Merge branch 'main' of github.com:crewAIInc/crewAI into knowledge

This commit is contained in:
Lorenze Jay
2024-11-14 12:22:07 -08:00
41 changed files with 1242 additions and 244 deletions

View File

@@ -19,5 +19,5 @@ jobs:
run: pip install bandit
- name: Run Bandit
run: bandit -c pyproject.toml -r src/ -lll
run: bandit -c pyproject.toml -r src/ -ll

View File

@@ -22,7 +22,8 @@ A crew in crewAI represents a collaborative group of agents working together to
| **Max RPM** _(optional)_ | `max_rpm` | Maximum requests per minute the crew adheres to during execution. Defaults to `None`. |
| **Language** _(optional)_ | `language` | Language used for the crew, defaults to English. |
| **Language File** _(optional)_ | `language_file` | Path to the language file to be used for the crew. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). Defaults to `False`. |
| **Memory** _(optional)_ | `memory` | Utilized for storing execution memories (short-term, long-term, entity memory). |
| **Memory Config** _(optional)_ | `memory_config` | Configuration for the memory provider to be used by the crew. |
| **Cache** _(optional)_ | `cache` | Specifies whether to use a cache for storing the results of tools' execution. Defaults to `True`. |
| **Embedder** _(optional)_ | `embedder` | Configuration for the embedder to be used by the crew. Mostly used by memory for now. Default is `{"provider": "openai"}`. |
| **Full Output** _(optional)_ | `full_output` | Whether the crew should return the full output with all tasks outputs or just the final output. Defaults to `False`. |

View File

@@ -25,7 +25,100 @@ By default, CrewAI uses the `gpt-4o-mini` model. It uses environment variables i
- `OPENAI_API_BASE`
- `OPENAI_API_KEY`
### 2. Custom LLM Objects
### 2. Updating YAML files
You can update the `agents.yml` file to refer to the LLM you want to use:
```yaml Code
researcher:
role: Research Specialist
goal: Conduct comprehensive research and analysis to gather relevant information,
synthesize findings, and produce well-documented insights.
backstory: A dedicated research professional with years of experience in academic
investigation, literature review, and data analysis, known for thorough and
methodical approaches to complex research questions.
verbose: true
llm: openai/gpt-4o
# llm: azure/gpt-4o-mini
# llm: gemini/gemini-pro
# llm: anthropic/claude-3-5-sonnet-20240620
# llm: bedrock/anthropic.claude-3-sonnet-20240229-v1:0
# llm: mistral/mistral-large-latest
# llm: ollama/llama3:70b
# llm: groq/llama-3.2-90b-vision-preview
# llm: watsonx/meta-llama/llama-3-1-70b-instruct
# ...
```
Keep in mind that you will need to set certain ENV vars depending on the model you are
using to account for the credentials or set a custom LLM object like described below.
Here are some of the required ENV vars for some of the LLM integrations:
<AccordionGroup>
<Accordion title="OpenAI">
```python Code
OPENAI_API_KEY=<your-api-key>
OPENAI_API_BASE=<optional-custom-base-url>
OPENAI_MODEL_NAME=<openai-model-name>
OPENAI_ORGANIZATION=<your-org-id> # OPTIONAL
OPENAI_API_BASE=<openaiai-api-base> # OPTIONAL
```
</Accordion>
<Accordion title="Anthropic">
```python Code
ANTHROPIC_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="Google">
```python Code
GEMINI_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="Azure">
```python Code
AZURE_API_KEY=<your-api-key> # "my-azure-api-key"
AZURE_API_BASE=<your-resource-url> # "https://example-endpoint.openai.azure.com"
AZURE_API_VERSION=<api-version> # "2023-05-15"
AZURE_AD_TOKEN=<your-azure-ad-token> # Optional
AZURE_API_TYPE=<your-azure-api-type> # Optional
```
</Accordion>
<Accordion title="AWS Bedrock">
```python Code
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-key>
AWS_DEFAULT_REGION=<your-region>
```
</Accordion>
<Accordion title="Mistral">
```python Code
MISTRAL_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="Groq">
```python Code
GROQ_API_KEY=<your-api-key>
```
</Accordion>
<Accordion title="IBM watsonx.ai">
```python Code
WATSONX_URL=<your-url> # (required) Base URL of your WatsonX instance
WATSONX_APIKEY=<your-apikey> # (required) IBM cloud API key
WATSONX_TOKEN=<your-token> # (required) IAM auth token (alternative to APIKEY)
WATSONX_PROJECT_ID=<your-project-id> # (optional) Project ID of your WatsonX instance
WATSONX_DEPLOYMENT_SPACE_ID=<your-space-id> # (optional) ID of deployment space for deployed models
```
</Accordion>
</AccordionGroup>
### 3. Custom LLM Objects
Pass a custom LLM implementation or object from another library.
@@ -102,7 +195,7 @@ When configuring an LLM for your agent, you have access to a wide range of param
These are examples of how to configure LLMs for your agent.
<AccordionGroup>
<AccordionGroup>
<Accordion title="OpenAI">
```python Code
@@ -133,10 +226,10 @@ These are examples of how to configure LLMs for your agent.
model="cerebras/llama-3.1-70b",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
agent = Agent(llm=llm, ...)
```
</Accordion>
<Accordion title="Ollama (Local LLMs)">
CrewAI supports using Ollama for running open-source models locally:
@@ -150,7 +243,7 @@ These are examples of how to configure LLMs for your agent.
agent = Agent(
llm=LLM(
model="ollama/llama3.1",
model="ollama/llama3.1",
base_url="http://localhost:11434"
),
...
@@ -164,7 +257,7 @@ These are examples of how to configure LLMs for your agent.
from crewai import LLM
llm = LLM(
model="groq/llama3-8b-8192",
model="groq/llama3-8b-8192",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
@@ -189,7 +282,7 @@ These are examples of how to configure LLMs for your agent.
from crewai import LLM
llm = LLM(
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
api_key="your-api-key-here"
)
agent = Agent(llm=llm, ...)
@@ -224,6 +317,29 @@ These are examples of how to configure LLMs for your agent.
</Accordion>
<Accordion title="IBM watsonx.ai">
You can use IBM Watson by seeting the following ENV vars:
```python Code
WATSONX_URL=<your-url>
WATSONX_APIKEY=<your-apikey>
WATSONX_PROJECT_ID=<your-project-id>
```
You can then define your agents llms by updating the `agents.yml`
```yaml Code
researcher:
role: Research Specialist
goal: Conduct comprehensive research and analysis to gather relevant information,
synthesize findings, and produce well-documented insights.
backstory: A dedicated research professional with years of experience in academic
investigation, literature review, and data analysis, known for thorough and
methodical approaches to complex research questions.
verbose: true
llm: watsonx/meta-llama/llama-3-1-70b-instruct
```
You can also set up agents more dynamically as a base level LLM instance, like bellow:
```python Code
from crewai import LLM
@@ -247,7 +363,7 @@ These are examples of how to configure LLMs for your agent.
api_key="your-api-key-here",
base_url="your_api_endpoint"
)
agent = Agent(llm=llm, ...)
agent = Agent(llm=llm, ...)
```
</Accordion>
</AccordionGroup>

View File

@@ -18,6 +18,7 @@ reason, and learn from past interactions.
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
| **User Memory** | Stores user-specific information and preferences, enhancing personalization and user experience. |
## How Memory Systems Empower Agents
@@ -92,6 +93,47 @@ my_crew = Crew(
)
```
## Integrating Mem0 for Enhanced User Memory
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
To include user-specific memory you can get your API key [here](https://app.mem0.ai/dashboard/api-keys) and refer the [docs](https://docs.mem0.ai/platform/quickstart#4-1-create-memories) for adding user preferences.
```python Code
import os
from crewai import Crew, Process
from mem0 import MemoryClient
# Set environment variables for Mem0
os.environ["MEM0_API_KEY"] = "m0-xx"
# Step 1: Record preferences based on past conversation or user input
client = MemoryClient()
messages = [
{"role": "user", "content": "Hi there! I'm planning a vacation and could use some advice."},
{"role": "assistant", "content": "Hello! I'd be happy to help with your vacation planning. What kind of destination do you prefer?"},
{"role": "user", "content": "I am more of a beach person than a mountain person."},
{"role": "assistant", "content": "That's interesting. Do you like hotels or Airbnb?"},
{"role": "user", "content": "I like Airbnb more."},
]
client.add(messages, user_id="john")
# Step 2: Create a Crew with User Memory
crew = Crew(
agents=[...],
tasks=[...],
verbose=True,
process=Process.sequential,
memory=True,
memory_config={
"provider": "mem0",
"config": {"user_id": "john"},
},
)
```
## Additional Embedding Providers

