mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
General Clean UP (#2042)
* clean up. fix type safety. address memory config docs * improve manager * Include fix for o1 models not supporting system messages * more broad with o1 * address fix: Typo in expected_output string #2045 * drop prints * drop prints * wip * wip * fix failing memory tests * Fix memory provider issue * clean up short term memory * revert ltm * drop
This commit is contained in:
committed by
Devin AI
parent
df55278476
commit
ef1ef8fd80
@@ -185,7 +185,12 @@ my_crew = Crew(
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder=OpenAIEmbeddingFunction(api_key=os.getenv("OPENAI_API_KEY"), model="text-embedding-3-small"),
|
||||
embedder={
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"model": 'text-embedding-3-small'
|
||||
}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
@@ -242,13 +247,15 @@ my_crew = Crew(
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder=OpenAIEmbeddingFunction(
|
||||
api_key="YOUR_API_KEY",
|
||||
api_base="YOUR_API_BASE_PATH",
|
||||
api_type="azure",
|
||||
api_version="YOUR_API_VERSION",
|
||||
model="text-embedding-3-small"
|
||||
)
|
||||
embedder={
|
||||
"provider": "openai",
|
||||
"config": {
|
||||
"api_key": "YOUR_API_KEY",
|
||||
"api_base": "YOUR_API_BASE_PATH",
|
||||
"api_version": "YOUR_API_VERSION",
|
||||
"model_name": 'text-embedding-3-small'
|
||||
}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
@@ -264,12 +271,15 @@ my_crew = Crew(
|
||||
process=Process.sequential,
|
||||
memory=True,
|
||||
verbose=True,
|
||||
embedder=GoogleVertexEmbeddingFunction(
|
||||
project_id="YOUR_PROJECT_ID",
|
||||
region="YOUR_REGION",
|
||||
api_key="YOUR_API_KEY",
|
||||
model="textembedding-gecko"
|
||||
)
|
||||
embedder={
|
||||
"provider": "vertexai",
|
||||
"config": {
|
||||
"project_id"="YOUR_PROJECT_ID",
|
||||
"region"="YOUR_REGION",
|
||||
"api_key"="YOUR_API_KEY",
|
||||
"model_name"="textembedding-gecko"
|
||||
}
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import re
|
||||
import shutil
|
||||
import subprocess
|
||||
from typing import Any, Dict, List, Literal, Optional, Union
|
||||
from typing import Any, Dict, List, Literal, Optional, Sequence, Union
|
||||
|
||||
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
|
||||
|
||||
@@ -55,7 +55,6 @@ class Agent(BaseAgent):
|
||||
llm: The language model that will run the agent.
|
||||
function_calling_llm: The language model that will handle the tool calling for this agent, it overrides the crew function_calling_llm.
|
||||
max_iter: Maximum number of iterations for an agent to execute a task.
|
||||
memory: Whether the agent should have memory or not.
|
||||
max_rpm: Maximum number of requests per minute for the agent execution to be respected.
|
||||
verbose: Whether the agent execution should be in verbose mode.
|
||||
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
|
||||
@@ -72,9 +71,6 @@ class Agent(BaseAgent):
|
||||
)
|
||||
agent_ops_agent_name: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
|
||||
agent_ops_agent_id: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
|
||||
cache_handler: InstanceOf[CacheHandler] = Field(
|
||||
default=None, description="An instance of the CacheHandler class."
