# LlamaIndexTool Documentation ## Description This tool is designed to be a general wrapper around LlamaIndex tools and query engines, enabling you to leverage LlamaIndex resources in terms of RAG/agentic pipelines as tools to plug into CrewAI agents. ## Installation To incorporate this tool into your project, follow the installation instructions below: ```shell pip install 'crewai[tools]' ``` ## Example The following example demonstrates how to initialize the tool and execute a search with a given query: ```python from crewai_tools import LlamaIndexTool # Initialize the tool from a LlamaIndex Tool ## Example 1: Initialize from FunctionTool from llama_index.core.tools import FunctionTool your_python_function = lambda ...: ... og_tool = FunctionTool.from_defaults(your_python_function, name="", description='') tool = LlamaIndexTool.from_tool(og_tool) ## Example 2: Initialize from LlamaHub Tools from llama_index.tools.wolfram_alpha import WolframAlphaToolSpec wolfram_spec = WolframAlphaToolSpec(app_id="") wolfram_tools = wolfram_spec.to_tool_list() tools = [LlamaIndexTool.from_tool(t) for t in wolfram_tools] # Initialize Tool from a LlamaIndex Query Engine ## NOTE: LlamaIndex has a lot of query engines, define whatever query engine you want query_engine = index.as_query_engine() query_tool = LlamaIndexTool.from_query_engine( query_engine, name="Uber 2019 10K Query Tool", description="Use this tool to lookup the 2019 Uber 10K Annual Report" ) ``` ## Steps to Get Started To effectively use the `LlamaIndexTool`, follow these steps: 1. **Install CrewAI**: Confirm that the `crewai[tools]` package is installed in your Python environment. 2. **Install and use LlamaIndex**: Follow LlamaIndex documentation (https://docs.llamaindex.ai/) to setup a RAG/agent pipeline.