Compare commits

..

120 Commits

Author SHA1 Message Date
Devin AI
a2e1b3896e fix: Make model_name optional for custom embedders
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-10 00:01:24 +00:00
Devin AI
5566c587a4 fix: Remove duplicate _configure_custom method
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:57:03 +00:00
Nicolas Lorin
6a47c2ded2 doc: use the corresponding source depending on filetype (#2038)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:45 +00:00
Bradley Goodyear
2d2544669e Fix a typo in the Task Guardrails section (#2043)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:45 +00:00
devin-ai-integration[bot]
ea493fcece docs: fix long term memory class name in examples (#2049)
* docs: fix long term memory class name in examples

- Replace EnhanceLongTermMemory with LongTermMemory to match actual implementation
- Update code examples to show correct usage
- Fixes #2026

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: improve memory examples with imports, types and security

- Add proper import statements
- Add type hints for better readability
- Add descriptive comments for each memory type
- Add security considerations section
- Add configuration examples section
- Use environment variables for storage paths

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update memory.mdx

* Update memory.mdx

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:45 +00:00
devin-ai-integration[bot]
74571b7632 fix: ensure proper message formatting for Anthropic models (#2063)
* fix: ensure proper message formatting for Anthropic models

- Add Anthropic-specific message formatting
- Add placeholder user message when required
- Add test case for Anthropic message formatting

Fixes #1869

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: improve Anthropic model handling

- Add robust model detection with _is_anthropic_model
- Enhance message formatting with better edge cases
- Add type hints and improve documentation
- Improve test structure with fixtures
- Add edge case tests

Addresses review feedback on #2063

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 23:56:45 +00:00
devin-ai-integration[bot]
e9c29f3a7e docs: document FileWriterTool as solution for file writing issues (#2039)
* docs: add FileWriterTool recommendation for file writing issues

- Add FileWriterTool recommendation in _save_file docstring
- Update error message to suggest using FileWriterTool for cross-platform compatibility
- Resolves #2015

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: enhance FileWriterTool documentation

- Add cross-platform compatibility details
- Highlight UTF-8 encoding support
- Emphasize Windows compatibility
- Add recommendation for users experiencing file writing issues

Part of #2015

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: improve _save_file type hints and error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:45 +00:00
devin-ai-integration[bot]
459dd459d5 fix: handle multiple task outputs correctly in conditional tasks (#1937)
* fix: handle multiple task outputs correctly in conditional tasks

- Fix IndexError in _handle_conditional_task by using first output
- Modify _execute_tasks to accumulate task outputs instead of resetting
- Update _create_crew_output to handle multiple outputs correctly
- Add tests for multiple tasks with conditional and multiple conditional tasks

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* feat: validate at least one non-conditional task and refine task outputs

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Revert to single output in _create_crew_output; remove redundant empty task check

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Address PR feedback: use last output in conditional tasks, add validation test

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Address PR feedback: updated conditional tasks tests and indexing

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: brandon@crewai.com <brandon@crewai.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:45 +00:00
João Moura
2f1659daa0 adding shoutout to enterprise 2025-02-09 23:56:45 +00:00
Brandon Hancock (bhancock_ai)
faac5f584e Brandon/general cleanup (#2059)
* clean up. fix type safety. address memory config docs

* improve manager

* Include fix for o1 models not supporting system messages

* more broad with o1

* address fix: Typo in expected_output string #2045

* drop prints

* drop prints

* wip

* wip

* fix failing memory tests

* Fix memory provider issue

* clean up short term memory

* revert ltm

* drop

* clean up linting issues

* more linting
2025-02-09 23:56:45 +00:00
Brandon Hancock (bhancock_ai)
fcbf824b48 clean up google docs (#2061) 2025-02-09 23:56:45 +00:00
Lorenze Jay
f438344dfc Enhance embedding configuration with custom embedder support (#2060)
* Enhance embedding configuration with custom embedder support

- Add support for custom embedding functions in EmbeddingConfigurator
- Update type hints for embedder configuration
- Extend configuration options for various embedding providers
- Add optional embedder configuration to Memory class

* added docs

* Refine custom embedder configuration support

- Update custom embedder configuration method to handle custom embedding functions
- Modify type hints for embedder configuration
- Remove unused model_name parameter in custom embedder configuration
2025-02-09 23:56:45 +00:00
Brandon Hancock (bhancock_ai)
ef1ef8fd80 General Clean UP (#2042)
* clean up. fix type safety. address memory config docs

* improve manager

* Include fix for o1 models not supporting system messages

* more broad with o1

* address fix: Typo in expected_output string #2045

* drop prints

* drop prints

* wip

* wip

* fix failing memory tests

* Fix memory provider issue

* clean up short term memory

* revert ltm

* drop
2025-02-09 23:56:45 +00:00
Vidit Ostwal
df55278476 Added support for logging in JSON format as well. (#1985)
* Added functionality to have json format as well for the logs

* Added additional comments, refractored logging functionality

* Fixed documentation to include the new paramter

* Fixed typo

* Added a Pydantic Error Check between output_log_file and save_as_json parameter

* Removed the save_to_json parameter, incorporated the functionality directly with output_log_file

* Fixed typo

* Sorted the imports using isort

---------

Co-authored-by: Vidit Ostwal <vidit.ostwal@piramal.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:45 +00:00
Vidit Ostwal
22ce67a8e7 Added reset memories function inside crew class (#2047)
* Added reset memories function inside crew class

* Fixed typos

* Refractored the code

* Refactor memory reset functionality in Crew class

- Improved error handling and logging for memory reset operations
- Added private methods to modularize memory reset logic
- Enhanced type hints and docstrings
- Updated CLI reset memories command to use new Crew method
- Added utility function to get crew instance in CLI utils

* fix linting issues

* knowledge: Add null check in reset method for storage

* cli: Update memory reset tests to use Crew's reset_memories method

* cli: Enhance memory reset command with improved error handling and validation

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:45 +00:00
Brandon Hancock (bhancock_ai)
f29534a2c3 fix manager (#2056) 2025-02-09 23:56:45 +00:00
hyjbrave
4b6abea553 fix unstructured example flow (#2052) 2025-02-09 23:56:45 +00:00
Nicolas Lorin
e1cbeed8fd agent: improve knowledge naming (#2041) 2025-02-09 23:56:45 +00:00
João Moura
9e267ed23b fix version 2025-02-09 23:56:45 +00:00
Thiago Moretto
74d3598cb3 Fix ignored Crew task callback when one is set on the Task (#2040)
* Fix ignored Crew task callback when one is set on the Task

* type checking
2025-02-09 23:56:45 +00:00
Nicolas Lorin
040c0af158 FIX: correctly initialize embedder for crew knowledge (#2035) 2025-02-09 23:56:45 +00:00
Juan Figuera
44d5c3d9c5 Added expected_output field to tasks to prevent ValidationError from Pydantic (#1971)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
031fd476c2 Brandon/improve llm structured output (#2029)
* code and tests work

* update docs

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
rishi154
742ee26700 Fix : short_term_memory with bedrock - using user defined model(when passed as attribute) rather than default (#1959)
* Update embedding_configurator.py

Modified  _configure_bedrock method to use user submitted model_name rather than default  amazon.titan-embed-text-v1.

Sending model_name in short_term_memory (embedder_config/config) was not working.


 # Passing model_name to use model_name provide by user than using default. Added if/else for backward compatibility

* Update embedding_configurator.py

Incorporated review comments

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
TomuHirata
40286e2532 Add documentation for mlflow tracing integration (#1988)
Signed-off-by: Tomu Hirata <tomu.hirata@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
jinx
378bd7d284 Correct current year in tasks, to get more up to date results (#2010)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
Vidit Ostwal
50f6481e2d Fixed the memory documentation (#2031) 2025-02-09 23:56:44 +00:00
Vidit Ostwal
d9c426a50d Fixed the documentation (#2017)
* Fixed the documentation

* Fixed typo, improved description

---------

Co-authored-by: Vidit Ostwal <vidit.ostwal@piramal.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
Brandon Hancock
f7a0da103f update litellm to support o3-mini and deepseek. Update docs. 2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
5286e04dff Brandon/provide llm additional params (#2018)
* Clean up to match enterprise

* add additional params to LLM calls

* make sure additional params are getting passed to llm

* update docs

* drop print
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
986d7127f3 Clean up to match enterprise (#2009)
* Clean up to match enterprise

* improve feedback prompting
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
d4f3c8463f Fix llms (#2003)
* iwp

* add in api_base

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
8ac51daebd Bugfix/fix broken training (#1993)
* Fixing training while refactoring code

* improve prompts

* make sure to raise an error when missing training data

* Drop comment

* fix failing tests

* add clear

* drop bad code

* fix failing test

* Fix type issues pointed out by lorenze

* simplify training
2025-02-09 23:56:44 +00:00
Lorenze Jay
5178c89ea6 fixes interpolation issues when inputs are type dict,list specificall… (#1992)
* fixes interpolation issues when inputs are type dict,list specifically when defined on expected_output

* improvements with type hints, doc fixes and rm print statements

* more tests

* test passing

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2025-02-09 23:56:44 +00:00
Daniel Barreto
0159a6636a docs: add a "Human Input" row to the Task Attributes table (#1999) 2025-02-09 23:56:44 +00:00
Lorenze Jay
d8536deebe fix breakage when cloning agent/crew using knowledge_sources and enable custom knowledge_storage (#1927)
* fix breakage when cloning agent/crew using knowledge_sources

* fixed typo

* better

* ensure use of other knowledge storage works

* fix copy and custom storage

* added tests

* normalized name

* updated cassette

* fix test

* remove fixture

* fixed test

* fix

* add fixture to this

* add fixture to this

* patch twice since

* fix again

* with fixtures

* better mocks

* fix

* simple

* try

* another

* hopefully fixes test

* hopefully fixes test

* this should fix it !

* WIP: test check with prints

* try this

* exclude knowledge

* fixes

* just drop clone for now

* rm print statements

* printing agent_copy

* checker

* linted

* cleanup

* better docs

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
Brandon Hancock
74b78d4eb0 update litellm 2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
9ca2872688 Fix (#1990)
* Fix

* drop failing files
2025-02-09 23:56:44 +00:00
João Moura
6b2d62e5fe preparing new version 2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
900090b4b7 quick fix for mike (#1987) 2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
e189e2133a fix issue pointed out by mike (#1986)
* fix issue pointed out by mike

* clean up

* Drop logger

* drop unused imports
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
a8dbe4a109 Bugfix/litellm plus generic exceptions (#1965)
* wip

* More clean up

* Fix error

* clean up test

* Improve chat calling messages

* crewai chat improvements

* working but need to clean up

* Clean up chat
2025-02-09 23:56:44 +00:00
devin-ai-integration[bot]
fed2d6bf0d Add version check to crew_chat.py (#1966)
* Add version check to crew_chat.py with min version 0.98.0

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Fix import sorting in crew_chat.py

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Fix import sorting in crew_chat.py (attempt 3)

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Update error message, add version check helper, fix import sorting

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Fix import sorting with Ruff auto-fix

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

* Remove poetry check and import comment headers in crew_chat.py

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: brandon@crewai.com <brandon@crewai.com>
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
ae89471271 Fix litellm issues to be more broad (#1960)
* Fix litellm issues to be more broad

* Fix tests
2025-02-09 23:56:44 +00:00
Bobby Lindsey
6f59dcb8d7 Add SageMaker as a LLM provider (#1947)
* Add SageMaker as a LLM provider

* Removed unnecessary constants; updated docs to align with bootstrap naming convention

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
4f20f78f4f Updated calls and added tests to verify (#1953)
* Updated calls and added tests to verify

* Drop unused import
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
26723936c1 Bugfix/kickoff hangs when llm call fails (#1943)
* Wip to address https://github.com/crewAIInc/crewAI/issues/1934

* implement proper try / except

* clean up PR

* add tests

* Fix tests and code that was broken

* mnore clean up

* Fixing tests

* fix stop type errors]

* more fixes
2025-02-09 23:56:44 +00:00
Tony Kipkemboi
c81c81893c docs: improve formatting and clarity in CLI and Composio Tool docs (#1946)
* docs: improve formatting and clarity in CLI and Composio Tool docs

- Add Terminal label to shell code blocks in CLI docs
- Update Composio Tool title and fix tip formatting

* docs: improve installation guide with virtual environment details

- Update Python version requirements and commands
- Add detailed virtual environment setup instructions
- Clarify project-specific environment activation steps
- Streamline additional tools installation with UV

* docs: simplify installation guide

- Remove redundant virtual environment instructions
- Simplify project creation steps
- Update UV package manager description
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
26cce7f3ab add docs for crewai chat (#1936)
* add docs for crewai chat

* add version number
2025-02-09 23:56:44 +00:00
Abhishek Patil
b8e7136fba feat: add Composio docs (#1904)
* feat: update Composio tool docs

* Update composiotool.mdx

* fix: minor changes

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
Sanjeed
eff2d8b5e7 Fix wrong llm value in example (#1929)
Original example had `mixtal-llm` which would result in an error.
Replaced with gpt-4o according to https://docs.crewai.com/concepts/llms
2025-02-09 23:56:44 +00:00
João Moura
f27e173e2c Stateful flows (#1931)
* fix: ensure persisted state overrides class defaults

- Remove early return in Flow.__init__ to allow proper state initialization
- Add test_flow_default_override.py to verify state override behavior
- Fix issue where default values weren't being overridden by persisted state

Fixes the issue where persisted state values weren't properly overriding
class defaults when restarting a flow with a previously saved state ID.

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: improve state restoration verification with has_set_count flag

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add has_set_count field to PoemState

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactoring test

* fix: ensure persisted state overrides class defaults

- Remove early return in Flow.__init__ to allow proper state initialization
- Add test_flow_default_override.py to verify state override behavior
- Fix issue where default values weren't being overridden by persisted state

Fixes the issue where persisted state values weren't properly overriding
class defaults when restarting a flow with a previously saved state ID.

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: improve state restoration verification with has_set_count flag

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add has_set_count field to PoemState

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactoring test

* Fixing flow state

* fixing peristed stateful flows

* linter

* type fix

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 23:56:44 +00:00
devin-ai-integration[bot]
afac425d1a feat: add colored logging for flow operations (#1923)
* feat: add colored logging for flow operations

- Add flow_id property for easy ID access
- Add yellow colored logging for flow start
- Add bold_yellow colored logging for state operations
- Implement consistent logging across flow lifecycle

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: sort imports to fix lint error

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: improve flow logging and error handling

- Add centralized logging method for flow events
- Add robust error handling in persistence decorator
- Add consistent log messages and levels
- Add color-coded error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: sort imports and improve error handling

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:44 +00:00
João Moura
60d23ef9ee updating tools version 2025-02-09 23:56:44 +00:00
devin-ai-integration[bot]
a4a0946675 docs: add flow persistence section (#1922)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
84792a0f17 Brandon/new release cleanup (#1918)
* WIP

* fixes to match enterprise changes
2025-02-09 23:56:44 +00:00
João Moura
32f6e7d24c preparing new verison 2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
b428c95e27 Fix union issue that Daniel was running into (#1910) 2025-02-09 23:56:44 +00:00
fzowl
79bfc9c836 feature: Introducing VoyageAI (#1871)
* Introducing VoyageAI's embedding models

* Adding back the whitespaces

* Adding the whitespaces back
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
fbf993979d Fix docling issues (#1909)
* Fix docling issues

* update docs
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
367d4ddf90 Fix nested pydantic model issue (#1905)
* Fix nested pydantic model issue

* fix failing tests

* add in vcr

* cleanup

* drop prints

* Fix vcr issues

* added new recordings

* trying to fix vcr

* add in fix from lorenze.
2025-02-09 23:56:44 +00:00
devin-ai-integration[bot]
a3b95033b4 Fix SQLite log handling issue causing ValueError: Logs cannot be None in tests (#1899)
* Fix SQLite log handling issue causing ValueError: Logs cannot be None in tests

- Add proper error handling in SQLite storage operations
- Set up isolated test environment with temporary storage directory
- Ensure consistent error messages across all database operations

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports in conftest.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Convert TokenProcess counters to instance variables to fix callback tracking

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Replace print statements with logging and improve error handling

- Add proper logging setup in kickoff_task_outputs_storage.py
- Replace self._printer.print() with logger calls
- Use appropriate log levels (error/warning)
- Add directory validation in test environment setup
- Maintain consistent error messages with DatabaseError format

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Comprehensive improvements to database and token handling

- Fix SQLite database path handling in storage classes
- Add proper directory creation and error handling
- Improve token tracking with robust type checking
- Convert TokenProcess counters to instance variables
- Add standardized database error handling
- Set up isolated test environment with temporary storage

Resolves test failures in PR #1899

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:44 +00:00
devin-ai-integration[bot]
eda8e673d7 Add @persist decorator with FlowPersistence interface (#1892)
* Add @persist decorator with SQLite persistence

- Add FlowPersistence abstract base class
- Implement SQLiteFlowPersistence backend
- Add @persist decorator for flow state persistence
- Add tests for flow persistence functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix remaining merge conflicts in uv.lock

- Remove stray merge conflict markers
- Keep main's comprehensive platform-specific resolution markers
- Preserve all required dependencies for persistence functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix final CUDA dependency conflicts in uv.lock

- Resolve NVIDIA CUDA solver dependency conflicts
- Use main's comprehensive platform checks
- Ensure all merge conflict markers are removed
- Preserve persistence-related dependencies

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix nvidia-cusparse-cu12 dependency conflicts in uv.lock

- Resolve NVIDIA CUSPARSE dependency conflicts
- Use main's comprehensive platform checks
- Complete systematic check of entire uv.lock file
- Ensure all merge conflict markers are removed

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix triton filelock dependency conflicts in uv.lock

- Resolve triton package filelock dependency conflict
- Use main's comprehensive platform checks
- Complete final systematic check of entire uv.lock file
- Ensure TOML file structure is valid

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix merge conflict in crew_test.py

- Remove duplicate assertion in test_multimodal_agent_live_image_analysis
- Clean up conflict markers
- Preserve test functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

* Clean up trailing merge conflict marker in crew_test.py

- Remove remaining conflict marker at end of file
- Preserve test functionality
- Complete conflict resolution

Co-Authored-By: Joe Moura <joao@crewai.com>

* Improve type safety in persistence implementation and resolve merge conflicts

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add explicit type casting in _create_initial_state method

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve type safety in flow state handling with proper validation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve type system with proper TypeVar scoping and validation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve state restoration logic and add comprehensive tests

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Initialize FlowState instances without passing id to constructor

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add class-level flow persistence decorator with SQLite default

- Add class-level @persist decorator support
- Set SQLiteFlowPersistence as default backend
- Use db_storage_path for consistent database location
- Improve async method handling and type safety
- Add comprehensive docstrings and examples

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports in decorators.py to fix lint error

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Organize imports according to PEP 8 standard

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Format typing imports with line breaks for better readability

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Simplify import organization to fix lint error

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting using Ruff auto-fix

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:44 +00:00
Tony Kipkemboi
209f852300 docs: update multimodal agents guide and mint.json configuration 2025-02-09 23:56:44 +00:00
Tony Kipkemboi
e9c1b02426 fix: add multimodal docs path to mint.json 2025-02-09 23:56:44 +00:00
Daniel Barreto
e55ff87399 fix: get rid of translation typo (#1880)
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
a956a8a1ad Incorporate y4izus fix (#1893) 2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
732ea8e163 before kickoff breaks if inputs are none. (#1883)
* before kickoff breaks if inputs are none.

* improve none type

* Fix failing tests

* add tests for new code

* Fix failing test

* drop extra comments

* clean up based on eduardo feedback
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
05e48f0360 drop litellm version to prevent windows issue (#1878)
* drop litellm version to prevent windows issue

* Fix failing tests

* Trying to fix tests

* clean up

* Trying to fix tests

* Drop token calc handler changes

* fix failing test

* Fix failing test

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:44 +00:00
devin-ai-integration[bot]
200d4c030d feat: add unique ID to flow states (#1888)
* feat: add unique ID to flow states

- Add FlowState base model with UUID field
- Update type variable T to use FlowState
- Ensure all states (structured and unstructured) get UUID
- Fix type checking in _create_initial_state method

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update documentation to reflect automatic UUID generation in flow states

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: sort imports in flow.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: sort imports according to PEP 8

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: auto-fix import sorting with ruff

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add comprehensive tests for flow state UUID functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 23:56:44 +00:00
Brandon Hancock
8617b46ac2 add important missing parts to creating tools 2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
717452d640 Brandon/eng 290 make tool inputs actual objects and not strings (#1868)
* Improving tool calling to pass dictionaries instead of strings

* Fix issues with parsing none/null

* remove prints and unnecessary comments

* Fix crew_test issues with function calling

* improve prompting

* add back in support for add_image

* add tests for tool validation

* revert back to figure out why tests are timing out

* Update cassette

* trying to find what is timing out

* add back in guardrails

* add back in manager delegation tests

* Trying to fix tests

* Force test to pass

* Trying to fix tests

* add in more role tests

* add back old tool validation

* updating tests

* vcr

* Fix tests

* improve function llm logic

* vcr 2

* drop llm

* Failing test

* add more tests back in

* Revert tool validation
2025-02-09 23:56:44 +00:00
Tony Kipkemboi
fe0f4cb308 docs: roll back modify crew.py example 2025-02-09 23:56:44 +00:00
Tony Kipkemboi
ea40269990 docs: enhance decorator documentation and update LLM syntax 2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
30eda147bd Fixed core invoke loop logic and relevant tests (#1865)
* Fixed core invoke loop logic and relevant tests

* Fix failing tests

* Clean up final print statements

* Additional clean up for PR review
2025-02-09 23:56:44 +00:00
Navneeth S
670edab8da "Minor Change in Documentation: agents " (#1862)
* "Minor Change in Documentation "

* "Changes Added"

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
Rashmi Pawar
2961a0deea add nvidia provider in cli (#1864) 2025-02-09 23:56:44 +00:00
Alessandro Romano
f29d90991b Fix API Key Behavior and Entity Handling in Mem0 Integration (#1857)
* docs: clarify how to specify org_id and project_id in Mem0 configuration

* Add org_id and project_id to mem0 config and fix mem0 entity '400 Bad Request'

* Remove ruff changes to docs

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
Jorge Piedrahita Ortiz
0af5352a25 feat sambanova models (#1858)
Co-authored-by: jorgep_snova <jorge.piedrahita@sambanovasystems.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:44 +00:00
Daniel Dowler
ee00a013fc chore: Update date to current year in template (#1860)
* update date to current year in template

Signed-off-by: dandawg <12484302+dandawg@users.noreply.github.com>

* current_year update to example task template

Signed-off-by: dandawg <12484302+dandawg@users.noreply.github.com>

---------

Signed-off-by: dandawg <12484302+dandawg@users.noreply.github.com>
2025-02-09 23:56:44 +00:00
Brandon Hancock (bhancock_ai)
ad28360436 Brandon/eng 266 conversation crew v1 (#1843)
* worked on foundation for new conversational crews. Now going to work on chatting.

* core loop should be working and ready for testing.

* high level chat working

* its alive!!

* Added in Joaos feedback to steer crew chats back towards the purpose of the crew

* properly return tool call result

* accessing crew directly instead of through uv commands

* everything is working for conversation now

* Fix linting

* fix llm_utils.py and other type errors

* fix more type errors

* fixing type error

* More fixing of types

* fix failing tests

* Fix more failing tests

* adding tests. cleaing up pr.

* improve

* drop old functions

* improve type hintings
2025-02-09 23:56:44 +00:00
João Moura
ed5bdfcf9f adding extra space 2025-02-09 23:56:44 +00:00
João Moura
27f6c91966 improving guardrails 2025-02-09 23:56:44 +00:00
João Moura
bcf2802c3f small adjustments before cutting version 2025-02-09 23:56:44 +00:00
João Moura
4984961b3d Preparing new version (#1845)
* Preparing new version
2025-02-09 23:56:44 +00:00
Lorenze Jay
17d9d738f9 fix knowledge docs with correct imports (#1846)
* fix knowledge docs with correct imports

* more fixes
2025-02-09 23:56:44 +00:00
Gui Vieira
d9cac4b417 [ENG-227] Record task execution timestamps (#1844) 2025-02-09 23:56:44 +00:00
João Moura
65cb926c36 preparing new version 2025-02-09 23:56:44 +00:00
Marco Vinciguerra
de4d7bf9af feat: add documentation functions (#1831)
* feat: add docstring

* feat: add new docstring

* fix: linting

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:44 +00:00
siddharth Sambharia
036661196d .md to .mdx and mint.json updated (no content changes) (#1836)
Co-authored-by: siddharthsambharia-portkey <siddhath.s@portkey.ai>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:44 +00:00
Tony Kipkemboi
a2d51921eb Update docs (#1842)
* Update portkey docs

* Add more examples to Knowledge docs + clarify issue with `embedder`

* fix knowledge params and usage instructions
2025-02-09 23:56:43 +00:00
Brandon Hancock (bhancock_ai)
d6acd9c249 Trying out timeouts (#1840)
* Make tests green again

* Add Git validations for publishing tools  (#1381)

This commit prevents tools from being published if the underlying Git
repository is unsynced with origin.

* fix: JSON encoding date objects (#1374)

* Update README  (#1376)

* Change all instaces of crewAI to CrewAI and fix installation step

* Update the  example to use YAML format

* Update  to come after setup and edits

* Remove double tool instance

* docs: correct miswritten command name (#1365)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Add `--force` option to `crewai tool publish` (#1383)

This commit adds an option to bypass Git remote validations when
publishing tools.

* add plotting to flows documentation (#1394)

* Brandon/cre 288 add telemetry to flows (#1391)

* Telemetry for flows

* store node names

* Brandon/cre 291 flow improvements (#1390)

* Implement joao feedback

* update colors for crew nodes

* clean up

* more linting clean up

* round legend corners

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* quick fixes (#1385)

* quick fixes

* add generic name

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* reduce import time by 6x (#1396)

* reduce import by 6x

* fix linting

* Added version details (#1402)

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* Update twitter logo to x-twiiter (#1403)

* fix task cloning error (#1416)

* Migrate docs from MkDocs to Mintlify (#1423)

* add new mintlify docs

* add favicon.svg

* minor edits

* add github stats

* Fix/logger - fix #1412 (#1413)

* improved logger

* log file looks better

* better lines written to log file

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* fixing tests

* preparing new version

* updating init

* Preparing new version

* Trying to fix linting and other warnings (#1417)

* Trying to fix linting

* fixing more type issues

* clean up ci

* more ci fixes

---------

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>

* Feat/poetry to uv migration (#1406)

* feat: Start migrating to UV

* feat: add uv to flows

* feat: update docs on Poetry -> uv

* feat: update docs and uv.locl

* feat: update tests and github CI

* feat: run ruff format

* feat: update typechecking

* feat: fix type checking

* feat: update python version

* feat: type checking gic

* feat: adapt uv command to run the tool repo

* Adapt tool build command to uv

* feat: update logic to let only projects with crew to be deployed

* feat: add uv to tools

* fix; tests

* fix: remove breakpoint

* fix :test

* feat: add crewai update to migrate from poetry to uv

* fix: tests

* feat: add validation for ˆ character on pyproject

* feat: add run_crew to pyproject if doesnt exist

* feat: add validation for poetry migration

* fix: warning

---------

Co-authored-by: Vinicius Brasil <vini@hey.com>

* fix: training issue (#1433)

* fix: training issue

* fix: output from crew

* fix: message

* Use a slice for the manager request. Make the task use the agent i18n settings (#1446)

* Fix Cache Typo in Documentation (#1441)

* Correct the role for the message being added to the messages list (#1438)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* fix typo in template file (#1432)

* Adapt Tools CLI to uv (#1455)

* Adapt Tools CLI to UV

* Fix failing test

* use the same i18n as the agent for tool usage (#1440)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Upgrade docs to mirror change from `Poetry` to `UV` (#1451)

* Update docs to use  instead of

* Add Flows YouTube tutorial & link images

* feat: ADd warning from poetry -> uv (#1458)

* feat/updated CLI to allow for model selection & submitting API keys (#1430)

* updated CLI to allow for submitting API keys

* updated click prompt to remove default number

* removed all unnecessary comments

* feat: implement crew creation CLI command

- refactor code to multiple functions
- Added ability for users to select provider and model when uing crewai create command and ave API key to .env

* refactered select_choice function for early return

* refactored  select_provider to have an ealry return

* cleanup of comments

* refactor/Move functions into utils file, added new provider file and migrated fucntions thre, new constants file + general function refactor

* small comment cleanup

* fix unnecessary deps

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>

* Fix incorrect parameter name in Vision tool docs page (#1461)

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* Feat/memory base (#1444)

* byom - short/entity memory

* better

* rm uneeded

* fix text

* use context

* rm dep and sync

* type check fix

* fixed test using new cassete

* fixing types

* fixed types

* fix types

* fixed types

* fixing types

* fix type

* cassette update

* just mock the return of short term mem

* remove print

* try catch block

* added docs

* dding error handling here

* preparing new version

* fixing annotations

* fix tasks and agents ordering

* Avoiding exceptions

* feat: add poetry.lock to uv migration (#1468)

* fix tool calling issue (#1467)

* fix tool calling issue

* Update tool type check

* Drop print

* cutting new version

* new verison

* Adapt `crewai tool install <tool>` to uv (#1481)

This commit updates the tool install comamnd to uv's new custom index
feature.

Related: https://github.com/astral-sh/uv/pull/7746/

* fix(docs): typo (#1470)

* drop unneccesary tests (#1484)

* drop uneccesary tests

* fix linting

* simplify flow (#1482)

* simplify flow

* propogate changes

* Update docs and scripts

* Template fix

* make flow kickoff sync

* Clean up docs

* Add Cerebras LLM example configuration to LLM docs (#1488)

* ensure original embedding config works (#1476)

* ensure original embedding config works

* some fixes

* raise error on unsupported provider

* WIP: brandons notes

* fixes

* rm prints

* fixed docs

* fixed run types

* updates to add more docs and correct imports with huggingface embedding server enabled

---------

Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>

* use copy to split testing and training on crews (#1491)

* use copy to split testing and training on crews

* make tests handle new copy functionality on train and test

* fix last test

* fix test

* preparing new verison

* fix/fixed missing API prompt + CLI docs update (#1464)

* updated CLI to allow for submitting API keys

* updated click prompt to remove default number

* removed all unnecessary comments

* feat: implement crew creation CLI command

- refactor code to multiple functions
- Added ability for users to select provider and model when uing crewai create command and ave API key to .env

* refactered select_choice function for early return

* refactored  select_provider to have an ealry return

* cleanup of comments

* refactor/Move functions into utils file, added new provider file and migrated fucntions thre, new constants file + general function refactor

* small comment cleanup

* fix unnecessary deps

* Added docs for new CLI provider + fixed missing API prompt

* Minor doc updates

* allow user to bypass api key entry + incorect number selected logic + ruff formatting

* ruff updates

* Fix spelling mistake

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>

* chore(readme-fix): fixing step for 'running tests' in the contribution section (#1490)

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>

* support unsafe code execution. add in docker install and running checks. (#1496)

* support unsafe code execution. add in docker install and running checks.

* Update return type

* Fix memory imports for embedding functions (#1497)

* updating crewai version

* new version

* new version

* update plot command (#1504)

* feat: add tomli so we can support 3.10 (#1506)

* feat: add tomli so we can support 3.10

* feat: add validation for poetry data

* Forward install command options to `uv sync` (#1510)

Allow passing additional options from `crewai install` directly to
`uv sync`. This enables commands like `crewai install --locked` to work
as expected by forwarding all flags and options to the underlying uv
command.

* improve tool text description and args (#1512)

* improve tool text descriptoin and args

* fix lint

* Drop print

* add back in docstring

* Improve tooling docs

* Update flow docs to talk about self evaluation example

* Update flow docs to talk about self evaluation example

* Update flows.mdx - Fix link

* Update flows cli to allow you to easily add additional crews to a flow (#1525)

* Update flows cli to allow you to easily add additional crews to a flow

* fix failing test

* adding more error logs to test thats failing

* try again

* Bugfix/flows with multiple starts plus ands breaking (#1531)

* bugfix/flows-with-multiple-starts-plus-ands-breaking

* fix user found issue

* remove prints

* prepare new version

* Added security.md file (#1533)

* Disable telemetry explicitly (#1536)

* Disable telemetry explicitly

* fix linting

* revert parts to og

* Enhance log storage to support more data types (#1530)

* Add llm providers accordion group (#1534)

* add llm providers accordion group

* fix numbering

* Replace .netrc with uv environment variables (#1541)

This commit replaces .netrc with uv environment variables for installing
tools from private repositories. To store credentials, I created a new
and reusable settings file for the CLI in
`$HOME/.config/crewai/settings.json`.

The issue with .netrc files is that they are applied system-wide and are
scoped by hostname, meaning we can't differentiate tool repositories
requests from regular requests to CrewAI's API.

* refactor: Move BaseTool to main package and centralize tool description generation (#1514)

* move base_tool to main package and consolidate tool desscription generation

* update import path

* update tests

* update doc

* add base_tool test

* migrate agent delegation tools to use BaseTool

* update tests

* update import path for tool

* fix lint

* update param signature

* add from_langchain to BaseTool for backwards support of langchain tools

* fix the case where StructuredTool doesn't have func

---------

Co-authored-by: c0dez <li@vitablehealth.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Update docs  (#1550)

* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion

* Feat/ibm memory (#1549)

* Everything looks like its working. Waiting for lorenze review.

* Update docs as well.

* clean up for PR

* add inputs to flows (#1553)

* add inputs to flows

* fix flows lint

* Increase providers fetching timeout

* Raise an error if an LLM doesnt return a response (#1548)

* docs update (#1558)

* add llm providers accordion group

* fix numbering

* Fix directory tree & add llms to accordion

* update crewai enterprise link in docs

* Feat/watson in cli (#1535)

* getting cli and .env to work together for different models

* support new models

* clean up prints

* Add support for cerebras

* Fix watson keys

* Fix flows to support cycles and added in test (#1556)

* fix missing config (#1557)

* making sure we don't check for agents that were not used in the crew

* preparing new version

* updating LLM docs

* preparing new version

* curring new version

* preparing new version

* preparing new version

* add missing init

* fix LiteLLM callback replacement

* fix test_agent_usage_metrics_are_captured_for_hierarchical_process

* removing prints

* fix: Step callback issue (#1595)

* fix: Step callback issue

* fix: Add empty thought since its required

* Cached prompt tokens on usage metrics

* do not include cached on total

* Fix crew_train_success test

* feat: Reduce level for Bandit and fix code to adapt (#1604)

* Add support for retrieving user preferences and memories using Mem0 (#1209)

* Integrate Mem0

* Update src/crewai/memory/contextual/contextual_memory.py

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>

* pending commit for _fetch_user_memories

* update poetry.lock

* fixes mypy issues

* fix mypy checks

* New fixes for user_id

* remove memory_provider

* handle memory_provider

* checks for memory_config

* add mem0 to dependency

* Update pyproject.toml

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>

* update docs

* update doc

* bump mem0 version

* fix api error msg and mypy issue

* mypy fix

* resolve comments

* fix memory usage without mem0

* mem0 version bump

* lazy import mem0

---------

Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* upgrade chroma and adjust embedder function generator (#1607)

* upgrade chroma and adjust embedder function generator

* >= version

* linted

* preparing enw version

* adding before and after crew

* Update CLI Watson supported models + docs (#1628)

* docs: add gh_token documentation to GithubSearchTool

* Move kickoff callbacks to crew's domain

* Cassettes

* Make mypy happy

* Knowledge (#1567)

* initial knowledge

* WIP

* Adding core knowledge sources

* Improve types and better support for file paths

* added additional sources

* fix linting

* update yaml to include optional deps

* adding in lorenze feedback

* ensure embeddings are persisted

* improvements all around Knowledge class

* return this

* properly reset memory

* properly reset memory+knowledge

* consolodation and improvements

* linted

* cleanup rm unused embedder

* fix test

* fix duplicate

* generating cassettes for knowledge test

* updated default embedder

* None embedder to use default on pipeline cloning

* improvements

* fixed text_file_knowledge

* mypysrc fixes

* type check fixes

* added extra cassette

* just mocks

* linted

* mock knowledge query to not spin up db

* linted

* verbose run

* put a flag

* fix

* adding docs

* better docs

* improvements from review

* more docs

* linted

* rm print

* more fixes

* clearer docs

* added docstrings and type hints for cli

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>

* Updated README.md, fix typo(s) (#1637)

* Update Perplexity example in documentation (#1623)

* Fix threading

* preparing new version

* Log in to Tool Repository on `crewai login` (#1650)

This commit adds an extra step to `crewai login` to ensure users also
log in to Tool Repository, that is, exchanging their Auth0 tokens for a
Tool Repository username and password to be used by UV downloads and API
tool uploads.

* add knowledge to mint.json

* Improve typed task outputs (#1651)

* V1 working

* clean up imports and prints

* more clean up and add tests

* fixing tests

* fix test

* fix linting

* Fix tests

* Fix linting

* add doc string as requested by eduardo

* Update Github actions (#1639)

* actions/checkout@v4

* actions/cache@v4

* actions/setup-python@v5

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* update (#1638)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* fix spelling issue found by @Jacques-Murray (#1660)

* Update readme for running mypy (#1614)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Feat/remove langchain (#1654)

* feat: add initial changes from langchain

* feat: remove kwargs of being processed

* feat: remove langchain, update uv.lock and fix type_hint

* feat: change docs

* feat: remove forced requirements for parameter

* feat add tests for new structure tool

* feat: fix tests and adapt code for args

* Feat/remove langchain (#1668)

* feat: add initial changes from langchain

* feat: remove kwargs of being processed

* feat: remove langchain, update uv.lock and fix type_hint

* feat: change docs

* feat: remove forced requirements for parameter

* feat add tests for new structure tool

* feat: fix tests and adapt code for args

* fix tool calling for langchain tools

* doc strings

---------

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>

* added knowledge to agent level (#1655)

* added knowledge to agent level

* linted

* added doc

* added from suggestions

* added test

* fixes from discussion

* fix docs

* fix test

* rm cassette for knowledge_sources test as its a mock and update agent doc string

* fix test

* rm unused

* linted

* Update Agents docs to include two approaches for creating an agent: with and without YAML configuration

* Documentation Improvements: LLM Configuration and Usage (#1684)

* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text

* Fixes issues with result as answer not properly exiting LLM loop (#1689)

* v1 of fix implemented. Need to confirm with tokens.

* remove print statements

* preparing new version

* fix missing code in flows docs (#1690)

* docs: improve tasks documentation clarity and structure

- Add Task Execution Flow section
- Add variable interpolation explanation
- Add Task Dependencies section with examples
- Improve overall document structure and readability
- Update code examples with proper syntax highlighting

* docs: update agent documentation with improved examples and formatting

- Replace DuckDuckGoSearchRun with SerperDevTool
- Update code block formatting to be consistent
- Improve template examples with actual syntax
- Update LLM examples to use current models
- Clean up formatting and remove redundant comments

* docs: enhance LLM documentation with Cerebras provider and formatting improvements

* docs: simplify LLMs documentation title

* docs: improve installation guide clarity and structure

- Add clear Python version requirements with check command
- Simplify installation options to recommended method
- Improve upgrade section clarity for existing users
- Add better visual structure with Notes and Tips
- Update description and formatting

* docs: improve introduction page organization and clarity

- Update organizational analogy in Note section
- Improve table formatting and alignment
- Remove emojis from component table for cleaner look
- Add 'helps you' to make the note more action-oriented

* docs: add enterprise and community cards

- Add Enterprise deployment card in quickstart
- Add community card focused on open source discussions
- Remove deployment reference from community description
- Clean up introduction page cards
- Remove link from Enterprise description text

* docs: add code snippet to Getting Started section in flows.mdx

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Update reset memories command based on the SDK (#1688)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Update using langchain tools docs (#1664)

* Update example of how to use LangChain tools with correct syntax

* Use .env

* Add  Code back

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* [FEATURE] Support for custom path in RAGStorage (#1659)

* added path to RAGStorage

* added path to short term and entity memory

* add path for long_term_storage for completeness

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* [Doc]: Add documenation for openlit observability (#1612)

* Create openlit-observability.mdx

* Update doc with images and steps

* Update mkdocs.yml and add OpenLIT guide link

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Fix indentation in llm-connections.mdx code block (#1573)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Knowledge project directory standard (#1691)

* Knowledge project directory standard

* fixed types

* comment fix

* made base file knowledge source an abstract class

* cleaner validator on model_post_init

* fix type checker

* cleaner refactor

* better template

* Update README.md (#1694)

Corrected the statement which says users can not disable telemetry, but now users can disable by setting the environment variable OTEL_SDK_DISABLED to true.

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Talk about getting structured consistent outputs with tasks.

* remove all references to pipeline and pipeline router (#1661)

* remove all references to pipeline and router

* fix linting

* drop poetry.lock

* docs: add nvidia as provider (#1632)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* add knowledge demo + improve knowledge docs (#1706)

* Brandon/cre 509 hitl multiple rounds of followup (#1702)

* v1 of HITL working

* Drop print statements

* HITL code more robust. Still needs to be refactored.

* refactor and more clear messages

* Fix type issue

* fix tests

* Fix test again

* Drop extra print

* New docs about yaml crew with decorators. Simplify template crew with… (#1701)

* New docs about yaml crew with decorators. Simplify template crew with links

* Fix spelling issues.

* updating tools

* curting new verson

* Incorporate Stale PRs that have feedback (#1693)

* incorporate #1683

* add in --version flag to cli. closes #1679.

* Fix env issue

* Add in suggestions from @caike to make sure ragstorage doesnt exceed os file limit. Also, included additional checks to support windows.

* remove poetry.lock as pointed out by @sanders41 in #1574.

* Incorporate feedback from crewai reviewer

* Incorporate @lorenzejay feedback

* drop metadata requirement (#1712)

* drop metadata requirement

* fix linting

* Update docs for new knowledge

* more linting

* more linting

* make save_documents private

* update docs to the new way we use knowledge and include clearing memory

* add support for langfuse with litellm (#1721)

* docs: Add quotes to agentops installing command (#1729)

* docs: Add quotes to agentops installing command

* feat: Add ContextualMemory to __init__

* feat: remove import due to circular improt

* feat: update tasks config main template typos

* Fixed output_file not respecting system path (#1726)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* fix:typo error (#1732)

* Update crew_agent_executor.py

typo error

* Update en.json

typo error

* Fix Knowledge docs Spaceflight News API dead link

* call storage.search in user context search instead of memory.search (#1692)

Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>

* Add doc structured tool (#1713)

* Add doc structured tool

* Fix example

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* _execute_tool_and_check_finality 结果给回调参数,这样就可以提前拿到结果信息,去做数据解析判断做预判 (#1716)

Co-authored-by: xiaohan <fuck@qq.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* format bullet points (#1734)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Add missing @functools.wraps when wrapping functions and preserve wrapped class name in @CrewBase. (#1560)

* Update annotations.py

* Update utils.py

* Update crew_base.py

* Update utils.py

* Update crew_base.py

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Fix disk I/O error when resetting short-term memory. (#1724)

* Fix disk I/O error when resetting short-term memory.

Reset chromadb client and nullifies references before
removing directory.

* Nit for clarity

* did the same for knowledge_storage

* cleanup

* cleanup order

* Cleanup after the rm of the directories

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>

* restrict python version compatibility (#1731)

* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip

* Bugfix/restrict python version compatibility (#1736)

* drop 3.13

* revert

* Drop test cassette that was causing error

* trying to fix failing test

* adding thiago changes

* resolve final tests

* Drop skip

* drop pipeline

* Update pyproject.toml and uv.lock to drop crewai-tools as a default requirement (#1711)

* copy googles changes. Fix tests. Improve LLM file (#1737)

* copy googles changes. Fix tests. Improve LLM file

* Fix type issue

* fix:typo error (#1738)

* Update base_agent_tools.py

typo error

* Update main.py

typo error

* Update base_file_knowledge_source.py

typo error

* Update test_main.py

typo error

* Update en.json

* Update prompts.json

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Remove manager_callbacks reference (#1741)

* include event emitter in flows (#1740)

* include event emitter in flows

* Clean up

* Fix linter

* sort imports with isort rules by ruff linter (#1730)

* sort imports

* update

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>

* Added is_auto_end flag in agentops.end session in crew.py (#1320)

When using agentops, we have the option to pass the `skip_auto_end_session` parameter, which is supposed to not end the session if the `end_session` function is called by Crew.

Now the way it works is, the `agentops.end_session` accepts `is_auto_end` flag and crewai should have passed it as `True` (its `False` by default). 

I have changed the code to pass is_auto_end=True

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* NVIDIA Provider : UI changes (#1746)

* docs: add nvidia as provider

* nvidia ui docs changes

* add note for updated list

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Fix small typo in sample tool (#1747)

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Feature/add workflow permissions (#1749)

* fix: Call ChromaDB reset before removing storage directory to fix disk I/O errors

* feat: add workflow permissions to stale.yml

* revert rag_storage.py changes

* revert rag_storage.py changes

---------

Co-authored-by: Matt B <mattb@Matts-MacBook-Pro.local>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* remove pkg_resources which was causing issues (#1751)

* apply agent ops changes and resolve merge conflicts (#1748)

* apply agent ops changes and resolve merge conflicts

* Trying to fix tests

* add back in vcr

* update tools

* remove pkg_resources which was causing issues

* Fix tests

* experimenting to see if unique content is an issue with knowledge

* experimenting to see if unique content is an issue with knowledge

* update chromadb which seems to have issues with upsert

* generate new yaml for failing test

* Investigating upsert

* Drop patch

* Update casettes

* Fix duplicate document issue

* more fixes

* add back in vcr

* new cassette for test

---------

Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>

* drop print (#1755)

* Fix: CrewJSONEncoder now accepts enums (#1752)

* bugfix: CrewJSONEncoder now accepts enums

* sort imports

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Fix bool and null handling (#1771)

* include 12 but not 13

* change to <13 instead of <=12

* Gemini 2.0 (#1773)

* Update llms.mdx (Gemini 2.0)

- Add Gemini 2.0 flash to Gemini table.
- Add link to 2 hosting paths for Gemini in Tip.
- Change to lower case model slugs vs names, user convenience.
- Add https://artificialanalysis.ai/ as alternate leaderboard.
- Move Gemma to "other" tab.

