Compare commits

...

91 Commits

Author SHA1 Message Date
Lorenze Jay
c0ad4576e2 Merge branch 'main' of github.com:crewAIInc/crewAI into knowledge 2024-11-20 15:36:40 -08:00
Lorenze Jay
6359b64d22 added docstrings and type hints for cli 2024-11-20 15:36:12 -08:00
Lorenze Jay
9329119f76 clearer docs 2024-11-20 14:05:15 -08:00
Lorenze Jay
38c0d61b11 more fixes 2024-11-20 14:02:12 -08:00
Lorenze Jay
8564f5551f rm print 2024-11-20 13:49:58 -08:00
Lorenze Jay
8a5404275f linted 2024-11-20 13:48:11 -08:00
Lorenze Jay
52189a46bc more docs 2024-11-20 13:43:08 -08:00
Lorenze Jay
44ab749fda improvements from review 2024-11-20 13:32:00 -08:00
Lorenze Jay
3c4504bd4f better docs 2024-11-20 13:31:13 -08:00
Gui Vieira
fde1ee45f9 Merge pull request #1636 from crewAIInc/gui/make-it-green
Make it green!
2024-11-20 16:12:58 -03:00
Gui Vieira
6774bc2c53 Make mypy happy 2024-11-20 16:08:08 -03:00
Gui Vieira
94c62263ed Merge pull request #1635 from crewAIInc/gui/kickoff-callbacks
Move kickoff callbacks to crew's domain
2024-11-20 14:37:52 -03:00
Gui Vieira
495c3859af Cassettes 2024-11-20 10:26:00 -03:00
Gui Vieira
3e003f5e32 Move kickoff callbacks to crew's domain 2024-11-20 10:06:49 -03:00
Tony Kipkemboi
1c8b509d7d Merge pull request #1634 from crewAIInc/github_tool_update
docs: add gh_token documentation to GithubSearchTool
2024-11-20 07:21:24 -05:00
theCyberTech
58af5c08f9 docs: add gh_token documentation to GithubSearchTool 2024-11-20 19:23:09 +08:00
Lorenze Jay
23276cbd76 adding docs 2024-11-19 18:31:09 -08:00
Lorenze Jay
fe18da5e11 fix 2024-11-19 18:22:05 -08:00
Lorenze Jay
76da972ce9 put a flag 2024-11-19 17:42:44 -08:00
Lorenze Jay
4663997b4c verbose run 2024-11-19 17:31:53 -08:00
Lorenze Jay
b185b9e289 linted 2024-11-19 17:29:06 -08:00
Lorenze Jay
787f2eaa7c mock knowledge query to not spin up db 2024-11-19 17:27:17 -08:00
Lorenze Jay
e7d816fb2a Merge branch 'main' of github.com:crewAIInc/crewAI into knowledge 2024-11-19 15:09:33 -08:00
Lorenze Jay
8373c9b521 linted 2024-11-19 14:50:26 -08:00
Lorenze Jay
ec2fe6ff91 just mocks 2024-11-19 14:48:00 -08:00
Tony Kipkemboi
55e968c9e0 Update CLI Watson supported models + docs (#1628) 2024-11-19 19:42:54 -03:00
Lorenze Jay
58bf2d57f7 added extra cassette 2024-11-19 14:16:22 -08:00
Lorenze Jay
705ee16c1c type check fixes 2024-11-19 12:06:29 -08:00
Lorenze Jay
0c5b6f2a93 mypysrc fixes 2024-11-19 12:02:06 -08:00
Lorenze Jay
914067df37 fixed text_file_knowledge 2024-11-19 11:39:18 -08:00
Lorenze Jay
de742c827d improvements 2024-11-19 11:27:01 -08:00
Lorenze Jay
efa8a378a1 None embedder to use default on pipeline cloning 2024-11-19 10:53:09 -08:00
Lorenze Jay
e882725b8a updated default embedder 2024-11-19 10:43:06 -08:00
Lorenze Jay
cbfdbe3b68 generating cassettes for knowledge test 2024-11-19 10:10:14 -08:00
Lorenze Jay
c8bf242633 fix duplicate 2024-11-19 09:59:23 -08:00
Lorenze Jay
70910dd7b4 fix test 2024-11-19 09:41:33 -08:00
Lorenze Jay
b104404418 cleanup rm unused embedder 2024-11-18 16:03:48 -08:00
Lorenze Jay
d579c5ae12 linted 2024-11-18 13:58:23 -08:00
Lorenze Jay
4831dcb85b Merge branch 'main' of github.com:crewAIInc/crewAI into knowledge 2024-11-18 13:55:32 -08:00
Lorenze Jay
cbfcde73ec consolodation and improvements 2024-11-18 13:52:33 -08:00
Lorenze Jay
b2c06d5b7a properly reset memory+knowledge 2024-11-18 13:45:43 -08:00
Lorenze Jay
352d05370e properly reset memory 2024-11-18 13:37:16 -08:00
João Moura
0b9092702b adding before and after crew 2024-11-18 00:21:36 -03:00
João Moura
8376698534 preparing enw version 2024-11-18 00:21:36 -03:00
Lorenze Jay
b90793874c return this 2024-11-15 15:51:07 -08:00
Lorenze Jay
cdf5233523 Merge branch 'main' of github.com:crewAIInc/crewAI into knowledge 2024-11-15 15:42:32 -08:00
Lorenze Jay
cb03ee60b8 improvements all around Knowledge class 2024-11-15 15:28:07 -08:00
Lorenze Jay
10f445e18a ensure embeddings are persisted 2024-11-14 18:31:07 -08:00
Lorenze Jay
3dc02310b6 upgrade chroma and adjust embedder function generator (#1607)
* upgrade chroma and adjust embedder function generator

* >= version

* linted
2024-11-14 14:13:12 -08:00
Lorenze Jay
98a708ca15 Merge branch 'main' of github.com:crewAIInc/crewAI into knowledge 2024-11-14 12:22:07 -08:00
Dev Khant
e70bc94ab6 Add support for retrieving user preferences and memories using Mem0 (#1209)
* Integrate Mem0

* Update src/crewai/memory/contextual/contextual_memory.py

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>

* pending commit for _fetch_user_memories

* update poetry.lock

* fixes mypy issues

* fix mypy checks

* New fixes for user_id

* remove memory_provider

* handle memory_provider

* checks for memory_config

* add mem0 to dependency

* Update pyproject.toml

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>

* update docs

* update doc

* bump mem0 version

* fix api error msg and mypy issue

* mypy fix

* resolve comments

* fix memory usage without mem0

* mem0 version bump

* lazy import mem0

---------

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-14 10:59:24 -08:00
Eduardo Chiarotti
9285ebf8a2 feat: Reduce level for Bandit and fix code to adapt (#1604) 2024-11-14 13:12:35 -03:00
Thiago Moretto
4ca785eb15 Merge pull request #1597 from crewAIInc/tm-fix-crew-train-test
Fix crew_train_success test
2024-11-13 10:52:49 -03:00
Thiago Moretto
c57cbd8591 Fix crew_train_success test 2024-11-13 10:47:49 -03:00
Thiago Moretto
7fb1289205 Merge pull request #1596 from crewAIInc/tm-recording-cached-prompt-tokens
Add cached prompt tokens info on usage metrics
2024-11-13 10:37:29 -03:00
Thiago Moretto
f02681ae01 Merge branch 'main' into tm-recording-cached-prompt-tokens 2024-11-13 10:19:02 -03:00
Thiago Moretto
c725105b1f do not include cached on total 2024-11-13 10:18:30 -03:00
Thiago Moretto
36aa4bcb46 Cached prompt tokens on usage metrics 2024-11-13 10:16:30 -03:00
Eduardo Chiarotti
b98f8f9fe1 fix: Step callback issue (#1595)
* fix: Step callback issue

* fix: Add empty thought since its required
2024-11-13 10:07:28 -03:00
João Moura
bcfcf88e78 removing prints 2024-11-12 18:37:57 -03:00
Thiago Moretto
fd0de3a47e Merge pull request #1588 from crewAIInc/tm-workaround-litellm-bug
fixing LiteLLM callback replacement bug
2024-11-12 17:19:01 -03:00
Thiago Moretto
c7b9ae02fd fix test_agent_usage_metrics_are_captured_for_hierarchical_process 2024-11-12 16:43:43 -03:00
Thiago Moretto
4afb022572 fix LiteLLM callback replacement 2024-11-12 15:04:57 -03:00
João Moura
8610faef22 add missing init 2024-11-11 02:29:40 -03:00
João Moura
6d677541c7 preparing new version 2024-11-11 00:03:52 -03:00
João Moura
49220ec163 preparing new version 2024-11-10 23:46:38 -03:00
João Moura
40a676b7ac curring new version 2024-11-10 21:16:36 -03:00
João Moura
50bf146d1e preparing new version 2024-11-10 20:47:56 -03:00
João Moura
40d378abfb updating LLM docs 2024-11-10 11:36:03 -03:00
João Moura
1b09b085a7 preparing new version 2024-11-10 11:00:16 -03:00
Brandon Hancock
7b59c5b049 adding in lorenze feedback 2024-11-07 12:10:09 -05:00
Brandon Hancock
86ede8344c update yaml to include optional deps 2024-11-07 11:41:49 -05:00
Brandon Hancock
59165cbad8 fix linting 2024-11-07 11:37:06 -05:00
Brandon Hancock
4af263ca1e Merge branch 'main' into knowledge 2024-11-07 11:33:08 -05:00
João Moura
9f2acfe91f making sure we don't check for agents that were not used in the crew 2024-11-06 23:07:23 -03:00
Brandon Hancock
617ee989cd added additional sources 2024-11-06 16:41:17 -05:00
Brandon Hancock
6131dbac4f Improve types and better support for file paths 2024-11-06 15:57:03 -05:00
Brandon Hancock
1a35114c08 Adding core knowledge sources 2024-11-06 12:33:55 -05:00
Brandon Hancock (bhancock_ai)
e856359e23 fix missing config (#1557) 2024-11-05 12:07:29 -05:00
Brandon Hancock
a8a2f80616 WIP 2024-11-05 12:04:58 -05:00
Brandon Hancock (bhancock_ai)
faa231e278 Fix flows to support cycles and added in test (#1556) 2024-11-05 12:02:54 -05:00
Brandon Hancock (bhancock_ai)
3d44795476 Feat/watson in cli (#1535)
* getting cli and .env to work together for different models

* support new models

* clean up prints

* Add support for cerebras

* Fix watson keys
2024-11-05 12:01:57 -05:00
Tony Kipkemboi
f50e709985 docs update (#1558)
* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion

* update crewai enterprise link in docs
2024-11-05 11:26:19 -05:00
Brandon Hancock
dc314c1151 Merge branch 'main' into knowledge 2024-11-04 15:02:47 -05:00
João Moura
75322b2de1 initial knowledge 2024-11-04 15:53:19 -03:00
Brandon Hancock (bhancock_ai)
d70c542547 Raise an error if an LLM doesnt return a response (#1548) 2024-11-04 11:42:38 -05:00
Gui Vieira
57201fb856 Increase providers fetching timeout 2024-11-01 18:54:40 -03:00
Brandon Hancock (bhancock_ai)
9b142e580b add inputs to flows (#1553)
* add inputs to flows

* fix flows lint
2024-11-01 14:37:02 -07:00
Brandon Hancock (bhancock_ai)
3878daffd6 Feat/ibm memory (#1549)
* Everything looks like its working. Waiting for lorenze review.

* Update docs as well.

* clean up for PR
2024-11-01 16:42:46 -04:00
Tony Kipkemboi
34954e6f74 Update docs (#1550)
* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion
2024-11-01 15:58:36 -04:00
C0deZ
e66a135d5d refactor: Move BaseTool to main package and centralize tool description generation (#1514)
* move base_tool to main package and consolidate tool desscription generation

* update import path

* update tests

* update doc

* add base_tool test

* migrate agent delegation tools to use BaseTool

* update tests

* update import path for tool

* fix lint

* update param signature

* add from_langchain to BaseTool for backwards support of langchain tools

* fix the case where StructuredTool doesn't have func

---------

Co-authored-by: c0dez <li@vitablehealth.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2024-11-01 12:30:48 -04:00
130 changed files with 8995 additions and 912 deletions

View File

@@ -19,5 +19,5 @@ jobs:
run: pip install bandit
- name: Run Bandit
run: bandit -c pyproject.toml -r src/ -lll
run: bandit -c pyproject.toml -r src/ -ll

View File

@@ -26,7 +26,7 @@ jobs:
run: uv python install 3.11.9
- name: Install the project
run: uv sync --dev
run: uv sync --dev --all-extras
- name: Run tests
run: uv run pytest tests
run: uv run pytest tests -vv

4
.gitignore vendored
View File

@@ -17,3 +17,7 @@ rc-tests/*
temp/*
.vscode/*
crew_tasks_output.json
.codesight
.mypy_cache
.ruff_cache
.venv

View File

@@ -22,7 +22,8 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. |
| **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. |
| **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). Defaults to `False`. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
| **Memory Config** _(optional)_ | `memory_config` | Configuration for the memory provider to be used by the crew. |
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. Defaults to `False`. |

View File

@@ -18,60 +18,63 @@ Flows allow you to create structured, event-driven workflows. They provide a sea
4. **Flexible Control Flow**: Implement conditional logic, loops, and branching within your workflows.
5. **Input Flexibility**: Flows can accept inputs to initialize or update their state, with different handling for structured and unstructured state management.
## Getting Started
Let's create a simple Flow where you will use OpenAI to generate a random city in one task and then use that city to generate a fun fact in another task.
```python Code
### Passing Inputs to Flows
Flows can accept inputs to initialize or update their state before execution. The way inputs are handled depends on whether the flow uses structured or unstructured state management.
#### Structured State Management
In structured state management, the flow's state is defined using a Pydantic `BaseModel`. Inputs must match the model's schema, and any updates will overwrite the default values.
```python
from crewai.flow.flow import Flow, listen, start
from dotenv import load_dotenv
from litellm import completion
from pydantic import BaseModel
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
class ExampleFlow(Flow):
model = "gpt-4o-mini"
class StructuredExampleFlow(Flow[ExampleState]):
@start()
def generate_city(self):
print("Starting flow")
def first_method(self):
# Implementation
response = completion(
model=self.model,
messages=[
{
"role": "user",
"content": "Return the name of a random city in the world.",
},
],
)
flow = StructuredExampleFlow()
flow.kickoff(inputs={"counter": 10})
```
random_city = response["choices"][0]["message"]["content"]
print(f"Random City: {random_city}")
In this example, the `counter` is initialized to `10`, while `message` retains its default value.
return random_city
#### Unstructured State Management
@listen(generate_city)
def generate_fun_fact(self, random_city):
response = completion(
model=self.model,
messages=[
{
"role": "user",
"content": f"Tell me a fun fact about {random_city}",
},
],
)
In unstructured state management, the flow's state is a dictionary. You can pass any dictionary to update the state.
fun_fact = response["choices"][0]["message"]["content"]
return fun_fact
```python
from crewai.flow.flow import Flow, listen, start
class UnstructuredExampleFlow(Flow):
@start()
def first_method(self):
# Implementation
flow = UnstructuredExampleFlow()
flow.kickoff(inputs={"counter": 5, "message": "Initial message"})
```
flow = ExampleFlow()
result = flow.kickoff()
Here, both `counter` and `message` are updated based on the provided inputs.
print(f"Generated fun fact: {result}")
**Note:** Ensure that inputs for structured state management adhere to the defined schema to avoid validation errors.
### Example Flow
```python
# Existing example code
```
In the above example, we have created a simple Flow that generates a random city using OpenAI and then generates a fun fact about that city. The Flow consists of two tasks: `generate_city` and `generate_fun_fact`. The `generate_city` task is the starting point of the Flow, and the `generate_fun_fact` task listens for the output of the `generate_city` task.
@@ -94,14 +97,14 @@ The `@listen()` decorator can be used in several ways:
1. **Listening to a Method by Name**: You can pass the name of the method you want to listen to as a string. When that method completes, the listener method will be triggered.
```python Code
```python
@listen("generate_city")
def generate_fun_fact(self, random_city):
# Implementation
```
2. **Listening to a Method Directly**: You can pass the method itself. When that method completes, the listener method will be triggered.
```python Code
```python
@listen(generate_city)
def generate_fun_fact(self, random_city):
# Implementation
@@ -118,7 +121,7 @@ When you run a Flow, the final output is determined by the last method that comp
Here's how you can access the final output:
<CodeGroup>
```python Code
```python
from crewai.flow.flow import Flow, listen, start
class OutputExampleFlow(Flow):
@@ -130,18 +133,17 @@ class OutputExampleFlow(Flow):
def second_method(self, first_output):
return f"Second method received: {first_output}"
flow = OutputExampleFlow()
final_output = flow.kickoff()
print("---- Final Output ----")
print(final_output)
````
```
``` text Output
```text
---- Final Output ----
Second method received: Output from first_method
````
```
</CodeGroup>
@@ -156,7 +158,7 @@ Here's an example of how to update and access the state:
<CodeGroup>
```python Code
```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
@@ -184,7 +186,7 @@ print("Final State:")
print(flow.state)
```
```text Output
```text
Final Output: Hello from first_method - updated by second_method
Final State:
counter=2 message='Hello from first_method - updated by second_method'
@@ -208,10 +210,10 @@ allowing developers to choose the approach that best fits their application's ne
In unstructured state management, all state is stored in the `state` attribute of the `Flow` class.
This approach offers flexibility, enabling developers to add or modify state attributes on the fly without defining a strict schema.
```python Code
```python
from crewai.flow.flow import Flow, listen, start
class UntructuredExampleFlow(Flow):
class UnstructuredExampleFlow(Flow):
@start()
def first_method(self):
@@ -230,8 +232,7 @@ class UntructuredExampleFlow(Flow):
print(f"State after third_method: {self.state}")
flow = UntructuredExampleFlow()
flow = UnstructuredExampleFlow()
flow.kickoff()
```
@@ -245,16 +246,14 @@ flow.kickoff()
Structured state management leverages predefined schemas to ensure consistency and type safety across the workflow.
By using models like Pydantic's `BaseModel`, developers can define the exact shape of the state, enabling better validation and auto-completion in development environments.
```python Code
```python
from crewai.flow.flow import Flow, listen, start
from pydantic import BaseModel
class ExampleState(BaseModel):
counter: int = 0
message: str = ""
class StructuredExampleFlow(Flow[ExampleState]):
@start()
@@ -273,7 +272,6 @@ class StructuredExampleFlow(Flow[ExampleState]):
print(f"State after third_method: {self.state}")
flow = StructuredExampleFlow()
flow.kickoff()
```
@@ -307,7 +305,7 @@ The `or_` function in Flows allows you to listen to multiple methods and trigger
<CodeGroup>
```python Code
```python
from crewai.flow.flow import Flow, listen, or_, start
class OrExampleFlow(Flow):
@@ -324,13 +322,11 @@ class OrExampleFlow(Flow):
def logger(self, result):
print(f"Logger: {result}")
flow = OrExampleFlow()
flow.kickoff()
```
```text Output
```text
Logger: Hello from the start method
Logger: Hello from the second method
```
@@ -346,7 +342,7 @@ The `and_` function in Flows allows you to listen to multiple methods and trigge
<CodeGroup>
```python Code
```python
from crewai.flow.flow import Flow, and_, listen, start
class AndExampleFlow(Flow):
@@ -368,7 +364,7 @@ flow = AndExampleFlow()
flow.kickoff()
```
```text Output
```text
---- Logger ----
{'greeting': 'Hello from the start method', 'joke': 'What do computers eat? Microchips.'}
```
@@ -385,7 +381,7 @@ You can specify different routes based on the output of the method, allowing you
<CodeGroup>
```python Code
```python
import random
from crewai.flow.flow import Flow, listen, router, start
from pydantic import BaseModel
@@ -416,12 +412,11 @@ class RouterFlow(Flow[ExampleState]):
def fourth_method(self):
print("Fourth method running")
flow = RouterFlow()
flow.kickoff()
```
```text Output
```text
Starting the structured flow
Third method running
Fourth method running
@@ -484,7 +479,7 @@ The `main.py` file is where you create your flow and connect the crews together.
Here's an example of how you can connect the `poem_crew` in the `main.py` file:
```python Code
```python
#!/usr/bin/env python
from random import randint
@@ -577,18 +572,20 @@ This command will create a new directory for your crew within the `crews` folder
After adding a new crew, your folder structure will look like this:
name_of_flow/
├── crews/
│ ├── poem_crew/
├── config/
│ │ ├── agents.yaml
│ │ │ └── tasks.yaml
│ │ └── poem_crew.py
│ └── name_of_crew/
── config/
│ │ ├── agents.yaml
│ └── tasks.yaml
── name_of_crew.py
| Directory/File | Description |
| :--------------------- | :----------------------------------------------------------------- |
| `name_of_flow/` | Root directory for the flow. |
| ├── `crews/` | Contains directories for specific crews. |
| ├── `poem_crew/` | Directory for the "poem_crew" with its configurations and scripts. |
| │ │ ├── `config/` | Configuration files directory for the "poem_crew". |
| │ │ │ ├── `agents.yaml` | YAML file defining the agents for "poem_crew". |
| │ └── `tasks.yaml` | YAML file defining the tasks for "poem_crew". |
| ── `poem_crew.py` | Script for "poem_crew" functionality. |
| └── `name_of_crew/` | Directory for the new crew. |
| ├── `config/` | Configuration files directory for the new crew. |
| ── `agents.yaml` | YAML file defining the agents for the new crew. |
| │ └── `tasks.yaml` | YAML file defining the tasks for the new crew. |
| └── `name_of_crew.py` | Script for the new crew functionality. |
You can then customize the `agents.yaml` and `tasks.yaml` files to define the agents and tasks for your new crew. The `name_of_crew.py` file will contain the crew's logic, which you can modify to suit your needs.
@@ -610,7 +607,7 @@ CrewAI provides two convenient methods to generate plots of your flows:
If you are working directly with a flow instance, you can generate a plot by calling the `plot()` method on your flow object. This method will create an HTML file containing the interactive plot of your flow.
```python Code
```python
# Assuming you have a flow instance
flow.plot("my_flow_plot")
```

View File

@@ -0,0 +1,75 @@
---
title: Knowledge
description: What is knowledge in CrewAI and how to use it.
icon: book
---
# Using Knowledge in CrewAI
## Introduction
The Knowledge class in CrewAI provides a powerful way to manage and query knowledge sources for your AI agents. This guide will show you how to implement knowledge management in your CrewAI projects.
Additionally, we have specific tools for generate knowledge sources for strings, text files, PDF's, and Spreadsheets. You can expand on any source type by extending the `KnowledgeSource` class.
## Basic Implementation
Here's a simple example of how to use the Knowledge class:
```python
from crewai import Agent, Task, Crew, Process, LLM
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
# Create a knowledge source
content = "Users name is John. He is 30 years old and lives in San Francisco."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
llm = LLM(model="gpt-4o-mini", temperature=0)
# Create an agent with the knowledge store
agent = Agent(
role="About User",
goal="You know everything about the user.",
backstory="""You are a master at understanding people and their preferences.""",
verbose=True,
allow_delegation=False,
llm=llm,
)
task = Task(
description="Answer the following questions about the user: {question}",
expected_output="An answer to the question.",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
knowledge={"sources": [string_source], "metadata": {"preference": "personal"}}, # Enable knowledge by adding the sources here. You can also add more sources to the sources list.
)
result = crew.kickoff(inputs={"question": "What city does John live in and how old is he?"})
```
## Embedder Configuration
You can also configure the embedder for the knowledge store. This is useful if you want to use a different embedder for the knowledge store than the one used for the agents.
```python
...
string_source = StringKnowledgeSource(
content="Users name is John. He is 30 years old and lives in San Francisco.",
metadata={"preference": "personal"}
)
crew = Crew(
...
knowledge={
"sources": [string_source],
"metadata": {"preference": "personal"},
"embedder_config": {"provider": "openai", "config": {"model": "text-embedding-3-small"}},
},
)
```

View File

@@ -25,7 +25,102 @@ By default, CrewAI uses the `gpt-4o-mini` model. It uses environment variables i
- `OPENAI_API_BASE`
- `OPENAI_API_KEY`
### 2. Custom LLM Objects
### 2. Updating YAML files
You can update the `agents.yml` file to refer to the LLM you want to use:
```yaml Code
researcher:
role: Research Specialist
goal: Conduct comprehensive research and analysis to gather relevant information,
synthesize findings, and produce well-documented insights.
backstory: A dedicated research professional with years of experience in academic
investigation, literature review, and data analysis, known for thorough and
methodical approaches to complex research questions.
verbose: true
llm: openai/gpt-4o
# llm: azure/gpt-4o-mini
# llm: gemini/gemini-pro
# llm: anthropic/claude-3-5-sonnet-20240620
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
# llm: mistral/mistral-large-latest
# llm: ollama/llama3:70b
# llm: groq/llama-3.2-90b-vision-preview
# llm: watsonx/meta-llama/llama-3-1-70b-instruct
# llm: nvidia_nim/meta/llama3-70b-instruct
# llm: sambanova/Meta-Llama-3.1-8B-Instruct
# ...
```
Keep in mind that you will need to set certain ENV vars depending on the model you are
using to account for the credentials or set a custom LLM object like described below.
Here are some of the required ENV vars for some of the LLM integrations:
<AccordionGroup>
<Accordion title="OpenAI">
```python Code
OPENAI_API_KEY=<your-api-key>
OPENAI_API_BASE=<optional-custom-base-url>
OPENAI_MODEL_NAME=<openai-model-name>
OPENAI_ORGANIZATION=<your-org-id> # OPTIONAL
OPENAI_API_BASE=<openaiai-api-base> # OPTIONAL
```
</Accordion>
<Accordion title="Anthropic">
```python Code
ANTHROPIC_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="Google">
```python Code
GEMINI_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="Azure">
```python Code
AZURE_API_KEY=<your-api-key> # "my-azure-api-key"
AZURE_API_BASE=<your-resource-url> # "https://example-endpoint.openai.azure.com"
AZURE_API_VERSION=<api-version> # "2023-05-15"
AZURE_AD_TOKEN=<your-azure-ad-token> # Optional
AZURE_API_TYPE=<your-azure-api-type> # Optional
```
</Accordion>
<Accordion title="AWS Bedrock">
```python Code
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-key>
AWS_DEFAULT_REGION=<your-region>
```
</Accordion>
<Accordion title="Mistral">
```python Code
MISTRAL_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="Groq">
```python Code
GROQ_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="IBM watsonx.ai">
```python Code
WATSONX_URL=<your-url> # (required) Base URL of your WatsonX instance
WATSONX_APIKEY=<your-apikey> # (required) IBM cloud API key
WATSONX_TOKEN=<your-token> # (required) IAM auth token (alternative to APIKEY)
WATSONX_PROJECT_ID=<your-project-id> # (optional) Project ID of your WatsonX instance
WATSONX_DEPLOYMENT_SPACE_ID=<your-space-id> # (optional) ID of deployment space for deployed models
```
</Accordion>
</AccordionGroup>
### 3. Custom LLM Objects
Pass a custom LLM implementation or object from another library.
@@ -102,7 +197,7 @@ When configuring an LLM for your agent, you have access to a wide range of param
These are examples of how to configure LLMs for your agent.
<AccordionGroup>
<AccordionGroup>
<Accordion title="OpenAI">
```python Code
@@ -131,13 +226,12 @@ These are examples of how to configure LLMs for your agent.
llm = LLM(
model="cerebras/llama-3.1-70b",
base_url="https://api.cerebras.ai/v1",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Ollama (Local LLMs)">
CrewAI supports using Ollama for running open-source models locally:
@@ -151,7 +245,7 @@ These are examples of how to configure LLMs for your agent.
agent = Agent(
llm=LLM(
model="ollama/llama3.1",
model="ollama/llama3.1",
base_url="http://localhost:11434"
),
...
@@ -165,8 +259,7 @@ These are examples of how to configure LLMs for your agent.
from crewai import LLM
llm = LLM(
model="groq/llama3-8b-8192",
base_url="https://api.groq.com/openai/v1",
model="groq/llama3-8b-8192",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
@@ -180,21 +273,18 @@ These are examples of how to configure LLMs for your agent.
llm = LLM(
model="anthropic/claude-3-5-sonnet-20241022",
base_url="https://api.anthropic.com/v1",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Fireworks">
<Accordion title="Fireworks AI">
```python Code
from crewai import LLM
llm = LLM(
model="fireworks/meta-llama-3.1-8b-instruct",
base_url="https://api.fireworks.ai/inference/v1",
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
@@ -207,8 +297,7 @@ These are examples of how to configure LLMs for your agent.
from crewai import LLM
llm = LLM(
model="gemini/gemini-1.5-flash",
base_url="https://api.gemini.google.com/v1",
model="gemini/gemini-1.5-pro-002",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
@@ -230,6 +319,29 @@ These are examples of how to configure LLMs for your agent.
</Accordion>
<Accordion title="IBM watsonx.ai">
You can use IBM Watson by seeting the following ENV vars:
```python Code
WATSONX_URL=<your-url>
WATSONX_APIKEY=<your-apikey>
WATSONX_PROJECT_ID=<your-project-id>
```
You can then define your agents llms by updating the `agents.yml`
```yaml Code
researcher:
role: Research Specialist
goal: Conduct comprehensive research and analysis to gather relevant information,
synthesize findings, and produce well-documented insights.
backstory: A dedicated research professional with years of experience in academic
investigation, literature review, and data analysis, known for thorough and
methodical approaches to complex research questions.
verbose: true
llm: watsonx/meta-llama/llama-3-1-70b-instruct
```
You can also set up agents more dynamically as a base level LLM instance, like bellow:
```python Code
from crewai import LLM
@@ -242,6 +354,20 @@ These are examples of how to configure LLMs for your agent.
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Hugging Face">
```python Code
from crewai import LLM
llm = LLM(
model="huggingface/meta-llama/Meta-Llama-3.1-8B-Instruct",
api_key="your-api-key-here",
base_url="your_api_endpoint"
)
agent = Agent(llm=llm, ...)
```
</Accordion>
</AccordionGroup>
## Changing the Base API URL

