Compare commits

..

24 Commits

Author SHA1 Message Date
lorenzejay
594c21a36e Enhance Task Class Guardrail Validation Logic
- Updated the Task class to ensure that guardrails can only be used when an agent is provided, improving error handling and validation.
- Introduced a smart task factory function to automatically assign a mock agent when guardrails are present, maintaining backward compatibility.
- Updated tests to utilize the new smart task factory, ensuring proper functionality with and without guardrails.

This update enhances the robustness of task execution and guardrail integration, ensuring better control over task validation outcomes.
2025-10-15 14:02:55 -07:00
lorenzejay
d40846e6af fix test 2025-10-15 13:37:53 -07:00
lorenzejay
884236f41c properly set this for async 2025-10-15 13:22:48 -07:00
lorenzejay
636584acf1 Refactor Task Class Guardrail Type Annotation
- Updated the type annotation for the `guardrails` field in the Task class from `list` to `Sequence` to enhance type safety and compatibility with various sequence types.
- This change improves type checking and aligns with best practices for handling callable functions and string descriptions in guardrail validation.

This update contributes to the overall robustness and maintainability of the Task class.
2025-10-15 13:22:28 -07:00
lorenzejay
c0e49e8d3b Enhance Task Class with Guardrail Support
- Added a new `guardrails` field to the Task class to allow for multiple guardrail functions or string descriptions for output validation.
- Implemented a model validator to ensure guardrails are processed correctly, supporting both callable functions and string descriptions.
- Updated the task execution flow to invoke guardrails sequentially, handling validation and retry logic.
- Added comprehensive tests for various guardrail scenarios, including sequential processing, validation failures, and mixed return types.

This update improves the flexibility and robustness of task output validation, ensuring better control over task execution outcomes.
2025-10-15 13:05:04 -07:00
Vidit Ostwal
f0fb349ddf Fixing copy and adding NOT_SPECIFIED check in task.py (#3690)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Update Test Durations / update-durations (3.13) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
* Fixing copy and adding NOT_SPECIFIED check:

* Fixed mypy issues

* Added test Cases

* added linting checks

* Removed the docs bot folder

* Fixed ruff checks

* Remove secret_folder from tracking

---------

Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
2025-10-14 09:52:39 -07:00
João Moura
bf2e2a42da fix: don't error out if there it no input() available
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
- Specific to jupyter notebooks
2025-10-13 22:36:19 -04:00
Lorenze Jay
814c962196 chore: update crewAI version to 0.203.1 in multiple templates (#3699)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Update Test Durations / update-durations (3.13) (push) Has been cancelled
- Bumped the `crewai` version in `__init__.py` to 0.203.1.
- Updated the dependency versions in the crew, flow, and tool templates' `pyproject.toml` files to reflect the new `crewai` version.
2025-10-13 11:46:22 -07:00
Heitor Carvalho
2ebb2e845f fix: add a leeway of 10s when decoding jwt (#3698) 2025-10-13 12:42:03 -03:00
Greyson LaLonde
7b550ebfe8 fix: inject tool repository credentials in crewai run command
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-10-10 15:00:04 -04:00
Greyson LaLonde
29919c2d81 fix: revert bad cron sched
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
This reverts commit b71c88814f.
2025-10-09 13:52:25 -04:00
Greyson LaLonde
b71c88814f fix: correct cron schedule to run every 5 days at specific dates 2025-10-09 13:10:45 -04:00
Rip&Tear
cb8bcfe214 docs: update security policy for vulnerability reporting
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
- Revised the security policy to clarify the reporting process for vulnerabilities.
- Added detailed sections on scope, reporting requirements, and our commitment to addressing reported issues.
- Emphasized the importance of not disclosing vulnerabilities publicly and provided guidance on how to report them securely.
- Included a new section on coordinated disclosure and safe harbor provisions for ethical reporting.

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-10-09 00:57:57 -04:00
Lorenze Jay
13a514f8be chore: update crewAI and crewAI-tools dependencies to version 0.203.0 and 0.76.0 respectively (#3674)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
- Updated the `crewai-tools` dependency in `pyproject.toml` and `uv.lock` to version 0.76.0.
- Updated the `crewai` version in `__init__.py` to 0.203.0.
- Updated the dependency versions in the crew, flow, and tool templates to reflect the new `crewai` version.
2025-10-08 14:34:51 -07:00
Lorenze Jay
316b1cea69 docs: add guide for capturing telemetry logs in CrewAI AMP (#3673)
- Introduced a new documentation page detailing how to capture telemetry logs from CrewAI AMP deployments.
- Updated the main documentation to include the new guide in the enterprise section.
- Added prerequisites and step-by-step instructions for configuring OTEL collector setup.
- Included an example image for OTEL log collection capture to Datadog.
2025-10-08 14:06:10 -07:00
Lorenze Jay
6f2e39c0dd feat: enhance knowledge and guardrail event handling in Agent class (#3672)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Update Test Durations / update-durations (3.13) (push) Has been cancelled
* feat: enhance knowledge event handling in Agent class

- Updated the Agent class to include task context in knowledge retrieval events.
- Emitted new events for knowledge retrieval and query processes, capturing task and agent details.
- Refactored knowledge event classes to inherit from a base class for better structure and maintainability.
- Added tracing for knowledge events in the TraceCollectionListener to improve observability.

This change improves the tracking and management of knowledge queries and retrievals, facilitating better debugging and performance monitoring.

* refactor: remove task_id from knowledge event emissions in Agent class

- Removed the task_id parameter from various knowledge event emissions in the Agent class to streamline event handling.
- This change simplifies the event structure and focuses on the essential context of knowledge retrieval and query processes.

This refactor enhances the clarity of knowledge events and aligns with the recent improvements in event handling.

* surface association for guardrail events

* fix: improve LLM selection logic in converter

- Updated the logic for selecting the LLM in the convert_with_instructions function to handle cases where the agent may not have a function_calling_llm attribute.
- This change ensures that the converter can still function correctly by falling back to the standard LLM if necessary, enhancing robustness and preventing potential errors.

This fix improves the reliability of the conversion process when working with different agent configurations.

* fix test

* fix: enforce valid LLM instance requirement in converter

- Updated the convert_with_instructions function to ensure that a valid LLM instance is provided by the agent.
- If neither function_calling_llm nor the standard llm is available, a ValueError is raised, enhancing error handling and robustness.
- Improved error messaging for conversion failures to provide clearer feedback on issues encountered during the conversion process.

This change strengthens the reliability of the conversion process by ensuring that agents are properly configured with a valid LLM.
2025-10-08 11:53:13 -07:00
Lucas Gomide
8d93361cb3 docs: add missing /resume files (#3661)
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-10-07 12:21:27 -04:00
Lucas Gomide
54ec245d84 docs: clarify webhook URL parameter in HITL workflows (#3660) 2025-10-07 12:06:11 -04:00
Vidit Ostwal
f589ab9b80 chore: load json tool input before console output
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-10-07 10:18:28 -04:00
Greyson LaLonde
fadb59e0f0 chore: add scheduled cache rebuild to prevent expiration
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
2025-10-06 11:45:28 -04:00
Greyson LaLonde
1a60848425 chore: remove crewAI.excalidraw file 2025-10-06 11:03:55 -04:00
Greyson LaLonde
0135163040 chore: remove mkdocs cache directory
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Remove obsolete .cache directory from mkdocs-material social plugin as the project no longer uses mkdocs for documentation.
2025-10-05 21:41:09 -04:00
Greyson LaLonde
dac5d6d664 fix: use system PATH for Docker binary instead of hardcoded path 2025-10-05 21:36:05 -04:00
Rip&Tear
f0f94f2540 fix: add CodeQL configuration to properly exclude template directories (#3641) 2025-10-06 08:21:51 +08:00
1220 changed files with 14352 additions and 56082 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

21
.github/codeql/codeql-config.yml vendored Normal file
View File

@@ -0,0 +1,21 @@
name: "CodeQL Config"
paths-ignore:
# Ignore template files - these are boilerplate code that shouldn't be analyzed
- "src/crewai/cli/templates/**"
# Ignore test cassettes - these are test fixtures/recordings
- "tests/cassettes/**"
# Ignore cache and build artifacts
- ".cache/**"
# Ignore documentation build artifacts
- "docs/.cache/**"
paths:
# Include all Python source code
- "src/**"
# Include tests (but exclude cassettes)
- "tests/**"
# Configure specific queries or packs if needed
# queries:
# - uses: security-and-quality

