mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
adding in lorenze feedback
This commit is contained in:
@@ -126,7 +126,7 @@ class Agent(BaseAgent):
|
||||
default="safe",
|
||||
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
|
||||
)
|
||||
# TODO: We need to add in knowledge config (score, top_k, etc)
|
||||
# TODO: Lorenze add knowledge_embedder. Support direct class or config dict.
|
||||
_knowledge: Optional[Knowledge] = PrivateAttr(default=None)
|
||||
|
||||
@model_validator(mode="after")
|
||||
@@ -279,10 +279,8 @@ class Agent(BaseAgent):
|
||||
if self._knowledge:
|
||||
# Query the knowledge base for relevant information
|
||||
knowledge_snippets = self._knowledge.query(query=task.prompt())
|
||||
print("knowledge_snippets", knowledge_snippets)
|
||||
if knowledge_snippets:
|
||||
formatted_knowledge = "\n".join(knowledge_snippets)
|
||||
print("formatted_knowledge", formatted_knowledge)
|
||||
task_prompt += f"\n\nAdditional Information:\n{formatted_knowledge}"
|
||||
|
||||
tools = tools or self.tools or []
|
||||
|
||||
@@ -0,0 +1,82 @@
|
||||
import os
|
||||
from typing import List, Optional
|
||||
|
||||
import numpy as np
|
||||
from openai import OpenAI
|
||||
|
||||
from .base_embedder import BaseEmbedder
|
||||
|
||||
|
||||
class OllamaEmbedder(BaseEmbedder):
|
||||
"""
|
||||
A wrapper class for text embedding models using Ollama's API
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
api_key: Optional[str] = None,
|
||||
base_url: str = "http://localhost:11434/v1",
|
||||
):
|
||||
"""
|
||||
Initialize the embedding model
|
||||
|
||||
Args:
|
||||
model_name: Name of the model to use
|
||||
api_key: API key (defaults to 'ollama' or environment variable 'OLLAMA_API_KEY')
|
||||
base_url: Base URL for the Ollama API (default is 'http://localhost:11434/v1')
|
||||
"""
|
||||
self.model_name = model_name
|
||||
self.api_key = api_key or os.getenv("OLLAMA_API_KEY") or "ollama"
|
||||
self.base_url = base_url
|
||||
self.client = OpenAI(base_url=self.base_url, api_key=self.api_key)
|
||||
|
||||
def embed_chunks(self, chunks: List[str]) -> List[np.ndarray]:
|
||||
"""
|
||||
Generate embeddings for a list of text chunks
|
||||
|
||||
Args:
|
||||
chunks: List of text chunks to embed
|
||||
|
||||
Returns:
|
||||
List of embeddings
|
||||
"""
|
||||
return self.embed_texts(chunks)
|
||||
|
||||
def embed_texts(self, texts: List[str]) -> List[np.ndarray]:
|
||||
"""
|
||||
Generate embeddings for a list of texts
|
||||
|
||||
Args:
|
||||
texts: List of texts to embed
|
||||
|
||||
Returns:
|
||||
List of embeddings
|
||||
"""
|
||||
embeddings = []
|
||||
max_batch_size = 2048 # Adjust batch size if necessary
|
||||
for i in range(0, len(texts), max_batch_size):
|
||||
batch = texts[i : i + max_batch_size]
|
||||
response = self.client.embeddings.create(input=batch, model=self.model_name)
|
||||
batch_embeddings = [np.array(item.embedding) for item in response.data]
|
||||
embeddings.extend(batch_embeddings)
|
||||
return embeddings
|
||||
|
||||
def embed_text(self, text: str) -> np.ndarray:
|
||||
"""
|
||||
Generate embedding for a single text
|
||||
|
||||
Args:
|
||||
text: Text to embed
|
||||
|
||||
Returns:
|
||||
Embedding array
|
||||
"""
|
||||
return self.embed_texts([text])[0]
|
||||
|
||||
@property
|
||||
def dimension(self) -> int:
|
||||
"""Get the dimension of the embeddings"""
|
||||
# Embedding dimensions may vary; we'll determine it dynamically
|
||||
test_embed = self.embed_text("test")
|
||||
return len(test_embed)
|
||||
|
||||
@@ -1,82 +0,0 @@
|
||||
import os
|
||||
from typing import List, Optional
|
||||
|
||||
import numpy as np
|
||||
from openai import OpenAI
|
||||
|
||||
from .base_embedder import BaseEmbedder
|
||||
|
||||
|
||||
class OllamaEmbedder(BaseEmbedder):
|
||||
"""
|
||||
A wrapper class for text embedding models using Ollama's API
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
api_key: Optional[str] = None,
|
||||
base_url: str = "http://localhost:11434/v1",
|
||||
):
|
||||
"""
|
||||
Initialize the embedding model
|
||||
|
||||
Args:
|
||||
model_name: Name of the model to use
|
||||
api_key: API key (defaults to 'ollama' or environment variable 'OLLAMA_API_KEY')
|
||||
base_url: Base URL for the Ollama API (default is 'http://localhost:11434/v1')
|
||||
"""
|
||||
self.model_name = model_name
|
||||
self.api_key = api_key or os.getenv("OLLAMA_API_KEY") or "ollama"
|
||||
self.base_url = base_url
|
||||
self.client = OpenAI(base_url=self.base_url, api_key=self.api_key)
|
||||
|
||||
def embed_chunks(self, chunks: List[str]) -> List[np.ndarray]:
|
||||
"""
|
||||
Generate embeddings for a list of text chunks
|
||||
|
||||
Args:
|
||||
chunks: List of text chunks to embed
|
||||
|
||||
Returns:
|
||||
List of embeddings
|
||||
"""
|
||||
return self.embed_texts(chunks)
|
||||
|
||||
def embed_texts(self, texts: List[str]) -> List[np.ndarray]:
|
||||
"""
|
||||
Generate embeddings for a list of texts
|
||||
|
||||
Args:
|
||||
texts: List of texts to embed
|
||||
|
||||
Returns:
|
||||
List of embeddings
|
||||
"""
|
||||
embeddings = []
|
||||
max_batch_size = 2048 # Adjust batch size if necessary
|
||||
for i in range(0, len(texts), max_batch_size):
|
||||
batch = texts[i : i + max_batch_size]
|
||||
response = self.client.embeddings.create(input=batch, model=self.model_name)
|
||||
batch_embeddings = [np.array(item.embedding) for item in response.data]
|
||||
embeddings.extend(batch_embeddings)
|
||||
return embeddings
|
||||
|
||||
def embed_text(self, text: str) -> np.ndarray:
|
||||
"""
|
||||
Generate embedding for a single text
|
||||
|
||||
Args:
|
||||
text: Text to embed
|
||||
|
||||
Returns:
|
||||
Embedding array
|
||||
"""
|
||||
return self.embed_texts([text])[0]
|
||||
|
||||
@property
|
||||
def dimension(self) -> int:
|
||||
"""Get the dimension of the embeddings"""
|
||||
# Embedding dimensions may vary; we'll determine it dynamically
|
||||
test_embed = self.embed_text("test")
|
||||
return len(test_embed)
|
||||
Reference in New Issue
Block a user