|
||||
)
|
||||
step_callback: Optional[Any] = Field(
|
||||
default=None,
|
||||
description="Callback to be executed after each step of the agent execution.",
|
||||
@@ -108,10 +104,6 @@ class Agent(BaseAgent):
|
||||
default=True,
|
||||
description="Keep messages under the context window size by summarizing content.",
|
||||
)
|
||||
max_iter: int = Field(
|
||||
default=20,
|
||||
description="Maximum number of iterations for an agent to execute a task before giving it's best answer",
|
||||
)
|
||||
max_retry_limit: int = Field(
|
||||
default=2,
|
||||
description="Maximum number of retries for an agent to execute a task when an error occurs.",
|
||||
@@ -197,13 +189,15 @@ class Agent(BaseAgent):
|
||||
if task.output_json:
|
||||
# schema = json.dumps(task.output_json, indent=2)
|
||||
schema = generate_model_description(task.output_json)
|
||||
task_prompt += "\n" + self.i18n.slice(
|
||||
"formatted_task_instructions"
|
||||
).format(output_format=schema)
|
||||
|
||||
elif task.output_pydantic:
|
||||
schema = generate_model_description(task.output_pydantic)
|
||||
|
||||
task_prompt += "\n" + self.i18n.slice("formatted_task_instructions").format(
|
||||
output_format=schema
|
||||
)
|
||||
task_prompt += "\n" + self.i18n.slice(
|
||||
"formatted_task_instructions"
|
||||
).format(output_format=schema)
|
||||
|
||||
if context:
|
||||
task_prompt = self.i18n.slice("task_with_context").format(
|
||||
@@ -331,14 +325,14 @@ class Agent(BaseAgent):
|
||||
tools = agent_tools.tools()
|
||||
return tools
|
||||
|
||||
def get_multimodal_tools(self) -> List[Tool]:
|
||||
def get_multimodal_tools(self) -> Sequence[BaseTool]:
|
||||
from crewai.tools.agent_tools.add_image_tool import AddImageTool
|
||||
|
||||
return [AddImageTool()]
|
||||
|
||||
def get_code_execution_tools(self):
|
||||
try:
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
from crewai_tools import CodeInterpreterTool # type: ignore
|
||||
|
||||
# Set the unsafe_mode based on the code_execution_mode attribute
|
||||
unsafe_mode = self.code_execution_mode == "unsafe"
|
||||
|
||||
@@ -24,6 +24,7 @@ from crewai.tools import BaseTool
|
||||
from crewai.tools.base_tool import Tool
|
||||
from crewai.utilities import I18N, Logger, RPMController
|
||||
from crewai.utilities.config import process_config
|
||||
from crewai.utilities.converter import Converter
|
||||
|
||||
T = TypeVar("T", bound="BaseAgent")
|
||||
|
||||
@@ -42,7 +43,7 @@ class BaseAgent(ABC, BaseModel):
|
||||
max_rpm (Optional[int]): Maximum number of requests per minute for the agent execution.
|
||||
allow_delegation (bool): Allow delegation of tasks to agents.
|
||||
tools (Optional[List[Any]]): Tools at the agent's disposal.
|
||||
max_iter (Optional[int]): Maximum iterations for an agent to execute a task.
|
||||
max_iter (int): Maximum iterations for an agent to execute a task.
|
||||
agent_executor (InstanceOf): An instance of the CrewAgentExecutor class.
|
||||
llm (Any): Language model that will run the agent.
|
||||
crew (Any): Crew to which the agent belongs.
|
||||
@@ -114,7 +115,7 @@ class BaseAgent(ABC, BaseModel):
|
||||
tools: Optional[List[Any]] = Field(
|
||||
default_factory=list, description="Tools at agents' disposal"
|
||||
)
|
||||
max_iter: Optional[int] = Field(
|
||||
max_iter: int = Field(
|
||||
default=25, description="Maximum iterations for an agent to execute a task"
|
||||
)
|
||||
agent_executor: InstanceOf = Field(
|
||||
@@ -125,11 +126,12 @@ class BaseAgent(ABC, BaseModel):
|
||||
)
|
||||
crew: Any = Field(default=None, description="Crew to which the agent belongs.")
|
||||
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
|
||||
cache_handler: InstanceOf[CacheHandler] = Field(
|
||||
cache_handler: Optional[InstanceOf[CacheHandler]] = Field(
|
||||
default=None, description="An instance of the CacheHandler class."
|
||||
)
|
||||
tools_handler: InstanceOf[ToolsHandler] = Field(
|
||||
default=None, description="An instance of the ToolsHandler class."
|
||||
default_factory=ToolsHandler,
|
||||
description="An instance of the ToolsHandler class.",
|
||||
)
|
||||
max_tokens: Optional[int] = Field(
|
||||
default=None, description="Maximum number of tokens for the agent's execution."