63
.github/security.md vendored
View File

@@ -1,27 +1,50 @@
## CrewAI Security Vulnerability Reporting Policy
## CrewAI Security Policy
CrewAI prioritizes the security of our software products, services, and GitHub repositories. To promptly address vulnerabilities, follow these steps for reporting security issues:
We are committed to protecting the confidentiality, integrity, and availability of the CrewAI ecosystem. This policy explains how to report potential vulnerabilities and what you can expect from us when you do.
### Reporting Process
Do **not** report vulnerabilities via public GitHub issues.
### Scope
Email all vulnerability reports directly to:
**security@crewai.com**
We welcome reports for vulnerabilities that could impact:
### Required Information
To help us quickly validate and remediate the issue, your report must include:
- CrewAI-maintained source code and repositories
- CrewAI-operated infrastructure and services
- Official CrewAI releases, packages, and distributions
- **Vulnerability Type:** Clearly state the vulnerability type (e.g., SQL injection, XSS, privilege escalation).
- **Affected Source Code:** Provide full file paths and direct URLs (branch, tag, or commit).
- **Reproduction Steps:** Include detailed, step-by-step instructions. Screenshots are recommended.
- **Special Configuration:** Document any special settings or configurations required to reproduce.
- **Proof-of-Concept (PoC):** Provide exploit or PoC code (if available).
- **Impact Assessment:** Clearly explain the severity and potential exploitation scenarios.
Issues affecting clearly unaffiliated third-party services or user-generated content are out of scope, unless you can demonstrate a direct impact on CrewAI systems or customers.
### Our Response
- We will acknowledge receipt of your report promptly via your provided email.
- Confirmed vulnerabilities will receive priority remediation based on severity.
- Patches will be released as swiftly as possible following verification.
### How to Report
### Reward Notice
Currently, we do not offer a bug bounty program. Rewards, if issued, are discretionary.
- **Please do not** disclose vulnerabilities via public GitHub issues, pull requests, or social media.
- Email detailed reports to **security@crewai.com** with the subject line `Security Report`.
- If you need to share large files or sensitive artifacts, mention it in your email and we will coordinate a secure transfer method.
### What to Include
Providing comprehensive information enables us to validate the issue quickly:
- **Vulnerability overview** — a concise description and classification (e.g., RCE, privilege escalation)
- **Affected components** — repository, branch, tag, or deployed service along with relevant file paths or endpoints
- **Reproduction steps** — detailed, step-by-step instructions; include logs, screenshots, or screen recordings when helpful
- **Proof-of-concept** — exploit details or code that demonstrates the impact (if available)
- **Impact analysis** — severity assessment, potential exploitation scenarios, and any prerequisites or special configurations
### Our Commitment
- **Acknowledgement:** We aim to acknowledge your report within two business days.
- **Communication:** We will keep you informed about triage results, remediation progress, and planned release timelines.
- **Resolution:** Confirmed vulnerabilities will be prioritized based on severity and fixed as quickly as possible.
- **Recognition:** We currently do not run a bug bounty program; any rewards or recognition are issued at CrewAI's discretion.
### Coordinated Disclosure
We ask that you allow us a reasonable window to investigate and remediate confirmed issues before any public disclosure. We will coordinate publication timelines with you whenever possible.
### Safe Harbor
We will not pursue or support legal action against individuals who, in good faith:
- Follow this policy and refrain from violating any applicable laws
- Avoid privacy violations, data destruction, or service disruption
- Limit testing to systems in scope and respect rate limits and terms of service
If you are unsure whether your testing is covered, please contact us at **security@crewai.com** before proceeding.

View File

@@ -7,6 +7,8 @@ on:
paths:
- "uv.lock"
- "pyproject.toml"
schedule:
- cron: "0 0 */5 * *" # Run every 5 days at midnight UTC to prevent cache expiration
workflow_dispatch:
permissions:

View File

@@ -15,11 +15,11 @@ on:
push:
branches: [ "main" ]
paths-ignore:
- "lib/crewai/src/crewai/cli/templates/**"
- "src/crewai/cli/templates/**"
pull_request:
branches: [ "main" ]
paths-ignore:
- "lib/crewai/src/crewai/cli/templates/**"
- "src/crewai/cli/templates/**"
jobs:
analyze:
@@ -73,6 +73,7 @@ jobs:
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
config-file: ./.github/codeql/codeql-config.yml
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.

View File

@@ -52,10 +52,10 @@ jobs:
- name: Run Ruff on Changed Files
if: ${{ steps.changed-files.outputs.files != '' }}
run: |
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} uv run ruff check "{}"
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} uv run ruff check "{}"
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'

View File

@@ -1,71 +0,0 @@
name: Publish to PyPI
on:
release:
types: [ published ]
workflow_dispatch:
jobs:
build:
if: github.event.release.prerelease == true
name: Build packages
runs-on: ubuntu-latest
permissions:
contents: read
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Build packages
run: |
uv build --all-packages
rm dist/.gitignore
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: dist
path: dist/
publish:
if: github.event.release.prerelease == true
name: Publish to PyPI
needs: build
runs-on: ubuntu-latest
environment:
name: pypi
url: https://pypi.org/p/crewai
permissions:
id-token: write
contents: read
steps:
- uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: "3.12"
enable-cache: false
- name: Download artifacts
uses: actions/download-artifact@v4
with:
name: dist
path: dist
- name: Publish to PyPI
env:
UV_PUBLISH_TOKEN: ${{ secrets.PYPI_API_TOKEN }}
run: |
for package in dist/*; do
echo "Publishing $package"
uv publish "$package"
done

View File

@@ -8,14 +8,6 @@ permissions:
env:
OPENAI_API_KEY: fake-api-key
PYTHONUNBUFFERED: 1
BRAVE_API_KEY: fake-brave-key
SNOWFLAKE_USER: fake-snowflake-user
SNOWFLAKE_PASSWORD: fake-snowflake-password
SNOWFLAKE_ACCOUNT: fake-snowflake-account
SNOWFLAKE_WAREHOUSE: fake-snowflake-warehouse
SNOWFLAKE_DATABASE: fake-snowflake-database
SNOWFLAKE_SCHEMA: fake-snowflake-schema
EMBEDCHAIN_DB_URI: sqlite:///test.db
jobs:
tests:
@@ -64,13 +56,13 @@ jobs:
- name: Run tests (group ${{ matrix.group }} of 8)
run: |
PYTHON_VERSION_SAFE=$(echo "${{ matrix.python-version }}" | tr '.' '_')
DURATION_FILE="../../.test_durations_py${PYTHON_VERSION_SAFE}"
DURATION_FILE=".test_durations_py${PYTHON_VERSION_SAFE}"
# Temporarily always skip cached durations to fix test splitting
# When durations don't match, pytest-split runs duplicate tests instead of splitting
echo "Using even test splitting (duration cache disabled until fix merged)"
DURATIONS_ARG=""
# Original logic (disabled temporarily):
# if [ ! -f "$DURATION_FILE" ]; then
# echo "No cached durations found, tests will be split evenly"
@@ -82,8 +74,8 @@ jobs:
# echo "No test changes detected, using cached test durations for optimal splitting"
# DURATIONS_ARG="--durations-path=${DURATION_FILE}"
# fi
cd lib/crewai && uv run pytest \
uv run pytest \
--block-network \
--timeout=30 \
-vv \
@@ -94,19 +86,6 @@ jobs:
-n auto \
--maxfail=3
- name: Run tool tests (group ${{ matrix.group }} of 8)
run: |
cd lib/crewai-tools && uv run pytest \
--block-network \
--timeout=30 \
-vv \
--splits 8 \
--group ${{ matrix.group }} \
--durations=10 \
-n auto \
--maxfail=3
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4

1
.gitignore vendored
View File

@@ -2,6 +2,7 @@
.pytest_cache
__pycache__
dist/
lib/
.env
assets/*
.idea

View File

@@ -6,16 +6,14 @@ repos:
entry: uv run ruff check
language: system
types: [python]
exclude: ^lib/crewai/
- id: ruff-format
name: ruff-format
entry: uv run ruff format
language: system
types: [python]
exclude: ^lib/crewai/
- id: mypy
name: mypy
entry: uv run mypy
language: system
types: [python]
exclude: ^lib/crewai/
exclude: ^tests/

File diff suppressed because it is too large Load Diff

View File

@@ -397,6 +397,7 @@
"en/enterprise/guides/kickoff-crew",
"en/enterprise/guides/update-crew",
"en/enterprise/guides/enable-crew-studio",
"en/enterprise/guides/capture_telemetry_logs",
"en/enterprise/guides/azure-openai-setup",
"en/enterprise/guides/tool-repository",
"en/enterprise/guides/react-component-export",
@@ -421,6 +422,7 @@
"en/api-reference/introduction",
"en/api-reference/inputs",
"en/api-reference/kickoff",
"en/api-reference/resume",
"en/api-reference/status"
]
}
@@ -827,6 +829,7 @@
"pt-BR/api-reference/introduction",
"pt-BR/api-reference/inputs",
"pt-BR/api-reference/kickoff",
"pt-BR/api-reference/resume",
"pt-BR/api-reference/status"
]
}
@@ -1239,6 +1242,7 @@
"ko/api-reference/introduction",
"ko/api-reference/inputs",
"ko/api-reference/kickoff",
"ko/api-reference/resume",
"ko/api-reference/status"
]
}

View File

@@ -0,0 +1,6 @@
---
title: "POST /resume"
description: "Resume crew execution with human feedback"
openapi: "/enterprise-api.en.yaml POST /resume"
mode: "wide"
---

View File

@@ -0,0 +1,35 @@
---
title: "Open Telemetry Logs"
description: "Understand how to capture telemetry logs from your CrewAI AMP deployments"
icon: "magnifying-glass-chart"
mode: "wide"
---
CrewAI AMP provides a powerful way to capture telemetry logs from your deployments. This allows you to monitor the performance of your agents and workflows, and to debug issues that may arise.
## Prerequisites
<CardGroup cols={2}>
<Card title="ENTERPRISE OTEL SETUP enabled" icon="users">
Your organization should have ENTERPRISE OTEL SETUP enabled
</Card>
<Card title="OTEL collector setup" icon="server">
Your organization should have an OTEL collector setup or a provider like Datadog log intake setup
</Card>
</CardGroup>
## How to capture telemetry logs
1. Go to settings/organization tab
2. Configure your OTEL collector setup
3. Save
Example to setup OTEL log collection capture to Datadog.
<Frame>
![Capture Telemetry Logs](/images/crewai-otel-export.png)
</Frame>

View File

@@ -40,6 +40,28 @@ Human-In-The-Loop (HITL) is a powerful approach that combines artificial intelli
<Frame>
<img src="/images/enterprise/crew-resume-endpoint.png" alt="Crew Resume Endpoint" />
</Frame>
<Warning>
**Critical: Webhook URLs Must Be Provided Again**:
You **must** provide the same webhook URLs (`taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`) in the resume call that you used in the kickoff call. Webhook configurations are **NOT** automatically carried over from kickoff - they must be explicitly included in the resume request to continue receiving notifications for task completion, agent steps, and crew completion.
</Warning>
Example resume call with webhooks:
```bash
curl -X POST {BASE_URL}/resume \
-H "Authorization: Bearer YOUR_API_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"execution_id": "abcd1234-5678-90ef-ghij-klmnopqrstuv",
"task_id": "research_task",
"human_feedback": "Great work! Please add more details.",
"is_approve": true,
"taskWebhookUrl": "https://your-server.com/webhooks/task",
"stepWebhookUrl": "https://your-server.com/webhooks/step",
"crewWebhookUrl": "https://your-server.com/webhooks/crew"
}'
```
<Warning>
**Feedback Impact on Task Execution**:
It's crucial to exercise care when providing feedback, as the entire feedback content will be incorporated as additional context for further task executions.
@@ -76,4 +98,4 @@ HITL workflows are particularly valuable for:
- Complex decision-making scenarios
- Sensitive or high-stakes operations
- Creative tasks requiring human judgment
- Compliance and regulatory reviews
- Compliance and regulatory reviews