View File

@@ -18,6 +18,7 @@ reason, and learn from past interactions.
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
| **User Memory** | Stores user-specific information and preferences, enhancing personalization and user experience. |
## How Memory Systems Empower Agents
@@ -92,6 +93,47 @@ my_crew = Crew(
)
```
## Integrating Mem0 for Enhanced User Memory
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
To include user-specific memory you can get your API key [here](https://app.mem0.ai/dashboard/api-keys) and refer the [docs](https://docs.mem0.ai/platform/quickstart#4-1-create-memories) for adding user preferences.
```python Code
import os
from crewai import Crew, Process
from mem0 import MemoryClient
# Set environment variables for Mem0
os.environ["MEM0_API_KEY"] = "m0-xx"
# Step 1: Record preferences based on past conversation or user input
client = MemoryClient()
messages = [
{"role": "user", "content": "Hi there! I'm planning a vacation and could use some advice."},
{"role": "assistant", "content": "Hello! I'd be happy to help with your vacation planning. What kind of destination do you prefer?"},
{"role": "user", "content": "I am more of a beach person than a mountain person."},
{"role": "assistant", "content": "That's interesting. Do you like hotels or Airbnb?"},
{"role": "user", "content": "I like Airbnb more."},
]
client.add(messages, user_id="john")
# Step 2: Create a Crew with User Memory
crew = Crew(
agents=[...],
tasks=[...],
verbose=True,
process=Process.sequential,
memory=True,
memory_config={
"provider": "mem0",
"config": {"user_id": "john"},
},
)
```
## Additional Embedding Providers
@@ -254,6 +296,31 @@ my_crew = Crew(
)
```
### Using Watson embeddings
```python Code
from crewai import Crew, Agent, Task, Process
# Note: Ensure you have installed and imported `ibm_watsonx_ai` for Watson embeddings to work.
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "watson",
"config": {
"model": "<model_name>",
"api_url": "<api_url>",
"api_key": "<YOUR_API_KEY>",
"project_id": "<YOUR_PROJECT_ID>",
}
}
)
```
### Resetting Memory
```shell

View File

@@ -5,13 +5,14 @@ icon: screwdriver-wrench
---
## Introduction
CrewAI tools empower agents with capabilities ranging from web searching and data analysis to collaboration and delegating tasks among coworkers.
CrewAI tools empower agents with capabilities ranging from web searching and data analysis to collaboration and delegating tasks among coworkers.
This documentation outlines how to create, integrate, and leverage these tools within the CrewAI framework, including a new focus on collaboration tools.
## What is a Tool?
A tool in CrewAI is a skill or function that agents can utilize to perform various actions.
This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools),
A tool in CrewAI is a skill or function that agents can utilize to perform various actions.
This includes tools from the [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools) and [LangChain Tools](https://python.langchain.com/docs/integrations/tools),
enabling everything from simple searches to complex interactions and effective teamwork among agents.
## Key Characteristics of Tools
@@ -103,57 +104,53 @@ crew.kickoff()
Here is a list of the available tools and their descriptions:
| Tool | Description |
| :-------------------------- | :-------------------------------------------------------------------------------------------- |
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
| **CodeInterpreterTool** | A tool for interpreting python code. |
| **ComposioTool** | Enables use of Composio tools. |
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
| **EXASearchTool** | A tool designed for performing exhaustive searches across various data sources. |
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages URL using Firecrawl and returning its contents. |
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search.|
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
| **LlamaIndexTool** | Enables the use of LlamaIndex tools. |
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
| **Vision Tool** | A tool for generating images using the DALL-E API. |
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
| **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. |
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
| **YoutubeChannelSearchTool**| A RAG tool for searching within YouTube channels, useful for video content analysis. |
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
| Tool | Description |
| :------------------------------- | :--------------------------------------------------------------------------------------------- |
| **BrowserbaseLoadTool** | A tool for interacting with and extracting data from web browsers. |
| **CodeDocsSearchTool** | A RAG tool optimized for searching through code documentation and related technical documents. |
| **CodeInterpreterTool** | A tool for interpreting python code. |
| **ComposioTool** | Enables use of Composio tools. |
| **CSVSearchTool** | A RAG tool designed for searching within CSV files, tailored to handle structured data. |
| **DALL-E Tool** | A tool for generating images using the DALL-E API. |
| **DirectorySearchTool** | A RAG tool for searching within directories, useful for navigating through file systems. |
| **DOCXSearchTool** | A RAG tool aimed at searching within DOCX documents, ideal for processing Word files. |
| **DirectoryReadTool** | Facilitates reading and processing of directory structures and their contents. |
| **EXASearchTool** | A tool designed for performing exhaustive searches across various data sources. |
| **FileReadTool** | Enables reading and extracting data from files, supporting various file formats. |
| **FirecrawlSearchTool** | A tool to search webpages using Firecrawl and return the results. |
| **FirecrawlCrawlWebsiteTool** | A tool for crawling webpages using Firecrawl. |
| **FirecrawlScrapeWebsiteTool** | A tool for scraping webpages URL using Firecrawl and returning its contents. |
| **GithubSearchTool** | A RAG tool for searching within GitHub repositories, useful for code and documentation search. |
| **SerperDevTool** | A specialized tool for development purposes, with specific functionalities under development. |
| **TXTSearchTool** | A RAG tool focused on searching within text (.txt) files, suitable for unstructured data. |
| **JSONSearchTool** | A RAG tool designed for searching within JSON files, catering to structured data handling. |
| **LlamaIndexTool** | Enables the use of LlamaIndex tools. |
| **MDXSearchTool** | A RAG tool tailored for searching within Markdown (MDX) files, useful for documentation. |
| **PDFSearchTool** | A RAG tool aimed at searching within PDF documents, ideal for processing scanned documents. |
| **PGSearchTool** | A RAG tool optimized for searching within PostgreSQL databases, suitable for database queries. |
| **Vision Tool** | A tool for generating images using the DALL-E API. |
| **RagTool** | A general-purpose RAG tool capable of handling various data sources and types. |
| **ScrapeElementFromWebsiteTool** | Enables scraping specific elements from websites, useful for targeted data extraction. |
| **ScrapeWebsiteTool** | Facilitates scraping entire websites, ideal for comprehensive data collection. |
| **WebsiteSearchTool** | A RAG tool for searching website content, optimized for web data extraction. |
| **XMLSearchTool** | A RAG tool designed for searching within XML files, suitable for structured data formats. |
| **YoutubeChannelSearchTool** | A RAG tool for searching within YouTube channels, useful for video content analysis. |
| **YoutubeVideoSearchTool** | A RAG tool aimed at searching within YouTube videos, ideal for video data extraction. |
## Creating your own Tools
<Tip>
Developers can craft `custom tools` tailored for their agents needs or utilize pre-built options.
Developers can craft `custom tools` tailored for their agents needs or
utilize pre-built options.
</Tip>
To create your own CrewAI tools you will need to install our extra tools package:
```bash
pip install 'crewai[tools]'
```
Once you do that there are two main ways for one to create a CrewAI tool:
There are two main ways for one to create a CrewAI tool:
### Subclassing `BaseTool`
```python Code
from crewai_tools import BaseTool
from crewai.tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
@@ -167,7 +164,7 @@ class MyCustomTool(BaseTool):
### Utilizing the `tool` Decorator
```python Code
from crewai_tools import tool
from crewai.tools import tool
@tool("Name of my tool")
def my_tool(question: str) -> str:
"""Clear description for what this tool is useful for, your agent will need this information to use it."""
@@ -178,11 +175,13 @@ def my_tool(question: str) -> str:
### Custom Caching Mechanism
<Tip>
Tools can optionally implement a `cache_function` to fine-tune caching behavior. This function determines when to cache results based on specific conditions, offering granular control over caching logic.
Tools can optionally implement a `cache_function` to fine-tune caching
behavior. This function determines when to cache results based on specific
conditions, offering granular control over caching logic.
</Tip>
```python Code
from crewai_tools import tool
from crewai.tools import tool
@tool
def multiplication_tool(first_number: int, second_number: int) -> str:
@@ -208,6 +207,6 @@ writer1 = Agent(
## Conclusion
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling,
caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.
Tools are pivotal in extending the capabilities of CrewAI agents, enabling them to undertake a broad spectrum of tasks and collaborate effectively.
When building solutions with CrewAI, leverage both custom and existing tools to empower your agents and enhance the AI ecosystem. Consider utilizing error handling,
caching mechanisms, and the flexibility of tool arguments to optimize your agents' performance and capabilities.

