Compare commits

...

4 Commits

Author SHA1 Message Date
Lorenze Jay
75bd0310f3 Merge branch 'main' into brandon/improve-llm-structured-output 2025-02-04 13:44:28 -08:00
Brandon Hancock
3de4653023 Merge branch 'main' into brandon/improve-llm-structured-output 2025-02-04 12:42:30 -05:00
Brandon Hancock
ce6ffb1570 update docs 2025-02-04 12:41:02 -05:00
Brandon Hancock
47b3d8f3fa code and tests work 2025-02-04 11:44:48 -05:00
3 changed files with 108 additions and 2 deletions

View File

@@ -720,6 +720,30 @@ Learn how to get the most out of your LLM configuration:
</Accordion>
</AccordionGroup>
## Structured LLM Calls
CrewAI supports structured responses from LLM calls by allowing you to define a `response_format` using a Pydantic model. This enables the framework to automatically parse and validate the output, making it easier to integrate the response into your application without manual post-processing.
For example, you can define a Pydantic model to represent the expected response structure and pass it as the `response_format` when instantiating the LLM. The model will then be used to convert the LLM output into a structured Python object.
```python Code
from crewai import LLM
class Dog(BaseModel):
name: str
age: int
breed: str
llm = LLM(model="gpt-4o", response_format=Dog)
response = llm.call(
"Analyze the following messages and return the name, age, and breed. "
"Meet Kona! She is 3 years old and is a black german shepherd."
)
print(response)
```
## Common Issues and Solutions
<Tabs>

View File

@@ -5,15 +5,17 @@ import sys
import threading
import warnings
from contextlib import contextmanager
from typing import Any, Dict, List, Literal, Optional, Union, cast
from typing import Any, Dict, List, Literal, Optional, Type, Union, cast
from dotenv import load_dotenv
from pydantic import BaseModel
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
import litellm
from litellm import Choices, get_supported_openai_params
from litellm.types.utils import ModelResponse
from litellm.utils import supports_response_schema
from crewai.utilities.exceptions.context_window_exceeding_exception import (
@@ -128,7 +130,7 @@ class LLM:
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict[int, float]] = None,
response_format: Optional[Dict[str, Any]] = None,
response_format: Optional[Type[BaseModel]] = None,
seed: Optional[int] = None,
logprobs: Optional[int] = None,
top_logprobs: Optional[int] = None,
@@ -213,6 +215,9 @@ class LLM:
response = llm.call(messages)
print(response)
"""
# Validate parameters before proceeding with the call.
self._validate_call_params()
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
@@ -312,6 +317,36 @@ class LLM:
logging.error(f"LiteLLM call failed: {str(e)}")
raise
def _get_custom_llm_provider(self) -> str:
"""
Derives the custom_llm_provider from the model string.
- For example, if the model is "openrouter/deepseek/deepseek-chat", returns "openrouter".
- If the model is "gemini/gemini-1.5-pro", returns "gemini".
- If there is no '/', defaults to "openai".
"""
if "/" in self.model:
return self.model.split("/")[0]
return "openai"
def _validate_call_params(self) -> None:
"""
Validate parameters before making a call. Currently this only checks if
a response_format is provided and whether the model supports it.
The custom_llm_provider is dynamically determined from the model:
- E.g., "openrouter/deepseek/deepseek-chat" yields "openrouter"
- "gemini/gemini-1.5-pro" yields "gemini"
- If no slash is present, "openai" is assumed.
"""
provider = self._get_custom_llm_provider()
if self.response_format is not None and not supports_response_schema(
model=self.model,
custom_llm_provider=provider,
):
raise ValueError(
f"The model {self.model} does not support response_format for provider '{provider}'. "
"Please remove response_format or use a supported model."
)
def supports_function_calling(self) -> bool:
try:
params = get_supported_openai_params(model=self.model)

View File

@@ -3,6 +3,7 @@ from time import sleep
from unittest.mock import MagicMock, patch
import pytest
from pydantic import BaseModel
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.llm import LLM
@@ -205,6 +206,52 @@ def test_llm_passes_additional_params():
assert result == "Test response"
def test_get_custom_llm_provider_openrouter():
llm = LLM(model="openrouter/deepseek/deepseek-chat")
assert llm._get_custom_llm_provider() == "openrouter"
def test_get_custom_llm_provider_gemini():
llm = LLM(model="gemini/gemini-1.5-pro")
assert llm._get_custom_llm_provider() == "gemini"
def test_get_custom_llm_provider_openai():
llm = LLM(model="gpt-4")
assert llm._get_custom_llm_provider() == "openai"
def test_validate_call_params_supported():
class DummyResponse(BaseModel):
a: int
# Patch supports_response_schema to simulate a supported model.
with patch("crewai.llm.supports_response_schema", return_value=True):
llm = LLM(
model="openrouter/deepseek/deepseek-chat", response_format=DummyResponse
)
# Should not raise any error.
llm._validate_call_params()
def test_validate_call_params_not_supported():
class DummyResponse(BaseModel):
a: int
# Patch supports_response_schema to simulate an unsupported model.
with patch("crewai.llm.supports_response_schema", return_value=False):
llm = LLM(model="gemini/gemini-1.5-pro", response_format=DummyResponse)
with pytest.raises(ValueError) as excinfo:
llm._validate_call_params()
assert "does not support response_format" in str(excinfo.value)
def test_validate_call_params_no_response_format():
# When no response_format is provided, no validation error should occur.
llm = LLM(model="gemini/gemini-1.5-pro", response_format=None)
llm._validate_call_params()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_o3_mini_reasoning_effort_high():
llm = LLM(