the LLM output into a structured Python object.
|
||||
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
class Dog(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
breed: str
|
||||
|
||||
|
||||
llm = LLM(model="gpt-4o", response_format=Dog)
|
||||
|
||||
response = llm.call(
|
||||
"Analyze the following messages and return the name, age, and breed. "
|
||||
"Meet Kona! She is 3 years old and is a black german shepherd."
|
||||
)
|
||||
print(response)
|
||||
```
|
||||
|
||||
## Common Issues and Solutions
|
||||
|
||||
<Tabs>
|
||||
|
||||
@@ -5,15 +5,17 @@ import sys
|
||||
import threading
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, List, Literal, Optional, Union, cast
|
||||
from typing import Any, Dict, List, Literal, Optional, Type, Union, cast
|
||||
|
||||
from dotenv import load_dotenv
|
||||
from pydantic import BaseModel
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
import litellm
|
||||
from litellm import Choices, get_supported_openai_params
|
||||
from litellm.types.utils import ModelResponse
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
@@ -128,7 +130,7 @@ class LLM:
|
||||
presence_penalty: Optional[float] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict[int, float]] = None,
|
||||
response_format: Optional[Dict[str, Any]] = None,
|
||||
response_format: Optional[Type[BaseModel]] = None,
|
||||
seed: Optional[int] = None,
|
||||
logprobs: Optional[int] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
@@ -213,6 +215,9 @@ class LLM:
|
||||
response = llm.call(messages)
|
||||
print(response)
|
||||
"""
|
||||
# Validate parameters before proceeding with the call.
|
||||
self._validate_call_params()
|
||||
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
@@ -312,6 +317,36 @@ class LLM:
|
||||
logging.error(f"LiteLLM call failed: {str(e)}")
|
||||
raise
|
||||
|
||||
def _get_custom_llm_provider(self) -> str:
|
||||
"""
|
||||
Derives the custom_llm_provider from the model string.
|
||||
- For example, if the model is "openrouter/deepseek/deepseek-chat", returns "openrouter".
|
||||
- If the model is "gemini/gemini-1.5-pro", returns "gemini".
|
||||
- If there is no '/', defaults to "openai".
|
||||
"""
|
||||
if "/" in self.model:
|
||||
return self.model.split("/")[0]
|
||||
return "openai"
|
||||
|
||||
def _validate_call_params(self) -> None:
|
||||
"""
|
||||
Validate parameters before making a call. Currently this only checks if
|
||||
a response_format is provided and whether the model supports it.
|
||||
The custom_llm_provider is dynamically determined from the model:
|
||||
- E.g., "openrouter/deepseek/deepseek-chat" yields "openrouter"
|
||||
- "gemini/gemini-1.5-pro" yields "gemini"
|
||||
- If no slash is present, "openai" is assumed.
|
||||
"""
|
||||
provider = self._get_custom_llm_provider()
|
||||
if self.response_format is not None and not supports_response_schema(
|
||||
model=self.model,
|
||||
custom_llm_provider=provider,
|
||||
):
|
||||
raise ValueError(
|
||||
f"The model {self.model} does not support response_format for provider '{provider}'. "
|
||||
"Please remove response_format or use a supported model."
|
||||
)
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
try:
|
||||
params = get_supported_openai_params(model=self.model)
|
||||
|
||||
@@ -3,6 +3,7 @@ from time import sleep
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
|
||||
from crewai.llm import LLM
|
||||
@@ -205,6 +206,52 @@ def test_llm_passes_additional_params():
|
||||
assert result == "Test response"
|
||||
|
||||
|
||||
def test_get_custom_llm_provider_openrouter():
|
||||
llm = LLM(model="openrouter/deepseek/deepseek-chat")
|
||||
assert llm._get_custom_llm_provider() == "openrouter"
|
||||
|
||||
|
||||
def test_get_custom_llm_provider_gemini():
|
||||
llm = LLM(model="gemini/gemini-1.5-pro")
|
||||
assert llm._get_custom_llm_provider() == "gemini"
|
||||
|
||||
|
||||
def test_get_custom_llm_provider_openai():
|
||||
llm = LLM(model="gpt-4")
|
||||
assert llm._get_custom_llm_provider() == "openai"
|
||||
|
||||
|
||||
def test_validate_call_params_supported():
|
||||
class DummyResponse(BaseModel):
|
||||
a: int
|
||||
|
||||
# Patch supports_response_schema to simulate a supported model.
|
||||
with patch("crewai.llm.supports_response_schema", return_value=True):
|
||||
llm = LLM(
|
||||
model="openrouter/deepseek/deepseek-chat", response_format=DummyResponse
|
||||
)
|
||||
# Should not raise any error.
|
||||
llm._validate_call_params()
|
||||
|
||||
|
||||
def test_validate_call_params_not_supported():
|
||||
class DummyResponse(BaseModel):
|
||||
a: int
|
||||
|
||||
# Patch supports_response_schema to simulate an unsupported model.
|
||||
with patch("crewai.llm.supports_response_schema", return_value=False):
|
||||
llm = LLM(model="gemini/gemini-1.5-pro", response_format=DummyResponse)
|
||||
with pytest.raises(ValueError) as excinfo:
|
||||
llm._validate_call_params()
|
||||
assert "does not support response_format" in str(excinfo.value)
|
||||
|
||||
|
||||
def test_validate_call_params_no_response_format():
|
||||
# When no response_format is provided, no validation error should occur.
|
||||
llm = LLM(model="gemini/gemini-1.5-pro", response_format=None)
|
||||
llm._validate_call_params()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_o3_mini_reasoning_effort_high():
|
||||
llm = LLM(
|
||||
|
||||
Reference in New Issue
Block a user