View File

@@ -6,25 +6,17 @@ icon: hammer
## Creating and Utilizing Tools in CrewAI
This guide provides detailed instructions on creating custom tools for the CrewAI framework and how to efficiently manage and utilize these tools,
incorporating the latest functionalities such as tool delegation, error handling, and dynamic tool calling. It also highlights the importance of collaboration tools,
This guide provides detailed instructions on creating custom tools for the CrewAI framework and how to efficiently manage and utilize these tools,
incorporating the latest functionalities such as tool delegation, error handling, and dynamic tool calling. It also highlights the importance of collaboration tools,
enabling agents to perform a wide range of actions.
### Prerequisites
Before creating your own tools, ensure you have the crewAI extra tools package installed:
```bash
pip install 'crewai[tools]'
```
### Subclassing `BaseTool`
To create a personalized tool, inherit from `BaseTool` and define the necessary attributes, including the `args_schema` for input validation, and the `_run` method.
```python Code
from typing import Type
from crewai_tools import BaseTool
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyToolInput(BaseModel):
@@ -47,7 +39,7 @@ Alternatively, you can use the tool decorator `@tool`. This approach allows you
offering a concise and efficient way to create specialized tools tailored to your needs.
```python Code
from crewai_tools import tool
from crewai.tools import tool
@tool("Tool Name")
def my_simple_tool(question: str) -> str:
@@ -73,5 +65,5 @@ def my_cache_strategy(arguments: dict, result: str) -> bool:
cached_tool.cache_function = my_cache_strategy
```
By adhering to these guidelines and incorporating new functionalities and collaboration tools into your tool creation and management processes,
By adhering to these guidelines and incorporating new functionalities and collaboration tools into your tool creation and management processes,
you can leverage the full capabilities of the CrewAI framework, enhancing both the development experience and the efficiency of your AI agents.

View File

@@ -330,4 +330,4 @@ This will clear the crew's memory, allowing for a fresh start.
## Deploying Your Project
The easiest way to deploy your crew is through [CrewAI Enterprise](https://www.crewai.com/crewaiplus), where you can deploy your crew in a few clicks.
The easiest way to deploy your crew is through [CrewAI Enterprise](http://app.crewai.com/), where you can deploy your crew in a few clicks.

View File

@@ -34,6 +34,7 @@ from crewai_tools import GithubSearchTool
# Initialize the tool for semantic searches within a specific GitHub repository
tool = GithubSearchTool(
github_repo='https://github.com/example/repo',
gh_token='your_github_personal_access_token',
content_types=['code', 'issue'] # Options: code, repo, pr, issue
)
@@ -41,6 +42,7 @@ tool = GithubSearchTool(
# Initialize the tool for semantic searches within a specific GitHub repository, so the agent can search any repository if it learns about during its execution
tool = GithubSearchTool(
gh_token='your_github_personal_access_token',
content_types=['code', 'issue'] # Options: code, repo, pr, issue
)
```
@@ -48,6 +50,7 @@ tool = GithubSearchTool(
## Arguments
- `github_repo` : The URL of the GitHub repository where the search will be conducted. This is a mandatory field and specifies the target repository for your search.
- `gh_token` : Your GitHub Personal Access Token (PAT) required for authentication. You can create one in your GitHub account settings under Developer Settings > Personal Access Tokens.
- `content_types` : Specifies the types of content to include in your search. You must provide a list of content types from the following options: `code` for searching within the code,
`repo` for searching within the repository's general information, `pr` for searching within pull requests, and `issue` for searching within issues.
This field is mandatory and allows tailoring the search to specific content types within the GitHub repository.
@@ -77,5 +80,4 @@ tool = GithubSearchTool(
),
),
)
)
```
)

6
poetry.lock generated
View File

@@ -1597,12 +1597,12 @@ files = [
google-auth = ">=2.14.1,<3.0.dev0"
googleapis-common-protos = ">=1.56.2,<2.0.dev0"
grpcio = [
{version = ">=1.49.1,<2.0dev", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
{version = ">=1.33.2,<2.0dev", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""},
{version = ">=1.49.1,<2.0dev", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
]
grpcio-status = [
{version = ">=1.49.1,<2.0.dev0", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
{version = ">=1.33.2,<2.0.dev0", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""},
{version = ">=1.49.1,<2.0.dev0", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
]
proto-plus = ">=1.22.3,<2.0.0dev"
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<6.0.0.dev0"
@@ -4286,8 +4286,8 @@ files = [
[package.dependencies]
numpy = [
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
]
python-dateutil = ">=2.8.2"

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.76.9"
version = "0.80.0"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<=3.13"
@@ -16,7 +16,7 @@ dependencies = [
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
"instructor>=1.3.3",
"regex>=2024.9.11",
"crewai-tools>=0.13.4",
"crewai-tools>=0.14.0",
"click>=8.1.7",
"python-dotenv>=1.0.0",
"appdirs>=1.4.4",
@@ -27,8 +27,8 @@ dependencies = [
"pyvis>=0.3.2",
"uv>=0.4.25",
"tomli-w>=1.1.0",
"chromadb>=0.4.24",
"tomli>=2.0.2",
"chromadb>=0.5.18",
]
[project.urls]
@@ -37,8 +37,19 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.13.4"]
tools = ["crewai-tools>=0.14.0"]
agentops = ["agentops>=0.3.0"]
fastembed = ["fastembed>=0.4.1"]
pdfplumber = [
"pdfplumber>=0.11.4",
]
pandas = [
"pandas>=2.2.3",
]
openpyxl = [
"openpyxl>=3.1.5",
]
mem0 = ["mem0ai>=0.1.29"]
[tool.uv]
dev-dependencies = [
@@ -52,7 +63,7 @@ dev-dependencies = [
"mkdocs-material-extensions>=1.3.1",
"pillow>=10.2.0",
"cairosvg>=2.7.1",
"crewai-tools>=0.13.4",
"crewai-tools>=0.14.0",
"pytest>=8.0.0",
"pytest-vcr>=1.0.2",
"python-dotenv>=1.0.0",

View File

@@ -1,7 +1,9 @@
import warnings
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.flow.flow import Flow
from crewai.knowledge.knowledge import Knowledge
from crewai.llm import LLM
from crewai.pipeline import Pipeline
from crewai.process import Process
@@ -14,5 +16,15 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.76.9"
__all__ = ["Agent", "Crew", "Process", "Task", "Pipeline", "Router", "LLM", "Flow"]
__version__ = "0.80.0"
__all__ = [
"Agent",
"Crew",
"Process",
"Task",
"Pipeline",
"Router",
"LLM",
"Flow",
"Knowledge",
]

View File

@@ -8,9 +8,11 @@ from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents import CacheHandler
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.cli.constants import ENV_VARS
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.tools.agent_tools import AgentTools
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.token_counter_callback import TokenCalcHandler
@@ -50,6 +52,7 @@ class Agent(BaseAgent):
role: The role of the agent.
goal: The objective of the agent.
backstory: The backstory of the agent.
knowledge: The knowledge base of the agent.
config: Dict representation of agent configuration.
llm: The language model that will run the agent.
function_calling_llm: The language model that will handle the tool calling for this agent, it overrides the crew function_calling_llm.
@@ -121,6 +124,11 @@ class Agent(BaseAgent):
@model_validator(mode="after")
def post_init_setup(self):
self.agent_ops_agent_name = self.role
unnacepted_attributes = [
"AWS_ACCESS_KEY_ID",
"AWS_SECRET_ACCESS_KEY",
"AWS_REGION_NAME",
]
# Handle different cases for self.llm
if isinstance(self.llm, str):
@@ -130,8 +138,12 @@ class Agent(BaseAgent):
# If it's already an LLM instance, keep it as is
pass
elif self.llm is None:
# If it's None, use environment variables or default
model_name = os.environ.get("OPENAI_MODEL_NAME", "gpt-4o-mini")
# Determine the model name from environment variables or use default
model_name = (
os.environ.get("OPENAI_MODEL_NAME")
or os.environ.get("MODEL")
or "gpt-4o-mini"
)
llm_params = {"model": model_name}
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get(
@@ -140,9 +152,44 @@ class Agent(BaseAgent):
if api_base:
llm_params["base_url"] = api_base
api_key = os.environ.get("OPENAI_API_KEY")
if api_key:
llm_params["api_key"] = api_key
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
# Iterate over all environment variables to find matching API keys or use defaults
for provider, env_vars in ENV_VARS.items():
if provider == set_provider:
for env_var in env_vars:
if env_var["key_name"] in unnacepted_attributes:
continue
# Check if the environment variable is set
if "key_name" in env_var:
env_value = os.environ.get(env_var["key_name"])
if env_value:
# Map key names containing "API_KEY" to "api_key"
key_name = (
"api_key"
if "API_KEY" in env_var["key_name"]
else env_var["key_name"]
)
# Map key names containing "API_BASE" to "api_base"
key_name = (
"api_base"
if "API_BASE" in env_var["key_name"]
else key_name
)
# Map key names containing "API_VERSION" to "api_version"
key_name = (
"api_version"
if "API_VERSION" in env_var["key_name"]
else key_name
)
llm_params[key_name] = env_value
# Check for default values if the environment variable is not set
elif env_var.get("default", False):
for key, value in env_var.items():
if key not in ["prompt", "key_name", "default"]:
# Only add default if the key is already set in os.environ
if key in os.environ:
llm_params[key] = value
self.llm = LLM(**llm_params)
else:
@@ -192,7 +239,7 @@ class Agent(BaseAgent):
self,
task: Any,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
"""Execute a task with the agent.
@@ -216,14 +263,28 @@ class Agent(BaseAgent):
if self.crew and self.crew.memory:
contextual_memory = ContextualMemory(
self.crew.memory_config,
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
self.crew._user_memory,
)
memory = contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
# Integrate the knowledge base
if self.crew and self.crew.knowledge:
knowledge_snippets = self.crew.knowledge.query([task.prompt()])
valid_snippets = [
result["context"]
for result in knowledge_snippets
if result and result.get("context")
]
if valid_snippets:
formatted_knowledge = "\n".join(valid_snippets)
task_prompt += f"\n\nAdditional Information:\n{formatted_knowledge}"
tools = tools or self.tools or []
self.create_agent_executor(tools=tools, task=task)
@@ -259,7 +320,9 @@ class Agent(BaseAgent):
return result
def create_agent_executor(self, tools=None, task=None) -> None:
def create_agent_executor(
self, tools: Optional[List[BaseTool]] = None, task=None
) -> None:
"""Create an agent executor for the agent.
Returns:
@@ -332,7 +395,7 @@ class Agent(BaseAgent):
tools_list = []
try:
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
from crewai_tools import BaseTool as CrewAITool
from crewai.tools import BaseTool as CrewAITool
for tool in tools:
if isinstance(tool, CrewAITool):
@@ -391,7 +454,7 @@ class Agent(BaseAgent):
return description
def _render_text_description_and_args(self, tools: List[Any]) -> str:
def _render_text_description_and_args(self, tools: List[BaseTool]) -> str:
"""Render the tool name, description, and args in plain text.
Output will be in the format of:
@@ -404,17 +467,7 @@ class Agent(BaseAgent):
"""
tool_strings = []
for tool in tools:
args_schema = {
name: {
"description": field.description,
"type": field.annotation.__name__,
}
for name, field in tool.args_schema.model_fields.items()
}
description = (
f"Tool Name: {tool.name}\nTool Description: {tool.description}"
)
tool_strings.append(f"{description}\nTool Arguments: {args_schema}")
tool_strings.append(tool.description)
return "\n".join(tool_strings)

View File

@@ -18,6 +18,7 @@ from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools import BaseTool
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
@@ -49,11 +50,11 @@ class BaseAgent(ABC, BaseModel):
Methods:
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[Any]] = None) -> str:
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[BaseTool]] = None) -> str:
Abstract method to execute a task.
create_agent_executor(tools=None) -> None:
Abstract method to create an agent executor.
_parse_tools(tools: List[Any]) -> List[Any]:
_parse_tools(tools: List[BaseTool]) -> List[Any]:
Abstract method to parse tools.
get_delegation_tools(agents: List["BaseAgent"]):
Abstract method to set the agents task tools for handling delegation and question asking to other agents in crew.
@@ -105,7 +106,7 @@ class BaseAgent(ABC, BaseModel):
default=False,
description="Enable agent to delegate and ask questions among each other.",
)
tools: Optional[List[Any]] = Field(
tools: Optional[List[BaseTool]] = Field(
default_factory=list, description="Tools at agents' disposal"
)
max_iter: Optional[int] = Field(
@@ -188,7 +189,7 @@ class BaseAgent(ABC, BaseModel):
self,
task: Any,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
pass
@@ -197,11 +198,11 @@ class BaseAgent(ABC, BaseModel):
pass
@abstractmethod
def _parse_tools(self, tools: List[Any]) -> List[Any]:
def _parse_tools(self, tools: List[BaseTool]) -> List[BaseTool]:
pass
@abstractmethod
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[Any]:
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[BaseTool]:
"""Set the task tools that init BaseAgenTools class."""
pass

View File

@@ -4,6 +4,7 @@ from crewai.types.usage_metrics import UsageMetrics
class TokenProcess:
total_tokens: int = 0
prompt_tokens: int = 0
cached_prompt_tokens: int = 0
completion_tokens: int = 0
successful_requests: int = 0
@@ -15,6 +16,9 @@ class TokenProcess:
self.completion_tokens = self.completion_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_cached_prompt_tokens(self, tokens: int):
self.cached_prompt_tokens = self.cached_prompt_tokens + tokens
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
@@ -22,6 +26,7 @@ class TokenProcess:
return UsageMetrics(
total_tokens=self.total_tokens,
prompt_tokens=self.prompt_tokens,
cached_prompt_tokens=self.cached_prompt_tokens,
completion_tokens=self.completion_tokens,
successful_requests=self.successful_requests,
)

View File

@@ -117,6 +117,15 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
callbacks=self.callbacks,
)
if answer is None or answer == "":
self._printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError(
"Invalid response from LLM call - None or empty."
)
if not self.use_stop_words:
try:
self._format_answer(answer)
@@ -136,25 +145,26 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer.result = action_result
self._show_logs(formatted_answer)
if self.step_callback:
self.step_callback(formatted_answer)
if self.step_callback:
self.step_callback(formatted_answer)
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="assistant")
)
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
thought="",
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="assistant")
)
except OutputParserException as e:
self.messages.append({"role": "user", "content": e.error})
@@ -323,9 +333,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_data[agent_id][train_iteration]["improved_output"] = (
result.output
)
training_handler.save(training_data)
else:
self._logger.log(
@@ -376,4 +386,5 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
return CrewAgentParser(agent=self.agent).parse(answer)
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
prompt = prompt.rstrip()
return {"role": role, "content": prompt}

View File

@@ -1,6 +1,6 @@
from typing import Any, Optional, Union
from ..tools.cache_tools import CacheTools
from ..tools.cache_tools.cache_tools import CacheTools
from ..tools.tool_calling import InstructorToolCalling, ToolCalling
from .cache.cache_handler import CacheHandler

View File

@@ -54,7 +54,7 @@ def create_embedded_crew(crew_name: str, parent_folder: Path) -> None:
templates_dir = Path(__file__).parent / "templates" / "crew"
config_template_files = ["agents.yaml", "tasks.yaml"]
crew_template_file = f"{folder_name}_crew.py" # Updated file name
crew_template_file = f"{folder_name}.py" # Updated file name
for file_name in config_template_files:
src_file = templates_dir / "config" / file_name

View File

@@ -34,7 +34,9 @@ class AuthenticationCommand:
"scope": "openid",
"audience": AUTH0_AUDIENCE,
}
response = requests.post(url=self.DEVICE_CODE_URL, data=device_code_payload)
response = requests.post(
url=self.DEVICE_CODE_URL, data=device_code_payload, timeout=20
)
response.raise_for_status()
return response.json()
@@ -54,7 +56,7 @@ class AuthenticationCommand:
attempts = 0
while True and attempts < 5:
response = requests.post(self.TOKEN_URL, data=token_payload)
response = requests.post(self.TOKEN_URL, data=token_payload, timeout=30)
token_data = response.json()
if response.status_code == 200:

View File

@@ -136,6 +136,7 @@ def log_tasks_outputs() -> None:
@click.option("-l", "--long", is_flag=True, help="Reset LONG TERM memory")
@click.option("-s", "--short", is_flag=True, help="Reset SHORT TERM memory")
@click.option("-e", "--entities", is_flag=True, help="Reset ENTITIES memory")
@click.option("-kn", "--knowledge", is_flag=True, help="Reset KNOWLEDGE storage")
@click.option(
"-k",
"--kickoff-outputs",
@@ -143,17 +144,24 @@ def log_tasks_outputs() -> None:
help="Reset LATEST KICKOFF TASK OUTPUTS",
)
@click.option("-a", "--all", is_flag=True, help="Reset ALL memories")
def reset_memories(long, short, entities, kickoff_outputs, all):
def reset_memories(
long: bool,
short: bool,
entities: bool,
knowledge: bool,
kickoff_outputs: bool,
all: bool,
) -> None:
"""
Reset the crew memories (long, short, entity, latest_crew_kickoff_ouputs). This will delete all the data saved.
"""
try:
if not all and not (long or short or entities or kickoff_outputs):
if not all and not (long or short or entities or knowledge or kickoff_outputs):
click.echo(
"Please specify at least one memory type to reset using the appropriate flags."
)
return
reset_memories_command(long, short, entities, kickoff_outputs, all)
reset_memories_command(long, short, entities, knowledge, kickoff_outputs, all)
except Exception as e:
click.echo(f"An error occurred while resetting memories: {e}", err=True)

View File

@@ -1,19 +1,161 @@
ENV_VARS = {
'openai': ['OPENAI_API_KEY'],
'anthropic': ['ANTHROPIC_API_KEY'],
'gemini': ['GEMINI_API_KEY'],
'groq': ['GROQ_API_KEY'],
'ollama': ['FAKE_KEY'],
"openai": [
{
"prompt": "Enter your OPENAI API key (press Enter to skip)",
"key_name": "OPENAI_API_KEY",
}
],
"anthropic": [
{
"prompt": "Enter your ANTHROPIC API key (press Enter to skip)",
"key_name": "ANTHROPIC_API_KEY",
}
],
"gemini": [
{
"prompt": "Enter your GEMINI API key (press Enter to skip)",
"key_name": "GEMINI_API_KEY",
}
],
"groq": [
{
"prompt": "Enter your GROQ API key (press Enter to skip)",
"key_name": "GROQ_API_KEY",
}
],
"watson": [
{
"prompt": "Enter your WATSONX URL (press Enter to skip)",
"key_name": "WATSONX_URL",
},
{
"prompt": "Enter your WATSONX API Key (press Enter to skip)",
"key_name": "WATSONX_APIKEY",
},
{
"prompt": "Enter your WATSONX Project Id (press Enter to skip)",
"key_name": "WATSONX_PROJECT_ID",
},
],
"ollama": [
{
"default": True,
"API_BASE": "http://localhost:11434",
}
],
"bedrock": [
{
"prompt": "Enter your AWS Access Key ID (press Enter to skip)",
"key_name": "AWS_ACCESS_KEY_ID",
},
{
"prompt": "Enter your AWS Secret Access Key (press Enter to skip)",
"key_name": "AWS_SECRET_ACCESS_KEY",
},
{
"prompt": "Enter your AWS Region Name (press Enter to skip)",
"key_name": "AWS_REGION_NAME",
},
],
"azure": [
{
"prompt": "Enter your Azure deployment name (must start with 'azure/')",
"key_name": "model",
},
{
"prompt": "Enter your AZURE API key (press Enter to skip)",
"key_name": "AZURE_API_KEY",
},
{
"prompt": "Enter your AZURE API base URL (press Enter to skip)",
"key_name": "AZURE_API_BASE",
},
{
"prompt": "Enter your AZURE API version (press Enter to skip)",
"key_name": "AZURE_API_VERSION",
},
],
"cerebras": [
{
"prompt": "Enter your Cerebras model name (must start with 'cerebras/')",
"key_name": "model",
},
{
"prompt": "Enter your Cerebras API version (press Enter to skip)",
"key_name": "CEREBRAS_API_KEY",
},
],
}
PROVIDERS = ['openai', 'anthropic', 'gemini', 'groq', 'ollama']
PROVIDERS = [
"openai",
"anthropic",
"gemini",
"groq",
"ollama",
"watson",
"bedrock",
"azure",
"cerebras",
]
MODELS = {
'openai': ['gpt-4', 'gpt-4o', 'gpt-4o-mini', 'o1-mini', 'o1-preview'],
'anthropic': ['claude-3-5-sonnet-20240620', 'claude-3-sonnet-20240229', 'claude-3-opus-20240229', 'claude-3-haiku-20240307'],
'gemini': ['gemini-1.5-flash', 'gemini-1.5-pro', 'gemini-gemma-2-9b-it', 'gemini-gemma-2-27b-it'],
'groq': ['llama-3.1-8b-instant', 'llama-3.1-70b-versatile', 'llama-3.1-405b-reasoning', 'gemma2-9b-it', 'gemma-7b-it'],
'ollama': ['llama3.1', 'mixtral'],
"openai": ["gpt-4", "gpt-4o", "gpt-4o-mini", "o1-mini", "o1-preview"],
"anthropic": [
"claude-3-5-sonnet-20240620",
"claude-3-sonnet-20240229",
"claude-3-opus-20240229",
"claude-3-haiku-20240307",
],
"gemini": [
"gemini/gemini-1.5-flash",
"gemini/gemini-1.5-pro",
"gemini/gemini-gemma-2-9b-it",
"gemini/gemini-gemma-2-27b-it",
],
"groq": [
"groq/llama-3.1-8b-instant",
"groq/llama-3.1-70b-versatile",
"groq/llama-3.1-405b-reasoning",
"groq/gemma2-9b-it",
"groq/gemma-7b-it",
],
"ollama": ["ollama/llama3.1", "ollama/mixtral"],
"watson": [
"watsonx/meta-llama/llama-3-1-70b-instruct",
"watsonx/meta-llama/llama-3-1-8b-instruct",
"watsonx/meta-llama/llama-3-2-11b-vision-instruct",
"watsonx/meta-llama/llama-3-2-1b-instruct",
"watsonx/meta-llama/llama-3-2-90b-vision-instruct",
"watsonx/meta-llama/llama-3-405b-instruct",
"watsonx/mistral/mistral-large",
"watsonx/ibm/granite-3-8b-instruct",
],
"bedrock": [
"bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
"bedrock/anthropic.claude-v2:1",
"bedrock/anthropic.claude-v2",
"bedrock/anthropic.claude-instant-v1",
"bedrock/meta.llama3-1-405b-instruct-v1:0",
"bedrock/meta.llama3-1-70b-instruct-v1:0",
"bedrock/meta.llama3-1-8b-instruct-v1:0",
"bedrock/meta.llama3-70b-instruct-v1:0",
"bedrock/meta.llama3-8b-instruct-v1:0",
"bedrock/amazon.titan-text-lite-v1",
"bedrock/amazon.titan-text-express-v1",
"bedrock/cohere.command-text-v14",
"bedrock/ai21.j2-mid-v1",
"bedrock/ai21.j2-ultra-v1",
"bedrock/ai21.jamba-instruct-v1:0",
"bedrock/meta.llama2-13b-chat-v1",
"bedrock/meta.llama2-70b-chat-v1",
"bedrock/mistral.mistral-7b-instruct-v0:2",
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
],
}
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"

View File

@@ -1,11 +1,11 @@
import shutil
import sys
from pathlib import Path
import click
from crewai.cli.constants import ENV_VARS
from crewai.cli.constants import ENV_VARS, MODELS
from crewai.cli.provider import (
PROVIDERS,
get_provider_data,
select_model,
select_provider,
@@ -29,20 +29,20 @@ def create_folder_structure(name, parent_folder=None):
click.secho("Operation cancelled.", fg="yellow")
sys.exit(0)
click.secho(f"Overriding folder {folder_name}...", fg="green", bold=True)
else:
click.secho(
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
fg="green",
bold=True,
)
shutil.rmtree(folder_path) # Delete the existing folder and its contents
if not folder_path.exists():
folder_path.mkdir(parents=True)
(folder_path / "tests").mkdir(exist_ok=True)
if not parent_folder:
(folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
click.secho(
f"Creating {'crew' if parent_folder else 'folder'} {folder_name}...",
fg="green",
bold=True,
)
folder_path.mkdir(parents=True)
(folder_path / "tests").mkdir(exist_ok=True)
if not parent_folder:
(folder_path / "src" / folder_name).mkdir(parents=True)
(folder_path / "src" / folder_name / "tools").mkdir(parents=True)
(folder_path / "src" / folder_name / "config").mkdir(parents=True)
return folder_path, folder_name, class_name
@@ -92,7 +92,10 @@ def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
existing_provider = None
for provider, env_keys in ENV_VARS.items():
if any(key in env_vars for key in env_keys):
if any(
"key_name" in details and details["key_name"] in env_vars
for details in env_keys
):
existing_provider = provider
break
@@ -118,47 +121,48 @@ def create_crew(name, provider=None, skip_provider=False, parent_folder=None):
"No provider selected. Please try again or press 'q' to exit.", fg="red"
)
while True:
selected_model = select_model(selected_provider, provider_models)
if selected_model is None: # User typed 'q'
click.secho("Exiting...", fg="yellow")
sys.exit(0)
if selected_model: # Valid selection
break
click.secho(
"No model selected. Please try again or press 'q' to exit.", fg="red"
)
# Check if the selected provider has predefined models
if selected_provider in MODELS and MODELS[selected_provider]:
while True:
selected_model = select_model(selected_provider, provider_models)
if selected_model is None: # User typed 'q'
click.secho("Exiting...", fg="yellow")
sys.exit(0)
if selected_model: # Valid selection
break
click.secho(
"No model selected. Please try again or press 'q' to exit.",
fg="red",
)
env_vars["MODEL"] = selected_model
if selected_provider in PROVIDERS:
api_key_var = ENV_VARS[selected_provider][0]
else:
api_key_var = click.prompt(
f"Enter the environment variable name for your {selected_provider.capitalize()} API key",
type=str,
default="",
)
# Check if the selected provider requires API keys
if selected_provider in ENV_VARS:
provider_env_vars = ENV_VARS[selected_provider]
for details in provider_env_vars:
if details.get("default", False):
# Automatically add default key-value pairs
for key, value in details.items():
if key not in ["prompt", "key_name", "default"]:
env_vars[key] = value
elif "key_name" in details:
# Prompt for non-default key-value pairs
prompt = details["prompt"]
key_name = details["key_name"]
api_key_value = click.prompt(prompt, default="", show_default=False)
api_key_value = ""
click.echo(
f"Enter your {selected_provider.capitalize()} API key (press Enter to skip): ",
nl=False,
)
try:
api_key_value = input()
except (KeyboardInterrupt, EOFError):
api_key_value = ""
if api_key_value.strip():
env_vars[key_name] = api_key_value
if api_key_value.strip():
env_vars = {api_key_var: api_key_value}
if env_vars:
write_env_file(folder_path, env_vars)
click.secho("API key saved to .env file", fg="green")
click.secho("API keys and model saved to .env file", fg="green")
else:
click.secho(
"No API key provided. Skipping .env file creation.", fg="yellow"
"No API keys provided. Skipping .env file creation.", fg="yellow"
)
env_vars["MODEL"] = selected_model
click.secho(f"Selected model: {selected_model}", fg="green")
click.secho(f"Selected model: {env_vars.get('MODEL', 'N/A')}", fg="green")
package_dir = Path(__file__).parent
templates_dir = package_dir / "templates" / "crew"

View File

@@ -164,7 +164,7 @@ def fetch_provider_data(cache_file):
- dict or None: The fetched provider data or None if the operation fails.
"""
try:
response = requests.get(JSON_URL, stream=True, timeout=10)
response = requests.get(JSON_URL, stream=True, timeout=60)
response.raise_for_status()
data = download_data(response)
with open(cache_file, "w") as f:

View File

@@ -5,9 +5,17 @@ from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
def reset_memories_command(
long,
short,
entity,
knowledge,
kickoff_outputs,
all,
) -> None:
"""
Reset the crew memories.
@@ -17,6 +25,7 @@ def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
entity (bool): Whether to reset the entity memory.
kickoff_outputs (bool): Whether to reset the latest kickoff task outputs.
all (bool): Whether to reset all memories.
knowledge (bool): Whether to reset the knowledge.
"""
try:
@@ -25,6 +34,7 @@ def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
EntityMemory().reset()
LongTermMemory().reset()
TaskOutputStorageHandler().reset()
KnowledgeStorage().reset()
click.echo("All memories have been reset.")
else:
if long:
@@ -40,6 +50,9 @@ def reset_memories_command(long, short, entity, kickoff_outputs, all) -> None:
if kickoff_outputs:
TaskOutputStorageHandler().reset()
click.echo("Latest Kickoff outputs stored has been reset.")
if knowledge:
KnowledgeStorage().reset()
click.echo("Knowledge has been reset.")
except subprocess.CalledProcessError as e:
click.echo(f"An error occurred while resetting the memories: {e}", err=True)

View File

@@ -24,7 +24,6 @@ def run_crew() -> None:
f"Please run `crewai update` to update your pyproject.toml to use uv.",
fg="red",
)
print()
try:
subprocess.run(command, capture_output=False, text=True, check=True)

View File

@@ -8,9 +8,12 @@ from crewai.project import CrewBase, agent, crew, task
# from crewai_tools import SerperDevTool
@CrewBase
class {{crew_name}}Crew():
class {{crew_name}}():
"""{{crew_name}} crew"""
agents_config = 'config/agents.yaml'