6
poetry.lock generated
View File

@@ -1597,12 +1597,12 @@ files = [
google-auth = ">=2.14.1,<3.0.dev0"
googleapis-common-protos = ">=1.56.2,<2.0.dev0"
grpcio = [
{version = ">=1.49.1,<2.0dev", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
{version = ">=1.33.2,<2.0dev", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""},
{version = ">=1.49.1,<2.0dev", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
]
grpcio-status = [
{version = ">=1.49.1,<2.0.dev0", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
{version = ">=1.33.2,<2.0.dev0", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""},
{version = ">=1.49.1,<2.0.dev0", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""},
]
proto-plus = ">=1.22.3,<2.0.0dev"
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<6.0.0.dev0"
@@ -4286,8 +4286,8 @@ files = [
[package.dependencies]
numpy = [
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
]
python-dateutil = ">=2.8.2"

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.76.9"
version = "0.79.4"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<=3.13"
@@ -16,7 +16,7 @@ dependencies = [
"opentelemetry-exporter-otlp-proto-http>=1.22.0",
"instructor>=1.3.3",
"regex>=2024.9.11",
"crewai-tools>=0.13.4",
"crewai-tools>=0.14.0",
"click>=8.1.7",
"python-dotenv>=1.0.0",
"appdirs>=1.4.4",
@@ -37,7 +37,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.13.4"]
tools = ["crewai-tools>=0.14.0"]
agentops = ["agentops>=0.3.0"]
fastembed = ["fastembed>=0.4.1"]
pdfplumber = [
@@ -49,6 +49,7 @@ pandas = [
openpyxl = [
"openpyxl>=3.1.5",
]
mem0 = ["mem0ai>=0.1.29"]
[tool.uv]
dev-dependencies = [
@@ -62,7 +63,7 @@ dev-dependencies = [
"mkdocs-material-extensions>=1.3.1",
"pillow>=10.2.0",
"cairosvg>=2.7.1",
"crewai-tools>=0.13.4",
"crewai-tools>=0.14.0",
"pytest>=8.0.0",
"pytest-vcr>=1.0.2",
"python-dotenv>=1.0.0",

View File

@@ -16,7 +16,7 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.76.9"
__version__ = "0.79.4"
__all__ = [
"Agent",
"Crew",

View File

@@ -132,6 +132,11 @@ class Agent(BaseAgent):
@model_validator(mode="after")
def post_init_setup(self):
self.agent_ops_agent_name = self.role
unnacepted_attributes = [
"AWS_ACCESS_KEY_ID",
"AWS_SECRET_ACCESS_KEY",
"AWS_REGION_NAME",
]
# Handle different cases for self.llm
if isinstance(self.llm, str):
@@ -155,39 +160,44 @@ class Agent(BaseAgent):
if api_base:
llm_params["base_url"] = api_base
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
# Iterate over all environment variables to find matching API keys or use defaults
for provider, env_vars in ENV_VARS.items():
for env_var in env_vars:
# Check if the environment variable is set
if "key_name" in env_var:
env_value = os.environ.get(env_var["key_name"])
if env_value:
# Map key names containing "API_KEY" to "api_key"
key_name = (
"api_key"
if "API_KEY" in env_var["key_name"]
else env_var["key_name"]
)
# Map key names containing "API_BASE" to "api_base"
key_name = (
"api_base"
if "API_BASE" in env_var["key_name"]
else key_name
)
# Map key names containing "API_VERSION" to "api_version"
key_name = (
"api_version"
if "API_VERSION" in env_var["key_name"]
else key_name
)
llm_params[key_name] = env_value
# Check for default values if the environment variable is not set
elif env_var.get("default", False):
for key, value in env_var.items():
if key not in ["prompt", "key_name", "default"]:
# Only add default if the key is already set in os.environ
if key in os.environ:
llm_params[key] = value
if provider == set_provider:
for env_var in env_vars:
if env_var["key_name"] in unnacepted_attributes:
continue
# Check if the environment variable is set
if "key_name" in env_var:
env_value = os.environ.get(env_var["key_name"])
if env_value:
# Map key names containing "API_KEY" to "api_key"
key_name = (
"api_key"
if "API_KEY" in env_var["key_name"]
else env_var["key_name"]
)
# Map key names containing "API_BASE" to "api_base"
key_name = (
"api_base"
if "API_BASE" in env_var["key_name"]
else key_name
)
# Map key names containing "API_VERSION" to "api_version"
key_name = (
"api_version"
if "API_VERSION" in env_var["key_name"]
else key_name
)
llm_params[key_name] = env_value
# Check for default values if the environment variable is not set
elif env_var.get("default", False):
for key, value in env_var.items():
if key not in ["prompt", "key_name", "default"]:
# Only add default if the key is already set in os.environ
if key in os.environ:
llm_params[key] = value
self.llm = LLM(**llm_params)
else:
@@ -267,9 +277,11 @@ class Agent(BaseAgent):
if self.crew and self.crew.memory:
contextual_memory = ContextualMemory(
self.crew.memory_config,
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
self.crew._user_memory,
)
memory = contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":

View File

@@ -4,6 +4,7 @@ from crewai.types.usage_metrics import UsageMetrics
class TokenProcess:
total_tokens: int = 0
prompt_tokens: int = 0
cached_prompt_tokens: int = 0
completion_tokens: int = 0
successful_requests: int = 0
@@ -15,6 +16,9 @@ class TokenProcess:
self.completion_tokens = self.completion_tokens + tokens
self.total_tokens = self.total_tokens + tokens
def sum_cached_prompt_tokens(self, tokens: int):
self.cached_prompt_tokens = self.cached_prompt_tokens + tokens
def sum_successful_requests(self, requests: int):
self.successful_requests = self.successful_requests + requests
@@ -22,6 +26,7 @@ class TokenProcess:
return UsageMetrics(
total_tokens=self.total_tokens,
prompt_tokens=self.prompt_tokens,
cached_prompt_tokens=self.cached_prompt_tokens,
completion_tokens=self.completion_tokens,
successful_requests=self.successful_requests,
)

View File

@@ -145,25 +145,26 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
formatted_answer.result = action_result
self._show_logs(formatted_answer)
if self.step_callback:
self.step_callback(formatted_answer)
if self.step_callback:
self.step_callback(formatted_answer)
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="assistant")
)
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
thought="",
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="assistant")
)
except OutputParserException as e:
self.messages.append({"role": "user", "content": e.error})
@@ -332,9 +333,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_data[agent_id][train_iteration]["improved_output"] = (
result.output
)
training_handler.save(training_data)
else:
self._logger.log(
@@ -385,4 +386,5 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
return CrewAgentParser(agent=self.agent).parse(answer)
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
prompt = prompt.rstrip()
return {"role": role, "content": prompt}

View File

@@ -34,7 +34,9 @@ class AuthenticationCommand:
"scope": "openid",
"audience": AUTH0_AUDIENCE,
}
response = requests.post(url=self.DEVICE_CODE_URL, data=device_code_payload)
response = requests.post(
url=self.DEVICE_CODE_URL, data=device_code_payload, timeout=20
)
response.raise_for_status()
return response.json()
@@ -54,7 +56,7 @@ class AuthenticationCommand:
attempts = 0
while True and attempts < 5:
response = requests.post(self.TOKEN_URL, data=token_payload)
response = requests.post(self.TOKEN_URL, data=token_payload, timeout=30)
token_data = response.json()
if response.status_code == 200:

View File

@@ -24,7 +24,6 @@ def run_crew() -> None:
f"Please run `crewai update` to update your pyproject.toml to use uv.",
fg="red",
)
print()
try:
subprocess.run(command, capture_output=False, text=True, check=True)

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.76.9,<1.0.0"
"crewai[tools]>=0.79.4,<1.0.0"
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.76.9,<1.0.0",
"crewai[tools]>=0.79.4,<1.0.0",
]
[project.scripts]

View File

@@ -6,7 +6,7 @@ authors = ["Your Name <you@example.com>"]
[tool.poetry.dependencies]
python = ">=3.10,<=3.13"
crewai = { extras = ["tools"], version = ">=0.76.9,<1.0.0" }
crewai = { extras = ["tools"], version = ">=0.79.4,<1.0.0" }
asyncio = "*"
[tool.poetry.scripts]

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = ["Your Name <you@example.com>"]
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.76.9,<1.0.0"
"crewai[tools]>=0.79.4,<1.0.0"
]
[project.scripts]

View File

@@ -5,6 +5,6 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<=3.13"
dependencies = [
"crewai[tools]>=0.76.9"
"crewai[tools]>=0.79.4"
]

View File

@@ -27,6 +27,7 @@ from crewai.llm import LLM
from crewai.memory.entity.entity_memory import EntityMemory
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.short_term.short_term_memory import ShortTermMemory
from crewai.memory.user.user_memory import UserMemory
from crewai.process import Process
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
@@ -71,6 +72,7 @@ class Crew(BaseModel):
manager_llm: The language model that will run manager agent.
manager_agent: Custom agent that will be used as manager.
memory: Whether the crew should use memory to store memories of it's execution.
memory_config: Configuration for the memory to be used for the crew.
cache: Whether the crew should use a cache to store the results of the tools execution.
function_calling_llm: The language model that will run the tool calling for all the agents.
process: The process flow that the crew will follow (e.g., sequential, hierarchical).
@@ -94,6 +96,7 @@ class Crew(BaseModel):
_short_term_memory: Optional[InstanceOf[ShortTermMemory]] = PrivateAttr()
_long_term_memory: Optional[InstanceOf[LongTermMemory]] = PrivateAttr()
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
_user_memory: Optional[InstanceOf[UserMemory]] = PrivateAttr()
_train: Optional[bool] = PrivateAttr(default=False)
_train_iteration: Optional[int] = PrivateAttr()
_inputs: Optional[Dict[str, Any]] = PrivateAttr(default=None)
@@ -114,6 +117,10 @@ class Crew(BaseModel):
default=False,
description="Whether the crew should use memory to store memories of it's execution",
)
memory_config: Optional[Dict[str, Any]] = Field(
default=None,
description="Configuration for the memory to be used for the crew.",
)
short_term_memory: Optional[InstanceOf[ShortTermMemory]] = Field(
default=None,
description="An Instance of the ShortTermMemory to be used by the Crew",
@@ -126,7 +133,11 @@ class Crew(BaseModel):
default=None,
description="An Instance of the EntityMemory to be used by the Crew",
)
embedder: Optional[Any] = Field(
user_memory: Optional[InstanceOf[UserMemory]] = Field(
default=None,
description="An instance of the UserMemory to be used by the Crew to store/fetch memories of a specific user.",
)
embedder: Optional[dict] = Field(
default=None,
description="Configuration for the embedder to be used for the crew.",
)
@@ -238,13 +249,22 @@ class Crew(BaseModel):
self._short_term_memory = (
self.short_term_memory
if self.short_term_memory
else ShortTermMemory(crew=self, embedder_config=self.embedder)
else ShortTermMemory(
crew=self,
embedder_config=self.embedder,
)
)
self._entity_memory = (
self.entity_memory
if self.entity_memory
else EntityMemory(crew=self, embedder_config=self.embedder)
)
if hasattr(self, "memory_config") and self.memory_config is not None:
self._user_memory = (
self.user_memory if self.user_memory else UserMemory(crew=self)
)
else:
self._user_memory = None
return self
@model_validator(mode="after")

View File

@@ -118,12 +118,12 @@ class LLM:
litellm.drop_params = True
litellm.set_verbose = False
litellm.callbacks = callbacks
self.set_callbacks(callbacks)
def call(self, messages: List[Dict[str, str]], callbacks: List[Any] = []) -> str:
with suppress_warnings():
if callbacks and len(callbacks) > 0:
litellm.callbacks = callbacks
self.set_callbacks(callbacks)
try:
params = {
@@ -181,3 +181,15 @@ class LLM:
def get_context_window_size(self) -> int:
# Only using 75% of the context window size to avoid cutting the message in the middle
return int(LLM_CONTEXT_WINDOW_SIZES.get(self.model, 8192) * 0.75)
def set_callbacks(self, callbacks: List[Any]):
callback_types = [type(callback) for callback in callbacks]
for callback in litellm.success_callback[:]:
if type(callback) in callback_types:
litellm.success_callback.remove(callback)
for callback in litellm._async_success_callback[:]:
if type(callback) in callback_types:
litellm._async_success_callback.remove(callback)
litellm.callbacks = callbacks

View File

@@ -1,5 +1,6 @@
from .entity.entity_memory import EntityMemory
from .long_term.long_term_memory import LongTermMemory
from .short_term.short_term_memory import ShortTermMemory
from .user.user_memory import UserMemory
__all__ = ["EntityMemory", "LongTermMemory", "ShortTermMemory"]
__all__ = ["UserMemory", "EntityMemory", "LongTermMemory", "ShortTermMemory"]

View File

@@ -1,13 +1,25 @@
from typing import Optional
from typing import Optional, Dict, Any
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory, UserMemory
class ContextualMemory:
def __init__(self, stm: ShortTermMemory, ltm: LongTermMemory, em: EntityMemory):
def __init__(
self,
memory_config: Optional[Dict[str, Any]],
stm: ShortTermMemory,
ltm: LongTermMemory,
em: EntityMemory,
um: UserMemory,
):
if memory_config is not None:
self.memory_provider = memory_config.get("provider")
else:
self.memory_provider = None
self.stm = stm
self.ltm = ltm
self.em = em
self.um = um
def build_context_for_task(self, task, context) -> str:
"""
@@ -23,6 +35,8 @@ class ContextualMemory:
context.append(self._fetch_ltm_context(task.description))
context.append(self._fetch_stm_context(query))
context.append(self._fetch_entity_context(query))
if self.memory_provider == "mem0":
context.append(self._fetch_user_context(query))
return "\n".join(filter(None, context))
def _fetch_stm_context(self, query) -> str:
@@ -32,9 +46,11 @@ class ContextualMemory:
"""
stm_results = self.stm.search(query)
formatted_results = "\n".join(
[f"- {result['context']}" for result in stm_results]
[
f"- {result['memory'] if self.memory_provider == 'mem0' else result['context']}"
for result in stm_results
]
)
print("formatted_results stm", formatted_results)
return f"Recent Insights:\n{formatted_results}" if stm_results else ""
def _fetch_ltm_context(self, task) -> Optional[str]:
@@ -54,8 +70,6 @@ class ContextualMemory:
formatted_results = list(dict.fromkeys(formatted_results))
formatted_results = "\n".join([f"- {result}" for result in formatted_results]) # type: ignore # Incompatible types in assignment (expression has type "str", variable has type "list[str]")
print("formatted_results ltm", formatted_results)
return f"Historical Data:\n{formatted_results}" if ltm_results else ""
def _fetch_entity_context(self, query) -> str:
@@ -65,7 +79,26 @@ class ContextualMemory:
"""
em_results = self.em.search(query)
formatted_results = "\n".join(
[f"- {result['context']}" for result in em_results] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
[
f"- {result['memory'] if self.memory_provider == 'mem0' else result['context']}"
for result in em_results
] # type: ignore # Invalid index type "str" for "str"; expected type "SupportsIndex | slice"
)
print("formatted_results em", formatted_results)
return f"Entities:\n{formatted_results}" if em_results else ""
def _fetch_user_context(self, query: str) -> str:
"""
Fetches and formats relevant user information from User Memory.
Args:
query (str): The search query to find relevant user memories.
Returns:
str: Formatted user memories as bullet points, or an empty string if none found.
"""
user_memories = self.um.search(query)
if not user_memories:
return ""
formatted_memories = "\n".join(
f"- {result['memory']}" for result in user_memories
)
return f"User memories/preferences:\n{formatted_memories}"