* Update llm.py (gemini 2.0)

Add setting for Gemini 2.0 context window to llm.py

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* Remove relative import in flow `main.py` template (#1782)

* Add `tool.crewai.type` pyproject attribute in templates (#1789)

* Correcting a small grammatical issue that was bugging me: from _satisfy the expect criteria_ to _satisfies the expected criteria_ (#1783)

Signed-off-by: PJ Hagerty <pjhagerty@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>

* feat: Add task guardrails feature (#1742)

* feat: Add task guardrails feature

Add support for custom code guardrails in tasks that validate outputs
before proceeding to the next task. Features include:

- Optional task-level guardrail function
- Pre-next-task execution timing
- Tuple return format (success, data)
- Automatic result/error routing
- Configurable retry mechanism
- Comprehensive documentation and tests

Link to Devin run: https://app.devin.ai/sessions/39f6cfd6c5a24d25a7bd70ce070ed29a

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add type check for guardrail result and remove unused import

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Remove unnecessary f-string prefix

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add guardrail validation improvements

- Add result/error exclusivity validation in GuardrailResult
- Make return type annotations optional in Task guardrail validator
- Improve error messages for validation failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Add comprehensive guardrails documentation

- Add type hints and examples
- Add error handling best practices
- Add structured error response patterns
- Document retry mechanisms
- Improve documentation organization

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Update guardrail functions to handle TaskOutput objects

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add task guardrails feature

Add support for custom code guardrails in tasks that validate outputs
before proceeding to the next task. Features include:

- Optional task-level guardrail function
- Pre-next-task execution timing
- Tuple return format (success, data)
- Automatic result/error routing
- Configurable retry mechanism
- Comprehensive documentation and tests

Link to Devin run: https://app.devin.ai/sessions/39f6cfd6c5a24d25a7bd70ce070ed29a

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Add type check for guardrail result and remove unused import

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Remove unnecessary f-string prefix

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: Add guardrail validation improvements

- Add result/error exclusivity validation in GuardrailResult
- Make return type annotations optional in Task guardrail validator
- Improve error messages for validation failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: Add comprehensive guardrails documentation

- Add type hints and examples
- Add error handling best practices
- Add structured error response patterns
- Document retry mechanisms
- Improve documentation organization

Co-Authored-By: Joe Moura <joao@crewai.com>

* refactor: Update guardrail functions to handle TaskOutput objects

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in task guardrails files

Co-Authored-By: Joe Moura <joao@crewai.com>

* fixing docs

* Fixing guardarils implementation

* docs: Enhance guardrail validator docstring with runtime validation rationale

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>

* feat: Add interpolate_only method and improve error handling (#1791)

* Fixed output_file not respecting system path

* Fixed yaml config is not escaped properly for output requirements

* feat: Add interpolate_only method and improve error handling

- Add interpolate_only method for string interpolation while preserving JSON structure
- Add comprehensive test coverage for interpolate_only
- Add proper type annotation for logger using ClassVar
- Improve error handling and documentation for _save_file method

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports to fix lint issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Reorganize imports using ruff --fix

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Consolidate imports and fix formatting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Apply ruff automatic import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Sort imports using ruff --fix

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Frieda (Jingying) Huang <jingyingfhuang@gmail.com>
Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Frieda Huang <124417784+frieda-huang@users.noreply.github.com>
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* Feat/docling-support (#1763)

* added tool for docling support

* docling support installation

* use file_paths instead of file_path

* fix import

* organized imports

* run_type docs

* needs to be list

* fixed logic

* logged but file_path is backwards compatible

* use file_paths instead of file_path 2

* added test for multiple sources for file_paths

* fix run-types

* enabling local files to work and type cleanup

* linted

* fix test and types

* fixed run types

* fix types

* renamed to CrewDoclingSource

* linted

* added docs

* resolve conflicts

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>

* removed some redundancies (#1796)

* removed some redundancies

* cleanup

* Feat/joao flow improvement requests (#1795)

* Add in or and and in router

* In the middle of improving plotting

* final plot changes

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* Adding Multimodal Abilities to Crew (#1805)

* initial fix on delegation tools

* fixing tests for delegations and coding

* Refactor prepare tool and adding initial add images logic

* supporting image tool

* fixing linter

* fix linter

* Making sure multimodal feature support i18n

* fix linter and types

* mixxing translations

* fix types and linter

* Revert "fixing linter"

This reverts commit ef323e3487e62ee4f5bce7f86378068a5ac77e16.

* fix linters

* test

* fix

* fix

* fix linter

* fix

* ignore

* type improvements

* chore: removing crewai-tools from dev-dependencies (#1760)

As mentioned in issue #1759, listing crewai-tools as dev-dependencies makes pip install it a required dependency, and not an optional

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* docs: add guide for multimodal agents (#1807)

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* Portkey Integration with CrewAI (#1233)

* Create Portkey-Observability-and-Guardrails.md

* crewAI update with new changes

* small change

---------

Co-authored-by: siddharthsambharia-portkey <siddhath.s@portkey.ai>
Co-authored-by: João Moura <joaomdmoura@gmail.com>

* fix: Change storage initialization to None for KnowledgeStorage (#1804)

* fix: Change storage initialization to None for KnowledgeStorage

* refactor: Change storage field to optional and improve error handling when saving documents

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* fix: handle optional storage with null checks (#1808)

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>

* docs: update README to highlight Flows (#1809)

* docs: highlight Flows feature in README

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: enhance README with LangGraph comparison and flows-crews synergy

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: replace initial Flow example with advanced Flow+Crew example; enhance LangGraph comparison

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: incorporate key terms and enhance feature descriptions

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: refine technical language, enhance feature descriptions, fix string interpolation

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update README with performance metrics, feature enhancements, and course links

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update LangGraph comparison with paragraph and P.S. section

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* Update README.md

* docs: add agent-specific knowledge documentation and examples (#1811)

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* fixing file paths for knowledge source

* Fix interpolation for output_file in Task (#1803) (#1814)

* fix: interpolate output_file attribute from YAML

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add security validation for output_file paths

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add _original_output_file private attribute to fix type-checker error

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: update interpolate_only to handle None inputs and remove duplicate attribute

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: improve output_file validation and error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add end-to-end tests for output_file functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* fix(manager_llm): handle coworker role name case/whitespace properly (#1820)

* fix(manager_llm): handle coworker role name case/whitespace properly

- Add .strip() to agent name and role comparisons in base_agent_tools.py
- Add test case for varied role name cases and whitespace
- Fix issue #1503 with manager LLM delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): improve error handling and add debug logging

- Add debug logging for better observability
- Add sanitize_agent_name helper method
- Enhance error messages with more context
- Add parameterized tests for edge cases:
  - Embedded quotes
  - Trailing newlines
  - Multiple whitespace
  - Case variations
  - None values
- Improve error handling with specific exceptions

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in base_agent_tools and test_manager_llm_delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): improve whitespace normalization in role name matching

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in base_agent_tools and test_manager_llm_delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): add error message template for agent tool execution errors

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in test_manager_llm_delegation.py

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* fix: add tiktoken as explicit dependency and document Rust requirement (#1826)

* feat: add tiktoken as explicit dependency and document Rust requirement

- Add tiktoken>=0.8.0 as explicit dependency to ensure pre-built wheels are used
- Document Rust compiler requirement as fallback in README.md
- Addresses issue #1824 tiktoken build failure

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: adjust tiktoken version to ~=0.7.0 for dependency compatibility

- Update tiktoken dependency to ~=0.7.0 to resolve conflict with embedchain
- Maintain compatibility with crewai-tools dependency chain
- Addresses CI build failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add troubleshooting section and make tiktoken optional

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update README.md

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>

* Docstring, Error Handling, and Type Hints Improvements (#1828)

* docs: add comprehensive docstrings to Flow class and methods

- Added NumPy-style docstrings to all decorator functions
- Added detailed documentation to Flow class methods
- Included parameter types, return types, and examples
- Enhanced documentation clarity and completeness

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: add secure path handling utilities

- Add path_utils.py with safe path handling functions
- Implement path validation and security checks
- Integrate secure path handling in flow_visualizer.py
- Add path validation in html_template_handler.py
- Add comprehensive error handling for path operations

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add comprehensive docstrings and type hints to flow utils (#1819)

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations and fix import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations to flow utils and visualization utils

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: resolve import sorting and type annotation issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: properly initialize and update edge_smooth variable

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>

* feat: add docstring (#1819)

Co-authored-by: João Moura <joaomdmoura@gmail.com>

* fix: Include agent knowledge in planning process (#1818)

* test: Add test demonstrating knowledge not included in planning process

Issue #1703: Add test to verify that agent knowledge sources are not currently
included in the planning process. This test will help validate the fix once
implemented.

- Creates agent with knowledge sources
- Verifies knowledge context missing from planning
- Checks other expected components are present

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Include agent knowledge in planning process

Issue #1703: Integrate agent knowledge sources into planning summaries
- Add agent_knowledge field to task summaries in planning_handler
- Update test to verify knowledge inclusion
- Ensure knowledge context is available during planning phase

The planning agent now has access to agent knowledge when creating
task execution plans, allowing for better informed planning decisions.

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in test_knowledge_planning.py

- Reorganize imports according to ruff linting rules
- Fix I001 linting error

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: Update task summary assertions to include knowledge field

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update ChromaDB mock path and fix knowledge string formatting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve knowledge integration in planning process with error handling

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update task summary format for empty tools and knowledge

- Change empty tools message to 'agent has no tools'
- Remove agent_knowledge field when empty
- Update test assertions to match new format
- Improve test messages for clarity

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools and knowledge in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update knowledge field formatting in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in test_planning_handler.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting order in test_planning_handler.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: Add ChromaDB mocking to test_create_tasks_summary_with_knowledge_and_tools

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>

* Suppressed userWarnings from litellm pydantic issues (#1833)

* Suppressed userWarnings from litellm pydantic issues

* change litellm version

* Fix failling ollama tasks

* Trying out timeouts

* Trying out timeouts

* trying next crew_test timeout

* trying next crew_test timeout

* timeout in crew_tests

* timeout in crew_tests

* more timeouts

* more timeouts

* crew_test changes werent applied

* crew_test changes werent applied

* revert uv.lock

* revert uv.lock

* add back in crewai tool dependencies and drop litellm version

* add back in crewai tool dependencies and drop litellm version

* tests should work now

* tests should work now

* more test changes

* more test changes

* Reverting uv.lock and pyproject

* Reverting uv.lock and pyproject

* Update llama3 cassettes

* Update llama3 cassettes

* sync packages with uv.lock

* sync packages with uv.lock

* more test fixes

* fix tets

* drop large file

* final clean up

* drop record new episodes

---------

Signed-off-by: PJ Hagerty <pjhagerty@gmail.com>
Co-authored-by: Thiago Moretto <168731+thiagomoretto@users.noreply.github.com>
Co-authored-by: Thiago Moretto <thiago.moretto@gmail.com>
Co-authored-by: Vini Brasil <vini@hey.com>
Co-authored-by: Guilherme de Amorim <ggimenezjr@gmail.com>
Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
Co-authored-by: Eren Küçüker <66262604+erenkucuker@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Akesh kumar <155313882+akesh-0909@users.noreply.github.com>
Co-authored-by: Lennex Zinyando <brizdigital@gmail.com>
Co-authored-by: Shahar Yair <shya95@gmail.com>
Co-authored-by: Eduardo Chiarotti <dudumelgaco@hotmail.com>
Co-authored-by: Stephen Hankinson <shankinson@gmail.com>
Co-authored-by: Muhammad Noman Fareed <60171953+shnoman97@users.noreply.github.com>
Co-authored-by: dbubel <50341559+dbubel@users.noreply.github.com>
Co-authored-by: Rip&Tear <84775494+theCyberTech@users.noreply.github.com>
Co-authored-by: Rok Benko <115651717+rokbenko@users.noreply.github.com>
Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
Co-authored-by: Sam <sammcj@users.noreply.github.com>
Co-authored-by: Maicon Peixinho <maiconpeixinho@icloud.com>
Co-authored-by: Robin Wang <6220861+MottoX@users.noreply.github.com>
Co-authored-by: C0deZ <c0dezlee@gmail.com>
Co-authored-by: c0dez <li@vitablehealth.com>
Co-authored-by: Gui Vieira <guilherme_vieira@me.com>
Co-authored-by: Dev Khant <devkhant24@gmail.com>
Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>
Co-authored-by: Gui Vieira <gui@crewai.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
Co-authored-by: Bob Conan <sufssl03@gmail.com>
Co-authored-by: Andy Bromberg <abromberg@users.noreply.github.com>
Co-authored-by: Bowen Liang <bowenliang@apache.org>
Co-authored-by: Ivan Peevski <133036+ipeevski@users.noreply.github.com>
Co-authored-by: Rok Benko <ksjeno@gmail.com>
Co-authored-by: Javier Saldaña <cjaviersaldana@outlook.com>
Co-authored-by: Ola Hungerford <olahungerford@gmail.com>
Co-authored-by: Tom Mahler, PhD <tom@mahler.tech>
Co-authored-by: Patcher <patcher@openlit.io>
Co-authored-by: Feynman Liang <feynman.liang@gmail.com>
Co-authored-by: Stephen <stephen-talari@users.noreply.github.com>
Co-authored-by: Rashmi Pawar <168514198+raspawar@users.noreply.github.com>
Co-authored-by: Frieda Huang <124417784+frieda-huang@users.noreply.github.com>
Co-authored-by: Archkon <180910180+Archkon@users.noreply.github.com>
Co-authored-by: Aviral Jain <avi.aviral140@gmail.com>
Co-authored-by: lgesuellip <102637283+lgesuellip@users.noreply.github.com>
Co-authored-by: fuckqqcom <9391575+fuckqqcom@users.noreply.github.com>
Co-authored-by: xiaohan <fuck@qq.com>
Co-authored-by: Piotr Mardziel <piotrm@gmail.com>
Co-authored-by: Carlos Souza <caike@users.noreply.github.com>
Co-authored-by: Paul Cowgill <pauldavidcowgill@gmail.com>
Co-authored-by: Bowen Liang <liangbowen@gf.com.cn>
Co-authored-by: Anmol Deep <anmol@getaidora.com>
Co-authored-by: André Lago <andrelago.eu@gmail.com>
Co-authored-by: Matt B <mattb@Matts-MacBook-Pro.local>
Co-authored-by: Karan Vaidya <kaavee315@gmail.com>
Co-authored-by: alan blount <alan@zeroasterisk.com>
Co-authored-by: PJ <pjhagerty@gmail.com>
Co-authored-by: devin-ai-integration[bot] <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: Frieda (Jingying) Huang <jingyingfhuang@gmail.com>
Co-authored-by: João Igor <joaoigm@hotmail.com>
Co-authored-by: siddharth Sambharia <siddharth.s@portkey.ai>
Co-authored-by: siddharthsambharia-portkey <siddhath.s@portkey.ai>
Co-authored-by: Erick Amorim <73451993+ericklima-ca@users.noreply.github.com>
Co-authored-by: Marco Vinciguerra <88108002+VinciGit00@users.noreply.github.com>
2025-02-09 23:56:43 +00:00
Brandon Hancock (bhancock_ai)
7efec97e12 Suppressed userWarnings from litellm pydantic issues (#1833)
* Suppressed userWarnings from litellm pydantic issues

* change litellm version

* Fix failling ollama tasks
2025-02-09 23:56:43 +00:00
devin-ai-integration[bot]
dbf8da2d9c fix: Include agent knowledge in planning process (#1818)
* test: Add test demonstrating knowledge not included in planning process

Issue #1703: Add test to verify that agent knowledge sources are not currently
included in the planning process. This test will help validate the fix once
implemented.

- Creates agent with knowledge sources
- Verifies knowledge context missing from planning
- Checks other expected components are present

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Include agent knowledge in planning process

Issue #1703: Integrate agent knowledge sources into planning summaries
- Add agent_knowledge field to task summaries in planning_handler
- Update test to verify knowledge inclusion
- Ensure knowledge context is available during planning phase

The planning agent now has access to agent knowledge when creating
task execution plans, allowing for better informed planning decisions.

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in test_knowledge_planning.py

- Reorganize imports according to ruff linting rules
- Fix I001 linting error

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: Update task summary assertions to include knowledge field

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update ChromaDB mock path and fix knowledge string formatting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Improve knowledge integration in planning process with error handling

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update task summary format for empty tools and knowledge

- Change empty tools message to 'agent has no tools'
- Remove agent_knowledge field when empty
- Update test assertions to match new format
- Improve test messages for clarity

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update string formatting for agent tools and knowledge in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: Update knowledge field formatting in task summary

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting in test_planning_handler.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: Fix import sorting order in test_planning_handler.py

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: Add ChromaDB mocking to test_create_tasks_summary_with_knowledge_and_tools

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:43 +00:00
Marco Vinciguerra
8efac7d400 feat: add docstring (#1819)
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:43 +00:00
devin-ai-integration[bot]
122cdb5145 Docstring, Error Handling, and Type Hints Improvements (#1828)
* docs: add comprehensive docstrings to Flow class and methods

- Added NumPy-style docstrings to all decorator functions
- Added detailed documentation to Flow class methods
- Included parameter types, return types, and examples
- Enhanced documentation clarity and completeness

Co-Authored-By: Joe Moura <joao@crewai.com>

* feat: add secure path handling utilities

- Add path_utils.py with safe path handling functions
- Implement path validation and security checks
- Integrate secure path handling in flow_visualizer.py
- Add path validation in html_template_handler.py
- Add comprehensive error handling for path operations

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add comprehensive docstrings and type hints to flow utils (#1819)

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations and fix import sorting

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add type annotations to flow utils and visualization utils

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: resolve import sorting and type annotation issues

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: properly initialize and update edge_smooth variable

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 23:56:43 +00:00
devin-ai-integration[bot]
4e575d2e56 fix: add tiktoken as explicit dependency and document Rust requirement (#1826)
* feat: add tiktoken as explicit dependency and document Rust requirement

- Add tiktoken>=0.8.0 as explicit dependency to ensure pre-built wheels are used
- Document Rust compiler requirement as fallback in README.md
- Addresses issue #1824 tiktoken build failure

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: adjust tiktoken version to ~=0.7.0 for dependency compatibility

- Update tiktoken dependency to ~=0.7.0 to resolve conflict with embedchain
- Maintain compatibility with crewai-tools dependency chain
- Addresses CI build failures

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: add troubleshooting section and make tiktoken optional

Co-Authored-By: Joe Moura <joao@crewai.com>

* Update README.md

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:43 +00:00
devin-ai-integration[bot]
157cdd08f8 fix(manager_llm): handle coworker role name case/whitespace properly (#1820)
* fix(manager_llm): handle coworker role name case/whitespace properly

- Add .strip() to agent name and role comparisons in base_agent_tools.py
- Add test case for varied role name cases and whitespace
- Fix issue #1503 with manager LLM delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): improve error handling and add debug logging

- Add debug logging for better observability
- Add sanitize_agent_name helper method
- Enhance error messages with more context
- Add parameterized tests for edge cases:
  - Embedded quotes
  - Trailing newlines
  - Multiple whitespace
  - Case variations
  - None values
- Improve error handling with specific exceptions

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in base_agent_tools and test_manager_llm_delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): improve whitespace normalization in role name matching

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in base_agent_tools and test_manager_llm_delegation

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix(manager_llm): add error message template for agent tool execution errors

Co-Authored-By: Joe Moura <joao@crewai.com>

* style: fix import sorting in test_manager_llm_delegation.py

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 23:56:43 +00:00
devin-ai-integration[bot]
bb40f3934d Fix interpolation for output_file in Task (#1803) (#1814)
* fix: interpolate output_file attribute from YAML

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add security validation for output_file paths

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: add _original_output_file private attribute to fix type-checker error

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: update interpolate_only to handle None inputs and remove duplicate attribute

Co-Authored-By: Joe Moura <joao@crewai.com>

* fix: improve output_file validation and error messages

Co-Authored-By: Joe Moura <joao@crewai.com>

* test: add end-to-end tests for output_file functionality

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 23:56:43 +00:00
João Moura
ee9437c838 fixing file paths for knowledge source 2025-02-09 23:56:43 +00:00
devin-ai-integration[bot]
465f88d754 docs: add agent-specific knowledge documentation and examples (#1811)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 23:56:43 +00:00
João Moura
937338eea3 Update README.md 2025-02-09 23:56:43 +00:00
devin-ai-integration[bot]
0809edeb43 docs: update README to highlight Flows (#1809)
* docs: highlight Flows feature in README

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: enhance README with LangGraph comparison and flows-crews synergy

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: replace initial Flow example with advanced Flow+Crew example; enhance LangGraph comparison

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: incorporate key terms and enhance feature descriptions

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: refine technical language, enhance feature descriptions, fix string interpolation

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update README with performance metrics, feature enhancements, and course links

Co-Authored-By: Joe Moura <joao@crewai.com>

* docs: update LangGraph comparison with paragraph and P.S. section

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-02-09 23:56:43 +00:00
devin-ai-integration[bot]
ccd9eacc1c fix: handle optional storage with null checks (#1808)
Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:43 +00:00
Erick Amorim
c02be4a7f5 fix: Change storage initialization to None for KnowledgeStorage (#1804)
* fix: Change storage initialization to None for KnowledgeStorage

* refactor: Change storage field to optional and improve error handling when saving documents

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-02-09 23:56:43 +00:00
Devin AI
c9260b9bb1 feat: Add support for custom embedding providers
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:52:10 +00:00
Devin AI
318a3ad3e7 test: Use ChromaDB in-memory mode for tests to avoid file system issues
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:47:35 +00:00
Devin AI
dbea3758eb test: Add proper environment variable cleanup in memory reset tests
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:43:39 +00:00
Devin AI
528ab0c410 style: Fix import sorting in test_memory_reset.py
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:39:44 +00:00
Devin AI
d058f23d93 style: Fix standard library import order
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:35:27 +00:00
Devin AI
d488859f41 style: Fix import sorting order
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:33:30 +00:00
Devin AI
1353be12ce style: Fix import sorting in test file
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:32:27 +00:00
Devin AI
a293a37ef8 test: Handle both directory removal and empty directory cases
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:29:21 +00:00
Devin AI
08b541cc75 fix: Clean up both ChromaDB files and temp directories in reset
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:28:47 +00:00
Devin AI
0dfa5b05d3 test: Use custom embedder for cleanup test
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:28:23 +00:00
Devin AI
24eeffb87e test: Add OpenAI API key to cleanup test
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:27:49 +00:00
Devin AI
e479e49a14 fix: Handle non-existent directories in memory reset
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:27:25 +00:00
Devin AI
e6698e24cd fix: Convert PosixPath to str for ChromaDB
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:26:51 +00:00
Devin AI
4bee02e7f2 feat: Add embedding exceptions module
Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:26:10 +00:00
Devin AI
d56523a01a fix: Update embedding configuration and fix type errors
- Add configurable embedding provider support
- Remove OpenAI dependency for memory reset
- Add tests for different embedding providers
- Fix type hints and improve docstrings

Co-Authored-By: Joe Moura <joao@crewai.com>
2025-02-09 23:25:38 +00:00
103 changed files with 4285 additions and 19851 deletions

3
.gitignore vendored
View File

@@ -21,5 +21,4 @@ crew_tasks_output.json
.mypy_cache
.ruff_cache
.venv
agentops.log
test_flow.html
agentops.log

View File

@@ -136,21 +136,17 @@ crewai test -n 5 -m gpt-3.5-turbo
### 8. Run
Run the crew or flow.
Run the crew.
```shell Terminal
crewai run
```
<Note>
Starting from version 0.103.0, the `crewai run` command can be used to run both standard crews and flows. For flows, it automatically detects the type from pyproject.toml and runs the appropriate command. This is now the recommended way to run both crews and flows.
</Note>
<Note>
Make sure to run these commands from the directory where your CrewAI project is set up.
Some commands may require additional configuration or setup within your project structure.
</Note>
### 9. Chat
Starting in version `0.98.0`, when you run the `crewai chat` command, you start an interactive session with your crew. The AI assistant will guide you by asking for necessary inputs to execute the crew. Once all inputs are provided, the crew will execute its tasks.
@@ -179,6 +175,7 @@ def crew(self) -> Crew:
```
</Note>
### 10. API Keys
When running ```crewai create crew``` command, the CLI will first show you the top 5 most common LLM providers and ask you to select one.

View File

@@ -1,349 +0,0 @@
---
title: 'Event Listeners'
description: 'Tap into CrewAI events to build custom integrations and monitoring'
---
# Event Listeners
CrewAI provides a powerful event system that allows you to listen for and react to various events that occur during the execution of your Crew. This feature enables you to build custom integrations, monitoring solutions, logging systems, or any other functionality that needs to be triggered based on CrewAI's internal events.
## How It Works
CrewAI uses an event bus architecture to emit events throughout the execution lifecycle. The event system is built on the following components:
1. **CrewAIEventsBus**: A singleton event bus that manages event registration and emission
2. **CrewEvent**: Base class for all events in the system
3. **BaseEventListener**: Abstract base class for creating custom event listeners
When specific actions occur in CrewAI (like a Crew starting execution, an Agent completing a task, or a tool being used), the system emits corresponding events. You can register handlers for these events to execute custom code when they occur.
## Creating a Custom Event Listener
To create a custom event listener, you need to:
1. Create a class that inherits from `BaseEventListener`
2. Implement the `setup_listeners` method
3. Register handlers for the events you're interested in
4. Create an instance of your listener in the appropriate file
Here's a simple example of a custom event listener class:
```python
from crewai.utilities.events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
AgentExecutionCompletedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
class MyCustomListener(BaseEventListener):
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_started(source, event):
print(f"Crew '{event.crew_name}' has started execution!")
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_completed(source, event):
print(f"Crew '{event.crew_name}' has completed execution!")
print(f"Output: {event.output}")
@crewai_event_bus.on(AgentExecutionCompletedEvent)
def on_agent_execution_completed(source, event):
print(f"Agent '{event.agent.role}' completed task")
print(f"Output: {event.output}")
```
## Properly Registering Your Listener
Simply defining your listener class isn't enough. You need to create an instance of it and ensure it's imported in your application. This ensures that:
1. The event handlers are registered with the event bus
2. The listener instance remains in memory (not garbage collected)
3. The listener is active when events are emitted
### Option 1: Import and Instantiate in Your Crew or Flow Implementation
The most important thing is to create an instance of your listener in the file where your Crew or Flow is defined and executed:
#### For Crew-based Applications
Create and import your listener at the top of your Crew implementation file:
```python
# In your crew.py file
from crewai import Agent, Crew, Task
from my_listeners import MyCustomListener
# Create an instance of your listener
my_listener = MyCustomListener()
class MyCustomCrew:
# Your crew implementation...
def crew(self):
return Crew(
agents=[...],
tasks=[...],
# ...
)
```
#### For Flow-based Applications
Create and import your listener at the top of your Flow implementation file:
```python
# In your main.py or flow.py file
from crewai.flow import Flow, listen, start
from my_listeners import MyCustomListener
# Create an instance of your listener
my_listener = MyCustomListener()
class MyCustomFlow(Flow):
# Your flow implementation...
@start()
def first_step(self):
# ...
```
This ensures that your listener is loaded and active when your Crew or Flow is executed.
### Option 2: Create a Package for Your Listeners
For a more structured approach, especially if you have multiple listeners:
1. Create a package for your listeners:
```
my_project/
├── listeners/
│ ├── __init__.py
│ ├── my_custom_listener.py
│ └── another_listener.py
```
2. In `my_custom_listener.py`, define your listener class and create an instance:
```python
# my_custom_listener.py
from crewai.utilities.events.base_event_listener import BaseEventListener
# ... import events ...
class MyCustomListener(BaseEventListener):
# ... implementation ...
# Create an instance of your listener
my_custom_listener = MyCustomListener()
```
3. In `__init__.py`, import the listener instances to ensure they're loaded:
```python
# __init__.py
from .my_custom_listener import my_custom_listener
from .another_listener import another_listener
# Optionally export them if you need to access them elsewhere
__all__ = ['my_custom_listener', 'another_listener']
```
4. Import your listeners package in your Crew or Flow file:
```python
# In your crew.py or flow.py file
import my_project.listeners # This loads all your listeners
class MyCustomCrew:
# Your crew implementation...
```
This is exactly how CrewAI's built-in `agentops_listener` is registered. In the CrewAI codebase, you'll find:
```python
# src/crewai/utilities/events/third_party/__init__.py
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Available Event Types
CrewAI provides a wide range of events that you can listen for:
### Crew Events
- **CrewKickoffStartedEvent**: Emitted when a Crew starts execution
- **CrewKickoffCompletedEvent**: Emitted when a Crew completes execution
- **CrewKickoffFailedEvent**: Emitted when a Crew fails to complete execution
- **CrewTestStartedEvent**: Emitted when a Crew starts testing
- **CrewTestCompletedEvent**: Emitted when a Crew completes testing
- **CrewTestFailedEvent**: Emitted when a Crew fails to complete testing
- **CrewTrainStartedEvent**: Emitted when a Crew starts training
- **CrewTrainCompletedEvent**: Emitted when a Crew completes training
- **CrewTrainFailedEvent**: Emitted when a Crew fails to complete training
### Agent Events
- **AgentExecutionStartedEvent**: Emitted when an Agent starts executing a task
- **AgentExecutionCompletedEvent**: Emitted when an Agent completes executing a task
- **AgentExecutionErrorEvent**: Emitted when an Agent encounters an error during execution
### Task Events
- **TaskStartedEvent**: Emitted when a Task starts execution
- **TaskCompletedEvent**: Emitted when a Task completes execution
- **TaskFailedEvent**: Emitted when a Task fails to complete execution
- **TaskEvaluationEvent**: Emitted when a Task is evaluated
### Tool Usage Events
- **ToolUsageStartedEvent**: Emitted when a tool execution is started
- **ToolUsageFinishedEvent**: Emitted when a tool execution is completed
- **ToolUsageErrorEvent**: Emitted when a tool execution encounters an error
- **ToolValidateInputErrorEvent**: Emitted when a tool input validation encounters an error
- **ToolExecutionErrorEvent**: Emitted when a tool execution encounters an error
- **ToolSelectionErrorEvent**: Emitted when there's an error selecting a tool
### Flow Events
- **FlowCreatedEvent**: Emitted when a Flow is created
- **FlowStartedEvent**: Emitted when a Flow starts execution
- **FlowFinishedEvent**: Emitted when a Flow completes execution
- **FlowPlotEvent**: Emitted when a Flow is plotted
- **MethodExecutionStartedEvent**: Emitted when a Flow method starts execution
- **MethodExecutionFinishedEvent**: Emitted when a Flow method completes execution
- **MethodExecutionFailedEvent**: Emitted when a Flow method fails to complete execution
### LLM Events
- **LLMCallStartedEvent**: Emitted when an LLM call starts
- **LLMCallCompletedEvent**: Emitted when an LLM call completes
- **LLMCallFailedEvent**: Emitted when an LLM call fails
## Event Handler Structure
Each event handler receives two parameters:
1. **source**: The object that emitted the event
2. **event**: The event instance, containing event-specific data
The structure of the event object depends on the event type, but all events inherit from `CrewEvent` and include:
- **timestamp**: The time when the event was emitted
- **type**: A string identifier for the event type
Additional fields vary by event type. For example, `CrewKickoffCompletedEvent` includes `crew_name` and `output` fields.
## Real-World Example: Integration with AgentOps
CrewAI includes an example of a third-party integration with [AgentOps](https://github.com/AgentOps-AI/agentops), a monitoring and observability platform for AI agents. Here's how it's implemented:
```python
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
```
This listener initializes an AgentOps session when a Crew starts, registers agents with AgentOps, tracks tool usage, and ends the session when the Crew completes.
The AgentOps listener is registered in CrewAI's event system through the import in `src/crewai/utilities/events/third_party/__init__.py`:
```python
from .agentops_listener import agentops_listener
```
This ensures the `agentops_listener` is loaded when the `crewai.utilities.events` package is imported.
## Advanced Usage: Scoped Handlers
For temporary event handling (useful for testing or specific operations), you can use the `scoped_handlers` context manager:
```python
from crewai.utilities.events import crewai_event_bus, CrewKickoffStartedEvent
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStartedEvent)
def temp_handler(source, event):
print("This handler only exists within this context")
# Do something that emits events
# Outside the context, the temporary handler is removed
```
## Use Cases
Event listeners can be used for a variety of purposes:
1. **Logging and Monitoring**: Track the execution of your Crew and log important events
2. **Analytics**: Collect data about your Crew's performance and behavior
3. **Debugging**: Set up temporary listeners to debug specific issues
4. **Integration**: Connect CrewAI with external systems like monitoring platforms, databases, or notification services
5. **Custom Behavior**: Trigger custom actions based on specific events
## Best Practices
1. **Keep Handlers Light**: Event handlers should be lightweight and avoid blocking operations
2. **Error Handling**: Include proper error handling in your event handlers to prevent exceptions from affecting the main execution
3. **Cleanup**: If your listener allocates resources, ensure they're properly cleaned up
4. **Selective Listening**: Only listen for events you actually need to handle
5. **Testing**: Test your event listeners in isolation to ensure they behave as expected
By leveraging CrewAI's event system, you can extend its functionality and integrate it seamlessly with your existing infrastructure.

View File

@@ -150,12 +150,12 @@ final_output = flow.kickoff()
print("---- Final Output ----")
print(final_output)
```
````
```text Output
---- Final Output ----
Second method received: Output from first_method
```
````
</CodeGroup>
@@ -738,34 +738,3 @@ Also, check out our YouTube video on how to use flows in CrewAI below!
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
## Running Flows
There are two ways to run a flow:
### Using the Flow API
You can run a flow programmatically by creating an instance of your flow class and calling the `kickoff()` method:
```python
flow = ExampleFlow()
result = flow.kickoff()
```
### Using the CLI
Starting from version 0.103.0, you can run flows using the `crewai run` command:
```shell
crewai run
```
This command automatically detects if your project is a flow (based on the `type = "flow"` setting in your pyproject.toml) and runs it accordingly. This is the recommended way to run flows from the command line.
For backward compatibility, you can also use:
```shell
crewai flow kickoff
```
However, the `crewai run` command is now the preferred method as it works for both crews and flows.

File diff suppressed because it is too large Load Diff

View File

@@ -282,19 +282,6 @@ my_crew = Crew(
### Using Google AI embeddings
#### Prerequisites
Before using Google AI embeddings, ensure you have:
- Access to the Gemini API
- The necessary API keys and permissions
You will need to update your *pyproject.toml* dependencies:
```YAML
dependencies = [
"google-generativeai>=0.8.4", #main version in January/2025 - crewai v.0.100.0 and crewai-tools 0.33.0
"crewai[tools]>=0.100.0,<1.0.0"
]
```
```python Code
from crewai import Crew, Agent, Task, Process
@@ -447,38 +434,6 @@ my_crew = Crew(
)
```
### Using Amazon Bedrock embeddings
```python Code
# Note: Ensure you have installed `boto3` for Bedrock embeddings to work.
import os
import boto3
from crewai import Crew, Agent, Task, Process
boto3_session = boto3.Session(
region_name=os.environ.get("AWS_REGION_NAME"),
aws_access_key_id=os.environ.get("AWS_ACCESS_KEY_ID"),
aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY")
)
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
embedder={
"provider": "bedrock",
"config":{
"session": boto3_session,
"model": "amazon.titan-embed-text-v2:0",
"vector_dimension": 1024
}
}
verbose=True
)
```
### Adding Custom Embedding Function
```python Code
@@ -506,7 +461,7 @@ my_crew = Crew(
)
```
### Resetting Memory via cli
### Resetting Memory
```shell
crewai reset-memories [OPTIONS]
@@ -520,46 +475,8 @@ crewai reset-memories [OPTIONS]
| `-s`, `--short` | Reset SHORT TERM memory. | Flag (boolean) | False |
| `-e`, `--entities` | Reset ENTITIES memory. | Flag (boolean) | False |
| `-k`, `--kickoff-outputs` | Reset LATEST KICKOFF TASK OUTPUTS. | Flag (boolean) | False |
| `-kn`, `--knowledge` | Reset KNOWLEDEGE storage | Flag (boolean) | False |
| `-a`, `--all` | Reset ALL memories. | Flag (boolean) | False |
Note: To use the cli command you need to have your crew in a file called crew.py in the same directory.
### Resetting Memory via crew object
```python
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "custom",
"config": {
"embedder": CustomEmbedder()
}
}
)
my_crew.reset_memories(command_type = 'all') # Resets all the memory
```
#### Resetting Memory Options
| Command Type | Description |
| :----------------- | :------------------------------- |
| `long` | Reset LONG TERM memory. |
| `short` | Reset SHORT TERM memory. |
| `entities` | Reset ENTITIES memory. |
| `kickoff_outputs` | Reset LATEST KICKOFF TASK OUTPUTS. |
| `knowledge` | Reset KNOWLEDGE memory. |
| `all` | Reset ALL memories. |
## Benefits of Using CrewAI's Memory System

View File

@@ -48,6 +48,7 @@ Define a crew with a designated manager and establish a clear chain of command.
</Tip>
```python Code
from langchain_openai import ChatOpenAI
from crewai import Crew, Process, Agent
# Agents are defined with attributes for backstory, cache, and verbose mode
@@ -55,51 +56,38 @@ researcher = Agent(
role='Researcher',
goal='Conduct in-depth analysis',
backstory='Experienced data analyst with a knack for uncovering hidden trends.',
cache=True,
verbose=False,
# tools=[] # This can be optionally specified; defaults to an empty list
use_system_prompt=True, # Enable or disable system prompts for this agent
max_rpm=30, # Limit on the number of requests per minute
max_iter=5 # Maximum number of iterations for a final answer
)
writer = Agent(
role='Writer',
goal='Create engaging content',
backstory='Creative writer passionate about storytelling in technical domains.',
cache=True,
verbose=False,
# tools=[] # Optionally specify tools; defaults to an empty list
use_system_prompt=True, # Enable or disable system prompts for this agent
max_rpm=30, # Limit on the number of requests per minute
max_iter=5 # Maximum number of iterations for a final answer
)
# Establishing the crew with a hierarchical process and additional configurations
project_crew = Crew(
tasks=[...], # Tasks to be delegated and executed under the manager's supervision
agents=[researcher, writer],
manager_llm="gpt-4o", # Specify which LLM the manager should use
process=Process.hierarchical,
planning=True,
manager_llm=ChatOpenAI(temperature=0, model="gpt-4"), # Mandatory if manager_agent is not set
process=Process.hierarchical, # Specifies the hierarchical management approach
respect_context_window=True, # Enable respect of the context window for tasks
memory=True, # Enable memory usage for enhanced task execution
manager_agent=None, # Optional: explicitly set a specific agent as manager instead of the manager_llm
planning=True, # Enable planning feature for pre-execution strategy
)
```
### Using a Custom Manager Agent
Alternatively, you can create a custom manager agent with specific attributes tailored to your project's management needs. This gives you more control over the manager's behavior and capabilities.
```python
# Define a custom manager agent
manager = Agent(
role="Project Manager",
goal="Efficiently manage the crew and ensure high-quality task completion",
backstory="You're an experienced project manager, skilled in overseeing complex projects and guiding teams to success.",
allow_delegation=True,
)
# Use the custom manager in your crew
project_crew = Crew(
tasks=[...],
agents=[researcher, writer],
manager_agent=manager, # Use your custom manager agent
process=Process.hierarchical,
planning=True,
)
```
<Tip>
For more details on creating and customizing a manager agent, check out the [Custom Manager Agent documentation](https://docs.crewai.com/how-to/custom-manager-agent#custom-manager-agent).
</Tip>
### Workflow in Action
1. **Task Assignment**: The manager assigns tasks strategically, considering each agent's capabilities and available tools.
@@ -109,4 +97,4 @@ project_crew = Crew(
## Conclusion
Adopting the hierarchical process in CrewAI, with the correct configurations and understanding of the system's capabilities, facilitates an organized and efficient approach to project management.
Utilize the advanced features and customizations to tailor the workflow to your specific needs, ensuring optimal task execution and project success.
Utilize the advanced features and customizations to tailor the workflow to your specific needs, ensuring optimal task execution and project success.