tasks_config = 'config/tasks.yaml'
@agent
def researcher(self) -> Agent:
return Agent(
@@ -48,4 +51,4 @@ class {{crew_name}}Crew():
process=Process.sequential,
verbose=True,
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/
)
)

View File

@@ -1,6 +1,10 @@
#!/usr/bin/env python
import sys
from {{folder_name}}.crew import {{crew_name}}Crew
import warnings
from {{folder_name}}.crew import {{crew_name}}
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
# This main file is intended to be a way for you to run your
# crew locally, so refrain from adding unnecessary logic into this file.
@@ -14,7 +18,7 @@ def run():
inputs = {
'topic': 'AI LLMs'
}
{{crew_name}}Crew().crew().kickoff(inputs=inputs)
{{crew_name}}().crew().kickoff(inputs=inputs)
def train():
@@ -25,7 +29,7 @@ def train():
"topic": "AI LLMs"
}
try:
{{crew_name}}Crew().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
{{crew_name}}().crew().train(n_iterations=int(sys.argv[1]), filename=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")
@@ -35,7 +39,7 @@ def replay():
Replay the crew execution from a specific task.
"""
try:
{{crew_name}}Crew().crew().replay(task_id=sys.argv[1])
{{crew_name}}().crew().replay(task_id=sys.argv[1])
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")
@@ -48,7 +52,7 @@ def test():
"topic": "AI LLMs"
}
try:
{{crew_name}}Crew().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)
except Exception as e:
raise Exception(f"An error occurred while replaying the crew: {e}")

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.76.9,<1.0.0"
"crewai[tools]>=0.80.0,<1.0.0"
]
[project.scripts]

View File

@@ -1,7 +1,8 @@
from crewai.tools import BaseTool
from typing import Type
from crewai_tools import BaseTool
from pydantic import BaseModel, Field
class MyCustomToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.76.9,<1.0.0",
"crewai[tools]>=0.80.0,<1.0.0",
]
[project.scripts]

View File

@@ -1,6 +1,6 @@
from typing import Type
from crewai_tools import BaseTool
from crewai.tools import BaseTool
from pydantic import BaseModel, Field

View File

@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = ">=0.76.9,<1.0.0" }
crewai = { extras = ["tools"], version = ">=0.80.0,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]

View File

@@ -1,7 +1,8 @@
from typing import Type
from crewai_tools import BaseTool
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyCustomToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.76.9,<1.0.0"
"crewai[tools]>=0.80.0,<1.0.0"
]
[project.scripts]

View File

@@ -1,7 +1,8 @@
from typing import Type
from crewai_tools import BaseTool
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyCustomToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")

View File

@@ -5,6 +5,6 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.76.9"
"crewai[tools]>=0.80.0"
]

View File

@@ -1,4 +1,5 @@
from crewai_tools import BaseTool
from crewai.tools import BaseTool
class {{class_name}}(BaseTool):
name: str = "Name of my tool"

View File

@@ -5,7 +5,7 @@ import uuid
import warnings
from concurrent.futures import Future
from hashlib import md5
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
from pydantic import (
UUID4,
@@ -27,17 +27,17 @@ from crewai.llm import LLM
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.knowledge.knowledge import Knowledge
from crewai.memory.user.user_memory import UserMemory
from crewai.process import Process
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools import AgentTools
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import (
TRAINING_DATA_FILE,
)
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.formatter import (
@@ -71,6 +71,7 @@ class Crew(BaseModel):
manager_llm: The language model that will run manager agent.
manager_agent: Custom agent that will be used as manager.
memory: Whether the crew should use memory to store memories of it's execution.
memory_config: Configuration for the memory to be used for the crew.
cache: Whether the crew should use a cache to store the results of the tools execution.
function_calling_llm: The language model that will run the tool calling for all the agents.
process: The process flow that the crew will follow (e.g., sequential, hierarchical).
@@ -94,6 +95,7 @@ class Crew(BaseModel):
_short_term_memory: Optional[InstanceOf[ShortTermMemory]] = PrivateAttr()
_long_term_memory: Optional[InstanceOf[LongTermMemory]] = PrivateAttr()
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
_user_memory: Optional[InstanceOf[UserMemory]] = PrivateAttr()
_train: Optional[bool] = PrivateAttr(default=False)
_train_iteration: Optional[int] = PrivateAttr()
_inputs: Optional[Dict[str, Any]] = PrivateAttr(default=None)
@@ -114,6 +116,10 @@ class Crew(BaseModel):
default=False,
description="Whether the crew should use memory to store memories of it's execution",
)
memory_config: Optional[Dict[str, Any]] = Field(
default=None,
description="Configuration for the memory to be used for the crew.",
)
short_term_memory: Optional[InstanceOf[ShortTermMemory]] = Field(
default=None,
description="An Instance of the ShortTermMemory to be used by the Crew",
@@ -126,7 +132,11 @@ class Crew(BaseModel):
default=None,
description="An Instance of the EntityMemory to be used by the Crew",
)
embedder: Optional[Any] = Field(
user_memory: Optional[InstanceOf[UserMemory]] = Field(
default=None,
description="An instance of the UserMemory to be used by the Crew to store/fetch memories of a specific user.",
)
embedder: Optional[dict] = Field(
default=None,
description="Configuration for the embedder to be used for the crew.",
)
@@ -154,6 +164,16 @@ class Crew(BaseModel):
default=None,
description="Callback to be executed after each task for all agents execution.",
)
before_kickoff_callbacks: List[
Callable[[Optional[Dict[str, Any]]], Optional[Dict[str, Any]]]
] = Field(
default_factory=list,
description="List of callbacks to be executed before crew kickoff. It may be used to adjust inputs before the crew is executed.",
)
after_kickoff_callbacks: List[Callable[[CrewOutput], CrewOutput]] = Field(
default_factory=list,
description="List of callbacks to be executed after crew kickoff. It may be used to adjust the output of the crew.",
)
max_rpm: Optional[int] = Field(
default=None,
description="Maximum number of requests per minute for the crew execution to be respected.",
@@ -182,6 +202,10 @@ class Crew(BaseModel):
default=[],
description="List of execution logs for tasks",
)
knowledge: Optional[Dict[str, Any]] = Field(
default=None, description="Knowledge for the crew. Add knowledge sources to the knowledge object."
)
@field_validator("id", mode="before")
@classmethod
@@ -238,13 +262,31 @@ class Crew(BaseModel):
self._short_term_memory = (
self.short_term_memory
if self.short_term_memory
else ShortTermMemory(crew=self, embedder_config=self.embedder)
else ShortTermMemory(
crew=self,
embedder_config=self.embedder,
)
)
self._entity_memory = (
self.entity_memory
if self.entity_memory
else EntityMemory(crew=self, embedder_config=self.embedder)
)
if hasattr(self, "memory_config") and self.memory_config is not None:
self._user_memory = (
self.user_memory if self.user_memory else UserMemory(crew=self)
)
else:
self._user_memory = None
return self
@model_validator(mode="after")
def create_crew_knowledge(self) -> "Crew":
if self.knowledge:
try:
self.knowledge = Knowledge(**self.knowledge) if isinstance(self.knowledge, dict) else self.knowledge
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid knowledge configuration: {str(e)}")
return self
@model_validator(mode="after")
@@ -445,18 +487,22 @@ class Crew(BaseModel):
training_data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
for agent in train_crew.agents:
result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id)
)
if training_data.get(str(agent.id)):
result = TaskEvaluator(agent).evaluate_training_data(
training_data=training_data, agent_id=str(agent.id)
)
CrewTrainingHandler(filename).save_trained_data(
agent_id=str(agent.role), trained_data=result.model_dump()
)
CrewTrainingHandler(filename).save_trained_data(
agent_id=str(agent.role), trained_data=result.model_dump()
)
def kickoff(
self,
inputs: Optional[Dict[str, Any]] = None,
) -> CrewOutput:
for before_callback in self.before_kickoff_callbacks:
inputs = before_callback(inputs)
"""Starts the crew to work on its assigned tasks."""
self._execution_span = self._telemetry.crew_execution_span(self, inputs)
self._task_output_handler.reset()
@@ -499,6 +545,9 @@ class Crew(BaseModel):
f"The process '{self.process}' is not implemented yet."
)
for after_callback in self.after_kickoff_callbacks:
result = after_callback(result)
metrics += [agent._token_process.get_summary() for agent in self.agents]
self.usage_metrics = UsageMetrics()

View File

@@ -1,8 +1,20 @@
import asyncio
import inspect
from typing import Any, Callable, Dict, Generic, List, Set, Type, TypeVar, Union
from typing import (
Any,
Callable,
Dict,
Generic,
List,
Optional,
Set,
Type,
TypeVar,
Union,
cast,
)
from pydantic import BaseModel
from pydantic import BaseModel, ValidationError
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.utils import get_possible_return_constants
@@ -119,7 +131,6 @@ class FlowMeta(type):
condition_type = getattr(attr_value, "__condition_type__", "OR")
listeners[attr_name] = (condition_type, methods)
# TODO: should we add a check for __condition_type__ 'AND'?
elif hasattr(attr_value, "__is_router__"):
routers[attr_value.__router_for__] = attr_name
possible_returns = get_possible_return_constants(attr_value)
@@ -159,8 +170,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
def __init__(self) -> None:
self._methods: Dict[str, Callable] = {}
self._state: T = self._create_initial_state()
self._executed_methods: Set[str] = set()
self._scheduled_tasks: Set[str] = set()
self._method_execution_counts: Dict[str, int] = {}
self._pending_and_listeners: Dict[str, Set[str]] = {}
self._method_outputs: List[Any] = [] # List to store all method outputs
@@ -191,10 +201,74 @@ class Flow(Generic[T], metaclass=FlowMeta):
"""Returns the list of all outputs from executed methods."""
return self._method_outputs
def kickoff(self) -> Any:
def _initialize_state(self, inputs: Dict[str, Any]) -> None:
"""
Initializes or updates the state with the provided inputs.
Args:
inputs: Dictionary of inputs to initialize or update the state.
Raises:
ValueError: If inputs do not match the structured state model.
TypeError: If state is neither a BaseModel instance nor a dictionary.
"""
if isinstance(self._state, BaseModel):
# Structured state management
try:
# Define a function to create the dynamic class
def create_model_with_extra_forbid(
base_model: Type[BaseModel],
) -> Type[BaseModel]:
class ModelWithExtraForbid(base_model): # type: ignore
model_config = base_model.model_config.copy()
model_config["extra"] = "forbid"
return ModelWithExtraForbid
# Create the dynamic class
ModelWithExtraForbid = create_model_with_extra_forbid(
self._state.__class__
)
# Create a new instance using the combined state and inputs
self._state = cast(
T, ModelWithExtraForbid(**{**self._state.model_dump(), **inputs})
)
except ValidationError as e:
raise ValueError(f"Invalid inputs for structured state: {e}") from e
elif isinstance(self._state, dict):
# Unstructured state management
self._state.update(inputs)
else:
raise TypeError("State must be a BaseModel instance or a dictionary.")
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Starts the execution of the flow synchronously.
Args:
inputs: Optional dictionary of inputs to initialize or update the state.
Returns:
The final output from the flow execution.
"""
if inputs is not None:
self._initialize_state(inputs)
return asyncio.run(self.kickoff_async())
async def kickoff_async(self) -> Any:
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Starts the execution of the flow asynchronously.
Args:
inputs: Optional dictionary of inputs to initialize or update the state.
Returns:
The final output from the flow execution.
"""
if inputs is not None:
self._initialize_state(inputs)
if not self._start_methods:
raise ValueError("No start method defined")
@@ -233,7 +307,10 @@ class Flow(Generic[T], metaclass=FlowMeta):
)
self._method_outputs.append(result) # Store the output
self._executed_methods.add(method_name)
# Track method execution counts
self._method_execution_counts[method_name] = (
self._method_execution_counts.get(method_name, 0) + 1
)
return result
@@ -243,35 +320,34 @@ class Flow(Generic[T], metaclass=FlowMeta):
if trigger_method in self._routers:
router_method = self._methods[self._routers[trigger_method]]
path = await self._execute_method(
trigger_method, router_method
) # TODO: Change or not?
# Use the path as the new trigger method
self._routers[trigger_method], router_method
)
trigger_method = path
for listener_name, (condition_type, methods) in self._listeners.items():
if condition_type == "OR":
if trigger_method in methods:
if (
listener_name not in self._executed_methods
and listener_name not in self._scheduled_tasks
):
self._scheduled_tasks.add(listener_name)
listener_tasks.append(
self._execute_single_listener(listener_name, result)
)
# Schedule the listener without preventing re-execution
listener_tasks.append(
self._execute_single_listener(listener_name, result)
)
elif condition_type == "AND":
if all(method in self._executed_methods for method in methods):
if (
listener_name not in self._executed_methods
and listener_name not in self._scheduled_tasks
):
self._scheduled_tasks.add(listener_name)
listener_tasks.append(
self._execute_single_listener(listener_name, result)
)
# Initialize pending methods for this listener if not already done
if listener_name not in self._pending_and_listeners:
self._pending_and_listeners[listener_name] = set(methods)
# Remove the trigger method from pending methods
self._pending_and_listeners[listener_name].discard(trigger_method)
if not self._pending_and_listeners[listener_name]:
# All required methods have been executed
listener_tasks.append(
self._execute_single_listener(listener_name, result)
)
# Reset pending methods for this listener
self._pending_and_listeners.pop(listener_name, None)
# Run all listener tasks concurrently and wait for them to complete
await asyncio.gather(*listener_tasks)
if listener_tasks:
await asyncio.gather(*listener_tasks)
async def _execute_single_listener(self, listener_name: str, result: Any) -> None:
try:
@@ -291,9 +367,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
# If listener does not expect parameters, call without arguments
listener_result = await self._execute_method(listener_name, method)
# Remove from scheduled tasks after execution
self._scheduled_tasks.discard(listener_name)
# Execute listeners of this listener
await self._execute_listeners(listener_name, listener_result)
except Exception as e:

View File

@@ -0,0 +1,55 @@
from abc import ABC, abstractmethod
from typing import List
import numpy as np
class BaseEmbedder(ABC):
"""
Abstract base class for text embedding models
"""
@abstractmethod
def embed_chunks(self, chunks: List[str]) -> np.ndarray:
"""
Generate embeddings for a list of text chunks
Args:
chunks: List of text chunks to embed
Returns:
Array of embeddings
"""
pass
@abstractmethod
def embed_texts(self, texts: List[str]) -> np.ndarray:
"""
Generate embeddings for a list of texts
Args:
texts: List of texts to embed
Returns:
Array of embeddings
"""
pass
@abstractmethod
def embed_text(self, text: str) -> np.ndarray:
"""
Generate embedding for a single text
Args:
text: Text to embed
Returns:
Embedding array
"""
pass
@property
@abstractmethod
def dimension(self) -> int:
"""Get the dimension of the embeddings"""
pass

View File

@@ -0,0 +1,93 @@
from pathlib import Path
from typing import List, Optional, Union
import numpy as np
from .base_embedder import BaseEmbedder
try:
from fastembed_gpu import TextEmbedding # type: ignore
FASTEMBED_AVAILABLE = True
except ImportError:
try:
from fastembed import TextEmbedding
FASTEMBED_AVAILABLE = True
except ImportError:
FASTEMBED_AVAILABLE = False
class FastEmbed(BaseEmbedder):
"""
A wrapper class for text embedding models using FastEmbed
"""
def __init__(
self,
model_name: str = "BAAI/bge-small-en-v1.5",
cache_dir: Optional[Union[str, Path]] = None,
):
"""
Initialize the embedding model
Args:
model_name: Name of the model to use
cache_dir: Directory to cache the model
gpu: Whether to use GPU acceleration
"""
if not FASTEMBED_AVAILABLE:
raise ImportError(
"FastEmbed is not installed. Please install it with: "
"uv pip install fastembed or uv pip install fastembed-gpu for GPU support"
)
self.model = TextEmbedding(
model_name=model_name,
cache_dir=str(cache_dir) if cache_dir else None,
)
def embed_chunks(self, chunks: List[str]) -> List[np.ndarray]:
"""
Generate embeddings for a list of text chunks
Args:
chunks: List of text chunks to embed
Returns:
List of embeddings
"""
embeddings = list(self.model.embed(chunks))
return embeddings
def embed_texts(self, texts: List[str]) -> List[np.ndarray]:
"""
Generate embeddings for a list of texts
Args:
texts: List of texts to embed
Returns:
List of embeddings
"""
embeddings = list(self.model.embed(texts))
return embeddings
def embed_text(self, text: str) -> np.ndarray:
"""
Generate embedding for a single text
Args:
text: Text to embed
Returns:
Embedding array
"""
return self.embed_texts([text])[0]
@property
def dimension(self) -> int:
"""Get the dimension of the embeddings"""
# Generate a test embedding to get dimensions
test_embed = self.embed_text("test")
return len(test_embed)

View File

@@ -0,0 +1,54 @@
import os
from typing import List, Optional, Dict, Any
from pydantic import BaseModel, ConfigDict, Field
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
from crewai.utilities.logger import Logger
from crewai.utilities.constants import DEFAULT_SCORE_THRESHOLD
os.environ["TOKENIZERS_PARALLELISM"] = "false" # removes logging from fastembed
class Knowledge(BaseModel):
"""
Knowledge is a collection of sources and setup for the vector store to save and query relevant context.
Args:
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
embedder_config: Optional[Dict[str, Any]] = None
"""
sources: List[BaseKnowledgeSource] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
embedder_config: Optional[Dict[str, Any]] = None
def __init__(self, embedder_config: Optional[Dict[str, Any]] = None, **data):
super().__init__(**data)
self.storage = KnowledgeStorage(embedder_config=embedder_config or None)
try:
for source in self.sources:
source.add()
except Exception as e:
Logger(verbose=True).log(
"warning",
f"Failed to init knowledge: {e}",
color="yellow",
)
def query(
self, query: List[str], limit: int = 3, preference: Optional[str] = None
) -> List[Dict[str, Any]]:
"""
Query across all knowledge sources to find the most relevant information.
Returns the top_k most relevant chunks.
"""
results = self.storage.search(
query,
limit,
filter={"preference": preference} if preference else None,
score_threshold=DEFAULT_SCORE_THRESHOLD,
)
return results

View File

View File

@@ -0,0 +1,36 @@
from pathlib import Path
from typing import Union, List
from pydantic import Field
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from typing import Dict, Any
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
class BaseFileKnowledgeSource(BaseKnowledgeSource):
"""Base class for knowledge sources that load content from files."""
file_path: Union[Path, List[Path]] = Field(...)
content: Dict[Path, str] = Field(init=False, default_factory=dict)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
def model_post_init(self, _):
"""Post-initialization method to load content."""
self.content = self.load_content()
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess file content. Should be overridden by subclasses."""
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
for path in paths:
if not path.exists():
raise FileNotFoundError(f"File not found: {path}")
if not path.is_file():
raise ValueError(f"Path is not a file: {path}")
return {}
def save_documents(self, metadata: Dict[str, Any]):
"""Save the documents to the storage."""
chunk_metadatas = [metadata.copy() for _ in self.chunks]
self.storage.save(self.chunks, chunk_metadatas)

View File

@@ -0,0 +1,48 @@
from abc import ABC, abstractmethod
from typing import List, Dict, Any
import numpy as np
from pydantic import BaseModel, ConfigDict, Field
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
class BaseKnowledgeSource(BaseModel, ABC):
"""Abstract base class for knowledge sources."""
chunk_size: int = 4000
chunk_overlap: int = 200
chunks: List[str] = Field(default_factory=list)
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
metadata: Dict[str, Any] = Field(default_factory=dict)
@abstractmethod
def load_content(self) -> Dict[Any, str]:
"""Load and preprocess content from the source."""
pass
@abstractmethod
def add(self) -> None:
"""Process content, chunk it, compute embeddings, and save them."""
pass
def get_embeddings(self) -> List[np.ndarray]:
"""Return the list of embeddings for the chunks."""
return self.chunk_embeddings
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]
def save_documents(self, metadata: Dict[str, Any]):
"""
Save the documents to the storage.
This method should be called after the chunks and embeddings are generated.
"""
self.storage.save(self.chunks, metadata)

View File

@@ -0,0 +1,44 @@
import csv
from typing import Dict, List
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class CSVKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries CSV file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess CSV file content."""
super().load_content() # Validate the file path
file_path = (
self.file_path[0] if isinstance(self.file_path, list) else self.file_path
)
file_path = Path(file_path) if isinstance(file_path, str) else file_path
with open(file_path, "r", encoding="utf-8") as csvfile:
reader = csv.reader(csvfile)
content = ""
for row in reader:
content += " ".join(row) + "\n"
return {file_path: content}
def add(self) -> None:
"""
Add CSV file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
content_str = (
str(self.content) if isinstance(self.content, dict) else self.content
)
new_chunks = self._chunk_text(content_str)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

@@ -0,0 +1,56 @@
from typing import Dict, List
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class ExcelKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries Excel file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess Excel file content."""
super().load_content() # Validate the file path
pd = self._import_dependencies()
if isinstance(self.file_path, list):
file_path = self.file_path[0]
else:
file_path = self.file_path
df = pd.read_excel(file_path)
content = df.to_csv(index=False)
return {file_path: content}
def _import_dependencies(self):
"""Dynamically import dependencies."""
try:
import openpyxl # noqa
import pandas as pd
return pd
except ImportError as e:
missing_package = str(e).split()[-1]
raise ImportError(
f"{missing_package} is not installed. Please install it with: pip install {missing_package}"
)
def add(self) -> None:
"""
Add Excel file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
# Convert dictionary values to a single string if content is a dictionary
if isinstance(self.content, dict):
content_str = "\n".join(str(value) for value in self.content.values())
else:
content_str = str(self.content)
new_chunks = self._chunk_text(content_str)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

@@ -0,0 +1,54 @@
import json
from typing import Any, Dict, List
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class JSONKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries JSON file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess JSON file content."""
super().load_content() # Validate the file path
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
content: Dict[Path, str] = {}
for path in paths:
with open(path, "r", encoding="utf-8") as json_file:
data = json.load(json_file)
content[path] = self._json_to_text(data)
return content
def _json_to_text(self, data: Any, level: int = 0) -> str:
"""Recursively convert JSON data to a text representation."""
text = ""
indent = " " * level
if isinstance(data, dict):
for key, value in data.items():
text += f"{indent}{key}: {self._json_to_text(value, level + 1)}\n"
elif isinstance(data, list):
for item in data:
text += f"{indent}- {self._json_to_text(item, level + 1)}\n"
else:
text += f"{str(data)}"
return text
def add(self) -> None:
"""
Add JSON file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
content_str = (
str(self.content) if isinstance(self.content, dict) else self.content
)
new_chunks = self._chunk_text(content_str)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

@@ -0,0 +1,54 @@
from typing import List, Dict
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class PDFKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries PDF file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess PDF file content."""
super().load_content() # Validate the file paths
pdfplumber = self._import_pdfplumber()
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
content = {}
for path in paths:
text = ""
with pdfplumber.open(path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
content[path] = text
return content
def _import_pdfplumber(self):
"""Dynamically import pdfplumber."""
try:
import pdfplumber
return pdfplumber
except ImportError:
raise ImportError(
"pdfplumber is not installed. Please install it with: pip install pdfplumber"
)
def add(self) -> None:
"""
Add PDF file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
for _, text in self.content.items():
new_chunks = self._chunk_text(text)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

@@ -0,0 +1,33 @@
from typing import List
from pydantic import Field
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
class StringKnowledgeSource(BaseKnowledgeSource):
"""A knowledge source that stores and queries plain text content using embeddings."""
content: str = Field(...)
def model_post_init(self, _):
"""Post-initialization method to validate content."""
self.load_content()
def load_content(self):
"""Validate string content."""
if not isinstance(self.content, str):
raise ValueError("StringKnowledgeSource only accepts string content")
def add(self) -> None:
"""Add string content to the knowledge source, chunk it, compute embeddings, and save them."""
new_chunks = self._chunk_text(self.content)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

@@ -0,0 +1,35 @@
from typing import Dict, List
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class TextFileKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries text file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess text file content."""
super().load_content()
paths = [self.file_path] if isinstance(self.file_path, Path) else self.file_path
content = {}
for path in paths:
with path.open("r", encoding="utf-8") as f:
content[path] = f.read() # type: ignore
return content
def add(self) -> None:
"""
Add text file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
for _, text in self.content.items():
new_chunks = self._chunk_text(text)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]

View File

View File

@@ -0,0 +1,29 @@
from abc import ABC, abstractmethod
from typing import Dict, Any, List, Optional
class BaseKnowledgeStorage(ABC):
"""Abstract base class for knowledge storage implementations."""
@abstractmethod
def search(
self,
query: List[str],
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Dict[str, Any]]:
"""Search for documents in the knowledge base."""
pass
@abstractmethod
def save(
self, documents: List[str], metadata: Dict[str, Any] | List[Dict[str, Any]]
) -> None:
"""Save documents to the knowledge base."""
pass
@abstractmethod
def reset(self) -> None:
"""Reset the knowledge base."""
pass

View File

@@ -0,0 +1,132 @@
import contextlib
import io
import logging
import chromadb
import os
from crewai.utilities.paths import db_storage_path
from typing import Optional, List
from typing import Dict, Any
from crewai.utilities import EmbeddingConfigurator
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
import hashlib
@contextlib.contextmanager
def suppress_logging(
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
level=logging.ERROR,
):
logger = logging.getLogger(logger_name)
original_level = logger.getEffectiveLevel()
logger.setLevel(level)
with (
contextlib.redirect_stdout(io.StringIO()),
contextlib.redirect_stderr(io.StringIO()),
contextlib.suppress(UserWarning),
):
yield
logger.setLevel(original_level)
class KnowledgeStorage(BaseKnowledgeStorage):
"""
Extends Storage to handle embeddings for memory entries, improving
search efficiency.
"""
collection: Optional[chromadb.Collection] = None