View File

@@ -11,21 +11,43 @@ class EntityMemory(Memory):
"""
def __init__(self, crew=None, embedder_config=None, storage=None):
storage = (
storage
if storage
else RAGStorage(
type="entities",
allow_reset=True,
embedder_config=embedder_config,
crew=crew,
if hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None
if self.memory_provider == "mem0":
try:
from crewai.memory.storage.mem0_storage import Mem0Storage
except ImportError:
raise ImportError(
"Mem0 is not installed. Please install it with `pip install mem0ai`."
)
storage = Mem0Storage(type="entities", crew=crew)
else:
storage = (
storage
if storage
else RAGStorage(
type="entities",
allow_reset=False,
embedder_config=embedder_config,
crew=crew,
)
)
)
super().__init__(storage)
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
"""Saves an entity item into the SQLite storage."""
data = f"{item.name}({item.type}): {item.description}"
if self.memory_provider == "mem0":
data = f"""
Remember details about the following entity:
Name: {item.name}
Type: {item.type}
Entity Description: {item.description}
"""
else:
data = f"{item.name}({item.type}): {item.description}"
super().save(data, item.metadata)
def reset(self) -> None:

View File

@@ -23,5 +23,12 @@ class Memory:
self.storage.save(value, metadata)
def search(self, query: str) -> List[Dict[str, Any]]:
return self.storage.search(query)
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
) -> List[Any]:
return self.storage.search(
query=query, limit=limit, score_threshold=score_threshold
)

View File

@@ -14,13 +14,27 @@ class ShortTermMemory(Memory):
"""
def __init__(self, crew=None, embedder_config=None, storage=None):
storage = (
storage
if storage
else RAGStorage(
type="short_term", embedder_config=embedder_config, crew=crew
if hasattr(crew, "memory_config") and crew.memory_config is not None:
self.memory_provider = crew.memory_config.get("provider")
else:
self.memory_provider = None
if self.memory_provider == "mem0":
try:
from crewai.memory.storage.mem0_storage import Mem0Storage
except ImportError:
raise ImportError(
"Mem0 is not installed. Please install it with `pip install mem0ai`."
)
storage = Mem0Storage(type="short_term", crew=crew)
else:
storage = (
storage
if storage
else RAGStorage(
type="short_term", embedder_config=embedder_config, crew=crew
)
)
)
super().__init__(storage)
def save(
@@ -30,11 +44,20 @@ class ShortTermMemory(Memory):
agent: Optional[str] = None,
) -> None:
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
if self.memory_provider == "mem0":
item.data = f"Remember the following insights from Agent run: {item.data}"
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
def search(self, query: str, score_threshold: float = 0.35):
return self.storage.search(query=query, score_threshold=score_threshold) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
):
return self.storage.search(
query=query, limit=limit, score_threshold=score_threshold
) # type: ignore # BUG? The reference is to the parent class, but the parent class does not have this parameters
def reset(self) -> None:
try:

View File

@@ -7,8 +7,10 @@ class Storage:
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
pass
def search(self, key: str) -> List[Dict[str, Any]]: # type: ignore
pass
def search(
self, query: str, limit: int, score_threshold: float
) -> Dict[str, Any] | List[Any]:
return {}
def reset(self) -> None:
pass

View File

@@ -103,7 +103,7 @@ class KickoffTaskOutputsSQLiteStorage:
else value
)
query = f"UPDATE latest_kickoff_task_outputs SET {', '.join(fields)} WHERE task_index = ?"
query = f"UPDATE latest_kickoff_task_outputs SET {', '.join(fields)} WHERE task_index = ?" # nosec
values.append(task_index)
cursor.execute(query, tuple(values))

View File

@@ -83,7 +83,7 @@ class LTMSQLiteStorage:
WHERE task_description = ?
ORDER BY datetime DESC, score ASC
LIMIT {latest_n}
""",
""", # nosec
(task_description,),
)
rows = cursor.fetchall()

View File

@@ -0,0 +1,104 @@
import os
from typing import Any, Dict, List
from mem0 import MemoryClient
from crewai.memory.storage.interface import Storage
class Mem0Storage(Storage):
"""
Extends Storage to handle embedding and searching across entities using Mem0.
"""
def __init__(self, type, crew=None):
super().__init__()
if type not in ["user", "short_term", "long_term", "entities"]:
raise ValueError("Invalid type for Mem0Storage. Must be 'user' or 'agent'.")
self.memory_type = type
self.crew = crew
self.memory_config = crew.memory_config
# User ID is required for user memory type "user" since it's used as a unique identifier for the user.
user_id = self._get_user_id()
if type == "user" and not user_id:
raise ValueError("User ID is required for user memory type")
# API key in memory config overrides the environment variable
mem0_api_key = self.memory_config.get("config", {}).get("api_key") or os.getenv(
"MEM0_API_KEY"
)
self.memory = MemoryClient(api_key=mem0_api_key)
def _sanitize_role(self, role: str) -> str:
"""
Sanitizes agent roles to ensure valid directory names.
"""
return role.replace("\n", "").replace(" ", "_").replace("/", "_")
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
user_id = self._get_user_id()
agent_name = self._get_agent_name()
if self.memory_type == "user":
self.memory.add(value, user_id=user_id, metadata={**metadata})
elif self.memory_type == "short_term":
agent_name = self._get_agent_name()
self.memory.add(
value, agent_id=agent_name, metadata={"type": "short_term", **metadata}
)
elif self.memory_type == "long_term":
agent_name = self._get_agent_name()
self.memory.add(
value,
agent_id=agent_name,
infer=False,
metadata={"type": "long_term", **metadata},
)
elif self.memory_type == "entities":
entity_name = None
self.memory.add(
value, user_id=entity_name, metadata={"type": "entity", **metadata}
)
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
) -> List[Any]:
params = {"query": query, "limit": limit}
if self.memory_type == "user":
user_id = self._get_user_id()
params["user_id"] = user_id
elif self.memory_type == "short_term":
agent_name = self._get_agent_name()
params["agent_id"] = agent_name
params["metadata"] = {"type": "short_term"}
elif self.memory_type == "long_term":
agent_name = self._get_agent_name()
params["agent_id"] = agent_name
params["metadata"] = {"type": "long_term"}
elif self.memory_type == "entities":
agent_name = self._get_agent_name()
params["agent_id"] = agent_name
params["metadata"] = {"type": "entity"}
# Discard the filters for now since we create the filters
# automatically when the crew is created.
results = self.memory.search(**params)
return [r for r in results if r["score"] >= score_threshold]
def _get_user_id(self):
if self.memory_type == "user":
if hasattr(self, "memory_config") and self.memory_config is not None:
return self.memory_config.get("config", {}).get("user_id")
else:
return None
return None
def _get_agent_name(self):
agents = self.crew.agents if self.crew else []
agents = [self._sanitize_role(agent.role) for agent in agents]
agents = "_".join(agents)
return agents

View File

View File

@@ -0,0 +1,45 @@
from typing import Any, Dict, Optional
from crewai.memory.memory import Memory
class UserMemory(Memory):
"""
UserMemory class for handling user memory storage and retrieval.
Inherits from the Memory class and utilizes an instance of a class that
adheres to the Storage for data storage, specifically working with
MemoryItem instances.
"""
def __init__(self, crew=None):
try:
from crewai.memory.storage.mem0_storage import Mem0Storage
except ImportError:
raise ImportError(
"Mem0 is not installed. Please install it with `pip install mem0ai`."
)
storage = Mem0Storage(type="user", crew=crew)
super().__init__(storage)
def save(
self,
value,
metadata: Optional[Dict[str, Any]] = None,
agent: Optional[str] = None,
) -> None:
# TODO: Change this function since we want to take care of the case where we save memories for the usr
data = f"Remember the details about the user: {value}"
super().save(data, metadata)
def search(
self,
query: str,
limit: int = 3,
score_threshold: float = 0.35,
):
results = super().search(
query=query,
limit=limit,
score_threshold=score_threshold,
)
return results