|
||||
@@ -254,7 +256,7 @@ class BaseAgent(ABC, BaseModel):
|
||||
@abstractmethod
|
||||
def get_output_converter(
|
||||
self, llm: Any, text: str, model: type[BaseModel] | None, instructions: str
|
||||
):
|
||||
) -> Converter:
|
||||
"""Get the converter class for the agent to create json/pydantic outputs."""
|
||||
pass
|
||||
|
||||
|
||||
@@ -600,7 +600,7 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
```
|
||||
"""
|
||||
try:
|
||||
if not hasattr(self, '_state'):
|
||||
if not hasattr(self, "_state"):
|
||||
return ""
|
||||
|
||||
if isinstance(self._state, dict):
|
||||
@@ -706,26 +706,31 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
inputs: Optional dictionary containing input values and potentially a state ID to restore
|
||||
"""
|
||||
# Handle state restoration if ID is provided in inputs
|
||||
if inputs and 'id' in inputs and self._persistence is not None:
|
||||
restore_uuid = inputs['id']
|
||||
if inputs and "id" in inputs and self._persistence is not None:
|
||||
restore_uuid = inputs["id"]
|
||||
stored_state = self._persistence.load_state(restore_uuid)
|
||||
|
||||
# Override the id in the state if it exists in inputs
|
||||
if 'id' in inputs:
|
||||
if "id" in inputs:
|
||||
if isinstance(self._state, dict):
|
||||
self._state['id'] = inputs['id']
|
||||
self._state["id"] = inputs["id"]
|
||||
elif isinstance(self._state, BaseModel):
|
||||
setattr(self._state, 'id', inputs['id'])
|
||||
setattr(self._state, "id", inputs["id"])
|
||||
|
||||
if stored_state:
|
||||
self._log_flow_event(f"Loading flow state from memory for UUID: {restore_uuid}", color="yellow")
|
||||
self._log_flow_event(
|
||||
f"Loading flow state from memory for UUID: {restore_uuid}",
|
||||
color="yellow",
|
||||
)
|
||||
# Restore the state
|
||||
self._restore_state(stored_state)
|
||||
else:
|
||||
self._log_flow_event(f"No flow state found for UUID: {restore_uuid}", color="red")
|
||||
self._log_flow_event(
|
||||
f"No flow state found for UUID: {restore_uuid}", color="red"
|
||||
)
|
||||
|
||||
# Apply any additional inputs after restoration
|
||||
filtered_inputs = {k: v for k, v in inputs.items() if k != 'id'}
|
||||
filtered_inputs = {k: v for k, v in inputs.items() if k != "id"}
|
||||
if filtered_inputs:
|
||||
self._initialize_state(filtered_inputs)
|
||||
|
||||
@@ -737,9 +742,11 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
flow_name=self.__class__.__name__,
|
||||
),
|
||||
)
|
||||
self._log_flow_event(f"Flow started with ID: {self.flow_id}", color="bold_magenta")
|
||||
self._log_flow_event(
|
||||
f"Flow started with ID: {self.flow_id}", color="bold_magenta"
|
||||
)
|
||||
|
||||
if inputs is not None and 'id' not in inputs:
|
||||
if inputs is not None and "id" not in inputs:
|
||||
self._initialize_state(inputs)
|
||||
|
||||
return asyncio.run(self.kickoff_async())
|
||||
@@ -984,7 +991,9 @@ class Flow(Generic[T], metaclass=FlowMeta):
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
def _log_flow_event(self, message: str, color: str = "yellow", level: str = "info") -> None:
|
||||
def _log_flow_event(
|
||||
self, message: str, color: str = "yellow", level: str = "info"
|
||||
) -> None:
|
||||
"""Centralized logging method for flow events.