def __init__(self, embedder_config: Optional[Dict[str, Any]] = None):
self._initialize_app(embedder_config or {})
def search(
self,
query: List[str],
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Dict[str, Any]]:
with suppress_logging():
if self.collection:
fetched = self.collection.query(
query_texts=query,
n_results=limit,
where=filter,
)
results = []
for i in range(len(fetched["ids"][0])): # type: ignore
result = {
"id": fetched["ids"][0][i], # type: ignore
"metadata": fetched["metadatas"][0][i], # type: ignore
"context": fetched["documents"][0][i], # type: ignore
"score": fetched["distances"][0][i], # type: ignore
}
if result["score"] >= score_threshold: # type: ignore
results.append(result)
return results
else:
raise Exception("Collection not initialized")
def _initialize_app(self, embedder_config: Optional[Dict[str, Any]] = None):
import chromadb
from chromadb.config import Settings
self._set_embedder_config(embedder_config)
chroma_client = chromadb.PersistentClient(
path=f"{db_storage_path()}/knowledge",
settings=Settings(allow_reset=True),
)
self.app = chroma_client
try:
self.collection = self.app.get_or_create_collection(name="knowledge")
except Exception:
raise Exception("Failed to create or get collection")
def reset(self):
if self.app:
self.app.reset()
def save(
self, documents: List[str], metadata: Dict[str, Any] | List[Dict[str, Any]]
):
if self.collection:
metadatas = [metadata] if isinstance(metadata, dict) else metadata
ids = [
hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents
]
self.collection.upsert(
documents=documents,
metadatas=metadatas,
ids=ids,
)
else:
raise Exception("Collection not initialized")
def _create_default_embedding_function(self):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
def _set_embedder_config(
self, embedder_config: Optional[Dict[str, Any]] = None
) -> None:
"""Set the embedding configuration for the knowledge storage.
Args:
embedder_config (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
If None or empty, defaults to the default embedding function.
"""
self.embedder_config = (
EmbeddingConfigurator().configure_embedder(embedder_config)
if embedder_config
else self._create_default_embedding_function()
)

View File

@@ -1,7 +1,10 @@
import io
import logging
import sys
import warnings
from contextlib import contextmanager
from typing import Any, Dict, List, Optional, Union
import logging
import warnings
import litellm
from litellm import get_supported_openai_params
@@ -9,9 +12,6 @@ from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
import sys
import io
class FilteredStream(io.StringIO):
def write(self, s):
@@ -118,12 +118,12 @@ class LLM:
litellm.drop_params = True
litellm.set_verbose = False
litellm.callbacks = callbacks
self.set_callbacks(callbacks)
def call(self, messages: List[Dict[str, str]], callbacks: List[Any] = []) -> str:
with suppress_warnings():
if callbacks and len(callbacks) > 0:
litellm.callbacks = callbacks
self.set_callbacks(callbacks)
try:
params = {
@@ -181,3 +181,15 @@ class LLM:
def get_context_window_size(self) -> int:
# Only using 75% of the context window size to avoid cutting the message in the middle
return int(LLM_CONTEXT_WINDOW_SIZES.get(self.model, 8192) * 0.75)
def set_callbacks(self, callbacks: List[Any]):
callback_types = [type(callback) for callback in callbacks]
for callback in litellm.success_callback[:]:
if type(callback) in callback_types:
litellm.success_callback.remove(callback)
for callback in litellm._async_success_callback[:]:
if type(callback) in callback_types:
litellm._async_success_callback.remove(callback)
litellm.callbacks = callbacks

View File

@@ -1,5 +1,6 @@
from .entity.entity_memory import EntityMemory
from .long_term.long_term_memory import LongTermMemory
from .short_term.short_term_memory import ShortTermMemory
from .user.user_memory import UserMemory
__all__ = ["EntityMemory", "LongTermMemory", "ShortTermMemory"]
__all__ = ["UserMemory", "EntityMemory", "LongTermMemory", "ShortTermMemory"]

View File

@@ -1,13 +1,25 @@
from typing import Optional
from typing import Optional, Dict, Any
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory, UserMemory
class ContextualMemory:
def __init__(self, stm: ShortTermMemory, ltm: LongTermMemory, em: EntityMemory):
def __init__(
self,
memory_config: Optional[Dict[str, Any]],
stm: ShortTermMemory,
ltm: LongTermMemory,
em: EntityMemory,
um: UserMemory,
):
if memory_config is not None:
self.memory_provider = memory_config.get("provider")
else:
self.memory_provider = None
self.stm = stm
self.ltm = ltm
self.em = em
self.um = um
def build_context_for_task(self, task, context) -> str:
"""
@@ -23,6 +35,8 @@ class ContextualMemory:
context.append(self._fetch_ltm_context(task.description))
context.append(self._fetch_stm_context(query))
context.append(self._fetch_entity_context(query))
if self.memory_provider == "mem0":
context.append(self._fetch_user_context(query))
return "\n".join(filter(None, context))
def _fetch_stm_context(self, query) -> str:
@@ -32,7 +46,10 @@ class ContextualMemory:
"""
stm_results = self.stm.search(query)
formatted_results = "\n".join(
[f"- {result['context']}" for result in stm_results]
[
f"- {result['memory'] if self.memory_provider == 'mem0' else result['context']}"
for result in stm_results
]
)
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
@@ -62,6 +79,26 @@ class ContextualMemory:
"""
em_results = self.em.search(query)
formatted_results = "\n".join(
[f"- {result['context']}" for result in em_results] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
[
f"- {result['memory'] if self.memory_provider == 'mem0' else result['context']}"
for result in em_results
] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
)
return f"Entities:\n{formatted_results}" if em_results else ""
def _fetch_user_context(self, query: str) -> str:
"""
Fetches and formats relevant user information from User Memory.
Args:
query (str): The search query to find relevant user memories.
Returns:
str: Formatted user memories as bullet points, or an empty string if none found.
"""
user_memories = self.um.search(query)
if not user_memories:
return ""
formatted_memories = "\n".join(
f"- {result['memory']}" for result in user_memories
)
return f"User memories/preferences:\n{formatted_memories}"

View File

@@ -11,21 +11,43 @@ class EntityMemory(Memory):
"""
def __init__(self, crew=None, embedder_config=None, storage=None):
storage = (
storage
if storage
else RAGStorage(
type="entities",
allow_reset=True,
embedder_config=embedder_config,
crew=crew,
if hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None
if self.memory_provider == "mem0":
try:
from crewai.memory.storage.mem0_storage import Mem0Storage
except ImportError:
raise ImportError(
"Mem0 is not installed. Please install it with `pip install mem0ai`."
)
storage = Mem0Storage(type="entities", crew=crew)
else:
storage = (
storage
if storage
else RAGStorage(
type="entities",
allow_reset=True,
embedder_config=embedder_config,
crew=crew,
)
)
)
super().__init__(storage)
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
"""Saves an entity item into the SQLite storage."""
data = f"{item.name}({item.type}): {item.description}"
if self.memory_provider == "mem0":
data = f"""
Remember details about the following entity:
Name: {item.name}
Type: {item.type}
Entity Description: {item.description}
"""
else:
data = f"{item.name}({item.type}): {item.description}"
super().save(data, item.metadata)
def reset(self) -> None:

View File

@@ -23,5 +23,12 @@ class Memory:
self.storage.save(value, metadata)
def search(self, query: str) -> List[Dict[str, Any]]:
return self.storage.search(query)
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
) -> List[Any]:
return self.storage.search(
query=query, limit=limit, score_threshold=score_threshold
)

View File

@@ -14,13 +14,27 @@ class ShortTermMemory(Memory):
"""
def __init__(self, crew=None, embedder_config=None, storage=None):
storage = (
storage
if storage
else RAGStorage(
type="short_term", embedder_config=embedder_config, crew=crew
if hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None
if self.memory_provider == "mem0":
try:
from crewai.memory.storage.mem0_storage import Mem0Storage
except ImportError:
raise ImportError(
"Mem0 is not installed. Please install it with `pip install mem0ai`."
)
storage = Mem0Storage(type="short_term", crew=crew)
else:
storage = (
storage
if storage
else RAGStorage(
type="short_term", embedder_config=embedder_config, crew=crew
)
)
)
super().__init__(storage)
def save(
@@ -30,11 +44,20 @@ class ShortTermMemory(Memory):
agent: Optional[str] = None,
) -> None:
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
if self.memory_provider == "mem0":
item.data = f"Remember the following insights from Agent run: {item.data}"
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
def search(self, query: str, score_threshold: float = 0.35):
return self.storage.search(query=query, score_threshold=score_threshold) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
):
return self.storage.search(
query=query, limit=limit, score_threshold=score_threshold
) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
def reset(self) -> None:
try:

View File

@@ -7,8 +7,10 @@ class Storage:
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
pass
def search(self, key: str) -> List[Dict[str, Any]]: # type: ignore
pass
def search(
self, query: str, limit: int, score_threshold: float
) -> Dict[str, Any] | List[Any]:
return {}
def reset(self) -> None:
pass

View File

@@ -103,7 +103,7 @@ class KickoffTaskOutputsSQLiteStorage:
else value
)
query = f"UPDATE latest_kickoff_task_outputs SET {', '.join(fields)} WHERE task_index = ?"
query = f"UPDATE latest_kickoff_task_outputs SET {', '.join(fields)} WHERE task_index = ?" # nosec
values.append(task_index)
cursor.execute(query, tuple(values))

View File

@@ -83,7 +83,7 @@ class LTMSQLiteStorage:
WHERE task_description = ?
ORDER BY datetime DESC, score ASC
LIMIT {latest_n}
""",
""", # nosec
(task_description,),
)
rows = cursor.fetchall()

View File

@@ -0,0 +1,104 @@
import os
from typing import Any, Dict, List
from mem0 import MemoryClient
from crewai.memory.storage.interface import Storage
class Mem0Storage(Storage):
"""
Extends Storage to handle embedding and searching across entities using Mem0.
"""
def __init__(self, type, crew=None):
super().__init__()
if type not in ["user", "short_term", "long_term", "entities"]:
raise ValueError("Invalid type for Mem0Storage. Must be 'user' or 'agent'.")
self.memory_type = type
self.crew = crew
self.memory_config = crew.memory_config
# User ID is required for user memory type "user" since it's used as a unique identifier for the user.
user_id = self._get_user_id()
if type == "user" and not user_id:
raise ValueError("User ID is required for user memory type")
# API key in memory config overrides the environment variable
mem0_api_key = self.memory_config.get("config", {}).get("api_key") or os.getenv(
"MEM0_API_KEY"
)
self.memory = MemoryClient(api_key=mem0_api_key)
def _sanitize_role(self, role: str) -> str:
"""
Sanitizes agent roles to ensure valid directory names.
"""
return role.replace("\n", "").replace(" ", "_").replace("/", "_")
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
user_id = self._get_user_id()
agent_name = self._get_agent_name()
if self.memory_type == "user":
self.memory.add(value, user_id=user_id, metadata={**metadata})
elif self.memory_type == "short_term":
agent_name = self._get_agent_name()
self.memory.add(
value, agent_id=agent_name, metadata={"type": "short_term", **metadata}
)
elif self.memory_type == "long_term":
agent_name = self._get_agent_name()
self.memory.add(
value,
agent_id=agent_name,
infer=False,
metadata={"type": "long_term", **metadata},
)
elif self.memory_type == "entities":
entity_name = None
self.memory.add(
value, user_id=entity_name, metadata={"type": "entity", **metadata}
)
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
) -> List[Any]:
params = {"query": query, "limit": limit}
if self.memory_type == "user":
user_id = self._get_user_id()
params["user_id"] = user_id
elif self.memory_type == "short_term":
agent_name = self._get_agent_name()
params["agent_id"] = agent_name
params["metadata"] = {"type": "short_term"}
elif self.memory_type == "long_term":
agent_name = self._get_agent_name()
params["agent_id"] = agent_name
params["metadata"] = {"type": "long_term"}
elif self.memory_type == "entities":
agent_name = self._get_agent_name()
params["agent_id"] = agent_name
params["metadata"] = {"type": "entity"}
# Discard the filters for now since we create the filters
# automatically when the crew is created.
results = self.memory.search(**params)
return [r for r in results if r["score"] >= score_threshold]
def _get_user_id(self):
if self.memory_type == "user":
if hasattr(self, "memory_config") and self.memory_config is not None:
return self.memory_config.get("config", {}).get("user_id")
else:
return None
return None
def _get_agent_name(self):
agents = self.crew.agents if self.crew else []
agents = [self._sanitize_role(agent.role) for agent in agents]
agents = "_".join(agents)
return agents

View File

@@ -4,13 +4,12 @@ import logging
import os
import shutil
import uuid
from typing import Any, Dict, List, Optional
from chromadb.api import ClientAPI
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities.paths import db_storage_path
from chromadb.api import ClientAPI
from chromadb.api.types import validate_embedding_function
from chromadb import Documents, EmbeddingFunction, Embeddings
from typing import cast
from crewai.utilities import EmbeddingConfigurator
@contextlib.contextmanager
@@ -21,9 +20,11 @@ def suppress_logging(
logger = logging.getLogger(logger_name)
original_level = logger.getEffectiveLevel()
logger.setLevel(level)
with contextlib.redirect_stdout(io.StringIO()), contextlib.redirect_stderr(
io.StringIO()
), contextlib.suppress(UserWarning):
with (
contextlib.redirect_stdout(io.StringIO()),
contextlib.redirect_stderr(io.StringIO()),
contextlib.suppress(UserWarning),
):
yield
logger.setLevel(original_level)
@@ -49,77 +50,8 @@ class RAGStorage(BaseRAGStorage):
self._initialize_app()
def _set_embedder_config(self):
import chromadb.utils.embedding_functions as embedding_functions
if self.embedder_config is None:
self.embedder_config = self._create_default_embedding_function()
if isinstance(self.embedder_config, dict):
provider = self.embedder_config.get("provider")
config = self.embedder_config.get("config", {})
model_name = config.get("model")
if provider == "openai":
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
model_name=model_name,
)
elif provider == "azure":
self.embedder_config = embedding_functions.OpenAIEmbeddingFunction(
api_key=config.get("api_key"),
api_base=config.get("api_base"),
api_type=config.get("api_type", "azure"),
api_version=config.get("api_version"),
model_name=model_name,
)
elif provider == "ollama":
from openai import OpenAI
class OllamaEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
client = OpenAI(
base_url="http://localhost:11434/v1",
api_key=config.get("api_key", "ollama"),
)
try:
response = client.embeddings.create(
input=input, model=model_name
)
embeddings = [item.embedding for item in response.data]
return cast(Embeddings, embeddings)
except Exception as e:
raise e
self.embedder_config = OllamaEmbeddingFunction()
elif provider == "vertexai":
self.embedder_config = (
embedding_functions.GoogleVertexEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
)
elif provider == "google":
self.embedder_config = (
embedding_functions.GoogleGenerativeAiEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
)
elif provider == "cohere":
self.embedder_config = embedding_functions.CohereEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
elif provider == "huggingface":
self.embedder_config = embedding_functions.HuggingFaceEmbeddingServer(
url=config.get("api_url"),
)
else:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: [openai, azure, ollama, vertexai, google, cohere, huggingface]"
)
else:
validate_embedding_function(self.embedder_config) # type: ignore # used for validating embedder_config if defined a embedding function/class
self.embedder_config = self.embedder_config
configurator = EmbeddingConfigurator()
self.embedder_config = configurator.configure_embedder(self.embedder_config)
def _initialize_app(self):
import chromadb
@@ -211,8 +143,10 @@ class RAGStorage(BaseRAGStorage):
)
def _create_default_embedding_function(self):
import chromadb.utils.embedding_functions as embedding_functions
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return embedding_functions.OpenAIEmbeddingFunction(
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)

View File

View File

@@ -0,0 +1,45 @@
from typing import Any, Dict, Optional
from crewai.memory.memory import Memory
class UserMemory(Memory):
"""
UserMemory class for handling user memory storage and retrieval.
Inherits from the Memory class and utilizes an instance of a class that
adheres to the Storage for data storage, specifically working with
MemoryItem instances.
"""
def __init__(self, crew=None):
try:
from crewai.memory.storage.mem0_storage import Mem0Storage
except ImportError:
raise ImportError(
"Mem0 is not installed. Please install it with `pip install mem0ai`."
)
storage = Mem0Storage(type="user", crew=crew)
super().__init__(storage)
def save(
self,
value,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
# TODO: Change this function since we want to take care of the case where we save memories for the usr
data = f"Remember the details about the user: {value}"
super().save(data, metadata)
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
):
results = super().search(
query=query,
limit=limit,
score_threshold=score_threshold,
)
return results

View File

@@ -0,0 +1,8 @@
from typing import Any, Dict, Optional
class UserMemoryItem:
def __init__(self, data: Any, user: str, metadata: Optional[Dict[str, Any]] = None):
self.data = data
self.user = user
self.metadata = metadata if metadata is not None else {}

View File

@@ -1,5 +1,7 @@
from .annotations import (
after_kickoff,
agent,
before_kickoff,
cache_handler,
callback,
crew,
@@ -26,4 +28,6 @@ __all__ = [
"llm",
"cache_handler",
"pipeline",
"before_kickoff",
"after_kickoff",
]

View File

@@ -5,6 +5,16 @@ from crewai import Crew
from crewai.project.utils import memoize
def before_kickoff(func):
func.is_before_kickoff = True
return func
def after_kickoff(func):
func.is_after_kickoff = True
return func
def task(func):
func.is_task = True
@@ -99,6 +109,19 @@ def crew(func) -> Callable[..., Crew]:
self.agents = instantiated_agents
self.tasks = instantiated_tasks
return func(self, *args, **kwargs)
crew = func(self, *args, **kwargs)
return wrapper
def callback_wrapper(callback, instance):
def wrapper(*args, **kwargs):
return callback(instance, *args, **kwargs)
return wrapper
for _, callback in self._before_kickoff.items():
crew.before_kickoff_callbacks.append(callback_wrapper(callback, self))
for _, callback in self._after_kickoff.items():
crew.after_kickoff_callbacks.append(callback_wrapper(callback, self))
return crew
return memoize(wrapper)

View File

@@ -34,18 +34,39 @@ def CrewBase(cls: T) -> T:
self.map_all_agent_variables()
self.map_all_task_variables()
# Preserve task and agent information
self._original_tasks = {
# Preserve all decorated functions
self._original_functions = {
name: method
for name, method in cls.__dict__.items()
if hasattr(method, "is_task") and method.is_task
}
self._original_agents = {
name: method
for name, method in cls.__dict__.items()
if hasattr(method, "is_agent") and method.is_agent
if any(
hasattr(method, attr)
for attr in [
"is_task",
"is_agent",
"is_before_kickoff",
"is_after_kickoff",
"is_kickoff",
]
)
}
# Store specific function types
self._original_tasks = self._filter_functions(
self._original_functions, "is_task"
)
self._original_agents = self._filter_functions(
self._original_functions, "is_agent"
)
self._before_kickoff = self._filter_functions(
self._original_functions, "is_before_kickoff"
)
self._after_kickoff = self._filter_functions(
self._original_functions, "is_after_kickoff"
)
self._kickoff = self._filter_functions(
self._original_functions, "is_kickoff"
)
@staticmethod
def load_yaml(config_path: Path):
try:

View File

@@ -20,6 +20,7 @@ from pydantic import (
from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tools.base_tool import BaseTool
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
@@ -91,7 +92,7 @@ class Task(BaseModel):
output: Optional[TaskOutput] = Field(
description="Task output, it's final result after being executed", default=None
)
tools: Optional[List[Any]] = Field(
tools: Optional[List[BaseTool]] = Field(
default_factory=list,
description="Tools the agent is limited to use for this task.",
)
@@ -185,7 +186,7 @@ class Task(BaseModel):
self,
agent: Optional[BaseAgent] = None,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> TaskOutput:
"""Execute the task synchronously."""
return self._execute_core(agent, context, tools)
@@ -202,7 +203,7 @@ class Task(BaseModel):
self,
agent: BaseAgent | None = None,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> Future[TaskOutput]:
"""Execute the task asynchronously."""
future: Future[TaskOutput] = Future()

View File

@@ -0,0 +1 @@
from .base_tool import BaseTool, tool

View File

@@ -1,25 +0,0 @@
from crewai.agents.agent_builder.utilities.base_agent_tool import BaseAgentTools
class AgentTools(BaseAgentTools):
"""Default tools around agent delegation"""
def tools(self):
from langchain.tools import StructuredTool
coworkers = ", ".join([f"{agent.role}" for agent in self.agents])
tools = [
StructuredTool.from_function(
func=self.delegate_work,
name="Delegate work to coworker",
description=self.i18n.tools("delegate_work").format(
coworkers=coworkers
),
),
StructuredTool.from_function(
func=self.ask_question,
name="Ask question to coworker",
description=self.i18n.tools("ask_question").format(coworkers=coworkers),
),
]
return tools

View File

@@ -0,0 +1,32 @@
from crewai.tools.base_tool import BaseTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.utilities import I18N
from .delegate_work_tool import DelegateWorkTool
from .ask_question_tool import AskQuestionTool
class AgentTools:
"""Manager class for agent-related tools"""
def __init__(self, agents: list[BaseAgent], i18n: I18N = I18N()):
self.agents = agents
self.i18n = i18n
def tools(self) -> list[BaseTool]:
"""Get all available agent tools"""
coworkers = ", ".join([f"{agent.role}" for agent in self.agents])
delegate_tool = DelegateWorkTool(
agents=self.agents,
i18n=self.i18n,
description=self.i18n.tools("delegate_work").format(coworkers=coworkers),
)
ask_tool = AskQuestionTool(
agents=self.agents,
i18n=self.i18n,
description=self.i18n.tools("ask_question").format(coworkers=coworkers),
)
return [delegate_tool, ask_tool]

View File

@@ -0,0 +1,26 @@
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
from typing import Optional
from pydantic import BaseModel, Field
class AskQuestionToolSchema(BaseModel):
question: str = Field(..., description="The question to ask")
context: str = Field(..., description="The context for the question")
coworker: str = Field(..., description="The role/name of the coworker to ask")
class AskQuestionTool(BaseAgentTool):
"""Tool for asking questions to coworkers"""
name: str = "Ask question to coworker"
args_schema: type[BaseModel] = AskQuestionToolSchema
def _run(
self,
question: str,
context: str,
coworker: Optional[str] = None,
**kwargs,
) -> str:
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, question, context)

View File

@@ -1,22 +1,19 @@
from abc import ABC, abstractmethod
from typing import List, Optional, Union
from pydantic import BaseModel, Field
from typing import Optional, Union
from pydantic import Field
from crewai.tools.base_tool import BaseTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.task import Task
from crewai.utilities import I18N
class BaseAgentTools(BaseModel, ABC):
"""Default tools around agent delegation"""
class BaseAgentTool(BaseTool):
"""Base class for agent-related tools"""
agents: List[BaseAgent] = Field(description="List of agents in this crew.")
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
@abstractmethod
def tools(self):
pass
agents: list[BaseAgent] = Field(description="List of available agents")
i18n: I18N = Field(
default_factory=I18N, description="Internationalization settings"
)
def _get_coworker(self, coworker: Optional[str], **kwargs) -> Optional[str]:
coworker = coworker or kwargs.get("co_worker") or kwargs.get("coworker")
@@ -24,27 +21,11 @@ class BaseAgentTools(BaseModel, ABC):
is_list = coworker.startswith("[") and coworker.endswith("]")
if is_list:
coworker = coworker[1:-1].split(",")[0]
return coworker
def delegate_work(
self, task: str, context: str, coworker: Optional[str] = None, **kwargs
):
"""Useful to delegate a specific task to a coworker passing all necessary context and names."""
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, task, context)
def ask_question(
self, question: str, context: str, coworker: Optional[str] = None, **kwargs
):
"""Useful to ask a question, opinion or take from a coworker passing all necessary context and names."""
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, question, context)
def _execute(
self, agent_name: Union[str, None], task: str, context: Union[str, None]
):
"""Execute the command."""
) -> str:
try:
if agent_name is None:
agent_name = ""
@@ -57,7 +38,6 @@ class BaseAgentTools(BaseModel, ABC):
# when it should look like this:
# {"task": "....", "coworker": "...."}
agent_name = agent_name.casefold().replace('"', "").replace("\n", "")
agent = [ # type: ignore # Incompatible types in assignment (expression has type "list[BaseAgent]", variable has type "str | None")
available_agent
for available_agent in self.agents

View File

@@ -0,0 +1,29 @@
from crewai.tools.agent_tools.base_agent_tools import BaseAgentTool
from typing import Optional
from pydantic import BaseModel, Field
class DelegateWorkToolSchema(BaseModel):
task: str = Field(..., description="The task to delegate")
context: str = Field(..., description="The context for the task")
coworker: str = Field(
..., description="The role/name of the coworker to delegate to"
)
class DelegateWorkTool(BaseAgentTool):
"""Tool for delegating work to coworkers"""
name: str = "Delegate work to coworker"
args_schema: type[BaseModel] = DelegateWorkToolSchema
def _run(
self,
task: str,
context: str,
coworker: Optional[str] = None,
**kwargs,
) -> str:
coworker = self._get_coworker(coworker, **kwargs)
return self._execute(coworker, task, context)

View File

@@ -0,0 +1,186 @@
from abc import ABC, abstractmethod
from typing import Any, Callable, Type, get_args, get_origin
from langchain_core.tools import StructuredTool
from pydantic import BaseModel, ConfigDict, Field, validator
from pydantic import BaseModel as PydanticBaseModel
class BaseTool(BaseModel, ABC):
class _ArgsSchemaPlaceholder(PydanticBaseModel):
pass
model_config = ConfigDict()
name: str
"""The unique name of the tool that clearly communicates its purpose."""
description: str
"""Used to tell the model how/when/why to use the tool."""
args_schema: Type[PydanticBaseModel] = Field(default_factory=_ArgsSchemaPlaceholder)
"""The schema for the arguments that the tool accepts."""
description_updated: bool = False
"""Flag to check if the description has been updated."""
cache_function: Callable = lambda _args=None, _result=None: True
"""Function that will be used to determine if the tool should be cached, should return a boolean. If None, the tool will be cached."""
result_as_answer: bool = False
"""Flag to check if the tool should be the final agent answer."""
@validator("args_schema", always=True, pre=True)
def _default_args_schema(
cls, v: Type[PydanticBaseModel]
) -> Type[PydanticBaseModel]:
if not isinstance(v, cls._ArgsSchemaPlaceholder):
return v
return type(
f"{cls.__name__}Schema",
(PydanticBaseModel,),
{
"__annotations__": {
k: v for k, v in cls._run.__annotations__.items() if k != "return"
},
},
)
def model_post_init(self, __context: Any) -> None:
self._generate_description()
super().model_post_init(__context)
def run(
self,
*args: Any,
**kwargs: Any,
) -> Any:
print(f"Using Tool: {self.name}")
return self._run(*args, **kwargs)
@abstractmethod
def _run(
self,
*args: Any,
**kwargs: Any,
) -> Any:
"""Here goes the actual implementation of the tool."""
def to_langchain(self) -> StructuredTool:
self._set_args_schema()
return StructuredTool(
name=self.name,
description=self.description,
args_schema=self.args_schema,
func=self._run,
)
@classmethod
def from_langchain(cls, tool: StructuredTool) -> "BaseTool":
if cls == Tool:
if tool.func is None:
raise ValueError("StructuredTool must have a callable 'func'")
return Tool(
name=tool.name,
description=tool.description,