View File

@@ -54,8 +54,7 @@ coding_agent = Agent(
# Create a task that requires code execution
data_analysis_task = Task(
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent,
expected_output="The average age of the participants."
agent=coding_agent
)
# Create a crew and add the task
@@ -117,4 +116,4 @@ async def async_multiple_crews():
# Run the async function
asyncio.run(async_multiple_crews())
```
```

View File

@@ -1,100 +0,0 @@
---
title: Agent Monitoring with Langfuse
description: Learn how to integrate Langfuse with CrewAI via OpenTelemetry using OpenLit
icon: magnifying-glass-chart
---
# Integrate Langfuse with CrewAI
This notebook demonstrates how to integrate **Langfuse** with **CrewAI** using OpenTelemetry via the **OpenLit** SDK. By the end of this notebook, you will be able to trace your CrewAI applications with Langfuse for improved observability and debugging.
> **What is Langfuse?** [Langfuse](https://langfuse.com) is an open-source LLM engineering platform. It provides tracing and monitoring capabilities for LLM applications, helping developers debug, analyze, and optimize their AI systems. Langfuse integrates with various tools and frameworks via native integrations, OpenTelemetry, and APIs/SDKs.
[![Langfuse Overview Video](https://github.com/user-attachments/assets/3926b288-ff61-4b95-8aa1-45d041c70866)](https://langfuse.com/watch-demo)
## Get Started
We'll walk through a simple example of using CrewAI and integrating it with Langfuse via OpenTelemetry using OpenLit.
### Step 1: Install Dependencies
```python
%pip install langfuse openlit crewai crewai_tools
```
### Step 2: Set Up Environment Variables
Set your Langfuse API keys and configure OpenTelemetry export settings to send traces to Langfuse. Please refer to the [Langfuse OpenTelemetry Docs](https://langfuse.com/docs/opentelemetry/get-started) for more information on the Langfuse OpenTelemetry endpoint `/api/public/otel` and authentication.
```python
import os
import base64
LANGFUSE_PUBLIC_KEY="pk-lf-..."
LANGFUSE_SECRET_KEY="sk-lf-..."
LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LANGFUSE_SECRET_KEY}".encode()).decode()
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
# os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://us.cloud.langfuse.com/api/public/otel" # US data region
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
# your openai key
os.environ["OPENAI_API_KEY"] = "sk-..."
```
### Step 3: Initialize OpenLit
Initialize the OpenLit OpenTelemetry instrumentation SDK to start capturing OpenTelemetry traces.
```python
import openlit
openlit.init()
```
### Step 4: Create a Simple CrewAI Application
We'll create a simple CrewAI application where multiple agents collaborate to answer a user's question.
```python
from crewai import Agent, Task, Crew
from crewai_tools import (
WebsiteSearchTool
)
web_rag_tool = WebsiteSearchTool()
writer = Agent(
role="Writer",
goal="You make math engaging and understandable for young children through poetry",
backstory="You're an expert in writing haikus but you know nothing of math.",
tools=[web_rag_tool],
)
task = Task(description=("What is {multiplication}?"),
expected_output=("Compose a haiku that includes the answer."),
agent=writer)
crew = Crew(
agents=[writer],
tasks=[task],
share_crew=False
)
```
### Step 5: See Traces in Langfuse
After running the agent, you can view the traces generated by your CrewAI application in [Langfuse](https://cloud.langfuse.com). You should see detailed steps of the LLM interactions, which can help you debug and optimize your AI agent.
![CrewAI example trace in Langfuse](https://langfuse.com/images/cookbook/integration_crewai/crewai-example-trace.png)
_[Public example trace in Langfuse](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/e2cf380ffc8d47d28da98f136140642b?timestamp=2025-02-05T15%3A12%3A02.717Z&observation=3b32338ee6a5d9af)_
## References
- [Langfuse OpenTelemetry Docs](https://langfuse.com/docs/opentelemetry/get-started)

View File

@@ -0,0 +1,211 @@
# Portkey Integration with CrewAI
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-CrewAI.png" alt="Portkey CrewAI Header Image" width="70%" />
[Portkey](https://portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) is a 2-line upgrade to make your CrewAI agents reliable, cost-efficient, and fast.
Portkey adds 4 core production capabilities to any CrewAI agent:
1. Routing to **200+ LLMs**
2. Making each LLM call more robust
3. Full-stack tracing & cost, performance analytics
4. Real-time guardrails to enforce behavior
## Getting Started
1. **Install Required Packages:**
```bash
pip install -qU crewai portkey-ai
```
2. **Configure the LLM Client:**
To build CrewAI Agents with Portkey, you'll need two keys:
- **Portkey API Key**: Sign up on the [Portkey app](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai) and copy your API key
- **Virtual Key**: Virtual Keys securely manage your LLM API keys in one place. Store your LLM provider API keys securely in Portkey's vault
```python
from crewai import LLM
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
gpt_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy", # We are using Virtual key
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_VIRTUAL_KEY", # Enter your Virtual key from Portkey
)
)
```
3. **Create and Run Your First Agent:**
```python
from crewai import Agent, Task, Crew
# Define your agents with roles and goals
coder = Agent(
role='Software developer',
goal='Write clear, concise code on demand',
backstory='An expert coder with a keen eye for software trends.',
llm=gpt_llm
)
# Create tasks for your agents
task1 = Task(
description="Define the HTML for making a simple website with heading- Hello World! Portkey is working!",
expected_output="A clear and concise HTML code",
agent=coder
)
# Instantiate your crew
crew = Crew(
agents=[coder],
tasks=[task1],
)
result = crew.kickoff()
print(result)
```
## Key Features
| Feature | Description |
|---------|-------------|
| 🌐 Multi-LLM Support | Access OpenAI, Anthropic, Gemini, Azure, and 250+ providers through a unified interface |
| 🛡️ Production Reliability | Implement retries, timeouts, load balancing, and fallbacks |
| 📊 Advanced Observability | Track 40+ metrics including costs, tokens, latency, and custom metadata |
| 🔍 Comprehensive Logging | Debug with detailed execution traces and function call logs |
| 🚧 Security Controls | Set budget limits and implement role-based access control |
| 🔄 Performance Analytics | Capture and analyze feedback for continuous improvement |
| 💾 Intelligent Caching | Reduce costs and latency with semantic or simple caching |
## Production Features with Portkey Configs
All features mentioned below are through Portkey's Config system. Portkey's Config system allows you to define routing strategies using simple JSON objects in your LLM API calls. You can create and manage Configs directly in your code or through the Portkey Dashboard. Each Config has a unique ID for easy reference.
<Frame>
<img src="https://raw.githubusercontent.com/Portkey-AI/docs-core/refs/heads/main/images/libraries/libraries-3.avif"/>
</Frame>
### 1. Use 250+ LLMs
Access various LLMs like Anthropic, Gemini, Mistral, Azure OpenAI, and more with minimal code changes. Switch between providers or use them together seamlessly. [Learn more about Universal API](https://portkey.ai/docs/product/ai-gateway/universal-api)
Easily switch between different LLM providers:
```python
# Anthropic Configuration
anthropic_llm = LLM(
model="claude-3-5-sonnet-latest",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_ANTHROPIC_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="anthropic_agent"
)
)
# Azure OpenAI Configuration
azure_llm = LLM(
model="gpt-4",
base_url=PORTKEY_GATEWAY_URL,
api_key="dummy",
extra_headers=createHeaders(
api_key="YOUR_PORTKEY_API_KEY",
virtual_key="YOUR_AZURE_VIRTUAL_KEY", #You don't need provider when using Virtual keys
trace_id="azure_agent"
)
)
```
### 2. Caching
Improve response times and reduce costs with two powerful caching modes:
- **Simple Cache**: Perfect for exact matches
- **Semantic Cache**: Matches responses for requests that are semantically similar
[Learn more about Caching](https://portkey.ai/docs/product/ai-gateway/cache-simple-and-semantic)
```py
config = {
"cache": {
"mode": "semantic", # or "simple" for exact matching
}
}
```
### 3. Production Reliability
Portkey provides comprehensive reliability features:
- **Automatic Retries**: Handle temporary failures gracefully
- **Request Timeouts**: Prevent hanging operations
- **Conditional Routing**: Route requests based on specific conditions
- **Fallbacks**: Set up automatic provider failovers
- **Load Balancing**: Distribute requests efficiently
[Learn more about Reliability Features](https://portkey.ai/docs/product/ai-gateway/)
### 4. Metrics
Agent runs are complex. Portkey automatically logs **40+ comprehensive metrics** for your AI agents, including cost, tokens used, latency, etc. Whether you need a broad overview or granular insights into your agent runs, Portkey's customizable filters provide the metrics you need.
- Cost per agent interaction
- Response times and latency
- Token usage and efficiency
- Success/failure rates
- Cache hit rates
<img src="https://github.com/siddharthsambharia-portkey/Portkey-Product-Images/blob/main/Portkey-Dashboard.png?raw=true" width="70%" alt="Portkey Dashboard" />
### 5. Detailed Logging
Logs are essential for understanding agent behavior, diagnosing issues, and improving performance. They provide a detailed record of agent activities and tool use, which is crucial for debugging and optimizing processes.
Access a dedicated section to view records of agent executions, including parameters, outcomes, function calls, and errors. Filter logs based on multiple parameters such as trace ID, model, tokens used, and metadata.
<details>
<summary><b>Traces</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Traces.png" alt="Portkey Traces" width="70%" />
</details>
<details>
<summary><b>Logs</b></summary>
<img src="https://raw.githubusercontent.com/siddharthsambharia-portkey/Portkey-Product-Images/main/Portkey-Logs.png" alt="Portkey Logs" width="70%" />
</details>
### 6. Enterprise Security Features
- Set budget limit and rate limts per Virtual Key (disposable API keys)
- Implement role-based access control
- Track system changes with audit logs
- Configure data retention policies
For detailed information on creating and managing Configs, visit the [Portkey documentation](https://docs.portkey.ai/product/ai-gateway/configs).
## Resources
- [📘 Portkey Documentation](https://docs.portkey.ai)
- [📊 Portkey Dashboard](https://app.portkey.ai/?utm_source=crewai&utm_medium=crewai&utm_campaign=crewai)
- [🐦 Twitter](https://twitter.com/portkeyai)
- [💬 Discord Community](https://discord.gg/DD7vgKK299)

View File

@@ -1,5 +1,5 @@
---
title: Agent Monitoring with Portkey
title: Portkey Observability and Guardrails
description: How to use Portkey with CrewAI
icon: key
---

View File

@@ -103,8 +103,7 @@
"how-to/langtrace-observability",
"how-to/mlflow-observability",
"how-to/openlit-observability",
"how-to/portkey-observability",
"how-to/langfuse-observability"
"how-to/portkey-observability"
]
},
{
@@ -139,7 +138,6 @@
"tools/nl2sqltool",
"tools/pdfsearchtool",
"tools/pgsearchtool",
"tools/qdrantvectorsearchtool",
"tools/scrapewebsitetool",
"tools/seleniumscrapingtool",
"tools/spidertool",

View File

@@ -1,271 +0,0 @@
---
title: 'Qdrant Vector Search Tool'
description: 'Semantic search capabilities for CrewAI agents using Qdrant vector database'
icon: magnifying-glass-plus
---
# `QdrantVectorSearchTool`
The Qdrant Vector Search Tool enables semantic search capabilities in your CrewAI agents by leveraging [Qdrant](https://qdrant.tech/), a vector similarity search engine. This tool allows your agents to search through documents stored in a Qdrant collection using semantic similarity.
## Installation
Install the required packages:
```bash
uv pip install 'crewai[tools] qdrant-client'
```
## Basic Usage
Here's a minimal example of how to use the tool:
```python
from crewai import Agent
from crewai_tools import QdrantVectorSearchTool
# Initialize the tool
qdrant_tool = QdrantVectorSearchTool(
qdrant_url="your_qdrant_url",
qdrant_api_key="your_qdrant_api_key",
collection_name="your_collection"
)
# Create an agent that uses the tool
agent = Agent(
role="Research Assistant",
goal="Find relevant information in documents",
tools=[qdrant_tool]
)
# The tool will automatically use OpenAI embeddings
# and return the 3 most relevant results with scores > 0.35
```
## Complete Working Example
Here's a complete example showing how to:
1. Extract text from a PDF
2. Generate embeddings using OpenAI
3. Store in Qdrant
4. Create a CrewAI agentic RAG workflow for semantic search
```python
import os
import uuid
import pdfplumber
from openai import OpenAI
from dotenv import load_dotenv
from crewai import Agent, Task, Crew, Process, LLM
from crewai_tools import QdrantVectorSearchTool
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct, Distance, VectorParams
# Load environment variables
load_dotenv()
# Initialize OpenAI client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Extract text from PDF
def extract_text_from_pdf(pdf_path):
text = []
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text.append(page_text.strip())
return text
# Generate OpenAI embeddings
def get_openai_embedding(text):
response = client.embeddings.create(
input=text,
model="text-embedding-3-small"
)
return response.data[0].embedding
# Store text and embeddings in Qdrant
def load_pdf_to_qdrant(pdf_path, qdrant, collection_name):
# Extract text from PDF
text_chunks = extract_text_from_pdf(pdf_path)
# Create Qdrant collection
if qdrant.collection_exists(collection_name):
qdrant.delete_collection(collection_name)
qdrant.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE)
)
# Store embeddings
points = []
for chunk in text_chunks:
embedding = get_openai_embedding(chunk)
points.append(PointStruct(
id=str(uuid.uuid4()),
vector=embedding,
payload={"text": chunk}
))
qdrant.upsert(collection_name=collection_name, points=points)
# Initialize Qdrant client and load data
qdrant = QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY")
)
collection_name = "example_collection"
pdf_path = "path/to/your/document.pdf"
load_pdf_to_qdrant(pdf_path, qdrant, collection_name)
# Initialize Qdrant search tool
qdrant_tool = QdrantVectorSearchTool(
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
limit=3,
score_threshold=0.35
)
# Create CrewAI agents
search_agent = Agent(
role="Senior Semantic Search Agent",
goal="Find and analyze documents based on semantic search",
backstory="""You are an expert research assistant who can find relevant
information using semantic search in a Qdrant database.""",
tools=[qdrant_tool],
verbose=True
)
answer_agent = Agent(
role="Senior Answer Assistant",
goal="Generate answers to questions based on the context provided",
backstory="""You are an expert answer assistant who can generate
answers to questions based on the context provided.""",
tools=[qdrant_tool],
verbose=True
)
# Define tasks
search_task = Task(
description="""Search for relevant documents about the {query}.
Your final answer should include:
- The relevant information found
- The similarity scores of the results
- The metadata of the relevant documents""",
agent=search_agent
)
answer_task = Task(
description="""Given the context and metadata of relevant documents,
generate a final answer based on the context.""",
agent=answer_agent
)
# Run CrewAI workflow
crew = Crew(
agents=[search_agent, answer_agent],
tasks=[search_task, answer_task],
process=Process.sequential,
verbose=True
)
result = crew.kickoff(
inputs={"query": "What is the role of X in the document?"}
)
print(result)
```
## Tool Parameters
### Required Parameters
- `qdrant_url` (str): The URL of your Qdrant server
- `qdrant_api_key` (str): API key for authentication with Qdrant
- `collection_name` (str): Name of the Qdrant collection to search
### Optional Parameters
- `limit` (int): Maximum number of results to return (default: 3)
- `score_threshold` (float): Minimum similarity score threshold (default: 0.35)
- `custom_embedding_fn` (Callable[[str], list[float]]): Custom function for text vectorization
## Search Parameters
The tool accepts these parameters in its schema:
- `query` (str): The search query to find similar documents
- `filter_by` (str, optional): Metadata field to filter on
- `filter_value` (str, optional): Value to filter by
## Return Format
The tool returns results in JSON format:
```json
[
{
"metadata": {
// Any metadata stored with the document
},
"context": "The actual text content of the document",
"distance": 0.95 // Similarity score
}
]
```
## Default Embedding
By default, the tool uses OpenAI's `text-embedding-3-small` model for vectorization. This requires:
- OpenAI API key set in environment: `OPENAI_API_KEY`
## Custom Embeddings
Instead of using the default embedding model, you might want to use your own embedding function in cases where you:
1. Want to use a different embedding model (e.g., Cohere, HuggingFace, Ollama models)
2. Need to reduce costs by using open-source embedding models
3. Have specific requirements for vector dimensions or embedding quality
4. Want to use domain-specific embeddings (e.g., for medical or legal text)
Here's an example using a HuggingFace model:
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
def custom_embeddings(text: str) -> list[float]:
# Tokenize and get model outputs
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
# Use mean pooling to get text embedding
embeddings = outputs.last_hidden_state.mean(dim=1)
# Convert to list of floats and return
return embeddings[0].tolist()
# Use custom embeddings with the tool
tool = QdrantVectorSearchTool(
qdrant_url="your_url",
qdrant_api_key="your_key",
collection_name="your_collection",
custom_embedding_fn=custom_embeddings # Pass your custom function
)
```
## Error Handling
The tool handles these specific errors:
- Raises ImportError if `qdrant-client` is not installed (with option to auto-install)
- Raises ValueError if `QDRANT_URL` is not set
- Prompts to install `qdrant-client` if missing using `uv add qdrant-client`
## Environment Variables
Required environment variables:
```bash
export QDRANT_URL="your_qdrant_url" # If not provided in constructor
export QDRANT_API_KEY="your_api_key" # If not provided in constructor
export OPENAI_API_KEY="your_openai_key" # If using default embeddings

View File

@@ -1,6 +1,6 @@
[project]
name = "crewai"
version = "0.102.0"
version = "0.100.1"
description = "Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks."
readme = "README.md"
requires-python = ">=3.10,<3.13"
@@ -45,7 +45,7 @@ Documentation = "https://docs.crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
[project.optional-dependencies]
tools = ["crewai-tools>=0.36.0"]
tools = ["crewai-tools>=0.32.1"]
embeddings = [
"tiktoken~=0.7.0"
]

View File

@@ -14,7 +14,7 @@ warnings.filterwarnings(
category=UserWarning,
module="pydantic.main",
)
__version__ = "0.102.0"
__version__ = "0.100.1"
__all__ = [
"Agent",
"Crew",

View File

@@ -1,7 +1,7 @@
import re
import shutil
import subprocess
from typing import Any, Dict, List, Literal, Optional, Sequence, Union, cast
from typing import Any, Dict, List, Literal, Optional, Sequence, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
@@ -19,17 +19,25 @@ from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.utilities import Converter, Prompts
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
agentops = None
try:
import agentops # type: ignore # Name "agentops" is already defined
from agentops import track_agent # type: ignore
except ImportError:
def track_agent():
def noop(f):
return f
return noop
@track_agent()
class Agent(BaseAgent):
"""Represents an agent in a system.
@@ -114,6 +122,7 @@ class Agent(BaseAgent):
@model_validator(mode="after")
def post_init_setup(self):
self._set_knowledge()
self.agent_ops_agent_name = self.role
self.llm = create_llm(self.llm)
@@ -133,11 +142,8 @@ class Agent(BaseAgent):
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
def _set_knowledge(self):
try:
if self.embedder is None and crew_embedder:
self.embedder = crew_embedder
if self.knowledge_sources:
full_pattern = re.compile(r"[^a-zA-Z0-9\-_\r\n]|(\.\.)")
knowledge_agent_name = f"{re.sub(full_pattern, '_', self.role)}"
@@ -170,19 +176,27 @@ class Agent(BaseAgent):
Output of the agent
"""
if self.tools_handler:
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalli
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
task_prompt = task.prompt()
# If the task requires output in JSON or Pydantic format,
# append specific instructions to the task prompt to ensure
# that the final answer does not include any code block markers
if task.output_json or task.output_pydantic:
# Choose the output format, preferring output_json if available
output_format = (
task.output_json if task.output_json else task.output_pydantic
)
schema = generate_model_description(cast(type, output_format))
task_prompt += f"\n{self.i18n.slice('formatted_task_instructions').format(output_format=schema)}"
# Generate the schema based on the output format
if task.output_json:
# schema = json.dumps(task.output_json, indent=2)
schema = generate_model_description(task.output_json)
task_prompt += "\n" + self.i18n.slice(
"formatted_task_instructions"
).format(output_format=schema)
elif task.output_pydantic:
schema = generate_model_description(task.output_pydantic)
task_prompt += "\n" + self.i18n.slice(
"formatted_task_instructions"
).format(output_format=schema)
if context:
task_prompt = self.i18n.slice("task_with_context").format(
@@ -226,15 +240,6 @@ class Agent(BaseAgent):
task_prompt = self._use_trained_data(task_prompt=task_prompt)
try:
crewai_event_bus.emit(
self,
event=AgentExecutionStartedEvent(
agent=self,
tools=self.tools,
task_prompt=task_prompt,
task=task,
),
)
result = self.agent_executor.invoke(
{
"input": task_prompt,
@@ -246,38 +251,22 @@ class Agent(BaseAgent):
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
crewai_event_bus.emit(
self,
event=AgentExecutionErrorEvent(
agent=self,
task=task,
error=str(e),
),
)
raise e
self._times_executed += 1
if self._times_executed > self.max_retry_limit:
crewai_event_bus.emit(
self,
event=AgentExecutionErrorEvent(
agent=self,
task=task,
error=str(e),
),
)
raise e
result = self.execute_task(task, context, tools)
if self.max_rpm and self._rpm_controller:
self._rpm_controller.stop_rpm_counter()
# If there was any tool in self.tools_results that had result_as_answer
# set to True, return the results of the last tool that had
# result_as_answer set to True
for tool_result in self.tools_results: # type: ignore # Item "None" of "list[Any] | None" has no attribute "__iter__" (not iterable)
if tool_result.get("result_as_answer", False):
result = tool_result["result"]
crewai_event_bus.emit(
self,
event=AgentExecutionCompletedEvent(agent=self, task=task, output=result),
)
return result
def create_agent_executor(
@@ -327,7 +316,7 @@ class Agent(BaseAgent):
request_within_rpm_limit=(
self._rpm_controller.check_or_wait if self._rpm_controller else None
),
callbacks=[TokenCalcHandler(self.token_process)],
callbacks=[TokenCalcHandler(self._token_process)],
)
def get_delegation_tools(self, agents: List[BaseAgent]):

View File

@@ -20,7 +20,8 @@ from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.tools.base_tool import BaseTool, Tool
from crewai.tools import BaseTool
from crewai.tools.base_tool import Tool
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter
@@ -73,27 +74,20 @@ class BaseAgent(ABC, BaseModel):
Increment formatting errors.
copy() -> "BaseAgent":
Create a copy of the agent.
set_rpm_controller(rpm_controller: Optional[RPMController] = None) -> None:
set_rpm_controller(rpm_controller: RPMController) -> None:
Set the rpm controller for the agent.
set_private_attrs() -> "BaseAgent":
Set private attributes.
configure_executor(cache_handler: CacheHandler, rpm_controller: RPMController) -> None:
Configure the agent's executor with both cache and RPM handling.
"""
__hash__ = object.__hash__ # type: ignore
model_config = {
"arbitrary_types_allowed": True,
}
_logger: Logger = PrivateAttr(default_factory=lambda: Logger(verbose=False))
_rpm_controller: Optional[RPMController] = PrivateAttr(default=None)
_request_within_rpm_limit: Any = PrivateAttr(default=None)
_original_role: Optional[str] = PrivateAttr(default=None)
_original_goal: Optional[str] = PrivateAttr(default=None)
_original_backstory: Optional[str] = PrivateAttr(default=None)
token_process: TokenProcess = Field(default_factory=TokenProcess, exclude=True)
_token_process: TokenProcess = PrivateAttr(default_factory=TokenProcess)
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
formatting_errors: int = Field(
default=0, description="Number of formatting errors."
@@ -118,7 +112,7 @@ class BaseAgent(ABC, BaseModel):
default=False,
description="Enable agent to delegate and ask questions among each other.",
)
tools: Optional[List[BaseTool]] = Field(
tools: Optional[List[Any]] = Field(
default_factory=list, description="Tools at agents' disposal"
)
max_iter: int = Field(
@@ -203,6 +197,8 @@ class BaseAgent(ABC, BaseModel):
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger
)
if not self._token_process:
self._token_process = TokenProcess()
return self
@@ -222,7 +218,8 @@ class BaseAgent(ABC, BaseModel):
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger
)
if not self._token_process:
self._token_process = TokenProcess()
return self
@property
@@ -270,7 +267,7 @@ class BaseAgent(ABC, BaseModel):
"_logger",
"_rpm_controller",
"_request_within_rpm_limit",
"token_process",
"_token_process",
"agent_executor",
"tools",
"tools_handler",
@@ -341,49 +338,17 @@ class BaseAgent(ABC, BaseModel):
if self.cache:
self.cache_handler = cache_handler
self.tools_handler.cache = cache_handler
# Only create the executor if it hasn't been created yet.
if self.agent_executor is None:
self.create_agent_executor()
self.create_agent_executor()
def increment_formatting_errors(self) -> None:
self.formatting_errors += 1
def set_rpm_controller(
self, rpm_controller: Optional[RPMController] = None
) -> None:
"""
Set the RPM controller for the agent. If no rpm_controller is provided, then:
- use self.max_rpm if set, or
- if self.crew exists and has max_rpm, use that.
"""
if self._rpm_controller is None:
if rpm_controller is not None:
self._rpm_controller = rpm_controller
elif self.max_rpm:
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger
)
elif self.crew and getattr(self.crew, "max_rpm", None):
self._rpm_controller = RPMController(
max_rpm=self.crew.max_rpm, logger=self._logger
)
# else: no rpm limit provided leave the controller None
if self.agent_executor is None:
self.create_agent_executor()
def set_rpm_controller(self, rpm_controller: RPMController) -> None:
"""Set the rpm controller for the agent.
def configure_executor(
self, cache_handler: CacheHandler, rpm_controller: Optional[RPMController]
) -> None:
"""Configure the agent's executor with both cache and RPM handling.
This method delegates to set_cache_handler and set_rpm_controller, applying the configuration
only if the respective flags or values are set.
Args:
rpm_controller: An instance of the RPMController class.
"""
if self.cache:
self.set_cache_handler(cache_handler)
# Use the injected RPM controller rather than auto-creating one
if rpm_controller:
self.set_rpm_controller(rpm_controller)
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
pass
if not self._rpm_controller:
self._rpm_controller = rpm_controller
self.create_agent_executor()

View File

@@ -114,15 +114,10 @@ class CrewAgentExecutorMixin:
prompt = (
"\n\n=====\n"
"## HUMAN FEEDBACK: Provide feedback on the Final Result and Agent's actions.\n"
"Please follow these guidelines:\n"
" - If you are happy with the result, simply hit Enter without typing anything.\n"
" - Otherwise, provide specific improvement requests.\n"
" - You can provide multiple rounds of feedback until satisfied.\n"
"Respond with 'looks good' to accept or provide specific improvement requests.\n"
"You can provide multiple rounds of feedback until satisfied.\n"
"=====\n"
)
self._printer.print(content=prompt, color="bold_yellow")
response = input()
if response.strip() != "":
self._printer.print(content="\nProcessing your feedback...", color="cyan")
return response
return input()

View File

@@ -31,11 +31,11 @@ class OutputConverter(BaseModel, ABC):
)
@abstractmethod
def to_pydantic(self, current_attempt=1) -> BaseModel:
def to_pydantic(self, current_attempt=1):
"""Convert text to pydantic."""
pass
@abstractmethod
def to_json(self, current_attempt=1) -> dict:
def to_json(self, current_attempt=1):
"""Convert text to json."""
pass

View File

@@ -18,12 +18,6 @@ from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N, Printer
from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
from crewai.utilities.events import (
ToolUsageErrorEvent,
ToolUsageStartedEvent,
crewai_event_bus,
)
from crewai.utilities.events.tool_usage_events import ToolUsageStartedEvent
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
@@ -88,7 +82,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
tool.name: tool for tool in self.tools
}
self.stop = stop_words
self.llm.stop = list(set((self.llm.stop or []) + self.stop))
self.llm.stop = list(set(self.llm.stop + self.stop))
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
if "system" in self.prompt:
@@ -113,11 +107,11 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
raise
except Exception as e:
self._handle_unknown_error(e)
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
raise e
else:
self._handle_unknown_error(e)
raise e
if self.ask_for_human_input:
@@ -355,68 +349,40 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
)
def _execute_tool_and_check_finality(self, agent_action: AgentAction) -> ToolResult:
try:
if self.agent:
crewai_event_bus.emit(
self,
event=ToolUsageStartedEvent(
agent_key=self.agent.key,
agent_role=self.agent.role,
tool_name=agent_action.tool,
tool_args=agent_action.tool_input,
tool_class=agent_action.tool,
),
)
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task, # type: ignore[arg-type]
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse_tool_calling(agent_action.text)
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task, # type: ignore[arg-type]
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse_tool_calling(agent_action.text)
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
return ToolResult(result=tool_result, result_as_answer=False)
except Exception as e:
# TODO: drop
if self.agent:
crewai_event_bus.emit(
self,
event=ToolUsageErrorEvent( # validation error
agent_key=self.agent.key,
agent_role=self.agent.role,
tool_name=agent_action.tool,
tool_args=agent_action.tool_input,
tool_class=agent_action.tool,
error=str(e),
),
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
raise e
return ToolResult(result=tool_result, result_as_answer=False)
def _summarize_messages(self) -> None:
messages_groups = []
@@ -548,6 +514,10 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self, initial_answer: AgentFinish, feedback: str
) -> AgentFinish:
"""Process feedback for training scenarios with single iteration."""
self._printer.print(
content="\nProcessing training feedback.\n",
color="yellow",
)
self._handle_crew_training_output(initial_answer, feedback)
self.messages.append(
self._format_msg(
@@ -567,8 +537,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
answer = current_answer
while self.ask_for_human_input:
# If the user provides a blank response, assume they are happy with the result
if feedback.strip() == "":
response = self._get_llm_feedback_response(feedback)
if not self._feedback_requires_changes(response):
self.ask_for_human_input = False
else:
answer = self._process_feedback_iteration(feedback)
@@ -576,6 +547,27 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
return answer
def _get_llm_feedback_response(self, feedback: str) -> Optional[str]:
"""Get LLM classification of whether feedback requires changes."""
prompt = self._i18n.slice("human_feedback_classification").format(
feedback=feedback
)
message = self._format_msg(prompt, role="system")
for retry in range(MAX_LLM_RETRY):
try:
response = self.llm.call([message], callbacks=self.callbacks)
return response.strip().lower() if response else None
except Exception as error:
self._log_feedback_error(retry, error)
self._log_max_retries_exceeded()
return None
def _feedback_requires_changes(self, response: Optional[str]) -> bool:
"""Determine if feedback response indicates need for changes."""
return response == "true" if response else False
def _process_feedback_iteration(self, feedback: str) -> AgentFinish:
"""Process a single feedback iteration."""
self.messages.append(

View File

@@ -1,468 +0,0 @@
from typing import Any, List, Optional, Type, Union, cast
from pydantic import Field, field_validator
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.task import Task
from crewai.tools import BaseTool
from crewai.tools.base_tool import Tool
from crewai.utilities.converter import Converter, generate_model_description
from crewai.utilities.token_counter_callback import (
LangChainTokenCounter,
LiteLLMTokenCounter,
)
class LangChainAgentAdapter(BaseAgent):
"""
Adapter class to wrap a LangChain agent and make it compatible with CrewAI's BaseAgent interface.
Note:
- This adapter does not require LangChain as a dependency.
- It wraps an external LangChain agent (passed as any type) and delegates calls
such as execute_task() to the LangChain agent's invoke() method.
- Extended logic is added to build prompts, incorporate memory, knowledge, training hints,
and now a human feedback loop similar to what is done in CrewAgentExecutor.
"""
langchain_agent: Any = Field(
...,
description="The wrapped LangChain runnable agent instance. It is expected to have an 'invoke' method.",
)
tools: Optional[List[Union[BaseTool, Any]]] = Field(
default_factory=list,
description="Tools at the agent's disposal. Accepts both CrewAI BaseTool instances and other tools.",
)
function_calling_llm: Optional[Any] = Field(
default=None, description="Optional function calling LLM."
)
step_callback: Optional[Any] = Field(
default=None,
description="Callback executed after each step of agent execution.",
)
allow_code_execution: Optional[bool] = Field(
default=False, description="Enable code execution for the agent."
)
multimodal: bool = Field(
default=False, description="Whether the agent is multimodal."
)
i18n: Any = None
crew: Any = None
knowledge: Any = None
token_process: TokenProcess = Field(default_factory=TokenProcess, exclude=True)
token_callback: Optional[Any] = None
class Config:
arbitrary_types_allowed = True
@field_validator("tools", mode="before")
def convert_tools(cls, value):
"""Ensure tools are valid CrewAI BaseTool instances."""
if not value:
return value
new_tools = []
for tool in value:
# If tool is already a CrewAI BaseTool instance, keep it as is.
if isinstance(tool, BaseTool):
new_tools.append(tool)
else:
new_tools.append(Tool.from_langchain(tool))
return new_tools
def _extract_text(self, message: Any) -> str:
"""
Helper to extract plain text from a message object.
This checks if the message is a dict with a "content" key, or has a "content" attribute,
or if it's a tuple from LangGraph's message format.
"""
# Handle LangGraph message tuple format (role, content)
if isinstance(message, tuple) and len(message) == 2:
return str(message[1])
# Handle dictionary with content key
elif isinstance(message, dict):
if "content" in message:
return message["content"]
# Handle LangGraph message format with additional metadata
elif "messages" in message and message["messages"]:
last_message = message["messages"][-1]
if isinstance(last_message, tuple) and len(last_message) == 2:
return str(last_message[1])
return self._extract_text(last_message)
# Handle object with content attribute
elif hasattr(message, "content") and isinstance(
getattr(message, "content"), str
):
return getattr(message, "content")
# Handle string directly
elif isinstance(message, str):
return message
# Default fallback
return str(message)
def _register_token_callback(self):
"""
Register the appropriate token counter callback with the language model.
This method handles different types of models (LiteLLM, LangChain, direct LLMs)
and different callback structures.
"""
# Skip if we already have a token callback registered
if self.token_callback is not None:
return
# Skip if we don't have a token_process attribute
if not hasattr(self, "token_process"):
return
# Determine if we're using LiteLLM or LangChain based on the agent type
if hasattr(self.langchain_agent, "client") and hasattr(
self.langchain_agent.client, "callbacks"
):
# This is likely a LiteLLM-based agent
self.token_callback = LiteLLMTokenCounter(self.token_process)
# Add our callback to the LLM directly
if isinstance(self.langchain_agent.client.callbacks, list):
if self.token_callback not in self.langchain_agent.client.callbacks:
self.langchain_agent.client.callbacks.append(self.token_callback)
else:
self.langchain_agent.client.callbacks = [self.token_callback]
else:
# This is likely a LangChain-based agent
self.token_callback = LangChainTokenCounter(self.token_process)
# Add callback to the LangChain model
if hasattr(self.langchain_agent, "callbacks"):
if self.langchain_agent.callbacks is None:
self.langchain_agent.callbacks = [self.token_callback]
elif isinstance(self.langchain_agent.callbacks, list):
self.langchain_agent.callbacks.append(self.token_callback)
# For direct LLM models
elif hasattr(self.langchain_agent, "llm") and hasattr(
self.langchain_agent.llm, "callbacks"
):
if self.langchain_agent.llm.callbacks is None:
self.langchain_agent.llm.callbacks = [self.token_callback]
elif isinstance(self.langchain_agent.llm.callbacks, list):
self.langchain_agent.llm.callbacks.append(self.token_callback)
# Direct LLM case
elif not hasattr(self.langchain_agent, "agent"):
# This might be a direct LLM, not an agent
if (
not hasattr(self.langchain_agent, "callbacks")
or self.langchain_agent.callbacks is None
):
self.langchain_agent.callbacks = [self.token_callback]
elif isinstance(self.langchain_agent.callbacks, list):
self.langchain_agent.callbacks.append(self.token_callback)
def execute_task(
self,
task: Task,
context: Optional[str] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
"""
Execute a task by building the full task prompt (with memory, knowledge, tool instructions,
and training hints) then delegating execution to the wrapped LangChain agent.
If the task requires human input, a feedback loop is run that mimics the CrewAgentExecutor.
"""
task_prompt = task.prompt()
if task.output_json or task.output_pydantic:
# Choose the output format, preferring output_json if available
output_format = (
task.output_json if task.output_json else task.output_pydantic
)
schema = generate_model_description(cast(type, output_format))
instruction = self.i18n.slice("formatted_task_instructions").format(
output_format=schema
)
task_prompt += f"\n{instruction}"
if context:
task_prompt = self.i18n.slice("task_with_context").format(
task=task_prompt, context=context
)
if self.crew and self.crew.memory:
from crewai.memory.contextual.contextual_memory import ContextualMemory
contextual_memory = ContextualMemory(
self.crew.memory_config,
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
self.crew._user_memory,
)
memory = contextual_memory.build_context_for_task(task, context)
if memory.strip():
task_prompt += self.i18n.slice("memory").format(memory=memory)
if self.knowledge:
agent_knowledge_snippets = self.knowledge.query([task.prompt()])
if agent_knowledge_snippets:
from crewai.knowledge.utils.knowledge_utils import (
extract_knowledge_context,
)
agent_knowledge_context = extract_knowledge_context(
agent_knowledge_snippets
)
if agent_knowledge_context:
task_prompt += agent_knowledge_context
if self.crew:
knowledge_snippets = self.crew.query_knowledge([task.prompt()])
if knowledge_snippets:
from crewai.knowledge.utils.knowledge_utils import (
extract_knowledge_context,
)
crew_knowledge_context = extract_knowledge_context(knowledge_snippets)
if crew_knowledge_context:
task_prompt += crew_knowledge_context
tools = tools or self.tools or []
self.create_agent_executor(tools=tools)
self._show_start_logs(task)
if self.crew and getattr(self.crew, "_train", False):
task_prompt = self._training_handler(task_prompt=task_prompt)
else:
task_prompt = self._use_trained_data(task_prompt=task_prompt)
# Register token tracking callback
self._register_token_callback()
init_state = {"messages": [("user", task_prompt)]}
# Estimate input tokens for tracking
if hasattr(self, "token_process"):
# Rough estimate based on characters (better than word count)
estimated_prompt_tokens = len(task_prompt) // 4 # ~4 chars per token
self.token_process.sum_prompt_tokens(estimated_prompt_tokens)
state = self.agent_executor.invoke(init_state)
# Extract output from state based on its structure
if "structured_response" in state:
current_output = state["structured_response"]
elif "messages" in state and state["messages"]:
last_message = state["messages"][-1]
current_output = self._extract_text(last_message)
elif "output" in state:
current_output = str(state["output"])
else:
# Fallback to extracting text from the entire state
current_output = self._extract_text(state)
# Estimate completion tokens for tracking if we don't have actual counts
if hasattr(self, "token_process"):
# Rough estimate based on characters
estimated_completion_tokens = len(current_output) // 4 # ~4 chars per token
self.token_process.sum_completion_tokens(estimated_completion_tokens)
self.token_process.sum_successful_requests(1)
if task.human_input:
current_output = self._handle_human_feedback(current_output)
return current_output
def _handle_human_feedback(self, current_output: str) -> str:
"""
Implements a feedback loop that prompts the user for feedback and then instructs
the underlying LangChain agent to regenerate its answer with the requested changes.
Only the inner content of the output is displayed to the user.
"""
while True:
print("\nAgent output:")
# Print only the inner text extracted from current_output.
print(self._extract_text(current_output))
feedback = input("\nEnter your feedback (or press Enter to accept): ")
if not feedback.strip():
break # No feedback provided, exit the loop
extracted_output = self._extract_text(current_output)
new_prompt = (
f"Below is your previous answer:\n"
f"{extracted_output}\n\n"
f"Based on the following feedback: '{feedback}', please regenerate your answer with the requested details. "
f"Specifically, display 10 bullet points in each section. Provide the complete updated answer below.\n\n"
f"Updated answer:"
)
# Estimate input tokens for tracking
if hasattr(self, "token_process"):
# Rough estimate based on characters
estimated_prompt_tokens = len(new_prompt) // 4 # ~4 chars per token
self.token_process.sum_prompt_tokens(estimated_prompt_tokens)
try:
new_state = self.agent_executor.invoke(
{"messages": [("user", new_prompt)]}
)
# Extract output from state based on its structure
if "structured_response" in new_state:
new_output = new_state["structured_response"]
elif "messages" in new_state and new_state["messages"]:
last_message = new_state["messages"][-1]
new_output = self._extract_text(last_message)
elif "output" in new_state:
new_output = str(new_state["output"])
else:
# Fallback to extracting text from the entire state
new_output = self._extract_text(new_state)
# Estimate completion tokens for tracking
if hasattr(self, "token_process"):
# Rough estimate based on characters
estimated_completion_tokens = (
len(new_output) // 4
) # ~4 chars per token
self.token_process.sum_completion_tokens(
estimated_completion_tokens
)
self.token_process.sum_successful_requests(1)
current_output = new_output
except Exception as e:
print("Error during re-invocation with feedback:", e)
break
return current_output
def _generate_model_description(self, model: Any) -> str:
"""
Generates a string description (schema) for the expected output.
This is a placeholder that should call the actual implementation.
"""
from crewai.utilities.converter import generate_model_description
return generate_model_description(model)
def _training_handler(self, task_prompt: str) -> str:
"""
Append training instructions from Crew data to the task prompt.
"""
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.training_handler import CrewTrainingHandler
data = CrewTrainingHandler(TRAINING_DATA_FILE).load()
if data:
agent_id = str(self.id)
if data.get(agent_id):
human_feedbacks = [
i["human_feedback"] for i in data.get(agent_id, {}).values()
]
task_prompt += (
"\n\nYou MUST follow these instructions: \n "
+ "\n - ".join(human_feedbacks)
)
return task_prompt
def _use_trained_data(self, task_prompt: str) -> str:
"""
Append pre-trained instructions from Crew data to the task prompt.
"""
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE
from crewai.utilities.training_handler import CrewTrainingHandler
data = CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).load()
if data and (trained_data_output := data.get(getattr(self, "role", "default"))):
task_prompt += (
"\n\nYou MUST follow these instructions: \n - "
+ "\n - ".join(trained_data_output["suggestions"])
)
return task_prompt
def create_agent_executor(self, tools: Optional[List[BaseTool]] = None) -> None:
"""
Creates an agent executor using LangGraph's create_react_agent if given an LLM,
or uses the provided language model directly.
"""
try:
from langgraph.prebuilt import create_react_agent
except ImportError as e:
raise ImportError(
"LangGraph library not found. Please run `uv add langgraph` to add LangGraph support."
) from e
# Ensure raw_tools is always a list.
raw_tools: List[Any] = (
tools
if tools is not None
else (self.tools if self.tools is not None else [])
)
# Fallback: if raw_tools is still empty, try to extract them from the wrapped LangChain agent.
if not raw_tools:
if hasattr(self.langchain_agent, "agent") and hasattr(
self.langchain_agent.agent, "tools"
):
raw_tools = self.langchain_agent.agent.tools or []
else:
raw_tools = getattr(self.langchain_agent, "tools", []) or []
used_tools = []
# Use the global CrewAI Tool class (imported at the module level)
for tool in raw_tools:
# If the tool is a CrewAI Tool, convert it to a LangChain compatible tool.
if isinstance(tool, Tool):
used_tools.append(tool.to_langchain())
else:
used_tools.append(tool)
# Sanitize the agent's role for the "name" field. The allowed pattern is ^[a-zA-Z0-9_-]+$
import re
agent_role = getattr(self, "role", "agent")
sanitized_role = re.sub(r"\s+", "_", agent_role)
# Register token tracking callback
self._register_token_callback()
self.agent_executor = create_react_agent(
model=self.langchain_agent,
tools=used_tools,
debug=getattr(self, "verbose", False),
name=sanitized_role,
)
def _parse_tools(self, tools: List[BaseTool]) -> List[BaseTool]:
return tools
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[BaseTool]:
return []
def get_output_converter(
self,
llm: Any,
text: str,
model: Optional[Type] = None,
instructions: str = "",
) -> Converter:
return Converter(llm=llm, text=text, model=model, instructions=instructions)
def _show_start_logs(self, task: Task) -> None:
if self.langchain_agent is None:
raise ValueError("Agent cannot be None")
# Check if the adapter or its crew is in verbose mode.
verbose = self.verbose or (self.crew and getattr(self.crew, "verbose", False))
if verbose:
from crewai.utilities import Printer
printer = Printer()
# Use the adapter's role (inherited from BaseAgent) for logging.
printer.print(
content=f"\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{self.role}\033[00m"
)
description = getattr(task, "description", "Not Found")
printer.print(
content=f"\033[95m## Task:\033[00m \033[92m{description}\033[00m"
)

View File

@@ -94,13 +94,6 @@ class CrewAgentParser:
elif includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
# Check whether the final answer ends with triple backticks.
if final_answer.endswith("```"):
# Count occurrences of triple backticks in the final answer.
count = final_answer.count("```")
# If count is odd then it's an unmatched trailing set; remove it.
if count % 2 != 0:
final_answer = final_answer[:-3].rstrip()
return AgentFinish(thought, final_answer, text)
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
@@ -124,15 +117,11 @@ class CrewAgentParser:
)
def _extract_thought(self, text: str) -> str:
thought_index = text.find("\n\nAction")
if thought_index == -1:
thought_index = text.find("\n\nFinal Answer")
if thought_index == -1:
return ""
thought = text[:thought_index].strip()
# Remove any triple backticks from the thought string
thought = thought.replace("```", "").strip()
return thought
regex = r"(.*?)(?:\n\nAction|\n\nFinal Answer)"
thought_match = re.search(regex, text, re.DOTALL)
if thought_match:
return thought_match.group(1).strip()
return ""
def _clean_action(self, text: str) -> str:
"""Clean action string by removing non-essential formatting characters."""

View File

@@ -203,6 +203,7 @@ def install(context):
@crewai.command()
def run():
"""Run the Crew."""
click.echo("Running the Crew")
run_crew()

View File

@@ -216,43 +216,10 @@ MODELS = {
"watsonx/ibm/granite-3-8b-instruct",
],
"bedrock": [
"bedrock/us.amazon.nova-pro-v1:0",
"bedrock/us.amazon.nova-micro-v1:0",
"bedrock/us.amazon.nova-lite-v1:0",
"bedrock/us.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/us.anthropic.claude-3-5-haiku-20241022-v1:0",
"bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
"bedrock/us.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/us.anthropic.claude-3-opus-20240229-v1:0",
"bedrock/us.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/us.meta.llama3-2-11b-instruct-v1:0",
"bedrock/us.meta.llama3-2-3b-instruct-v1:0",
"bedrock/us.meta.llama3-2-90b-instruct-v1:0",
"bedrock/us.meta.llama3-2-1b-instruct-v1:0",
"bedrock/us.meta.llama3-1-8b-instruct-v1:0",
"bedrock/us.meta.llama3-1-70b-instruct-v1:0",
"bedrock/us.meta.llama3-3-70b-instruct-v1:0",
"bedrock/us.meta.llama3-1-405b-instruct-v1:0",
"bedrock/eu.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/eu.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/eu.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/eu.meta.llama3-2-3b-instruct-v1:0",
"bedrock/eu.meta.llama3-2-1b-instruct-v1:0",
"bedrock/apac.anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/apac.anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/apac.anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/apac.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/amazon.nova-pro-v1:0",
"bedrock/amazon.nova-micro-v1:0",
"bedrock/amazon.nova-lite-v1:0",
"bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
"bedrock/anthropic.claude-3-5-haiku-20241022-v1:0",
"bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0",
"bedrock/anthropic.claude-3-7-sonnet-20250219-v1:0",
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
"bedrock/anthropic.claude-v2:1",
"bedrock/anthropic.claude-v2",
"bedrock/anthropic.claude-instant-v1",
@@ -267,6 +234,8 @@ MODELS = {
"bedrock/ai21.j2-mid-v1",
"bedrock/ai21.j2-ultra-v1",
"bedrock/ai21.jamba-instruct-v1:0",
"bedrock/meta.llama2-13b-chat-v1",
"bedrock/meta.llama2-70b-chat-v1",
"bedrock/mistral.mistral-7b-instruct-v0:2",
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
],

View File

@@ -1,6 +1,4 @@
import subprocess
from enum import Enum
from typing import List, Optional
import click
from packaging import version
@@ -9,24 +7,16 @@ from crewai.cli.utils import read_toml
from crewai.cli.version import get_crewai_version
class CrewType(Enum):
STANDARD = "standard"
FLOW = "flow"
def run_crew() -> None:
"""
Run the crew or flow by running a command in the UV environment.
Starting from version 0.103.0, this command can be used to run both
standard crews and flows. For flows, it detects the type from pyproject.toml
and automatically runs the appropriate command.
Run the crew by running a command in the UV environment.
"""
command = ["uv", "run", "run_crew"]
crewai_version = get_crewai_version()
min_required_version = "0.71.0"
pyproject_data = read_toml()
# Check for legacy poetry configuration
if pyproject_data.get("tool", {}).get("poetry") and (
version.parse(crewai_version) < version.parse(min_required_version)
):
@@ -36,54 +26,18 @@ def run_crew() -> None:
fg="red",
)
# Determine crew type
is_flow = pyproject_data.get("tool", {}).get("crewai", {}).get("type") == "flow"
crew_type = CrewType.FLOW if is_flow else CrewType.STANDARD
# Display appropriate message
click.echo(f"Running the {'Flow' if is_flow else 'Crew'}")
# Execute the appropriate command
execute_command(crew_type)
def execute_command(crew_type: CrewType) -> None:
"""
Execute the appropriate command based on crew type.
Args:
crew_type: The type of crew to run
"""
command = ["uv", "run", "kickoff" if crew_type == CrewType.FLOW else "run_crew"]
try:
subprocess.run(command, capture_output=False, text=True, check=True)
except subprocess.CalledProcessError as e:
handle_error(e, crew_type)
click.echo(f"An error occurred while running the crew: {e}", err=True)
click.echo(e.output, err=True, nl=True)
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry, please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",
)
except Exception as e:
click.echo(f"An unexpected error occurred: {e}", err=True)
def handle_error(error: subprocess.CalledProcessError, crew_type: CrewType) -> None:
"""
Handle subprocess errors with appropriate messaging.
Args:
error: The subprocess error that occurred
crew_type: The type of crew that was being run
"""
entity_type = "flow" if crew_type == CrewType.FLOW else "crew"
click.echo(f"An error occurred while running the {entity_type}: {error}", err=True)
if error.output:
click.echo(error.output, err=True, nl=True)
pyproject_data = read_toml()
if pyproject_data.get("tool", {}).get("poetry"):
click.secho(
"It's possible that you are using an old version of crewAI that uses poetry, "
"please run `crewai update` to update your pyproject.toml to use uv.",
fg="yellow",
)

View File

@@ -56,8 +56,7 @@ def test():
Test the crew execution and returns the results.
"""
inputs = {
"topic": "AI LLMs",
"current_year": str(datetime.now().year)
"topic": "AI LLMs"
}
try:
{{crew_name}}().crew().test(n_iterations=int(sys.argv[1]), openai_model_name=sys.argv[2], inputs=inputs)

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.102.0,<1.0.0"
"crewai[tools]>=0.100.1,<1.0.0"
]
[project.scripts]

View File

@@ -30,13 +30,13 @@ crewai install
## Running the Project
To kickstart your flow and begin execution, run this from the root folder of your project:
To kickstart your crew of AI agents and begin task execution, run this from the root folder of your project:
```bash
crewai run
```
This command initializes the {{name}} Flow as defined in your configuration.
This command initializes the {{name}} Crew, assembling the agents and assigning them tasks as defined in your configuration.
This example, unmodified, will run the create a `report.md` file with the output of a research on LLMs in the root folder.