View File

@@ -151,5 +151,3 @@ You can check the security check status of a tool at:
<Card title="Need Help?" icon="headset" href="mailto:support@crewai.com">
Contact our support team for assistance with API integration or troubleshooting.
</Card>

View File

@@ -79,6 +79,28 @@ Human-in-the-Loop (HITL) is a powerful approach that combines artificial intelli
<Frame>
<img src="/images/enterprise/crew-resume-endpoint.png" alt="Crew Resume Endpoint" />
</Frame>
<Warning>
**Critical: Webhook URLs Must Be Provided Again**:
You **must** provide the same webhook URLs (`taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`) in the resume call that you used in the kickoff call. Webhook configurations are **NOT** automatically carried over from kickoff - they must be explicitly included in the resume request to continue receiving notifications for task completion, agent steps, and crew completion.
</Warning>
Example resume call with webhooks:
```bash
curl -X POST {BASE_URL}/resume \
-H "Authorization: Bearer YOUR_API_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"execution_id": "abcd1234-5678-90ef-ghij-klmnopqrstuv",
"task_id": "research_task",
"human_feedback": "Great work! Please add more details.",
"is_approve": true,
"taskWebhookUrl": "https://your-server.com/webhooks/task",
"stepWebhookUrl": "https://your-server.com/webhooks/step",
"crewWebhookUrl": "https://your-server.com/webhooks/crew"
}'
```
<Warning>
**Feedback Impact on Task Execution**:
It's crucial to exercise care when providing feedback, as the entire feedback content will be incorporated as additional context for further task executions.

View File

@@ -276,6 +276,134 @@ paths:
'500':
$ref: '#/components/responses/ServerError'
/resume:
post:
summary: Resume Crew Execution with Human Feedback
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Resume a paused crew execution with human feedback for Human-in-the-Loop (HITL) workflows.
When a task with `human_input=True` completes, the crew execution pauses and waits for human feedback.
**IMPORTANT**: You must provide the same webhook URLs (`taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`)
that were used in the original kickoff call. Webhook configurations are NOT automatically carried over -
they must be explicitly provided in the resume request to continue receiving notifications.
operationId: resumeCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- execution_id
- task_id
- human_feedback
- is_approve
properties:
execution_id:
type: string
format: uuid
description: The unique identifier for the crew execution (from kickoff)
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id:
type: string
description: The ID of the task that requires human feedback
example: "research_task"
human_feedback:
type: string
description: Your feedback on the task output. This will be incorporated as additional context for subsequent task executions.
example: "Great research! Please add more details about recent developments in the field."
is_approve:
type: boolean
description: "Whether you approve the task output: true = positive feedback (continue), false = negative feedback (retry task)"
example: true
taskWebhookUrl:
type: string
format: uri
description: Callback URL executed after each task completion. MUST be provided to continue receiving task notifications.
example: "https://your-server.com/webhooks/task"
stepWebhookUrl:
type: string
format: uri
description: Callback URL executed after each agent thought/action. MUST be provided to continue receiving step notifications.
example: "https://your-server.com/webhooks/step"
crewWebhookUrl:
type: string
format: uri
description: Callback URL executed when the crew execution completes. MUST be provided to receive completion notification.
example: "https://your-server.com/webhooks/crew"
examples:
approve_and_continue:
summary: Approve task and continue execution
value:
execution_id: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id: "research_task"
human_feedback: "Excellent research! Proceed to the next task."
is_approve: true
taskWebhookUrl: "https://api.example.com/webhooks/task"
stepWebhookUrl: "https://api.example.com/webhooks/step"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
request_revision:
summary: Request task revision with feedback
value:
execution_id: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id: "analysis_task"
human_feedback: "Please include more quantitative data and cite your sources."
is_approve: false
taskWebhookUrl: "https://api.example.com/webhooks/task"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
responses:
'200':
description: Execution resumed successfully
content:
application/json:
schema:
type: object
properties:
status:
type: string
enum: ["resumed", "retrying", "completed"]
description: Status of the resumed execution
example: "resumed"
message:
type: string
description: Human-readable message about the resume operation
example: "Execution resumed successfully"
examples:
resumed:
summary: Execution resumed with positive feedback
value:
status: "resumed"
message: "Execution resumed successfully"
retrying:
summary: Task will be retried with negative feedback
value:
status: "retrying"
message: "Task will be retried with your feedback"
'400':
description: Invalid request body or execution not in pending state
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Invalid Request"
message: "Execution is not in pending human input state"
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Execution ID or Task ID not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Not Found"
message: "Execution ID not found"
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:

View File

@@ -276,6 +276,134 @@ paths:
'500':
$ref: '#/components/responses/ServerError'
/resume:
post:
summary: Resume Crew Execution with Human Feedback
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Resume a paused crew execution with human feedback for Human-in-the-Loop (HITL) workflows.
When a task with `human_input=True` completes, the crew execution pauses and waits for human feedback.
**IMPORTANT**: You must provide the same webhook URLs (`taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`)
that were used in the original kickoff call. Webhook configurations are NOT automatically carried over -
they must be explicitly provided in the resume request to continue receiving notifications.
operationId: resumeCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- execution_id
- task_id
- human_feedback
- is_approve
properties:
execution_id:
type: string
format: uuid
description: The unique identifier for the crew execution (from kickoff)
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id:
type: string
description: The ID of the task that requires human feedback
example: "research_task"
human_feedback:
type: string
description: Your feedback on the task output. This will be incorporated as additional context for subsequent task executions.
example: "Great research! Please add more details about recent developments in the field."
is_approve:
type: boolean
description: "Whether you approve the task output: true = positive feedback (continue), false = negative feedback (retry task)"
example: true
taskWebhookUrl:
type: string
format: uri
description: Callback URL executed after each task completion. MUST be provided to continue receiving task notifications.
example: "https://your-server.com/webhooks/task"
stepWebhookUrl:
type: string
format: uri
description: Callback URL executed after each agent thought/action. MUST be provided to continue receiving step notifications.
example: "https://your-server.com/webhooks/step"
crewWebhookUrl:
type: string
format: uri
description: Callback URL executed when the crew execution completes. MUST be provided to receive completion notification.
example: "https://your-server.com/webhooks/crew"
examples:
approve_and_continue:
summary: Approve task and continue execution
value:
execution_id: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id: "research_task"
human_feedback: "Excellent research! Proceed to the next task."
is_approve: true
taskWebhookUrl: "https://api.example.com/webhooks/task"
stepWebhookUrl: "https://api.example.com/webhooks/step"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
request_revision:
summary: Request task revision with feedback
value:
execution_id: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id: "analysis_task"
human_feedback: "Please include more quantitative data and cite your sources."
is_approve: false
taskWebhookUrl: "https://api.example.com/webhooks/task"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
responses:
'200':
description: Execution resumed successfully
content:
application/json:
schema:
type: object
properties:
status:
type: string
enum: ["resumed", "retrying", "completed"]
description: Status of the resumed execution
example: "resumed"
message:
type: string
description: Human-readable message about the resume operation
example: "Execution resumed successfully"
examples:
resumed:
summary: Execution resumed with positive feedback
value:
status: "resumed"
message: "Execution resumed successfully"
retrying:
summary: Task will be retried with negative feedback
value:
status: "retrying"
message: "Task will be retried with your feedback"
'400':
description: Invalid request body or execution not in pending state
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Invalid Request"
message: "Execution is not in pending human input state"
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Execution ID or Task ID not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Not Found"
message: "Execution ID not found"
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:

View File

@@ -120,6 +120,134 @@ paths:
'500':
$ref: '#/components/responses/ServerError'
/resume:
post:
summary: Resume Crew Execution with Human Feedback
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Resume a paused crew execution with human feedback for Human-in-the-Loop (HITL) workflows.
When a task with `human_input=True` completes, the crew execution pauses and waits for human feedback.
**IMPORTANT**: You must provide the same webhook URLs (`taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`)
that were used in the original kickoff call. Webhook configurations are NOT automatically carried over -
they must be explicitly provided in the resume request to continue receiving notifications.
operationId: resumeCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- execution_id
- task_id
- human_feedback
- is_approve
properties:
execution_id:
type: string
format: uuid
description: The unique identifier for the crew execution (from kickoff)
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id:
type: string
description: The ID of the task that requires human feedback
example: "research_task"
human_feedback:
type: string
description: Your feedback on the task output. This will be incorporated as additional context for subsequent task executions.
example: "Great research! Please add more details about recent developments in the field."
is_approve:
type: boolean
description: "Whether you approve the task output: true = positive feedback (continue), false = negative feedback (retry task)"
example: true
taskWebhookUrl:
type: string
format: uri
description: Callback URL executed after each task completion. MUST be provided to continue receiving task notifications.
example: "https://your-server.com/webhooks/task"
stepWebhookUrl:
type: string
format: uri
description: Callback URL executed after each agent thought/action. MUST be provided to continue receiving step notifications.
example: "https://your-server.com/webhooks/step"
crewWebhookUrl:
type: string
format: uri
description: Callback URL executed when the crew execution completes. MUST be provided to receive completion notification.
example: "https://your-server.com/webhooks/crew"
examples:
approve_and_continue:
summary: Approve task and continue execution
value:
execution_id: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id: "research_task"
human_feedback: "Excellent research! Proceed to the next task."
is_approve: true
taskWebhookUrl: "https://api.example.com/webhooks/task"
stepWebhookUrl: "https://api.example.com/webhooks/step"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
request_revision:
summary: Request task revision with feedback
value:
execution_id: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id: "analysis_task"
human_feedback: "Please include more quantitative data and cite your sources."
is_approve: false
taskWebhookUrl: "https://api.example.com/webhooks/task"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
responses:
'200':
description: Execution resumed successfully
content:
application/json:
schema:
type: object
properties:
status:
type: string
enum: ["resumed", "retrying", "completed"]
description: Status of the resumed execution
example: "resumed"
message:
type: string
description: Human-readable message about the resume operation
example: "Execution resumed successfully"
examples:
resumed:
summary: Execution resumed with positive feedback
value:
status: "resumed"
message: "Execution resumed successfully"
retrying:
summary: Task will be retried with negative feedback
value:
status: "retrying"
message: "Task will be retried with your feedback"
'400':
description: Invalid request body or execution not in pending state
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Invalid Request"
message: "Execution is not in pending human input state"
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Execution ID or Task ID not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Not Found"
message: "Execution ID not found"
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:

View File

@@ -156,6 +156,134 @@ paths:
'500':
$ref: '#/components/responses/ServerError'
/resume:
post:
summary: Resume Crew Execution with Human Feedback
description: |
**📋 Reference Example Only** - *This shows the request format. To test with your actual crew, copy the cURL example and replace the URL + token with your real values.*
Resume a paused crew execution with human feedback for Human-in-the-Loop (HITL) workflows.
When a task with `human_input=True` completes, the crew execution pauses and waits for human feedback.
**IMPORTANT**: You must provide the same webhook URLs (`taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`)
that were used in the original kickoff call. Webhook configurations are NOT automatically carried over -
they must be explicitly provided in the resume request to continue receiving notifications.
operationId: resumeCrewExecution
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- execution_id
- task_id
- human_feedback
- is_approve
properties:
execution_id:
type: string
format: uuid
description: The unique identifier for the crew execution (from kickoff)
example: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id:
type: string
description: The ID of the task that requires human feedback
example: "research_task"
human_feedback:
type: string
description: Your feedback on the task output. This will be incorporated as additional context for subsequent task executions.
example: "Great research! Please add more details about recent developments in the field."
is_approve:
type: boolean
description: "Whether you approve the task output: true = positive feedback (continue), false = negative feedback (retry task)"
example: true
taskWebhookUrl:
type: string
format: uri
description: Callback URL executed after each task completion. MUST be provided to continue receiving task notifications.
example: "https://your-server.com/webhooks/task"
stepWebhookUrl:
type: string
format: uri
description: Callback URL executed after each agent thought/action. MUST be provided to continue receiving step notifications.
example: "https://your-server.com/webhooks/step"
crewWebhookUrl:
type: string
format: uri
description: Callback URL executed when the crew execution completes. MUST be provided to receive completion notification.
example: "https://your-server.com/webhooks/crew"
examples:
approve_and_continue:
summary: Approve task and continue execution
value:
execution_id: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id: "research_task"
human_feedback: "Excellent research! Proceed to the next task."
is_approve: true
taskWebhookUrl: "https://api.example.com/webhooks/task"
stepWebhookUrl: "https://api.example.com/webhooks/step"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
request_revision:
summary: Request task revision with feedback
value:
execution_id: "abcd1234-5678-90ef-ghij-klmnopqrstuv"
task_id: "analysis_task"
human_feedback: "Please include more quantitative data and cite your sources."
is_approve: false
taskWebhookUrl: "https://api.example.com/webhooks/task"
crewWebhookUrl: "https://api.example.com/webhooks/crew"
responses:
'200':
description: Execution resumed successfully
content:
application/json:
schema:
type: object
properties:
status:
type: string
enum: ["resumed", "retrying", "completed"]
description: Status of the resumed execution
example: "resumed"
message:
type: string
description: Human-readable message about the resume operation
example: "Execution resumed successfully"
examples:
resumed:
summary: Execution resumed with positive feedback
value:
status: "resumed"
message: "Execution resumed successfully"
retrying:
summary: Task will be retried with negative feedback
value:
status: "retrying"
message: "Task will be retried with your feedback"
'400':
description: Invalid request body or execution not in pending state
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Invalid Request"
message: "Execution is not in pending human input state"
'401':
$ref: '#/components/responses/UnauthorizedError'
'404':
description: Execution ID or Task ID not found
content:
application/json:
schema:
$ref: '#/components/schemas/Error'
example:
error: "Not Found"
message: "Execution ID not found"
'500':
$ref: '#/components/responses/ServerError'
components:
securitySchemes:
BearerAuth:

Binary file not shown.

After

Width:  |  Height:  |  Size: 317 KiB

View File

@@ -0,0 +1,6 @@
---
title: "POST /resume"
description: "인간 피드백으로 crew 실행 재개"
openapi: "/enterprise-api.ko.yaml POST /resume"
mode: "wide"
---

View File

@@ -40,6 +40,28 @@ mode: "wide"
<Frame>
<img src="/images/enterprise/crew-resume-endpoint.png" alt="Crew Resume Endpoint" />
</Frame>
<Warning>
**중요: Webhook URL을 다시 제공해야 합니다**:
kickoff 호출에서 사용한 것과 동일한 webhook URL(`taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`)을 resume 호출에서 **반드시** 제공해야 합니다. Webhook 설정은 kickoff에서 자동으로 전달되지 **않으므로**, 작업 완료, 에이전트 단계, crew 완료에 대한 알림을 계속 받으려면 resume 요청에 명시적으로 포함해야 합니다.
</Warning>
Webhook을 포함한 resume 호출 예시:
```bash
curl -X POST {BASE_URL}/resume \
-H "Authorization: Bearer YOUR_API_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"execution_id": "abcd1234-5678-90ef-ghij-klmnopqrstuv",
"task_id": "research_task",
"human_feedback": "훌륭한 작업입니다! 더 자세한 내용을 추가해주세요.",
"is_approve": true,
"taskWebhookUrl": "https://your-server.com/webhooks/task",
"stepWebhookUrl": "https://your-server.com/webhooks/step",
"crewWebhookUrl": "https://your-server.com/webhooks/crew"
}'
```
<Warning>
**피드백이 작업 실행에 미치는 영향**:
피드백 전체 내용이 이후 작업 실행을 위한 추가 컨텍스트로 통합되므로 피드백 제공 시 신중함이 매우 중요합니다.
@@ -76,4 +98,4 @@ HITL 워크플로우는 특히 다음과 같은 경우에 유용합니다:
- 복잡한 의사 결정 시나리오
- 민감하거나 위험도가 높은 작업
- 인간의 판단이 필요한 창의적 작업
- 준수 및 규제 검토
- 준수 및 규제 검토

View File

@@ -40,6 +40,28 @@ mode: "wide"
<Frame>
<img src="/images/enterprise/crew-resume-endpoint.png" alt="Crew Resume Endpoint" />
</Frame>
<Warning>
**중요: Webhook URL을 다시 제공해야 합니다**:
kickoff 호출에서 사용한 것과 동일한 webhook URL(`taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`)을 resume 호출에서 **반드시** 제공해야 합니다. Webhook 설정은 kickoff에서 자동으로 전달되지 **않으므로**, 작업 완료, 에이전트 단계, crew 완료에 대한 알림을 계속 받으려면 resume 요청에 명시적으로 포함해야 합니다.
</Warning>
Webhook을 포함한 resume 호출 예시:
```bash
curl -X POST {BASE_URL}/resume \
-H "Authorization: Bearer YOUR_API_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"execution_id": "abcd1234-5678-90ef-ghij-klmnopqrstuv",
"task_id": "research_task",
"human_feedback": "훌륭한 작업입니다! 더 자세한 내용을 추가해주세요.",
"is_approve": true,
"taskWebhookUrl": "https://your-server.com/webhooks/task",
"stepWebhookUrl": "https://your-server.com/webhooks/step",
"crewWebhookUrl": "https://your-server.com/webhooks/crew"
}'
```
<Warning>
**피드백이 작업 실행에 미치는 영향**:
피드백의 전체 내용이 추가 컨텍스트로서 이후 작업 실행에 통합되므로, 피드백 제공 시 신중을 기하는 것이 매우 중요합니다.
@@ -76,4 +98,4 @@ HITL 워크플로우는 다음과 같은 경우에 특히 유용합니다:
- 복잡한 의사결정 시나리오
- 민감하거나 고위험 작업
- 인간의 판단이 필요한 창의적 과제
- 컴플라이언스 및 규제 검토
- 컴플라이언스 및 규제 검토

View File

@@ -0,0 +1,6 @@
---
title: "POST /resume"
description: "Retomar execução do crew com feedback humano"
openapi: "/enterprise-api.pt-BR.yaml POST /resume"
mode: "wide"
---

View File

@@ -40,6 +40,28 @@ Human-In-The-Loop (HITL) é uma abordagem poderosa que combina inteligência art
<Frame>
<img src="/images/enterprise/crew-resume-endpoint.png" alt="Crew Resume Endpoint" />
</Frame>
<Warning>
**Crítico: URLs de Webhook Devem Ser Fornecidas Novamente**:
Você **deve** fornecer as mesmas URLs de webhook (`taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`) na chamada de resume que você usou na chamada de kickoff. As configurações de webhook **NÃO** são automaticamente transferidas do kickoff - elas devem ser explicitamente incluídas na solicitação de resume para continuar recebendo notificações de conclusão de tarefa, etapas do agente e conclusão do crew.
</Warning>
Exemplo de chamada resume com webhooks:
```bash
curl -X POST {BASE_URL}/resume \
-H "Authorization: Bearer YOUR_API_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"execution_id": "abcd1234-5678-90ef-ghij-klmnopqrstuv",
"task_id": "research_task",
"human_feedback": "Ótimo trabalho! Por favor, adicione mais detalhes.",
"is_approve": true,
"taskWebhookUrl": "https://your-server.com/webhooks/task",
"stepWebhookUrl": "https://your-server.com/webhooks/step",
"crewWebhookUrl": "https://your-server.com/webhooks/crew"
}'
```
<Warning>
**Impacto do Feedback na Execução da Tarefa**:
É crucial ter cuidado ao fornecer o feedback, pois todo o conteúdo do feedback será incorporado como contexto adicional para as próximas execuções da tarefa.
@@ -76,4 +98,4 @@ Workflows HITL são particularmente valiosos para:
- Cenários de tomada de decisão complexa
- Operações sensíveis ou de alto risco
- Tarefas criativas que exigem julgamento humano
- Revisões de conformidade e regulatórias
- Revisões de conformidade e regulatórias

