mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-24 15:48:23 +00:00
git-subtree-dir: packages/tools git-subtree-split: 78317b9c127f18bd040c1d77e3c0840cdc9a5b38
54 lines
1.8 KiB
Markdown
54 lines
1.8 KiB
Markdown
# LlamaIndexTool Documentation
|
|
|
|
## Description
|
|
This tool is designed to be a general wrapper around LlamaIndex tools and query engines, enabling you to leverage LlamaIndex resources
|
|
in terms of RAG/agentic pipelines as tools to plug into CrewAI agents.
|
|
|
|
## Installation
|
|
To incorporate this tool into your project, follow the installation instructions below:
|
|
```shell
|
|
pip install 'crewai[tools]'
|
|
```
|
|
|
|
## Example
|
|
The following example demonstrates how to initialize the tool and execute a search with a given query:
|
|
|
|
```python
|
|
from crewai_tools import LlamaIndexTool
|
|
|
|
# Initialize the tool from a LlamaIndex Tool
|
|
|
|
## Example 1: Initialize from FunctionTool
|
|
from llama_index.core.tools import FunctionTool
|
|
|
|
your_python_function = lambda ...: ...
|
|
og_tool = FunctionTool.from_defaults(your_python_function, name="<name>", description='<description>')
|
|
tool = LlamaIndexTool.from_tool(og_tool)
|
|
|
|
## Example 2: Initialize from LlamaHub Tools
|
|
from llama_index.tools.wolfram_alpha import WolframAlphaToolSpec
|
|
wolfram_spec = WolframAlphaToolSpec(app_id="<app_id>")
|
|
wolfram_tools = wolfram_spec.to_tool_list()
|
|
tools = [LlamaIndexTool.from_tool(t) for t in wolfram_tools]
|
|
|
|
|
|
# Initialize Tool from a LlamaIndex Query Engine
|
|
|
|
## NOTE: LlamaIndex has a lot of query engines, define whatever query engine you want
|
|
query_engine = index.as_query_engine()
|
|
query_tool = LlamaIndexTool.from_query_engine(
|
|
query_engine,
|
|
name="Uber 2019 10K Query Tool",
|
|
description="Use this tool to lookup the 2019 Uber 10K Annual Report"
|
|
)
|
|
|
|
```
|
|
|
|
## Steps to Get Started
|
|
To effectively use the `LlamaIndexTool`, follow these steps:
|
|
|
|
1. **Install CrewAI**: Confirm that the `crewai[tools]` package is installed in your Python environment.
|
|
2. **Install and use LlamaIndex**: Follow LlamaIndex documentation (https://docs.llamaindex.ai/) to setup a RAG/agent pipeline.
|
|
|
|
|