View File

@@ -5,7 +5,7 @@ description = "{{name}} using crewAI"
authors = [{ name = "Your Name", email = "you@example.com" }]
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.102.0,<1.0.0",
"crewai[tools]>=0.100.1,<1.0.0",
]
[project.scripts]

View File

@@ -5,7 +5,7 @@ description = "Power up your crews with {{folder_name}}"
readme = "README.md"
requires-python = ">=3.10,<3.13"
dependencies = [
"crewai[tools]>=0.102.0"
"crewai[tools]>=0.100.1"
]
[tool.crewai]

View File

@@ -257,11 +257,11 @@ def get_crew(crew_path: str = "crew.py", require: bool = False) -> Crew | None:
import os
for root, _, files in os.walk("."):
if crew_path in files:
crew_os_path = os.path.join(root, crew_path)
if "crew.py" in files:
crew_path = os.path.join(root, "crew.py")
try:
spec = importlib.util.spec_from_file_location(
"crew_module", crew_os_path
"crew_module", crew_path
)
if not spec or not spec.loader:
continue
@@ -273,11 +273,9 @@ def get_crew(crew_path: str = "crew.py", require: bool = False) -> Crew | None:
for attr_name in dir(module):
attr = getattr(module, attr_name)
try:
if isinstance(attr, Crew) and hasattr(attr, "kickoff"):
print(
f"Found valid crew object in attribute '{attr_name}' at {crew_os_path}."
)
return attr
if callable(attr) and hasattr(attr, "crew"):
crew_instance = attr().crew()
return crew_instance
except Exception as e:
print(f"Error processing attribute {attr_name}: {e}")

View File

@@ -35,6 +35,7 @@ from crewai.process import Process
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.tools.base_tool import Tool
from crewai.types.usage_metrics import UsageMetrics
@@ -42,18 +43,6 @@ from crewai.utilities import I18N, FileHandler, Logger, RPMController
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
from crewai.utilities.events.crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
CrewTestStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
CrewTrainStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.formatter import (
aggregate_raw_outputs_from_task_outputs,
aggregate_raw_outputs_from_tasks,
@@ -63,6 +52,12 @@ from crewai.utilities.planning_handler import CrewPlanner
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
from crewai.utilities.training_handler import CrewTrainingHandler
try:
import agentops # type: ignore
except ImportError:
agentops = None
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
@@ -94,7 +89,7 @@ class Crew(BaseModel):
__hash__ = object.__hash__ # type: ignore
_execution_span: Any = PrivateAttr()
_rpm_controller: Optional[RPMController] = PrivateAttr()
_rpm_controller: RPMController = PrivateAttr()
_logger: Logger = PrivateAttr()
_file_handler: FileHandler = PrivateAttr()
_cache_handler: InstanceOf[CacheHandler] = PrivateAttr(default=CacheHandler())
@@ -248,6 +243,7 @@ class Crew(BaseModel):
@model_validator(mode="after")
def set_private_attrs(self) -> "Crew":
"""Set private attributes."""
self._cache_handler = CacheHandler()
self._logger = Logger(verbose=self.verbose)
if self.output_log_file:
self._file_handler = FileHandler(self.output_log_file)
@@ -255,24 +251,8 @@ class Crew(BaseModel):
if self.function_calling_llm and not isinstance(self.function_calling_llm, LLM):
self.function_calling_llm = create_llm(self.function_calling_llm)
return self
@model_validator(mode="after")
def initialize_dependencies(self) -> "Crew":
# Always create a cache handler, but it will only be used if self.cache is True
# Create the Crew-level RPM controller if a max RPM is specified
if self.max_rpm is not None:
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=Logger(verbose=self.verbose)
)
else:
self._rpm_controller = None
# Now inject these external dependencies into each agent
for agent in self.agents:
agent.crew = self # ensure the agent's crew reference is set
agent.configure_executor(self._cache_handler, self._rpm_controller)
self._telemetry = Telemetry()
self._telemetry.set_tracer()
return self
@model_validator(mode="after")
@@ -295,26 +275,12 @@ class Crew(BaseModel):
if self.entity_memory
else EntityMemory(crew=self, embedder_config=self.embedder)
)
if (
self.memory_config and "user_memory" in self.memory_config
): # Check for user_memory in config
user_memory_config = self.memory_config["user_memory"]
if isinstance(
user_memory_config, UserMemory
): # Check if it is already an instance
self._user_memory = user_memory_config
elif isinstance(
user_memory_config, dict
): # Check if it's a configuration dict
self._user_memory = UserMemory(
crew=self, **user_memory_config
) # Initialize with config
else:
raise TypeError(
"user_memory must be a UserMemory instance or a configuration dictionary"
)
if hasattr(self, "memory_config") and self.memory_config is not None:
self._user_memory = (
self.user_memory if self.user_memory else UserMemory(crew=self)
)
else:
self._user_memory = None # No user memory if not in config
self._user_memory = None
return self
@model_validator(mode="after")
@@ -374,7 +340,10 @@ class Crew(BaseModel):
if self.agents:
for agent in self.agents:
agent.configure_executor(self._cache_handler, self._rpm_controller)
if self.cache:
agent.set_cache_handler(self._cache_handler)
if self.max_rpm:
agent.set_rpm_controller(self._rpm_controller)
return self
@model_validator(mode="after")
@@ -486,6 +455,8 @@ class Crew(BaseModel):
)
return self
@property
def key(self) -> str:
source = [agent.key for agent in self.agents] + [
@@ -538,19 +509,10 @@ class Crew(BaseModel):
self, n_iterations: int, filename: str, inputs: Optional[Dict[str, Any]] = {}
) -> None:
"""Trains the crew for a given number of iterations."""
try:
crewai_event_bus.emit(
self,
CrewTrainStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
filename=filename,
inputs=inputs,
),
)
train_crew = self.copy()
train_crew._setup_for_training(filename)
train_crew = self.copy()
train_crew._setup_for_training(filename)
try:
for n_iteration in range(n_iterations):
train_crew._train_iteration = n_iteration
train_crew.kickoff(inputs=inputs)
@@ -565,20 +527,7 @@ class Crew(BaseModel):
CrewTrainingHandler(filename).save_trained_data(
agent_id=str(agent.role), trained_data=result.model_dump()
)
crewai_event_bus.emit(
self,
CrewTrainCompletedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
filename=filename,
),
)
except Exception as e:
crewai_event_bus.emit(
self,
CrewTrainFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
self._logger.log("error", f"Training failed: {e}", color="red")
CrewTrainingHandler(TRAINING_DATA_FILE).clear()
CrewTrainingHandler(filename).clear()
@@ -588,71 +537,60 @@ class Crew(BaseModel):
self,
inputs: Optional[Dict[str, Any]] = None,
) -> CrewOutput:
try:
for before_callback in self.before_kickoff_callbacks:
if inputs is None:
inputs = {}
inputs = before_callback(inputs)
for before_callback in self.before_kickoff_callbacks:
if inputs is None:
inputs = {}
inputs = before_callback(inputs)
crewai_event_bus.emit(
self,
CrewKickoffStartedEvent(crew_name=self.name or "crew", inputs=inputs),
"""Starts the crew to work on its assigned tasks."""
self._execution_span = self._telemetry.crew_execution_span(self, inputs)
self._task_output_handler.reset()
self._logging_color = "bold_purple"
if inputs is not None:
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
i18n = I18N(prompt_file=self.prompt_file)
for agent in self.agents:
agent.i18n = i18n
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
agent.crew = self # type: ignore[attr-defined]
# TODO: Create an AgentFunctionCalling protocol for future refactoring
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.create_agent_executor()
if self.planning:
self._handle_crew_planning()
metrics: List[UsageMetrics] = []
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
result = self._run_hierarchical_process()
else:
raise NotImplementedError(
f"The process '{self.process}' is not implemented yet."
)
# Starts the crew to work on its assigned tasks.
self._task_output_handler.reset()
self._logging_color = "bold_purple"
for after_callback in self.after_kickoff_callbacks:
result = after_callback(result)
if inputs is not None:
self._inputs = inputs
self._interpolate_inputs(inputs)
self._set_tasks_callbacks()
metrics += [agent._token_process.get_summary() for agent in self.agents]
i18n = I18N(prompt_file=self.prompt_file)
self.usage_metrics = UsageMetrics()
for metric in metrics:
self.usage_metrics.add_usage_metrics(metric)
for agent in self.agents:
agent.i18n = i18n
# type: ignore[attr-defined] # Argument 1 to "_interpolate_inputs" of "Crew" has incompatible type "dict[str, Any] | None"; expected "dict[str, Any]"
agent.crew = self # type: ignore[attr-defined]
agent.set_knowledge(crew_embedder=self.embedder)
# TODO: Create an AgentFunctionCalling protocol for future refactoring
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
agent.create_agent_executor()
if self.planning:
self._handle_crew_planning()
metrics: List[UsageMetrics] = []
if self.process == Process.sequential:
result = self._run_sequential_process()
elif self.process == Process.hierarchical:
result = self._run_hierarchical_process()
else:
raise NotImplementedError(
f"The process '{self.process}' is not implemented yet."
)
for after_callback in self.after_kickoff_callbacks:
result = after_callback(result)
metrics += [agent.token_process.get_summary() for agent in self.agents]
self.usage_metrics = UsageMetrics()
for metric in metrics:
self.usage_metrics.add_usage_metrics(metric)
return result
except Exception as e:
crewai_event_bus.emit(
self,
CrewKickoffFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
raise
return result
def kickoff_for_each(self, inputs: List[Dict[str, Any]]) -> List[CrewOutput]:
"""Executes the Crew's workflow for each input in the list and aggregates results."""
@@ -990,22 +928,17 @@ class Crew(BaseModel):
def _create_crew_output(self, task_outputs: List[TaskOutput]) -> CrewOutput:
if not task_outputs:
raise ValueError("No task outputs available to create crew output.")
# Filter out empty outputs and get the last valid one as the main output
valid_outputs = [t for t in task_outputs if t.raw]
if not valid_outputs:
raise ValueError("No valid task outputs available to create crew output.")
final_task_output = valid_outputs[-1]
final_string_output = final_task_output.raw
self._finish_execution(final_string_output)
token_usage = self.calculate_usage_metrics()
crewai_event_bus.emit(
self,
CrewKickoffCompletedEvent(
crew_name=self.name or "crew", output=final_task_output
),
)
return CrewOutput(
raw=final_task_output.raw,
pydantic=final_task_output.pydantic,
@@ -1125,6 +1058,7 @@ class Crew(BaseModel):
"_short_term_memory",
"_long_term_memory",
"_entity_memory",
"_telemetry",
"agents",
"tasks",
"knowledge_sources",
@@ -1188,67 +1122,51 @@ class Crew(BaseModel):
agent.interpolate_inputs(inputs)
def _finish_execution(self, final_string_output: str) -> None:
if self._rpm_controller:
if self.max_rpm:
self._rpm_controller.stop_rpm_counter()
if agentops:
agentops.end_session(
end_state="Success",
end_state_reason="Finished Execution",
is_auto_end=True,
)
self._telemetry.end_crew(self, final_string_output)
def calculate_usage_metrics(self) -> UsageMetrics:
"""Calculates and returns the usage metrics."""
total_usage_metrics = UsageMetrics()
for agent in self.agents:
# Directly access token_process since it's now a field in BaseAgent
token_sum = agent.token_process.get_summary()
if hasattr(agent, "_token_process"):
token_sum = agent._token_process.get_summary()
total_usage_metrics.add_usage_metrics(token_sum)
if self.manager_agent and hasattr(self.manager_agent, "_token_process"):
token_sum = self.manager_agent._token_process.get_summary()
total_usage_metrics.add_usage_metrics(token_sum)
if self.manager_agent:
# Directly access token_process since it's now a field in BaseAgent
token_sum = self.manager_agent.token_process.get_summary()
total_usage_metrics.add_usage_metrics(token_sum)
self.usage_metrics = total_usage_metrics
return total_usage_metrics
def test(
self,
n_iterations: int,
eval_llm: Union[str, InstanceOf[LLM]],
openai_model_name: Optional[str] = None,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
try:
eval_llm = create_llm(eval_llm)
if not eval_llm:
raise ValueError("Failed to create LLM instance.")
test_crew = self.copy()
crewai_event_bus.emit(
self,
CrewTestStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
eval_llm=eval_llm,
inputs=inputs,
),
)
test_crew = self.copy()
evaluator = CrewEvaluator(test_crew, eval_llm) # type: ignore[arg-type]
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
test_crew.kickoff(inputs=inputs)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)
test_crew.kickoff(inputs=inputs)
evaluator.print_crew_evaluation_result()
crewai_event_bus.emit(
self,
CrewTestCompletedEvent(
crew_name=self.name or "crew",
),
)
except Exception as e:
crewai_event_bus.emit(
self,
CrewTestFailedEvent(error=str(e), crew_name=self.name or "crew"),
)
raise
evaluator.print_crew_evaluation_result()
def __repr__(self):
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"
@@ -1290,11 +1208,11 @@ class Crew(BaseModel):
def _reset_all_memories(self) -> None:
"""Reset all available memory systems."""
memory_systems = [
("short term", getattr(self, "_short_term_memory", None)),
("entity", getattr(self, "_entity_memory", None)),
("long term", getattr(self, "_long_term_memory", None)),
("task output", getattr(self, "_task_output_handler", None)),
("knowledge", getattr(self, "knowledge", None)),
("short term", self._short_term_memory),
("entity", self._entity_memory),
("long term", self._long_term_memory),
("task output", self._task_output_handler),
("knowledge", self.knowledge),
]
for name, system in memory_systems:

View File

@@ -1,5 +1,4 @@
import asyncio
import copy
import inspect
import logging
from typing import (
@@ -17,21 +16,19 @@ from typing import (
)
from uuid import uuid4
from blinker import Signal
from pydantic import BaseModel, Field, ValidationError
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.utils import get_possible_return_constants
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.flow_events import (
FlowCreatedEvent,
from crewai.flow.flow_events import (
FlowFinishedEvent,
FlowPlotEvent,
FlowStartedEvent,
MethodExecutionFailedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from crewai.flow.flow_visualizer import plot_flow
from crewai.flow.persistence.base import FlowPersistence
from crewai.flow.utils import get_possible_return_constants
from crewai.telemetry import Telemetry
from crewai.utilities.printer import Printer
logger = logging.getLogger(__name__)
@@ -397,6 +394,7 @@ class FlowMeta(type):
or hasattr(attr_value, "__trigger_methods__")
or hasattr(attr_value, "__is_router__")
):
# Register start methods
if hasattr(attr_value, "__is_start_method__"):
start_methods.append(attr_name)
@@ -429,6 +427,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
Type parameter T must be either Dict[str, Any] or a subclass of BaseModel."""
_telemetry = Telemetry()
_printer = Printer()
_start_methods: List[str] = []
@@ -436,6 +435,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
_routers: Set[str] = set()
_router_paths: Dict[str, List[str]] = {}
initial_state: Union[Type[T], T, None] = None
event_emitter = Signal("event_emitter")
def __class_getitem__(cls: Type["Flow"], item: Type[T]) -> Type["Flow"]:
class _FlowGeneric(cls): # type: ignore
@@ -469,13 +469,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
if kwargs:
self._initialize_state(kwargs)
crewai_event_bus.emit(
self,
FlowCreatedEvent(
type="flow_created",
flow_name=self.__class__.__name__,
),
)
self._telemetry.flow_creation_span(self.__class__.__name__)
# Register all flow-related methods
for method_name in dir(self):
@@ -575,9 +569,6 @@ class Flow(Generic[T], metaclass=FlowMeta):
f"Initial state must be dict or BaseModel, got {type(self.initial_state)}"
)
def _copy_state(self) -> T:
return copy.deepcopy(self._state)
@property
def state(self) -> T:
return self._state
@@ -709,34 +700,16 @@ class Flow(Generic[T], metaclass=FlowMeta):
raise TypeError(f"State must be dict or BaseModel, got {type(self._state)}")
def kickoff(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Start the flow execution in a synchronous context.
This method wraps kickoff_async so that all state initialization and event
emission is handled in the asynchronous method.
"""
async def run_flow():
return await self.kickoff_async(inputs)
return asyncio.run(run_flow())
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
"""
Start the flow execution asynchronously.
This method performs state restoration (if an 'id' is provided and persistence is available)
and updates the flow state with any additional inputs. It then emits the FlowStartedEvent,
logs the flow startup, and executes all start methods. Once completed, it emits the
FlowFinishedEvent and returns the final output.
"""Start the flow execution.
Args:
inputs: Optional dictionary containing input values and/or a state ID for restoration.
Returns:
The final output from the flow, which is the result of the last executed method.
inputs: Optional dictionary containing input values and potentially a state ID to restore
"""
if inputs:
# Handle state restoration if ID is provided in inputs
if inputs and "id" in inputs and self._persistence is not None:
restore_uuid = inputs["id"]
stored_state = self._persistence.load_state(restore_uuid)
# Override the id in the state if it exists in inputs
if "id" in inputs:
if isinstance(self._state, dict):
@@ -744,33 +717,29 @@ class Flow(Generic[T], metaclass=FlowMeta):
elif isinstance(self._state, BaseModel):
setattr(self._state, "id", inputs["id"])
# If persistence is enabled, attempt to restore the stored state using the provided id.
if "id" in inputs and self._persistence is not None:
restore_uuid = inputs["id"]
stored_state = self._persistence.load_state(restore_uuid)
if stored_state:
self._log_flow_event(
f"Loading flow state from memory for UUID: {restore_uuid}",
color="yellow",
)
self._restore_state(stored_state)
else:
self._log_flow_event(
f"No flow state found for UUID: {restore_uuid}", color="red"
)
if stored_state:
self._log_flow_event(
f"Loading flow state from memory for UUID: {restore_uuid}",
color="yellow",
)
# Restore the state
self._restore_state(stored_state)
else:
self._log_flow_event(
f"No flow state found for UUID: {restore_uuid}", color="red"
)
# Update state with any additional inputs (ignoring the 'id' key)
# Apply any additional inputs after restoration
filtered_inputs = {k: v for k, v in inputs.items() if k != "id"}
if filtered_inputs:
self._initialize_state(filtered_inputs)
# Emit FlowStartedEvent and log the start of the flow.
crewai_event_bus.emit(
# Start flow execution
self.event_emitter.send(
self,
FlowStartedEvent(
event=FlowStartedEvent(
type="flow_started",
flow_name=self.__class__.__name__,
inputs=inputs,
),
)
self._log_flow_event(
@@ -780,6 +749,16 @@ class Flow(Generic[T], metaclass=FlowMeta):
if inputs is not None and "id" not in inputs:
self._initialize_state(inputs)
return asyncio.run(self.kickoff_async())
async def kickoff_async(self, inputs: Optional[Dict[str, Any]] = None) -> Any:
if not self._start_methods:
raise ValueError("No start method defined")
self._telemetry.flow_execution_span(
self.__class__.__name__, list(self._methods.keys())
)
tasks = [
self._execute_start_method(start_method)
for start_method in self._start_methods
@@ -788,15 +767,14 @@ class Flow(Generic[T], metaclass=FlowMeta):
final_output = self._method_outputs[-1] if self._method_outputs else None
crewai_event_bus.emit(
self.event_emitter.send(
self,
FlowFinishedEvent(
event=FlowFinishedEvent(
type="flow_finished",
flow_name=self.__class__.__name__,
result=final_output,
),
)
return final_output
async def _execute_start_method(self, start_method_name: str) -> None:
@@ -825,55 +803,16 @@ class Flow(Generic[T], metaclass=FlowMeta):
async def _execute_method(
self, method_name: str, method: Callable, *args: Any, **kwargs: Any
) -> Any:
try:
dumped_params = {f"_{i}": arg for i, arg in enumerate(args)} | (
kwargs or {}
)
crewai_event_bus.emit(
self,
MethodExecutionStartedEvent(
type="method_execution_started",
method_name=method_name,
flow_name=self.__class__.__name__,
params=dumped_params,
state=self._copy_state(),
),
)
result = (
await method(*args, **kwargs)
if asyncio.iscoroutinefunction(method)
else method(*args, **kwargs)
)
self._method_outputs.append(result)
self._method_execution_counts[method_name] = (
self._method_execution_counts.get(method_name, 0) + 1
)
crewai_event_bus.emit(
self,
MethodExecutionFinishedEvent(
type="method_execution_finished",
method_name=method_name,
flow_name=self.__class__.__name__,
state=self._copy_state(),
result=result,
),
)
return result
except Exception as e:
crewai_event_bus.emit(
self,
MethodExecutionFailedEvent(
type="method_execution_failed",
method_name=method_name,
flow_name=self.__class__.__name__,
error=e,
),
)
raise e
result = (
await method(*args, **kwargs)
if asyncio.iscoroutinefunction(method)
else method(*args, **kwargs)
)
self._method_outputs.append(result)
self._method_execution_counts[method_name] = (
self._method_execution_counts.get(method_name, 0) + 1
)
return result
async def _execute_listeners(self, trigger_method: str, result: Any) -> None:
"""
@@ -894,45 +833,35 @@ class Flow(Generic[T], metaclass=FlowMeta):
Notes
-----
- Routers are executed sequentially to maintain flow control
- Each router's result becomes a new trigger_method
- Each router's result becomes the new trigger_method
- Normal listeners are executed in parallel for efficiency
- Listeners can receive the trigger method's result as a parameter
"""
# First, handle routers repeatedly until no router triggers anymore
router_results = []
current_trigger = trigger_method
while True:
routers_triggered = self._find_triggered_methods(
current_trigger, router_only=True
trigger_method, router_only=True
)
if not routers_triggered:
break
for router_name in routers_triggered:
await self._execute_single_listener(router_name, result)
# After executing router, the router's result is the path
router_result = self._method_outputs[-1]
if router_result: # Only add non-None results
router_results.append(router_result)
current_trigger = (
router_result # Update for next iteration of router chain
)
# The last router executed sets the trigger_method
# The router result is the last element in self._method_outputs
trigger_method = self._method_outputs[-1]
# Now execute normal listeners for all router results and the original trigger
all_triggers = [trigger_method] + router_results
for current_trigger in all_triggers:
if current_trigger: # Skip None results
listeners_triggered = self._find_triggered_methods(
current_trigger, router_only=False
)
if listeners_triggered:
tasks = [
self._execute_single_listener(listener_name, result)
for listener_name in listeners_triggered
]
await asyncio.gather(*tasks)
# Now that no more routers are triggered by current trigger_method,
# execute normal listeners
listeners_triggered = self._find_triggered_methods(
trigger_method, router_only=False
)
if listeners_triggered:
tasks = [
self._execute_single_listener(listener_name, result)
for listener_name in listeners_triggered
]
await asyncio.gather(*tasks)
def _find_triggered_methods(
self, trigger_method: str, router_only: bool
@@ -1022,6 +951,15 @@ class Flow(Generic[T], metaclass=FlowMeta):
try:
method = self._methods[listener_name]
self.event_emitter.send(
self,
event=MethodExecutionStartedEvent(
type="method_execution_started",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
sig = inspect.signature(method)
params = list(sig.parameters.values())
method_params = [p for p in params if p.name != "self"]
@@ -1033,6 +971,15 @@ class Flow(Generic[T], metaclass=FlowMeta):
else:
listener_result = await self._execute_method(listener_name, method)
self.event_emitter.send(
self,
event=MethodExecutionFinishedEvent(
type="method_execution_finished",
method_name=listener_name,
flow_name=self.__class__.__name__,
),
)
# Execute listeners (and possibly routers) of this listener
await self._execute_listeners(listener_name, listener_result)
@@ -1071,11 +1018,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
logger.warning(message)
def plot(self, filename: str = "crewai_flow") -> None:
crewai_event_bus.emit(
self,
FlowPlotEvent(
type="flow_plot",
flow_name=self.__class__.__name__,
),
self._telemetry.flow_plotting_span(
self.__class__.__name__, list(self._methods.keys())
)
plot_flow(self, filename)

View File

@@ -0,0 +1,33 @@
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Optional
@dataclass
class Event:
type: str
flow_name: str
timestamp: datetime = field(init=False)
def __post_init__(self):
self.timestamp = datetime.now()
@dataclass
class FlowStartedEvent(Event):
pass
@dataclass
class MethodExecutionStartedEvent(Event):
method_name: str
@dataclass
class MethodExecutionFinishedEvent(Event):
method_name: str
@dataclass
class FlowFinishedEvent(Event):
result: Optional[Any] = None

View File

@@ -58,7 +58,7 @@ class PersistenceDecorator:
_printer = Printer() # Class-level printer instance
@classmethod
def persist_state(cls, flow_instance: Any, method_name: str, persistence_instance: FlowPersistence, verbose: bool = False) -> None:
def persist_state(cls, flow_instance: Any, method_name: str, persistence_instance: FlowPersistence) -> None:
"""Persist flow state with proper error handling and logging.
This method handles the persistence of flow state data, including proper
@@ -68,7 +68,6 @@ class PersistenceDecorator:
flow_instance: The flow instance whose state to persist
method_name: Name of the method that triggered persistence
persistence_instance: The persistence backend to use
verbose: Whether to log persistence operations
Raises:
ValueError: If flow has no state or state lacks an ID
@@ -89,10 +88,9 @@ class PersistenceDecorator:
if not flow_uuid:
raise ValueError("Flow state must have an 'id' field for persistence")
# Log state saving only if verbose is True
if verbose:
cls._printer.print(LOG_MESSAGES["save_state"].format(flow_uuid), color="cyan")
logger.info(LOG_MESSAGES["save_state"].format(flow_uuid))
# Log state saving with consistent message
cls._printer.print(LOG_MESSAGES["save_state"].format(flow_uuid), color="cyan")
logger.info(LOG_MESSAGES["save_state"].format(flow_uuid))
try:
persistence_instance.save_state(
@@ -117,7 +115,7 @@ class PersistenceDecorator:
raise ValueError(error_msg) from e
def persist(persistence: Optional[FlowPersistence] = None, verbose: bool = False):
def persist(persistence: Optional[FlowPersistence] = None):
"""Decorator to persist flow state.
This decorator can be applied at either the class level or method level.
@@ -128,7 +126,6 @@ def persist(persistence: Optional[FlowPersistence] = None, verbose: bool = False
Args:
persistence: Optional FlowPersistence implementation to use.
If not provided, uses SQLiteFlowPersistence.
verbose: Whether to log persistence operations. Defaults to False.
Returns:
A decorator that can be applied to either a class or method
@@ -138,12 +135,13 @@ def persist(persistence: Optional[FlowPersistence] = None, verbose: bool = False
RuntimeError: If state persistence fails
Example:
@persist(verbose=True) # Class-level persistence with logging
@persist # Class-level persistence with default SQLite
class MyFlow(Flow[MyState]):
@start()
def begin(self):
pass
"""
def decorator(target: Union[Type, Callable[..., T]]) -> Union[Type, Callable[..., T]]:
"""Decorator that handles both class and method decoration."""
actual_persistence = persistence or SQLiteFlowPersistence()
@@ -181,7 +179,7 @@ def persist(persistence: Optional[FlowPersistence] = None, verbose: bool = False
@functools.wraps(original_method)
async def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
result = await original_method(self, *args, **kwargs)
PersistenceDecorator.persist_state(self, method_name, actual_persistence, verbose)
PersistenceDecorator.persist_state(self, method_name, actual_persistence)
return result
return method_wrapper
@@ -201,7 +199,7 @@ def persist(persistence: Optional[FlowPersistence] = None, verbose: bool = False
@functools.wraps(original_method)
def method_wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
result = original_method(self, *args, **kwargs)
PersistenceDecorator.persist_state(self, method_name, actual_persistence, verbose)
PersistenceDecorator.persist_state(self, method_name, actual_persistence)
return result
return method_wrapper
@@ -230,7 +228,7 @@ def persist(persistence: Optional[FlowPersistence] = None, verbose: bool = False
result = await method_coro
else:
result = method_coro
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence, verbose)
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence)
return result
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:
@@ -242,7 +240,7 @@ def persist(persistence: Optional[FlowPersistence] = None, verbose: bool = False
@functools.wraps(method)
def method_sync_wrapper(flow_instance: Any, *args: Any, **kwargs: Any) -> T:
result = method(flow_instance, *args, **kwargs)
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence, verbose)
PersistenceDecorator.persist_state(flow_instance, method.__name__, actual_persistence)
return result
for attr in ["__is_start_method__", "__trigger_methods__", "__condition_type__", "__is_router__"]:

View File

@@ -4,7 +4,7 @@ SQLite-based implementation of flow state persistence.
import json
import sqlite3
from datetime import datetime, timezone
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, Optional, Union
@@ -34,7 +34,6 @@ class SQLiteFlowPersistence(FlowPersistence):
ValueError: If db_path is invalid
"""
from crewai.utilities.paths import db_storage_path
# Get path from argument or default location
path = db_path or str(Path(db_storage_path()) / "flow_states.db")
@@ -47,8 +46,7 @@ class SQLiteFlowPersistence(FlowPersistence):
def init_db(self) -> None:
"""Create the necessary tables if they don't exist."""
with sqlite3.connect(self.db_path) as conn:
conn.execute(
"""
conn.execute("""
CREATE TABLE IF NOT EXISTS flow_states (
id INTEGER PRIMARY KEY AUTOINCREMENT,
flow_uuid TEXT NOT NULL,
@@ -56,15 +54,12 @@ class SQLiteFlowPersistence(FlowPersistence):
timestamp DATETIME NOT NULL,
state_json TEXT NOT NULL
)
"""
)
""")
# Add index for faster UUID lookups
conn.execute(
"""
conn.execute("""
CREATE INDEX IF NOT EXISTS idx_flow_states_uuid
ON flow_states(flow_uuid)
"""
)
""")
def save_state(
self,
@@ -90,22 +85,19 @@ class SQLiteFlowPersistence(FlowPersistence):
)
with sqlite3.connect(self.db_path) as conn:
conn.execute(
"""
conn.execute("""
INSERT INTO flow_states (
flow_uuid,
method_name,
timestamp,
state_json
) VALUES (?, ?, ?, ?)
""",
(
flow_uuid,
method_name,
datetime.now(timezone.utc).isoformat(),
json.dumps(state_dict),
),
)
""", (
flow_uuid,
method_name,
datetime.utcnow().isoformat(),
json.dumps(state_dict),
))
def load_state(self, flow_uuid: str) -> Optional[Dict[str, Any]]:
"""Load the most recent state for a given flow UUID.
@@ -117,16 +109,13 @@ class SQLiteFlowPersistence(FlowPersistence):
The most recent state as a dictionary, or None if no state exists
"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.execute(
"""
cursor = conn.execute("""
SELECT state_json
FROM flow_states
WHERE flow_uuid = ?
ORDER BY id DESC
LIMIT 1
""",
(flow_uuid,),
)
""", (flow_uuid,))
row = cursor.fetchone()
if row:

View File

@@ -1,91 +0,0 @@
import json
from datetime import date, datetime
from typing import Any, Dict, List, Union
from pydantic import BaseModel
from crewai.flow import Flow
SerializablePrimitive = Union[str, int, float, bool, None]
Serializable = Union[
SerializablePrimitive, List["Serializable"], Dict[str, "Serializable"]
]
def export_state(flow: Flow) -> dict[str, Serializable]:
"""Exports the Flow's internal state as JSON-compatible data structures.
Performs a one-way transformation of a Flow's state into basic Python types
that can be safely serialized to JSON. To prevent infinite recursion with
circular references, the conversion is limited to a depth of 5 levels.
Args:
flow: The Flow object whose state needs to be exported
Returns:
dict[str, Any]: The transformed state using JSON-compatible Python
types.
"""
result = to_serializable(flow._state)
assert isinstance(result, dict)
return result
def to_serializable(
obj: Any, max_depth: int = 5, _current_depth: int = 0
) -> Serializable:
"""Converts a Python object into a JSON-compatible representation.
Supports primitives, datetime objects, collections, dictionaries, and
Pydantic models. Recursion depth is limited to prevent infinite nesting.
Non-convertible objects default to their string representations.
Args:
obj (Any): Object to transform.
max_depth (int, optional): Maximum recursion depth. Defaults to 5.
Returns:
Serializable: A JSON-compatible structure.
"""
if _current_depth >= max_depth:
return repr(obj)
if isinstance(obj, (str, int, float, bool, type(None))):
return obj
elif isinstance(obj, (date, datetime)):
return obj.isoformat()
elif isinstance(obj, (list, tuple, set)):
return [to_serializable(item, max_depth, _current_depth + 1) for item in obj]
elif isinstance(obj, dict):
return {
_to_serializable_key(key): to_serializable(
value, max_depth, _current_depth + 1
)
for key, value in obj.items()
}
elif isinstance(obj, BaseModel):
return to_serializable(obj.model_dump(), max_depth, _current_depth + 1)
else:
return repr(obj)
def _to_serializable_key(key: Any) -> str:
if isinstance(key, (str, int)):
return str(key)
return f"key_{id(key)}_{repr(key)}"
def to_string(obj: Any) -> str | None:
"""Serializes an object into a JSON string.
Args:
obj (Any): Object to serialize.
Returns:
str | None: A JSON-formatted string or `None` if empty.
"""
serializable = to_serializable(obj)
if serializable is None:
return None
else:
return json.dumps(serializable)

View File

@@ -16,8 +16,7 @@ Example
import ast
import inspect
import textwrap
from collections import defaultdict, deque
from typing import Any, Deque, Dict, List, Optional, Set, Union
from typing import Any, Dict, List, Optional, Set, Union
def get_possible_return_constants(function: Any) -> Optional[List[str]]:
@@ -119,7 +118,7 @@ def calculate_node_levels(flow: Any) -> Dict[str, int]:
- Processes router paths separately
"""
levels: Dict[str, int] = {}
queue: Deque[str] = deque()
queue: List[str] = []
visited: Set[str] = set()
pending_and_listeners: Dict[str, Set[str]] = {}
@@ -129,35 +128,28 @@ def calculate_node_levels(flow: Any) -> Dict[str, int]:
levels[method_name] = 0
queue.append(method_name)
# Precompute listener dependencies
or_listeners = defaultdict(list)
and_listeners = defaultdict(set)
for listener_name, (condition_type, trigger_methods) in flow._listeners.items():
if condition_type == "OR":
for method in trigger_methods:
or_listeners[method].append(listener_name)
elif condition_type == "AND":
and_listeners[listener_name] = set(trigger_methods)
# Breadth-first traversal to assign levels
while queue:
current = queue.popleft()
current = queue.pop(0)
current_level = levels[current]
visited.add(current)
for listener_name in or_listeners[current]:
if listener_name not in levels or levels[listener_name] > current_level + 1:
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
for listener_name, required_methods in and_listeners.items():
if current in required_methods:
for listener_name, (condition_type, trigger_methods) in flow._listeners.items():
if condition_type == "OR":
if current in trigger_methods:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
elif condition_type == "AND":
if listener_name not in pending_and_listeners:
pending_and_listeners[listener_name] = set()
pending_and_listeners[listener_name].add(current)
if required_methods == pending_and_listeners[listener_name]:
if current in trigger_methods:
pending_and_listeners[listener_name].add(current)
if set(trigger_methods) == pending_and_listeners[listener_name]:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
@@ -167,7 +159,22 @@ def calculate_node_levels(flow: Any) -> Dict[str, int]:
queue.append(listener_name)
# Handle router connections
process_router_paths(flow, current, current_level, levels, queue)
if current in flow._routers:
router_method_name = current
paths = flow._router_paths.get(router_method_name, [])
for path in paths:
for listener_name, (
condition_type,
trigger_methods,
) in flow._listeners.items():
if path in trigger_methods:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
if listener_name not in visited:
queue.append(listener_name)
return levels
@@ -220,7 +227,10 @@ def build_ancestor_dict(flow: Any) -> Dict[str, Set[str]]:
def dfs_ancestors(
node: str, ancestors: Dict[str, Set[str]], visited: Set[str], flow: Any
node: str,
ancestors: Dict[str, Set[str]],
visited: Set[str],
flow: Any
) -> None:
"""
Perform depth-first search to build ancestor relationships.
@@ -264,9 +274,7 @@ def dfs_ancestors(
dfs_ancestors(listener_name, ancestors, visited, flow)
def is_ancestor(
node: str, ancestor_candidate: str, ancestors: Dict[str, Set[str]]
) -> bool:
def is_ancestor(node: str, ancestor_candidate: str, ancestors: Dict[str, Set[str]]) -> bool:
"""
Check if one node is an ancestor of another.
@@ -331,9 +339,7 @@ def build_parent_children_dict(flow: Any) -> Dict[str, List[str]]:
return parent_children
def get_child_index(
parent: str, child: str, parent_children: Dict[str, List[str]]
) -> int:
def get_child_index(parent: str, child: str, parent_children: Dict[str, List[str]]) -> int:
"""
Get the index of a child node in its parent's sorted children list.
@@ -354,23 +360,3 @@ def get_child_index(
children = parent_children.get(parent, [])
children.sort()
return children.index(child)
def process_router_paths(flow, current, current_level, levels, queue):
"""
Handle the router connections for the current node.
"""
if current in flow._routers:
paths = flow._router_paths.get(current, [])
for path in paths:
for listener_name, (
condition_type,
trigger_methods,
) in flow._listeners.items():
if path in trigger_methods:
if (
listener_name not in levels
or levels[listener_name] > current_level + 1
):
levels[listener_name] = current_level + 1
queue.append(listener_name)

View File

@@ -1,138 +1,28 @@
from pathlib import Path
from typing import Dict, Iterator, List, Optional, Union
from urllib.parse import urlparse
from typing import Dict, List
from pydantic import Field, field_validator
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.logger import Logger
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class ExcelKnowledgeSource(BaseKnowledgeSource):
class ExcelKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries Excel file content using embeddings."""
# override content to be a dict of file paths to sheet names to csv content
_logger: Logger = Logger(verbose=True)
file_path: Optional[Union[Path, List[Path], str, List[str]]] = Field(
default=None,
description="[Deprecated] The path to the file. Use file_paths instead.",
)
file_paths: Optional[Union[Path, List[Path], str, List[str]]] = Field(
default_factory=list, description="The path to the file"
)
chunks: List[str] = Field(default_factory=list)
content: Dict[Path, Dict[str, str]] = Field(default_factory=dict)
safe_file_paths: List[Path] = Field(default_factory=list)
@field_validator("file_path", "file_paths", mode="before")
def validate_file_path(cls, v, info):
"""Validate that at least one of file_path or file_paths is provided."""
# Single check if both are None, O(1) instead of nested conditions
if (
v is None
and info.data.get(
"file_path" if info.field_name == "file_paths" else "file_paths"
)
is None
):
raise ValueError("Either file_path or file_paths must be provided")
return v
def _process_file_paths(self) -> List[Path]:
"""Convert file_path to a list of Path objects."""
if hasattr(self, "file_path") and self.file_path is not None:
self._logger.log(
"warning",
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
color="yellow",
)
self.file_paths = self.file_path
if self.file_paths is None:
raise ValueError("Your source must be provided with a file_paths: []")
# Convert single path to list
path_list: List[Union[Path, str]] = (
[self.file_paths]
if isinstance(self.file_paths, (str, Path))
else list(self.file_paths)
if isinstance(self.file_paths, list)
else []
)
if not path_list:
raise ValueError(
"file_path/file_paths must be a Path, str, or a list of these types"
)
return [self.convert_to_path(path) for path in path_list]
def validate_content(self):
"""Validate the paths."""
for path in self.safe_file_paths:
if not path.exists():
self._logger.log(
"error",
f"File not found: {path}. Try adding sources to the knowledge directory. If it's inside the knowledge directory, use the relative path.",
color="red",
)
raise FileNotFoundError(f"File not found: {path}")
if not path.is_file():
self._logger.log(
"error",
f"Path is not a file: {path}",
color="red",
)
def model_post_init(self, _) -> None:
if self.file_path:
self._logger.log(
"warning",
"The 'file_path' attribute is deprecated and will be removed in a future version. Please use 'file_paths' instead.",
color="yellow",
)
self.file_paths = self.file_path
self.safe_file_paths = self._process_file_paths()
self.validate_content()
self.content = self._load_content()
def _load_content(self) -> Dict[Path, Dict[str, str]]:
"""Load and preprocess Excel file content from multiple sheets.
Each sheet's content is converted to CSV format and stored.
Returns:
Dict[Path, Dict[str, str]]: A mapping of file paths to their respective sheet contents.
Raises:
ImportError: If required dependencies are missing.
FileNotFoundError: If the specified Excel file cannot be opened.
"""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess Excel file content."""
pd = self._import_dependencies()
content_dict = {}
for file_path in self.safe_file_paths:
file_path = self.convert_to_path(file_path)
with pd.ExcelFile(file_path) as xl:
sheet_dict = {
str(sheet_name): str(
pd.read_excel(xl, sheet_name).to_csv(index=False)
)
for sheet_name in xl.sheet_names
}
content_dict[file_path] = sheet_dict
df = pd.read_excel(file_path)
content = df.to_csv(index=False)
content_dict[file_path] = content
return content_dict
def convert_to_path(self, path: Union[Path, str]) -> Path:
"""Convert a path to a Path object."""
return Path(KNOWLEDGE_DIRECTORY + "/" + path) if isinstance(path, str) else path
def _import_dependencies(self):
"""Dynamically import dependencies."""
try:
import openpyxl # noqa
import pandas as pd
return pd
@@ -148,14 +38,10 @@ class ExcelKnowledgeSource(BaseKnowledgeSource):
and save the embeddings.
"""
# Convert dictionary values to a single string if content is a dictionary
# Updated to account for .xlsx workbooks with multiple tabs/sheets
content_str = ""
for value in self.content.values():
if isinstance(value, dict):
for sheet_value in value.values():
content_str += str(sheet_value) + "\n"
else:
content_str += str(value) + "\n"
if isinstance(self.content, dict):
content_str = "\n".join(str(value) for value in self.content.values())
else:
content_str = str(self.content)
new_chunks = self._chunk_text(content_str)
self.chunks.extend(new_chunks)

View File

@@ -76,7 +76,7 @@ class KnowledgeStorage(BaseKnowledgeStorage):
"context": fetched["documents"][0][i], # type: ignore
"score": fetched["distances"][0][i], # type: ignore
}
if result["score"] >= score_threshold:
if result["score"] >= score_threshold: # type: ignore
results.append(result)
return results
else:

View File

@@ -10,23 +10,14 @@ from typing import Any, Dict, List, Literal, Optional, Type, Union, cast
from dotenv import load_dotenv
from pydantic import BaseModel
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
LLMCallType,
)
from crewai.utilities.events.tool_usage_events import ToolExecutionErrorEvent
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
import litellm
from litellm import Choices
from litellm import Choices, get_supported_openai_params
from litellm.types.utils import ModelResponse
from litellm.utils import get_supported_openai_params, supports_response_schema
from litellm.utils import supports_response_schema
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
@@ -64,7 +55,6 @@ LLM_CONTEXT_WINDOW_SIZES = {
"gpt-4-turbo": 128000,
"o1-preview": 128000,
"o1-mini": 128000,
"o3-mini": 200000, # Based on official o3-mini specifications
# gemini
"gemini-2.0-flash": 1048576,
"gemini-1.5-pro": 2097152,
@@ -191,14 +181,14 @@ class LLM:
def _is_anthropic_model(self, model: str) -> bool:
"""Determine if the model is from Anthropic provider.
Args:
model: The model identifier string.
Returns:
bool: True if the model is from Anthropic, False otherwise.
"""
ANTHROPIC_PREFIXES = ("anthropic/", "claude-", "claude/")
ANTHROPIC_PREFIXES = ('anthropic/', 'claude-', 'claude/')
return any(prefix in model.lower() for prefix in ANTHROPIC_PREFIXES)
def call(
@@ -209,7 +199,7 @@ class LLM:
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""High-level LLM call method.
Args:
messages: Input messages for the LLM.
Can be a string or list of message dictionaries.
@@ -221,22 +211,22 @@ class LLM:
during and after the LLM call.
available_functions: Optional dict mapping function names to callables
that can be invoked by the LLM.
Returns:
Union[str, Any]: Either a text response from the LLM (str) or
the result of a tool function call (Any).
Raises:
TypeError: If messages format is invalid
ValueError: If response format is not supported
LLMContextLengthExceededException: If input exceeds model's context limit
Examples:
# Example 1: Simple string input
>>> response = llm.call("Return the name of a random city.")
>>> print(response)
"Paris"
# Example 2: Message list with system and user messages
>>> messages = [
... {"role": "system", "content": "You are a geography expert"},
@@ -246,15 +236,6 @@ class LLM:
>>> print(response)
"The capital of France is Paris."
"""
crewai_event_bus.emit(
self,
event=LLMCallStartedEvent(
messages=messages,
tools=tools,
callbacks=callbacks,
available_functions=available_functions,
),
)
# Validate parameters before proceeding with the call.
self._validate_call_params()
@@ -329,7 +310,6 @@ class LLM:
# --- 4) If no tool calls, return the text response
if not tool_calls or not available_functions:
self._handle_emit_call_events(text_response, LLMCallType.LLM_CALL)
return text_response
# --- 5) Handle the tool call
@@ -347,28 +327,12 @@ class LLM:
try:
# Call the actual tool function
result = fn(**function_args)
self._handle_emit_call_events(result, LLMCallType.TOOL_CALL)
return result
except Exception as e:
logging.error(
f"Error executing function '{function_name}': {e}"
)
crewai_event_bus.emit(
self,
event=ToolExecutionErrorEvent(
tool_name=function_name,
tool_args=function_args,
tool_class=fn,
error=str(e),
),
)
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(
error=f"Tool execution error: {str(e)}"
),
)
return text_response
else:
@@ -378,62 +342,42 @@ class LLM:
return text_response
except Exception as e:
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e)),
)
if not LLMContextLengthExceededException(
str(e)
)._is_context_limit_error(str(e)):
logging.error(f"LiteLLM call failed: {str(e)}")
raise
def _handle_emit_call_events(self, response: Any, call_type: LLMCallType):
"""Handle the events for the LLM call.
Args:
response (str): The response from the LLM call.
call_type (str): The type of call, either "tool_call" or "llm_call".
"""
crewai_event_bus.emit(
self,
event=LLMCallCompletedEvent(response=response, call_type=call_type),
)
def _format_messages_for_provider(
self, messages: List[Dict[str, str]]
) -> List[Dict[str, str]]:
def _format_messages_for_provider(self, messages: List[Dict[str, str]]) -> List[Dict[str, str]]:
"""Format messages according to provider requirements.
Args:
messages: List of message dictionaries with 'role' and 'content' keys.
Can be empty or None.
Returns:
List of formatted messages according to provider requirements.
For Anthropic models, ensures first message has 'user' role.
Raises:
TypeError: If messages is None or contains invalid message format.
"""
if messages is None:
raise TypeError("Messages cannot be None")
# Validate message format first
for msg in messages:
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
raise TypeError(
"Invalid message format. Each message must be a dict with 'role' and 'content' keys"
)
raise TypeError("Invalid message format. Each message must be a dict with 'role' and 'content' keys")
if not self.is_anthropic:
return messages
# Anthropic requires messages to start with 'user' role
if not messages or messages[0]["role"] == "system":
# If first message is system or empty, add a placeholder user message
return [{"role": "user", "content": "."}, *messages]
return messages
def _get_custom_llm_provider(self) -> str:
@@ -469,7 +413,7 @@ class LLM:
def supports_function_calling(self) -> bool:
try:
params = get_supported_openai_params(model=self.model)
return params is not None and "tools" in params
return "response_format" in params
except Exception as e:
logging.error(f"Failed to get supported params: {str(e)}")
return False
@@ -477,7 +421,7 @@ class LLM:
def supports_stop_words(self) -> bool:
try:
params = get_supported_openai_params(model=self.model)
return params is not None and "stop" in params
return "stop" in params
except Exception as e:
logging.error(f"Failed to get supported params: {str(e)}")
return False
@@ -486,23 +430,10 @@ class LLM:
"""
Returns the context window size, using 75% of the maximum to avoid
cutting off messages mid-thread.
Raises:
ValueError: If a model's context window size is outside valid bounds (1024-2097152)
"""
if self.context_window_size != 0:
return self.context_window_size
MIN_CONTEXT = 1024
MAX_CONTEXT = 2097152 # Current max from gemini-1.5-pro
# Validate all context window sizes
for key, value in LLM_CONTEXT_WINDOW_SIZES.items():
if value < MIN_CONTEXT or value > MAX_CONTEXT:
raise ValueError(
f"Context window for {key} must be between {MIN_CONTEXT} and {MAX_CONTEXT}"
)
self.context_window_size = int(
DEFAULT_CONTEXT_WINDOW_SIZE * CONTEXT_WINDOW_USAGE_RATIO
)