View File

@@ -40,6 +40,28 @@ Human-in-the-Loop (HITL) é uma abordagem poderosa que combina a inteligência a
<Frame>
<img src="/images/enterprise/crew-resume-endpoint.png" alt="Endpoint de Retomada Crew" />
</Frame>
<Warning>
**Crítico: URLs de Webhook Devem Ser Fornecidas Novamente**:
Você **deve** fornecer as mesmas URLs de webhook (`taskWebhookUrl`, `stepWebhookUrl`, `crewWebhookUrl`) na chamada de resume que você usou na chamada de kickoff. As configurações de webhook **NÃO** são automaticamente transferidas do kickoff - elas devem ser explicitamente incluídas na solicitação de resume para continuar recebendo notificações de conclusão de tarefa, etapas do agente e conclusão do crew.
</Warning>
Exemplo de chamada resume com webhooks:
```bash
curl -X POST {BASE_URL}/resume \
-H "Authorization: Bearer YOUR_API_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"execution_id": "abcd1234-5678-90ef-ghij-klmnopqrstuv",
"task_id": "research_task",
"human_feedback": "Ótimo trabalho! Por favor, adicione mais detalhes.",
"is_approve": true,
"taskWebhookUrl": "https://your-server.com/webhooks/task",
"stepWebhookUrl": "https://your-server.com/webhooks/step",
"crewWebhookUrl": "https://your-server.com/webhooks/crew"
}'
```
<Warning>
**Impacto do Feedback na Execução da Tarefa**:
É fundamental ter cuidado ao fornecer feedback, pois todo o conteúdo do feedback será incorporado como contexto adicional para execuções futuras da tarefa.
@@ -76,4 +98,4 @@ Workflows HITL são particularmente valiosos para:
- Cenários de tomada de decisão complexa
- Operações sensíveis ou de alto risco
- Tarefas criativas que requerem julgamento humano
- Revisões de conformidade e regulamentação
- Revisões de conformidade e regulamentação

View File

@@ -1,335 +0,0 @@
## Building CrewAI Tools
This guide shows you how to build highquality CrewAI tools that match the patterns in this repository and are ready to be merged. It focuses on: architecture, conventions, environment variables, dependencies, testing, documentation, and a complete example.
### Who this is for
- Contributors creating new tools under `crewai_tools/tools/*`
- Maintainers reviewing PRs for consistency and DX
---
## Quickstart checklist
1. Create a new folder under `crewai_tools/tools/<your_tool_name>/` with a `README.md` and a `<your_tool_name>.py`.
2. Implement a class that ends with `Tool` and subclasses `BaseTool` (or `RagTool` when appropriate).
3. Define a Pydantic `args_schema` with explicit field descriptions and validation.
4. Declare `env_vars` and `package_dependencies` in the class when needed.
5. Lazily initialize clients in `__init__` or `_run` and handle missing credentials with clear errors.
6. Implement `_run(...) -> str | dict` and, if needed, `_arun(...)`.
7. Add tests under `tests/tools/` (unit, no real network calls; mock or record safely).
8. Add a concise tool `README.md` with usage and required env vars.
9. If you add optional dependencies, register them in `pyproject.toml` under `[project.optional-dependencies]` and reference that extra in your tool docs.
10. Run `uv run pytest` and `pre-commit run -a` locally; ensure green.
---
## Tool anatomy and conventions
### BaseTool pattern
All tools follow this structure:
```python
from typing import Any, List, Optional, Type
import os
from pydantic import BaseModel, Field
from crewai.tools import BaseTool, EnvVar
class MyToolInput(BaseModel):
"""Input schema for MyTool."""
query: str = Field(..., description="Your input description here")
limit: int = Field(5, ge=1, le=50, description="Max items to return")
class MyTool(BaseTool):
name: str = "My Tool"
description: str = "Explain succinctly what this tool does and when to use it."
args_schema: Type[BaseModel] = MyToolInput
# Only include when applicable
env_vars: List[EnvVar] = [
EnvVar(name="MY_API_KEY", description="API key for My service", required=True),
]
package_dependencies: List[str] = ["my-sdk"]
def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)
# Lazy import to keep base install light
try:
import my_sdk # noqa: F401
except Exception as exc:
raise ImportError(
"Missing optional dependency 'my-sdk'. Install with: \n"
" uv add crewai-tools --extra my-sdk\n"
"or\n"
" pip install my-sdk\n"
) from exc
if "MY_API_KEY" not in os.environ:
raise ValueError("Environment variable MY_API_KEY is required for MyTool")
def _run(self, query: str, limit: int = 5, **_: Any) -> str:
"""Synchronous execution. Return a concise string or JSON string."""
# Implement your logic here; do not print. Return the content.
# Handle errors gracefully, return clear messages.
return f"Processed {query} with limit={limit}"
async def _arun(self, *args: Any, **kwargs: Any) -> str:
"""Optional async counterpart if your client supports it."""
# Prefer delegating to _run when the client is thread-safe
return self._run(*args, **kwargs)
```
Key points:
- Class name must end with `Tool` to be autodiscovered by our tooling.
- Use `args_schema` for inputs; always include `description` and validation.
- Validate env vars early and fail with actionable errors.
- Keep outputs deterministic and compact; favor `str` (possibly JSONencoded) or small dicts converted to strings.
- Avoid printing; return the final string.
### Error handling
- Wrap network and I/O with try/except and return a helpful message. See `BraveSearchTool` and others for patterns.
- Validate required inputs and environment configuration with clear messages.
- Keep exceptions userfriendly; do not leak stack traces.
### Rate limiting and retries
- If the upstream API enforces request pacing, implement minimal rate limiting (see `BraveSearchTool`).
- Consider idempotency and backoff for transient errors where appropriate.
### Async support
- Implement `_arun` only if your library has a true async client or your sync calls are threadsafe.
- Otherwise, delegate `_arun` to `_run` as in multiple existing tools.
### Returning values
- Return a string (or JSON string) thats ready to display in an agent transcript.
- If returning structured data, keep it small and humanreadable. Use stable keys and ordering.
---
## RAG tools and adapters
If your tool is a knowledge source, consider extending `RagTool` and/or creating an adapter.
- `RagTool` exposes `add(...)` and a `query(question: str) -> str` contract through an `Adapter`.
- See `crewai_tools/tools/rag/rag_tool.py` and adapters like `embedchain_adapter.py` and `lancedb_adapter.py`.
Minimal adapter example:
```python
from typing import Any
from pydantic import BaseModel
from crewai_tools.tools.rag.rag_tool import Adapter, RagTool
class MemoryAdapter(Adapter):
store: list[str] = []
def add(self, text: str, **_: Any) -> None:
self.store.append(text)
def query(self, question: str) -> str:
# naive demo: return all text containing any word from the question
tokens = set(question.lower().split())
hits = [t for t in self.store if tokens & set(t.lower().split())]
return "\n".join(hits) if hits else "No relevant content found."
class MemoryRagTool(RagTool):
name: str = "Inmemory RAG"
description: str = "Toy RAG that stores text in memory and returns matches."
adapter: Adapter = MemoryAdapter()
```
When using external vector DBs (MongoDB, Qdrant, Weaviate), study the existing tools to follow indexing, embedding, and query configuration patterns closely.
---
## Toolkits (multiple related tools)
Some integrations expose a toolkit (a group of tools) rather than a single class. See Bedrock `browser_toolkit.py` and `code_interpreter_toolkit.py`.
Guidelines:
- Provide small, focused `BaseTool` classes for each operation (e.g., `navigate`, `click`, `extract_text`).
- Offer a helper `create_<name>_toolkit(...) -> Tuple[ToolkitClass, List[BaseTool]]` to create tools and manage resources.
- If you open external resources (browsers, interpreters), support cleanup methods and optionally context manager usage.
---
## Environment variables and dependencies
### env_vars
- Declare as `env_vars: List[EnvVar]` with `name`, `description`, `required`, and optional `default`.
- Validate presence in `__init__` or on first `_run` call.
### Dependencies
- List runtime packages in `package_dependencies` on the class.
- If they are genuinely optional, add an extra under `[project.optional-dependencies]` in `pyproject.toml` (e.g., `tavily-python`, `serpapi`, `scrapfly-sdk`).
- Use lazy imports to avoid hard deps for users who dont need the tool.
---
## Testing
Place tests under `tests/tools/` and follow these rules:
- Do not hit real external services in CI. Use mocks, fakes, or recorded fixtures where allowed.
- Validate input validation, env var handling, error messages, and happy path output formatting.
- Keep tests fast and deterministic.
Example skeleton (`tests/tools/my_tool_test.py`):
```python
import os
import pytest
from crewai_tools.tools.my_tool.my_tool import MyTool
def test_requires_env_var(monkeypatch):
monkeypatch.delenv("MY_API_KEY", raising=False)
with pytest.raises(ValueError):
MyTool()
def test_happy_path(monkeypatch):
monkeypatch.setenv("MY_API_KEY", "test")
tool = MyTool()
result = tool.run(query="hello", limit=2)
assert "hello" in result
```
Run locally:
```bash
uv run pytest
pre-commit run -a
```
---
## Documentation
Each tool must include a `README.md` in its folder with:
- What it does and when to use it
- Required env vars and optional extras (with install snippet)
- Minimal usage example
Update the root `README.md` only if the tool introduces a new category or notable capability.
---
## Discovery and specs
Our internal tooling discovers classes whose names end with `Tool`. Keep your class exported from the module path under `crewai_tools/tools/...` to be picked up by scripts like `generate_tool_specs.py`.
---
## Full example: “Weather Search Tool”
This example demonstrates: `args_schema`, `env_vars`, `package_dependencies`, lazy imports, validation, and robust error handling.
```python
# file: crewai_tools/tools/weather_tool/weather_tool.py
from typing import Any, List, Optional, Type
import os
import requests
from pydantic import BaseModel, Field
from crewai.tools import BaseTool, EnvVar
class WeatherToolInput(BaseModel):
"""Input schema for WeatherTool."""
city: str = Field(..., description="City name, e.g., 'Berlin'")
country: Optional[str] = Field(None, description="ISO country code, e.g., 'DE'")
units: str = Field(
default="metric",
description="Units system: 'metric' or 'imperial'",
pattern=r"^(metric|imperial)$",
)
class WeatherTool(BaseTool):
name: str = "Weather Search"
description: str = (
"Look up current weather for a city using a public weather API."
)
args_schema: Type[BaseModel] = WeatherToolInput
env_vars: List[EnvVar] = [
EnvVar(
name="WEATHER_API_KEY",
description="API key for the weather service",
required=True,
),
]
package_dependencies: List[str] = ["requests"]
base_url: str = "https://api.openweathermap.org/data/2.5/weather"
def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)
if "WEATHER_API_KEY" not in os.environ:
raise ValueError("WEATHER_API_KEY is required for WeatherTool")
def _run(self, city: str, country: Optional[str] = None, units: str = "metric") -> str:
try:
q = f"{city},{country}" if country else city
params = {
"q": q,
"units": units,
"appid": os.environ["WEATHER_API_KEY"],
}
resp = requests.get(self.base_url, params=params, timeout=10)
resp.raise_for_status()
data = resp.json()
main = data.get("weather", [{}])[0].get("main", "Unknown")
desc = data.get("weather", [{}])[0].get("description", "")
temp = data.get("main", {}).get("temp")
feels = data.get("main", {}).get("feels_like")
city_name = data.get("name", city)
return (
f"Weather in {city_name}: {main} ({desc}). "
f"Temperature: {temp}°, feels like {feels}°."
)
except requests.Timeout:
return "Weather service timed out. Please try again later."
except requests.HTTPError as e:
return f"Weather service error: {e.response.status_code} {e.response.text[:120]}"
except Exception as e:
return f"Unexpected error fetching weather: {e}"
```
Folder layout:
```
crewai_tools/tools/weather_tool/
├─ weather_tool.py
└─ README.md
```
And `README.md` should document env vars and usage.
---
## PR checklist
- [ ] Tool lives under `crewai_tools/tools/<name>/`
- [ ] Class ends with `Tool` and subclasses `BaseTool` (or `RagTool`)
- [ ] Precise `args_schema` with descriptions and validation
- [ ] `env_vars` declared (if any) and validated
- [ ] `package_dependencies` and optional extras added in `pyproject.toml` (if any)
- [ ] Clear error handling; no prints
- [ ] Unit tests added (`tests/tools/`), fast and deterministic
- [ ] Tool `README.md` with usage and env vars
- [ ] `pre-commit` and `pytest` pass locally
---
## Tips for great DX
- Keep responses short and useful—agents quote your tool output directly.
- Validate early; fail fast with actionable guidance.
- Prefer lazy imports; minimize default install surface.
- Mirror patterns from similar tools in this repo for a consistent developer experience.
Happy building!