args_schema=tool.args_schema,
func=tool.func,
)
raise NotImplementedError(f"from_langchain not implemented for {cls.__name__}")
def _set_args_schema(self):
if self.args_schema is None:
class_name = f"{self.__class__.__name__}Schema"
self.args_schema = type(
class_name,
(PydanticBaseModel,),
{
"__annotations__": {
k: v
for k, v in self._run.__annotations__.items()
if k != "return"
},
},
)
def _generate_description(self):
args_schema = {
name: {
"description": field.description,
"type": BaseTool._get_arg_annotations(field.annotation),
}
for name, field in self.args_schema.model_fields.items()
}
self.description = f"Tool Name: {self.name}\nTool Arguments: {args_schema}\nTool Description: {self.description}"
@staticmethod
def _get_arg_annotations(annotation: type[Any] | None) -> str:
if annotation is None:
return "None"
origin = get_origin(annotation)
args = get_args(annotation)
if origin is None:
return (
annotation.__name__
if hasattr(annotation, "__name__")
else str(annotation)
)
if args:
args_str = ", ".join(BaseTool._get_arg_annotations(arg) for arg in args)
return f"{origin.__name__}[{args_str}]"
return origin.__name__
class Tool(BaseTool):
func: Callable
"""The function that will be executed when the tool is called."""
def _run(self, *args: Any, **kwargs: Any) -> Any:
return self.func(*args, **kwargs)
def to_langchain(
tools: list[BaseTool | StructuredTool],
) -> list[StructuredTool]:
return [t.to_langchain() if isinstance(t, BaseTool) else t for t in tools]
def tool(*args):
"""
Decorator to create a tool from a function.
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(f: Callable) -> BaseTool:
if f.__doc__ is None:
raise ValueError("Function must have a docstring")
if f.__annotations__ is None:
raise ValueError("Function must have type annotations")
class_name = "".join(tool_name.split()).title()
args_schema = type(
class_name,
(PydanticBaseModel,),
{
"__annotations__": {
k: v for k, v in f.__annotations__.items() if k != "return"
},
},
)
return Tool(
name=tool_name,
description=f.__doc__,
func=f,
args_schema=args_schema,
)
return _make_tool
if len(args) == 1 and callable(args[0]):
return _make_with_name(args[0].__name__)(args[0])
if len(args) == 1 and isinstance(args[0], str):
return _make_with_name(args[0])
raise ValueError("Invalid arguments")

View File

View File

@@ -10,6 +10,7 @@ import crewai.utilities.events as events
from crewai.agents.tools_handler import ToolsHandler
from crewai.task import Task
from crewai.telemetry import Telemetry
from crewai.tools import BaseTool
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.tools.tool_usage_events import ToolUsageError, ToolUsageFinished
from crewai.utilities import I18N, Converter, ConverterError, Printer
@@ -49,7 +50,7 @@ class ToolUsage:
def __init__(
self,
tools_handler: ToolsHandler,
tools: List[Any],
tools: List[BaseTool],
original_tools: List[Any],
tools_description: str,
tools_names: str,
@@ -298,22 +299,7 @@ class ToolUsage:
"""Render the tool name and description in plain text."""
descriptions = []
for tool in self.tools:
args = {
name: {
"description": field.description,
"type": field.annotation.__name__,
}
for name, field in tool.args_schema.model_fields.items()
}
descriptions.append(
"\n".join(
[
f"Tool Name: {tool.name.lower()}",
f"Tool Description: {tool.description}",
f"Tool Arguments: {args}",
]
)
)
descriptions.append(tool.description)
return "\n--\n".join(descriptions)
def _function_calling(self, tool_string: str):

View File

@@ -8,6 +8,7 @@ class UsageMetrics(BaseModel):
Attributes:
total_tokens: Total number of tokens used.
prompt_tokens: Number of tokens used in prompts.
cached_prompt_tokens: Number of cached prompt tokens used.
completion_tokens: Number of tokens used in completions.
successful_requests: Number of successful requests made.
"""
@@ -16,6 +17,9 @@ class UsageMetrics(BaseModel):
prompt_tokens: int = Field(
default=0, description="Number of tokens used in prompts."
)
cached_prompt_tokens: int = Field(
default=0, description="Number of cached prompt tokens used."
)
completion_tokens: int = Field(
default=0, description="Number of tokens used in completions."
)
@@ -32,5 +36,6 @@ class UsageMetrics(BaseModel):
"""
self.total_tokens += usage_metrics.total_tokens
self.prompt_tokens += usage_metrics.prompt_tokens
self.cached_prompt_tokens += usage_metrics.cached_prompt_tokens
self.completion_tokens += usage_metrics.completion_tokens
self.successful_requests += usage_metrics.successful_requests

View File

@@ -10,6 +10,7 @@ from .rpm_controller import RPMController
from .exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
from .embedding_configurator import EmbeddingConfigurator
__all__ = [
"Converter",
@@ -23,4 +24,5 @@ __all__ = [
"RPMController",
"YamlParser",
"LLMContextLengthExceededException",
"EmbeddingConfigurator",
]

View File

@@ -1,2 +1,3 @@
TRAINING_DATA_FILE = "training_data.pkl"
TRAINED_AGENTS_DATA_FILE = "trained_agents_data.pkl"
DEFAULT_SCORE_THRESHOLD = 0.35

View File

@@ -0,0 +1,183 @@
import os
from typing import Any, Dict, cast
from chromadb import EmbeddingFunction, Documents, Embeddings
from chromadb.api.types import validate_embedding_function
class EmbeddingConfigurator:
def __init__(self):
self.embedding_functions = {
"openai": self._configure_openai,
"azure": self._configure_azure,
"ollama": self._configure_ollama,
"vertexai": self._configure_vertexai,
"google": self._configure_google,
"cohere": self._configure_cohere,
"bedrock": self._configure_bedrock,
"huggingface": self._configure_huggingface,
"watson": self._configure_watson,
}
def configure_embedder(
self,
embedder_config: Dict[str, Any] | None = None,
) -> EmbeddingFunction:
"""Configures and returns an embedding function based on the provided config."""
if embedder_config is None:
return self._create_default_embedding_function()
provider = embedder_config.get("provider")
config = embedder_config.get("config", {})
model_name = config.get("model")
if isinstance(provider, EmbeddingFunction):
try:
validate_embedding_function(provider)
return provider
except Exception as e:
raise ValueError(f"Invalid custom embedding function: {str(e)}")
if provider not in self.embedding_functions:
raise Exception(
f"Unsupported embedding provider: {provider}, supported providers: {list(self.embedding_functions.keys())}"
)
return self.embedding_functions[provider](config, model_name)
@staticmethod
def _create_default_embedding_function():
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
@staticmethod
def _configure_openai(config, model_name):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=config.get("api_key") or os.getenv("OPENAI_API_KEY"),
model_name=model_name,
)
@staticmethod
def _configure_azure(config, model_name):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=config.get("api_key"),
api_base=config.get("api_base"),
api_type=config.get("api_type", "azure"),
api_version=config.get("api_version"),
model_name=model_name,
)
@staticmethod
def _configure_ollama(config, model_name):
from chromadb.utils.embedding_functions.ollama_embedding_function import (
OllamaEmbeddingFunction,
)
return OllamaEmbeddingFunction(
url=config.get("url", "http://localhost:11434/api/embeddings"),
model_name=model_name,
)
@staticmethod
def _configure_vertexai(config, model_name):
from chromadb.utils.embedding_functions.google_embedding_function import (
GoogleVertexEmbeddingFunction,
)
return GoogleVertexEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
@staticmethod
def _configure_google(config, model_name):
from chromadb.utils.embedding_functions.google_embedding_function import (
GoogleGenerativeAiEmbeddingFunction,
)
return GoogleGenerativeAiEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
@staticmethod
def _configure_cohere(config, model_name):
from chromadb.utils.embedding_functions.cohere_embedding_function import (
CohereEmbeddingFunction,
)
return CohereEmbeddingFunction(
model_name=model_name,
api_key=config.get("api_key"),
)
@staticmethod
def _configure_bedrock(config, model_name):
from chromadb.utils.embedding_functions.amazon_bedrock_embedding_function import (
AmazonBedrockEmbeddingFunction,
)
return AmazonBedrockEmbeddingFunction(
session=config.get("session"),
)
@staticmethod
def _configure_huggingface(config, model_name):
from chromadb.utils.embedding_functions.huggingface_embedding_function import (
HuggingFaceEmbeddingServer,
)
return HuggingFaceEmbeddingServer(
url=config.get("api_url"),
)
@staticmethod
def _configure_watson(config, model_name):
try:
import ibm_watsonx_ai.foundation_models as watson_models
from ibm_watsonx_ai import Credentials
from ibm_watsonx_ai.metanames import EmbedTextParamsMetaNames as EmbedParams
except ImportError as e:
raise ImportError(
"IBM Watson dependencies are not installed. Please install them to use Watson embedding."
) from e
class WatsonEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
if isinstance(input, str):
input = [input]
embed_params = {
EmbedParams.TRUNCATE_INPUT_TOKENS: 3,
EmbedParams.RETURN_OPTIONS: {"input_text": True},
}
embedding = watson_models.Embeddings(
model_id=config.get("model"),
params=embed_params,
credentials=Credentials(
api_key=config.get("api_key"), url=config.get("api_url")
),
project_id=config.get("project_id"),
)
try:
embeddings = embedding.embed_documents(input)
return cast(Embeddings, embeddings)
except Exception as e:
print("Error during Watson embedding:", e)
raise e
return WatsonEmbeddingFunction()

View File

@@ -16,7 +16,11 @@ class FileHandler:
def log(self, **kwargs):
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
message = f"{now}: " + ", ".join([f"{key}=\"{value}\"" for key, value in kwargs.items()]) + "\n"
message = (
f"{now}: "
+ ", ".join([f'{key}="{value}"' for key, value in kwargs.items()])
+ "\n"
)
with open(self._path, "a", encoding="utf-8") as file:
file.write(message + "\n")
@@ -63,7 +67,7 @@ class PickleHandler:
with open(self.file_path, "rb") as file:
try:
return pickle.load(file)
return pickle.load(file) # nosec
except EOFError:
return {} # Return an empty dictionary if the file is empty or corrupted
except Exception:

View File

@@ -1,5 +1,5 @@
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.utils import Usage
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
@@ -11,8 +11,11 @@ class TokenCalcHandler(CustomLogger):
if self.token_cost_process is None:
return
usage : Usage = response_obj["usage"]
self.token_cost_process.sum_successful_requests(1)
self.token_cost_process.sum_prompt_tokens(response_obj["usage"].prompt_tokens)
self.token_cost_process.sum_completion_tokens(
response_obj["usage"].completion_tokens
)
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
if usage.prompt_tokens_details:
self.token_cost_process.sum_cached_prompt_tokens(
usage.prompt_tokens_details.cached_tokens
)

View File

@@ -5,13 +5,14 @@ from unittest import mock
from unittest.mock import patch
import pytest
from crewai_tools import tool
from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.tools import tool
from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.tools.tool_usage_events import ToolUsageFinished
@@ -277,9 +278,10 @@ def test_cache_hitting():
"multiplier-{'first_number': 12, 'second_number': 3}": 36,
}
with patch.object(CacheHandler, "read") as read, patch.object(
Emitter, "emit"
) as emit:
with (
patch.object(CacheHandler, "read") as read,
patch.object(Emitter, "emit") as emit,
):
read.return_value = "0"
task = Task(
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
@@ -604,7 +606,7 @@ def test_agent_respect_the_max_rpm_set(capsys):
def test_agent_respect_the_max_rpm_set_over_crew_rpm(capsys):
from unittest.mock import patch
from crewai_tools import tool
from crewai.tools import tool
@tool
def get_final_answer() -> float:
@@ -642,7 +644,7 @@ def test_agent_respect_the_max_rpm_set_over_crew_rpm(capsys):
def test_agent_without_max_rpm_respet_crew_rpm(capsys):
from unittest.mock import patch
from crewai_tools import tool
from crewai.tools import tool
@tool
def get_final_answer() -> float:
@@ -696,7 +698,7 @@ def test_agent_without_max_rpm_respet_crew_rpm(capsys):
def test_agent_error_on_parsing_tool(capsys):
from unittest.mock import patch
from crewai_tools import tool
from crewai.tools import tool
@tool
def get_final_answer() -> float:
@@ -739,7 +741,7 @@ def test_agent_error_on_parsing_tool(capsys):
def test_agent_remembers_output_format_after_using_tools_too_many_times():
from unittest.mock import patch
from crewai_tools import tool
from crewai.tools import tool
@tool
def get_final_answer() -> float:
@@ -863,11 +865,16 @@ def test_agent_function_calling_llm():
from crewai.tools.tool_usage import ToolUsage
with patch.object(
instructor, "from_litellm", wraps=instructor.from_litellm
) as mock_from_litellm, patch.object(
ToolUsage, "_original_tool_calling", side_effect=Exception("Forced exception")
) as mock_original_tool_calling:
with (
patch.object(
instructor, "from_litellm", wraps=instructor.from_litellm
) as mock_from_litellm,
patch.object(
ToolUsage,
"_original_tool_calling",
side_effect=Exception("Forced exception"),
) as mock_original_tool_calling,
):
crew.kickoff()
mock_from_litellm.assert_called()
mock_original_tool_calling.assert_called()
@@ -894,7 +901,7 @@ def test_agent_count_formatting_error():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tool_result_as_answer_is_the_final_answer_for_the_agent():
from crewai_tools import BaseTool
from crewai.tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Get Greetings"
@@ -924,7 +931,7 @@ def test_tool_result_as_answer_is_the_final_answer_for_the_agent():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tool_usage_information_is_appended_to_agent():
from crewai_tools import BaseTool
from crewai.tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Decide Greetings"
@@ -1568,3 +1575,42 @@ def test_agent_execute_task_with_ollama():
result = agent.execute_task(task)
assert len(result.split(".")) == 2
assert "AI" in result or "artificial intelligence" in result.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources():
# Create a knowledge source with some content
content = "Brandon's favorite color is blue and he likes Mexican food."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
with patch('crewai.knowledge.storage.knowledge_storage.KnowledgeStorage') as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{
"content": content,
"metadata": {"preference": "personal"}
}]
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
)
# Create a task that requires the agent to use the knowledge
task = Task(
description="What is Brandon's favorite color?",
expected_output="Brandon's favorite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
# Assert that the agent provides the correct information
assert "blue" in result.raw.lower()

View File

@@ -2,6 +2,7 @@ import hashlib
from typing import Any, List, Optional
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tools.base_tool import BaseTool
from pydantic import BaseModel
@@ -10,13 +11,13 @@ class TestAgent(BaseAgent):
self,
task: Any,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
return ""
def create_agent_executor(self, tools=None) -> None: ...
def _parse_tools(self, tools: List[Any]) -> List[Any]:
def _parse_tools(self, tools: List[BaseTool]) -> List[BaseTool]:
return []
def get_delegation_tools(self, agents: List["BaseAgent"]): ...

View File

@@ -0,0 +1,449 @@
interactions:
- request:
body: !!binary |
CuMOCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSug4KEgoQY3Jld2FpLnRl
bGVtZXRyeRKSDAoQK+dPhrB8w3HKFlxX60XzYRIIk5aB+A8oCWQqDENyZXcgQ3JlYXRlZDABObix
K+HWrwgYQcBiMeHWrwgYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5weXRob25fdmVy
c2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogZjM0NmE5YWQ2ZDczMDYzZTA2NzdiMTdjZTlj
NTAxNzdKMQoHY3Jld19pZBImCiQ3NjRjZWM1YS04NzkxLTRmN2MtOWY0MC1hNTMzMzJmOTk3YzBK
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
bnVtYmVyX29mX3Rhc2tzEgIYAkobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSqwFCgtjcmV3
X2FnZW50cxKcBQqZBVt7ImtleSI6ICI3M2MzNDljOTNjMTYzYjVkNGRmOThhNjRmYWMxYzQzMCIs
ICJpZCI6ICJjZDgwYjlhNy1hN2QzLTQzNTQtYjUyOC1jMzAyODA0MjA3YzgiLCAicm9sZSI6ICJ7
dG9waWN9IFNlbmlvciBEYXRhIFJlc2VhcmNoZXJcbiIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4
X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwg
ImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29k
ZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMi
OiBbXX0sIHsia2V5IjogImJiMDY4Mzc3YzE2NDFiZTZkN2Q5N2E1MTY1OWRiNjEzIiwgImlkIjog
ImJmZjc3YmUyLWU4MjQtNGEyOS1hZTFlLTQyMWFjMzc2MjY2YyIsICJyb2xlIjogInt0b3BpY30g
UmVwb3J0aW5nIEFuYWx5c3RcbiIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwg
Im1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQt
NG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/
IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dSpMECgpj
cmV3X3Rhc2tzEoQECoEEW3sia2V5IjogIjZhZmM0YjM5NjI1OWZiYjc2ODFmNTZjNzc1NWNjOTM3
IiwgImlkIjogIjRmNTFlYzM2LTVlMDctNGU4Ni1iYzIxLWU1MTQ0Mzg2YmIyYSIsICJhc3luY19l
eGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAi
e3RvcGljfSBTZW5pb3IgRGF0YSBSZXNlYXJjaGVyXG4iLCAiYWdlbnRfa2V5IjogIjczYzM0OWM5
M2MxNjNiNWQ0ZGY5OGE2NGZhYzFjNDMwIiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICJi
MTdiMTg4ZGJmMTRmOTNhOThlNWI5NWFhZDM2NzU3NyIsICJpZCI6ICIwMGJmZDY5ZC03OWZiLTRj
MjctYTM0Yi02NzBkZWJlMzU0NWYiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5f
aW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogInt0b3BpY30gUmVwb3J0aW5nIEFuYWx5c3Rc
biIsICJhZ2VudF9rZXkiOiAiYmIwNjgzNzdjMTY0MWJlNmQ3ZDk3YTUxNjU5ZGI2MTMiLCAidG9v
bHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQsN5cQC9ZzBr2B0OKBR2WCxII3ULL7Wk965Yq
DFRhc2sgQ3JlYXRlZDABOWB9ROHWrwgYQfg0ReHWrwgYSi4KCGNyZXdfa2V5EiIKIGYzNDZhOWFk
NmQ3MzA2M2UwNjc3YjE3Y2U5YzUwMTc3SjEKB2NyZXdfaWQSJgokNzY0Y2VjNWEtODc5MS00Zjdj
LTlmNDAtYTUzMzMyZjk5N2MwSi4KCHRhc2tfa2V5EiIKIDZhZmM0YjM5NjI1OWZiYjc2ODFmNTZj
Nzc1NWNjOTM3SjEKB3Rhc2tfaWQSJgokNGY1MWVjMzYtNWUwNy00ZTg2LWJjMjEtZTUxNDQzODZi
YjJhegIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '1894'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Sun, 17 Nov 2024 07:09:57 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are LLMs Senior Data Researcher\n.
You''re a seasoned researcher with a knack for uncovering the latest developments
in LLMs. Known for your ability to find the most relevant information and present
it in a clear and concise manner.\n\nYour personal goal is: Uncover cutting-edge
developments in LLMs\n\nTo give my best complete final answer to the task use
the exact following format:\n\nThought: I now can give a great answer\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!"}, {"role": "user", "content": "\nCurrent Task: Conduct a thorough research
about LLMs Make sure you find any interesting and relevant information given
the current year is 2024.\n\n\nThis is the expect criteria for your final answer:
A list with 10 bullet points of the most relevant information about LLMs\n\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1235'
content-type:
- application/json
cookie:
- __cf_bm=08pKRcLhS1PDw0mYfL2jz19ac6M.T31GoiMuI5DlX6w-1731827382-1.0.1.1-UfOLu3AaIUuXP1sGzdV6oggJ1q7iMTC46t08FDhYVrKcW5YmD4CbifudOJiSgx8h0JLTwZdgk.aG05S0eAO_PQ;
_cfuvid=74kaPOoAcp8YRSA0XocQ1FFNksu9V0_KiWdQfo7wQuQ-1731827382509-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA2RXwW4cOQ69z1cQffFMUG04iWeS8a2xmcn2wkYMr4MFdnNhS6wqTlRSjSh1pz0/
vyBVbfdmL4atkijq8b1H+q8fAFbsVzewciMWN81hvfn8OP75+fDu3+Ufh08fNuHvzPt//sHxbvzX
08dVpyfS7g9y5XTq0qVpDlQ4xfbZZcJCGvX1u7ev37959/bXa/swJU9Bjw1zWV+n9ZurN9frq/fr
q1+Wg2NiR7K6gf/8AADwl/3UFKOnb6sbuOpOKxOJ4ECrm+dNAKucgq6sUISlYCyr7uWjS7FQtKwf
x1SHsdzAFmI6gMMIA+8JEAZNHTDKgTLAl/g7Rwywsb9v4Ev8El9fwqtXn2aKm+2FwMf7x/U1PFAg
FPKvXt1A+wR5WWo7OjiM7Eboay4jZeBpzmlPApbUt1IxQI2esmbtOQ6A0cNAkTIqruBwxh0HLkxy
CdsCqe8pC3BUsPUedK5mdMcODH7eczl2FsalkTJFR8ARMsmcotjV04yZPJQEXATmTJ4ciaQsHUz4
VdNgBQNIhGJhDFBSCtCnDLsqHHVdOiBfHRY7pvd52lNIM2W5VMDeKGAfUxoCKWA0cWS4UyYoXNsI
yoIO2g4IWKMbNauRTpuNNh30yemlA6QIE+VBfw0Yh4oDfYfegcsIUw2Fp+QxfAff48jSglrp55z0
2aCF6ACr59QewhMOJCCskTBSqhKOHVAcMbqGjgDOc2BnVdJyQM8UvEDgrwR7pTM8s1FeompGeoTj
YCC9VZA2sYw5zewuBP4WsHpShNpvHeyO8LyhAxbwJDzEVsA5c8pc+IlAsKdytKuojOz0+SkK+4VL
luXt7R1UFZCS6UJgVzkUDaSATxpmxDz1NUCqZa5L6jtGZc6caY+BYtFIhDkw5ZdKGLDSgacpRSl6
qfIZZORerzhg9nLiIe8CwWYLnuaQjhPFYnBcKxx3VPBCTFBwn2ldMrI+9zFjlD7liTL8+On+8Sd4
e3mlSOkBGFEfWHLy1ZGHT/eP+rmDXUKxTKjv2bFmbwEtuXnOCd1IAmXEAiGp/FUgtRhmhqEUURkH
ggk5luXsyMMIM2VNCKMjpdcCAtA3R8HwLppzaFouKF8bnprrjlya1HrmNNeAGZoJmsjQoaeJnaJF
mN0IvtJJr2mmuEZn1J1TYHc06H5W6G5PxTCdwQeWwmG5fuP3mqcoYg/kFAhcljTTlrk/P1HIjZH/
rCQwotpkUIDOha45tRKCTBgC5Q6mlOkM7O/4oSImP5AGUc83yaZaIKaCu3A09HOa2BR/hm8H9G1e
ZK4e0RBgU3dj/ZkiIfVK9eVhO62d7timx9O9htkvitnvHGn9WOOzf9zyxIU8fMCCC73G5MUq0+vm
0jbbBXYiLCc8GhH3dDJ6r66Bu6DbXZWSJn5qCWqwyE4fcm4kJzT0hZHI2749SrHYQuVkY0sNVDlG
J2WFZpBSq0pzzBMGMpNjDPxEHjj6KiWzOri5VaABg+EzkTffEHJq64bRO8Xot8VQdJPJUDtILKrg
z2JupWZuiQhRVNXzELlnh7EATfOIwq32S6TNtmvYpTxgXFARIFEWsIyavdk6Zm9p9xknOqT8tRVC
jaw8Z+IWBjiXaizN8o+XcKdUtH4XmQQwE6BPs9nBnNEVY6CBsNk+dwa1KeU1iwtJ6Hn9pZV0reIt
56X5aekl1Xzi1nvFTS3hgYWUj/c5TXOB3+LAkShzHBS3jZyEsRiCyWcRpu+0SekpejllKJM2Qu3+
AgguV2dN+qRXQ0jfOfGTnmgvWBx9IRDHfQo6irR2YngrS3p2wHGuZbl6scahsqfGp5LgqM3OTuog
kUlqKNJBGauctckqSyWUgssYtkwpKbYRxTRBGYSyytKQ+1WR28ZCwzIEGU82dVCyk4cHQg2q6N1+
Zy7cpgqr9DIicRzCEXZkfXsJSn6J+dAwSyENShBrqGmvL82EYV14ohcDO/PyDvacbXo7a/IcgaeJ
suhISXHPOUVNeWGIXm6c0682ObUGo6OVDlMxsxtP7laF8oWo5VFmm+Es4Zex0TSx2T7fv2D3+krB
e6ChBp3MjvDhxSfM+T+mPeWWFhxSDv6gr1W85pyGrJaqKSzd2sw3NBLlFtRkijnV6F+mif8d0kwL
c+a9jaVCrubnofRsNHGUo7GRhM79TAB50lroRDNUzN7gODVhii7VjEMraEz7RhKOCsdzOVtTbLHn
xBo1Ux/INW91tagLrK0VLWpb7o4eSqboW/8eqU12quCAeaD/a2g/qih+UiWmfplpdTYIPIxlKSdn
GHI6tIz7UK2gdtF4ztMG4rlL6p7FqDCcD0vn/+Dk/wIAAP//jJdBDsIgEEX3nIKwdqO20csYgjBU
IgKB6cJF726AprSxJm7nD5/5LMg80GMSma/caO1cnxZisn4I0d/TrC91bZxJD57v9i7TUUIfWFEn
QumtkNm4gS1WvwSO/gkuG57Ol+rHGgs2ta/4RylDj8I24Xo+HnYMuQIUxqYV3DGZ1zPVjjYSLAv7
SiCr2N/j7HnX6MYN/9g3QUoICIpncDJyG7m1Rcis/KtteeYyMEvvhPDi2rgBYoim4qoOvOul7jsF
AhiZyAcAAP//AwCidyXxtw8AAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e3de5de7b6c6217-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 17 Nov 2024 07:10:00 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '6026'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999713'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_553f04a622d026a28dd3c5da55568fcd
status:
code: 200
message: OK
- request:
body: !!binary |
Cs4CCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSpQIKEgoQY3Jld2FpLnRl
bGVtZXRyeRKOAgoQIn+FuHJydyMnR3y/Qfb8GBII2zXFs4gynEgqDFRhc2sgQ3JlYXRlZDABOShs
9ljYrwgYQQiP+FjYrwgYSi4KCGNyZXdfa2V5EiIKIGYzNDZhOWFkNmQ3MzA2M2UwNjc3YjE3Y2U5
YzUwMTc3SjEKB2NyZXdfaWQSJgokNzY0Y2VjNWEtODc5MS00ZjdjLTlmNDAtYTUzMzMyZjk5N2Mw
Si4KCHRhc2tfa2V5EiIKIGIxN2IxODhkYmYxNGY5M2E5OGU1Yjk1YWFkMzY3NTc3SjEKB3Rhc2tf
aWQSJgokMDBiZmQ2OWQtNzlmYi00YzI3LWEzNGItNjcwZGViZTM1NDVmegIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '337'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Sun, 17 Nov 2024 07:10:01 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are LLMs Reporting Analyst\n.
You''re a meticulous analyst with a keen eye for detail. You''re known for your
ability to turn complex data into clear and concise reports, making it easy
for others to understand and act on the information you provide.\nYour personal
goal is: Create detailed reports based on LLMs data analysis and research findings\n\nTo
give my best complete final answer to the task use the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent
Task: Review the context you got and expand each topic into a full section for
a report. Make sure the report is detailed and contains any and all relevant
information.\n\n\nThis is the expect criteria for your final answer: A fully
fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without ''```''\n\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nThis is the context you''re working
with:\n1. **OpenAI''s GPT-4 Released**: OpenAI released GPT-4, which further
improves contextual understanding and generation capabilities. It offers increased
accuracy, creativity, and coherence in responses compared to its predecessors,
making it an essential tool for businesses, educators, and developers.\n\n2.
**Google''s Gemini Model**: In 2024, Google launched the Gemini model, focusing
on merging language understanding with multimodal capabilities. This model can
process text, audio, and images simultaneously, enhancing its applications in
fields like voice assistants and image captioning.\n\n3. **Anthropic''s Claude**:
Claude, by Anthropic, is designed to prioritize safety and ethical considerations
in LLM usage. It''s built to minimize harmful outputs and biases prevalent in
earlier language models, demonstrating a shift towards responsible AI deployment.\n\n4.
**Meta''s Open Pre-trained Transformer (OPT) 3.0**: Meta has introduced OPT
3.0, boasting efficient training approaches that lower computational costs while
maintaining high performance. The model excels in translation tasks and has
become a popular choice for academic research due to its open-access policy.\n\n5.
**Language Model Distillation Advances**: Recent advances in model distillation
techniques have allowed developers to deploy smaller, more efficient language
models on edge devices without notably compromising performance, expanding the
accessibility and application of LLMs in mobile and IoT devices.\n\n6. **Fine-Tuning
with Limited Data**: Methods for fine-tuning LLMs with limited data have improved,
enabling customization for niche applications without the need for vast datasets.
This development has opened doors to using LLMs in specialized industries, like
legal and medical sectors.\n\n7. **Ethical and Transparent AI Use**: 2024 has
seen a significant emphasis on ethical AI, with organizations establishing standardized
frameworks for LLM transparency and accountability. More companies are adopting
practices like AI model cards to disclose model capabilities, limitations, and
data sources.\n\n8. **The Rise of Prompt Engineering**: As models become more
advanced, prompt engineering has emerged as a crucial technique for optimizing
model outputs. This involves designing specific input prompts that guide LLMs
to yield desired results, thus enhancing usability in content creation and customer
service.\n\n9. **Integration with Augmented Reality**: Language models in 2024
are increasingly being integrated with AR technologies to provide real-time
language translation, virtual assistants in immersive environments, and interactive
educational tools, enriching the user''s experience with contextualized AI assistance.\n\n10.
**Regulatory Developments**: Governments worldwide are progressing towards formalizing
regulations around LLM usage, focusing on data privacy, security, and ethical
concerns. These developments aim to safeguard users while encouraging innovation
in AI technology.\n\nThese points reflect the cutting-edge advancements and
trends in the field of large language models (LLMs) as of 2024, highlighting
their growing influence and the increasing focus on ethical and practical deployment.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '4624'
content-type:
- application/json
cookie:
- __cf_bm=08pKRcLhS1PDw0mYfL2jz19ac6M.T31GoiMuI5DlX6w-1731827382-1.0.1.1-UfOLu3AaIUuXP1sGzdV6oggJ1q7iMTC46t08FDhYVrKcW5YmD4CbifudOJiSgx8h0JLTwZdgk.aG05S0eAO_PQ;
_cfuvid=74kaPOoAcp8YRSA0XocQ1FFNksu9V0_KiWdQfo7wQuQ-1731827382509-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA3RXS28bRxK+51cUlIMTYEjIlvOAbso6zhIrI4KjXSyyuRS7izO16umeVHWTovPn
F9U9Q5GG92JY0696fI/iX18BXLG/uoUrN2B24xRWd/98HA75/u//0u3z4V3+DftPP+82P/3+799/
vrm56uxE2v6XXF5OrV0ap0CZU2zLTggz2a2vf7h5/eObH95eX9eFMXkKdqyf8uptWr25fvN2df3j
6vr7+eCQ2JFe3cJ/vgIA+Kv+ayFGT89Xt1CvqV9GUsWerm5PmwCuJAX7coWqrBljvupeFl2KmWKN
+nFIpR/yLWwgpgM4jNDzngCht9ABox5I/oh/xPccMcBd/fvWPnwNH2lKkiFFuPN7jI5GilmBI9yj
9AT3GPuCPcEHy1bhm/v7D/otrMCyrVd8Da/X8OtE8W7zSuGXh8fVW/hIgVDJ24ZNrHu7eQ9wzJJ8
ceTb5g5GlCeOPSAo95F37DBmoDgs8Vg4YQmklh0yuSGmkPrjGn4qHLxdkCJwVpiEPDlSTaLdHFHa
7UgUhHYcyYPDCbccODPVZGs5n3PBACV6Eqt3vRKjByGdUlSCniIJGjTW8A86Ao+TpP2pZC4UTzAQ
90MmewWdK4Lu2Nmi1IpAhRPvOR+7evmWciYBlwYSio4smjzQ6VEFzsvDpGt4HEgJ8LxZA+4JRvQ0
54oROHrWiaLiNhDklAKgk6QKexRORUHJ5SS6hvdJYFuUI6nSqV5z9RVc0ZxGEusbCTrLHvIghrml
AB6MOduUtaa0Z6mVPAFX17CJQL64WrzOUlKSPSmgHVnS8S3SXRKYSDRFDPyJPARCiRz7DpBrV9pV
SWrvPO0ppMm+j0kIKPbY218zR1qK8y4ySFh9T6HfPWwAQ0gHrQ/XKyRti2bAaQrcYq4vRcxFMLxg
cZJkOLPHMuqTrmdGvFnDLyn1gYwRNHLkxh9b/nyh4rmDgCW6gby90/giNAlp7TDCxCkSib2kmSbb
NZaQeUzeKL25JMSxdqs3rMb+JdxLaB84D5dEyGnJCIwNHWDxnBpOecSeFJTtWYyUioZjtySxFcIn
hUgH6CWVWNO421xU0LDLOvP3jOnhCFj6BmXrzK7EijIMnI+QdrA3HT1DU2dR7hsS8kBjy8SOtlSO
lojJuNBA0c8cRpeX74GeQR1Fo4I1dp/CvsLHKjoFAo8ZDQ2jruHOe27hWL5NX9LBasSxVcWKaDuq
BDWdsUJMSZXPRQZdBcsS49IwW7UQseQ0mtUswD3Tmw48jSlqnltKz5mimsqX3K4zQJBn7ICMqBk5
Wklb804kNtZZMXdMwZ/gerOGu2icnti9UvhbwOLJ1tr/uhN5PGyPL1u7GVAuiaUATjizwwA68M6K
fUDxVi5OtvKpghd3lI81KMpD3e1SVPZzojoDx9MU0nGs9K2wCdWOPnMB9F6qbNkljiSq4WVAGXcl