View File

@@ -149,10 +149,17 @@ class RAGStorage(BaseRAGStorage):
)
def reset(self) -> None:
"""Reset the storage by removing the database files and reinitializing."""
try:
if self.app:
self.app.reset()
shutil.rmtree(f"{db_storage_path()}/{self.type}")
# Clean up ChromaDB files
storage_path = os.path.join(db_storage_path(), self.type)
if os.path.exists(storage_path):
shutil.rmtree(storage_path)
# Clean up temporary directory
if os.path.exists(self.path):
shutil.rmtree(self.path)
self.app = None
self.collection = None
except Exception as e:
@@ -163,12 +170,3 @@ class RAGStorage(BaseRAGStorage):
raise Exception(
f"An error occurred while resetting the {self.type} memory: {e}"
)
def _create_default_embedding_function(self):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)

View File

@@ -21,6 +21,7 @@ from typing import (
Union,
)
from opentelemetry.trace import Span
from pydantic import (
UUID4,
BaseModel,
@@ -35,15 +36,10 @@ from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tasks.guardrail_result import GuardrailResult
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry.telemetry import Telemetry
from crewai.tools.base_tool import BaseTool
from crewai.utilities.config import process_config
from crewai.utilities.converter import Converter, convert_to_model
from crewai.utilities.events import (
TaskCompletedEvent,
TaskFailedEvent,
TaskStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.i18n import I18N
from crewai.utilities.printer import Printer
@@ -187,6 +183,8 @@ class Task(BaseModel):
)
return v
_telemetry: Telemetry = PrivateAttr(default_factory=Telemetry)
_execution_span: Optional[Span] = PrivateAttr(default=None)
_original_description: Optional[str] = PrivateAttr(default=None)
_original_expected_output: Optional[str] = PrivateAttr(default=None)
_original_output_file: Optional[str] = PrivateAttr(default=None)
@@ -350,102 +348,100 @@ class Task(BaseModel):
tools: Optional[List[Any]],
) -> TaskOutput:
"""Run the core execution logic of the task."""
try:
agent = agent or self.agent
self.agent = agent
if not agent:
raise Exception(
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, like hierarchical."
)
self.start_time = datetime.datetime.now()
self.prompt_context = context
tools = tools or self.tools or []
self.processed_by_agents.add(agent.role)
crewai_event_bus.emit(self, TaskStartedEvent(context=context))
result = agent.execute_task(
task=self,
context=context,
tools=tools,
agent = agent or self.agent
self.agent = agent
if not agent:
raise Exception(
f"The task '{self.description}' has no agent assigned, therefore it can't be executed directly and should be executed in a Crew using a specific process that support that, like hierarchical."
)
pydantic_output, json_output = self._export_output(result)
task_output = TaskOutput(
name=self.name,
description=self.description,
expected_output=self.expected_output,
raw=result,
pydantic=pydantic_output,
json_dict=json_output,
agent=agent.role,
output_format=self._get_output_format(),
)
self.start_time = datetime.datetime.now()
self._execution_span = self._telemetry.task_started(crew=agent.crew, task=self)
if self.guardrail:
guardrail_result = GuardrailResult.from_tuple(
self.guardrail(task_output)
)
if not guardrail_result.success:
if self.retry_count >= self.max_retries:
raise Exception(
f"Task failed guardrail validation after {self.max_retries} retries. "
f"Last error: {guardrail_result.error}"
)
self.prompt_context = context
tools = tools or self.tools or []
self.retry_count += 1
context = self.i18n.errors("validation_error").format(
guardrail_result_error=guardrail_result.error,
task_output=task_output.raw,
)
printer = Printer()
printer.print(
content=f"Guardrail blocked, retrying, due to: {guardrail_result.error}\n",
color="yellow",
)
return self._execute_core(agent, context, tools)
self.processed_by_agents.add(agent.role)
if guardrail_result.result is None:
result = agent.execute_task(
task=self,
context=context,
tools=tools,
)
pydantic_output, json_output = self._export_output(result)
task_output = TaskOutput(
name=self.name,
description=self.description,
expected_output=self.expected_output,
raw=result,
pydantic=pydantic_output,
json_dict=json_output,
agent=agent.role,
output_format=self._get_output_format(),
)
if self.guardrail:
guardrail_result = GuardrailResult.from_tuple(self.guardrail(task_output))
if not guardrail_result.success:
if self.retry_count >= self.max_retries:
raise Exception(
"Task guardrail returned None as result. This is not allowed."
f"Task failed guardrail validation after {self.max_retries} retries. "
f"Last error: {guardrail_result.error}"
)
if isinstance(guardrail_result.result, str):
task_output.raw = guardrail_result.result
pydantic_output, json_output = self._export_output(
guardrail_result.result
)
task_output.pydantic = pydantic_output
task_output.json_dict = json_output
elif isinstance(guardrail_result.result, TaskOutput):
task_output = guardrail_result.result
self.output = task_output
self.end_time = datetime.datetime.now()
if self.callback:
self.callback(self.output)
crew = self.agent.crew # type: ignore[union-attr]
if crew and crew.task_callback and crew.task_callback != self.callback:
crew.task_callback(self.output)
if self.output_file:
content = (
json_output
if json_output
else pydantic_output.model_dump_json()
if pydantic_output
else result
self.retry_count += 1
context = self.i18n.errors("validation_error").format(
guardrail_result_error=guardrail_result.error,
task_output=task_output.raw,
)
self._save_file(content)
crewai_event_bus.emit(self, TaskCompletedEvent(output=task_output))
return task_output
except Exception as e:
self.end_time = datetime.datetime.now()
crewai_event_bus.emit(self, TaskFailedEvent(error=str(e)))
raise e # Re-raise the exception after emitting the event
printer = Printer()
printer.print(
content=f"Guardrail blocked, retrying, due to: {guardrail_result.error}\n",
color="yellow",
)
return self._execute_core(agent, context, tools)
if guardrail_result.result is None:
raise Exception(
"Task guardrail returned None as result. This is not allowed."
)
if isinstance(guardrail_result.result, str):
task_output.raw = guardrail_result.result
pydantic_output, json_output = self._export_output(
guardrail_result.result
)
task_output.pydantic = pydantic_output
task_output.json_dict = json_output
elif isinstance(guardrail_result.result, TaskOutput):
task_output = guardrail_result.result
self.output = task_output
self.end_time = datetime.datetime.now()
if self.callback:
self.callback(self.output)
crew = self.agent.crew # type: ignore[union-attr]
if crew and crew.task_callback and crew.task_callback != self.callback:
crew.task_callback(self.output)
if self._execution_span:
self._telemetry.task_ended(self._execution_span, self, agent.crew)
self._execution_span = None
if self.output_file:
content = (
json_output
if json_output
else pydantic_output.model_dump_json()
if pydantic_output
else result
)
self._save_file(content)
return task_output
def prompt(self) -> str:
"""Prompt the task.
@@ -720,9 +716,10 @@ class Task(BaseModel):
file.write(str(result))
except (OSError, IOError) as e:
raise RuntimeError(
"\n".join(
[f"Failed to save output file: {e}", FILEWRITER_RECOMMENDATION]
)
"\n".join([
f"Failed to save output file: {e}",
FILEWRITER_RECOMMENDATION
])
)
return None

View File

@@ -1,7 +1,7 @@
import warnings
from abc import ABC, abstractmethod
from inspect import signature
from typing import Any, Callable, Optional, Type, get_args, get_origin
from typing import Any, Callable, Type, get_args, get_origin
from pydantic import (
BaseModel,
@@ -19,21 +19,11 @@ from crewai.tools.structured_tool import CrewStructuredTool
warnings.filterwarnings("ignore", category=PydanticDeprecatedSince20)
# Define a helper function with an explicit signature
def default_cache_function(
_args: Optional[Any] = None, _result: Optional[Any] = None
) -> bool:
return True
class BaseTool(BaseModel, ABC):
class _ArgsSchemaPlaceholder(PydanticBaseModel):
pass
model_config = ConfigDict(
arbitrary_types_allowed=True,
from_attributes=True, # Allow conversion from ORM objects
)
model_config = ConfigDict()
name: str
"""The unique name of the tool that clearly communicates its purpose."""
@@ -43,10 +33,8 @@ class BaseTool(BaseModel, ABC):
"""The schema for the arguments that the tool accepts."""
description_updated: bool = False
"""Flag to check if the description has been updated."""
cache_function: Callable[[Optional[Any], Optional[Any]], bool] = (
default_cache_function
)
"""Function used to determine if the tool should be cached."""
cache_function: Callable = lambda _args=None, _result=None: True
"""Function that will be used to determine if the tool should be cached, should return a boolean. If None, the tool will be cached."""
result_as_answer: bool = False
"""Flag to check if the tool should be the final agent answer."""
@@ -189,43 +177,74 @@ class BaseTool(BaseModel, ABC):
return origin.__name__
@property
def get(self) -> Callable[[str, Any], Any]:
# Instead of an inline lambda, we define a helper function with explicit types.
def _getter(key: str, default: Any = None) -> Any:
return getattr(self, key, default)
return _getter
class Tool(BaseTool):
"""Tool implementation that requires a function."""
"""The function that will be executed when the tool is called."""
func: Callable
model_config = ConfigDict(
arbitrary_types_allowed=True,
from_attributes=True,
)
def _run(self, *args: Any, **kwargs: Any) -> Any:
return self.func(*args, **kwargs)
def to_langchain(self) -> Any:
"""Convert to a LangChain-compatible tool."""
try:
from langchain_core.tools import Tool as LC_Tool
except ImportError:
raise ImportError("langchain_core is not installed")
@classmethod
def from_langchain(cls, tool: Any) -> "Tool":
"""Create a Tool instance from a CrewStructuredTool.
# Use self._run (which is bound and calls self.func) so that the LC_Tool gets proper attributes.
return LC_Tool(
name=self.name,
description=self.description,
func=self._run,
args_schema=self.args_schema,
This method takes a CrewStructuredTool object and converts it into a
Tool instance. It ensures that the provided tool has a callable 'func'
attribute and infers the argument schema if not explicitly provided.
Args:
tool (Any): The CrewStructuredTool object to be converted.
Returns:
Tool: A new Tool instance created from the provided CrewStructuredTool.
Raises:
ValueError: If the provided tool does not have a callable 'func' attribute.
"""
if not hasattr(tool, "func") or not callable(tool.func):
raise ValueError("The provided tool must have a callable 'func' attribute.")
args_schema = getattr(tool, "args_schema", None)
if args_schema is None:
# Infer args_schema from the function signature if not provided
func_signature = signature(tool.func)
annotations = func_signature.parameters
args_fields = {}
for name, param in annotations.items():
if name != "self":
param_annotation = (
param.annotation if param.annotation != param.empty else Any
)
field_info = Field(
default=...,
description="",
)
args_fields[name] = (param_annotation, field_info)
if args_fields:
args_schema = create_model(f"{tool.name}Input", **args_fields)
else:
# Create a default schema with no fields if no parameters are found
args_schema = create_model(
f"{tool.name}Input", __base__=PydanticBaseModel
)
return cls(
name=getattr(tool, "name", "Unnamed Tool"),
description=getattr(tool, "description", ""),
func=tool.func,
args_schema=args_schema,
)
def to_langchain(
tools: list[BaseTool | CrewStructuredTool],
) -> list[CrewStructuredTool]:
return [t.to_structured_tool() if isinstance(t, BaseTool) else t for t in tools]
def tool(*args):
"""
Decorator to create a tool from a function.

View File

@@ -10,21 +10,20 @@ from typing import Any, Dict, List, Optional, Union
import json5
from json_repair import repair_json
import crewai.utilities.events as events
from crewai.agents.tools_handler import ToolsHandler
from crewai.task import Task
from crewai.telemetry import Telemetry
from crewai.tools import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from crewai.tools.tool_calling import InstructorToolCalling, ToolCalling
from crewai.tools.tool_usage_events import ToolUsageError, ToolUsageFinished
from crewai.utilities import I18N, Converter, ConverterError, Printer
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.tool_usage_events import (
ToolSelectionErrorEvent,
ToolUsageErrorEvent,
ToolUsageFinishedEvent,
ToolValidateInputErrorEvent,
)
try:
import agentops # type: ignore
except ImportError:
agentops = None
OPENAI_BIGGER_MODELS = [
"gpt-4",
"gpt-4o",
@@ -137,6 +136,7 @@ class ToolUsage:
tool: Any,
calling: Union[ToolCalling, InstructorToolCalling],
) -> str: # TODO: Fix this return type
tool_event = agentops.ToolEvent(name=calling.tool_name) if agentops else None # type: ignore
if self._check_tool_repeated_usage(calling=calling): # type: ignore # _check_tool_repeated_usage of "ToolUsage" does not return a value (it only ever returns None)
try:
result = self._i18n.errors("task_repeated_usage").format(
@@ -212,6 +212,10 @@ class ToolUsage:
return error # type: ignore # No return value expected
self.task.increment_tools_errors()
if agentops:
agentops.record(
agentops.ErrorEvent(exception=e, trigger_event=tool_event)
)
return self.use(calling=calling, tool_string=tool_string) # type: ignore # No return value expected
if self.tools_handler:
@@ -227,6 +231,9 @@ class ToolUsage:
self.tools_handler.on_tool_use(
calling=calling, output=result, should_cache=should_cache
)
if agentops:
agentops.record(tool_event)
self._telemetry.tool_usage(
llm=self.function_calling_llm,
tool_name=tool.name,
@@ -301,33 +308,14 @@ class ToolUsage:
):
return tool
self.task.increment_tools_errors()
tool_selection_data = {
"agent_key": self.agent.key,
"agent_role": self.agent.role,
"tool_name": tool_name,
"tool_args": {},
"tool_class": self.tools_description,
}
if tool_name and tool_name != "":
error = f"Action '{tool_name}' don't exist, these are the only available Actions:\n{self.tools_description}"
crewai_event_bus.emit(
self,
ToolSelectionErrorEvent(
**tool_selection_data,
error=error,
),
raise Exception(
f"Action '{tool_name}' don't exist, these are the only available Actions:\n{self.tools_description}"
)
raise Exception(error)
else:
error = f"I forgot the Action name, these are the only available Actions: {self.tools_description}"
crewai_event_bus.emit(
self,
ToolSelectionErrorEvent(
**tool_selection_data,
error=error,
),
raise Exception(
f"I forgot the Action name, these are the only available Actions: {self.tools_description}"
)
raise Exception(error)
def _render(self) -> str:
"""Render the tool name and description in plain text."""
@@ -463,33 +451,18 @@ class ToolUsage:
if isinstance(arguments, dict):
return arguments
except Exception as e:
error = f"Failed to repair JSON: {e}"
self._printer.print(content=error, color="red")
self._printer.print(content=f"Failed to repair JSON: {e}", color="red")
error_message = (
"Tool input must be a valid dictionary in JSON or Python literal format"
)
self._emit_validate_input_error(error_message)
# If all parsing attempts fail, raise an error
raise Exception(error_message)
def _emit_validate_input_error(self, final_error: str):
tool_selection_data = {
"agent_key": self.agent.key,
"agent_role": self.agent.role,
"tool_name": self.action.tool,
"tool_args": str(self.action.tool_input),
"tool_class": self.__class__.__name__,
}
crewai_event_bus.emit(
self,
ToolValidateInputErrorEvent(**tool_selection_data, error=final_error),
raise Exception(
"Tool input must be a valid dictionary in JSON or Python literal format"
)
def on_tool_error(self, tool: Any, tool_calling: ToolCalling, e: Exception) -> None:
event_data = self._prepare_event_data(tool, tool_calling)
crewai_event_bus.emit(self, ToolUsageErrorEvent(**{**event_data, "error": e}))
events.emit(
source=self, event=ToolUsageError(**{**event_data, "error": str(e)})
)
def on_tool_use_finished(
self, tool: Any, tool_calling: ToolCalling, from_cache: bool, started_at: float
@@ -503,7 +476,7 @@ class ToolUsage:
"from_cache": from_cache,
}
)
crewai_event_bus.emit(self, ToolUsageFinishedEvent(**event_data))
events.emit(source=self, event=ToolUsageFinished(**event_data))
def _prepare_event_data(self, tool: Any, tool_calling: ToolCalling) -> dict:
return {

View File

@@ -0,0 +1,24 @@
from datetime import datetime
from typing import Any, Dict
from pydantic import BaseModel
class ToolUsageEvent(BaseModel):
agent_key: str
agent_role: str
tool_name: str
tool_args: Dict[str, Any]
tool_class: str
run_attempts: int | None = None
delegations: int | None = None
class ToolUsageFinished(ToolUsageEvent):
started_at: datetime
finished_at: datetime
from_cache: bool = False
class ToolUsageError(ToolUsageEvent):
error: str

View File

@@ -23,6 +23,7 @@
"summary": "This is a summary of our conversation so far:\n{merged_summary}",
"manager_request": "Your best answer to your coworker asking you this, accounting for the context shared.",
"formatted_task_instructions": "Ensure your final answer contains only the content in the following format: {output_format}\n\nEnsure the final output does not include any code block markers like ```json or ```python.",
"human_feedback_classification": "Determine if the following feedback indicates that the user is satisfied or if further changes are needed. Respond with 'True' if further changes are needed, or 'False' if the user is satisfied. **Important** Do not include any additional commentary outside of your 'True' or 'False' response.\n\nFeedback: \"{feedback}\"",
"conversation_history_instruction": "You are a member of a crew collaborating to achieve a common goal. Your task is a specific action that contributes to this larger objective. For additional context, please review the conversation history between you and the user that led to the initiation of this crew. Use any relevant information or feedback from the conversation to inform your task execution and ensure your response aligns with both the immediate task and the crew's overall goals.",
"feedback_instructions": "User feedback: {feedback}\nInstructions: Use this feedback to enhance the next output iteration.\nNote: Do not respond or add commentary."
},
@@ -39,8 +40,8 @@
"validation_error": "### Previous attempt failed validation: {guardrail_result_error}\n\n\n### Previous result:\n{task_output}\n\n\nTry again, making sure to address the validation error."
},
"tools": {
"delegate_work": "Delegate a specific task to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to execute the task, they know nothing about the task, so share absolutely everything you know, don't reference things but instead explain them.",
"ask_question": "Ask a specific question to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolutely everything you know, don't reference things but instead explain them.",
"delegate_work": "Delegate a specific task to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the task you want them to do, and ALL necessary context to execute the task, they know nothing about the task, so share absolute everything you know, don't reference things but instead explain them.",
"ask_question": "Ask a specific question to one of the following coworkers: {coworkers}\nThe input to this tool should be the coworker, the question you have for them, and ALL necessary context to ask the question properly, they know nothing about the question, so share absolute everything you know, don't reference things but instead explain them.",
"add_image": {
"name": "Add image to content",
"description": "See image to understand its content, you can optionally ask a question about the image",

View File

@@ -4,4 +4,3 @@ DEFAULT_SCORE_THRESHOLD = 0.35
KNOWLEDGE_DIRECTORY = "knowledge"
MAX_LLM_RETRY = 3
MAX_FILE_NAME_LENGTH = 255
EMITTER_COLOR = "bold_blue"

View File

@@ -20,11 +20,11 @@ class ConverterError(Exception):
class Converter(OutputConverter):
"""Class that converts text into either pydantic or json."""
def to_pydantic(self, current_attempt=1) -> BaseModel:
def to_pydantic(self, current_attempt=1):
"""Convert text to pydantic."""
try:
if self.llm.supports_function_calling():
result = self._create_instructor().to_pydantic()
return self._create_instructor().to_pydantic()
else:
response = self.llm.call(
[
@@ -32,40 +32,18 @@ class Converter(OutputConverter):
{"role": "user", "content": self.text},
]
)
try:
# Try to directly validate the response JSON
result = self.model.model_validate_json(response)
except ValidationError:
# If direct validation fails, attempt to extract valid JSON
result = handle_partial_json(response, self.model, False, None)
# Ensure result is a BaseModel instance
if not isinstance(result, BaseModel):
if isinstance(result, dict):
result = self.model.parse_obj(result)
elif isinstance(result, str):
try:
parsed = json.loads(result)
result = self.model.parse_obj(parsed)
except Exception as parse_err:
raise ConverterError(
f"Failed to convert partial JSON result into Pydantic: {parse_err}"
)
else:
raise ConverterError(
"handle_partial_json returned an unexpected type."
)
return result
return self.model.model_validate_json(response)
except ValidationError as e:
if current_attempt < self.max_attempts:
return self.to_pydantic(current_attempt + 1)
raise ConverterError(
f"Failed to convert text into a Pydantic model due to validation error: {e}"
f"Failed to convert text into a Pydantic model due to the following validation error: {e}"
)
except Exception as e:
if current_attempt < self.max_attempts:
return self.to_pydantic(current_attempt + 1)
raise ConverterError(
f"Failed to convert text into a Pydantic model due to error: {e}"
f"Failed to convert text into a Pydantic model due to the following error: {e}"
)
def to_json(self, current_attempt=1):
@@ -219,15 +197,11 @@ def get_conversion_instructions(model: Type[BaseModel], llm: Any) -> str:
if llm.supports_function_calling():
model_schema = PydanticSchemaParser(model=model).get_schema()
instructions += (
f"\n\nOutput ONLY the valid JSON and nothing else.\n\n"
f"The JSON must follow this schema exactly:\n```json\n{model_schema}\n```"
f"\n\nThe JSON should follow this schema:\n```json\n{model_schema}\n```"
)
else:
model_description = generate_model_description(model)
instructions += (
f"\n\nOutput ONLY the valid JSON and nothing else.\n\n"
f"The JSON must follow this format exactly:\n{model_description}"
)
instructions += f"\n\nThe JSON should follow this format:\n{model_description}"
return instructions

View File

@@ -25,7 +25,34 @@ class EmbeddingConfigurator:
self,
embedder_config: Optional[Dict[str, Any]] = None,
) -> EmbeddingFunction:
"""Configures and returns an embedding function based on the provided config."""
"""Configure and return an embedding function based on the provided config.
Args:
embedder_config: Optional configuration dictionary containing:
- provider: Name of the embedding provider or EmbeddingFunction instance
- config: Provider-specific configuration dictionary with options like:
- api_key: API key for the provider
- model: Model name to use for embeddings
- url: API endpoint URL (for some providers)
- session: Session object (for some providers)
Returns:
EmbeddingFunction: Configured embedding function for the specified provider
Raises:
ValueError: If custom embedding function is invalid
Exception: If provider is not supported or configuration is invalid
Examples:
>>> config = {
... "provider": "openai",
... "config": {
... "api_key": "your-api-key",
... "model": "text-embedding-3-small"
... }
... }
>>> embedder = EmbeddingConfigurator().configure_embedder(config)
"""
if embedder_config is None:
return self._create_default_embedding_function()
@@ -39,20 +66,29 @@ class EmbeddingConfigurator:
)
embedding_function = self.embedding_functions[provider]
return (
embedding_function(config)
if provider == "custom"
else embedding_function(config, model_name)
)
if provider == "custom":
return embedding_function(config)
return embedding_function(config, model_name)
@staticmethod
def _create_default_embedding_function():
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
"""Create a default embedding function based on environment variables.
Environment Variables:
CREWAI_EMBEDDING_PROVIDER: The embedding provider to use (default: "openai")
CREWAI_EMBEDDING_MODEL: The model to use for embeddings
OPENAI_API_KEY: API key for OpenAI (required if using OpenAI provider)
Returns:
EmbeddingFunction: Configured embedding function
"""
provider = os.getenv("CREWAI_EMBEDDING_PROVIDER", "openai")
config = {
"api_key": os.getenv("OPENAI_API_KEY"),
"model": os.getenv("CREWAI_EMBEDDING_MODEL", "text-embedding-3-small")
}
return EmbeddingConfigurator().configure_embedder(
{"provider": provider, "config": config}
)
@staticmethod
@@ -171,6 +207,31 @@ class EmbeddingConfigurator:
url=config.get("api_url"),
)
@staticmethod
def _configure_custom(config, model_name=None):
"""Configure a custom embedding function.
Args:
config: Configuration dictionary containing:
- embedder: Custom EmbeddingFunction instance
model_name: Not used for custom embedders, defaults to None
Returns:
EmbeddingFunction: The validated custom embedding function
Raises:
ValueError: If embedder is missing or invalid
"""
embedder = config.get("embedder")
if not embedder or not isinstance(embedder, EmbeddingFunction):
raise ValueError("Custom provider requires a valid EmbeddingFunction instance")
try:
validate_embedding_function(embedder)
return embedder
except Exception as e:
raise ValueError(f"Invalid custom embedding function: {str(e)}")
@staticmethod
def _configure_watson(config, model_name):
try:
@@ -209,28 +270,3 @@ class EmbeddingConfigurator:
raise e
return WatsonEmbeddingFunction()
@staticmethod
def _configure_custom(config):
custom_embedder = config.get("embedder")
if isinstance(custom_embedder, EmbeddingFunction):
try:
validate_embedding_function(custom_embedder)
return custom_embedder
except Exception as e:
raise ValueError(f"Invalid custom embedding function: {str(e)}")
elif callable(custom_embedder):
try:
instance = custom_embedder()
if isinstance(instance, EmbeddingFunction):
validate_embedding_function(instance)
return instance
raise ValueError(
"Custom embedder does not create an EmbeddingFunction instance"
)
except Exception as e:
raise ValueError(f"Error instantiating custom embedder: {str(e)}")
else:
raise ValueError(
"Custom embedder must be an instance of `EmbeddingFunction` or a callable that creates one"
)

View File

@@ -1,12 +1,11 @@
from collections import defaultdict
from pydantic import BaseModel, Field, InstanceOf
from pydantic import BaseModel, Field
from rich.box import HEAVY_EDGE
from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
@@ -24,7 +23,7 @@ class CrewEvaluator:
Attributes:
crew (Crew): The crew of agents to evaluate.
eval_llm (LLM): Language model instance to use for evaluations
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
"""
@@ -33,9 +32,9 @@ class CrewEvaluator:
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, eval_llm: InstanceOf[LLM]):
def __init__(self, crew, openai_model_name: str):
self.crew = crew
self.llm = eval_llm
self.openai_model_name = openai_model_name
self._telemetry = Telemetry()
self._setup_for_evaluating()
@@ -52,7 +51,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.llm,
llm=self.openai_model_name,
)
def _evaluation_task(
@@ -182,7 +181,7 @@ class CrewEvaluator:
self.crew,
evaluation_result.pydantic.quality,
current_task.execution_duration,
self.llm.model,
self.openai_model_name,
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(

View File

@@ -3,9 +3,19 @@ from typing import List
from pydantic import BaseModel, Field
from crewai.utilities import Converter
from crewai.utilities.events import TaskEvaluationEvent, crewai_event_bus
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
agentops = None
try:
from agentops import track_agent # type: ignore
except ImportError:
def track_agent(name):
def noop(f):
return f
return noop
class Entity(BaseModel):
name: str = Field(description="The name of the entity.")
@@ -38,15 +48,12 @@ class TrainingTaskEvaluation(BaseModel):
)
@track_agent(name="Task Evaluator")
class TaskEvaluator:
def __init__(self, original_agent):
self.llm = original_agent.llm
self.original_agent = original_agent
def evaluate(self, task, output) -> TaskEvaluation:
crewai_event_bus.emit(
self, TaskEvaluationEvent(evaluation_type="task_evaluation")
)
evaluation_query = (
f"Assess the quality of the task completed based on the description, expected output, and actual results.\n\n"
f"Task Description:\n{task.description}\n\n"
@@ -83,9 +90,6 @@ class TaskEvaluator:
- training_data (dict): The training data to be evaluated.
- agent_id (str): The ID of the agent.
"""
crewai_event_bus.emit(
self, TaskEvaluationEvent(evaluation_type="training_data_evaluation")
)
output_training_data = training_data[agent_id]
final_aggregated_data = ""

View File

@@ -0,0 +1,44 @@
from functools import wraps
from typing import Any, Callable, Dict, Generic, List, Type, TypeVar
from pydantic import BaseModel
T = TypeVar("T")
EVT = TypeVar("EVT", bound=BaseModel)
class Emitter(Generic[T, EVT]):
_listeners: Dict[Type[EVT], List[Callable]] = {}
def on(self, event_type: Type[EVT]):
def decorator(func: Callable):
@wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
self._listeners.setdefault(event_type, []).append(wrapper)
return wrapper
return decorator
def emit(self, source: T, event: EVT) -> None:
event_type = type(event)
for func in self._listeners.get(event_type, []):
func(source, event)
default_emitter = Emitter[Any, BaseModel]()
def emit(source: Any, event: BaseModel, raise_on_error: bool = False) -> None:
try:
default_emitter.emit(source, event)
except Exception as e:
if raise_on_error:
raise e
else:
print(f"Error emitting event: {e}")
def on(event_type: Type[BaseModel]) -> Callable:
return default_emitter.on(event_type)

View File

@@ -1,41 +0,0 @@
from .crew_events import (
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewTrainStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
CrewTestStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
)
from .agent_events import (
AgentExecutionStartedEvent,
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
)
from .task_events import TaskStartedEvent, TaskCompletedEvent, TaskFailedEvent, TaskEvaluationEvent
from .flow_events import (
FlowCreatedEvent,
FlowStartedEvent,
FlowFinishedEvent,
FlowPlotEvent,
MethodExecutionStartedEvent,
MethodExecutionFinishedEvent,
MethodExecutionFailedEvent,
)
from .crewai_event_bus import CrewAIEventsBus, crewai_event_bus
from .tool_usage_events import (
ToolUsageFinishedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
ToolExecutionErrorEvent,
ToolSelectionErrorEvent,
ToolUsageEvent,
ToolValidateInputErrorEvent,
)
from .llm_events import LLMCallCompletedEvent, LLMCallFailedEvent, LLMCallStartedEvent
# events
from .event_listener import EventListener
from .third_party.agentops_listener import agentops_listener

View File

@@ -1,40 +0,0 @@
from typing import TYPE_CHECKING, Any, Dict, Optional, Sequence, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.tools.base_tool import BaseTool
from crewai.tools.structured_tool import CrewStructuredTool
from .base_events import CrewEvent
if TYPE_CHECKING:
from crewai.agents.agent_builder.base_agent import BaseAgent
class AgentExecutionStartedEvent(CrewEvent):
"""Event emitted when an agent starts executing a task"""
agent: BaseAgent
task: Any
tools: Optional[Sequence[Union[BaseTool, CrewStructuredTool]]]
task_prompt: str
type: str = "agent_execution_started"
model_config = {"arbitrary_types_allowed": True}
class AgentExecutionCompletedEvent(CrewEvent):
"""Event emitted when an agent completes executing a task"""
agent: BaseAgent
task: Any
output: str
type: str = "agent_execution_completed"
class AgentExecutionErrorEvent(CrewEvent):
"""Event emitted when an agent encounters an error during execution"""
agent: BaseAgent
task: Any
error: str
type: str = "agent_execution_error"

View File

@@ -1,14 +0,0 @@
from abc import ABC, abstractmethod
from logging import Logger
from crewai.utilities.events.crewai_event_bus import CrewAIEventsBus, crewai_event_bus
class BaseEventListener(ABC):
def __init__(self):
super().__init__()
self.setup_listeners(crewai_event_bus)
@abstractmethod
def setup_listeners(self, crewai_event_bus: CrewAIEventsBus):
pass

View File

@@ -1,10 +0,0 @@
from datetime import datetime
from pydantic import BaseModel, Field
class CrewEvent(BaseModel):
"""Base class for all crew events"""
timestamp: datetime = Field(default_factory=datetime.now)
type: str

View File

@@ -1,81 +0,0 @@
from typing import Any, Dict, Optional, Union
from pydantic import InstanceOf
from crewai.utilities.events.base_events import CrewEvent
class CrewKickoffStartedEvent(CrewEvent):
"""Event emitted when a crew starts execution"""
crew_name: Optional[str]
inputs: Optional[Dict[str, Any]]
type: str = "crew_kickoff_started"
class CrewKickoffCompletedEvent(CrewEvent):
"""Event emitted when a crew completes execution"""
crew_name: Optional[str]
output: Any
type: str = "crew_kickoff_completed"
class CrewKickoffFailedEvent(CrewEvent):
"""Event emitted when a crew fails to complete execution"""
error: str
crew_name: Optional[str]
type: str = "crew_kickoff_failed"
class CrewTrainStartedEvent(CrewEvent):
"""Event emitted when a crew starts training"""
crew_name: Optional[str]
n_iterations: int
filename: str
inputs: Optional[Dict[str, Any]]
type: str = "crew_train_started"
class CrewTrainCompletedEvent(CrewEvent):
"""Event emitted when a crew completes training"""
crew_name: Optional[str]
n_iterations: int
filename: str
type: str = "crew_train_completed"
class CrewTrainFailedEvent(CrewEvent):
"""Event emitted when a crew fails to complete training"""
error: str
crew_name: Optional[str]
type: str = "crew_train_failed"
class CrewTestStartedEvent(CrewEvent):
"""Event emitted when a crew starts testing"""
crew_name: Optional[str]
n_iterations: int
eval_llm: Optional[Union[str, Any]]
inputs: Optional[Dict[str, Any]]
type: str = "crew_test_started"
class CrewTestCompletedEvent(CrewEvent):
"""Event emitted when a crew completes testing"""
crew_name: Optional[str]
type: str = "crew_test_completed"
class CrewTestFailedEvent(CrewEvent):
"""Event emitted when a crew fails to complete testing"""
error: str
crew_name: Optional[str]
type: str = "crew_test_failed"

View File

@@ -1,113 +0,0 @@
import threading
from contextlib import contextmanager
from typing import Any, Callable, Dict, List, Type, TypeVar, cast
from blinker import Signal
from crewai.utilities.events.base_events import CrewEvent
from crewai.utilities.events.event_types import EventTypes
EventT = TypeVar("EventT", bound=CrewEvent)
class CrewAIEventsBus:
"""
A singleton event bus that uses blinker signals for event handling.
Allows both internal (Flow/Crew) and external event handling.
"""
_instance = None
_lock = threading.Lock()
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None: # prevent race condition
cls._instance = super(CrewAIEventsBus, cls).__new__(cls)
cls._instance._initialize()
return cls._instance
def _initialize(self) -> None:
"""Initialize the event bus internal state"""
self._signal = Signal("crewai_event_bus")
self._handlers: Dict[Type[CrewEvent], List[Callable]] = {}
def on(
self, event_type: Type[EventT]
) -> Callable[[Callable[[Any, EventT], None]], Callable[[Any, EventT], None]]:
"""
Decorator to register an event handler for a specific event type.
Usage:
@crewai_event_bus.on(AgentExecutionCompletedEvent)
def on_agent_execution_completed(
source: Any, event: AgentExecutionCompletedEvent
):
print(f"👍 Agent '{event.agent}' completed task")
print(f" Output: {event.output}")
"""
def decorator(
handler: Callable[[Any, EventT], None],
) -> Callable[[Any, EventT], None]:
if event_type not in self._handlers:
self._handlers[event_type] = []
self._handlers[event_type].append(
cast(Callable[[Any, EventT], None], handler)
)
return handler
return decorator
def emit(self, source: Any, event: CrewEvent) -> None:
"""
Emit an event to all registered handlers
Args:
source: The object emitting the event
event: The event instance to emit
"""
event_type = type(event)
if event_type in self._handlers:
for handler in self._handlers[event_type]:
handler(source, event)
self._signal.send(source, event=event)
def clear_handlers(self) -> None:
"""Clear all registered event handlers - useful for testing"""
self._handlers.clear()
def register_handler(
self, event_type: Type[EventTypes], handler: Callable[[Any, EventTypes], None]
) -> None:
"""Register an event handler for a specific event type"""
if event_type not in self._handlers:
self._handlers[event_type] = []
self._handlers[event_type].append(
cast(Callable[[Any, EventTypes], None], handler)
)
@contextmanager
def scoped_handlers(self):
"""
Context manager for temporary event handling scope.
Useful for testing or temporary event handling.
Usage:
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(CrewKickoffStarted)
def temp_handler(source, event):
print("Temporary handler")
# Do stuff...
# Handlers are cleared after the context
"""
previous_handlers = self._handlers.copy()
self._handlers.clear()
try:
yield
finally:
self._handlers = previous_handlers
# Global instance
crewai_event_bus = CrewAIEventsBus()

View File

@@ -1,288 +0,0 @@
from typing import Any, Dict
from pydantic import Field, PrivateAttr
from crewai.task import Task
from crewai.telemetry.telemetry import Telemetry
from crewai.utilities import Logger
from crewai.utilities.constants import EMITTER_COLOR
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
)
from .agent_events import AgentExecutionCompletedEvent, AgentExecutionStartedEvent
from .crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
CrewTestStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
CrewTrainStartedEvent,
)
from .flow_events import (
FlowCreatedEvent,
FlowFinishedEvent,
FlowStartedEvent,
MethodExecutionFailedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from .task_events import TaskCompletedEvent, TaskFailedEvent, TaskStartedEvent
from .tool_usage_events import (
ToolUsageErrorEvent,
ToolUsageFinishedEvent,
ToolUsageStartedEvent,
)
class EventListener(BaseEventListener):
_instance = None
_telemetry: Telemetry = PrivateAttr(default_factory=lambda: Telemetry())
logger = Logger(verbose=True, default_color=EMITTER_COLOR)
execution_spans: Dict[Task, Any] = Field(default_factory=dict)
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if not hasattr(self, "_initialized") or not self._initialized:
super().__init__()
self._telemetry = Telemetry()
self._telemetry.set_tracer()
self.execution_spans = {}
self._initialized = True
# ----------- CREW EVENTS -----------
def setup_listeners(self, crewai_event_bus):
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_started(source, event: CrewKickoffStartedEvent):
self.logger.log(
f"🚀 Crew '{event.crew_name}' started, {source.id}",
event.timestamp,
)
self._telemetry.crew_execution_span(source, event.inputs)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_completed(source, event: CrewKickoffCompletedEvent):
final_string_output = event.output.raw
self._telemetry.end_crew(source, final_string_output)
self.logger.log(
f"✅ Crew '{event.crew_name}' completed, {source.id}",
event.timestamp,
)
@crewai_event_bus.on(CrewKickoffFailedEvent)
def on_crew_failed(source, event: CrewKickoffFailedEvent):
self.logger.log(
f"❌ Crew '{event.crew_name}' failed, {source.id}",
event.timestamp,
)
@crewai_event_bus.on(CrewTestStartedEvent)
def on_crew_test_started(source, event: CrewTestStartedEvent):
cloned_crew = source.copy()
self._telemetry.test_execution_span(
cloned_crew,
event.n_iterations,
event.inputs,
event.eval_llm or "",
)
self.logger.log(
f"🚀 Crew '{event.crew_name}' started test, {source.id}",
event.timestamp,
)
@crewai_event_bus.on(CrewTestCompletedEvent)
def on_crew_test_completed(source, event: CrewTestCompletedEvent):
self.logger.log(
f"✅ Crew '{event.crew_name}' completed test",
event.timestamp,
)
@crewai_event_bus.on(CrewTestFailedEvent)
def on_crew_test_failed(source, event: CrewTestFailedEvent):
self.logger.log(
f"❌ Crew '{event.crew_name}' failed test",
event.timestamp,
)
@crewai_event_bus.on(CrewTrainStartedEvent)
def on_crew_train_started(source, event: CrewTrainStartedEvent):
self.logger.log(
f"📋 Crew '{event.crew_name}' started train",
event.timestamp,
)
@crewai_event_bus.on(CrewTrainCompletedEvent)
def on_crew_train_completed(source, event: CrewTrainCompletedEvent):
self.logger.log(
f"✅ Crew '{event.crew_name}' completed train",
event.timestamp,
)
@crewai_event_bus.on(CrewTrainFailedEvent)
def on_crew_train_failed(source, event: CrewTrainFailedEvent):
self.logger.log(
f"❌ Crew '{event.crew_name}' failed train",
event.timestamp,
)
# ----------- TASK EVENTS -----------
@crewai_event_bus.on(TaskStartedEvent)
def on_task_started(source, event: TaskStartedEvent):
span = self._telemetry.task_started(crew=source.agent.crew, task=source)
self.execution_spans[source] = span
self.logger.log(
f"📋 Task started: {source.description}",
event.timestamp,
)
@crewai_event_bus.on(TaskCompletedEvent)
def on_task_completed(source, event: TaskCompletedEvent):
span = self.execution_spans.get(source)
if span:
self._telemetry.task_ended(span, source, source.agent.crew)
self.logger.log(
f"✅ Task completed: {source.description}",
event.timestamp,
)
self.execution_spans[source] = None
@crewai_event_bus.on(TaskFailedEvent)
def on_task_failed(source, event: TaskFailedEvent):
span = self.execution_spans.get(source)
if span:
if source.agent and source.agent.crew:
self._telemetry.task_ended(span, source, source.agent.crew)
self.execution_spans[source] = None
self.logger.log(
f"❌ Task failed: {source.description}",
event.timestamp,
)
# ----------- AGENT EVENTS -----------
@crewai_event_bus.on(AgentExecutionStartedEvent)
def on_agent_execution_started(source, event: AgentExecutionStartedEvent):
self.logger.log(
f"🤖 Agent '{event.agent.role}' started task",
event.timestamp,
)
@crewai_event_bus.on(AgentExecutionCompletedEvent)
def on_agent_execution_completed(source, event: AgentExecutionCompletedEvent):
self.logger.log(
f"✅ Agent '{event.agent.role}' completed task",
event.timestamp,
)
# ----------- FLOW EVENTS -----------
@crewai_event_bus.on(FlowCreatedEvent)
def on_flow_created(source, event: FlowCreatedEvent):
self._telemetry.flow_creation_span(event.flow_name)
self.logger.log(
f"🌊 Flow Created: '{event.flow_name}'",
event.timestamp,
)
@crewai_event_bus.on(FlowStartedEvent)
def on_flow_started(source, event: FlowStartedEvent):
self._telemetry.flow_execution_span(
event.flow_name, list(source._methods.keys())
)
self.logger.log(
f"🤖 Flow Started: '{event.flow_name}', {source.flow_id}",
event.timestamp,
)
@crewai_event_bus.on(FlowFinishedEvent)
def on_flow_finished(source, event: FlowFinishedEvent):
self.logger.log(
f"👍 Flow Finished: '{event.flow_name}', {source.flow_id}",
event.timestamp,
)
@crewai_event_bus.on(MethodExecutionStartedEvent)
def on_method_execution_started(source, event: MethodExecutionStartedEvent):
self.logger.log(
f"🤖 Flow Method Started: '{event.method_name}'",
event.timestamp,
)
@crewai_event_bus.on(MethodExecutionFailedEvent)
def on_method_execution_failed(source, event: MethodExecutionFailedEvent):
self.logger.log(
f"❌ Flow Method Failed: '{event.method_name}'",
event.timestamp,
)
@crewai_event_bus.on(MethodExecutionFinishedEvent)
def on_method_execution_finished(source, event: MethodExecutionFinishedEvent):
self.logger.log(
f"👍 Flow Method Finished: '{event.method_name}'",
event.timestamp,
)
# ----------- TOOL USAGE EVENTS -----------
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.logger.log(
f"🤖 Tool Usage Started: '{event.tool_name}'",
event.timestamp,
)
@crewai_event_bus.on(ToolUsageFinishedEvent)
def on_tool_usage_finished(source, event: ToolUsageFinishedEvent):
self.logger.log(
f"✅ Tool Usage Finished: '{event.tool_name}'",
event.timestamp,
#
)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
self.logger.log(
f"❌ Tool Usage Error: '{event.tool_name}'",
event.timestamp,
#
)
# ----------- LLM EVENTS -----------
@crewai_event_bus.on(LLMCallStartedEvent)
def on_llm_call_started(source, event: LLMCallStartedEvent):
self.logger.log(
f"🤖 LLM Call Started",
event.timestamp,
)
@crewai_event_bus.on(LLMCallCompletedEvent)
def on_llm_call_completed(source, event: LLMCallCompletedEvent):
self.logger.log(
f"✅ LLM Call Completed",
event.timestamp,
)
@crewai_event_bus.on(LLMCallFailedEvent)
def on_llm_call_failed(source, event: LLMCallFailedEvent):
self.logger.log(
f"❌ LLM Call Failed: '{event.error}'",
event.timestamp,
)
event_listener = EventListener()

View File

@@ -1,61 +0,0 @@
from typing import Union
from .agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
)
from .crew_events import (
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewKickoffStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
CrewTestStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
CrewTrainStartedEvent,
)
from .flow_events import (
FlowFinishedEvent,
FlowStartedEvent,
MethodExecutionFailedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
)
from .task_events import (
TaskCompletedEvent,
TaskFailedEvent,
TaskStartedEvent,
)
from .tool_usage_events import (
ToolUsageErrorEvent,
ToolUsageFinishedEvent,
ToolUsageStartedEvent,
)
EventTypes = Union[
CrewKickoffStartedEvent,
CrewKickoffCompletedEvent,
CrewKickoffFailedEvent,
CrewTestStartedEvent,
CrewTestCompletedEvent,
CrewTestFailedEvent,
CrewTrainStartedEvent,
CrewTrainCompletedEvent,
CrewTrainFailedEvent,
AgentExecutionStartedEvent,
AgentExecutionCompletedEvent,
TaskStartedEvent,
TaskCompletedEvent,
TaskFailedEvent,
FlowStartedEvent,
FlowFinishedEvent,
MethodExecutionStartedEvent,
MethodExecutionFinishedEvent,
MethodExecutionFailedEvent,
AgentExecutionErrorEvent,
ToolUsageFinishedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
]