View File

@@ -1,229 +0,0 @@
<div align="center">
![Logo of crewAI, two people rowing on a boat](./assets/crewai_logo.png)
<div align="left">
# CrewAI Tools
Empower your CrewAI agents with powerful, customizable tools to elevate their capabilities and tackle sophisticated, real-world tasks.
CrewAI Tools provide the essential functionality to extend your agents, helping you rapidly enhance your automations with reliable, ready-to-use tools or custom-built solutions tailored precisely to your needs.
---
## Quick Links
[Homepage](https://www.crewai.com/) | [Documentation](https://docs.crewai.com/) | [Examples](https://github.com/crewAIInc/crewAI-examples) | [Community](https://community.crewai.com/)
---
## Available Tools
CrewAI provides an extensive collection of powerful tools ready to enhance your agents:
- **File Management**: `FileReadTool`, `FileWriteTool`
- **Web Scraping**: `ScrapeWebsiteTool`, `SeleniumScrapingTool`
- **Database Integrations**: `MySQLSearchTool`
- **Vector Database Integrations**: `MongoDBVectorSearchTool`, `QdrantVectorSearchTool`, `WeaviateVectorSearchTool`
- **API Integrations**: `SerperApiTool`, `EXASearchTool`
- **AI-powered Tools**: `DallETool`, `VisionTool`, `StagehandTool`
And many more robust tools to simplify your agent integrations.
---
## Creating Custom Tools
CrewAI offers two straightforward approaches to creating custom tools:
### Subclassing `BaseTool`
Define your tool by subclassing:
```python
from crewai.tools import BaseTool
class MyCustomTool(BaseTool):
name: str = "Tool Name"
description: str = "Detailed description here."
def _run(self, *args, **kwargs):
# Your tool logic here
```
### Using the `tool` Decorator
Quickly create lightweight tools using decorators:
```python
from crewai import tool
@tool("Tool Name")
def my_custom_function(input):
# Tool logic here
return output
```
---
## CrewAI Tools and MCP
CrewAI Tools supports the Model Context Protocol (MCP). It gives you access to thousands of tools from the hundreds of MCP servers out there built by the community.
Before you start using MCP with CrewAI tools, you need to install the `mcp` extra dependencies:
```bash
pip install crewai-tools[mcp]
# or
uv add crewai-tools --extra mcp
```
To quickly get started with MCP in CrewAI you have 2 options:
### Option 1: Fully managed connection
In this scenario we use a contextmanager (`with` statement) to start and stop the the connection with the MCP server.
This is done in the background and you only get to interact with the CrewAI tools corresponding to the MCP server's tools.
For an STDIO based MCP server:
```python
from mcp import StdioServerParameters
from crewai_tools import MCPServerAdapter
serverparams = StdioServerParameters(
command="uvx",
args=["--quiet", "pubmedmcp@0.1.3"],
env={"UV_PYTHON": "3.12", **os.environ},
)
with MCPServerAdapter(serverparams) as tools:
# tools is now a list of CrewAI Tools matching 1:1 with the MCP server's tools
agent = Agent(..., tools=tools)
task = Task(...)
crew = Crew(..., agents=[agent], tasks=[task])
crew.kickoff(...)
```
For an SSE based MCP server:
```python
serverparams = {"url": "http://localhost:8000/sse"}
with MCPServerAdapter(serverparams) as tools:
# tools is now a list of CrewAI Tools matching 1:1 with the MCP server's tools
agent = Agent(..., tools=tools)
task = Task(...)
crew = Crew(..., agents=[agent], tasks=[task])
crew.kickoff(...)
```
### Option 2: More control over the MCP connection
If you need more control over the MCP connection, you can instanciate the MCPServerAdapter into an `mcp_server_adapter` object which can be used to manage the connection with the MCP server and access the available tools.
**important**: in this case you need to call `mcp_server_adapter.stop()` to make sure the connection is correctly stopped. We recommend that you use a `try ... finally` block run to make sure the `.stop()` is called even in case of errors.
Here is the same example for an STDIO MCP Server:
```python
from mcp import StdioServerParameters
from crewai_tools import MCPServerAdapter
serverparams = StdioServerParameters(
command="uvx",
args=["--quiet", "pubmedmcp@0.1.3"],
env={"UV_PYTHON": "3.12", **os.environ},
)
try:
mcp_server_adapter = MCPServerAdapter(serverparams)
tools = mcp_server_adapter.tools
# tools is now a list of CrewAI Tools matching 1:1 with the MCP server's tools
agent = Agent(..., tools=tools)
task = Task(...)
crew = Crew(..., agents=[agent], tasks=[task])
crew.kickoff(...)
# ** important ** don't forget to stop the connection
finally:
mcp_server_adapter.stop()
```
And finally the same thing but for an SSE MCP Server:
```python
from mcp import StdioServerParameters
from crewai_tools import MCPServerAdapter
serverparams = {"url": "http://localhost:8000/sse"}
try:
mcp_server_adapter = MCPServerAdapter(serverparams)
tools = mcp_server_adapter.tools
# tools is now a list of CrewAI Tools matching 1:1 with the MCP server's tools
agent = Agent(..., tools=tools)
task = Task(...)
crew = Crew(..., agents=[agent], tasks=[task])
crew.kickoff(...)
# ** important ** don't forget to stop the connection
finally:
mcp_server_adapter.stop()
```
### Considerations & Limitations
#### Staying Safe with MCP
Always make sure that you trust the MCP Server before using it. Using an STDIO server will execute code on your machine. Using SSE is still not a silver bullet with many injection possible into your application from a malicious MCP server.
#### Limitations
* At this time we only support tools from MCP Server not other type of primitives like prompts, resources...
* We only return the first text output returned by the MCP Server tool using `.content[0].text`
---
## Why Use CrewAI Tools?
- **Simplicity & Flexibility**: Easy-to-use yet powerful enough for complex workflows.
- **Rapid Integration**: Seamlessly incorporate external services, APIs, and databases.
- **Enterprise Ready**: Built for stability, performance, and consistent results.
---
## Contribution Guidelines
We welcome contributions from the community!
1. Fork and clone the repository.
2. Create a new branch (`git checkout -b feature/my-feature`).
3. Commit your changes (`git commit -m 'Add my feature'`).
4. Push your branch (`git push origin feature/my-feature`).
5. Open a pull request.
---
## Developer Quickstart
```shell
pip install crewai[tools]
```
### Development Setup
- Install dependencies: `uv sync`
- Run tests: `uv run pytest`
- Run static type checking: `uv run pyright`
- Set up pre-commit hooks: `pre-commit install`
---
## Support and Community
Join our rapidly growing community and receive real-time support:
- [Discourse](https://community.crewai.com/)
- [Open an Issue](https://github.com/crewAIInc/crewAI/issues)
Build smarter, faster, and more powerful AI solutions—powered by CrewAI Tools.