QCp5KrMmbRmruh0GdkNTzC1RNOEKgWLfOlRDne9+Kb5WRu2SKzq7TBPxalmzTrPp7N2mQdEoMVbl
EtYn7eaKglLjspAjbw02wTHcLqV4ydryOGc1m/Zv7Pi5JqHJnU7k2NAJQoH22PxSDR+5zgHmPKDF
Daa2A2HIg0OhDgL1GGaEJJmSWYwRZCxxecIqRmL2wtEwVcE3R1uVpLaYFSYUHFOJeQHV2zV8oIyv
tBo/PAitsmB130fBqEYvEvjm14fHb+FmfW3HlgMPj/bFcBRJW02NeLTbsWOrTr2pUpbykPxCozxg
BjF3qHlMJWOjrtEHo1frf7jMZiJ8MruxeMyELmSKnp1NPRNKZlcCSqhMy5ZAwOaFWFs8WxQc2JNO
QugBfaq60LiPnkZ2hhdCcQP4YsZc80oTxVVTh+YxSxC2YL4MFF0qUhXYpRBwa72y5l6MIDtJY8VT
H9LWDHh5dO6pzRzN2GfpbFm+0tnw6lNVirwpWuzNqHMCz3sSJQgc+8Ka6411YKqgvHSq8xmuWtWi
A6ZgzsKuQnC3scGvzX2L+//fGe8knXWYAYStJPQkIBh7Mq5MdTSxapv8zlNbLTTJSee+W382z8I7
yybMnZwnYLXdH8kZziZJvcxa34Ly5ydqhPxnIRvCrEs2bvla2Usq62gyIx0M3A/heIbky5zV1IV8
b+dNqL888PkEMeXPPLQaXhpZ6RzNNuwUnesVl7abGw4Wl03zLbet8cLqtkmPF48bxF4UxxTr0sdM
gyZJO3P9c2dOk/2yMNQZM+2cEIZV5pG+OECZpcnssrSnyhohTUUcrVzzvqoeFPcsqbqbruE307WL
KUZLffkLXbjQzqZrghN78ORYOcXVgsg2MczRclQb6ZvcxvrLAuXYnSTVjDum0abqPQ3swmzoFgU2
X1h5YcvJLLoJfSvwDMzv1/CeI60eSzxNZvc8sg0D7zCjbXscLthu5bHfMqtczoSwFbp2tV4S5kvq
QGMQLTEk90QWnI0YjG3cbgMCf8JFryI7m6deCjbbiN2ailH+z8JyOYrYI2Zxs3idmnIEGqd0MGLO
XlW9kaMvmqW1rFWyGlKt3VKo+WeKsX5AqQJlfa3XWUsbkv4HAAD//4xZO4/jNhDu91cQWyWAYuSQ
PdxtaSRXbBcsEKQKDFoaycRJokBSdlzsfw++mSEl2T4gpS2Jj+HMfA8u5ZOs631gJYEXXZApW+68
WLKWEOZIFAa3RleFDvTYmEoX4Qw0RxuCwxbSdcLKwFpj9LVjxiYMNIOScJX9my6qMq2PSci7G0d/
1oCi0a4CLIgP6F4FifMo0Nkx3xbC9Qtrp3UAcx592ZlvCs74kHF2sgHpsn8zf0XKiXQlG1hmsPjG
PNu+vSJwBe73b9plaxApTejjNWtb7C6jLPOaMnktfM/WNfhBzolbnhd35nc/THZkPoxK8xeFUBY9
wjU4KG2wA118+L5kTg62qRlrGLRi3ftI5f+lRVRSF5nhYHFcIHLUpec69C6G2WisGzDoEVaDSQHq
kM98jsiJ43XV+GrI1Qc2QqTEW0FjERClfyeqdRl6/Otl3moPZorDdLLRCU7gYJh89WRFDXnVr67z
Af0oUUx5/rPtXSOppm0XkaAxzkG0MxcQZBJOKuQBkeOUNnRPR5uXxPsqUPEO9PGt+TP4YUrm29g5
Va3qBBUrRcrTRD+dOBalBNC7GEYwAC0DCMAOFDpk60ZuFBTmvEPCDMIx5ORVBjCJb4jTHAmV24Ib
pznphLHSA2UTbXbN0leUxGRVoECK8dBtAsW5L50vlwmv+Ui1FxBJYUai216UI2fM2Jk55pLgTqza
TySGtok7/bZGskrsCwxVDAxxnpIg+sZLWdk4ihH7Nzk88cYyVmpAFiOIsw+0xdbXNXXI5HDpRpUQ
Ue4sSbNIzog7usBzpa1auODWXfJ8CmYkWjTqKzwk9TT8qCsX24Aa807sFhScXL35ACT4Y1s+DvKx
+Wn//vNWluP8wMGpYUXfBj8mBoE7d2PHS7hhNyuZUD1wxSQNBgqMnmtao5ZLjgmeZvMM+e59H1eG
AEkpXUcKvOojpQu07f6dh8FBLS2tBAZHGyCGOdZoRcERn/S2mxVnlNMHu9YNgFwqX9okFSegG9Os
8pN3wnwUv3fm7xOlExuKm11pe4zGh62FYabeJjZjKmyp9sOReaAQnFv8z9IympO/aDWzI0jyQeM6
l8R14DpjJ2LNKLOp/SuOtJt7+IxX84c4IPwK3tjHB/ySS0LqXcOwqMHKdP5MYVT6ISYZhrj40Deq
5EEXHVQvUKLMvYI7iB/xPBbHI1DPHASYBxSbgjuz6RypnkMxmgUtciLo8MVFqMMMzsH0w7bUzVYA
gJODj5dAiUQ+ozd4xbLF/VhRGymPrXkhLaZsaiNoGIRI5Dto4M2hdsFfJJ4ThbNFuVTK7jYMtQGl
5yAtRPLerOBZpuAT1clM87FnEJAdVmay59zcL1ZacpwjcpGpPPNGwP/Fh3S65taVmw3Cx3h53Sni
xXkYWC2kex0ngxEYE+tCqAyeuWRxEfmAZe5k9y5YzJbxzuyj5GBn2czygxtJRSCJgVV4w8Ztqh5Y
K5o10v5vbkxQPG6cJdbMBPU4mqVM7vjt4wuIysSTnXLI2xnuBzbYxNpO9MgGW1+DBWrnaHELN859
r/9/lHu13ndT8Meoz8v/rRtdPB1AW/2IO7SY/PTMTz+ejPmH7+/mzZXcswDiIfnvNGLAry8vMt7z
cmO4PP306fNv+jj5ZPvVk9fXL9WDIQ8NARHj6hLwuba4Eli+XW4M2ZlfPXhabfx+QY/Gls27sfs/
wy8P6pqmRM0Bl2yu3m56eS0Q7lR/9FoJNC/4OV5jouHQurGjMAUn15rtdHj5XLefXxqy9Pz08fQf
AAAA//8DAMIhqlTfHQAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e3de605dca06217-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 17 Nov 2024 07:10:10 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '9951'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29998873'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 2ms
x-request-id:
- req_52a4f98f9c08fbaa1724634d237f3245
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,487 @@
interactions:
- request:
body: !!binary |
CusOCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSwg4KEgoQY3Jld2FpLnRl
bGVtZXRyeRKaDAoQJ2RtlOW3xhPcNjmbKwSJaxIIMUF8zJjQkvQqDENyZXcgQ3JlYXRlZDABOThF
x7PrrgkYQWiczLPrrgkYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5weXRob25fdmVy
c2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogMWYxMjhiZGI3YmFhNGI2NzcxNGYxZGFlZGMy
ZjNhYjZKMQoHY3Jld19pZBImCiQzNGJiYzZjYS03MmRiLTQwMzktODQzMy01NTFmOWNmNDM0YTdK
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
bnVtYmVyX29mX3Rhc2tzEgIYAkobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSrQFCgtjcmV3
X2FnZW50cxKkBQqhBVt7ImtleSI6ICI3M2MzNDljOTNjMTYzYjVkNGRmOThhNjRmYWMxYzQzMCIs
ICJpZCI6ICI4MjJkOGM2OC01NzlkLTQ4ZWUtOTBhMi1hNjJiNDgzY2JhNGUiLCAicm9sZSI6ICJ7
dG9waWN9IFNlbmlvciBEYXRhIFJlc2VhcmNoZXJcbiIsICJ2ZXJib3NlPyI6IHRydWUsICJtYXhf
aXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAi
bGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93
X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25h
bWVzIjogW119LCB7ImtleSI6ICIxMDRmZTA2NTllMTBiNDI2Y2Y4OGYwMjRmYjU3MTU1MyIsICJp
ZCI6ICI0YTY4NDQwZi0xMjRkLTQ3YmEtYWEzNy1hZTZmMTI2NzlkMmIiLCAicm9sZSI6ICJ7dG9w
aWN9IFJlcG9ydGluZyBBbmFseXN0XG4iLCAidmVyYm9zZT8iOiB0cnVlLCAibWF4X2l0ZXIiOiAy
MCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJn
cHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4
ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtd
fV1KkwQKCmNyZXdfdGFza3MShAQKgQRbeyJrZXkiOiAiNmFmYzRiMzk2MjU5ZmJiNzY4MWY1NmM3
NzU1Y2M5MzciLCAiaWQiOiAiODE2YzI1ZDgtNDg3NC00MmMxLWJmNzEtODc2OTcxZDNmYmExIiwg
ImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRf
cm9sZSI6ICJ7dG9waWN9IFNlbmlvciBEYXRhIFJlc2VhcmNoZXJcbiIsICJhZ2VudF9rZXkiOiAi
NzNjMzQ5YzkzYzE2M2I1ZDRkZjk4YTY0ZmFjMWM0MzAiLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsi
a2V5IjogImIxN2IxODhkYmYxNGY5M2E5OGU1Yjk1YWFkMzY3NTc3IiwgImlkIjogIjM4YzU1NTI5
LTc2ODAtNDc5OS1iODdiLTFmMDY2NjE5MGU2NyIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2Us
ICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAie3RvcGljfSBSZXBvcnRpbmcg
QW5hbHlzdFxuIiwgImFnZW50X2tleSI6ICIxMDRmZTA2NTllMTBiNDI2Y2Y4OGYwMjRmYjU3MTU1
MyIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChCo3E4xT/U6O20NrD4/Zkt6EggD
/w74tbrrOCoMVGFzayBDcmVhdGVkMAE5SPTas+uuCRhB6IDbs+uuCRhKLgoIY3Jld19rZXkSIgog
MWYxMjhiZGI3YmFhNGI2NzcxNGYxZGFlZGMyZjNhYjZKMQoHY3Jld19pZBImCiQzNGJiYzZjYS03
MmRiLTQwMzktODQzMy01NTFmOWNmNDM0YTdKLgoIdGFza19rZXkSIgogNmFmYzRiMzk2MjU5ZmJi
NzY4MWY1NmM3NzU1Y2M5MzdKMQoHdGFza19pZBImCiQ4MTZjMjVkOC00ODc0LTQyYzEtYmY3MS04
NzY5NzFkM2ZiYTF6AhgBhQEAAQAA
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '1902'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Wed, 20 Nov 2024 13:04:24 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Bicycles Senior Data
Researcher\n. You''re a seasoned researcher with a knack for uncovering the
latest developments in Bicycles. Known for your ability to find the most relevant
information and present it in a clear and concise manner.\n\nYour personal goal
is: Uncover cutting-edge developments in Bicycles\n\nTo give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: Your final answer must be the great and the
most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Conduct a thorough research about Bicycles Make sure you find any interesting
and relevant information given the current year is 2024.\n\n\nThis is the expect
criteria for your final answer: A list with 10 bullet points of the most relevant
information about Bicycles\n\nyou MUST return the actual complete content as
the final answer, not a summary.\n\nBegin! This is VERY important to you, use
the tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1260'
content-type:
- application/json
cookie:
- __cf_bm=CkK4UvBd9ukXvn50uJwGambJcz5zERAJfeXJ9xge6H4-1732107842-1.0.1.1-IOK2yVL3RlD75MgmnKzIEyE38HNknwn6I8BBJ1wjGz4jCTd0YWIBPnvUm9gB8D_zLlUA9G7p_wbrfyc4mO_Bmg;
_cfuvid=MmeN9oHWrBLThkEJdaSFHBfWe95JvA8iFnnt7CC92tk-1732107842102-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AVefTnyhy126z54bX4Wq0TjWFUGJI\",\n \"object\":
\"chat.completion\",\n \"created\": 1732107859,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer. \\nFinal
Answer: \\n\\n1. **E-Bike Boom**: Electric bikes (e-bikes) have seen a significant
rise in popularity, with industry reports indicating a projected growth of 60%
in sales compared to previous years. Many cities are paving bike lanes specifically
designed for e-bikes to accommodate this surge.\\n\\n2. **Sustainability in
Manufacturing**: Bicycle manufacturers are increasingly adopting sustainable
practices, such as using recycled materials for frames and parts, and implementing
environmentally friendly production processes. This shift is driven by consumer
demand for greener products.\\n\\n3. **Smart Bicycles**: The integration of
technology in bicycles has progressed with smart bikes featuring built-in GPS,
automated gear shifting, and performance analytics. These innovations enhance
the cycling experience and cater to data-driven enthusiasts.\\n\\n4. **Bike
Sharing Programs**: Urban areas are continuing to expand bike-sharing programs,
with some cities introducing electric bike options and introducing smartphone
apps to streamline the renting process, increasing accessibility and convenience
for riders.\\n\\n5. **Safety Innovations**: Advances in safety technology such
as smart helmets that incorporate lights and indicators, anti-collision systems
using sensor technology, and built-in communication systems to connect with
smartphones are on the rise, aimed at reducing accidents.\\n\\n6. **Adventure
Cycling Trends**: There is a growing popularity in adventure and gravel cycling,
with more cyclists seeking off-road experiences. This has prompted manufacturers
to develop dedicated bikes that cater to rugged terrains, with features such
as wider tires and durable frames.\\n\\n7. **Customization and Personalization**:
The market for customizable bicycles is expanding. Consumers are now able to
choose colors, styles, and features that suit their personal preferences, leading
to a more personalized cycling experience.\\n\\n8. **Communities and Events**:
Cycling communities are thriving globally, with an increase in events such as
group rides, competitive races, and festivals celebrating biking culture. This
fosters social engagement and promotes cycling as a lifestyle.\\n\\n9. **Cargo
Bikes for Urban Living**: The rise of cargo bikes, particularly in urban environments,
allows for efficient transportation of goods, making them an appealing choice
for small businesses and families. This trend is encouraged by city planners
promoting cycling as an alternative to car deliveries.\\n\\n10. **Regulatory
Changes**: Governments around the world are increasingly implementing policies
to support cycling infrastructure, such as funding for bike lanes, subsidies
for bicycle purchases, and stricter emissions standards for motor vehicles,
making cycling a more attractive option for commuting.\\n\\nEach of these points
represents the latest developments in the bicycle industry as we move through
2024, highlighting advancements in technology, trends in user preferences, and
a broader societal shift towards sustainability and health.\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 237,\n \"completion_tokens\":
539,\n \"total_tokens\": 776,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0705bf87c0\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e58a5276a096225-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 20 Nov 2024 13:04:26 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '7355'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999708'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_5536f2a242886d3949f0cdc1628b2996
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
Cs4CCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSpQIKEgoQY3Jld2FpLnRl
bGVtZXRyeRKOAgoQpBIRwGH/fJtGJT1cIWsC5BIIM3YyJZEYUUgqDFRhc2sgQ3JlYXRlZDABOYgb
lILtrgkYQZBnlYLtrgkYSi4KCGNyZXdfa2V5EiIKIDFmMTI4YmRiN2JhYTRiNjc3MTRmMWRhZWRj
MmYzYWI2SjEKB2NyZXdfaWQSJgokMzRiYmM2Y2EtNzJkYi00MDM5LTg0MzMtNTUxZjljZjQzNGE3
Si4KCHRhc2tfa2V5EiIKIGIxN2IxODhkYmYxNGY5M2E5OGU1Yjk1YWFkMzY3NTc3SjEKB3Rhc2tf
aWQSJgokMzhjNTU1MjktNzY4MC00Nzk5LWI4N2ItMWYwNjY2MTkwZTY3egIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '337'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Wed, 20 Nov 2024 13:04:29 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Bicycles Reporting
Analyst\n. You''re a meticulous analyst with a keen eye for detail. You''re
known for your ability to turn complex data into clear and concise reports,
making it easy for others to understand and act on the information you provide.\n\nYour
personal goal is: Create detailed reports based on Bicycles data analysis and
research findings\n\nTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Review the context you got and
expand each topic into a full section for a report. Make sure the report is
detailed and contains any and all relevant information.\n\n\nThis is the expect
criteria for your final answer: A fully fledge reports with the mains topics,
each with a full section of information. Formatted as markdown without ''```''\n\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nThis
is the context you''re working with:\n1. **E-Bike Boom**: Electric bikes (e-bikes)
have seen a significant rise in popularity, with industry reports indicating
a projected growth of 60% in sales compared to previous years. Many cities are
paving bike lanes specifically designed for e-bikes to accommodate this surge.\n\n2.
**Sustainability in Manufacturing**: Bicycle manufacturers are increasingly
adopting sustainable practices, such as using recycled materials for frames
and parts, and implementing environmentally friendly production processes. This
shift is driven by consumer demand for greener products.\n\n3. **Smart Bicycles**:
The integration of technology in bicycles has progressed with smart bikes featuring
built-in GPS, automated gear shifting, and performance analytics. These innovations
enhance the cycling experience and cater to data-driven enthusiasts.\n\n4. **Bike
Sharing Programs**: Urban areas are continuing to expand bike-sharing programs,
with some cities introducing electric bike options and introducing smartphone
apps to streamline the renting process, increasing accessibility and convenience
for riders.\n\n5. **Safety Innovations**: Advances in safety technology such
as smart helmets that incorporate lights and indicators, anti-collision systems
using sensor technology, and built-in communication systems to connect with
smartphones are on the rise, aimed at reducing accidents.\n\n6. **Adventure
Cycling Trends**: There is a growing popularity in adventure and gravel cycling,
with more cyclists seeking off-road experiences. This has prompted manufacturers
to develop dedicated bikes that cater to rugged terrains, with features such
as wider tires and durable frames.\n\n7. **Customization and Personalization**:
The market for customizable bicycles is expanding. Consumers are now able to
choose colors, styles, and features that suit their personal preferences, leading
to a more personalized cycling experience.\n\n8. **Communities and Events**:
Cycling communities are thriving globally, with an increase in events such as
group rides, competitive races, and festivals celebrating biking culture. This
fosters social engagement and promotes cycling as a lifestyle.\n\n9. **Cargo
Bikes for Urban Living**: The rise of cargo bikes, particularly in urban environments,
allows for efficient transportation of goods, making them an appealing choice
for small businesses and families. This trend is encouraged by city planners
promoting cycling as an alternative to car deliveries.\n\n10. **Regulatory Changes**:
Governments around the world are increasingly implementing policies to support
cycling infrastructure, such as funding for bike lanes, subsidies for bicycle
purchases, and stricter emissions standards for motor vehicles, making cycling
a more attractive option for commuting.\n\nEach of these points represents the
latest developments in the bicycle industry as we move through 2024, highlighting
advancements in technology, trends in user preferences, and a broader societal
shift towards sustainability and health.\n\nBegin! This is VERY important to
you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream":
false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '4457'
content-type:
- application/json
cookie:
- __cf_bm=CkK4UvBd9ukXvn50uJwGambJcz5zERAJfeXJ9xge6H4-1732107842-1.0.1.1-IOK2yVL3RlD75MgmnKzIEyE38HNknwn6I8BBJ1wjGz4jCTd0YWIBPnvUm9gB8D_zLlUA9G7p_wbrfyc4mO_Bmg;
_cfuvid=MmeN9oHWrBLThkEJdaSFHBfWe95JvA8iFnnt7CC92tk-1732107842102-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AVefbpMLcvelEguI3pyXOpfbaXLGG\",\n \"object\":
\"chat.completion\",\n \"created\": 1732107867,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: \\n\\n# Comprehensive Report on the Latest Developments in the Bicycle
Industry (2024)\\n\\n## 1. E-Bike Boom\\nThe popularity of electric bikes (e-bikes)
has surged dramatically in recent years, with industry reports indicating a
projected growth of 60% in sales compared to previous years. This growth can
be attributed to increasing urbanization, the rising need for more sustainable
modes of transport, and technological advancements that have made e-bikes more
accessible and desirable. Cities worldwide are responding to this boom by developing
dedicated bike lanes specifically designed for e-bikes, which not only promotes
safety but also encourages more individuals to consider cycling as a primary
mode of transportation.\\n\\n## 2. Sustainability in Manufacturing\\nIn line
with global trends towards sustainability, bicycle manufacturers are increasingly
adopting eco-friendlier practices. They are utilizing recycled materials for
frames and components and implementing environmentally friendly production processes.
This shift is not just a response to regulatory pressures but also driven by
consumer demand for greener products. Companies that prioritize sustainability
are seeing a competitive edge in an increasingly eco-conscious market, as consumers
are more likely to align their purchases with their values regarding environmental
responsibility.\\n\\n## 3. Smart Bicycles\\nThe integration of technology in
bicycles has advanced significantly, resulting in the emergence of smart bikes.
These bicycles often feature built-in GPS for navigation, automated gear shifting
for smoother rides, and performance analytics that allow users to track their
cycling metrics. Such innovations enhance the overall cycling experience and
cater to performance-focused cyclists who seek data to optimize their rides.
By merging cycling with technology, manufacturers are not only attracting tech
enthusiasts but also making cycling more mainstream.\\n\\n## 4. Bike Sharing
Programs\\nBike-sharing programs are rapidly expanding, particularly in urban
areas. Many cities have started introducing electric bike options within these
programs to meet the growing demand. The introduction of smartphone apps has
streamlined the renting process, increasing accessibility and convenience for
users. This trend not only promotes a healthier lifestyle but also reduces traffic
congestion and environmental impact in densely populated areas, making cycling
a more viable option for commuting.\\n\\n## 5. Safety Innovations\\nRecent advancements
in safety technology are working towards making cycling safer. Innovations such
as smart helmets equipped with lights and turn indicators, anti-collision systems
utilizing sensor technology, and integrated communication systems linking bicycles
with smartphones are increasingly gaining traction. These developments aim to
minimize accidents and enhance the overall sense of security for cyclists, thereby
encouraging more people to take up cycling as a daily activity.\\n\\n## 6. Adventure
Cycling Trends\\nAdventure and gravel cycling are witnessing a renaissance,
with many cyclists seeking off-road experiences that enable a connection with
nature. This trend has led manufacturers to innovate by developing dedicated
bikes suited for rugged terrains, characterized by features like wider tires
and durable frames. As consumers become more adventurous in their hobbies, manufacturers
are recognizing the need to cater to this niche market, fostering the growth
of adventure cycling as a distinct segment in the industry.\\n\\n## 7. Customization
and Personalization\\nThe demand for customizable bicycles is on the rise, allowing
consumers to choose various aspects of their bikes, including colors, styles,
and features. This trend towards personalization is enhancing the cycling experience,
as riders can tailor their bicycles to their preferences. The flourishing market
for custom bikes reflects a broader societal shift towards individuality and
self-expression, as consumers are no longer content with one-size-fits-all solutions.\\n\\n##
8. Communities and Events\\nCycling communities are thriving worldwide, reflected
in an increase in events such as group rides, competitive races, and festivals
celebrating biking culture. These gatherings not only foster a sense of camaraderie
among cyclists but also promote cycling as a lifestyle choice to the wider community.
The growth of these events is instrumental in building a culture around cycling,
driving advocacy for cycling infrastructure and safety, and ultimately increasing
the number of people who cycle.\\n\\n## 9. Cargo Bikes for Urban Living\\nThe
rise of cargo bikes, especially in urban settings, represents an innovative
solution for transporting goods efficiently while reducing reliance on motor
vehicles. Such bikes serve as an appealing alternative for small businesses
and families alike, allowing for easy deliveries and shopping. City planners
are increasingly promoting cargo bikes within urban transport strategies, recognizing
them as a sustainable option that aligns with broader goals for reducing carbon
footprints and enhancing urban mobility.\\n\\n## 10. Regulatory Changes\\nGovernments
around the globe are progressively enacting regulations to support and grow
cycling infrastructure. Initiatives include funding for bike lanes, subsidies
for bicycle purchases, and stricter emissions standards for cars. These regulatory
changes are making cycling a more attractive option for commuting and are an
acknowledgment of the role that cycling plays in reducing pollution and traffic
congestion. Such policies are instrumental in fostering a cycling-friendly environment
and encouraging more people to adopt biking as a daily mode of transportation.\\n\\nThis
report highlights the most significant developments in the bicycle industry
as we advance through 2024, showcasing the technological breakthroughs, shifts
in user preferences, and an overarching movement toward sustainability and health.
These trends are indicative of a vibrant cycling culture that continues to evolve
to meet the needs of modern society.\",\n \"refusal\": null\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 790,\n \"completion_tokens\": 1022,\n
\ \"total_tokens\": 1812,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0705bf87c0\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e58a5580add6225-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 20 Nov 2024 13:04:46 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '18921'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149998916'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_32b801874a2fed46b91251052364ec47
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -0,0 +1,115 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
You have access to specific knowledge sources.\nYour personal goal is: Provide
information based on knowledge sources\nTo give my best complete final answer
to the task use the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: What is Brandon''s
favorite color?\n\nThis is the expect criteria for your final answer: Brandon''s
favorite color.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '931'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSQW7bMBC86xULXnqxAtmxI1e3FEWBtJekCXJpC4GmVhIdapcgqbhN4L8HlB1L
QVOgFwGa2RnOLPmcAAhdiQKEamVQnTXp5f3d9lsdbndh++C+757Or6/bm6uvn59WH/FGzKKCN1tU
4VV1prizBoNmOtDKoQwYXef5+SK7WK3ny4HouEITZY0N6ZLTTpNOF9limWZ5Ol8f1S1rhV4U8CMB
AHgevjEnVfhbFJDNXpEOvZcNiuI0BCAcm4gI6b32QVIQs5FUTAFpiH4FxDtQkqDRjwgSmhgbJPkd
OoCf9EWTNHA5/BfwyUmqmD54qOUjOx0QFBt2oD1sTI9n02Mc1r2XsSr1xhzx/Sm34cY63vgjf8Jr
Tdq3pUPpmWJGH9iKgd0nAL+G/fRvKgvruLOhDPyAFA3nF/nBT4zXMmHXRzJwkGaKr2bv+JUVBqmN
n2xYKKlarEbpeB2yrzRPiGTS+u8073kfmmtq/sd+JJRCG7AqrcNKq7eNxzGH8dX+a+y05SGw8H98
wK6sNTXorNOHN1PbMsuz1aZe5yoTyT55AQAA//8DAPaYLdRBAwAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e54a2a7d81467f7-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 20 Nov 2024 01:23:34 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=DoHo1Z11nN9bxkwZmJGnaxRhyrWE0UfyimYuUVRU6A4-1732065814-1.0.1.1-JVRvFrIJLHEq9OaFQS0qcgYcawE7t2XQ4Tpqd58n2Yfx3mvEqD34MJmooi1LtvdvjB2J8x1Rs.rCdXD.msLlKw;
path=/; expires=Wed, 20-Nov-24 01:53:34 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=n3RrNhFMqC3HtJ7n3e3agyxnM1YOQ6eKESz_eeXLtZA-1732065814630-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '344'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999790'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_8f1622677c64913753a595f679596614
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,445 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Bicycles Senior Data
Researcher\n. You''re a seasoned researcher with a knack for uncovering the
latest developments in Bicycles. Known for your ability to find the most relevant
information and present it in a clear and concise manner.\n\nYour personal goal
is: Uncover cutting-edge developments in Bicycles\n\nTo give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: Your final answer must be the great and the
most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Conduct a thorough research about Bicycles Make sure you find any interesting
and relevant information given the current year is 2024.\n\n\nThis is the expect
criteria for your final answer: A list with 10 bullet points of the most relevant
information about Bicycles\n\nyou MUST return the actual complete content as
the final answer, not a summary.\n\nBegin! This is VERY important to you, use
the tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1255'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xX247cyA19n68g+ikxugc9vuzMzpvttTdGMtjAHsPAxoHBrqKkypSKSpHqnvZi
/z0gpb4MsgHy0mipqljk4eEh9dsFwCLFxS0sQoca+iGvXn/u8fuX9cPDX7tffu1vtlkffv5l/fnX
j9uPN68WSzvBm39R0MOpy8D9kEkTl2k5VEIls3p1/eLqx/V6vX7lCz1HynasHXT1klfP189frtY3
q/UP88GOUyBZ3MI/LgAAfvNfc7FEelzcwnp5eNOTCLa0uD1uAlhUzvZmgSJJFIsulqfFwEWpuNf3
HY9tp7fwAQrvIGCBNm0JEFpzHbDIjirA1/I+Fczw2p9v4Wv5Wq4u4dmzd5mC1hTgTQr7kEngT+9W
b9IDyZ/hJ+5TQSXQjuAO6wPp7bNn8KGAhbsEWm1sI5g/qYwEypAJI6QCgmarrbzTDtrMG8x5fwn3
HaUKAw9jxpp0D0mgGSlThM3e78G4xRKop6JmZ4OqVPegFLrCmdv9ErhpqKbSQubSUoWKpSUBLBGk
46pUIXRYW9uiqSdZQo8P9hS470e1fz1XAmqaFJLd5GdHUUwFN5ns5rFusACVbapczB25NNSeG2of
ilJb0YgCu6QdfOqxKtwfnTScZkShxzI2GHSsVAWwmnUjlqTS5r09cB3YrJUWPvD9WayGKJXOAIFR
qAI9DlQTlUCX8J7QbArk9EDw898/gVYMFucSmqSFRCCiImRuW39rUWLRtNKOGgXZi1IvEFOloHkP
OZUHinapWDxDx4UmjzcUjAwtGBkjVs9xIeOWl8KEzQvD5tMZjHfH0O2sw5P+PZIYPO9OyGI2DgWq
RaDDLcEwSkfR0jVgSSTmEkYe1GhNxW59YnmoHEjEMi1j6AAFRk05fbfFSp6HCD0q1YRZllApjsEZ
gXXDBRpmHWoqKhbYUDmOwbI7YZZMFcxRP5FqMPYCBS7cm3dGgVScvps56anEUbTuHZeXE2cKb50y
fsffUtvpjuwX7g6OGS73HUGkLWUevAi4MaAdC5akdB5GKiGP8SwO87atOHRUyKKUMU8h0aNW6smT
fLrYtsexeq6aij2JlWiSp1UoMGDV5FHnPRTWFOhQJhUdR7PU81gs9eCysJyZ6/mh2nDtncdeagNR
dGheGTRvR1Hu03e3aet3HB1iEyL4iSS1RZ5Ij3ZkdSSA5o6f00rFuLszdk7C5KXZz7biZAa0M13M
mXdQU7SSVIYwe0Ae6qQlGIxTXC3DVq2TfiWZbwqWBj8c05aqkHFYxp4qFKI42Rgq96xWo5NUmV+Q
U0Mwq+1mP/liKDVc5+srDRmPIihqosoN7DrONMXm4P3gCv44YBFTIm7gs4vW233ILialqShaRxcf
A/DOZC8kddZyzXGXIs2atCVxgqfizqXSrhrTmugidW7pVGWRYjIg4hwZllmI7XElHXp5SujIZdjl
LPBYsSWrn9MFJ2W2016ellI0hTZgW3OOi4d9bWH/hTBr57u/UM6udm+oUJPUqfLFcm/9x23usJJv
4Qa608lZJpdTOxiIhzyhETpm8bqaoUSjWsSU90CPVEMSgsrmMXlXOxY8CBkEIGNt6dQJuTlctjJG
lQmymQQTNSfl7fExORED1ph4izKpjZeNMa/VzoBJxdzazBE7LjeGy0fzjBt4i7VlP/XZlFD3xw4/
i8xcP+XQjdzZSL3jwtXub/no4xJ2XbKcV+9E0xatWGTg6nlrmaMAb6lOXRiiTy6BXG4bmzMcSJAu
NToXqjzpuptR0tS2KFtN7YEHF8zlUwU6dmchNaNT+D+6lHA/kCa1IehQBhbRO/fTYz/fckhvhwLU
byoGihBTm6wnDRnVZMuCNzZtU9URM1RCB9RFYmz7KZuHt2ZDoJ0TZC3ZxwTs+YxOVLQbJaHoUSca
EqtizIDaZTLRmDGeLNm2cHCdCwxjHVhmJbhaW/DvOYwCXCbd/IQN6R7O+o5F/3pSdm8Kh2Yl087z
GevUWXwUgI5yTzpL6mZMWVemE1a1xRTAPDrME47LdE2c2s1B3Yp3nW2StHFOLqdi4yKmxLix3PZD
5a33bXsHQmGsvvUwwx2y6m5P84cR/kjGy/NZuVIzCtqoXsac5/e/H4fvzO1QeSPz+vF9k0qS7pvV
BRcbtEV5WPjq7xcA//Qhf3wyty9M6wf9pvxAxQw+f3E92VucPitOqy+vb+ZVZcV8Wri+erX8A4Pf
IimmLGffCYuAoaN4Onr6qMAxJj5buDgL+7/d+SPbU+iptP+P+dNCCDQoxW9Dtc7wNOTTtkr22fW/
tl3AfwAAAP//ggYz2MFKkGQVn5YJqkHBjTRQhKQVxJunGlkYG6eaplkqcdVyAQAAAP//AwB8fdED
Ag4AAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e44d29989a61ab0-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Nov 2024 03:20:10 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=elWqsM.3Jt5.vyzDrpCmVftKrlxb0_fRVMZxBGUYfcE-1731900010-1.0.1.1-AxUZI4aRPPnqgUcewvytSN0TcEpcfBqYEZ.h2A96g3wUsy6Ui_pr4y81nyHf2Pcn1S3lz4zSmufsGDmnNKtHDQ;
