mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 12:28:30 +00:00
Compare commits
2 Commits
brandon/fi
...
devin/1739
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
90c577fdd0 | ||
|
|
b8a15c6115 |
@@ -4,6 +4,7 @@ import uuid
|
||||
import warnings
|
||||
from concurrent.futures import Future
|
||||
from hashlib import md5
|
||||
from crewai.llm import LLM
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from pydantic import (
|
||||
@@ -1075,19 +1076,36 @@ class Crew(BaseModel):
|
||||
def test(
|
||||
self,
|
||||
n_iterations: int,
|
||||
openai_model_name: Optional[str] = None,
|
||||
llm: Union[str, LLM],
|
||||
inputs: Optional[Dict[str, Any]] = None,
|
||||
) -> None:
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
|
||||
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures.
|
||||
|
||||
Args:
|
||||
n_iterations: Number of test iterations to run
|
||||
llm: Language model to use for evaluation. Can be either a model name string (e.g. "gpt-4")
|
||||
or an LLM instance for custom implementations
|
||||
inputs: Optional dictionary of input values to use for task execution
|
||||
|
||||
Example:
|
||||
```python
|
||||
# Using model name string
|
||||
crew.test(n_iterations=3, llm="gpt-4")
|
||||
|
||||
# Using custom LLM implementation
|
||||
custom_llm = LLM(model="custom-model")
|
||||
crew.test(n_iterations=3, llm=custom_llm)
|
||||
```
|
||||
"""
|
||||
test_crew = self.copy()
|
||||
|
||||
self._test_execution_span = test_crew._telemetry.test_execution_span(
|
||||
test_crew,
|
||||
n_iterations,
|
||||
inputs,
|
||||
openai_model_name, # type: ignore[arg-type]
|
||||
) # type: ignore[arg-type]
|
||||
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
|
||||
str(llm) if isinstance(llm, LLM) else llm,
|
||||
)
|
||||
evaluator = CrewEvaluator(test_crew, llm)
|
||||
|
||||
for i in range(1, n_iterations + 1):
|
||||
evaluator.set_iteration(i)
|
||||
|
||||
@@ -1,10 +1,16 @@
|
||||
from collections import defaultdict
|
||||
from typing import Any, Dict, List, Optional, TypeVar, Union
|
||||
from typing import DefaultDict # Separate import to avoid circular imports
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from rich.box import HEAVY_EDGE
|
||||
from rich.console import Console
|
||||
from rich.table import Table
|
||||
|
||||
from crewai.llm import LLM
|
||||
|
||||
T = TypeVar('T', bound=LLM)
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
@@ -28,14 +34,47 @@ class CrewEvaluator:
|
||||
iteration (int): The current iteration of the evaluation.
|
||||
"""
|
||||
|
||||
tasks_scores: defaultdict = defaultdict(list)
|
||||
run_execution_times: defaultdict = defaultdict(list)
|
||||
_tasks_scores: DefaultDict[int, List[float]] = Field(
|
||||
default_factory=lambda: defaultdict(list))
|
||||
_run_execution_times: DefaultDict[int, List[float]] = Field(
|
||||
default_factory=lambda: defaultdict(list))
|
||||
iteration: int = 0
|
||||
|
||||
def __init__(self, crew, openai_model_name: str):
|
||||
@property
|
||||
def tasks_scores(self) -> DefaultDict[int, List[float]]:
|
||||
return self._tasks_scores
|
||||
|
||||
@tasks_scores.setter
|
||||
def tasks_scores(self, value: Dict[int, List[float]]) -> None:
|
||||
self._tasks_scores = defaultdict(list, value)
|
||||
|
||||
@property
|
||||
def run_execution_times(self) -> DefaultDict[int, List[float]]:
|
||||
return self._run_execution_times
|
||||
|
||||
@run_execution_times.setter
|
||||
def run_execution_times(self, value: Dict[int, List[float]]) -> None:
|
||||
self._run_execution_times = defaultdict(list, value)
|
||||
|
||||
def __init__(self, crew, llm: Union[str, T]):
|
||||
"""Initialize the CrewEvaluator.
|
||||
|
||||
Args:
|
||||
crew: The Crew instance to evaluate
|
||||
llm: Language model to use for evaluation. Can be either a model name string
|
||||
or an LLM instance for custom implementations
|
||||
|
||||
Raises:
|
||||
ValueError: If llm is None or invalid
|
||||
"""
|
||||
if not llm:
|
||||
raise ValueError("Invalid LLM configuration")
|
||||
|
||||
self.crew = crew
|
||||
self.openai_model_name = openai_model_name
|
||||
self.llm = LLM(model=llm) if isinstance(llm, str) else llm
|
||||
self._telemetry = Telemetry()
|
||||
self._tasks_scores = defaultdict(list)
|
||||
self._run_execution_times = defaultdict(list)
|
||||
self._setup_for_evaluating()
|
||||
|
||||
def _setup_for_evaluating(self) -> None:
|
||||
@@ -51,7 +90,7 @@ class CrewEvaluator:
|
||||
),
|
||||
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
|
||||
verbose=False,
|
||||
llm=self.openai_model_name,
|
||||
llm=self.llm,
|
||||
)
|
||||
|
||||
def _evaluation_task(
|
||||
@@ -181,11 +220,19 @@ class CrewEvaluator:
|
||||
self.crew,
|
||||
evaluation_result.pydantic.quality,
|
||||
current_task._execution_time,
|
||||
self.openai_model_name,
|
||||
self._get_llm_identifier(),
|
||||
)
|
||||
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
|
||||
self.run_execution_times[self.iteration].append(
|
||||
self._tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
|
||||
self._run_execution_times[self.iteration].append(
|
||||
current_task._execution_time
|
||||
)
|
||||
else:
|
||||
raise ValueError("Evaluation result is not in the expected format")
|
||||
|
||||
def _get_llm_identifier(self) -> str:
|
||||
"""Get a string identifier for the LLM instance.