View File

@@ -0,0 +1,8 @@
from typing import Any, Dict, Optional
class UserMemoryItem:
def __init__(self, data: Any, user: str, metadata: Optional[Dict[str, Any]] = None):
self.data = data
self.user = user
self.metadata = metadata if metadata is not None else {}

View File

View File

@@ -8,6 +8,7 @@ class UsageMetrics(BaseModel):
Attributes:
total_tokens: Total number of tokens used.
prompt_tokens: Number of tokens used in prompts.
cached_prompt_tokens: Number of cached prompt tokens used.
completion_tokens: Number of tokens used in completions.
successful_requests: Number of successful requests made.
"""
@@ -16,6 +17,9 @@ class UsageMetrics(BaseModel):
prompt_tokens: int = Field(
default=0, description="Number of tokens used in prompts."
)
cached_prompt_tokens: int = Field(
default=0, description="Number of cached prompt tokens used."
)
completion_tokens: int = Field(
default=0, description="Number of tokens used in completions."
)
@@ -32,5 +36,6 @@ class UsageMetrics(BaseModel):
"""
self.total_tokens += usage_metrics.total_tokens
self.prompt_tokens += usage_metrics.prompt_tokens
self.cached_prompt_tokens += usage_metrics.cached_prompt_tokens
self.completion_tokens += usage_metrics.completion_tokens
self.successful_requests += usage_metrics.successful_requests

View File

@@ -16,7 +16,11 @@ class FileHandler:
def log(self, **kwargs):
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
message = f"{now}: " + ", ".join([f"{key}=\"{value}\"" for key, value in kwargs.items()]) + "\n"
message = (
f"{now}: "
+ ", ".join([f'{key}="{value}"' for key, value in kwargs.items()])
+ "\n"
)
with open(self._path, "a", encoding="utf-8") as file:
file.write(message + "\n")
@@ -63,7 +67,7 @@ class PickleHandler:
with open(self.file_path, "rb") as file:
try:
return pickle.load(file)
return pickle.load(file) # nosec
except EOFError:
return {} # Return an empty dictionary if the file is empty or corrupted
except Exception:

View File

@@ -1,5 +1,5 @@
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.utils import Usage
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
@@ -11,8 +11,11 @@ class TokenCalcHandler(CustomLogger):
if self.token_cost_process is None:
return
usage : Usage = response_obj["usage"]
self.token_cost_process.sum_successful_requests(1)
self.token_cost_process.sum_prompt_tokens(response_obj["usage"].prompt_tokens)
self.token_cost_process.sum_completion_tokens(
response_obj["usage"].completion_tokens
)
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
if usage.prompt_tokens_details:
self.token_cost_process.sum_cached_prompt_tokens(
usage.prompt_tokens_details.cached_tokens
)