View File

@@ -1,156 +0,0 @@
#!/usr/bin/env python3
from collections.abc import Mapping
import inspect
import json
from pathlib import Path
from typing import Any, cast
from crewai.tools.base_tool import BaseTool, EnvVar
from crewai_tools import tools
from pydantic import BaseModel
from pydantic.json_schema import GenerateJsonSchema
from pydantic_core import PydanticOmit
class SchemaGenerator(GenerateJsonSchema):
def handle_invalid_for_json_schema(self, schema, error_info):
raise PydanticOmit
class ToolSpecExtractor:
def __init__(self) -> None:
self.tools_spec: list[dict[str, Any]] = []
self.processed_tools: set[str] = set()
def extract_all_tools(self) -> list[dict[str, Any]]:
for name in dir(tools):
if name.endswith("Tool") and name not in self.processed_tools:
obj = getattr(tools, name, None)
if inspect.isclass(obj) and issubclass(obj, BaseTool):
self.extract_tool_info(obj)
self.processed_tools.add(name)
return self.tools_spec
def extract_tool_info(self, tool_class: type[BaseTool]) -> None:
try:
core_schema = tool_class.__pydantic_core_schema__
if not core_schema:
return
schema = self._unwrap_schema(core_schema)
fields = schema.get("schema", {}).get("fields", {})
tool_info = {
"name": tool_class.__name__,
"humanized_name": self._extract_field_default(
fields.get("name"), fallback=tool_class.__name__
),
"description": str(
self._extract_field_default(fields.get("description"))
).strip(),
"run_params_schema": self._extract_params(fields.get("args_schema")),
"init_params_schema": self._extract_init_params(tool_class),
"env_vars": self._extract_env_vars(fields.get("env_vars")),
"package_dependencies": self._extract_field_default(
fields.get("package_dependencies"), fallback=[]
),
}
self.tools_spec.append(tool_info)
except Exception: # noqa: S110
pass
@staticmethod
def _unwrap_schema(schema: Mapping[str, Any] | dict[str, Any]) -> dict[str, Any]:
result: dict[str, Any] = dict(schema)
while (
result.get("type") in {"function-after", "default"} and "schema" in result
):
result = dict(result["schema"])
return result
@staticmethod
def _extract_field_default(
field: dict | None, fallback: str | list[Any] = ""
) -> str | list[Any] | int:
if not field:
return fallback
schema = field.get("schema", {})
default = schema.get("default")
return default if isinstance(default, (list, str, int)) else fallback
@staticmethod
def _extract_params(args_schema_field: dict | None) -> dict[str, Any]:
if not args_schema_field:
return {}
args_schema_class = args_schema_field.get("schema", {}).get("default")
if not (
inspect.isclass(args_schema_class)
and issubclass(args_schema_class, BaseModel)
):
return {}
# Cast to type[BaseModel] after runtime check
schema_class = cast(type[BaseModel], args_schema_class)
try:
return schema_class.model_json_schema(schema_generator=SchemaGenerator)
except Exception:
return {}
@staticmethod
def _extract_env_vars(env_vars_field: dict | None) -> list[dict[str, Any]]:
if not env_vars_field:
return []
return [
{
"name": env_var.name,
"description": env_var.description,
"required": env_var.required,
"default": env_var.default,
}
for env_var in env_vars_field.get("schema", {}).get("default", [])
if isinstance(env_var, EnvVar)
]
@staticmethod
def _extract_init_params(tool_class: type[BaseTool]) -> dict[str, Any]:
ignored_init_params = [
"name",
"description",
"env_vars",
"args_schema",
"description_updated",
"cache_function",
"result_as_answer",
"max_usage_count",
"current_usage_count",
"package_dependencies",
]
json_schema = tool_class.model_json_schema(
schema_generator=SchemaGenerator, mode="serialization"
)
json_schema["properties"] = {
key: value
for key, value in json_schema["properties"].items()
if key not in ignored_init_params
}
return json_schema
def save_to_json(self, output_path: str) -> None:
with open(output_path, "w", encoding="utf-8") as f:
json.dump({"tools": self.tools_spec}, f, indent=2, sort_keys=True)
if __name__ == "__main__":
output_file = Path(__file__).parent / "tool.specs.json"
extractor = ToolSpecExtractor()
extractor.extract_all_tools()
extractor.save_to_json(str(output_file))

View File

@@ -1,153 +0,0 @@
[project]
name = "crewai-tools"
dynamic = ["version"]
description = "Set of tools for the crewAI framework"
readme = "README.md"
authors = [
{ name = "João Moura", email = "joaomdmoura@gmail.com" },
]
requires-python = ">=3.10, <3.14"
dependencies = [
"lancedb>=0.5.4",
"pytube>=15.0.0",
"requests>=2.32.5",
"docker>=7.1.0",
"crewai==1.0.0a1",
"lancedb>=0.5.4",
"tiktoken>=0.8.0",
"stagehand>=0.4.1",
"beautifulsoup4>=4.13.4",
"pypdf>=5.9.0",
"python-docx>=1.2.0",
"youtube-transcript-api>=1.2.2",
]
[project.urls]
Homepage = "https://crewai.com"
Repository = "https://github.com/crewAIInc/crewAI"
Documentation = "https://docs.crewai.com"
[project.optional-dependencies]
scrapfly-sdk = [
"scrapfly-sdk>=0.8.19",
]
sqlalchemy = [
"sqlalchemy>=2.0.35",
]
multion = [
"multion>=1.1.0",
]
firecrawl-py = [
"firecrawl-py>=1.8.0",
]
composio-core = [
"composio-core>=0.6.11.post1",
]
browserbase = [
"browserbase>=1.0.5",
]
weaviate-client = [
"weaviate-client>=4.10.2",
]
patronus = [
"patronus>=0.0.16",
]
serpapi = [
"serpapi>=0.1.5",
]
beautifulsoup4 = [
"beautifulsoup4>=4.12.3",
]
selenium = [
"selenium>=4.27.1",
]
spider-client = [
"spider-client>=0.1.25",
]
scrapegraph-py = [
"scrapegraph-py>=1.9.0",
]
linkup-sdk = [
"linkup-sdk>=0.2.2",
]
tavily-python = [
"tavily-python>=0.5.4",
]
hyperbrowser = [
"hyperbrowser>=0.18.0",
]
snowflake = [
"cryptography>=43.0.3",
"snowflake-connector-python>=3.12.4",
"snowflake-sqlalchemy>=1.7.3",
]
singlestore = [
"singlestoredb>=1.12.4",
"SQLAlchemy>=2.0.40",
]
exa-py = [
"exa-py>=1.8.7",
]
qdrant-client = [
"qdrant-client>=1.12.1",
]
apify = [
"langchain-apify>=0.1.2,<1.0.0",
]
databricks-sdk = [
"databricks-sdk>=0.46.0",
]
couchbase = [
"couchbase>=4.3.5",
]
mcp = [
"mcp>=1.6.0",
"mcpadapt>=0.1.9",
]
stagehand = [
"stagehand>=0.4.1",
]
github = [
"gitpython==3.1.38",
"PyGithub==1.59.1",
]
rag = [
"python-docx>=1.1.0",
"lxml>=5.3.0,<5.4.0", # Pin to avoid etree import issues in 5.4.0
]
xml = [
"unstructured[local-inference, all-docs]>=0.17.2"
]
oxylabs = [
"oxylabs==2.0.0"
]
mongodb = [
"pymongo>=4.13"
]
mysql = [
"pymysql>=1.1.1"
]
postgresql = [
"psycopg2-binary>=2.9.10"
]
bedrock = [
"beautifulsoup4>=4.13.4",
"bedrock-agentcore>=0.1.0",
"playwright>=1.52.0",
"nest-asyncio>=1.6.0",
]
contextual = [
"contextual-client>=0.1.0",
"nest-asyncio>=1.6.0",
]
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[tool.hatch.version]
path = "src/crewai_tools/__init__.py"