|
||||
|
||||
Returns:
|
||||
String representation of the LLM for telemetry
|
||||
"""
|
||||
return str(self.llm) if isinstance(self.llm, LLM) else self.llm
|
||||
|
||||
@@ -10,6 +10,7 @@ import instructor
|
||||
import pydantic_core
|
||||
import pytest
|
||||
|
||||
from crewai.llm import LLM
|
||||
from crewai.agent import Agent
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.crew import Crew
|
||||
@@ -1123,7 +1124,7 @@ def test_kickoff_for_each_empty_input():
|
||||
assert results == []
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
@pytest.mark.vcr(filter_headeruvs=["authorization"])
|
||||
def test_kickoff_for_each_invalid_input():
|
||||
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
|
||||
|
||||
@@ -2828,7 +2829,7 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
|
||||
copy_mock.return_value = crew
|
||||
|
||||
n_iterations = 2
|
||||
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
|
||||
crew.test(n_iterations, llm="gpt-4o-mini", inputs={"topic": "AI"})
|
||||
|
||||
# Ensure kickoff is called on the copied crew
|
||||
kickoff_mock.assert_has_calls(
|
||||
@@ -2844,6 +2845,32 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
|
||||
]
|
||||
)
|
||||
|
||||
@mock.patch("crewai.crew.CrewEvaluator")
|
||||
@mock.patch("crewai.crew.Crew.copy")
|
||||
@mock.patch("crewai.crew.Crew.kickoff")
|
||||
def test_crew_testing_with_custom_llm(kickoff_mock, copy_mock, crew_evaluator):
|
||||
task = Task(
|
||||
description="Test task",
|
||||
expected_output="Test output",
|
||||
agent=researcher,
|
||||
)
|
||||
crew = Crew(agents=[researcher], tasks=[task])
|
||||
copy_mock.return_value = crew
|
||||
custom_llm = LLM(model="gpt-4")
|
||||
|
||||
crew.test(2, llm=custom_llm, inputs={"topic": "AI"})
|
||||
|
||||
kickoff_mock.assert_has_calls([
|
||||
mock.call(inputs={"topic": "AI"}),
|
||||
mock.call(inputs={"topic": "AI"})
|
||||
])
|
||||
crew_evaluator.assert_has_calls([
|
||||
mock.call(crew, custom_llm),
|
||||
mock.call().set_iteration(1),
|
||||
mock.call().set_iteration(2),
|
||||
mock.call().print_crew_evaluation_result(),
|
||||
])
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_hierarchical_verbose_manager_agent():
|
||||
@@ -3125,4 +3152,4 @@ def test_multimodal_agent_live_image_analysis():
|
||||
# Verify we got a meaningful response
|
||||
assert isinstance(result.raw, str)
|
||||
assert len(result.raw) > 100 # Expecting a detailed analysis
|
||||
assert "error" not in result.raw.lower() # No error messages in response
|
||||
assert "error" not in result.raw.lower() # No error messages in response
|
||||
|
||||
@@ -2,6 +2,7 @@ from unittest import mock
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai.llm import LLM
|
||||
from crewai.agent import Agent
|
||||
from crewai.crew import Crew
|
||||
from crewai.task import Task
|
||||
@@ -23,7 +24,7 @@ class TestCrewEvaluator:
|
||||
)
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
|
||||
return CrewEvaluator(crew, openai_model_name="gpt-4o-mini")
|
||||
return CrewEvaluator(crew, llm="gpt-4o-mini")
|
||||
|
||||
def test_setup_for_evaluating(self, crew_planner):
|
||||
crew_planner._setup_for_evaluating()
|
||||
@@ -47,6 +48,25 @@ class TestCrewEvaluator:
|
||||
assert agent.verbose is False
|
||||
assert agent.llm.model == "gpt-4o-mini"
|
||||
|
||||
@pytest.mark.parametrize("llm_input,expected_model", [
|
||||
(LLM(model="gpt-4"), "gpt-4"),
|
||||
("gpt-4", "gpt-4"),
|
||||
])
|
||||
def test_evaluator_with_llm_types(self, crew_planner, llm_input, expected_model):
|
||||
evaluator = CrewEvaluator(crew_planner.crew, llm_input)
|
||||
agent = evaluator._evaluator_agent()
|
||||
assert agent.llm.model == expected_model
|
||||
|
||||
def test_evaluator_with_invalid_llm(self, crew_planner):
|
||||
with pytest.raises(ValueError, match="Invalid LLM configuration"):
|
||||
CrewEvaluator(crew_planner.crew, None)
|
||||
|
||||
def test_evaluator_with_string_llm(self, crew_planner):
|
||||
evaluator = CrewEvaluator(crew_planner.crew, "gpt-4")
|
||||
agent = evaluator._evaluator_agent()
|
||||
assert isinstance(agent.llm, LLM)
|
||||
assert agent.llm.model == "gpt-4"
|
||||
|
||||
def test_evaluation_task(self, crew_planner):
|
||||
evaluator_agent = Agent(
|
||||
role="Evaluator Agent",
|
||||
|
||||
Reference in New Issue
Block a user