|
||||
|
||||
This method provides a consistent interface for logging flow-related events,
|
||||
|
||||
@@ -221,6 +221,13 @@ class LLM:
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
# For O1 models, system messages are not supported.
|
||||
# Convert any system messages into assistant messages.
|
||||
if "o1" in self.model.lower():
|
||||
for message in messages:
|
||||
if message.get("role") == "system":
|
||||
message["role"] = "assistant"
|
||||
|
||||
with suppress_warnings():
|
||||
if callbacks and len(callbacks) > 0:
|
||||
self.set_callbacks(callbacks)
|
||||
|
||||
@@ -1,3 +1,7 @@
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import PrivateAttr
|
||||
|
||||
from crewai.memory.entity.entity_memory_item import EntityMemoryItem
|
||||
from crewai.memory.memory import Memory
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
@@ -10,13 +14,15 @@ class EntityMemory(Memory):
|
||||
Inherits from the Memory class.
|
||||
"""
|
||||
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
|
||||
if hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
self.memory_provider = crew.memory_config.get("provider")
|
||||
else:
|
||||
self.memory_provider = None
|
||||
_memory_provider: Optional[str] = PrivateAttr()
|
||||
|
||||
if self.memory_provider == "mem0":
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
|
||||
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
memory_provider = crew.memory_config.get("provider")
|
||||
else:
|
||||
memory_provider = None
|
||||
|
||||
if memory_provider == "mem0":
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
@@ -36,11 +42,13 @@ class EntityMemory(Memory):
|
||||
path=path,
|
||||
)
|
||||
)
|
||||
super().__init__(storage)
|
||||
|
||||
super().__init__(storage=storage)
|
||||
self._memory_provider = memory_provider
|
||||
|
||||
def save(self, item: EntityMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
"""Saves an entity item into the SQLite storage."""
|
||||
if self.memory_provider == "mem0":
|
||||
if self._memory_provider == "mem0":
|
||||
data = f"""
|
||||
Remember details about the following entity:
|
||||
Name: {item.name}
|
||||
|
||||
@@ -17,7 +17,7 @@ class LongTermMemory(Memory):
|
||||
def __init__(self, storage=None, path=None):
|
||||
if not storage:
|
||||
storage = LTMSQLiteStorage(db_path=path) if path else LTMSQLiteStorage()
|
||||
super().__init__(storage)
|
||||
super().__init__(storage=storage)
|
||||
|
||||
def save(self, item: LongTermMemoryItem) -> None: # type: ignore # BUG?: Signature of "save" incompatible with supertype "Memory"
|
||||
metadata = item.metadata
|
||||
|
||||
@@ -1,15 +1,19 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
|
||||
|
||||
class Memory:
|
||||
class Memory(BaseModel):
|
||||
"""
|
||||
Base class for memory, now supporting agent tags and generic metadata.
|
||||
"""
|
||||
|
||||
def __init__(self, storage: RAGStorage):
|
||||
self.storage = storage
|
||||
storage: Any
|
||||
|
||||
def __init__(self, storage: Any, **data: Any):
|
||||
super().__init__(storage=storage, **data)
|
||||
|
||||
def save(
|
||||
self,
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import PrivateAttr
|
||||
|
||||
from crewai.memory.memory import Memory
|
||||
from crewai.memory.short_term.short_term_memory_item import ShortTermMemoryItem
|
||||
from crewai.memory.storage.rag_storage import RAGStorage
|
||||
@@ -14,13 +16,15 @@ class ShortTermMemory(Memory):
|
||||
MemoryItem instances.