path=/; expires=Mon, 18-Nov-24 03:50:10 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=lzrs54cKet3l28qlaoF9_vtIs55.7H9Sbr6IhTssBmk-1731900010790-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '5249'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999708'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_a9781a68655042f161d8089cc3819728
status:
code: 200
message: OK
- request:
body: !!binary |
CuEOCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSuA4KEgoQY3Jld2FpLnRl
bGVtZXRyeRKQDAoQ2G6ncUKutPIsOmTplHC6bBIIclCMqGiNvUoqDENyZXcgQ3JlYXRlZDABOcBv
KPXg8QgYQXAFLvXg8QgYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5weXRob25fdmVy
c2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogMWYxMjhiZGI3YmFhNGI2NzcxNGYxZGFlZGMy
ZjNhYjZKMQoHY3Jld19pZBImCiQzNDEwYmI2Mi01NzYxLTRhMGQtOGY1Zi1hOTliZWY5NDYxM2VK
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
bnVtYmVyX29mX3Rhc2tzEgIYAkobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSqoFCgtjcmV3
X2FnZW50cxKaBQqXBVt7ImtleSI6ICI3M2MzNDljOTNjMTYzYjVkNGRmOThhNjRmYWMxYzQzMCIs
ICJpZCI6ICI1YzgyZGRkOS1kMTM3LTQ3MDMtODY0My1iNTFmZDBlMTUxMjkiLCAicm9sZSI6ICJ7
dG9waWN9IFNlbmlvciBEYXRhIFJlc2VhcmNoZXJcbiIsICJ2ZXJib3NlPyI6IHRydWUsICJtYXhf
aXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAi
bGxtIjogImdwdC00byIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2Rl
X2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6
IFtdfSwgeyJrZXkiOiAiMTA0ZmUwNjU5ZTEwYjQyNmNmODhmMDI0ZmI1NzE1NTMiLCAiaWQiOiAi
ODdlYmRiYTMtNDRmZS00ODBmLWI2MWQtMWYzZjIyMWE5MDE2IiwgInJvbGUiOiAie3RvcGljfSBS
ZXBvcnRpbmcgQW5hbHlzdFxuIiwgInZlcmJvc2U/IjogdHJ1ZSwgIm1heF9pdGVyIjogMjAsICJt
YXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0LTRv
IiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6
IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUqTBAoKY3Jl
d190YXNrcxKEBAqBBFt7ImtleSI6ICI2YWZjNGIzOTYyNTlmYmI3NjgxZjU2Yzc3NTVjYzkzNyIs
ICJpZCI6ICI2ZTIzZmMzMS02OGI2LTRjZTMtODZjNC0zMDcxZGUwZDdjMWIiLCAiYXN5bmNfZXhl
Y3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogInt0
b3BpY30gU2VuaW9yIERhdGEgUmVzZWFyY2hlclxuIiwgImFnZW50X2tleSI6ICI3M2MzNDljOTNj
MTYzYjVkNGRmOThhNjRmYWMxYzQzMCIsICJ0b29sc19uYW1lcyI6IFtdfSwgeyJrZXkiOiAiYjE3
YjE4OGRiZjE0ZjkzYTk4ZTViOTVhYWQzNjc1NzciLCAiaWQiOiAiNzRhOWVhMjMtNzVmYy00NWFi
LWIyMDAtMTllZTk0ZjU0Y2JkIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lu
cHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJ7dG9waWN9IFJlcG9ydGluZyBBbmFseXN0XG4i
LCAiYWdlbnRfa2V5IjogIjEwNGZlMDY1OWUxMGI0MjZjZjg4ZjAyNGZiNTcxNTUzIiwgInRvb2xz
X25hbWVzIjogW119XXoCGAGFAQABAAASjgIKEDkgSkh9vBYObKyMriyidxwSCG3RsAoOYBU/KgxU
YXNrIENyZWF0ZWQwATkgjkr14PEIGEHYFkv14PEIGEouCghjcmV3X2tleRIiCiAxZjEyOGJkYjdi
YWE0YjY3NzE0ZjFkYWVkYzJmM2FiNkoxCgdjcmV3X2lkEiYKJDM0MTBiYjYyLTU3NjEtNGEwZC04
ZjVmLWE5OWJlZjk0NjEzZUouCgh0YXNrX2tleRIiCiA2YWZjNGIzOTYyNTlmYmI3NjgxZjU2Yzc3
NTVjYzkzN0oxCgd0YXNrX2lkEiYKJDZlMjNmYzMxLTY4YjYtNGNlMy04NmM0LTMwNzFkZTBkN2Mx
YnoCGAGFAQABAAA=
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '1892'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Mon, 18 Nov 2024 03:20:10 GMT
status:
code: 200
message: OK
- request:
body: !!binary |
Cs4CCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSpQIKEgoQY3Jld2FpLnRl
bGVtZXRyeRKOAgoQwB8k3adY9mK031pcBVZJKhII3fxizKFNiGkqDFRhc2sgQ3JlYXRlZDABOaj7
K0Xi8QgYQUiCLUXi8QgYSi4KCGNyZXdfa2V5EiIKIDFmMTI4YmRiN2JhYTRiNjc3MTRmMWRhZWRj
MmYzYWI2SjEKB2NyZXdfaWQSJgokMzQxMGJiNjItNTc2MS00YTBkLThmNWYtYTk5YmVmOTQ2MTNl
Si4KCHRhc2tfa2V5EiIKIGIxN2IxODhkYmYxNGY5M2E5OGU1Yjk1YWFkMzY3NTc3SjEKB3Rhc2tf
aWQSJgokNzRhOWVhMjMtNzVmYy00NWFiLWIyMDAtMTllZTk0ZjU0Y2JkegIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '337'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Mon, 18 Nov 2024 03:20:15 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Bicycles Reporting
Analyst\n. You''re a meticulous analyst with a keen eye for detail. You''re
known for your ability to turn complex data into clear and concise reports,
making it easy for others to understand and act on the information you provide.\n\nYour
personal goal is: Create detailed reports based on Bicycles data analysis and
research findings\n\nTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Review the context you got and
expand each topic into a full section for a report. Make sure the report is
detailed and contains any and all relevant information.\n\n\nThis is the expect
criteria for your final answer: A fully fledge reports with the mains topics,
each with a full section of information. Formatted as markdown without ''```''\n\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nThis
is the context you''re working with:\n1. **Electric Bicycles (E-Bikes) Dominate
the Market:** In 2024, e-bikes continue to lead in sales growth globally. Their
popularity is fueled by the advancement in battery technology, offering longer
ranges and shorter charging times, making commuting more efficient and sustainable
in urban environments.\n\n2. **Integration with Smart Technology:** Bicycle
manufacturers are increasingly incorporating IoT technology to enhance user
experience. Features like GPS tracking, fitness data logging, and anti-theft
systems directly linked to smartphones are becoming standard in newer models.\n\n3.
**Sustainable Manufacturing Techniques:** Environmental concerns have pushed
companies to adopt greener manufacturing processes, such as utilizing recycled
materials, reducing carbon footprints in production, and implementing circular
economies within the bicycle industry.\n\n4. **Innovations in Lightweight Materials:**
The development of new composite materials, including carbon and graphene, results
in extremely lightweight and durable frames. This advancement is particularly
noticeable in racing and mountain bikes, enhancing performance and speed.\n\n5.
**Customizable and Modular Bike Designs:** In 2024, there is a notable trend
toward bikes with modular designs that allow riders to customize parts and accessories
easily. This trend caters to diverse consumer needs and promotes longer bike
life cycles by allowing for parts replacement instead of whole bikes.\n\n6.
**Expansion of Urban Cycling Infrastructure:** More cities worldwide are investing
in cycling-friendly infrastructure, such as dedicated bike lanes and bike-sharing
schemes, to encourage eco-friendly commuting and reduce traffic congestion.\n\n7.
**Health and Wellness Benefits:** With growing awareness of health and fitness,
more people are choosing cycling as a daily exercise routine. The industry sees
a surge in sales of fitness-oriented bicycles designed to maximize cardiovascular
and strength training benefits.\n\n8. **Rise of Cargo and Utility Bicycles:**
There is an increase in demand for cargo bicycles, which are used for transporting
goods over short distances, reflecting a shift towards sustainable business
delivery options, particularly in urban settings.\n\n9. **Competitive Cycling
and Esports:** Competitive cycling has embraced digital platforms, with virtual
reality and augmented reality races gaining traction among cycling enthusiasts
and professional athletes for training and competition purposes.\n\n10. **Focus
on Bike Safety Innovations:** Advances in bicycle safety technology, including
smart helmets with built-in communication systems and advanced lighting for
night visibility, are considerably improving rider security, making cycling
a safer mode of transport.\n\nBegin! This is VERY important to you, use the
tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '4197'
content-type:
- application/json
cookie:
- __cf_bm=elWqsM.3Jt5.vyzDrpCmVftKrlxb0_fRVMZxBGUYfcE-1731900010-1.0.1.1-AxUZI4aRPPnqgUcewvytSN0TcEpcfBqYEZ.h2A96g3wUsy6Ui_pr4y81nyHf2Pcn1S3lz4zSmufsGDmnNKtHDQ;
_cfuvid=lzrs54cKet3l28qlaoF9_vtIs55.7H9Sbr6IhTssBmk-1731900010790-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4RXTY/kxg29+1cQ44sNdDdmdm0nmdvueh1s4gGM3UkCJ75QVZTETH3IrFL3avzn
A7Kk7mknQC4NtFRkkY+Pj9RvXwDcsL+5hxs3YnVxCvs3f4vdtz++G37++88fX//lp6f4/vM/n6eH
+Ne75+8+3uzUInf/Jlc3q4PLcQpUOaf22glhJfV694fXd3+6vb29u7MXMXsKajZMdf9N3r+6ffXN
/vaP+9vvVsMxs6Nycw//+gIA4Df71RCTp88393C7255EKgUHurk/HwK4kRz0yQ2WwqViqje7y0uX
U6VkUT+OeR7Geg8fIOUTOEww8JEAYdDQAVM5kfySfkk/cMIAb+z/vT74Et7lOAmNlIqafKQpS4Wc
4C27xQWCD8nPpcoCj0LJF+AEmqcZfwl3B3gfyFVht1kU+Or9/i0/Ufkavs+RE1aCOhI8oDxRVcMP
zccOaLPtVtsduBxjTmGBp5RPCbAA7Tv1pq9S5TSbNxaYpxOKhyqo5cuyaGxDyB0GKGjOSg7suV84
DauRt4iSIz2sUUWL6gCPI0GZZbAX7UqY8jQHFK6LgdoRYK3C3VzJQ81QeEjcs8NUAf1R3UZK1UDq
sFaSBSq5MeWQh+UAD9mTbN6LFavLWCqEnAYSEEwDgcMJOw5cWVPAEPJJ4++zAH2ulDxZ0kcKWieE
wmkIBG5EGegAb7xnJS+GsOwsRSE/O32kcdkxw4MjFRixGK4vsmpA4TQRhh1EfFrRi4BwZOwCASYP
1PfsmFKFPJlzDXCWDpPVcK6chgO8KeAsE0DJc/IW0ClL8DAITlMgOHEdNYaBivlR51MOYdZ/LQP0
6x25P6M3CRUDG6HMpSInC63kZnhQZse5khToKFHPFXrJsaFxgbDBgGtkDfhFYUh45MG4K6iptjgJ
C1lR4DSyor5hZyBl8KRyUcivUFDkUjinclg75tUBPqRKg6AlZE4/RZQKj2em6NGt/yKmuUdXZ9FM
RjwqQe0OLfsCFDtBy2fUNxfPuYdifi8M1AApjUZ/IwZ7UlJNJEzJUeuCuZAa6wGNVBJV/f84choK
fPUhP34NXODEnsokhH7XsugJNcoCZXajNu6ff/qk4DkjUFlKpai1cNqCg5atYvLawpwg0YlkkwEw
ZS0aDperpKwbSgu8aDohD9BzTVQKeKy4azeC5Lla+yQPMSeuWWAi6bPErfuFMOy1/OBZyNWwQB1F
pXRtAYNvGnOicoAfZqkjScyi9W/N7gFT5X0dqa/nBK1EHVECT0cKeSK/g9z3JJr1ROgM3sjJQ7fA
JPnIXl9xMpHHRHkuELJrKc+Tx0oFuAc8A8QFYj6ShyxQMU4k5K0KVsJCl6Kzw3AtTijG6VQUDL14
E19FOiujEznVAk9HnV+argV4xDC33u/n5JrGaLNo45uUNnlTZ1zqRvjXB/j0oj8fznxWl8Z5/nWm
oqffpyNLThqmavhm1VpSKCInbfdJOMvLi8+obLNqHVKHF7cpXzTzq+ZpupIGIJf3vTaBD1YSR6Vo
5q27jL8vcohXOdRzDlBHrFpZjvxMQFfpcJzQ1QO8gZQrOzJPVYeqVrN171k7Kgd+PvexkOXnIWIl
YQxtwqxZT5JXfd/9lxzhtfgLns4+9GyZ43QWywlT02kCDCVDn92sweS0qZo6dSidiX2uk7DyqVts
AkR+NoKfo7ngaJxh3aoUC8M7kQzL/jJDJkGnqJT/NcBcTo4mUyEEx+J0KmvNUo6L0X4d5hcCFBiQ
k6FgnhWc00hCreU0xJaqJ53i5I1MNoePSi2NuMG+8m8HfVMANY95zeJlgYXKlFPhdn6j/zeq9ykf
rZhWtx95GOuJ9BcetoLq6Rfiy6vJkSC8OH6p/7YLmQgKHdepp7TbeNEyO8A/VJx/v57okpsLm0Zu
er2VljsSA0An9EiJdheJWNXN5bhGth5VXQQ/S2P1qJPvqIJOfRbaROkSviI/oVS2UqryboLUkl7r
ufZeu2BO2oDQcZsnNFgya1mvxH2dcRe5c8JVhfDQwCeBXlDnPkfVXwIkyX5JGNlpfXsOG2vXnoQy
kQr5Ra4VQaps4Rq6FQcqRiP1QDb2tc2aHDZ3qBDMKkWBn9Z5W1QEBq1R8g3CJnhtBhfS2fgSOu1N
SmUWupRFe8DG6TrXhyw6RDxF1KU993BEYX1USUR1dLdueGeh6CSjPy+huW+BG8vrOBfGUs9LzLcH
eDeXmiM/n/fBh+ytLXX1h++Ne2dWL4RiigyFFFgYpC21Tf9q1k2+gPu9z7j6vKZ0+b+6btKl/nMC
+3y7GnOm0rZJtGqRlFap7fomF5GorqsveD6SWCnIt0pOQj2Jbk0GbxNTknI4A7EGCz06LaiukoRl
ub5GbbURVno4Fcws3GbPlE9ta7jsOxU5tKnH8iKjrPx0+i0CQr/OLBv5ryNdN6qGesr6oadT0IjQ
vNQl0F6TccaWc1rQzbVRr8mfrXkv5/MB3i5AOh+35shJhX2eBkG/dpPQFHBtzCbtgXsqExoOlz2k
nL90dm2AbXVQ/K1o60c6rS7/AwAA//+MWU1vGzcQvftXELq0AWShbuPGPTaBi+bqIOmpEKjd2V3W
XHJBctdVAf/3Yj74IdsFehNEiuIMh2/ee2zClfaLv3jSMUGu2Z8P6v7vRbsoWf9K/PyTFPlnNwQd
U1ippkSkCqIDZqY2Z75UtIuWFBCCoXqWc6XGiqqV5Q9pHuTMUq0bqh3iFSeifQbbHeKeSCjZl7nY
l5wflDiM6+zaQ8xtkmdKhD30pkProtwfqx1WFgqo6zhpqq3YTTBnqlw4hQ6EslK7BkvnC7YJ4bSS
bjOzpOj8GvQIlzSqqEAubWthM3gJOMCsqqrwO6jPjMb9i6hV1ANIT+YbIj2WUpn/Hf+IuhAm/B9w
VM9+SVwukk4d5eoswcw6nImzEtKSGtwrC7oXSJxA2zQZCHte96Lb23NzSzgidgtSK/Y+HNTvtArt
/Q+wloTKR9ajBI/cnQsg6icdgCb5QXbAjJs1jmzFuN5spl9zK600tQlUuyydLEGMNBSDig9CZyJe
ntHM4CpfLh5OhhOqyguOlNXWsobFx0wJqojsSZCLkUI+jGT9zCrowjXpdOiN33RkSoeR5nZ4fVqN
pbMQ+R65XSIQ61Ra5GXAObK9OgF+a/3TNRNvXns1iS4rBoIiHls2eRyIOgm1BVs+ir07pWfvRjmH
5sCb/P8Hv6qie18ZAJpIaPpkQcqnIac8AzphAtkNmemsj4BMOIBxgw/tMX8XFaEfRa82k4jWZ+gl
ujx5/G+0L3L16WUJXndTLtK7g3owTDs/6TB62sFXyXAuiNzJG/DryuRVJjcsMTaAWfQOBTGg5ycG
wGSGxGyU24w6waQ3g6kRStAi7Al7Ogl9sNiPzxlkM78s/493IoKeLcRIqMoOAiFL8nJfURxjZmIj
z7GEWgzTFg0Q5qSkNjPI4+TRe+RWyHPjhLZpTzat9Fk4v2a5pKD7ivINpEThsSnoLH/UBpOheGZ9
RvfRuMZ0C0ReSTUhsf0oyZHoLdJvBkU+p5YrWOQVyi/ArgoVTWaobI+9lnl7jPGpYxGoiQUY+jys
hNEv2yEHOHtB6mzLFWj8hTVnZtC5D+MW7inDVHLtlNoSmUqK8xVVb0aq/FZDeLaOeSVadTMhrSjT
6DeoDht/96C+5WFgU+P7bw/vuOOsJDSgr0O/PrxrDBbJeFUGyNf1BqTOpGhYiuJyRTZgw7uv1Fqo
WiMcdJqQ4QjCu5FP0zhlZmRkZoO9imbGnoObY/yvOCw8lzG3m7D/uvGFamXh4NfU8AdNot4PagRP
ApAcJGtmk/TFbctpX6xOmHXZKHITSoNfMPmrY/5DiLv2tDWOhsCSw6Y7YhY+N7bwESyK952PnrSu
7iZK8USaOBatCNrOTMVrzfD555q7+eGgfkNpwA8cj6C+MLNoFDpOlW9fWfpCjhpDtZXDGmUH5sMb
l/ZIjmTL2F5qnyI2E1ri0dDGA5e2P0UIG2RbKFVPpbi6E9gZUlTI9pdF3D+FPTNdG7HgnREPUbzJ
F68J1QBFgBSbJHu5JI8utCvMEEZw3Vnh5l56NcWyYJeDaGn1SckqaG3gp8l0U0sFEKZFjDvyOjZT
aR7iEnnVzAQL3gfQj+LZcvUVTcMWQJYN+OPmarCYyT6XIdacXTrXKMlXbw/5EE9YHH3Aq4oxcbmQ
SxVcLG8mRCiIr1WpLbyCHnOwhfW6IcqH9oEvwLBGje+LbrVWvn8uL4bWj0vwpyjj5fvBOBOnI0bg
Hb4OxuSXHY0+Xyn1J71MrhePjTsE8yUdk38Ehwt++PGO19vVt9A6enNz+5MMJ5+0bUbu7m72byx5
7AF1a2yeN3ed7ibo62/rWyiihG8GrprAX2/orbU5eOPG/7N8HejQZIT+uAQUTpdB12kB/iJ7/O1p
JdG04R2X+3Ew+L5HjRSPZFiO72+74fZ9Dxp2V89X/wIAAP//AwC/JrUuuR4AAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e44d2bc2bec1ab0-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 18 Nov 2024 03:20:25 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '13936'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29998979'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 2ms
x-request-id:
- req_602e9ec1c4bc0da2fdb284f809c50872
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,438 @@
interactions:
- request:
body: !!binary |
CuMOCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSug4KEgoQY3Jld2FpLnRl
bGVtZXRyeRKSDAoQf/zeqxfqyNP5BgW6rZrC0BIIiXyYjb3bUBcqDENyZXcgQ3JlYXRlZDABOXha
vrnarwgYQcCbxrnarwgYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5weXRob25fdmVy
c2lvbhIICgYzLjExLjdKLgoIY3Jld19rZXkSIgogZjM0NmE5YWQ2ZDczMDYzZTA2NzdiMTdjZTlj
NTAxNzdKMQoHY3Jld19pZBImCiQ2Yzg5NDczNy0zNWJjLTRhZDEtYjE2Ni1hZTY3ODhhMTA4YWZK
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
bnVtYmVyX29mX3Rhc2tzEgIYAkobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSqwFCgtjcmV3
X2FnZW50cxKcBQqZBVt7ImtleSI6ICI3M2MzNDljOTNjMTYzYjVkNGRmOThhNjRmYWMxYzQzMCIs
ICJpZCI6ICIzNDQ2YWRlOS05YWM0LTQ1NTUtOTlkNS0zYWM0MzdhMmMxNmUiLCAicm9sZSI6ICJ7
dG9waWN9IFNlbmlvciBEYXRhIFJlc2VhcmNoZXJcbiIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4
X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwg
ImxsbSI6ICJncHQtNG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29k
ZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMi
OiBbXX0sIHsia2V5IjogImJiMDY4Mzc3YzE2NDFiZTZkN2Q5N2E1MTY1OWRiNjEzIiwgImlkIjog
IjExMzVjODkzLTRlZGUtNDRiNC1hMjZmLTIxYWUxNzA0ZDRlZCIsICJyb2xlIjogInt0b3BpY30g
UmVwb3J0aW5nIEFuYWx5c3RcbiIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwg
Im1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQt
NG8iLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVjdXRpb24/
IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1dSpMECgpj
cmV3X3Rhc2tzEoQECoEEW3sia2V5IjogIjZhZmM0YjM5NjI1OWZiYjc2ODFmNTZjNzc1NWNjOTM3
IiwgImlkIjogImIxZjQ5ODJiLTRjZGItNDk1MC04ZmNjLWMwZDcxNzRhYzY0NiIsICJhc3luY19l
eGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAi
e3RvcGljfSBTZW5pb3IgRGF0YSBSZXNlYXJjaGVyXG4iLCAiYWdlbnRfa2V5IjogIjczYzM0OWM5
M2MxNjNiNWQ0ZGY5OGE2NGZhYzFjNDMwIiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICJi
MTdiMTg4ZGJmMTRmOTNhOThlNWI5NWFhZDM2NzU3NyIsICJpZCI6ICIyY2VkNGVhNC01YjcwLTRh
MDctOTEyOS00MzQ2ZDQ1OWM4NjIiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5f
aW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogInt0b3BpY30gUmVwb3J0aW5nIEFuYWx5c3Rc
biIsICJhZ2VudF9rZXkiOiAiYmIwNjgzNzdjMTY0MWJlNmQ3ZDk3YTUxNjU5ZGI2MTMiLCAidG9v
bHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQOaRyuH2UERJ3sHC1ImhOgxIIq8DZc4P2KYMq
DFRhc2sgQ3JlYXRlZDABOTA127narwgYQVjV27narwgYSi4KCGNyZXdfa2V5EiIKIGYzNDZhOWFk
NmQ3MzA2M2UwNjc3YjE3Y2U5YzUwMTc3SjEKB2NyZXdfaWQSJgokNmM4OTQ3MzctMzViYy00YWQx
LWIxNjYtYWU2Nzg4YTEwOGFmSi4KCHRhc2tfa2V5EiIKIDZhZmM0YjM5NjI1OWZiYjc2ODFmNTZj
Nzc1NWNjOTM3SjEKB3Rhc2tfaWQSJgokYjFmNDk4MmItNGNkYi00OTUwLThmY2MtYzBkNzE3NGFj
NjQ2egIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '1894'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Sun, 17 Nov 2024 07:10:11 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are {topic} Senior Data
Researcher\n. You''re a seasoned researcher with a knack for uncovering the
latest developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.\n\nYour personal goal
is: Uncover cutting-edge developments in {topic}\n\nTo give my best complete
final answer to the task use the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: Your final answer must be the great and the
most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Conduct a thorough research about {topic} Make sure you find any interesting
and relevant information given the current year is 2024.\n\n\nThis is the expect
criteria for your final answer: A list with 10 bullet points of the most relevant
information about {topic}\n\nyou MUST return the actual complete content as
the final answer, not a summary.\n\nBegin! This is VERY important to you, use
the tools available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1250'
content-type:
- application/json
cookie:
- __cf_bm=08pKRcLhS1PDw0mYfL2jz19ac6M.T31GoiMuI5DlX6w-1731827382-1.0.1.1-UfOLu3AaIUuXP1sGzdV6oggJ1q7iMTC46t08FDhYVrKcW5YmD4CbifudOJiSgx8h0JLTwZdgk.aG05S0eAO_PQ;
_cfuvid=74kaPOoAcp8YRSA0XocQ1FFNksu9V0_KiWdQfo7wQuQ-1731827382509-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4RXTW8cRw69+1cQcwlgzAiS5a/oJnu1Wi3irON4N4fNwmBXc7q5rmZ1iuwejYL8
9wWrejSjJMBeNFAXi83H9/jRvz4DWHG7uoJV6NHCMMbN9T8/8+vvb374+hAe9MPlntvbf5x/N739
9GAPf1+t/UZq/kvBDrfOQhrGSMZJ6nHIhEbu9eLN5cXbF29eXpyXgyG1FP1aN9rmZdq8OH/xcnP+
dnP+ernYJw6kqyv49zMAgF/LXw9RWrpfXUFxU54MpIodra4ejQBWOUV/skJVVkOx1fp4GJIYSYn6
7psBDPUrtbBj6yGTEubQs3SAoCMF3nIASyOHaoGwTWFSSAKThDRTdtswmbF0G2o7gpZmimkcSEwB
pYVMkWYUA5ZtygN6gmCbMjjsM7jlmQSsJ6D7kYLV87QFhJYMOVILkdX80cU5NFOMZDAmFtM13H0T
I5DolAkswZjTzC0BgpORqSdRngk80plp5078VRGN1CNS7nrTM/iODAby+4EO6ejQ+grQrwgFz3Xe
P8GhRuOm2W/89+xn+Vk+92nqeruCO5C0g4ACnUeA0LkcAEV3lN3yrywY4br8fwX+5OIMnj9/lwm/
Wp/dDbDADxOKTQO8T8M4eZqfP7+Cd/uSvTVgO6MEqtlmgV8W63Cwhh5nAk+iJRhSJueDsYkEv0wN
W4WsytKtYcT5AHeH+0LSmDEYB4yA4xg5FNjlVSHvR0tdxrHfr6GK/x50r0YDKA9TrLbrooI0Gg/8
ULM25tREGrRk7IWjvr6DOzHqcjVggb8RRusDZnLA19lci4wRWIxi5I4kELiaWSZSh2cZRZ0b6B8v
ryuX13eAsUuZrR+0MFNygSFMGY3iHlrGTpLnAVpWQiVdw5ip5VDyOKIxiUGaLKSBFlgjZU2CkR9K
4pxi5wLGiKJgPQrQTBka2qZMBe+l4/1EQrvCwo1Q7vZwJ5LmmjDH+7kn2BPWIoEeFZRIQLkTz0Mp
p8HVfqQ+P7qk6tIo9JJi6pj0DL6ne9t0frQoN0XMMKJQrHW6Y2nBptywkAJmqimireedxNYQCdsC
M8GOW9IxE7aArXObZCn2dgrUVpE5QaXWVTnCdqJYGX/pGXh1Czf3I4oerr6+hb8ce8chCV1MDUbI
KcY0lSbw6vaIbA+ZMPSkIJ6sYwdeL9HUhuaaSf4CT2RIw+Daac/gc8962rBcmANrVROL5eRoYJIx
U6CWxKiFFg0XqVH2LkltTWBIIhSMZ7Z9wfmqKLtWaKHoHadj6I7wloQ21HJR2Clfa9Ap9IAK7z/d
/fjx07rW8VLupZgR1LAj2PWUCZxZ4+DaTbmlrKX1NIW/EpRr3OpEWoOOmL/6O8n6UtwtNd4Sl6x1
Xrsp7x2ScrtIppL32kH9OGIg5y+mRU4fOJJaEnqUrxYblnZSy3vA0DPNhakdDI/WtTxL+1fDJrL2
hYm09doaUPyfOAlmaLwmS4RuvuWsBgOKUAsDq5a+ZAk+YNY1tLnMlWYPTfJe7hNAiudStplnNAKl
YMl1EyM2C5SC8k1BOakhS6mp6y5zmKL5oPlYe2KFeueVp2MSLRMoRB7cc+hRuvITI0lXGT26wxN3
48HdGlhCnEqNzZRr291iHspALmFT4Fowx/vrUqsdstQW5M6SLIUT92toUtIisG1K7sNF/bRgixJk
5pxKirzJDiMGK6l466l4v28oK4Ups+3hRvrHqeM5+Mk5ZPGFZ2mgHbsX611wuq5dTIkUcmomtT/M
rfDE/9NKOCbl+m6z8Fo9+4ZA4VjvVONaapSkjChHOpD1qT30Qkf1raP67FU8prwsHcce7KA+Tk30
7eepTXlNpGCZA8zUc4h02o8OA8m1QHOKMx0VfugojxvOZEnSkCaF8eRlbMsUrWL/fZ+/+Rc0aEZ5
DzFJR95uav/pMXeeJpZtRrU8BddHxXtx7oA/VHbrbIXrHfrQ0MLh9aHVLjx6uLCooY5TwIN9mQRL
k6zGLWwnaavI8rHvHoqVT2Z72p7ogzKOvFQ1jmMZmfa4xh1mtO8nXjVPw9FpdF6WtYuUni6HoNMw
YOYHejI20eMtQZz0/ZJnMcp1Kywxd1VoZfllWfatnrs++s542JPGnLZpqjRhqAzNmNlJ3TLFVs9O
t+9M20nRl3+ZYlye//a4zsfU+W6ky/nj8y0La//FQ0/iq7taGlfl9LdnAP8pnw3Tky+Blc+y0b5Y
+kriDl9cvqz+VscxeTx9df5qObVkGI8Hby6/Xf+Jwy91OdeTL49V8FHcHq8eP1NwajmdHDw7gf3H
cP7Md4XO0v1/9/8DAAD//0KWSE5OLShJTYmHNeSQvYxQVpQK6sjhUgYPZrCDlSB5Mz4tMy89taig
KBPSl0oriDdPNbIwNk41TbNU4qrlAgAAAP//AwCpko/aVA4AAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e3de645a8666217-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 17 Nov 2024 07:10:16 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '5537'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999711'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_220e7945d04e84ab7b58c252c98630b5
status:
code: 200
message: OK
- request:
body: !!binary |
Cs4CCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkSpQIKEgoQY3Jld2FpLnRl
bGVtZXRyeRKOAgoQrqG+rs9H9Iyyqr2ZU1qS4RIIWspPh5zdoVMqDFRhc2sgQ3JlYXRlZDABOeiB
tw7crwgYQZgvuQ7crwgYSi4KCGNyZXdfa2V5EiIKIGYzNDZhOWFkNmQ3MzA2M2UwNjc3YjE3Y2U5
YzUwMTc3SjEKB2NyZXdfaWQSJgokNmM4OTQ3MzctMzViYy00YWQxLWIxNjYtYWU2Nzg4YTEwOGFm
Si4KCHRhc2tfa2V5EiIKIGIxN2IxODhkYmYxNGY5M2E5OGU1Yjk1YWFkMzY3NTc3SjEKB3Rhc2tf
aWQSJgokMmNlZDRlYTQtNWI3MC00YTA3LTkxMjktNDM0NmQ0NTljODYyegIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '337'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Sun, 17 Nov 2024 07:10:22 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are {topic} Reporting
Analyst\n. You''re a meticulous analyst with a keen eye for detail. You''re
known for your ability to turn complex data into clear and concise reports,
making it easy for others to understand and act on the information you provide.\nYour
personal goal is: Create detailed reports based on {topic} data analysis and
research findings\n\nTo give my best complete final answer to the task use the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: Review the context you got and
expand each topic into a full section for a report. Make sure the report is
detailed and contains any and all relevant information.\n\n\nThis is the expect
criteria for your final answer: A fully fledge reports with the mains topics,
each with a full section of information. Formatted as markdown without ''```''\n\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nThis
is the context you''re working with:\n1. **Breakthrough in Quantum Computing**:
By 2024, advancements in quantum computing have led to more reliable qubit processing,
paving the way for practical applications in cryptography, complex system simulations,
and optimization problems.\n\n2. **AI Integration in Healthcare**: Artificial
intelligence continues to transform healthcare, with AI algorithms now more
accurately diagnosing diseases, predicting patient outcomes, and personalizing
treatment plans than ever before.\n\n3. **Renewable Energy Innovations**: The
year 2024 has seen significant improvements in renewable energy technologies.
Next-generation solar panels and wind turbines are more efficient, leading to
widespread adoption and reduced reliance on fossil fuels.\n\n4. **5G Expansion
and 6G Development**: The global rollout of 5G technology reaches near completion,
and research into 6G has commenced. This development promises to introduce unprecedented
data transfer speeds and connectivity.\n\n5. **Advances in Biotechnology**:
Gene-editing technologies, such as CRISPR, have advanced to a stage where genetic
disorders can be effectively treated, sparking ethical debates and regulatory
considerations.\n\n6. **Space Exploration Milestones**: The space industry achieves
new milestones with the establishment of permanent lunar bases and the first
manned missions to Mars, driven by both government and private sector collaboration.\n\n7.
**Sustainable Agriculture Practices**: In response to climate change challenges,
sustainable agriculture practices, including vertical farming and precision
agriculture, are gaining traction globally, boosting food production and reducing
environmental impact.\n\n8. **Cybersecurity Enhancements**: With increasing
digital threats, 2024 sees robust advancements in cybersecurity technologies,
including AI-driven threat detection, and enhanced data encryption methodologies.\n\n9.
**Transportation Innovation**: Public transportation and electric vehicle technology
continue to evolve with the introduction of autonomous public transit systems
and improvements in EV battery longevity and charging infrastructures.\n\n10.
**Mental Health Awareness**: A global increase in mental health awareness leads
to increased funding for research and the integration of digital therapies and
apps that provide more accessible mental health support.\n\nThese bullet points
summarize significant areas of development and interest in the given topic in
2024, highlighting the profound impacts in various fields.\n\nBegin! This is
VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '3935'
content-type:
- application/json
cookie:
- __cf_bm=08pKRcLhS1PDw0mYfL2jz19ac6M.T31GoiMuI5DlX6w-1731827382-1.0.1.1-UfOLu3AaIUuXP1sGzdV6oggJ1q7iMTC46t08FDhYVrKcW5YmD4CbifudOJiSgx8h0JLTwZdgk.aG05S0eAO_PQ;
_cfuvid=74kaPOoAcp8YRSA0XocQ1FFNksu9V0_KiWdQfo7wQuQ-1731827382509-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA3RXS28cxxG++1cU6OuSkBRJVnijFFumBQQKRcOH6FLTXTtTUU93q6pmlyNf8jfy
9/JLguqZfQnIhVhuv+r1PfbPHwCuOF7dwlUY0MJY0/Xd74/87tPHr/KwHV59CMF+e1nf/P7ht+Hx
17/a1cZPlO5fFOxw6iaUsSYyLnlZDkJo5Lc+/+kvz9+8+Onl89dtYSyRkh/rq12/LNcvnr14ef3s
zfWz1+vBoXAgvbqFf/4AAPBn++sh5khPV7fwbHP4ZiRV7Onq9rgJ4EpK8m+uUJXVMC/hrouhZKPc
on4cytQPdgv3kMseAmboeUeA0HvogFn3JACf8y+cMcFd+//2c/6cf4R3ZaxCA2X1Iw9UixiUDB9o
hkcKQy6p9BwwAeYInwJTNt5ygL/RjlKpI2VT4AyefbvyR3grhF9sEA/Ll/4xYbZpbG9NxrkH3/h2
bmc2oNxnvxKzAcYd5kDHW7+uR8Px6IA7go4oA4aBaUdxAxXFOEwJJc1+ygYCFEIoW/g6dWxQpQRS
9QuEEmPHiW2+gceBFbrzeAdUqLij2G7Z4wzbIu1zFQy2lKLWxAF9RpYnzoMkUcAgRRWUdiSYIJYR
OesN3GcIMlcrvWAd5o3fq3SZNWWdhIDy4N9FoNyO+Fsj2VCigg1oEMqUItTiY8CY0gxCu5Im38nf
CCIaglKYhG2GboYRv3j+bIBpLGrAYyXZcZkUrMCAoa2jGY3V9ObYt1PxMWkBegqUWneUxylhW1lQ
8wQ6q9GoG9gPHIY1SBPMui0yAuc4qQmTgk5hAC/2gDJioKnVVtucjWgk7P+pT1wgj/9sTlqycQr+
srfGeKR2MLS88q4k7yBnoKdKwktlfUM8je0N/DKJDSRjEdpAqcYjf1u6WqV0icZjJx0Eahx0A1vO
3phNu66jueTYcNdRpi0bbKWM67wcZ64WR+DZqBzLpCaEY+Ls20olae8vsfJYpex8gbZbboXwwqGB
BkykUIVa+9IMU0Yz5IxdopsVh3f3cJ+N+uVOr8avhMmGgEINgnfSsMyYgLNRSty3YnN7xHMIRcjj
xlMPj5cNp8tQfdMC5z3b4E9j6ouwDaO28ixo9WSmXIUCRcpGETCESTAccRsZ+1yU242RlVBJHagO
lLVsoJNUVIVhGjFDwLoA2qvTzYAZ0/zNn9qhWgOCkil8nTh8SfM6B0ahTW71gZfsA71j5S6Ro8FD
WW6nmTaQCGMbtgLUWKZNqRfHc2E9xk26Tj4rBOGFL5xBQsmRl94m/kJO04FkGVqUyGWH2ijsLOmP
QpGDOTPf3UPTG3Vig5pwbniEyrtimMDFwku4LUIB9ZCZ0zWUyUIZSTcQZGrd9oCqkOPcLz/rpJqg
Ud/mLEcQ0jJJIMCUysJ4N3AXl0ycdDZwd//ff/9HYaVUr1AlUV91FvLxNkebx5z1QGt6DK692s1g
yKlIY/izaJyffHeHShHa3EXecZwwQU+ZjMMGEm9JbU4rJinvWEr2RzFBE8onc6qdvMcu5w2Tp8ga
unwE/fQhLkVj3Trjl3wA1ANl2jvC4OdM0s9wn3PZrYj1PY4AGFG+KOAZHaPMMBNKq7scL6HlEjvK
rPf87/Rk157ailotPhMVs/e+Kz7QJ2k40MIM3jVvcMk7ktb9Np065cT94Jzoo5somHDwPnmu35dk
eWsNC2NZVGdfJMU9R2r6VVEwJUqbg2o1JdizXzdJx5lOCc2LWgvplGzh43XPqmHe4xbnIRNbAVFb
gcoWDpU4kigapPahPamVKB7pgc/aEUrybHlHaW5DINxN1rCNF5ajCcmB0/pUOkeTewRnwuKIUuUE
24mS3sAfHEmrEMZTgcp21fHzTjoBnEqbZpeDSilR9GnPxV1WOm++E8Xa2UWuuskWwe2l7JsKXAz2
iDl604+6d+0aTMaecybVw9S+eg8/P1XM6rH65tfvz91bG9zHgZYJ3bP52dYggkwo16shpmNxSkpl
Mk/71fuzZm+AXH480i2qkTRRkUy2tulEmosHS64vObcu+Uj6u83LNJw43UmGyD3bpefSjVc2TY2R
78tju1dHFIM22py3gmoyBZvEMfVASihOyo6C15dBY/JuuoJGkj3OGxi4uQX7TqmaoVpkkOQ8pYsk
zsXoBv4YKMN2WtxZY8S48QBYmzMJfq8V0Kk24007ykuFVnDF7/L+f3ZvtWDjlA++9GIWPcrtYnZO
TfIGd5gd2jZce6+WHwGRfLSa/m4nr+AFrpp48TiStM07FpsaYrDR/+K3qPGCvzolE7weuB+uI205
N+GA9dfL6n4490fLcsYpb7mcMYlvuM+rx+gulkb84n7yDNNuMaPzIWmlsJTL0U2ZrsnFy9M/L1DL
6t3D/aePDwcyuTDlLn/7o9aPJbaXloqsLGUcjr5144R2ZJ+mNP7kYVtkLRL9h8KZg4tEI0WYctve
fBx8co98YW9KpQxThUx7b6BgbcYZqrPUyQQdqEONBciGxi6RukYYobj1aI5zsThrXEvHOi6Ue85E
rsbfq/1CdOf1b1dfxJip+V5DoxanUO8/E4rMsBUcaV9cIJ2IYxRSPU21W950Kmxe41scwQa0BCYn
g1zEzfMabuT/AQAA//+MWbFu5DYQ7f0VhKsEWC9ygH1BSuPgIoWBQxJcFywoaSQxpkiFpORscf8e
vBlS4q7tIOUuJZKaGb5573FFNaZzqaLfZ90SQM/63EWfjaWYPBoPnpEHqHogkG5H3vurGgktc1O1
B+7ogts4MxSRHRNHRk/fg+9M2uEHaArvG8/ZxekAqtpryAXmMuBsoK1NZIwrZ1Iar7DbelulFrta
bDPhzk2VufnUIEGL9Dzd+KIhGkqvEMqDXylw21CRP1wPRUqA8ASzIlOR2uQBDylj17MPhDcPQoZN
TD5wjTtHnZpMjLxK8upZh6gCzYEit3A1ebfkNmVJz6wWOJPxOvAHxRqHody4VduF+0LcjQbjoqQD
m828dwh+cR3qKIeRYSovQSlZktxIIn6jTn212lE6qlIhSyxqST0OAeYBT/FVNH4uk8fJdDFlMZel
XDuC/riB2UlrDY48/nQDHbhcVCREtnRLmuZRs5xxKlar6mrVuay6Exm0N1LM5VhB6DBtoGX+XgqB
mvQ/ZmJ4W5Jhwp0zXHF3HJSoXslaltuMYUwFqh3wZAuKF8rN5WbHQoqBIfmij0m1wc/qbMh2rHUs
qck4DL3lKL33aQ4GWpuhbPvQnQBlu6P3vrtwKxrvs4oJvhC0DdZGsjMwmVaD8OsOAEBXi5tp1i3q
JgI34OGJNk1BF0Tb4pqdlQIgX84NJsy7eapZGddF3GhJGoHWjKnJuIX5JbH98B/GFtNe3bFgay+W
umhK3cJ6CEV1vJAaxqnHX++6AKKXd1AErXfS4Ik78h0bI4Hi7B1zOl9hLa98B9ugfYmHj+yVdbFg
4MUwe/rQliq73jAN35RtKD3A/0qKJgqDcA8OG5/+IsQj+AfrUeN2o2Gz0oBOMQu8zGBE4uR1SkJA
0ES2FXZW0SKOnS6MDRUBcVPS/gfeBRGTpfeQC0e+HK0ISEl+bmqcaak1BoSGRKtb7Tq0kl0LNj6N
al4aa1rZuEmbx8FfmgWbWmk0LSyfH56+xR8ZJkBm96OBPrAk7/yERvDBlOSC4S63hEaDaGbN3pyV
73vu9zs15/U3WZaCXskqUTybvcdVApGv8SDiMFBMRWeITqPSKY7qi3ftEgKhwg7q6VsdQzG7YJ8g
buay2hv2aM7KYoG1yNd21FJNV4T/UIiFwIcwLGXNZFLlrmU79G2ItdTVuoehxu2s+YopPGmIpVJA
z4I8YrOpx1cdWIkJaADzwH3SeK4beqEZ0ASYsagsw31AZTATCqR0mfLCkso6kxjzRen0i+NRkfmo
xkq36jlt5vUOZCCThRRcrTrPW2tK3tuYm3YW77plvleiVdk/1xNlnXORoDovUNIVOtdOkJTwUT3G
qzkbHYJh052FJQqSrwTExiE36IFynCVK8HA99Kmcyrwn4E7VP0SCykJonXf5EMOWvfBUAanBTLB4
8oZ4vzvRPWZ9HUm90PmKygm4rTpwifbSVEtBsCKNbMFe+q8rwTWX+qilbDbLhRgLWYacxR0EFwPI
7aVQyMdIGE3mFK/GWhVHPRNXjpCrY335FKhfosbdl1uszf9/326zrB/gn8c8vv0P+RfHE5LgHW6u
YvLzLY9+v1HqT741Wy4uwm7n4Kc5nZJ/IYcJP/9yL/Pd7vd0++innz5/ysMJtmg18vPDw+GdKU8d
wXmM1dXbbQsp0O3v7vd0eumMrwZuqg9/u6H35paPN274P9PvA21Lc6LuNGdHuP7o/bFAf3FXe/+x
LdC84Vs5UafeuIECkzSkpJ9P9w9t/3Dfkabbm+83/wIAAP//AwCS6QzxVR0AAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e3de6697f976217-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Sun, 17 Nov 2024 07:10:27 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '10658'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999045'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 1ms
x-request-id:
- req_f0af67637da5bc0e6b11fc3e5db59f62
status:
code: 200
message: OK
version: 1

Some files were not shown because too many files have changed in this diff Show More