View File

@@ -1,71 +0,0 @@
from typing import Any, Dict, Optional, Union
from pydantic import BaseModel
from .base_events import CrewEvent
class FlowEvent(CrewEvent):
"""Base class for all flow events"""
type: str
flow_name: str
class FlowStartedEvent(FlowEvent):
"""Event emitted when a flow starts execution"""
flow_name: str
inputs: Optional[Dict[str, Any]] = None
type: str = "flow_started"
class FlowCreatedEvent(FlowEvent):
"""Event emitted when a flow is created"""
flow_name: str
type: str = "flow_created"
class MethodExecutionStartedEvent(FlowEvent):
"""Event emitted when a flow method starts execution"""
flow_name: str
method_name: str
state: Union[Dict[str, Any], BaseModel]
params: Optional[Dict[str, Any]] = None
type: str = "method_execution_started"
class MethodExecutionFinishedEvent(FlowEvent):
"""Event emitted when a flow method completes execution"""
flow_name: str
method_name: str
result: Any = None
state: Union[Dict[str, Any], BaseModel]
type: str = "method_execution_finished"
class MethodExecutionFailedEvent(FlowEvent):
"""Event emitted when a flow method fails execution"""
flow_name: str
method_name: str
error: Any
type: str = "method_execution_failed"
class FlowFinishedEvent(FlowEvent):
"""Event emitted when a flow completes execution"""
flow_name: str
result: Optional[Any] = None
type: str = "flow_finished"
class FlowPlotEvent(FlowEvent):
"""Event emitted when a flow plot is created"""
flow_name: str
type: str = "flow_plot"

View File

@@ -1,36 +0,0 @@
from enum import Enum
from typing import Any, Dict, List, Optional, Union
from crewai.utilities.events.base_events import CrewEvent
class LLMCallType(Enum):
"""Type of LLM call being made"""
TOOL_CALL = "tool_call"
LLM_CALL = "llm_call"
class LLMCallStartedEvent(CrewEvent):
"""Event emitted when a LLM call starts"""
type: str = "llm_call_started"
messages: Union[str, List[Dict[str, str]]]
tools: Optional[List[dict]] = None
callbacks: Optional[List[Any]] = None
available_functions: Optional[Dict[str, Any]] = None
class LLMCallCompletedEvent(CrewEvent):
"""Event emitted when a LLM call completes"""
type: str = "llm_call_completed"
response: Any
call_type: LLMCallType
class LLMCallFailedEvent(CrewEvent):
"""Event emitted when a LLM call fails"""
error: str
type: str = "llm_call_failed"

View File

@@ -1,32 +0,0 @@
from typing import Optional
from crewai.tasks.task_output import TaskOutput
from crewai.utilities.events.base_events import CrewEvent
class TaskStartedEvent(CrewEvent):
"""Event emitted when a task starts"""
type: str = "task_started"
context: Optional[str]
class TaskCompletedEvent(CrewEvent):
"""Event emitted when a task completes"""
output: TaskOutput
type: str = "task_completed"
class TaskFailedEvent(CrewEvent):
"""Event emitted when a task fails"""
error: str
type: str = "task_failed"
class TaskEvaluationEvent(CrewEvent):
"""Event emitted when a task evaluation is completed"""
type: str = "task_evaluation"
evaluation_type: str

View File

@@ -1 +0,0 @@
from .agentops_listener import agentops_listener

View File

@@ -1,67 +0,0 @@
from typing import Optional
from crewai.utilities.events import (
CrewKickoffCompletedEvent,
ToolUsageErrorEvent,
ToolUsageStartedEvent,
)
from crewai.utilities.events.base_event_listener import BaseEventListener
from crewai.utilities.events.crew_events import CrewKickoffStartedEvent
from crewai.utilities.events.task_events import TaskEvaluationEvent
try:
import agentops
AGENTOPS_INSTALLED = True
except ImportError:
AGENTOPS_INSTALLED = False
class AgentOpsListener(BaseEventListener):
tool_event: Optional["agentops.ToolEvent"] = None
session: Optional["agentops.Session"] = None
def __init__(self):
super().__init__()
def setup_listeners(self, crewai_event_bus):
if not AGENTOPS_INSTALLED:
return
@crewai_event_bus.on(CrewKickoffStartedEvent)
def on_crew_kickoff_started(source, event: CrewKickoffStartedEvent):
self.session = agentops.init()
for agent in source.agents:
if self.session:
self.session.create_agent(
name=agent.role,
agent_id=str(agent.id),
)
@crewai_event_bus.on(CrewKickoffCompletedEvent)
def on_crew_kickoff_completed(source, event: CrewKickoffCompletedEvent):
if self.session:
self.session.end_session(
end_state="Success",
end_state_reason="Finished Execution",
)
@crewai_event_bus.on(ToolUsageStartedEvent)
def on_tool_usage_started(source, event: ToolUsageStartedEvent):
self.tool_event = agentops.ToolEvent(name=event.tool_name)
if self.session:
self.session.record(self.tool_event)
@crewai_event_bus.on(ToolUsageErrorEvent)
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
agentops.ErrorEvent(exception=event.error, trigger_event=self.tool_event)
@crewai_event_bus.on(TaskEvaluationEvent)
def on_task_evaluation(source, event: TaskEvaluationEvent):
if self.session:
self.session.create_agent(
name="Task Evaluator", agent_id=str(source.original_agent.id)
)
agentops_listener = AgentOpsListener()

View File

@@ -1,64 +0,0 @@
from datetime import datetime
from typing import Any, Callable, Dict
from .base_events import CrewEvent
class ToolUsageEvent(CrewEvent):
"""Base event for tool usage tracking"""
agent_key: str
agent_role: str
tool_name: str
tool_args: Dict[str, Any] | str
tool_class: str
run_attempts: int | None = None
delegations: int | None = None
model_config = {"arbitrary_types_allowed": True}
class ToolUsageStartedEvent(ToolUsageEvent):
"""Event emitted when a tool execution is started"""
type: str = "tool_usage_started"
class ToolUsageFinishedEvent(ToolUsageEvent):
"""Event emitted when a tool execution is completed"""
started_at: datetime
finished_at: datetime
from_cache: bool = False
type: str = "tool_usage_finished"
class ToolUsageErrorEvent(ToolUsageEvent):
"""Event emitted when a tool execution encounters an error"""
error: Any
type: str = "tool_usage_error"
class ToolValidateInputErrorEvent(ToolUsageEvent):
"""Event emitted when a tool input validation encounters an error"""
error: Any
type: str = "tool_validate_input_error"
class ToolSelectionErrorEvent(ToolUsageEvent):
"""Event emitted when a tool selection encounters an error"""
error: Any
type: str = "tool_selection_error"
class ToolExecutionErrorEvent(CrewEvent):
"""Event emitted when a tool execution encounters an error"""
error: Any
type: str = "tool_execution_error"
tool_name: str
tool_args: Dict[str, Any]
tool_class: Callable

View File

@@ -0,0 +1,5 @@
"""Exceptions module for crewAI utilities."""
from .embedding_exceptions import EmbeddingConfigurationError, EmbeddingProviderError
__all__ = ["EmbeddingConfigurationError", "EmbeddingProviderError"]

View File

@@ -0,0 +1,9 @@
"""Exceptions related to embedding functionality."""
class EmbeddingConfigurationError(Exception):
"""Raised when there is an error in the embedding configuration."""
pass
class EmbeddingProviderError(Exception):
"""Raised when there is an error with the embedding provider."""
pass

View File

@@ -44,7 +44,6 @@ def create_llm(
# Extract attributes with explicit types
model = (
getattr(llm_value, "model_name", None)
or getattr(llm_value, "model", None)
or getattr(llm_value, "deployment_name", None)
or str(llm_value)
)

View File

@@ -8,11 +8,8 @@ from crewai.utilities.printer import Printer
class Logger(BaseModel):
verbose: bool = Field(default=False)
_printer: Printer = PrivateAttr(default_factory=Printer)
default_color: str = Field(default="bold_yellow")
def log(self, level, message, color=None):
if color is None:
color = self.default_color
def log(self, level, message, color="bold_yellow"):
if self.verbose:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self._printer.print(

View File

@@ -1,52 +1,15 @@
import warnings
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Union
from typing import Any, Dict, Optional
from langchain_core.callbacks.base import BaseCallbackHandler
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.utils import Usage
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
class AbstractTokenCounter(ABC):
"""
Abstract base class for token counting callbacks.
Implementations should track token usage from different LLM providers.
"""
def __init__(self, token_process: Optional[TokenProcess] = None):
"""Initialize with a TokenProcess instance to track tokens."""
self.token_process = token_process
@abstractmethod
def update_token_usage(self, prompt_tokens: int, completion_tokens: int) -> None:
"""Update token usage counts in the token process."""
pass
class LiteLLMTokenCounter(CustomLogger, AbstractTokenCounter):
"""
Token counter implementation for LiteLLM.
Uses LiteLLM's CustomLogger interface to track token usage.
"""
def __init__(self, token_process: Optional[TokenProcess] = None):
AbstractTokenCounter.__init__(self, token_process)
CustomLogger.__init__(self)
def update_token_usage(self, prompt_tokens: int, completion_tokens: int) -> None:
"""Update token usage counts in the token process."""
if self.token_process is None:
return
if prompt_tokens > 0:
self.token_process.sum_prompt_tokens(prompt_tokens)
if completion_tokens > 0:
self.token_process.sum_completion_tokens(completion_tokens)
self.token_process.sum_successful_requests(1)
class TokenCalcHandler(CustomLogger):
def __init__(self, token_cost_process: Optional[TokenProcess]):
self.token_cost_process = token_cost_process
def log_success_event(
self,
@@ -55,11 +18,7 @@ class LiteLLMTokenCounter(CustomLogger, AbstractTokenCounter):
start_time: float,
end_time: float,
) -> None:
"""
Process successful LLM call and extract token usage information.
This method is called by LiteLLM after a successful completion.
"""
if self.token_process is None:
if self.token_cost_process is None:
return
with warnings.catch_warnings():
@@ -67,159 +26,12 @@ class LiteLLMTokenCounter(CustomLogger, AbstractTokenCounter):
if isinstance(response_obj, dict) and "usage" in response_obj:
usage: Usage = response_obj["usage"]
if usage:
prompt_tokens = 0
completion_tokens = 0
self.token_cost_process.sum_successful_requests(1)
if hasattr(usage, "prompt_tokens"):
prompt_tokens = usage.prompt_tokens
elif isinstance(usage, dict) and "prompt_tokens" in usage:
prompt_tokens = usage["prompt_tokens"]
self.token_cost_process.sum_prompt_tokens(usage.prompt_tokens)
if hasattr(usage, "completion_tokens"):
completion_tokens = usage.completion_tokens
elif isinstance(usage, dict) and "completion_tokens" in usage:
completion_tokens = usage["completion_tokens"]
self.update_token_usage(prompt_tokens, completion_tokens)
# Handle cached tokens if available
if (
hasattr(usage, "prompt_tokens_details")
and usage.prompt_tokens_details
and usage.prompt_tokens_details.cached_tokens
):
self.token_process.sum_cached_prompt_tokens(
self.token_cost_process.sum_completion_tokens(usage.completion_tokens)
if hasattr(usage, "prompt_tokens_details") and usage.prompt_tokens_details:
self.token_cost_process.sum_cached_prompt_tokens(
usage.prompt_tokens_details.cached_tokens
)
class LangChainTokenCounter(BaseCallbackHandler, AbstractTokenCounter):
"""
Token counter implementation for LangChain.
Implements the necessary callback methods to track token usage from LangChain responses.
"""
def __init__(self, token_process: Optional[TokenProcess] = None):
BaseCallbackHandler.__init__(self)
AbstractTokenCounter.__init__(self, token_process)
def update_token_usage(self, prompt_tokens: int, completion_tokens: int) -> None:
"""Update token usage counts in the token process."""
if self.token_process is None:
return
if prompt_tokens > 0:
self.token_process.sum_prompt_tokens(prompt_tokens)
if completion_tokens > 0:
self.token_process.sum_completion_tokens(completion_tokens)
self.token_process.sum_successful_requests(1)
@property
def ignore_llm(self) -> bool:
return False
@property
def ignore_chain(self) -> bool:
return True
@property
def ignore_agent(self) -> bool:
return False
@property
def ignore_chat_model(self) -> bool:
return False
@property
def ignore_retriever(self) -> bool:
return True
@property
def ignore_tools(self) -> bool:
return True
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Called when LLM starts processing."""
pass
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Called when LLM generates a new token."""
pass
def on_llm_end(self, response: Any, **kwargs: Any) -> None:
"""
Called when LLM ends processing.
Extracts token usage from LangChain response objects.
"""
if self.token_process is None:
return
# Handle LangChain response format
if hasattr(response, "llm_output") and isinstance(response.llm_output, dict):
token_usage = response.llm_output.get("token_usage", {})
prompt_tokens = token_usage.get("prompt_tokens", 0)
completion_tokens = token_usage.get("completion_tokens", 0)
self.update_token_usage(prompt_tokens, completion_tokens)
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
"""Called when LLM errors."""
pass
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Called when a chain starts."""
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Called when a chain ends."""
pass
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
"""Called when a chain errors."""
pass
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
"""Called when a tool starts."""
pass
def on_tool_end(self, output: str, **kwargs: Any) -> None:
"""Called when a tool ends."""
pass
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
"""Called when a tool errors."""
pass
def on_text(self, text: str, **kwargs: Any) -> None:
"""Called when text is generated."""
pass
def on_agent_start(self, serialized: Dict[str, Any], **kwargs: Any) -> None:
"""Called when an agent starts."""
pass
def on_agent_end(self, output: Any, **kwargs: Any) -> None:
"""Called when an agent ends."""
pass
def on_agent_error(self, error: BaseException, **kwargs: Any) -> None:
"""Called when an agent errors."""
pass
# For backward compatibility
class TokenCalcHandler(LiteLLMTokenCounter):
"""
Alias for LiteLLMTokenCounter.
"""
pass

View File

@@ -8,7 +8,7 @@ import pytest
from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import AgentFinish, CrewAgentExecutor
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
@@ -16,9 +16,9 @@ from crewai.llm import LLM
from crewai.tools import tool
from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.tools.tool_usage_events import ToolUsageFinished
from crewai.utilities import RPMController
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.tool_usage_events import ToolUsageFinishedEvent
from crewai.utilities.events import Emitter
def test_agent_llm_creation_with_env_vars():
@@ -154,19 +154,15 @@ def test_agent_execution_with_tools():
agent=agent,
expected_output="The result of the multiplication.",
)
received_events = []
@crewai_event_bus.on(ToolUsageFinishedEvent)
def handle_tool_end(source, event):
received_events.append(event)
output = agent.execute_task(task)
assert output == "The result of the multiplication is 12."
assert len(received_events) == 1
assert isinstance(received_events[0], ToolUsageFinishedEvent)
assert received_events[0].tool_name == "multiplier"
assert received_events[0].tool_args == {"first_number": 3, "second_number": 4}
with patch.object(Emitter, "emit") as emit:
output = agent.execute_task(task)
assert output == "The result of the multiplication is 12."
assert emit.call_count == 1
args, _ = emit.call_args
assert isinstance(args[1], ToolUsageFinished)
assert not args[1].from_cache
assert args[1].tool_name == "multiplier"
assert args[1].tool_args == {"first_number": 3, "second_number": 4}
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -253,14 +249,10 @@ def test_cache_hitting():
"multiplier-{'first_number': 3, 'second_number': 3}": 9,
"multiplier-{'first_number': 12, 'second_number': 3}": 36,
}
received_events = []
@crewai_event_bus.on(ToolUsageFinishedEvent)
def handle_tool_end(source, event):
received_events.append(event)
with (
patch.object(CacheHandler, "read") as read,
patch.object(Emitter, "emit") as emit,
):
read.return_value = "0"
task = Task(
@@ -273,9 +265,10 @@ def test_cache_hitting():
read.assert_called_with(
tool="multiplier", input={"first_number": 2, "second_number": 6}
)
assert len(received_events) == 1
assert isinstance(received_events[0], ToolUsageFinishedEvent)
assert received_events[0].from_cache
assert emit.call_count == 1
args, _ = emit.call_args
assert isinstance(args[1], ToolUsageFinished)
assert args[1].from_cache
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -990,35 +983,23 @@ def test_agent_human_input():
# Side effect function for _ask_human_input to simulate multiple feedback iterations
feedback_responses = iter(
[
"Don't say hi, say Hello instead!", # First feedback: instruct change
"", # Second feedback: empty string signals acceptance
"Don't say hi, say Hello instead!", # First feedback
"looks good", # Second feedback to exit loop
]
)
def ask_human_input_side_effect(*args, **kwargs):
return next(feedback_responses)
# Patch both _ask_human_input and _invoke_loop to avoid real API/network calls.
with (
patch.object(
CrewAgentExecutor,
"_ask_human_input",
side_effect=ask_human_input_side_effect,
) as mock_human_input,
patch.object(
CrewAgentExecutor,
"_invoke_loop",
return_value=AgentFinish(output="Hello", thought="", text=""),
) as mock_invoke_loop,
):
with patch.object(
CrewAgentExecutor, "_ask_human_input", side_effect=ask_human_input_side_effect
) as mock_human_input:
# Execute the task
output = agent.execute_task(task)
# Assertions to ensure the agent behaves correctly.
# It should have requested feedback twice.
assert mock_human_input.call_count == 2
# The final result should be processed to "Hello"
assert output.strip().lower() == "hello"
# Assertions to ensure the agent behaves correctly
assert mock_human_input.call_count == 2 # Should have asked for feedback twice
assert output.strip().lower() == "hello" # Final output should be 'Hello'
def test_interpolate_inputs():

View File

@@ -0,0 +1,520 @@
interactions:
- request:
body: !!binary |
CqcXCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS/hYKEgoQY3Jld2FpLnRl
bGVtZXRyeRJ5ChBuJJtOdNaB05mOW/p3915eEgj2tkAd3rZcASoQVG9vbCBVc2FnZSBFcnJvcjAB
OYa7/URvKBUYQUpcFEVvKBUYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoPCgNsbG0SCAoG
Z3B0LTRvegIYAYUBAAEAABLJBwoQifhX01E5i+5laGdALAlZBBIIBuGM1aN+OPgqDENyZXcgQ3Jl
YXRlZDABORVGruBvKBUYQaipwOBvKBUYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODYuMEoaCg5w
eXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19rZXkSIgogN2U2NjA4OTg5ODU5YTY3ZWVj
ODhlZWY3ZmNlODUyMjVKMQoHY3Jld19pZBImCiRiOThiNWEwMC01YTI1LTQxMDctYjQwNS1hYmYz
MjBhOGYzYThKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAA
ShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgB
SuQCCgtjcmV3X2FnZW50cxLUAgrRAlt7ImtleSI6ICIyMmFjZDYxMWU0NGVmNWZhYzA1YjUzM2Q3
NWU4ODkzYiIsICJpZCI6ICJkNWIyMzM1YS0yMmIyLTQyZWEtYmYwNS03OTc3NmU3MmYzOTIiLCAi
cm9sZSI6ICJEYXRhIFNjaWVudGlzdCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAy
MCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJn
cHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4
ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsi
Z2V0IGdyZWV0aW5ncyJdfV1KkgIKCmNyZXdfdGFza3MSgwIKgAJbeyJrZXkiOiAiYTI3N2IzNGIy
YzE0NmYwYzU2YzVlMTM1NmU4ZjhhNTciLCAiaWQiOiAiMjJiZWMyMzEtY2QyMS00YzU4LTgyN2Ut
MDU4MWE4ZjBjMTExIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6
IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJEYXRhIFNjaWVudGlzdCIsICJhZ2VudF9rZXkiOiAiMjJh
Y2Q2MTFlNDRlZjVmYWMwNWI1MzNkNzVlODg5M2IiLCAidG9vbHNfbmFtZXMiOiBbImdldCBncmVl
dGluZ3MiXX1degIYAYUBAAEAABKOAgoQ5WYoxRtTyPjge4BduhL0rRIIv2U6rvWALfwqDFRhc2sg
Q3JlYXRlZDABOX068uBvKBUYQZkv8+BvKBUYSi4KCGNyZXdfa2V5EiIKIDdlNjYwODk4OTg1OWE2
N2VlYzg4ZWVmN2ZjZTg1MjI1SjEKB2NyZXdfaWQSJgokYjk4YjVhMDAtNWEyNS00MTA3LWI0MDUt
YWJmMzIwYThmM2E4Si4KCHRhc2tfa2V5EiIKIGEyNzdiMzRiMmMxNDZmMGM1NmM1ZTEzNTZlOGY4
YTU3SjEKB3Rhc2tfaWQSJgokMjJiZWMyMzEtY2QyMS00YzU4LTgyN2UtMDU4MWE4ZjBjMTExegIY
AYUBAAEAABKQAQoQXyeDtJDFnyp2Fjk9YEGTpxIIaNE7gbhPNYcqClRvb2wgVXNhZ2UwATkaXTvj
bygVGEGvx0rjbygVGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjg2LjBKHAoJdG9vbF9uYW1lEg8K
DUdldCBHcmVldGluZ3NKDgoIYXR0ZW1wdHMSAhgBegIYAYUBAAEAABLVBwoQMWfznt0qwauEzl7T
UOQxRBII9q+pUS5EdLAqDENyZXcgQ3JlYXRlZDABORONPORvKBUYQSAoS+RvKBUYShoKDmNyZXdh
aV92ZXJzaW9uEggKBjAuODYuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjdKLgoIY3Jld19r
ZXkSIgogYzMwNzYwMDkzMjY3NjE0NDRkNTdjNzFkMWRhM2YyN2NKMQoHY3Jld19pZBImCiQ3OTQw
MTkyNS1iOGU5LTQ3MDgtODUzMC00NDhhZmEzYmY4YjBKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVl
bnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVj
cmV3X251bWJlcl9vZl9hZ2VudHMSAhgBSuoCCgtjcmV3X2FnZW50cxLaAgrXAlt7ImtleSI6ICI5
OGYzYjFkNDdjZTk2OWNmMDU3NzI3Yjc4NDE0MjVjZCIsICJpZCI6ICI5OTJkZjYyZi1kY2FiLTQy
OTUtOTIwNi05MDBkNDExNGIxZTkiLCAicm9sZSI6ICJGcmllbmRseSBOZWlnaGJvciIsICJ2ZXJi
b3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25f
Y2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJs
ZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9s
aW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFsiZGVjaWRlIGdyZWV0aW5ncyJdfV1KmAIKCmNyZXdf
dGFza3MSiQIKhgJbeyJrZXkiOiAiODBkN2JjZDQ5MDk5MjkwMDgzODMyZjBlOTgzMzgwZGYiLCAi
aWQiOiAiMmZmNjE5N2UtYmEyNy00YjczLWI0YTctNGZhMDQ4ZTYyYjQ3IiwgImFzeW5jX2V4ZWN1
dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJGcmll
bmRseSBOZWlnaGJvciIsICJhZ2VudF9rZXkiOiAiOThmM2IxZDQ3Y2U5NjljZjA1NzcyN2I3ODQx
NDI1Y2QiLCAidG9vbHNfbmFtZXMiOiBbImRlY2lkZSBncmVldGluZ3MiXX1degIYAYUBAAEAABKO
AgoQnjTp5boK7/+DQxztYIpqihIIgGnMUkBtzHEqDFRhc2sgQ3JlYXRlZDABOcpYcuRvKBUYQalE
c+RvKBUYSi4KCGNyZXdfa2V5EiIKIGMzMDc2MDA5MzI2NzYxNDQ0ZDU3YzcxZDFkYTNmMjdjSjEK
B2NyZXdfaWQSJgokNzk0MDE5MjUtYjhlOS00NzA4LTg1MzAtNDQ4YWZhM2JmOGIwSi4KCHRhc2tf
a2V5EiIKIDgwZDdiY2Q0OTA5OTI5MDA4MzgzMmYwZTk4MzM4MGRmSjEKB3Rhc2tfaWQSJgokMmZm
NjE5N2UtYmEyNy00YjczLWI0YTctNGZhMDQ4ZTYyYjQ3egIYAYUBAAEAABKTAQoQ26H9pLUgswDN
p9XhJwwL6BIIx3bw7mAvPYwqClRvb2wgVXNhZ2UwATmy7NPlbygVGEEvb+HlbygVGEoaCg5jcmV3
YWlfdmVyc2lvbhIICgYwLjg2LjBKHwoJdG9vbF9uYW1lEhIKEERlY2lkZSBHcmVldGluZ3NKDgoI
YXR0ZW1wdHMSAhgBegIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '2986'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Fri, 27 Dec 2024 22:14:53 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
use the exact following format:\n\nThought: I now can give a great answer\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!"}, {"role": "user", "content": "\nCurrent Task: Say the word: Hi\n\nThis
is the expect criteria for your final answer: The word: Hi\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '824'
content-type:
- application/json
cookie:
- _cfuvid=ePJSDFdHag2D8lj21_ijAMWjoA6xfnPNxN4uekvC728-1727226247743-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AjCtZLLrWi8ZASpP9bz6HaCV7xBIn\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: Hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
158,\n \"completion_tokens\": 12,\n \"total_tokens\": 170,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8f8caa83deca756b-SEA
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 27 Dec 2024 22:14:53 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw;
path=/; expires=Fri, 27-Dec-24 22:44:53 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '404'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999816'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_6ac84634bff9193743c4b0911c09b4a6
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "Determine if the following
feedback indicates that the user is satisfied or if further changes are needed.
Respond with ''True'' if further changes are needed, or ''False'' if the user
is satisfied. **Important** Do not include any additional commentary outside
of your ''True'' or ''False'' response.\n\nFeedback: \"Don''t say hi, say Hello
instead!\""}], "model": "gpt-4o-mini", "stop": ["\nObservation:"], "stream":
false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '461'
content-type:
- application/json
cookie:
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AjCtZNlWdrrPZhq0MJDqd16sMuQEJ\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"True\",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 78,\n \"completion_tokens\":
1,\n \"total_tokens\": 79,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8f8caa87094f756b-SEA
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 27 Dec 2024 22:14:53 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '156'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999898'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ec74bef2a9ef7b2144c03fd7f7bbeab0
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are test role. test backstory\nYour
personal goal is: test goal\nTo give my best complete final answer to the task
use the exact following format:\n\nThought: I now can give a great answer\nFinal
Answer: Your final answer must be the great and the most complete as possible,
it must be outcome described.\n\nI MUST use these formats, my job depends on
it!"}, {"role": "user", "content": "\nCurrent Task: Say the word: Hi\n\nThis
is the expect criteria for your final answer: The word: Hi\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}, {"role": "assistant", "content": "I now
can give a great answer \nFinal Answer: Hi"}, {"role": "user", "content": "Feedback:
Don''t say hi, say Hello instead!"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"],
"stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '986'
content-type:
- application/json
cookie:
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AjCtZGv4f3h7GDdhyOy9G0sB1lRgC\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337693,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Thought: I understand the feedback and
will adjust my response accordingly. \\nFinal Answer: Hello\",\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 188,\n \"completion_tokens\":
18,\n \"total_tokens\": 206,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8f8caa88cac4756b-SEA
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 27 Dec 2024 22:14:54 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '358'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999793'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ae1ab6b206d28ded6fee3c83ed0c2ab7
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "Determine if the following
feedback indicates that the user is satisfied or if further changes are needed.
Respond with ''True'' if further changes are needed, or ''False'' if the user
is satisfied. **Important** Do not include any additional commentary outside
of your ''True'' or ''False'' response.\n\nFeedback: \"looks good\""}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '439'
content-type:
- application/json
cookie:
- _cfuvid=A_ASCLNAVfQoyucWOAIhecWtEpNotYoZr0bAFihgNxs-1735337693273-0.0.1.1-604800000;
__cf_bm=wJkq_yLkzE3OdxE0aMJz.G0kce969.9JxRmZ0ratl4c-1735337693-1.0.1.1-OKpUoRrSPFGvWv5Hp5ET1PNZ7iZNHPKEAuakpcQUxxPSeisUIIR3qIOZ31MGmYugqB5.wkvidgbxOAagqJvmnw
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- x64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- Linux
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.7
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AjCtaiHL4TY8Dssk0j2miqmjrzquy\",\n \"object\":
\"chat.completion\",\n \"created\": 1735337694,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"False\",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 73,\n \"completion_tokens\":
1,\n \"total_tokens\": 74,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"system_fingerprint\":
\"fp_0aa8d3e20b\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8f8caa8bdd26756b-SEA
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Fri, 27 Dec 2024 22:14:54 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '184'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999902'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_652891f79c1104a7a8436275d78a69f1
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,112 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Use the failing tool"}], "model":
"gpt-4o-mini", "stop": [], "tools": [{"type": "function", "function": {"name":
"failing_tool", "description": "This tool always fails.", "parameters": {"type":
"object", "properties": {"param": {"type": "string", "description": "A test
parameter"}}, "required": ["param"]}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '353'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B2P4zoJZuES7Aom8ugEq1modz5Vsl\",\n \"object\":
\"chat.completion\",\n \"created\": 1739912761,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_F6fJxISpMKUBIGV6dd2vjRNG\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"failing_tool\",\n
\ \"arguments\": \"{\\\"param\\\":\\\"test\\\"}\"\n }\n
\ }\n ],\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"tool_calls\"\n }\n ],\n \"usage\": {\n
\ \"prompt_tokens\": 51,\n \"completion_tokens\": 15,\n \"total_tokens\":
66,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\":
0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\":
0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\":
0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\":
\"fp_00428b782a\"\n}\n"
headers:
CF-RAY:
- 9140fa827f38eb1e-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 18 Feb 2025 21:06:02 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=xbuu3IQpCMh.43ZrqL1TRMECOc6QldgHV0hzOX1GrWI-1739912762-1.0.1.1-t7iyq5xMioPrwfeaHLvPT9rwRPp7Q9A9uIm69icH9dPxRD4xMA3cWqb1aXj1_e2IyAEQQWFe1UWjlmJ22aHh3Q;
path=/; expires=Tue, 18-Feb-25 21:36:02 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=x9l.Rhja8_wXDN.j8qcEU1PvvEqAwZp4Fd3s_aj4qwM-1739912762161-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '861'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999978'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_8666ec3aa6677cb346ba00993556051d
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -6,6 +6,7 @@ from concurrent.futures import Future
from unittest import mock
from unittest.mock import MagicMock, patch
import instructor
import pydantic_core
import pytest
@@ -14,24 +15,15 @@ from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.project import crew
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import Logger
from crewai.utilities.events import (
CrewTrainCompletedEvent,
CrewTrainStartedEvent,
crewai_event_bus,
)
from crewai.utilities.events.crew_events import (
CrewTestCompletedEvent,
CrewTestStartedEvent,
)
from crewai.utilities.rpm_controller import RPMController
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
@@ -59,7 +51,6 @@ writer = Agent(
def test_crew_with_only_conditional_tasks_raises_error():
"""Test that creating a crew with only conditional tasks raises an error."""
def condition_func(task_output: TaskOutput) -> bool:
return True
@@ -91,7 +82,6 @@ def test_crew_with_only_conditional_tasks_raises_error():
tasks=[conditional1, conditional2, conditional3],
)
def test_crew_config_conditional_requirement():
with pytest.raises(ValueError):
Crew(process=Process.sequential)
@@ -547,7 +537,6 @@ def test_crew_with_delegating_agents():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_with_delegating_agents_should_not_override_task_tools():
from typing import Type
from pydantic import BaseModel, Field
@@ -600,12 +589,12 @@ def test_crew_with_delegating_agents_should_not_override_task_tools():
_, kwargs = mock_execute_sync.call_args
tools = kwargs["tools"]
assert any(
isinstance(tool, TestTool) for tool in tools
), "TestTool should be present"
assert any(
"delegate" in tool.name.lower() for tool in tools
), "Delegation tool should be present"
assert any(isinstance(tool, TestTool) for tool in tools), (
"TestTool should be present"
)
assert any("delegate" in tool.name.lower() for tool in tools), (
"Delegation tool should be present"
)
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -664,12 +653,12 @@ def test_crew_with_delegating_agents_should_not_override_agent_tools():
_, kwargs = mock_execute_sync.call_args
tools = kwargs["tools"]
assert any(
isinstance(tool, TestTool) for tool in new_ceo.tools
), "TestTool should be present"
assert any(
"delegate" in tool.name.lower() for tool in tools
), "Delegation tool should be present"
assert any(isinstance(tool, TestTool) for tool in new_ceo.tools), (
"TestTool should be present"
)
assert any("delegate" in tool.name.lower() for tool in tools), (
"Delegation tool should be present"
)
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -793,17 +782,17 @@ def test_task_tools_override_agent_tools_with_allow_delegation():
used_tools = kwargs["tools"]
# Confirm AnotherTestTool is present but TestTool is not
assert any(
isinstance(tool, AnotherTestTool) for tool in used_tools
), "AnotherTestTool should be present"
assert not any(
isinstance(tool, TestTool) for tool in used_tools
), "TestTool should not be present among used tools"
assert any(isinstance(tool, AnotherTestTool) for tool in used_tools), (
"AnotherTestTool should be present"
)
assert not any(isinstance(tool, TestTool) for tool in used_tools), (
"TestTool should not be present among used tools"
)
# Confirm delegation tool(s) are present
assert any(
"delegate" in tool.name.lower() for tool in used_tools
), "Delegation tool should be present"
assert any("delegate" in tool.name.lower() for tool in used_tools), (
"Delegation tool should be present"
)
# Finally, make sure the agent's original tools remain unchanged
assert len(researcher_with_delegation.tools) == 1
@@ -834,12 +823,6 @@ def test_crew_verbose_output(capsys):
crew.kickoff()
captured = capsys.readouterr()
# Filter out event listener logs (lines starting with '[')
filtered_output = "\n".join(
line for line in captured.out.split("\n") if not line.startswith("[")
)
expected_strings = [
"\x1b[1m\x1b[95m# Agent:\x1b[00m \x1b[1m\x1b[92mResearcher",
"\x1b[00m\n\x1b[95m## Task:\x1b[00m \x1b[92mResearch AI advancements.",
@@ -852,19 +835,14 @@ def test_crew_verbose_output(capsys):
]
for expected_string in expected_strings:
assert expected_string in filtered_output
assert expected_string in captured.out
# Now test with verbose set to False
crew.verbose = False
crew._logger = Logger(verbose=False)
crew.kickoff()
captured = capsys.readouterr()
filtered_output = "\n".join(
line
for line in captured.out.split("\n")
if not line.startswith("[") and line.strip() and not line.startswith("\x1b")
)
assert filtered_output == ""
assert captured.out == ""
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -1302,9 +1280,9 @@ def test_kickoff_for_each_invalid_input():
crew = Crew(agents=[agent], tasks=[task])
with pytest.raises(pydantic_core._pydantic_core.ValidationError):
with pytest.raises(TypeError):
# Pass a string instead of a list
crew.kickoff_for_each(["invalid input"])
crew.kickoff_for_each("invalid input")
def test_kickoff_for_each_error_handling():
@@ -1615,9 +1593,9 @@ def test_code_execution_flag_adds_code_tool_upon_kickoff():
# Verify that exactly one tool was used and it was a CodeInterpreterTool
assert len(used_tools) == 1, "Should have exactly one tool"
assert isinstance(
used_tools[0], CodeInterpreterTool
), "Tool should be CodeInterpreterTool"
assert isinstance(used_tools[0], CodeInterpreterTool), (
"Tool should be CodeInterpreterTool"
)
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -1974,7 +1952,6 @@ def test_task_callback_on_crew():
def test_task_callback_both_on_task_and_crew():
from unittest.mock import MagicMock, patch
mock_callback_on_task = MagicMock()
mock_callback_on_crew = MagicMock()
@@ -2124,22 +2101,21 @@ def test_conditional_task_uses_last_output():
expected_output="First output",
agent=researcher,
)
def condition_fails(task_output: TaskOutput) -> bool:
# This condition will never be met
return "never matches" in task_output.raw.lower()
def condition_succeeds(task_output: TaskOutput) -> bool:
# This condition will match first task's output
return "first success" in task_output.raw.lower()
conditional_task1 = ConditionalTask(
description="Second task - conditional that fails condition",
expected_output="Second output",
agent=researcher,
condition=condition_fails,
)
conditional_task2 = ConditionalTask(
description="Third task - conditional that succeeds using first task output",
expected_output="Third output",
@@ -2158,37 +2134,35 @@ def test_conditional_task_uses_last_output():
raw="First success output", # Will be used by third task's condition
agent=researcher.role,
)
mock_skipped = TaskOutput(
description="Second task output",
raw="", # Empty output since condition fails
agent=researcher.role,
)
mock_third = TaskOutput(
description="Third task output",
raw="Third task executed", # Output when condition succeeds using first task output
agent=writer.role,
)
# Set up mocks for task execution and conditional logic
with patch.object(ConditionalTask, "should_execute") as mock_should_execute:
# First conditional fails, second succeeds
mock_should_execute.side_effect = [False, True]
with patch.object(Task, "execute_sync") as mock_execute:
mock_execute.side_effect = [mock_first, mock_third]
result = crew.kickoff()
# Verify execution behavior
assert mock_execute.call_count == 2 # Only first and third tasks execute
assert mock_should_execute.call_count == 2 # Both conditionals checked
# Verify outputs collection:
# First executed task output, followed by an automatically generated (skipped) output, then the conditional execution
# Verify outputs collection
assert len(result.tasks_output) == 3
assert (
result.tasks_output[0].raw == "First success output"
) # First task succeeded
assert (
result.tasks_output[1].raw == ""
) # Second task skipped (condition failed)
assert (
result.tasks_output[2].raw == "Third task executed"
) # Third task used first task's output
assert result.tasks_output[0].raw == "First success output" # First task succeeded
assert result.tasks_output[1].raw == "" # Second task skipped (condition failed)
assert result.tasks_output[2].raw == "Third task executed" # Third task used first task's output
@pytest.mark.vcr(filter_headers=["authorization"])
def test_conditional_tasks_result_collection():
@@ -2198,20 +2172,20 @@ def test_conditional_tasks_result_collection():
expected_output="First output",
agent=researcher,
)
def condition_never_met(task_output: TaskOutput) -> bool:
return "never matches" in task_output.raw.lower()
def condition_always_met(task_output: TaskOutput) -> bool:
return "success" in task_output.raw.lower()
task2 = ConditionalTask(
description="Conditional task that never executes",
expected_output="Second output",
agent=researcher,
condition=condition_never_met,
)
task3 = ConditionalTask(
description="Conditional task that always executes",
expected_output="Third output",
@@ -2230,46 +2204,35 @@ def test_conditional_tasks_result_collection():
raw="Success output", # Triggers third task's condition
agent=researcher.role,
)
mock_skipped = TaskOutput(
description="Skipped output",
raw="", # Empty output for skipped task
agent=researcher.role,
)
mock_conditional = TaskOutput(
description="Conditional output",
raw="Conditional task executed",
agent=writer.role,
)
# Set up mocks for task execution and conditional logic
with patch.object(ConditionalTask, "should_execute") as mock_should_execute:
# First conditional fails, second succeeds
mock_should_execute.side_effect = [False, True]
with patch.object(Task, "execute_sync") as mock_execute:
mock_execute.side_effect = [mock_success, mock_conditional]
result = crew.kickoff()
# Verify execution behavior
assert mock_execute.call_count == 2 # Only first and third tasks execute
assert mock_should_execute.call_count == 2 # Both conditionals checked
# Verify task output collection:
# There should be three outputs: normal task, skipped conditional task (empty output),
# and the conditional task that executed.
assert len(result.tasks_output) == 3
assert (
result.tasks_output[0].raw == "Success output"
) # Normal task executed
assert result.tasks_output[1].raw == "" # Second task skipped
assert (
result.tasks_output[2].raw == "Conditional task executed"
) # Third task executed
# Verify task output collection
assert len(result.tasks_output) == 3
assert (
result.tasks_output[0].raw == "Success output"
) # Normal task executed
assert result.tasks_output[1].raw == "" # Second task skipped
assert (
result.tasks_output[2].raw == "Conditional task executed"
) # Third task executed
assert result.tasks_output[0].raw == "Success output" # Normal task executed
assert result.tasks_output[1].raw == "" # Second task skipped
assert result.tasks_output[2].raw == "Conditional task executed" # Third task executed
@pytest.mark.vcr(filter_headers=["authorization"])
def test_multiple_conditional_tasks():
@@ -2279,20 +2242,20 @@ def test_multiple_conditional_tasks():
expected_output="Research output",
agent=researcher,
)
def condition1(task_output: TaskOutput) -> bool:
return "success" in task_output.raw.lower()
def condition2(task_output: TaskOutput) -> bool:
return "proceed" in task_output.raw.lower()
task2 = ConditionalTask(
description="First conditional task",
expected_output="Conditional output 1",
agent=writer,
condition=condition1,
)
task3 = ConditionalTask(
description="Second conditional task",
expected_output="Conditional output 2",
@@ -2311,7 +2274,7 @@ def test_multiple_conditional_tasks():
raw="Success and proceed output",
agent=researcher.role,
)
# Set up mocks for task execution
with patch.object(Task, "execute_sync", return_value=mock_success) as mock_execute:
result = crew.kickoff()
@@ -2319,7 +2282,6 @@ def test_multiple_conditional_tasks():
assert mock_execute.call_count == 3
assert len(result.tasks_output) == 3
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory():
from unittest.mock import patch
@@ -2588,16 +2550,6 @@ def test_crew_train_success(
# Create a mock for the copied crew
copy_mock.return_value = crew
received_events = []
@crewai_event_bus.on(CrewTrainStartedEvent)
def on_crew_train_started(source, event: CrewTrainStartedEvent):
received_events.append(event)
@crewai_event_bus.on(CrewTrainCompletedEvent)
def on_crew_train_completed(source, event: CrewTrainCompletedEvent):
received_events.append(event)
crew.train(
n_iterations=2, inputs={"topic": "AI"}, filename="trained_agents_data.pkl"
)
@@ -2643,10 +2595,6 @@ def test_crew_train_success(
]
)
assert len(received_events) == 2
assert isinstance(received_events[0], CrewTrainStartedEvent)
assert isinstance(received_events[1], CrewTrainCompletedEvent)
def test_crew_train_error():
task = Task(
@@ -3375,19 +3323,7 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
copy_mock.return_value = crew
n_iterations = 2
llm_instance = LLM("gpt-4o-mini")
received_events = []
@crewai_event_bus.on(CrewTestStartedEvent)
def on_crew_test_started(source, event: CrewTestStartedEvent):
received_events.append(event)
@crewai_event_bus.on(CrewTestCompletedEvent)
def on_crew_test_completed(source, event: CrewTestCompletedEvent):
received_events.append(event)
crew.test(n_iterations, llm_instance, inputs={"topic": "AI"})
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls(
@@ -3396,17 +3332,13 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
crew_evaluator.assert_has_calls(
[
mock.call(crew, llm_instance),
mock.call(crew, "gpt-4o-mini"),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
]
)
assert len(received_events) == 2
assert isinstance(received_events[0], CrewTestStartedEvent)
assert isinstance(received_events[1], CrewTestCompletedEvent)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_verbose_manager_agent():
@@ -3468,9 +3400,9 @@ def test_fetch_inputs():
expected_placeholders = {"role_detail", "topic", "field"}
actual_placeholders = crew.fetch_inputs()
assert (
actual_placeholders == expected_placeholders
), f"Expected {expected_placeholders}, but got {actual_placeholders}"
assert actual_placeholders == expected_placeholders, (
f"Expected {expected_placeholders}, but got {actual_placeholders}"
)
def test_task_tools_preserve_code_execution_tools():
@@ -3543,20 +3475,20 @@ def test_task_tools_preserve_code_execution_tools():
used_tools = kwargs["tools"]
# Verify all expected tools are present
assert any(
isinstance(tool, TestTool) for tool in used_tools
), "Task's TestTool should be present"
assert any(
isinstance(tool, CodeInterpreterTool) for tool in used_tools
), "CodeInterpreterTool should be present"
assert any(
"delegate" in tool.name.lower() for tool in used_tools
), "Delegation tool should be present"
assert any(isinstance(tool, TestTool) for tool in used_tools), (
"Task's TestTool should be present"
)
assert any(isinstance(tool, CodeInterpreterTool) for tool in used_tools), (
"CodeInterpreterTool should be present"
)
assert any("delegate" in tool.name.lower() for tool in used_tools), (
"Delegation tool should be present"
)
# Verify the total number of tools (TestTool + CodeInterpreter + 2 delegation tools)
assert (
len(used_tools) == 4
), "Should have TestTool, CodeInterpreter, and 2 delegation tools"
assert len(used_tools) == 4, (
"Should have TestTool, CodeInterpreter, and 2 delegation tools"
)
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -3600,9 +3532,9 @@ def test_multimodal_flag_adds_multimodal_tools():
used_tools = kwargs["tools"]
# Check that the multimodal tool was added
assert any(
isinstance(tool, AddImageTool) for tool in used_tools
), "AddImageTool should be present when agent is multimodal"
assert any(isinstance(tool, AddImageTool) for tool in used_tools), (
"AddImageTool should be present when agent is multimodal"
)
# Verify we have exactly one tool (just the AddImageTool)
assert len(used_tools) == 1, "Should only have the AddImageTool"
@@ -3828,9 +3760,9 @@ def test_crew_guardrail_feedback_in_context():
assert len(execution_contexts) > 1, "Task should have been executed multiple times"
# Verify that the second execution included the guardrail feedback
assert (
"Output must contain the keyword 'IMPORTANT'" in execution_contexts[1]
), "Guardrail feedback should be included in retry context"
assert "Output must contain the keyword 'IMPORTANT'" in execution_contexts[1], (
"Guardrail feedback should be included in retry context"
)
# Verify final output meets guardrail requirements
assert "IMPORTANT" in result.raw, "Final output should contain required keyword"