View File

@@ -10,7 +10,8 @@ interactions:
criteria for your final answer: 1 bullet point about dog that''s under 15 words.\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o"}'
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
@@ -19,49 +20,50 @@ interactions:
connection:
- keep-alive
content-length:
- '869'
- '919'
content-type:
- application/json
cookie:
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
- Linux
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7auGDrAVE0iXSBBhySZp3xE8gvP\",\n \"object\":
\"chat.completion\",\n \"created\": 1727214164,\n \"model\": \"gpt-4o-2024-05-13\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer\\nFinal
Answer: Dogs are unparalleled in loyalty and companionship to humans.\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 175,\n \"completion_tokens\":
21,\n \"total_tokens\": 196,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
body:
string: !!binary |
H4sIAAAAAAAAA4xSy27bMBC86ysWPEuB7ciV7VuAIkUObQ+59QFhTa0kttQuS9Jx08D/XkhyLAVJ
gV4EaGdnMLPDpwRAmUrtQOkWo+6czW7u41q2t3+cvCvuPvxafSG+58XHTzXlxWeV9gzZ/yAdn1lX
WjpnKRrhEdaeMFKvuiyul3m+uV7lA9BJRbanNS5muWSdYZOtFqs8WxTZcnNmt2I0BbWDrwkAwNPw
7X1yRb/VDhbp86SjELAhtbssASgvtp8oDMGEiBxVOoFaOBIP1u+A5QgaGRrzQIDQ9LYBORzJA3zj
W8No4Wb438F7aQKgJ7DyiBb6zMhGOKRA3CJrww10xBEttIQ2toBcgTyQR2vhSNZmezLcXM39eKoP
Afub8MHa8/x0CWilcV724Yxf5rVhE9rSEwbhPkyI4tSAnhKA78MhDy9uo5yXzsUyyk/iMHSzHvXU
1N+Ejo0BqCgR7Yy13aZv6JUVRTQ2zKpQGnVL1USdesNDZWQGJLPUr928pT0mN9z8j/wEaE0uUlU6
T5XRLxNPa5765/2vtcuVB8MqPIZIXVkbbsg7b8bHVbuyXm9xs8xXRa2SU/IXAAD//wMAq2ZCBWoD
AAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85f22ddda01cf3-GRU
- 8e19bf36db158761-GRU
Connection:
- keep-alive
Content-Encoding:
@@ -69,19 +71,27 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:42:44 GMT
- Tue, 12 Nov 2024 21:52:04 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
path=/; expires=Tue, 12-Nov-24 22:22:04 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
- user-tqfegqsiobpvvjmn0giaipdq
openai-processing-ms:
- '349'
- '601'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -89,19 +99,20 @@ interactions:
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
- '200000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '29999792'
- '199793'
x-ratelimit-reset-requests:
- 6ms
- 8.64s
x-ratelimit-reset-tokens:
- 0s
- 62ms
x-request-id:
- req_4c8cd76fdfba7b65e5ce85397b33c22b
http_version: HTTP/1.1
status_code: 200
- req_77fb166b4e272bfd45c37c08d2b93b0c
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are cat Researcher. You
have a lot of experience with cat.\nYour personal goal is: Express hot takes
@@ -113,7 +124,8 @@ interactions:
criteria for your final answer: 1 bullet point about cat that''s under 15 words.\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o"}'
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
@@ -122,49 +134,53 @@ interactions:
connection:
- keep-alive
content-length:
- '869'
- '919'
content-type:
- application/json
cookie:
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
_cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
- Linux
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7auNbAqjT3rgBX92rhxBLuhaLBj\",\n \"object\":
\"chat.completion\",\n \"created\": 1727214164,\n \"model\": \"gpt-4o-2024-05-13\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I now can give a great answer\\nFinal
Answer: Cats are highly independent, agile, and intuitive creatures beloved
by millions worldwide.\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
175,\n \"completion_tokens\": 28,\n \"total_tokens\": 203,\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": \"fp_e375328146\"\n}\n"
body:
string: !!binary |
H4sIAAAAAAAAA4xSy27bMBC86ysWPFuB7MhN6ltQIGmBnlL00BcEmlxJ21JLhlzFLQL/eyH5IRlt
gV4EaGZnMLPLlwxAkVUbUKbVYrrg8rsPsg4P+Orxs9XvPz0U8eP966dS6sdo3wa1GBR++x2NnFRX
xnfBoZDnA20iasHBdXlzvSzL2+vVeiQ6b9ENsiZIXvq8I6Z8VazKvLjJl7dHdevJYFIb+JIBALyM
3yEnW/ypNlAsTkiHKekG1eY8BKCidwOidEqURLOoxUQaz4I8Rn8H7HdgNENDzwgamiE2aE47jABf
+Z5YO7gb/zfwRksCHRGGGAHZIg/D1GmXFiBtpGfiBjyDtEgR/I5BMHYJNFvomZ56hIAxedaOhDBd
zYNFrPukh+Vw79wR35+bOt+E6LfpyJ/xmphSW0XUyfPQKokPamT3GcC3caP9xZJUiL4LUon/gZzG
I60Pfmo65MSuTqR40W6GF8c7XPpVFkWTS7ObKKNNi3aSTgfUvSU/I7JZ6z/T/M370Jy4+R/7iTAG
g6CtQkRL5rLxNBZxeOf/GjtveQys0q8k2FU1cYMxRDq8sjpUxVYXdrkq66XK9tlvAAAA//8DAIjK
KzJzAwAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85f2321c1c1cf3-GRU
- 8e19bf3fae118761-GRU
Connection:
- keep-alive
Content-Encoding:
@@ -172,7 +188,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:42:45 GMT
- Tue, 12 Nov 2024 21:52:05 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -181,10 +197,12 @@ interactions:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
- user-tqfegqsiobpvvjmn0giaipdq
openai-processing-ms:
- '430'
- '464'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -192,19 +210,20 @@ interactions:
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
- '200000'
x-ratelimit-remaining-requests:
- '9999'
- '9998'
x-ratelimit-remaining-tokens:
- '29999792'
- '199792'
x-ratelimit-reset-requests:
- 6ms
- 16.369s
x-ratelimit-reset-tokens:
- 0s
- 62ms
x-request-id:
- req_ace859b7d9e83d9fa7753ce23bb03716
http_version: HTTP/1.1
status_code: 200
- req_91706b23d0ef23458ba63ec18304cd28
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are apple Researcher.
You have a lot of experience with apple.\nYour personal goal is: Express hot
@@ -217,7 +236,7 @@ interactions:
under 15 words.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o"}'
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
@@ -226,49 +245,53 @@ interactions:
connection:
- keep-alive
content-length:
- '879'
- '929'
content-type:
- application/json
cookie:
- __cf_bm=9.8sBYBkvBR8R1K_bVF7xgU..80XKlEIg3N2OBbTSCU-1727214102-1.0.1.1-.qiTLXbPamYUMSuyNsOEB9jhGu.jOifujOrx9E2JZvStbIZ9RTIiE44xKKNfLPxQkOi6qAT3h6htK8lPDGV_5g;
_cfuvid=lbRdAddVWV6W3f5Dm9SaOPWDUOxqtZBSPr_fTW26nEA-1727213194587-0.0.1.1-604800000
- __cf_bm=MkvcnvacGpTyn.y0OkFRoFXuAwg4oxjMhViZJTt9mw0-1731448324-1.0.1.1-oekkH_B0xOoPnIFw15LpqFCkZ2cu7VBTJVLDGylan4I67NjX.tlPvOiX9kvtP5Acewi28IE2IwlwtrZWzCH3vw;
_cfuvid=4.17346mfw5npZfYNbCx3Vj1VAVPy.tH0Jm2gkTteJ8-1731448324998-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.47.0
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
- Linux
x-stainless-package-version:
- 1.47.0
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.7
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AB7avZ0yqY18ukQS7SnLkZydsx72b\",\n \"object\":
\"chat.completion\",\n \"created\": 1727214165,\n \"model\": \"gpt-4o-2024-05-13\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer.\\n\\nFinal
Answer: Apples are incredibly versatile, nutritious, and a staple in diets globally.\",\n
\ \"refusal\": null\n },\n \"logprobs\": null,\n \"finish_reason\":
\"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 175,\n \"completion_tokens\":
25,\n \"total_tokens\": 200,\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0\n }\n },\n \"system_fingerprint\": \"fp_a5d11b2ef2\"\n}\n"
body:
string: !!binary |
H4sIAAAAAAAAA4xSPW/bMBDd9SsOXLpIgeTITarNS4t26JJubSHQ5IliSh1ZHv0RBP7vhSTHctAU
6CJQ7909vHd3zxmAsFo0IFQvkxqCKzYPaf1b2/hhW+8PR9N9Kh9W5Zdhjebr4zeRjx1++4gqvXTd
KD8Eh8l6mmkVUSYcVau726qu729X7ydi8Brd2GZCKmpfDJZssSpXdVHeFdX9ubv3ViGLBr5nAADP
03f0SRqPooEyf0EGZJYGRXMpAhDRuxERktlykpREvpDKU0KarH8G8gdQksDYPYIEM9oGSXzACPCD
PlqSDjbTfwObEBy+Y0Dl+YkTDmApoYkyIUMvoz7IiDmw79L8kqSBMe7HMMAoB4fM7ikHpF6SsmRg
xxgBjwGjRVJ4c+00YrdjOU6Lds6d8dMluvMmRL/lM3/BO0uW+zaiZE9jTE4+iIk9ZQA/pxHvXk1N
hOiHkNrkfyHxtLX1rCeWzS7svEsAkXyS7govq/wNvVZjktbx1ZKEkqpHvbQuG5U7bf0VkV2l/tvN
W9pzckvmf+QXQikMCXUbImqrXideyiKOh/+vssuUJ8NiPpO2s2Qwhmjns+tCW25lqatV3VUiO2V/
AAAA//8DAPtpFJCEAwAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8c85f2369a761cf3-GRU
- 8e19bf447ba48761-GRU
Connection:
- keep-alive
Content-Encoding:
@@ -276,7 +299,7 @@ interactions:
Content-Type:
- application/json
Date:
- Tue, 24 Sep 2024 21:42:46 GMT
- Tue, 12 Nov 2024 21:52:06 GMT
Server:
- cloudflare
Transfer-Encoding:
@@ -285,10 +308,12 @@ interactions:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
- user-tqfegqsiobpvvjmn0giaipdq
openai-processing-ms:
- '389'
- '655'
openai-version:
- '2020-10-01'
strict-transport-security:
@@ -296,17 +321,18 @@ interactions:
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '30000000'
- '200000'
x-ratelimit-remaining-requests:
- '9999'
- '9997'
x-ratelimit-remaining-tokens:
- '29999791'
- '199791'
x-ratelimit-reset-requests:
- 6ms
- 24.239s
x-ratelimit-reset-tokens:
- 0s
- 62ms
x-request-id:
- req_0167388f0a7a7f1a1026409834ceb914
http_version: HTTP/1.1
status_code: 200
- req_a228208b0e965ecee334a6947d6c9e7c
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,205 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Hello, world!"}], "model": "gpt-4o-mini",
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '101'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSwWrcMBS8+ytedY6LvWvYZi8lpZSkBJLSQiChGK307FUi66nSc9Ml7L8H2e56
l7bQiw8zb8Yzg14yAGG0WINQW8mq8za/+Oqv5MUmXv+8+/Hl3uO3j59u1efreHO+/PAszpKCNo+o
+LfqraLOW2RDbqRVQMmYXMvVsqyWy1VVDERHGm2StZ7zivLOOJMvikWVF6u8fDept2QURrGGhwwA
4GX4ppxO4y+xhsFrQDqMUbYo1ocjABHIJkTIGE1k6ViczaQix+iG6JdoLb2BS3oGJR1cwSiAHfXA
pOXu/bEwYNNHmcK73toJ3x+SWGp9oE2c+APeGGfitg4oI7n018jkxcDuM4DvQ+P+pITwgTrPNdMT
umRYlqOdmHeeyfOJY2JpZ3gxjXRqVmtkaWw8GkwoqbaoZ+W8ruy1oSMiO6r8Z5a/eY+1jWv/x34m
lELPqGsfUBt12nc+C5ge4b/ODhMPgUXcRcauboxrMfhgxifQ+LrYyEKXi6opRbbPXgEAAP//AwAM
DMWoEAMAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e185b2c1b790303-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 12 Nov 2024 17:49:00 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=l.QrRLcNZkML_KSfxjir6YCV35B8GNTitBTNh7cPGc4-1731433740-1.0.1.1-j1ejlmykyoI8yk6i6pQjtPoovGzfxI2f5vG6u0EqodQMjCvhbHfNyN_wmYkeT._BMvFi.zDQ8m_PqEHr8tSdEQ;
path=/; expires=Tue, 12-Nov-24 18:19:00 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=jcCDyMK__Fd0V5DMeqt9yXdlKc7Hsw87a1K01pZu9l0-1731433740848-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- user-tqfegqsiobpvvjmn0giaipdq
openai-processing-ms:
- '322'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '200000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '199978'
x-ratelimit-reset-requests:
- 8.64s
x-ratelimit-reset-tokens:
- 6ms
x-request-id:
- req_037288753767e763a51a04eae757ca84
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "Hello, world from another agent!"}],
"model": "gpt-4o-mini", "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '120'
content-type:
- application/json
cookie:
- __cf_bm=l.QrRLcNZkML_KSfxjir6YCV35B8GNTitBTNh7cPGc4-1731433740-1.0.1.1-j1ejlmykyoI8yk6i6pQjtPoovGzfxI2f5vG6u0EqodQMjCvhbHfNyN_wmYkeT._BMvFi.zDQ8m_PqEHr8tSdEQ;
_cfuvid=jcCDyMK__Fd0V5DMeqt9yXdlKc7Hsw87a1K01pZu9l0-1731433740848-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSy27bMBC86yu2PFuBZAt14UvRU5MA7aVAEKAIBJpcSUwoLkuu6jiB/z3QI5aM
tkAvPMzsDGZ2+ZoACKPFDoRqJKvW2/TLD3+z//oiD8dfL7d339zvW125x9zX90/3mVj1Cto/ouJ3
1ZWi1ltkQ26kVUDJ2Lvm201ebDbbIh+IljTaXlZ7TgtKW+NMus7WRZpt0/zTpG7IKIxiBz8TAIDX
4e1zOo3PYgfZ6h1pMUZZo9idhwBEINsjQsZoIkvHYjWTihyjG6Jfo7X0Ab4bhcAEipxDxXAw3IB0
xA0GkDU6voJrOoCSDm5gNIUjdcCk5fHz0jxg1UXZF3SdtRN+Oqe1VPtA+zjxZ7wyzsSmDCgjuT5Z
ZPJiYE8JwMOwle6iqPCBWs8l0xO63jAvRjsx32JBfpxIJpZ2xjfTJi/dSo0sjY2LrQolVYN6Vs4n
kJ02tCCSRec/w/zNe+xtXP0/9jOhFHpGXfqA2qjLwvNYwP6n/mvsvOMhsIjHyNiWlXE1Bh/M+E8q
X2Z7mel8XVS5SE7JGwAAAP//AwA/cK4yNQMAAA==
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e185b31398a0303-GRU
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 12 Nov 2024 17:49:02 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- user-tqfegqsiobpvvjmn0giaipdq
openai-processing-ms:
- '889'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '200000'
x-ratelimit-remaining-requests:
- '9998'
x-ratelimit-remaining-tokens:
- '199975'
x-ratelimit-reset-requests:
- 16.489s
x-ratelimit-reset-tokens:
- 7ms
x-request-id:
- req_bde3810b36a4859688e53d1df64bdd20
status:
code: 200
message: OK
version: 1