|
||||
"""
|
||||
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
|
||||
if hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
self.memory_provider = crew.memory_config.get("provider")
|
||||
else:
|
||||
self.memory_provider = None
|
||||
_memory_provider: Optional[str] = PrivateAttr()
|
||||
|
||||
if self.memory_provider == "mem0":
|
||||
def __init__(self, crew=None, embedder_config=None, storage=None, path=None):
|
||||
if crew and hasattr(crew, "memory_config") and crew.memory_config is not None:
|
||||
memory_provider = crew.memory_config.get("provider")
|
||||
else:
|
||||
memory_provider = None
|
||||
|
||||
if memory_provider == "mem0":
|
||||
try:
|
||||
from crewai.memory.storage.mem0_storage import Mem0Storage
|
||||
except ImportError:
|
||||
@@ -39,7 +43,8 @@ class ShortTermMemory(Memory):
|
||||
path=path,
|
||||
)
|
||||
)
|
||||
super().__init__(storage)
|
||||
super().__init__(storage=storage)
|
||||
self._memory_provider = memory_provider
|
||||
|
||||
def save(
|
||||
self,
|
||||
@@ -48,7 +53,7 @@ class ShortTermMemory(Memory):
|
||||
agent: Optional[str] = None,
|
||||
) -> None:
|
||||
item = ShortTermMemoryItem(data=value, metadata=metadata, agent=agent)
|
||||
if self.memory_provider == "mem0":
|
||||
if self._memory_provider == "mem0":
|
||||
item.data = f"Remember the following insights from Agent run: {item.data}"
|
||||
|
||||
super().save(value=item.data, metadata=item.metadata, agent=item.agent)
|
||||
|
||||
@@ -7,11 +7,11 @@ from crewai.utilities import I18N
|
||||
|
||||
i18n = I18N()
|
||||
|
||||
|
||||
class AddImageToolSchema(BaseModel):
|
||||
image_url: str = Field(..., description="The URL or path of the image to add")
|
||||
action: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Optional context or question about the image"
|
||||
default=None, description="Optional context or question about the image"
|
||||
)
|
||||
|
||||
|
||||
@@ -36,10 +36,7 @@ class AddImageTool(BaseTool):
|
||||
"image_url": {
|
||||
"url": image_url,
|
||||
},
|
||||
}
|
||||
},
|
||||
]
|
||||
|
||||
return {
|
||||
"role": "user",
|
||||
"content": content
|
||||
}
|
||||
return {"role": "user", "content": content}
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
"final_answer_format": "If you don't need to use any more tools, you must give your best complete final answer, make sure it satisfies the expected criteria, use the EXACT format below:\n\n```\nThought: I now can give a great answer\nFinal Answer: my best complete final answer to the task.\n\n```",
|
||||
"format_without_tools": "\nSorry, I didn't use the right format. I MUST either use a tool (among the available ones), OR give my best final answer.\nHere is the expected format I must follow:\n\n```\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n```\n This Thought/Action/Action Input/Result process can repeat N times. Once I know the final answer, I must return the following format:\n\n```\nThought: I now can give a great answer\nFinal Answer: Your final answer must be the great and the most complete as possible, it must be outcome described\n\n```",
|
||||
"task_with_context": "{task}\n\nThis is the context you're working with:\n{context}",
|
||||
"expected_output": "\nThis is the expect criteria for your final answer: {expected_output}\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
"expected_output": "\nThis is the expected criteria for your final answer: {expected_output}\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
"human_feedback": "You got human feedback on your work, re-evaluate it and give a new Final Answer when ready.\n {human_feedback}",
|
||||
"getting_input": "This is the agent's final answer: {final_answer}\n\n",
|
||||
"summarizer_system_message": "You are a helpful assistant that summarizes text.",
|
||||
|
||||
@@ -1183,7 +1183,7 @@ def test_agent_max_retry_limit():
|
||||
[
|
||||
mock.call(
|
||||
{
|
||||
"input": "Say the word: Hi\n\nThis is the expect criteria for your final answer: The word: Hi\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
"input": "Say the word: Hi\n\nThis is the expected criteria for your final answer: The word: Hi\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
"tool_names": "",
|
||||
"tools": "",
|
||||
"ask_for_human_input": True,
|
||||
@@ -1191,7 +1191,7 @@ def test_agent_max_retry_limit():
|
||||
),
|
||||
mock.call(
|
||||
{
|
||||
"input": "Say the word: Hi\n\nThis is the expect criteria for your final answer: The word: Hi\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
"input": "Say the word: Hi\n\nThis is the expected criteria for your final answer: The word: Hi\nyou MUST return the actual complete content as the final answer, not a summary.",
|
||||
"tool_names": "",
|
||||
"tools": "",
|
||||
"ask_for_human_input": True,
|
||||
|
||||
Reference in New Issue
Block a user