View File

@@ -1,150 +0,0 @@
from datetime import date, datetime
from typing import List
from unittest.mock import Mock
import pytest
from pydantic import BaseModel
from crewai.flow import Flow
from crewai.flow.state_utils import export_state, to_string
class Address(BaseModel):
street: str
city: str
country: str
class Person(BaseModel):
name: str
age: int
address: Address
birthday: date
skills: List[str]
@pytest.fixture
def mock_flow():
def create_flow(state):
flow = Mock(spec=Flow)
flow._state = state
return flow
return create_flow
@pytest.mark.parametrize(
"test_input,expected",
[
({"text": "hello world"}, {"text": "hello world"}),
({"number": 42}, {"number": 42}),
({"decimal": 3.14}, {"decimal": 3.14}),
({"flag": True}, {"flag": True}),
({"empty": None}, {"empty": None}),
({"list": [1, 2, 3]}, {"list": [1, 2, 3]}),
({"tuple": (1, 2, 3)}, {"tuple": [1, 2, 3]}),
({"set": {1, 2, 3}}, {"set": [1, 2, 3]}),
({"nested": [1, [2, 3], {4, 5}]}, {"nested": [1, [2, 3], [4, 5]]}),
],
)
def test_basic_serialization(mock_flow, test_input, expected):
flow = mock_flow(test_input)
result = export_state(flow)
assert result == expected
@pytest.mark.parametrize(
"input_date,expected",
[
(date(2024, 1, 1), "2024-01-01"),
(datetime(2024, 1, 1, 12, 30), "2024-01-01T12:30:00"),
],
)
def test_temporal_serialization(mock_flow, input_date, expected):
flow = mock_flow({"date": input_date})
result = export_state(flow)
assert result["date"] == expected
@pytest.mark.parametrize(
"key,value,expected_key_type",
[
(("tuple", "key"), "value", str),
(None, "value", str),
(123, "value", str),
("normal", "value", str),
],
)
def test_dictionary_key_serialization(mock_flow, key, value, expected_key_type):
flow = mock_flow({key: value})
result = export_state(flow)
assert len(result) == 1
result_key = next(iter(result.keys()))
assert isinstance(result_key, expected_key_type)
assert result[result_key] == value
@pytest.mark.parametrize(
"callable_obj,expected_in_result",
[
(lambda x: x * 2, "lambda"),
(str.upper, "upper"),
],
)
def test_callable_serialization(mock_flow, callable_obj, expected_in_result):
flow = mock_flow({"func": callable_obj})
result = export_state(flow)
assert isinstance(result["func"], str)
assert expected_in_result in result["func"].lower()
def test_pydantic_model_serialization(mock_flow):
address = Address(street="123 Main St", city="Tech City", country="Pythonia")
person = Person(
name="John Doe",
age=30,
address=address,
birthday=date(1994, 1, 1),
skills=["Python", "Testing"],
)
flow = mock_flow(
{
"single_model": address,
"nested_model": person,
"model_list": [address, address],
"model_dict": {"home": address},
}
)
result = export_state(flow)
assert (
to_string(result)
== '{"single_model": {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}, "nested_model": {"name": "John Doe", "age": 30, "address": {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}, "birthday": "1994-01-01", "skills": ["Python", "Testing"]}, "model_list": [{"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}, {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}], "model_dict": {"home": {"street": "123 Main St", "city": "Tech City", "country": "Pythonia"}}}'
)
def test_depth_limit(mock_flow):
"""Test max depth handling with a deeply nested structure"""
def create_nested(depth):
if depth == 0:
return "value"
return {"next": create_nested(depth - 1)}
deep_structure = create_nested(10)
flow = mock_flow(deep_structure)
result = export_state(flow)
assert result == {
"next": {
"next": {
"next": {
"next": {
"next": "{'next': {'next': {'next': {'next': {'next': 'value'}}}}}"
}
}
}
}
}

View File

@@ -1,20 +1,11 @@
"""Test Flow creation and execution basic functionality."""
import asyncio
from datetime import datetime
import pytest
from pydantic import BaseModel
from crewai.flow.flow import Flow, and_, listen, or_, router, start
from crewai.utilities.events import (
FlowFinishedEvent,
FlowStartedEvent,
MethodExecutionFinishedEvent,
MethodExecutionStartedEvent,
crewai_event_bus,
)
from crewai.utilities.events.flow_events import FlowPlotEvent
def test_simple_sequential_flow():
@@ -407,351 +398,3 @@ def test_router_with_multiple_conditions():
# final_step should run after router_and
assert execution_order.index("log_final_step") > execution_order.index("router_and")
def test_unstructured_flow_event_emission():
"""Test that the correct events are emitted during unstructured flow
execution with all fields validated."""
class PoemFlow(Flow):
@start()
def prepare_flower(self):
self.state["flower"] = "roses"
return "foo"
@start()
def prepare_color(self):
self.state["color"] = "red"
return "bar"
@listen(prepare_color)
def write_first_sentence(self):
return f"{self.state['flower']} are {self.state['color']}"
@listen(write_first_sentence)
def finish_poem(self, first_sentence):
separator = self.state.get("separator", "\n")
return separator.join([first_sentence, "violets are blue"])
@listen(finish_poem)
def save_poem_to_database(self):
# A method without args/kwargs to ensure events are sent correctly
return "roses are red\nviolets are blue"
flow = PoemFlow()
received_events = []
@crewai_event_bus.on(FlowStartedEvent)
def handle_flow_start(source, event):
received_events.append(event)
@crewai_event_bus.on(MethodExecutionStartedEvent)
def handle_method_start(source, event):
received_events.append(event)
@crewai_event_bus.on(FlowFinishedEvent)
def handle_flow_end(source, event):
received_events.append(event)
flow.kickoff(inputs={"separator": ", "})
assert isinstance(received_events[0], FlowStartedEvent)
assert received_events[0].flow_name == "PoemFlow"
assert received_events[0].inputs == {"separator": ", "}
assert isinstance(received_events[0].timestamp, datetime)
# All subsequent events are MethodExecutionStartedEvent
for event in received_events[1:-1]:
assert isinstance(event, MethodExecutionStartedEvent)
assert event.flow_name == "PoemFlow"
assert isinstance(event.state, dict)
assert isinstance(event.state["id"], str)
assert event.state["separator"] == ", "
assert received_events[1].method_name == "prepare_flower"
assert received_events[1].params == {}
assert "flower" not in received_events[1].state
assert received_events[2].method_name == "prepare_color"
assert received_events[2].params == {}
print("received_events[2]", received_events[2])
assert "flower" in received_events[2].state
assert received_events[3].method_name == "write_first_sentence"
assert received_events[3].params == {}
assert received_events[3].state["flower"] == "roses"
assert received_events[3].state["color"] == "red"
assert received_events[4].method_name == "finish_poem"
assert received_events[4].params == {"_0": "roses are red"}
assert received_events[4].state["flower"] == "roses"
assert received_events[4].state["color"] == "red"
assert received_events[5].method_name == "save_poem_to_database"
assert received_events[5].params == {}
assert received_events[5].state["flower"] == "roses"
assert received_events[5].state["color"] == "red"
assert isinstance(received_events[6], FlowFinishedEvent)
assert received_events[6].flow_name == "PoemFlow"
assert received_events[6].result == "roses are red\nviolets are blue"
assert isinstance(received_events[6].timestamp, datetime)
def test_structured_flow_event_emission():
"""Test that the correct events are emitted during structured flow
execution with all fields validated."""
class OnboardingState(BaseModel):
name: str = ""
sent: bool = False
class OnboardingFlow(Flow[OnboardingState]):
@start()
def user_signs_up(self):
self.state.sent = False
@listen(user_signs_up)
def send_welcome_message(self):
self.state.sent = True
return f"Welcome, {self.state.name}!"
flow = OnboardingFlow()
flow.kickoff(inputs={"name": "Anakin"})
received_events = []
@crewai_event_bus.on(FlowStartedEvent)
def handle_flow_start(source, event):
received_events.append(event)
@crewai_event_bus.on(MethodExecutionStartedEvent)
def handle_method_start(source, event):
received_events.append(event)
@crewai_event_bus.on(MethodExecutionFinishedEvent)
def handle_method_end(source, event):
received_events.append(event)
@crewai_event_bus.on(FlowFinishedEvent)
def handle_flow_end(source, event):
received_events.append(event)
flow.kickoff(inputs={"name": "Anakin"})
assert isinstance(received_events[0], FlowStartedEvent)
assert received_events[0].flow_name == "OnboardingFlow"
assert received_events[0].inputs == {"name": "Anakin"}
assert isinstance(received_events[0].timestamp, datetime)
assert isinstance(received_events[1], MethodExecutionStartedEvent)
assert received_events[1].method_name == "user_signs_up"
assert isinstance(received_events[2], MethodExecutionFinishedEvent)
assert received_events[2].method_name == "user_signs_up"
assert isinstance(received_events[3], MethodExecutionStartedEvent)
assert received_events[3].method_name == "send_welcome_message"
assert received_events[3].params == {}
assert getattr(received_events[3].state, "sent") is False
assert isinstance(received_events[4], MethodExecutionFinishedEvent)
assert received_events[4].method_name == "send_welcome_message"
assert getattr(received_events[4].state, "sent") is True
assert received_events[4].result == "Welcome, Anakin!"
assert isinstance(received_events[5], FlowFinishedEvent)
assert received_events[5].flow_name == "OnboardingFlow"
assert received_events[5].result == "Welcome, Anakin!"
assert isinstance(received_events[5].timestamp, datetime)
def test_stateless_flow_event_emission():
"""Test that the correct events are emitted stateless during flow execution
with all fields validated."""
class StatelessFlow(Flow):
@start()
def init(self):
pass
@listen(init)
def process(self):
return "Deeds will not be less valiant because they are unpraised."
event_log = []
def handle_event(_, event):
event_log.append(event)
flow = StatelessFlow()
received_events = []
@crewai_event_bus.on(FlowStartedEvent)
def handle_flow_start(source, event):
received_events.append(event)
@crewai_event_bus.on(MethodExecutionStartedEvent)
def handle_method_start(source, event):
received_events.append(event)
@crewai_event_bus.on(MethodExecutionFinishedEvent)
def handle_method_end(source, event):
received_events.append(event)
@crewai_event_bus.on(FlowFinishedEvent)
def handle_flow_end(source, event):
received_events.append(event)
flow.kickoff()
assert isinstance(received_events[0], FlowStartedEvent)
assert received_events[0].flow_name == "StatelessFlow"
assert received_events[0].inputs is None
assert isinstance(received_events[0].timestamp, datetime)
assert isinstance(received_events[1], MethodExecutionStartedEvent)
assert received_events[1].method_name == "init"
assert isinstance(received_events[2], MethodExecutionFinishedEvent)
assert received_events[2].method_name == "init"
assert isinstance(received_events[3], MethodExecutionStartedEvent)
assert received_events[3].method_name == "process"
assert isinstance(received_events[4], MethodExecutionFinishedEvent)
assert received_events[4].method_name == "process"
assert isinstance(received_events[5], FlowFinishedEvent)
assert received_events[5].flow_name == "StatelessFlow"
assert (
received_events[5].result
== "Deeds will not be less valiant because they are unpraised."
)
assert isinstance(received_events[5].timestamp, datetime)
def test_flow_plotting():
class StatelessFlow(Flow):
@start()
def init(self):
return "Initializing flow..."
@listen(init)
def process(self):
return "Deeds will not be less valiant because they are unpraised."
flow = StatelessFlow()
flow.kickoff()
received_events = []
@crewai_event_bus.on(FlowPlotEvent)
def handle_flow_plot(source, event):
received_events.append(event)
flow.plot("test_flow")
assert len(received_events) == 1
assert isinstance(received_events[0], FlowPlotEvent)
assert received_events[0].flow_name == "StatelessFlow"
assert isinstance(received_events[0].timestamp, datetime)
def test_multiple_routers_from_same_trigger():
"""Test that multiple routers triggered by the same method all activate their listeners."""
execution_order = []
class MultiRouterFlow(Flow):
def __init__(self):
super().__init__()
# Set diagnosed conditions to trigger all routers
self.state["diagnosed_conditions"] = "DHA" # Contains D, H, and A
@start()
def scan_medical(self):
execution_order.append("scan_medical")
return "scan_complete"
@router(scan_medical)
def diagnose_conditions(self):
execution_order.append("diagnose_conditions")
return "diagnosis_complete"
@router(diagnose_conditions)
def diabetes_router(self):
execution_order.append("diabetes_router")
if "D" in self.state["diagnosed_conditions"]:
return "diabetes"
return None
@listen("diabetes")
def diabetes_analysis(self):
execution_order.append("diabetes_analysis")
return "diabetes_analysis_complete"
@router(diagnose_conditions)
def hypertension_router(self):
execution_order.append("hypertension_router")
if "H" in self.state["diagnosed_conditions"]:
return "hypertension"
return None
@listen("hypertension")
def hypertension_analysis(self):
execution_order.append("hypertension_analysis")
return "hypertension_analysis_complete"
@router(diagnose_conditions)
def anemia_router(self):
execution_order.append("anemia_router")
if "A" in self.state["diagnosed_conditions"]:
return "anemia"
return None
@listen("anemia")
def anemia_analysis(self):
execution_order.append("anemia_analysis")
return "anemia_analysis_complete"
flow = MultiRouterFlow()
flow.kickoff()
# Verify all methods were called
assert "scan_medical" in execution_order
assert "diagnose_conditions" in execution_order
# Verify all routers were called
assert "diabetes_router" in execution_order
assert "hypertension_router" in execution_order
assert "anemia_router" in execution_order
# Verify all listeners were called - this is the key test for the fix
assert "diabetes_analysis" in execution_order
assert "hypertension_analysis" in execution_order
assert "anemia_analysis" in execution_order
# Verify execution order constraints
assert execution_order.index("diagnose_conditions") > execution_order.index(
"scan_medical"
)
# All routers should execute after diagnose_conditions
assert execution_order.index("diabetes_router") > execution_order.index(
"diagnose_conditions"
)
assert execution_order.index("hypertension_router") > execution_order.index(
"diagnose_conditions"
)
assert execution_order.index("anemia_router") > execution_order.index(
"diagnose_conditions"
)
# All analyses should execute after their respective routers
assert execution_order.index("diabetes_analysis") > execution_order.index(
"diabetes_router"
)
assert execution_order.index("hypertension_analysis") > execution_order.index(
"hypertension_router"
)
assert execution_order.index("anemia_analysis") > execution_order.index(
"anemia_router"
)

View File

@@ -6,9 +6,8 @@ import pytest
from pydantic import BaseModel
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.llm import CONTEXT_WINDOW_USAGE_RATIO, LLM
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.tool_usage_events import ToolExecutionErrorEvent
from crewai.llm import LLM
from crewai.tools import tool
from crewai.utilities.token_counter_callback import TokenCalcHandler
@@ -18,15 +17,15 @@ def test_llm_callback_replacement():
llm1 = LLM(model="gpt-4o-mini")
llm2 = LLM(model="gpt-4o-mini")
calc_handler_1 = TokenCalcHandler(token_process=TokenProcess())
calc_handler_2 = TokenCalcHandler(token_process=TokenProcess())
calc_handler_1 = TokenCalcHandler(token_cost_process=TokenProcess())
calc_handler_2 = TokenCalcHandler(token_cost_process=TokenProcess())
result1 = llm1.call(
messages=[{"role": "user", "content": "Hello, world!"}],
callbacks=[calc_handler_1],
)
print("result1:", result1)
usage_metrics_1 = calc_handler_1.token_process.get_summary()
usage_metrics_1 = calc_handler_1.token_cost_process.get_summary()
print("usage_metrics_1:", usage_metrics_1)
result2 = llm2.call(
@@ -35,13 +34,13 @@ def test_llm_callback_replacement():
)
sleep(5)
print("result2:", result2)
usage_metrics_2 = calc_handler_2.token_process.get_summary()
usage_metrics_2 = calc_handler_2.token_cost_process.get_summary()
print("usage_metrics_2:", usage_metrics_2)
# The first handler should not have been updated
assert usage_metrics_1.successful_requests == 1
assert usage_metrics_2.successful_requests == 1
assert usage_metrics_1 == calc_handler_1.token_process.get_summary()
assert usage_metrics_1 == calc_handler_1.token_cost_process.get_summary()
@pytest.mark.vcr(filter_headers=["authorization"])
@@ -57,14 +56,14 @@ def test_llm_call_with_string_input():
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_string_input_and_callbacks():
llm = LLM(model="gpt-4o-mini")
calc_handler = TokenCalcHandler(token_process=TokenProcess())
calc_handler = TokenCalcHandler(token_cost_process=TokenProcess())
# Test the call method with a string input and callbacks
result = llm.call(
"Tell me a joke.",
callbacks=[calc_handler],
)
usage_metrics = calc_handler.token_process.get_summary()
usage_metrics = calc_handler.token_cost_process.get_summary()
assert isinstance(result, str)
assert len(result.strip()) > 0
@@ -286,60 +285,38 @@ def test_o3_mini_reasoning_effort_medium():
assert "Paris" in result
def test_context_window_validation():
"""Test that context window validation works correctly."""
# Test valid window size
llm = LLM(model="o3-mini")
assert llm.get_context_window_size() == int(200000 * CONTEXT_WINDOW_USAGE_RATIO)
# Test invalid window size
with pytest.raises(ValueError) as excinfo:
with patch.dict(
"crewai.llm.LLM_CONTEXT_WINDOW_SIZES",
{"test-model": 500}, # Below minimum
clear=True,
):
llm = LLM(model="test-model")
llm.get_context_window_size()
assert "must be between 1024 and 2097152" in str(excinfo.value)
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.fixture
def anthropic_llm():
"""Fixture providing an Anthropic LLM instance."""
return LLM(model="anthropic/claude-3-sonnet")
@pytest.fixture
def system_message():
"""Fixture providing a system message."""
return {"role": "system", "content": "test"}
@pytest.fixture
def user_message():
"""Fixture providing a user message."""
return {"role": "user", "content": "test"}
def test_anthropic_message_formatting_edge_cases(anthropic_llm):
"""Test edge cases for Anthropic message formatting."""
# Test None messages
with pytest.raises(TypeError, match="Messages cannot be None"):
anthropic_llm._format_messages_for_provider(None)
# Test empty message list
formatted = anthropic_llm._format_messages_for_provider([])
assert len(formatted) == 1
assert formatted[0]["role"] == "user"
assert formatted[0]["content"] == "."
# Test invalid message format
with pytest.raises(TypeError, match="Invalid message format"):
anthropic_llm._format_messages_for_provider([{"invalid": "message"}])
def test_anthropic_model_detection():
"""Test Anthropic model detection with various formats."""
models = [
@@ -350,12 +327,11 @@ def test_anthropic_model_detection():
("", False),
("anthropomorphic", False), # Should not match partial words
]
for model, expected in models:
llm = LLM(model=model)
assert llm.is_anthropic == expected, f"Failed for model: {model}"
def test_anthropic_message_formatting(anthropic_llm, system_message, user_message):
"""Test Anthropic message formatting with fixtures."""
# Test when first message is system
@@ -395,51 +371,3 @@ def test_deepseek_r1_with_open_router():
result = llm.call("What is the capital of France?")
assert isinstance(result, str)
assert "Paris" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tool_execution_error_event():
llm = LLM(model="gpt-4o-mini")
def failing_tool(param: str) -> str:
"""This tool always fails."""
raise Exception("Tool execution failed!")
tool_schema = {
"type": "function",
"function": {
"name": "failing_tool",
"description": "This tool always fails.",
"parameters": {
"type": "object",
"properties": {
"param": {"type": "string", "description": "A test parameter"}
},
"required": ["param"],
},
},
}
received_events = []
@crewai_event_bus.on(ToolExecutionErrorEvent)
def event_handler(source, event):
received_events.append(event)
available_functions = {"failing_tool": failing_tool}
messages = [{"role": "user", "content": "Use the failing tool"}]
llm.call(
messages,
tools=[tool_schema],
available_functions=available_functions,
)
assert len(received_events) == 1
event = received_events[0]
assert isinstance(event, ToolExecutionErrorEvent)
assert event.tool_name == "failing_tool"
assert event.tool_args == {"param": "test"}
assert event.tool_class == failing_tool
assert "Tool execution failed!" in event.error

View File

@@ -0,0 +1,152 @@
import os
import tempfile
from pathlib import Path
from typing import Generator
import pytest
from chromadb import Documents, EmbeddingFunction, Embeddings
from crewai.memory import EntityMemory, LongTermMemory, ShortTermMemory
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.exceptions.embedding_exceptions import (
EmbeddingConfigurationError,
EmbeddingProviderError,
)
@pytest.fixture
def temp_db_dir() -> Generator[Path, None, None]:
"""Create a temporary directory for test databases."""
with tempfile.TemporaryDirectory() as tmpdir:
path = Path(tmpdir)
# Ensure directory exists and is writable
path.mkdir(parents=True, exist_ok=True)
# Set ChromaDB to use in-memory mode for tests
os.environ["CHROMA_IN_MEMORY"] = "true"
try:
yield path
finally:
# Clean up ChromaDB environment variable
if "CHROMA_IN_MEMORY" in os.environ:
del os.environ["CHROMA_IN_MEMORY"]
def test_memory_reset_with_openai(temp_db_dir):
"""Test memory reset with default OpenAI provider."""
original_key = os.environ.get("OPENAI_API_KEY")
original_provider = os.environ.get("CREWAI_EMBEDDING_PROVIDER")
try:
os.environ["OPENAI_API_KEY"] = "test-key"
if "CREWAI_EMBEDDING_PROVIDER" in os.environ:
del os.environ["CREWAI_EMBEDDING_PROVIDER"]
memory = ShortTermMemory(path=str(temp_db_dir))
memory.reset() # Should work with OpenAI as default
finally:
if original_key:
os.environ["OPENAI_API_KEY"] = original_key
else:
del os.environ["OPENAI_API_KEY"]
if original_provider:
os.environ["CREWAI_EMBEDDING_PROVIDER"] = original_provider
def test_memory_reset_with_ollama(temp_db_dir):
"""Test memory reset with Ollama provider."""
original_provider = os.environ.get("CREWAI_EMBEDDING_PROVIDER")
try:
os.environ["CREWAI_EMBEDDING_PROVIDER"] = "ollama"
memory = ShortTermMemory(path=str(temp_db_dir))
memory.reset() # Should not raise any OpenAI-related errors
finally:
if original_provider:
os.environ["CREWAI_EMBEDDING_PROVIDER"] = original_provider
elif "CREWAI_EMBEDDING_PROVIDER" in os.environ:
del os.environ["CREWAI_EMBEDDING_PROVIDER"]
def test_memory_reset_with_custom_provider(temp_db_dir):
"""Test memory reset with custom embedding provider."""
class CustomEmbedder(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
if isinstance(input, str):
input = [input]
return [[0.5] * 10] * len(input)
memory = ShortTermMemory(
path=str(temp_db_dir),
embedder_config={
"provider": "custom",
"config": {"embedder": CustomEmbedder()}
}
)
memory.reset() # Should work with custom embedder
def test_memory_reset_with_invalid_provider(temp_db_dir):
"""Test memory reset with invalid provider raises appropriate error."""
original_provider = os.environ.get("CREWAI_EMBEDDING_PROVIDER")
original_key = os.environ.get("OPENAI_API_KEY")
try:
os.environ["CREWAI_EMBEDDING_PROVIDER"] = "invalid_provider"
with pytest.raises(Exception) as exc_info:
memory = ShortTermMemory(path=str(temp_db_dir))
memory.reset()
assert "Unsupported embedding provider" in str(exc_info.value)
finally:
if original_provider:
os.environ["CREWAI_EMBEDDING_PROVIDER"] = original_provider
elif "CREWAI_EMBEDDING_PROVIDER" in os.environ:
del os.environ["CREWAI_EMBEDDING_PROVIDER"]
if original_key:
os.environ["OPENAI_API_KEY"] = original_key
def test_memory_reset_with_missing_api_key(temp_db_dir):
"""Test memory reset with missing API key raises appropriate error."""
original_key = os.environ.get("OPENAI_API_KEY")
original_provider = os.environ.get("CREWAI_EMBEDDING_PROVIDER")
try:
if "OPENAI_API_KEY" in os.environ:
del os.environ["OPENAI_API_KEY"]
os.environ["CREWAI_EMBEDDING_PROVIDER"] = "openai"
with pytest.raises(ValueError) as exc_info:
memory = ShortTermMemory(path=str(temp_db_dir))
memory.reset()
assert "openai api key" in str(exc_info.value).lower()
finally:
if original_key:
os.environ["OPENAI_API_KEY"] = original_key
if original_provider:
os.environ["CREWAI_EMBEDDING_PROVIDER"] = original_provider
elif "CREWAI_EMBEDDING_PROVIDER" in os.environ:
del os.environ["CREWAI_EMBEDDING_PROVIDER"]
def test_memory_reset_cleans_up_files(temp_db_dir):
"""Test that memory reset properly cleans up database files."""
original_provider = os.environ.get("CREWAI_EMBEDDING_PROVIDER")
try:
class TestEmbedder(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
if isinstance(input, str):
input = [input]
return [[0.5] * 10] * len(input)
if "CREWAI_EMBEDDING_PROVIDER" in os.environ:
del os.environ["CREWAI_EMBEDDING_PROVIDER"]
memory = ShortTermMemory(
path=str(temp_db_dir),
embedder_config={
"provider": "custom",
"config": {"embedder": TestEmbedder()}
}
)
memory.save("test memory", {"test": "metadata"})
assert any(temp_db_dir.iterdir()) # Directory should have files
memory.reset()
# After reset, directory should either not exist or be empty
assert not os.path.exists(temp_db_dir) or not any(temp_db_dir.iterdir())
finally:
if original_provider:
os.environ["CREWAI_EMBEDDING_PROVIDER"] = original_provider

View File

@@ -13,12 +13,11 @@ from crewai.flow.persistence.sqlite import SQLiteFlowPersistence
class TestState(FlowState):
"""Test state model with required id field."""
counter: int = 0
message: str = ""
def test_persist_decorator_saves_state(tmp_path, caplog):
def test_persist_decorator_saves_state(tmp_path):
"""Test that @persist decorator saves state in SQLite."""
db_path = os.path.join(tmp_path, "test_flows.db")
persistence = SQLiteFlowPersistence(db_path)
@@ -74,6 +73,7 @@ def test_flow_state_restoration(tmp_path):
# First flow execution to create initial state
class RestorableFlow(Flow[TestState]):
@start()
@persist(persistence)
def set_message(self):
@@ -89,7 +89,10 @@ def test_flow_state_restoration(tmp_path):
# Test case 1: Restore using restore_uuid with field override
flow2 = RestorableFlow(persistence=persistence)
flow2.kickoff(inputs={"id": original_uuid, "counter": 43})
flow2.kickoff(inputs={
"id": original_uuid,
"counter": 43
})
# Verify state restoration and selective field override
assert flow2.state.id == original_uuid
@@ -98,7 +101,10 @@ def test_flow_state_restoration(tmp_path):
# Test case 2: Restore using kwargs['id']
flow3 = RestorableFlow(persistence=persistence)
flow3.kickoff(inputs={"id": original_uuid, "message": "Updated message"})
flow3.kickoff(inputs={
"id": original_uuid,
"message": "Updated message"
})
# Verify state restoration and selective field override
assert flow3.state.id == original_uuid
@@ -168,43 +174,3 @@ def test_multiple_method_persistence(tmp_path):
final_state = flow2.state
assert final_state.counter == 99999
assert final_state.message == "Step 99999"
def test_persist_decorator_verbose_logging(tmp_path, caplog):
"""Test that @persist decorator's verbose parameter controls logging."""
# Set logging level to ensure we capture all logs
caplog.set_level("INFO")
db_path = os.path.join(tmp_path, "test_flows.db")
persistence = SQLiteFlowPersistence(db_path)
# Test with verbose=False (default)
class QuietFlow(Flow[Dict[str, str]]):
initial_state = dict()
@start()
@persist(persistence) # Default verbose=False
def init_step(self):
self.state["message"] = "Hello, World!"
self.state["id"] = "test-uuid-1"
flow = QuietFlow(persistence=persistence)
flow.kickoff()
assert "Saving flow state" not in caplog.text
# Clear the log
caplog.clear()
# Test with verbose=True
class VerboseFlow(Flow[Dict[str, str]]):
initial_state = dict()
@start()
@persist(persistence, verbose=True)
def init_step(self):
self.state["message"] = "Hello, World!"
self.state["id"] = "test-uuid-2"
flow = VerboseFlow(persistence=persistence)
flow.kickoff()
assert "Saving flow state" in caplog.text

View File

@@ -1,6 +1,6 @@
import json
import random
from unittest.mock import MagicMock, patch
from unittest.mock import MagicMock
import pytest
from pydantic import BaseModel, Field
@@ -8,11 +8,6 @@ from pydantic import BaseModel, Field
from crewai import Agent, Task
from crewai.tools import BaseTool
from crewai.tools.tool_usage import ToolUsage
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.tool_usage_events import (
ToolSelectionErrorEvent,
ToolValidateInputErrorEvent,
)
class RandomNumberToolInput(BaseModel):
@@ -231,7 +226,7 @@ def test_validate_tool_input_with_special_characters():
)
# Input with special characters
tool_input = '{"message": "Hello, world! \u263a", "valid": True}'
tool_input = '{"message": "Hello, world! \u263A", "valid": True}'
expected_arguments = {"message": "Hello, world! ☺", "valid": True}
arguments = tool_usage._validate_tool_input(tool_input)
@@ -336,19 +331,6 @@ def test_validate_tool_input_with_trailing_commas():
def test_validate_tool_input_invalid_input():
# Create mock agent with proper string values
mock_agent = MagicMock()
mock_agent.key = "test_agent_key" # Must be a string
mock_agent.role = "test_agent_role" # Must be a string
mock_agent._original_role = "test_agent_role" # Must be a string
mock_agent.i18n = MagicMock()
mock_agent.verbose = False
# Create mock action with proper string value
mock_action = MagicMock()
mock_action.tool = "test_tool" # Must be a string
mock_action.tool_input = "test_input" # Must be a string
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
@@ -357,8 +339,8 @@ def test_validate_tool_input_invalid_input():
tools_names="",
task=MagicMock(),
function_calling_llm=None,
agent=mock_agent,
action=mock_action,
agent=MagicMock(),
action=MagicMock(),
)
invalid_inputs = [
@@ -378,7 +360,7 @@ def test_validate_tool_input_invalid_input():
# Test for None input separately
arguments = tool_usage._validate_tool_input(None)
assert arguments == {}
assert arguments == {} # Expecting an empty dictionary
def test_validate_tool_input_complex_structure():
@@ -486,141 +468,18 @@ def test_validate_tool_input_large_json_content():
assert arguments == expected_arguments
def test_tool_selection_error_event_direct():
"""Test tool selection error event emission directly from ToolUsage class."""
mock_agent = MagicMock()
mock_agent.key = "test_key"
mock_agent.role = "test_role"
mock_agent.i18n = MagicMock()
mock_agent.verbose = False
mock_task = MagicMock()
mock_tools_handler = MagicMock()
class TestTool(BaseTool):
name: str = "Test Tool"
description: str = "A test tool"
def _run(self, input: dict) -> str:
return "test result"
test_tool = TestTool()
def test_validate_tool_input_none_input():
tool_usage = ToolUsage(
tools_handler=mock_tools_handler,
tools=[test_tool],
original_tools=[test_tool],
tools_description="Test Tool Description",
tools_names="Test Tool",
task=mock_task,
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=None,
agent=mock_agent,
agent=MagicMock(),
action=MagicMock(),
)
received_events = []
@crewai_event_bus.on(ToolSelectionErrorEvent)
def event_handler(source, event):
received_events.append(event)
with pytest.raises(Exception) as exc_info:
tool_usage._select_tool("Non Existent Tool")
assert len(received_events) == 1
event = received_events[0]
assert isinstance(event, ToolSelectionErrorEvent)
assert event.agent_key == "test_key"
assert event.agent_role == "test_role"
assert event.tool_name == "Non Existent Tool"
assert event.tool_args == {}
assert event.tool_class == "Test Tool Description"
assert "don't exist" in event.error
received_events.clear()
with pytest.raises(Exception) as exc_info:
tool_usage._select_tool("")
assert len(received_events) == 1
event = received_events[0]
assert isinstance(event, ToolSelectionErrorEvent)
assert event.agent_key == "test_key"
assert event.agent_role == "test_role"
assert event.tool_name == ""
assert event.tool_args == {}
assert event.tool_class == "Test Tool Description"
assert "forgot the Action name" in event.error
def test_tool_validate_input_error_event():
"""Test tool validation input error event emission from ToolUsage class."""
# Mock agent and required components
mock_agent = MagicMock()
mock_agent.key = "test_key"
mock_agent.role = "test_role"
mock_agent.verbose = False
mock_agent._original_role = "test_role"
# Mock i18n with error message
mock_i18n = MagicMock()
mock_i18n.errors.return_value = (
"Tool input must be a valid dictionary in JSON or Python literal format"
)
mock_agent.i18n = mock_i18n
# Mock task and tools handler
mock_task = MagicMock()
mock_tools_handler = MagicMock()
# Mock printer
mock_printer = MagicMock()
# Create test tool
class TestTool(BaseTool):
name: str = "Test Tool"
description: str = "A test tool"
def _run(self, input: dict) -> str:
return "test result"
test_tool = TestTool()
# Create ToolUsage instance
tool_usage = ToolUsage(
tools_handler=mock_tools_handler,
tools=[test_tool],
original_tools=[test_tool],
tools_description="Test Tool Description",
tools_names="Test Tool",
task=mock_task,
function_calling_llm=None,
agent=mock_agent,
action=MagicMock(tool="test_tool"),
)
tool_usage._printer = mock_printer
# Mock all parsing attempts to fail
with (
patch("json.loads", side_effect=json.JSONDecodeError("Test Error", "", 0)),
patch("ast.literal_eval", side_effect=ValueError),
patch("json5.loads", side_effect=json.JSONDecodeError("Test Error", "", 0)),
patch("json_repair.repair_json", side_effect=Exception("Failed to repair")),
):
received_events = []
@crewai_event_bus.on(ToolValidateInputErrorEvent)
def event_handler(source, event):
received_events.append(event)
# Test invalid input
invalid_input = "invalid json {[}"
with pytest.raises(Exception) as exc_info:
tool_usage._validate_tool_input(invalid_input)
# Verify event was emitted
assert len(received_events) == 1, "Expected one event to be emitted"
event = received_events[0]
assert isinstance(event, ToolValidateInputErrorEvent)
assert event.agent_key == "test_key"
assert event.agent_role == "test_role"
assert event.tool_name == "test_tool"
assert "must be a valid dictionary" in event.error
arguments = tool_usage._validate_tool_input(None)
assert arguments == {} # Expecting an empty dictionary

View File

@@ -1,243 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzTXAk4GatJOmLO9sEOCCITIjf1Dx\",\n \"object\":
\"chat.completion\",\n \"created\": 1739214900,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90fe6ce92eba67b3-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 10 Feb 2025 19:15:01 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=pjX1I6y8RlqCjS.gvOqvXk4vM69UNwFwmslh1BhALNg-1739214901-1.0.1.1-nJcNlSdNcug82eDl7KSvteLbsg0xCiEh2yI1TZX2jMAblL7AMQ8LFhvXkJLlAMfk49RMzRzWy2aiQgeM7WRHPg;
path=/; expires=Mon, 10-Feb-25 19:45:01 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=efIHP1NUsh1dFewGJBu4YoBu6hhGa8vjOOKQglYQGno-1739214901306-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '571'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_a95183a7a85e6bdfe381b2510bf70f34
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1962'
content-type:
- application/json
cookie:
- __cf_bm=pjX1I6y8RlqCjS.gvOqvXk4vM69UNwFwmslh1BhALNg-1739214901-1.0.1.1-nJcNlSdNcug82eDl7KSvteLbsg0xCiEh2yI1TZX2jMAblL7AMQ8LFhvXkJLlAMfk49RMzRzWy2aiQgeM7WRHPg;
_cfuvid=efIHP1NUsh1dFewGJBu4YoBu6hhGa8vjOOKQglYQGno-1739214901306-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzTXDcgKWq3yosIyBal8LcY8dDrn1\",\n \"object\":
\"chat.completion\",\n \"created\": 1739214903,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_c41SAnqyEKNXEAZd5XV3jKF3\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Consider specifying
the tone or context of the greeting for more engaging interactions.\\\",\\\"Clarify
if additional greetings or responses are acceptable to enhance the task's scope.\\\"],\\\"quality\\\":10,\\\"entities\\\":[]
}\"\n }\n }\n ],\n \"refusal\": null\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 273,\n \"completion_tokens\": 43,\n
\ \"total_tokens\": 316,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 90fe6cf8c96e67b3-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 10 Feb 2025 19:15:04 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1181'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999876'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_b2286c8ae6f9b2a42f46a3e2c52b4211
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,9 +1,14 @@
interactions:
- request:
body: '{"model": "llama3.2:3b", "prompt": "### System:\nPlease convert the following
text into valid JSON.\n\nOutput ONLY the valid JSON and nothing else.\n\nThe
JSON must follow this format exactly:\n{\n \"name\": str,\n \"age\": int\n}\n\n###
User:\nName: Alice Llama, Age: 30\n\n", "options": {"stop": []}, "stream": false}'
body: '{"model": "llama3.2:3b", "prompt": "### User:\nName: Alice Llama, Age:
30\n\n### System:\nProduce JSON OUTPUT ONLY! Adhere to this format {\"name\":
\"function_name\", \"arguments\":{\"argument_name\": \"argument_value\"}} The
following functions are available to you:\n{''type'': ''function'', ''function'':
{''name'': ''SimpleModel'', ''description'': ''Correctly extracted `SimpleModel`
with all the required parameters with correct types'', ''parameters'': {''properties'':
{''name'': {''title'': ''Name'', ''type'': ''string''}, ''age'': {''title'':
''Age'', ''type'': ''integer''}}, ''required'': [''age'', ''name''], ''type'':
''object''}}}\n\n\n", "options": {}, "stream": false, "format": "json"}'
headers:
accept:
- '*/*'
@@ -12,23 +17,23 @@ interactions:
connection:
- keep-alive
content-length:
- '321'
- '657'
host:
- localhost:11434
user-agent:
- litellm/1.60.2
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/generate
response:
content: '{"model":"llama3.2:3b","created_at":"2025-02-21T02:57:55.059392Z","response":"{\"name\":
\"Alice Llama\", \"age\": 30}","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,744,512,5618,5625,279,2768,1495,1139,2764,4823,382,5207,27785,279,2764,4823,323,4400,775,382,791,4823,2011,1833,420,3645,7041,512,517,220,330,609,794,610,345,220,330,425,794,528,198,633,14711,2724,512,678,25,30505,445,81101,11,13381,25,220,966,271,128009,128006,78191,128007,271,5018,609,794,330,62786,445,81101,498,330,425,794,220,966,92],"total_duration":4675906000,"load_duration":836091458,"prompt_eval_count":82,"prompt_eval_duration":3561000000,"eval_count":15,"eval_duration":275000000}'
content: '{"model":"llama3.2:3b","created_at":"2025-01-15T20:47:11.926411Z","response":"{\"name\":
\"SimpleModel\", \"arguments\":{\"name\": \"Alice Llama\", \"age\": 30}}","done":true,"done_reason":"stop","context":[128006,9125,128007,271,38766,1303,33025,2696,25,6790,220,2366,18,271,128009,128006,882,128007,271,14711,2724,512,678,25,30505,445,81101,11,13381,25,220,966,271,14711,744,512,1360,13677,4823,32090,27785,0,2467,6881,311,420,3645,5324,609,794,330,1723,1292,498,330,16774,23118,14819,1292,794,330,14819,3220,32075,578,2768,5865,527,2561,311,499,512,13922,1337,1232,364,1723,518,364,1723,1232,5473,609,1232,364,16778,1747,518,364,4789,1232,364,34192,398,28532,1595,16778,1747,63,449,682,279,2631,5137,449,4495,4595,518,364,14105,1232,5473,13495,1232,5473,609,1232,5473,2150,1232,364,678,518,364,1337,1232,364,928,25762,364,425,1232,5473,2150,1232,364,17166,518,364,1337,1232,364,11924,8439,2186,364,6413,1232,2570,425,518,364,609,4181,364,1337,1232,364,1735,23742,3818,128009,128006,78191,128007,271,5018,609,794,330,16778,1747,498,330,16774,23118,609,794,330,62786,445,81101,498,330,425,794,220,966,3500],"total_duration":3374470708,"load_duration":1075750500,"prompt_eval_count":167,"prompt_eval_duration":1871000000,"eval_count":24,"eval_duration":426000000}'
headers:
Content-Length:
- '761'
- '1263'
Content-Type:
- application/json; charset=utf-8
Date:
- Fri, 21 Feb 2025 02:57:55 GMT
- Wed, 15 Jan 2025 20:47:12 GMT
http_version: HTTP/1.1
status_code: 200
- request:
@@ -47,7 +52,7 @@ interactions:
host:
- localhost:11434
user-agent:
- litellm/1.60.2
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/show
response:
@@ -223,7 +228,7 @@ interactions:
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
FROM llama3.2:3b\\n\\nFROM /Users/joaomoura/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
@@ -436,12 +441,12 @@ interactions:
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2025-02-20T18:55:09.150577031-08:00\"}"
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
headers:
Content-Type:
- application/json; charset=utf-8
Date:
- Fri, 21 Feb 2025 02:57:55 GMT
- Wed, 15 Jan 2025 20:47:12 GMT
Transfer-Encoding:
- chunked
http_version: HTTP/1.1
@@ -462,7 +467,7 @@ interactions:
host:
- localhost:11434
user-agent:
- litellm/1.60.2
- litellm/1.57.4
method: POST
uri: http://localhost:11434/api/show
response:
@@ -638,7 +643,7 @@ interactions:
Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama
3.2: LlamaUseReport@meta.com\",\"modelfile\":\"# Modelfile generated by \\\"ollama
show\\\"\\n# To build a new Modelfile based on this, replace FROM with:\\n#
FROM llama3.2:3b\\n\\nFROM /Users/joaomoura/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
FROM llama3.2:3b\\n\\nFROM /Users/brandonhancock/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff\\nTEMPLATE
\\\"\\\"\\\"\\u003c|start_header_id|\\u003esystem\\u003c|end_header_id|\\u003e\\n\\nCutting
Knowledge Date: December 2023\\n\\n{{ if .System }}{{ .System }}\\n{{- end }}\\n{{-
if .Tools }}When you receive a tool call response, use the output to format
@@ -851,12 +856,12 @@ interactions:
.Content }}\\n{{- end }}{{ if not $last }}\\u003c|eot_id|\\u003e{{ end }}\\n{{-
else if eq .Role \\\"tool\\\" }}\\u003c|start_header_id|\\u003eipython\\u003c|end_header_id|\\u003e\\n\\n{{
.Content }}\\u003c|eot_id|\\u003e{{ if $last }}\\u003c|start_header_id|\\u003eassistant\\u003c|end_header_id|\\u003e\\n\\n{{
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2025-02-20T18:55:09.150577031-08:00\"}"
end }}\\n{{- end }}\\n{{- end }}\",\"details\":{\"parent_model\":\"\",\"format\":\"gguf\",\"family\":\"llama\",\"families\":[\"llama\"],\"parameter_size\":\"3.2B\",\"quantization_level\":\"Q4_K_M\"},\"model_info\":{\"general.architecture\":\"llama\",\"general.basename\":\"Llama-3.2\",\"general.file_type\":15,\"general.finetune\":\"Instruct\",\"general.languages\":[\"en\",\"de\",\"fr\",\"it\",\"pt\",\"hi\",\"es\",\"th\"],\"general.parameter_count\":3212749888,\"general.quantization_version\":2,\"general.size_label\":\"3B\",\"general.tags\":[\"facebook\",\"meta\",\"pytorch\",\"llama\",\"llama-3\",\"text-generation\"],\"general.type\":\"model\",\"llama.attention.head_count\":24,\"llama.attention.head_count_kv\":8,\"llama.attention.key_length\":128,\"llama.attention.layer_norm_rms_epsilon\":0.00001,\"llama.attention.value_length\":128,\"llama.block_count\":28,\"llama.context_length\":131072,\"llama.embedding_length\":3072,\"llama.feed_forward_length\":8192,\"llama.rope.dimension_count\":128,\"llama.rope.freq_base\":500000,\"llama.vocab_size\":128256,\"tokenizer.ggml.bos_token_id\":128000,\"tokenizer.ggml.eos_token_id\":128009,\"tokenizer.ggml.merges\":null,\"tokenizer.ggml.model\":\"gpt2\",\"tokenizer.ggml.pre\":\"llama-bpe\",\"tokenizer.ggml.token_type\":null,\"tokenizer.ggml.tokens\":null},\"modified_at\":\"2024-12-31T11:53:14.529771974-05:00\"}"
headers:
Content-Type:
- application/json; charset=utf-8
Date:
- Fri, 21 Feb 2025 02:57:55 GMT
- Wed, 15 Jan 2025 20:47:12 GMT
Transfer-Encoding:
- chunked
http_version: HTTP/1.1