View File

@@ -564,6 +564,7 @@ def test_crew_kickoff_usage_metrics():
assert result.token_usage.prompt_tokens > 0
assert result.token_usage.completion_tokens > 0
assert result.token_usage.successful_requests > 0
assert result.token_usage.cached_prompt_tokens == 0
def test_agents_rpm_is_never_set_if_crew_max_RPM_is_not_set():
@@ -1280,10 +1281,11 @@ def test_agent_usage_metrics_are_captured_for_hierarchical_process():
assert result.raw == "Howdy!"
assert result.token_usage == UsageMetrics(
total_tokens=2626,
prompt_tokens=2482,
completion_tokens=144,
successful_requests=5,
total_tokens=1673,
prompt_tokens=1562,
completion_tokens=111,
successful_requests=3,
cached_prompt_tokens=0
)
@@ -1777,26 +1779,22 @@ def test_crew_train_success(
]
)
crew_training_handler.assert_has_calls(
[
mock.call("training_data.pkl"),
mock.call().load(),
mock.call("trained_agents_data.pkl"),
mock.call().save_trained_data(
agent_id="Researcher",
trained_data=task_evaluator().evaluate_training_data().model_dump(),
),
mock.call("trained_agents_data.pkl"),
mock.call().save_trained_data(
agent_id="Senior Writer",
trained_data=task_evaluator().evaluate_training_data().model_dump(),
),
mock.call(),
mock.call().load(),
mock.call(),
mock.call().load(),
]
)
crew_training_handler.assert_any_call("training_data.pkl")
crew_training_handler().load.assert_called()
crew_training_handler.assert_any_call("trained_agents_data.pkl")
crew_training_handler().load.assert_called()
crew_training_handler().save_trained_data.assert_has_calls([
mock.call(
agent_id="Researcher",
trained_data=task_evaluator().evaluate_training_data().model_dump(),
),
mock.call(
agent_id="Senior Writer",
trained_data=task_evaluator().evaluate_training_data().model_dump(),
)
])
def test_crew_train_error():

30
tests/llm_test.py Normal file
View File

@@ -0,0 +1,30 @@
import pytest
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.llm import LLM
from crewai.utilities.token_counter_callback import TokenCalcHandler
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_callback_replacement():
llm = LLM(model="gpt-4o-mini")
calc_handler_1 = TokenCalcHandler(token_cost_process=TokenProcess())
calc_handler_2 = TokenCalcHandler(token_cost_process=TokenProcess())
llm.call(
messages=[{"role": "user", "content": "Hello, world!"}],
callbacks=[calc_handler_1],
)
usage_metrics_1 = calc_handler_1.token_cost_process.get_summary()
llm.call(
messages=[{"role": "user", "content": "Hello, world from another agent!"}],
callbacks=[calc_handler_2],
)
usage_metrics_2 = calc_handler_2.token_cost_process.get_summary()
# The first handler should not have been updated
assert usage_metrics_1.successful_requests == 1
assert usage_metrics_2.successful_requests == 1
assert usage_metrics_1 == calc_handler_1.token_cost_process.get_summary()