View File

@@ -1,315 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
cookie:
- __cf_bm=4s6sWmJ49B9F_wNc1STtdZF1nikfl6uN9_ov3Xzfa8U-1738698987-1.0.1.1-lmbRRS1MHrDbnU93Gh16CP3qNczxxIrQnyBU7vpHSwNf6PdmuWOHKd1mkl5SBx6rg7p1NLaNUMyqDDcE0Mvjzw;
_cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJK2OCJSkUj1plgbj59b4dC39QV2\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698990,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90cd396c0ab71698-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:56:30 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '951'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_2c3cb5caed61ccd1e058ef3e6301c691
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
Cq0TCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkShBMKEgoQY3Jld2FpLnRl
bGVtZXRyeRKkBwoQzBQBWCz+GLuI1awj3OPWrRIIGpT16t5bk6MqDENyZXcgQ3JlYXRlZDABOUBz
OyuEGSEYQYDBSCuEGSEYShsKDmNyZXdhaV92ZXJzaW9uEgkKBzAuMTAwLjBKGgoOcHl0aG9uX3Zl
cnNpb24SCAoGMy4xMi44Si4KCGNyZXdfa2V5EiIKIGU1ODA3MDFkNTJlYjY1YWZmMjRlZWZlNzhj
NzQ2MjhjSjEKB2NyZXdfaWQSJgokMDE3NjQ5ZWMtYTBlMS00MzYxLWFlNjgtYzA1N2E3ZGM5YzI5
ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3
X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrRAgoLY3Jl
d19hZ2VudHMSwQIKvgJbeyJrZXkiOiAiYWQxNTMxNjFjNWM1YTg1NmFhMGQwNmIyNDljNGM2NGEi
LCAiaWQiOiAiOGU3NzgyN2QtN2Y2OC00ZDA2LWI2YTctOWI4YjRkMGE0YzMzIiwgInJvbGUiOiAi
YmFzZV9hZ2VudCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0i
OiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIs
ICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBm
YWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K/wEKCmNyZXdf
dGFza3MS8AEK7QFbeyJrZXkiOiAiMWIxNWVmMjM5MTViMjc1NWU4OWEwZWMzYjI2YTEzZDIiLCAi
aWQiOiAiOTJiZDIzMWYtYzAxMC00ZDI3LWIxNGYtZjE5NjEyZTBmZTkzIiwgImFzeW5jX2V4ZWN1
dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJiYXNl
X2FnZW50IiwgImFnZW50X2tleSI6ICJhZDE1MzE2MWM1YzVhODU2YWEwZDA2YjI0OWM0YzY0YSIs
ICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChC22Au0eMkAAjV6cfU1NrNIEggxb1Bq
Xnll/ioMVGFzayBDcmVhdGVkMAE5IOJaK4QZIRhBwG5bK4QZIRhKLgoIY3Jld19rZXkSIgogZTU4
MDcwMWQ1MmViNjVhZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jld19pZBImCiQwMTc2NDllYy1hMGUx
LTQzNjEtYWU2OC1jMDU3YTdkYzljMjlKLgoIdGFza19rZXkSIgogMWIxNWVmMjM5MTViMjc1NWU4
OWEwZWMzYjI2YTEzZDJKMQoHdGFza19pZBImCiQ5MmJkMjMxZi1jMDEwLTRkMjctYjE0Zi1mMTk2
MTJlMGZlOTN6AhgBhQEAAQAAEqQHChC63jCLGR8RP8RmYiHrdNVeEggZ39ffmGm5xyoMQ3JldyBD
cmVhdGVkMAE5GFEe04QZIRhBELEq04QZIRhKGwoOY3Jld2FpX3ZlcnNpb24SCQoHMC4xMDAuMEoa
Cg5weXRob25fdmVyc2lvbhIICgYzLjEyLjhKLgoIY3Jld19rZXkSIgogZTU4MDcwMWQ1MmViNjVh
ZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jld19pZBImCiQ5MTY4YmQxNC0yN2Q2LTQ3NWMtODljOC01
NjJjOTAyMGIxOTBKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkS
AhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMS
AhgBStECCgtjcmV3X2FnZW50cxLBAgq+Alt7ImtleSI6ICJhZDE1MzE2MWM1YzVhODU2YWEwZDA2
YjI0OWM0YzY0YSIsICJpZCI6ICI4ZTc3ODI3ZC03ZjY4LTRkMDYtYjZhNy05YjhiNGQwYTRjMzMi
LCAicm9sZSI6ICJiYXNlX2FnZW50IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIw
LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdw
dC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhl
Y3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119
XUr/AQoKY3Jld190YXNrcxLwAQrtAVt7ImtleSI6ICIxYjE1ZWYyMzkxNWIyNzU1ZTg5YTBlYzNi
MjZhMTNkMiIsICJpZCI6ICI5MmJkMjMxZi1jMDEwLTRkMjctYjE0Zi1mMTk2MTJlMGZlOTMiLCAi
YXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9y
b2xlIjogImJhc2VfYWdlbnQiLCAiYWdlbnRfa2V5IjogImFkMTUzMTYxYzVjNWE4NTZhYTBkMDZi
MjQ5YzRjNjRhIiwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASjgIKEOo6FGs7r9hHrN+f
qhMTUysSCJgbYV+vQMbCKgxUYXNrIENyZWF0ZWQwATlAxjrThBkhGEEYIDvThBkhGEouCghjcmV3
X2tleRIiCiBlNTgwNzAxZDUyZWI2NWFmZjI0ZWVmZTc4Yzc0NjI4Y0oxCgdjcmV3X2lkEiYKJDkx
NjhiZDE0LTI3ZDYtNDc1Yy04OWM4LTU2MmM5MDIwYjE5MEouCgh0YXNrX2tleRIiCiAxYjE1ZWYy
MzkxNWIyNzU1ZTg5YTBlYzNiMjZhMTNkMkoxCgd0YXNrX2lkEiYKJDkyYmQyMzFmLWMwMTAtNGQy
Ny1iMTRmLWYxOTYxMmUwZmU5M3oCGAGFAQABAAA=
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '2480'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Tue, 04 Feb 2025 19:56:31 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1962'
content-type:
- application/json
cookie:
- __cf_bm=4s6sWmJ49B9F_wNc1STtdZF1nikfl6uN9_ov3Xzfa8U-1738698987-1.0.1.1-lmbRRS1MHrDbnU93Gh16CP3qNczxxIrQnyBU7vpHSwNf6PdmuWOHKd1mkl5SBx6rg7p1NLaNUMyqDDcE0Mvjzw;
_cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJK3bJiyqGhPeqdCcCjoeNavGHrR\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698991,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_uAFkclWHIRqgrXFrQFcEoUIS\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Include additional
context for the greeting to make it more meaningful.\\\",\\\"Specify if you
want a casual or formal tone for greetings.\\\",\\\"Provide examples of variations
of the greeting if necessary.\\\"],\\\"quality\\\":10,\\\"entities\\\":[],\\\"relationships\\\":[]}\"\n
\ }\n }\n ],\n \"refusal\": null\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 273,\n \"completion_tokens\": 50,\n
\ \"total_tokens\": 323,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
headers:
CF-RAY:
- 90cd3973589f1698-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:56:32 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1408'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999876'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_519fd27ca3d5da4d541c4331654e0520
http_version: HTTP/1.1
status_code: 200
version: 1

File diff suppressed because one or more lines are too long

View File

@@ -1,245 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJIrSWAFqDEsNtLRhcM8vMHO9Ejw\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698917,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90cd37a83f5f176a-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:55:18 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=rKQWp4fbAvcCp4rasEN6DqiTjQfiWYpLfjcLpWcmzi0-1738698918-1.0.1.1-qlcCSdBY3KWbzVms0eLtz5ub5SSLGs_sRLxTdNhDk_purQuz9k6EFp8PHJfN3aP_sLnuyKnFlppM3.2k_dCtPQ;
path=/; expires=Tue, 04-Feb-25 20:25:18 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=Oi91zDXvjWohBYXSVqK4hFsq3_GZePEIIbi7b7wrjcI-1738698918130-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '894'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_864253996bbc0f797f9a2c1b9247a0d5
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1962'
content-type:
- application/json
cookie:
- __cf_bm=rKQWp4fbAvcCp4rasEN6DqiTjQfiWYpLfjcLpWcmzi0-1738698918-1.0.1.1-qlcCSdBY3KWbzVms0eLtz5ub5SSLGs_sRLxTdNhDk_purQuz9k6EFp8PHJfN3aP_sLnuyKnFlppM3.2k_dCtPQ;
_cfuvid=Oi91zDXvjWohBYXSVqK4hFsq3_GZePEIIbi7b7wrjcI-1738698918130-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJIsVEppA04iGQh0k6sanKnVObrO\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698918,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_AQ3iizjGWjEvk1SmhGCzjbf1\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Provide context for
the greeting, like a specific scenario or recipient.\\\",\\\"Encourage responses
or follow-ups to promote engagement.\\\",\\\"Specify the tone or formality of
the greeting, if relevant.\\\"],\\\"quality\\\":10,\\\"entities\\\":[{\\\"name\\\":\\\"hi\\\",\\\"type\\\":\\\"greeting\\\",\\\"description\\\":\\\"A
common informal expression used to initiate conversation or acknowledge someone.\\\",\\\"relationships\\\":[\\\"used
in conversation\\\",\\\"expresses friendliness\\\"]}]}\"\n }\n }\n
\ ],\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
273,\n \"completion_tokens\": 84,\n \"total_tokens\": 357,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 90cd37aec8c8176a-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:55:21 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '3269'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999876'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_e6e67a3f5c6f2d48e0351cdce95edd97
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,243 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJJzafmayYpGTsTAWbOyZkmQJNa5\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698987,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 90cd395b0e641698-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:56:27 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=4s6sWmJ49B9F_wNc1STtdZF1nikfl6uN9_ov3Xzfa8U-1738698987-1.0.1.1-lmbRRS1MHrDbnU93Gh16CP3qNczxxIrQnyBU7vpHSwNf6PdmuWOHKd1mkl5SBx6rg7p1NLaNUMyqDDcE0Mvjzw;
path=/; expires=Tue, 04-Feb-25 20:26:27 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '839'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_577b484a927b455c40ed80f9fd4d9106
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1962'
content-type:
- application/json
cookie:
- __cf_bm=4s6sWmJ49B9F_wNc1STtdZF1nikfl6uN9_ov3Xzfa8U-1738698987-1.0.1.1-lmbRRS1MHrDbnU93Gh16CP3qNczxxIrQnyBU7vpHSwNf6PdmuWOHKd1mkl5SBx6rg7p1NLaNUMyqDDcE0Mvjzw;
_cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJJz10KP7iadNPdKsbcsvHBa7cic\",\n \"object\":
\"chat.completion\",\n \"created\": 1738698987,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_czeHQgy5eiOVa0zlrtcfwepe\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Provide more context
or details for similar tasks to enhance output expectations.\\\",\\\"Encourage
creativity in responses for simple tasks to engage users more effectively.\\\"],\\\"quality\\\":10,\\\"entities\\\":[]
}\"\n }\n }\n ],\n \"refusal\": null\n },\n
\ \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n
\ \"usage\": {\n \"prompt_tokens\": 273,\n \"completion_tokens\": 40,\n
\ \"total_tokens\": 313,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
headers:
CF-RAY:
- 90cd39615b281698-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 19:56:29 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1411'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999876'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3e717a80c7d9c5ea19893dd990aaae26
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,245 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
cookie:
- __cf_bm=4s6sWmJ49B9F_wNc1STtdZF1nikfl6uN9_ov3Xzfa8U-1738698987-1.0.1.1-lmbRRS1MHrDbnU93Gh16CP3qNczxxIrQnyBU7vpHSwNf6PdmuWOHKd1mkl5SBx6rg7p1NLaNUMyqDDcE0Mvjzw;
_cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJiiHEQwIXsiG0Sd5wofcuhxVbo9\",\n \"object\":
\"chat.completion\",\n \"created\": 1738700520,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90cd5ecd0f7667ee-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 20:22:01 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=nedOdWE1YnKQYt1kSbrcA.zhwa3bZDzmZqTOjZYER0c-1738700521-1.0.1.1-xQk9iXOvqvyXNhkIOgc8Ws2WYcT1mJFkDCvCC8xA5joFD8QfNrBIAr_Qs6sIxt2EzXyeFwBA6gA8ZgWApCHx0Q;
path=/; expires=Tue, 04-Feb-25 20:52:01 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '450'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_10eaafc81640a98a0a4789d270dd94d9
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1962'
content-type:
- application/json
cookie:
- __cf_bm=nedOdWE1YnKQYt1kSbrcA.zhwa3bZDzmZqTOjZYER0c-1738700521-1.0.1.1-xQk9iXOvqvyXNhkIOgc8Ws2WYcT1mJFkDCvCC8xA5joFD8QfNrBIAr_Qs6sIxt2EzXyeFwBA6gA8ZgWApCHx0Q;
_cfuvid=Cl48aI8.jSRja0Pqr6Jrh3mAnigd4rDn6lhGicyjMPY-1738698987673-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AxJijOhk12Ua6lS23IwtZTachfjq9\",\n \"object\":
\"chat.completion\",\n \"created\": 1738700521,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_DSteeMHHPf5RanJb8qjCo4qx\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Consider adding context
for the greeting to make it more engaging.\\\",\\\"Specify if any additional
information or tone is desired in the greeting.\\\"],\\\"quality\\\":10,\\\"entities\\\":[{\\\"name\\\":\\\"greeting\\\",\\\"type\\\":\\\"text\\\",\\\"description\\\":\\\"A
simple greeting phrase\\\",\\\"relationships\\\":[\\\"is a\\\",\\\"is part of
a conversation\\\"]}]}\"\n }\n }\n ],\n \"refusal\":
null\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n
\ }\n ],\n \"usage\": {\n \"prompt_tokens\": 273,\n \"completion_tokens\":
67,\n \"total_tokens\": 340,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_bd83329f63\"\n}\n"
headers:
CF-RAY:
- 90cd5ed20cb267ee-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 04 Feb 2025 20:22:02 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1624'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999876'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_4ee944acdd3928afbf6c5562403b064a
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,114 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzpkZLpCyjKT5d6Udfx4zAme2sOMy\",\n \"object\":
\"chat.completion\",\n \"created\": 1739300299,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 910691d3ab90ebef-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Feb 2025 18:58:20 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=MOH5EY6n3p8JKY53.yz7qzLuLYsEB8QdQXH09loUMBM-1739300300-1.0.1.1-hjb4mk04sMygPFhoFyiySKZSqB_fN5PbhbOyn.kipa3.eLvk7EtriDyjvGkBFIAV13DYnc08BfF_l2kxdx9hfQ;
path=/; expires=Tue, 11-Feb-25 19:28:20 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=uu.cEiV.FfgvSvCdKOooDYJWrwjVEuFeGdQodijGUUI-1739300300232-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1357'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_2277503f851195e7d7a43b66eb044454
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,236 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expected criteria for
your final answer: hi\nyou MUST return the actual complete content as the final
answer, not a summary.\n\nBegin! This is VERY important to you, use the tools
available and give your best Final Answer, your job depends on it!\n\nThought:"}],
"model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '838'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4VsaBZ4ec4b0ab4pkqWgyxTFVVfc\",\n \"object\":
\"chat.completion\",\n \"created\": 1740415556,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_7fcd609668\"\n}\n"
headers:
CF-RAY:
- 9170edc5da6f230e-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 16:45:57 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=lvRw4Nyef7N35to64fj2_kHDfbZp0KSFbwgF5chYMRI-1740415557-1.0.1.1-o5BaN1FpBwv5Wq6zIlv0rCB28lk5hVI9wZQWU3pig1jgyAKDkYzTwZ0MlSR6v6TPIX9RfepjrO3.Gk3FEmcVRw;
path=/; expires=Mon, 24-Feb-25 17:15:57 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=ySaVoTQvAcQyH5QoJQJDj75e5j8HwGFPOlFMAWEvXJk-1740415557302-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '721'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999808'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_fc3b3bcd4382cddaa3c04ce7003e4857
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are Task Execution Evaluator.
Evaluator agent for crew evaluation with precise capabilities to evaluate the
performance of the agents in the crew based on the tasks they have performed\nYour
personal goal is: Your goal is to evaluate the performance of the agents in
the crew based on the tasks they have performed using score from 1 to 10 evaluating
on completion, quality, and overall performance.\nTo give my best complete final
answer to the task respond using the exact following format:\n\nThought: I now
can give a great answer\nFinal Answer: Your final answer must be the great and
the most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
Based on the task description and the expected output, compare and evaluate
the performance of the agents in the crew based on the Task Output they have
performed using score from 1 to 10 evaluating on completion, quality, and overall
performance.task_description: Just say hi task_expected_output: hi agent: base_agent
agent_goal: Just say hi Task Output: hi\n\nThis is the expected criteria for
your final answer: Evaluation Score from 1 to 10 based on the performance of
the agents on the tasks\nyou MUST return the actual complete content as the
final answer, not a summary.\nEnsure your final answer contains only the content
in the following format: {\n \"quality\": float\n}\n\nEnsure the final output
does not include any code block markers like ```json or ```python.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop":
["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1765'
content-type:
- application/json
cookie:
- __cf_bm=lvRw4Nyef7N35to64fj2_kHDfbZp0KSFbwgF5chYMRI-1740415557-1.0.1.1-o5BaN1FpBwv5Wq6zIlv0rCB28lk5hVI9wZQWU3pig1jgyAKDkYzTwZ0MlSR6v6TPIX9RfepjrO3.Gk3FEmcVRw;
_cfuvid=ySaVoTQvAcQyH5QoJQJDj75e5j8HwGFPOlFMAWEvXJk-1740415557302-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4Vsbd9AsRaJ2exDtWnHAwC8rIjfi\",\n \"object\":
\"chat.completion\",\n \"created\": 1740415557,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: { \\n \\\"quality\\\": 10 \\n} \",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 338,\n \"completion_tokens\":
22,\n \"total_tokens\": 360,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_7fcd609668\"\n}\n"
headers:
CF-RAY:
- 9170edd15bb5230e-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 16:45:58 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '860'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999578'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_fad452c2d10b5fc95809130912b08837
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,103 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Hello, how are you?"}], "model":
"gpt-4o-mini", "stop": []}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '102'
content-type:
- application/json
cookie:
- _cfuvid=IY8ppO70AMHr2skDSUsGh71zqHHdCQCZ3OvkPi26NBc-1740424913267-0.0.1.1-604800000;
__cf_bm=fU6K5KZoDmgcEuF8_yWAYKUO5fKHh6q5.wDPnna393g-1740424913-1.0.1.1-2iOaq3JVGWs439V0HxJee0IC9HdJm7dPkeJorD.AGw0YwkngRPM8rrTzn_7ht1BkbOauEezj.wPKcBz18gIYUg
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4YLA2SrC2rwdVQ3U87G5a0P5lsLw\",\n \"object\":
\"chat.completion\",\n \"created\": 1740425016,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Hello! I'm just a computer program, so
I don't have feelings, but I'm here and ready to help you. How can I assist
you today?\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
13,\n \"completion_tokens\": 30,\n \"total_tokens\": 43,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_709714d124\"\n}\n"
headers:
CF-RAY:
- 9171d4c0ed44236e-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 19:23:38 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1954'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999978'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ea2703502b8827e4297cd2a7bae9d9c8
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,108 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "user", "content": "Hello, how are you?"}], "model":
"gpt-4o-mini", "stop": []}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '102'
content-type:
- application/json
cookie:
- _cfuvid=GefCcEtb_Gem93E4a9Hvt3Xyof1YQZVJAXBb9I6pEUs-1739398417375-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-B4YJU8IWKGyBQtAyPDRd3SFI2flYR\",\n \"object\":
\"chat.completion\",\n \"created\": 1740424912,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"Hello! I'm just a computer program, so
I don't have feelings, but I'm here and ready to help you. How can I assist
you today?\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
13,\n \"completion_tokens\": 30,\n \"total_tokens\": 43,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_7fcd609668\"\n}\n"
headers:
CF-RAY:
- 9171d230d8ed7ae0-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 24 Feb 2025 19:21:53 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=fU6K5KZoDmgcEuF8_yWAYKUO5fKHh6q5.wDPnna393g-1740424913-1.0.1.1-2iOaq3JVGWs439V0HxJee0IC9HdJm7dPkeJorD.AGw0YwkngRPM8rrTzn_7ht1BkbOauEezj.wPKcBz18gIYUg;
path=/; expires=Mon, 24-Feb-25 19:51:53 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=IY8ppO70AMHr2skDSUsGh71zqHHdCQCZ3OvkPi26NBc-1740424913267-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '993'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999978'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_d9c4d49185e97b1797061efc1e55d811
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,111 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
cookie:
- _cfuvid=gsNyCo_jrDOolzf8SXHDaxQQrEgdR3jgv4OAH8MziDE-1739291824699-0.0.1.1-604800000;
__cf_bm=cRijYuylMGzRGxv3udQL5PhHOR5mRN_9_eLLwevlM_o-1739299455-1.0.1.1-Fszr_Msw0B1.IBMkiunP.VF2ilul1YGZZV8TqMcO3Q2SHvSlqfgm9NHgns1bJrm0wWRvHiCE7wdZfUAOx7T3Lg
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzpWx6pctOvzu6xsbyg0XfSAc0q9V\",\n \"object\":
\"chat.completion\",\n \"created\": 1739299455,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 91067d3ddc68fa16-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Feb 2025 18:44:16 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '703'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_89222c00e4608e8557a135e91b223556
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,114 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nTo
give my best complete final answer to the task respond using the exact following
format:\n\nThought: I now can give a great answer\nFinal Answer: Your final
answer must be the great and the most complete as possible, it must be outcome
described.\n\nI MUST use these formats, my job depends on it!"}, {"role": "user",
"content": "\nCurrent Task: Just say hi\n\nThis is the expect criteria for your
final answer: hi\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '836'
content-type:
- application/json
cookie:
- _cfuvid=gsNyCo_jrDOolzf8SXHDaxQQrEgdR3jgv4OAH8MziDE-1739291824699-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzpWxLzAcRzigZuIGmjP3ckQgxAom\",\n \"object\":
\"chat.completion\",\n \"created\": 1739299455,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"I now can give a great answer \\nFinal
Answer: hi\",\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
161,\n \"completion_tokens\": 12,\n \"total_tokens\": 173,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 91067d389e90fa16-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Feb 2025 18:44:15 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=cRijYuylMGzRGxv3udQL5PhHOR5mRN_9_eLLwevlM_o-1739299455-1.0.1.1-Fszr_Msw0B1.IBMkiunP.VF2ilul1YGZZV8TqMcO3Q2SHvSlqfgm9NHgns1bJrm0wWRvHiCE7wdZfUAOx7T3Lg;
path=/; expires=Tue, 11-Feb-25 19:14:15 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '716'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999810'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ef807dc3223d40332aae8a313e96ef3a
http_version: HTTP/1.1
status_code: 200
version: 1

File diff suppressed because it is too large Load Diff

View File

@@ -1,512 +0,0 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: say_hi\nTool Arguments: {}\nTool Description:
Say hi\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [say_hi], just the name, exactly as it''s written.\nAction Input: the
input to the action, just a simple JSON object, enclosed in curly braces, using
\" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Just say
hi\n\nThis is the expect criteria for your final answer: hi\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1275'
content-type:
- application/json
cookie:
- _cfuvid=efIHP1NUsh1dFewGJBu4YoBu6hhGa8vjOOKQglYQGno-1739214901306-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzUA6kJQfpUvB4CGot4gSfAIR0foh\",\n \"object\":
\"chat.completion\",\n \"created\": 1739217314,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"you should always think about what to
do \\nAction: say_hi \\nAction Input: {} \",\n \"refusal\": null\n
\ },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n
\ ],\n \"usage\": {\n \"prompt_tokens\": 257,\n \"completion_tokens\":
19,\n \"total_tokens\": 276,\n \"prompt_tokens_details\": {\n \"cached_tokens\":
0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n
\ \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90fea7d78e1fceb9-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 10 Feb 2025 19:55:15 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=fmlg1wjOwuOwZhUUOEtL1tQYluAPumn7AHLF8s0EU2Y-1739217315-1.0.1.1-PQDvxn8TOhzaznlHjwVsqPZUzbAyJWFkvzCubfNJydTu2_AyA1cJ8hkM0khsEE4UY_xp8iPe2gSGmH1ydrDa0Q;
path=/; expires=Mon, 10-Feb-25 20:25:15 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '526'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999703'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_f6358ff0cc7a2b8d2e167ab00a40f2a4
http_version: HTTP/1.1
status_code: 200
- request:
body: '{"messages": [{"role": "system", "content": "You are base_agent. You are
a helpful assistant that just says hi\nYour personal goal is: Just say hi\nYou
ONLY have access to the following tools, and should NEVER make up tools that
are not listed here:\n\nTool Name: say_hi\nTool Arguments: {}\nTool Description:
Say hi\n\nIMPORTANT: Use the following format in your response:\n\n```\nThought:
you should always think about what to do\nAction: the action to take, only one
name of [say_hi], just the name, exactly as it''s written.\nAction Input: the
input to the action, just a simple JSON object, enclosed in curly braces, using
\" to wrap keys and values.\nObservation: the result of the action\n```\n\nOnce
all necessary information is gathered, return the following format:\n\n```\nThought:
I now know the final answer\nFinal Answer: the final answer to the original
input question\n```"}, {"role": "user", "content": "\nCurrent Task: Just say
hi\n\nThis is the expect criteria for your final answer: hi\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"}, {"role": "assistant", "content": "you
should always think about what to do \nAction: say_hi \nAction Input: {} \nObservation:
hi"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1410'
content-type:
- application/json
cookie:
- _cfuvid=efIHP1NUsh1dFewGJBu4YoBu6hhGa8vjOOKQglYQGno-1739214901306-0.0.1.1-604800000;
__cf_bm=fmlg1wjOwuOwZhUUOEtL1tQYluAPumn7AHLF8s0EU2Y-1739217315-1.0.1.1-PQDvxn8TOhzaznlHjwVsqPZUzbAyJWFkvzCubfNJydTu2_AyA1cJ8hkM0khsEE4UY_xp8iPe2gSGmH1ydrDa0Q
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzUA7QdlQy1WZZijxNWUv25sZycg0\",\n \"object\":
\"chat.completion\",\n \"created\": 1739217315,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": \"```\\nThought: I now know the final answer\\nFinal
Answer: hi\\n```\",\n \"refusal\": null\n },\n \"logprobs\":
null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
283,\n \"completion_tokens\": 17,\n \"total_tokens\": 300,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90fea7dc5ba6ceb9-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 10 Feb 2025 19:55:15 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '388'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999680'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_7d7c68b90b3a9c3ac6092fe17ac1185a
http_version: HTTP/1.1
status_code: 200
- request:
body: !!binary |
CoMzCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS2jIKEgoQY3Jld2FpLnRl
bGVtZXRyeRKOAgoQ2EINIGZRoXD589od63oHmBIIMfUgEWudUbIqDFRhc2sgQ3JlYXRlZDABOcjI
7lbu8CIYQZB471bu8CIYSi4KCGNyZXdfa2V5EiIKIGU1ODA3MDFkNTJlYjY1YWZmMjRlZWZlNzhj
NzQ2MjhjSjEKB2NyZXdfaWQSJgokNTE4ODdiOTktY2FlMy00Yjc4LWJjMGEtMDY4MmVmNWEzNGQ0
Si4KCHRhc2tfa2V5EiIKIDFiMTVlZjIzOTE1YjI3NTVlODlhMGVjM2IyNmExM2QySjEKB3Rhc2tf
aWQSJgokMzlmMDlmMWUtOTJmOC00ZGJiLTgzNDAtNjU2ZmVkMDk3ZjM0egIYAYUBAAEAABKkBwoQ
RzhWoF6ewSTS/qUc9yeFRhIIM3SNZCwjz5AqDENyZXcgQ3JlYXRlZDABOQjrGlru8CIYQdgbKVru
8CIYShsKDmNyZXdhaV92ZXJzaW9uEgkKBzAuMTAwLjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4x
Mi44Si4KCGNyZXdfa2V5EiIKIGU1ODA3MDFkNTJlYjY1YWZmMjRlZWZlNzhjNzQ2MjhjSjEKB2Ny
ZXdfaWQSJgokYzk4ODFkY2YtMmM0MS00ZjRlLTgzMjctNjJjYjFhYjJkOTg4ShwKDGNyZXdfcHJv
Y2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90
YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrRAgoLY3Jld19hZ2VudHMSwQIK
vgJbeyJrZXkiOiAiYWQxNTMxNjFjNWM1YTg1NmFhMGQwNmIyNDljNGM2NGEiLCAiaWQiOiAiNTU2
NzJiMDgtOTU4ZC00MjljLWE3ZTctY2ZlN2U4Y2MwOGZkIiwgInJvbGUiOiAiYmFzZV9hZ2VudCIs
ICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVu
Y3Rpb25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9u
X2VuYWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9y
ZXRyeV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1K/wEKCmNyZXdfdGFza3MS8AEK7QFb
eyJrZXkiOiAiMWIxNWVmMjM5MTViMjc1NWU4OWEwZWMzYjI2YTEzZDIiLCAiaWQiOiAiMzlmMDlm
MWUtOTJmOC00ZGJiLTgzNDAtNjU2ZmVkMDk3ZjM0IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxz
ZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJiYXNlX2FnZW50IiwgImFn
ZW50X2tleSI6ICJhZDE1MzE2MWM1YzVhODU2YWEwZDA2YjI0OWM0YzY0YSIsICJ0b29sc19uYW1l
cyI6IFtdfV16AhgBhQEAAQAAEo4CChB8AxWkb2Uwpdc8RpyCRqw5EggJAxbgNu81XyoMVGFzayBD
cmVhdGVkMAE5+HQ8Wu7wIhhB+PE8Wu7wIhhKLgoIY3Jld19rZXkSIgogZTU4MDcwMWQ1MmViNjVh
ZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jld19pZBImCiRjOTg4MWRjZi0yYzQxLTRmNGUtODMyNy02
MmNiMWFiMmQ5ODhKLgoIdGFza19rZXkSIgogMWIxNWVmMjM5MTViMjc1NWU4OWEwZWMzYjI2YTEz
ZDJKMQoHdGFza19pZBImCiQzOWYwOWYxZS05MmY4LTRkYmItODM0MC02NTZmZWQwOTdmMzR6AhgB
hQEAAQAAEqQHChCcXvdbsgYC+gzCMrXs3LN/EgijKwJLCRIiHioMQ3JldyBDcmVhdGVkMAE5iJqz
vu7wIhhBqKC/vu7wIhhKGwoOY3Jld2FpX3ZlcnNpb24SCQoHMC4xMDAuMEoaCg5weXRob25fdmVy
c2lvbhIICgYzLjEyLjhKLgoIY3Jld19rZXkSIgogZTU4MDcwMWQ1MmViNjVhZmYyNGVlZmU3OGM3
NDYyOGNKMQoHY3Jld19pZBImCiQ2Zjk1ZWI3Yy0wOWM5LTQxOTYtYWFiYi1kOWIxNmMxMzZjODdK
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
bnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBStECCgtjcmV3
X2FnZW50cxLBAgq+Alt7ImtleSI6ICJhZDE1MzE2MWM1YzVhODU2YWEwZDA2YjI0OWM0YzY0YSIs
ICJpZCI6ICI1NTY3MmIwOC05NThkLTQyOWMtYTdlNy1jZmU3ZThjYzA4ZmQiLCAicm9sZSI6ICJi
YXNlX2FnZW50IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6
IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwg
ImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZh
bHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUr/AQoKY3Jld190
YXNrcxLwAQrtAVt7ImtleSI6ICIxYjE1ZWYyMzkxNWIyNzU1ZTg5YTBlYzNiMjZhMTNkMiIsICJp
ZCI6ICIzOWYwOWYxZS05MmY4LTRkYmItODM0MC02NTZmZWQwOTdmMzQiLCAiYXN5bmNfZXhlY3V0
aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogImJhc2Vf
YWdlbnQiLCAiYWdlbnRfa2V5IjogImFkMTUzMTYxYzVjNWE4NTZhYTBkMDZiMjQ5YzRjNjRhIiwg
InRvb2xzX25hbWVzIjogW119XXoCGAGFAQABAAASjgIKEExDo5nPLyHb2H8DfYjPoX4SCLEYs+24
8EenKgxUYXNrIENyZWF0ZWQwATmI4NG+7vAiGEFYZdK+7vAiGEouCghjcmV3X2tleRIiCiBlNTgw
NzAxZDUyZWI2NWFmZjI0ZWVmZTc4Yzc0NjI4Y0oxCgdjcmV3X2lkEiYKJDZmOTVlYjdjLTA5Yzkt
NDE5Ni1hYWJiLWQ5YjE2YzEzNmM4N0ouCgh0YXNrX2tleRIiCiAxYjE1ZWYyMzkxNWIyNzU1ZTg5
YTBlYzNiMjZhMTNkMkoxCgd0YXNrX2lkEiYKJDM5ZjA5ZjFlLTkyZjgtNGRiYi04MzQwLTY1NmZl
ZDA5N2YzNHoCGAGFAQABAAASpAcKEBBQzR2bcR/7woQ+VkaJ4kQSCD1LFx3SNPPPKgxDcmV3IENy
ZWF0ZWQwATlotsW/7vAiGEEgA9C/7vAiGEobCg5jcmV3YWlfdmVyc2lvbhIJCgcwLjEwMC4wShoK
DnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuOEouCghjcmV3X2tleRIiCiBlNTgwNzAxZDUyZWI2NWFm
ZjI0ZWVmZTc4Yzc0NjI4Y0oxCgdjcmV3X2lkEiYKJDJiMWI2MGYzLTNlZTMtNGNjYi05MDM2LTdk
MzE4OTJiYjVkZkocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9yeRIC
EABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50cxIC
GAFK0QIKC2NyZXdfYWdlbnRzEsECCr4CW3sia2V5IjogImFkMTUzMTYxYzVjNWE4NTZhYTBkMDZi
MjQ5YzRjNjRhIiwgImlkIjogIjU1NjcyYjA4LTk1OGQtNDI5Yy1hN2U3LWNmZTdlOGNjMDhmZCIs
ICJyb2xlIjogImJhc2VfYWdlbnQiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVyIjogMjAs
ICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0iOiAiZ3B0
LTRvLW1pbmkiLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29kZV9leGVj
dXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMiOiBbXX1d
Sv8BCgpjcmV3X3Rhc2tzEvABCu0BW3sia2V5IjogIjFiMTVlZjIzOTE1YjI3NTVlODlhMGVjM2Iy
NmExM2QyIiwgImlkIjogIjM5ZjA5ZjFlLTkyZjgtNGRiYi04MzQwLTY1NmZlZDA5N2YzNCIsICJh
c3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3Jv
bGUiOiAiYmFzZV9hZ2VudCIsICJhZ2VudF9rZXkiOiAiYWQxNTMxNjFjNWM1YTg1NmFhMGQwNmIy
NDljNGM2NGEiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQmT07KMiFRgzOOPQf
I4bJPhIIqzN+pCYM6IUqDFRhc2sgQ3JlYXRlZDABOYjr3r/u8CIYQehY37/u8CIYSi4KCGNyZXdf
a2V5EiIKIGU1ODA3MDFkNTJlYjY1YWZmMjRlZWZlNzhjNzQ2MjhjSjEKB2NyZXdfaWQSJgokMmIx
YjYwZjMtM2VlMy00Y2NiLTkwMzYtN2QzMTg5MmJiNWRmSi4KCHRhc2tfa2V5EiIKIDFiMTVlZjIz
OTE1YjI3NTVlODlhMGVjM2IyNmExM2QySjEKB3Rhc2tfaWQSJgokMzlmMDlmMWUtOTJmOC00ZGJi
LTgzNDAtNjU2ZmVkMDk3ZjM0egIYAYUBAAEAABKkBwoQE53vZNAWshkoNK1bqTvovRII83djkBUL
EbcqDENyZXcgQ3JlYXRlZDABORBBzsDu8CIYQbAU2MDu8CIYShsKDmNyZXdhaV92ZXJzaW9uEgkK
BzAuMTAwLjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMi44Si4KCGNyZXdfa2V5EiIKIGU1ODA3
MDFkNTJlYjY1YWZmMjRlZWZlNzhjNzQ2MjhjSjEKB2NyZXdfaWQSJgokNTQ0MWY0MWYtOTVjMC00
YzdkLTkxM2QtNDUxODcwY2YyZjYzShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2Ny
ZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJf
b2ZfYWdlbnRzEgIYAUrRAgoLY3Jld19hZ2VudHMSwQIKvgJbeyJrZXkiOiAiYWQxNTMxNjFjNWM1
YTg1NmFhMGQwNmIyNDljNGM2NGEiLCAiaWQiOiAiNTU2NzJiMDgtOTU4ZC00MjljLWE3ZTctY2Zl
N2U4Y2MwOGZkIiwgInJvbGUiOiAiYmFzZV9hZ2VudCIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4
X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwg
ImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxv
d19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19u
YW1lcyI6IFtdfV1K/wEKCmNyZXdfdGFza3MS8AEK7QFbeyJrZXkiOiAiMWIxNWVmMjM5MTViMjc1
NWU4OWEwZWMzYjI2YTEzZDIiLCAiaWQiOiAiMzlmMDlmMWUtOTJmOC00ZGJiLTgzNDAtNjU2ZmVk
MDk3ZjM0IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNl
LCAiYWdlbnRfcm9sZSI6ICJiYXNlX2FnZW50IiwgImFnZW50X2tleSI6ICJhZDE1MzE2MWM1YzVh
ODU2YWEwZDA2YjI0OWM0YzY0YSIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4CChBV
JNEz3VIdOlQM9VT3bctVEgisogN707a2AioMVGFzayBDcmVhdGVkMAE5kGbnwO7wIhhBaMDnwO7w
IhhKLgoIY3Jld19rZXkSIgogZTU4MDcwMWQ1MmViNjVhZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jl
d19pZBImCiQ1NDQxZjQxZi05NWMwLTRjN2QtOTEzZC00NTE4NzBjZjJmNjNKLgoIdGFza19rZXkS
IgogMWIxNWVmMjM5MTViMjc1NWU4OWEwZWMzYjI2YTEzZDJKMQoHdGFza19pZBImCiQzOWYwOWYx
ZS05MmY4LTRkYmItODM0MC02NTZmZWQwOTdmMzR6AhgBhQEAAQAAErQHChDA7zaLCfy56rd5t3oS
rDPZEgjYoSW3mq6WJyoMQ3JldyBDcmVhdGVkMAE5cP/5we7wIhhBIH0Dwu7wIhhKGwoOY3Jld2Fp
X3ZlcnNpb24SCQoHMC4xMDAuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjhKLgoIY3Jld19r
ZXkSIgogZTU4MDcwMWQ1MmViNjVhZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jld19pZBImCiRmNjcz
MTc1ZS04Y2Q1LTQ1ZWUtYTZiOS0xYWFjMTliODQxZWJKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVl
bnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVj
cmV3X251bWJlcl9vZl9hZ2VudHMSAhgBStkCCgtjcmV3X2FnZW50cxLJAgrGAlt7ImtleSI6ICJh
ZDE1MzE2MWM1YzVhODU2YWEwZDA2YjI0OWM0YzY0YSIsICJpZCI6ICJmMGUwMGIzZi0wZWNmLTQ2
OGQtYjdjMC0yZmJhN2I5OTc5YjMiLCAicm9sZSI6ICJiYXNlX2FnZW50IiwgInZlcmJvc2U/Ijog
ZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5n
X2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBm
YWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0Ijog
MiwgInRvb2xzX25hbWVzIjogWyJzYXlfaGkiXX1dSocCCgpjcmV3X3Rhc2tzEvgBCvUBW3sia2V5
IjogIjFiMTVlZjIzOTE1YjI3NTVlODlhMGVjM2IyNmExM2QyIiwgImlkIjogImFhMGFmMmE2LTdm
MTktNDZmNi1iMjMxLTg1M2JjYzYxYzhiZiIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJo
dW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiYmFzZV9hZ2VudCIsICJhZ2VudF9r
ZXkiOiAiYWQxNTMxNjFjNWM1YTg1NmFhMGQwNmIyNDljNGM2NGEiLCAidG9vbHNfbmFtZXMiOiBb
InNheV9oaSJdfV16AhgBhQEAAQAAEo4CChBH8NUZY1Cv8sM2lfQLaEogEgiFlW7Wp7QpdyoMVGFz
ayBDcmVhdGVkMAE5MNkPwu7wIhhBUCcQwu7wIhhKLgoIY3Jld19rZXkSIgogZTU4MDcwMWQ1MmVi
NjVhZmYyNGVlZmU3OGM3NDYyOGNKMQoHY3Jld19pZBImCiRmNjczMTc1ZS04Y2Q1LTQ1ZWUtYTZi
OS0xYWFjMTliODQxZWJKLgoIdGFza19rZXkSIgogMWIxNWVmMjM5MTViMjc1NWU4OWEwZWMzYjI2
YTEzZDJKMQoHdGFza19pZBImCiRhYTBhZjJhNi03ZjE5LTQ2ZjYtYjIzMS04NTNiY2M2MWM4YmZ6
AhgBhQEAAQAAEooBChCJg/wSACw+HIDy4vvYISP/EgjoC/oI/1V0cCoKVG9vbCBVc2FnZTABOWA0
ifTu8CIYQTD0lPTu8CIYShsKDmNyZXdhaV92ZXJzaW9uEgkKBzAuMTAwLjBKFQoJdG9vbF9uYW1l
EggKBnNheV9oaUoOCghhdHRlbXB0cxICGAF6AhgBhQEAAQAA
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '6534'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Mon, 10 Feb 2025 19:55:17 GMT
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "user", "content": "Assess the quality of the task
completed based on the description, expected output, and actual results.\n\nTask
Description:\nJust say hi\n\nExpected Output:\nhi\n\nActual Output:\nhi\n```\n\nPlease
provide:\n- Bullet points suggestions to improve future similar tasks\n- A score
from 0 to 10 evaluating on completion, quality, and overall performance- Entities
extracted from the task output, if any, their type, description, and relationships"}],
"model": "gpt-4o-mini", "tool_choice": {"type": "function", "function": {"name":
"TaskEvaluation"}}, "tools": [{"type": "function", "function": {"name": "TaskEvaluation",
"description": "Correctly extracted `TaskEvaluation` with all the required parameters
with correct types", "parameters": {"$defs": {"Entity": {"properties": {"name":
{"description": "The name of the entity.", "title": "Name", "type": "string"},
"type": {"description": "The type of the entity.", "title": "Type", "type":
"string"}, "description": {"description": "Description of the entity.", "title":
"Description", "type": "string"}, "relationships": {"description": "Relationships
of the entity.", "items": {"type": "string"}, "title": "Relationships", "type":
"array"}}, "required": ["name", "type", "description", "relationships"], "title":
"Entity", "type": "object"}}, "properties": {"suggestions": {"description":
"Suggestions to improve future similar tasks.", "items": {"type": "string"},
"title": "Suggestions", "type": "array"}, "quality": {"description": "A score
from 0 to 10 evaluating on completion, quality, and overall performance, all
taking into account the task description, expected output, and the result of
the task.", "title": "Quality", "type": "number"}, "entities": {"description":
"Entities extracted from the task output.", "items": {"$ref": "#/$defs/Entity"},
"title": "Entities", "type": "array"}}, "required": ["entities", "quality",
"suggestions"], "type": "object"}}}]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1967'
content-type:
- application/json
cookie:
- _cfuvid=efIHP1NUsh1dFewGJBu4YoBu6hhGa8vjOOKQglYQGno-1739214901306-0.0.1.1-604800000;
__cf_bm=fmlg1wjOwuOwZhUUOEtL1tQYluAPumn7AHLF8s0EU2Y-1739217315-1.0.1.1-PQDvxn8TOhzaznlHjwVsqPZUzbAyJWFkvzCubfNJydTu2_AyA1cJ8hkM0khsEE4UY_xp8iPe2gSGmH1ydrDa0Q
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.61.0
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.61.0
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.8
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
content: "{\n \"id\": \"chatcmpl-AzUA8oE0A2d99i1Khpu0CI7fSgRtZ\",\n \"object\":
\"chat.completion\",\n \"created\": 1739217316,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n
\ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\":
\"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n
\ \"id\": \"call_bk3duHRErK1qCyvWJ1uVmmGl\",\n \"type\":
\"function\",\n \"function\": {\n \"name\": \"TaskEvaluation\",\n
\ \"arguments\": \"{\\\"suggestions\\\":[\\\"Provide more context
or details for similar tasks to enhance clarity.\\\",\\\"Specify desired tone
or style for the output.\\\",\\\"Consider adding more variety in tasks to keep
engagement high.\\\"],\\\"quality\\\":10,\\\"entities\\\":[{\\\"name\\\":\\\"hi\\\",\\\"type\\\":\\\"greeting\\\",\\\"description\\\":\\\"A
casual way to say hello or acknowledge someone's presence.\\\",\\\"relationships\\\":[\\\"used
as a greeting\\\",\\\"expresses friendliness\\\"]}]}\"\n }\n }\n
\ ],\n \"refusal\": null\n },\n \"logprobs\": null,\n
\ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\":
275,\n \"completion_tokens\": 80,\n \"total_tokens\": 355,\n \"prompt_tokens_details\":
{\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\":
{\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\":
0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\":
\"default\",\n \"system_fingerprint\": \"fp_72ed7ab54c\"\n}\n"
headers:
CF-RAY:
- 90fea7dfef41ceb9-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Mon, 10 Feb 2025 19:55:17 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1535'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999874'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_55d8eb91b4318245556b73d3f4c1e7c4
http_version: HTTP/1.1
status_code: 200
version: 1

View File

@@ -1,5 +1,4 @@
import json
import os
from typing import Dict, List, Optional
from unittest.mock import MagicMock, Mock, patch
@@ -221,13 +220,10 @@ def test_get_conversion_instructions_gpt():
supports_function_calling.return_value = True
instructions = get_conversion_instructions(SimpleModel, llm)
model_schema = PydanticSchemaParser(model=SimpleModel).get_schema()
expected_instructions = (
"Please convert the following text into valid JSON.\n\n"
"Output ONLY the valid JSON and nothing else.\n\n"
"The JSON must follow this schema exactly:\n```json\n"
f"{model_schema}\n```"
assert (
instructions
== f"Please convert the following text into valid JSON.\n\nThe JSON should follow this schema:\n```json\n{model_schema}\n```"
)
assert instructions == expected_instructions
def test_get_conversion_instructions_non_gpt():
@@ -350,17 +346,12 @@ def test_convert_with_instructions():
assert output.age == 30
# Skip tests that call external APIs when running in CI/CD
skip_external_api = pytest.mark.skipif(
os.getenv("CI") is not None, reason="Skipping tests that call external API in CI/CD"
)
@skip_external_api
@pytest.mark.vcr(filter_headers=["authorization"], record_mode="once")
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_llama3_2_model():
llm = LLM(model="ollama/llama3.2:3b", base_url="http://localhost:11434")
sample_text = "Name: Alice Llama, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
@@ -368,17 +359,19 @@ def test_converter_with_llama3_2_model():
model=SimpleModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Alice Llama"
assert output.age == 30
@skip_external_api
@pytest.mark.vcr(filter_headers=["authorization"], record_mode="once")
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_llama3_1_model():
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
sample_text = "Name: Alice Llama, Age: 30"
instructions = get_conversion_instructions(SimpleModel, llm)
converter = Converter(
llm=llm,
@@ -386,19 +379,14 @@ def test_converter_with_llama3_1_model():
model=SimpleModel,
instructions=instructions,
)
output = converter.to_pydantic()
assert isinstance(output, SimpleModel)
assert output.name == "Alice Llama"
assert output.age == 30
# Skip tests that call external APIs when running in CI/CD
skip_external_api = pytest.mark.skipif(
os.getenv("CI") is not None, reason="Skipping tests that call external API in CI/CD"
)
@skip_external_api
@pytest.mark.vcr(filter_headers=["authorization"])
def test_converter_with_nested_model():
llm = LLM(model="gpt-4o-mini")
@@ -575,7 +563,7 @@ def test_converter_with_ambiguous_input():
with pytest.raises(ConverterError) as exc_info:
output = converter.to_pydantic()
assert "failed to convert text into a pydantic model" in str(exc_info.value).lower()
assert "validation error" in str(exc_info.value).lower()
# Tests for function calling support

Some files were not shown because too many files have changed in this diff Show More