View File

@@ -0,0 +1,270 @@
interactions:
- request:
body: ''
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
host:
- api.mem0.ai
user-agent:
- python-httpx/0.27.0
method: GET
uri: https://api.mem0.ai/v1/memories/?user_id=test
response:
body:
string: '[]'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8b477138bad847b9-BOM
Connection:
- keep-alive
Content-Length:
- '2'
Content-Type:
- application/json
Date:
- Sat, 17 Aug 2024 06:00:11 GMT
NEL:
- '{"success_fraction":0,"report_to":"cf-nel","max_age":604800}'
Report-To:
- '{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=uuyH2foMJVDpV%2FH52g1q%2FnvXKe3dBKVzvsK0mqmSNezkiszNR9OgrEJfVqmkX%2FlPFRP2sH4zrOuzGo6k%2FjzsjYJczqSWJUZHN2pPujiwnr1E9W%2BdLGKmG6%2FqPrGYAy2SBRWkkJVWsTO3OQ%3D%3D"}],"group":"cf-nel","max_age":604800}'
Server:
- cloudflare
allow:
- GET, POST, DELETE, OPTIONS
alt-svc:
- h3=":443"; ma=86400
cross-origin-opener-policy:
- same-origin
referrer-policy:
- same-origin
vary:
- Accept, origin, Cookie
x-content-type-options:
- nosniff
x-frame-options:
- DENY
status:
code: 200
message: OK
- request:
body: '{"batch": [{"properties": {"python_version": "3.12.4 (v3.12.4:8e8a4baf65,
Jun 6 2024, 17:33:18) [Clang 13.0.0 (clang-1300.0.29.30)]", "os": "darwin",
"os_version": "Darwin Kernel Version 23.4.0: Wed Feb 21 21:44:54 PST 2024; root:xnu-10063.101.15~2/RELEASE_ARM64_T6030",
"os_release": "23.4.0", "processor": "arm", "machine": "arm64", "function":
"mem0.client.main.MemoryClient", "$lib": "posthog-python", "$lib_version": "3.5.0",
"$geoip_disable": true}, "timestamp": "2024-08-17T06:00:11.526640+00:00", "context":
{}, "distinct_id": "fd411bd3-99a2-42d6-acd7-9fca8ad09580", "event": "client.init"}],
"historical_migration": false, "sentAt": "2024-08-17T06:00:11.701621+00:00",
"api_key": "phc_hgJkUVJFYtmaJqrvf6CYN67TIQ8yhXAkWzUn9AMU4yX"}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '740'
Content-Type:
- application/json
User-Agent:
- posthog-python/3.5.0
method: POST
uri: https://us.i.posthog.com/batch/
response:
body:
string: '{"status":"Ok"}'
headers:
Connection:
- keep-alive
Content-Length:
- '15'
Content-Type:
- application/json
Date:
- Sat, 17 Aug 2024 06:00:12 GMT
access-control-allow-credentials:
- 'true'
server:
- envoy
vary:
- origin, access-control-request-method, access-control-request-headers
x-envoy-upstream-service-time:
- '69'
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "Remember the following insights
from Agent run: test value with provider"}], "metadata": {"task": "test_task_provider",
"agent": "test_agent_provider"}, "app_id": "Researcher"}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '219'
content-type:
- application/json
host:
- api.mem0.ai
user-agent:
- python-httpx/0.27.0
method: POST
uri: https://api.mem0.ai/v1/memories/
response:
body:
string: '{"message":"ok"}'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8b477140282547b9-BOM
Connection:
- keep-alive
Content-Length:
- '16'
Content-Type:
- application/json
Date:
- Sat, 17 Aug 2024 06:00:13 GMT
NEL:
- '{"success_fraction":0,"report_to":"cf-nel","max_age":604800}'
Report-To:
- '{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=FRjJKSk3YxVj03wA7S05H8ts35KnWfqS3wb6Rfy4kVZ4BgXfw7nJbm92wI6vEv5fWcAcHVnOlkJDggs11B01BMuB2k3a9RqlBi0dJNiMuk%2Bgm5xE%2BODMPWJctYNRwQMjNVbteUpS%2Fad8YA%3D%3D"}],"group":"cf-nel","max_age":604800}'
Server:
- cloudflare
allow:
- GET, POST, DELETE, OPTIONS
alt-svc:
- h3=":443"; ma=86400
cross-origin-opener-policy:
- same-origin
referrer-policy:
- same-origin
vary:
- Accept, origin, Cookie
x-content-type-options:
- nosniff
x-frame-options:
- DENY
status:
code: 200
message: OK
- request:
body: '{"query": "test value with provider", "limit": 3, "app_id": "Researcher"}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '73'
content-type:
- application/json
host:
- api.mem0.ai
user-agent:
- python-httpx/0.27.0
method: POST
uri: https://api.mem0.ai/v1/memories/search/
response:
body:
string: '[]'
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8b47714d083b47b9-BOM
Connection:
- keep-alive
Content-Length:
- '2'
Content-Type:
- application/json
Date:
- Sat, 17 Aug 2024 06:00:14 GMT
NEL:
- '{"success_fraction":0,"report_to":"cf-nel","max_age":604800}'
Report-To:
- '{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=2DRWL1cdKdMvnE8vx1fPUGeTITOgSGl3N5g84PS6w30GRqpfz79BtSx6REhpnOiFV8kM6KGqln0iCZ5yoHc2jBVVJXhPJhQ5t0uerD9JFnkphjISrJOU1MJjZWneT9PlNABddxvVNCmluA%3D%3D"}],"group":"cf-nel","max_age":604800}'
Server:
- cloudflare
allow:
- POST, OPTIONS
alt-svc:
- h3=":443"; ma=86400
cross-origin-opener-policy:
- same-origin
referrer-policy:
- same-origin
vary:
- Accept, origin, Cookie
x-content-type-options:
- nosniff
x-frame-options:
- DENY
status:
code: 200
message: OK
- request:
body: '{"batch": [{"properties": {"python_version": "3.12.4 (v3.12.4:8e8a4baf65,
Jun 6 2024, 17:33:18) [Clang 13.0.0 (clang-1300.0.29.30)]", "os": "darwin",
"os_version": "Darwin Kernel Version 23.4.0: Wed Feb 21 21:44:54 PST 2024; root:xnu-10063.101.15~2/RELEASE_ARM64_T6030",
"os_release": "23.4.0", "processor": "arm", "machine": "arm64", "function":
"mem0.client.main.MemoryClient", "$lib": "posthog-python", "$lib_version": "3.5.0",
"$geoip_disable": true}, "timestamp": "2024-08-17T06:00:13.593952+00:00", "context":
{}, "distinct_id": "fd411bd3-99a2-42d6-acd7-9fca8ad09580", "event": "client.add"}],
"historical_migration": false, "sentAt": "2024-08-17T06:00:13.858277+00:00",
"api_key": "phc_hgJkUVJFYtmaJqrvf6CYN67TIQ8yhXAkWzUn9AMU4yX"}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '739'
Content-Type:
- application/json
User-Agent:
- posthog-python/3.5.0
method: POST
uri: https://us.i.posthog.com/batch/
response:
body:
string: '{"status":"Ok"}'
headers:
Connection:
- keep-alive
Content-Length:
- '15'
Content-Type:
- application/json
Date:
- Sat, 17 Aug 2024 06:00:13 GMT
access-control-allow-credentials:
- 'true'
server:
- envoy
vary:
- origin, access-control-request-method, access-control-request-headers
x-envoy-upstream-service-time:
- '33'
status:
code: 200
message: OK
version: 1

14
uv.lock generated
View File

@@ -604,7 +604,7 @@ wheels = [
[[package]]
name = "crewai"
version = "0.76.9"
version = "0.79.4"
source = { editable = "." }
dependencies = [
{ name = "appdirs" },
@@ -677,8 +677,8 @@ requires-dist = [
{ name = "auth0-python", specifier = ">=4.7.1" },
{ name = "chromadb", specifier = ">=0.4.24" },
{ name = "click", specifier = ">=8.1.7" },
{ name = "crewai-tools", specifier = ">=0.13.4" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.13.4" },
{ name = "crewai-tools", specifier = ">=0.14.0" },
{ name = "crewai-tools", marker = "extra == 'tools'", specifier = ">=0.14.0" },
{ name = "fastembed", marker = "extra == 'fastembed'", specifier = ">=0.4.1" },
{ name = "instructor", specifier = ">=1.3.3" },
{ name = "json-repair", specifier = ">=0.25.2" },
@@ -704,7 +704,7 @@ requires-dist = [
[package.metadata.requires-dev]
dev = [
{ name = "cairosvg", specifier = ">=2.7.1" },
{ name = "crewai-tools", specifier = ">=0.13.4" },
{ name = "crewai-tools", specifier = ">=0.14.0" },
{ name = "mkdocs", specifier = ">=1.4.3" },
{ name = "mkdocs-material", specifier = ">=9.5.7" },
{ name = "mkdocs-material-extensions", specifier = ">=1.3.1" },
@@ -723,7 +723,7 @@ dev = [
[[package]]
name = "crewai-tools"
version = "0.13.4"
version = "0.14.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "beautifulsoup4" },
@@ -741,9 +741,9 @@ dependencies = [
{ name = "requests" },
{ name = "selenium" },
]
sdist = { url = "https://files.pythonhosted.org/packages/64/bd/eff7b633a0b28ff4ed115adde1499e3dcc683e4f0b5c378a4c6f5c0c1bf6/crewai_tools-0.13.4.tar.gz", hash = "sha256:b6ac527633b7018471d892c21ac96bc961a86b6626d996b1ed7d53cd481d4505", size = 816588 }
sdist = { url = "https://files.pythonhosted.org/packages/9b/6d/4fa91b481b120f83bb58f365203d8aa8564e8ced1035d79f8aedb7d71e2f/crewai_tools-0.14.0.tar.gz", hash = "sha256:510f3a194bcda4fdae4314bd775521964b5f229ddbe451e5d9e0216cae57f4e3", size = 815892 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/6c/40/93cd347d854059cf5e54a81b70f896deea7ad1f03e9c024549eb323c4da5/crewai_tools-0.13.4-py3-none-any.whl", hash = "sha256:eda78fe3c4df57676259d8dd6b2610fa31f89b90909512f15893adb57fb9e825", size = 463703 },
{ url = "https://files.pythonhosted.org/packages/c8/ed/9f4e64e1507062957b0118085332d38b621c1000874baef2d1c4069bfd97/crewai_tools-0.14.0-py3-none-any.whl", hash = "sha256:0a804a828c29869c3af3253f4fc4c3967a3f80f06dab22e9bbe9526608a31564", size = 462980 },
]
[[package]]