View File

@@ -1,294 +0,0 @@
from crewai_tools.adapters.enterprise_adapter import EnterpriseActionTool
from crewai_tools.adapters.mcp_adapter import MCPServerAdapter
from crewai_tools.adapters.zapier_adapter import ZapierActionTool
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
from crewai_tools.aws.bedrock.knowledge_base.retriever_tool import (
BedrockKBRetrieverTool,
)
from crewai_tools.aws.s3.reader_tool import S3ReaderTool
from crewai_tools.aws.s3.writer_tool import S3WriterTool
from crewai_tools.tools.ai_mind_tool.ai_mind_tool import AIMindTool
from crewai_tools.tools.apify_actors_tool.apify_actors_tool import ApifyActorsTool
from crewai_tools.tools.arxiv_paper_tool.arxiv_paper_tool import ArxivPaperTool
from crewai_tools.tools.brave_search_tool.brave_search_tool import BraveSearchTool
from crewai_tools.tools.brightdata_tool.brightdata_dataset import (
BrightDataDatasetTool,
)
from crewai_tools.tools.brightdata_tool.brightdata_serp import BrightDataSearchTool
from crewai_tools.tools.brightdata_tool.brightdata_unlocker import (
BrightDataWebUnlockerTool,
)
from crewai_tools.tools.browserbase_load_tool.browserbase_load_tool import (
BrowserbaseLoadTool,
)
from crewai_tools.tools.code_docs_search_tool.code_docs_search_tool import (
CodeDocsSearchTool,
)
from crewai_tools.tools.code_interpreter_tool.code_interpreter_tool import (
CodeInterpreterTool,
)
from crewai_tools.tools.composio_tool.composio_tool import ComposioTool
from crewai_tools.tools.contextualai_create_agent_tool.contextual_create_agent_tool import (
ContextualAICreateAgentTool,
)
from crewai_tools.tools.contextualai_parse_tool.contextual_parse_tool import (
ContextualAIParseTool,
)
from crewai_tools.tools.contextualai_query_tool.contextual_query_tool import (
ContextualAIQueryTool,
)
from crewai_tools.tools.contextualai_rerank_tool.contextual_rerank_tool import (
ContextualAIRerankTool,
)
from crewai_tools.tools.couchbase_tool.couchbase_tool import (
CouchbaseFTSVectorSearchTool,
)
from crewai_tools.tools.crewai_enterprise_tools.crewai_enterprise_tools import (
CrewaiEnterpriseTools,
)
from crewai_tools.tools.crewai_platform_tools.crewai_platform_tools import (
CrewaiPlatformTools,
)
from crewai_tools.tools.csv_search_tool.csv_search_tool import CSVSearchTool
from crewai_tools.tools.dalle_tool.dalle_tool import DallETool
from crewai_tools.tools.databricks_query_tool.databricks_query_tool import (
DatabricksQueryTool,
)
from crewai_tools.tools.directory_read_tool.directory_read_tool import (
DirectoryReadTool,
)
from crewai_tools.tools.directory_search_tool.directory_search_tool import (
DirectorySearchTool,
)
from crewai_tools.tools.docx_search_tool.docx_search_tool import DOCXSearchTool
from crewai_tools.tools.exa_tools.exa_search_tool import EXASearchTool
from crewai_tools.tools.file_read_tool.file_read_tool import FileReadTool
from crewai_tools.tools.file_writer_tool.file_writer_tool import FileWriterTool
from crewai_tools.tools.files_compressor_tool.files_compressor_tool import (
FileCompressorTool,
)
from crewai_tools.tools.firecrawl_crawl_website_tool.firecrawl_crawl_website_tool import (
FirecrawlCrawlWebsiteTool,
)
from crewai_tools.tools.firecrawl_scrape_website_tool.firecrawl_scrape_website_tool import (
FirecrawlScrapeWebsiteTool,
)
from crewai_tools.tools.firecrawl_search_tool.firecrawl_search_tool import (
FirecrawlSearchTool,
)
from crewai_tools.tools.generate_crewai_automation_tool.generate_crewai_automation_tool import (
GenerateCrewaiAutomationTool,
)
from crewai_tools.tools.github_search_tool.github_search_tool import GithubSearchTool
from crewai_tools.tools.hyperbrowser_load_tool.hyperbrowser_load_tool import (
HyperbrowserLoadTool,
)
from crewai_tools.tools.invoke_crewai_automation_tool.invoke_crewai_automation_tool import (
InvokeCrewAIAutomationTool,
)
from crewai_tools.tools.jina_scrape_website_tool.jina_scrape_website_tool import (
JinaScrapeWebsiteTool,
)
from crewai_tools.tools.json_search_tool.json_search_tool import JSONSearchTool
from crewai_tools.tools.linkup.linkup_search_tool import LinkupSearchTool
from crewai_tools.tools.llamaindex_tool.llamaindex_tool import LlamaIndexTool
from crewai_tools.tools.mdx_search_tool.mdx_search_tool import MDXSearchTool
from crewai_tools.tools.mongodb_vector_search_tool.vector_search import (
MongoDBVectorSearchConfig,
MongoDBVectorSearchTool,
)
from crewai_tools.tools.multion_tool.multion_tool import MultiOnTool
from crewai_tools.tools.mysql_search_tool.mysql_search_tool import MySQLSearchTool
from crewai_tools.tools.nl2sql.nl2sql_tool import NL2SQLTool
from crewai_tools.tools.ocr_tool.ocr_tool import OCRTool
from crewai_tools.tools.oxylabs_amazon_product_scraper_tool.oxylabs_amazon_product_scraper_tool import (
OxylabsAmazonProductScraperTool,
)
from crewai_tools.tools.oxylabs_amazon_search_scraper_tool.oxylabs_amazon_search_scraper_tool import (
OxylabsAmazonSearchScraperTool,
)
from crewai_tools.tools.oxylabs_google_search_scraper_tool.oxylabs_google_search_scraper_tool import (
OxylabsGoogleSearchScraperTool,
)
from crewai_tools.tools.oxylabs_universal_scraper_tool.oxylabs_universal_scraper_tool import (
OxylabsUniversalScraperTool,
)
from crewai_tools.tools.parallel_tools.parallel_search_tool import ParallelSearchTool
from crewai_tools.tools.patronus_eval_tool.patronus_eval_tool import PatronusEvalTool
from crewai_tools.tools.patronus_eval_tool.patronus_local_evaluator_tool import (
PatronusLocalEvaluatorTool,
)
from crewai_tools.tools.patronus_eval_tool.patronus_predefined_criteria_eval_tool import (
PatronusPredefinedCriteriaEvalTool,
)
from crewai_tools.tools.pdf_search_tool.pdf_search_tool import PDFSearchTool
from crewai_tools.tools.qdrant_vector_search_tool.qdrant_search_tool import (
QdrantVectorSearchTool,
)
from crewai_tools.tools.rag.rag_tool import RagTool
from crewai_tools.tools.scrape_element_from_website.scrape_element_from_website import (
ScrapeElementFromWebsiteTool,
)
from crewai_tools.tools.scrape_website_tool.scrape_website_tool import (
ScrapeWebsiteTool,
)
from crewai_tools.tools.scrapegraph_scrape_tool.scrapegraph_scrape_tool import (
ScrapegraphScrapeTool,
ScrapegraphScrapeToolSchema,
)
from crewai_tools.tools.scrapfly_scrape_website_tool.scrapfly_scrape_website_tool import (
ScrapflyScrapeWebsiteTool,
)
from crewai_tools.tools.selenium_scraping_tool.selenium_scraping_tool import (
SeleniumScrapingTool,
)
from crewai_tools.tools.serpapi_tool.serpapi_google_search_tool import (
SerpApiGoogleSearchTool,
)
from crewai_tools.tools.serpapi_tool.serpapi_google_shopping_tool import (
SerpApiGoogleShoppingTool,
)
from crewai_tools.tools.serper_dev_tool.serper_dev_tool import SerperDevTool
from crewai_tools.tools.serper_scrape_website_tool.serper_scrape_website_tool import (
SerperScrapeWebsiteTool,
)
from crewai_tools.tools.serply_api_tool.serply_job_search_tool import (
SerplyJobSearchTool,
)
from crewai_tools.tools.serply_api_tool.serply_news_search_tool import (
SerplyNewsSearchTool,
)
from crewai_tools.tools.serply_api_tool.serply_scholar_search_tool import (
SerplyScholarSearchTool,
)
from crewai_tools.tools.serply_api_tool.serply_web_search_tool import (
SerplyWebSearchTool,
)
from crewai_tools.tools.serply_api_tool.serply_webpage_to_markdown_tool import (
SerplyWebpageToMarkdownTool,
)
from crewai_tools.tools.singlestore_search_tool.singlestore_search_tool import (
SingleStoreSearchTool,
)
from crewai_tools.tools.snowflake_search_tool.snowflake_search_tool import (
SnowflakeConfig,
SnowflakeSearchTool,
)
from crewai_tools.tools.spider_tool.spider_tool import SpiderTool
from crewai_tools.tools.stagehand_tool.stagehand_tool import StagehandTool
from crewai_tools.tools.tavily_extractor_tool.tavily_extractor_tool import (
TavilyExtractorTool,
)
from crewai_tools.tools.tavily_search_tool.tavily_search_tool import TavilySearchTool
from crewai_tools.tools.txt_search_tool.txt_search_tool import TXTSearchTool
from crewai_tools.tools.vision_tool.vision_tool import VisionTool
from crewai_tools.tools.weaviate_tool.vector_search import WeaviateVectorSearchTool
from crewai_tools.tools.website_search.website_search_tool import WebsiteSearchTool
from crewai_tools.tools.xml_search_tool.xml_search_tool import XMLSearchTool
from crewai_tools.tools.youtube_channel_search_tool.youtube_channel_search_tool import (
YoutubeChannelSearchTool,
)
from crewai_tools.tools.youtube_video_search_tool.youtube_video_search_tool import (
YoutubeVideoSearchTool,
)
from crewai_tools.tools.zapier_action_tool.zapier_action_tool import ZapierActionTools
__all__ = [
"AIMindTool",
"ApifyActorsTool",
"ArxivPaperTool",
"BedrockInvokeAgentTool",
"BedrockKBRetrieverTool",
"BraveSearchTool",
"BrightDataDatasetTool",
"BrightDataSearchTool",
"BrightDataWebUnlockerTool",
"BrowserbaseLoadTool",
"CSVSearchTool",
"CodeDocsSearchTool",
"CodeInterpreterTool",
"ComposioTool",
"ContextualAICreateAgentTool",
"ContextualAIParseTool",
"ContextualAIQueryTool",
"ContextualAIRerankTool",
"CouchbaseFTSVectorSearchTool",
"CrewaiEnterpriseTools",
"CrewaiPlatformTools",
"DOCXSearchTool",
"DallETool",
"DatabricksQueryTool",
"DirectoryReadTool",
"DirectorySearchTool",
"EXASearchTool",
"EnterpriseActionTool",
"FileCompressorTool",
"FileReadTool",
"FileWriterTool",
"FirecrawlCrawlWebsiteTool",
"FirecrawlScrapeWebsiteTool",
"FirecrawlSearchTool",
"GenerateCrewaiAutomationTool",
"GithubSearchTool",
"HyperbrowserLoadTool",
"InvokeCrewAIAutomationTool",
"JSONSearchTool",
"JinaScrapeWebsiteTool",
"LinkupSearchTool",
"LlamaIndexTool",
"MCPServerAdapter",
"MDXSearchTool",
"MongoDBVectorSearchConfig",
"MongoDBVectorSearchTool",
"MultiOnTool",
"MySQLSearchTool",
"NL2SQLTool",
"OCRTool",
"OxylabsAmazonProductScraperTool",
"OxylabsAmazonSearchScraperTool",
"OxylabsGoogleSearchScraperTool",
"OxylabsUniversalScraperTool",
"PDFSearchTool",
"ParallelSearchTool",
"PatronusEvalTool",
"PatronusLocalEvaluatorTool",
"PatronusPredefinedCriteriaEvalTool",
"QdrantVectorSearchTool",
"RagTool",
"S3ReaderTool",
"S3WriterTool",
"ScrapeElementFromWebsiteTool",
"ScrapeWebsiteTool",
"ScrapegraphScrapeTool",
"ScrapegraphScrapeToolSchema",
"ScrapflyScrapeWebsiteTool",
"SeleniumScrapingTool",
"SerpApiGoogleSearchTool",
"SerpApiGoogleShoppingTool",
"SerperDevTool",
"SerperScrapeWebsiteTool",
"SerplyJobSearchTool",
"SerplyNewsSearchTool",
"SerplyScholarSearchTool",
"SerplyWebSearchTool",
"SerplyWebpageToMarkdownTool",
"SingleStoreSearchTool",
"SnowflakeConfig",
"SnowflakeSearchTool",
"SpiderTool",
"StagehandTool",
"TXTSearchTool",
"TavilyExtractorTool",
"TavilySearchTool",
"VisionTool",
"WeaviateVectorSearchTool",
"WebsiteSearchTool",
"XMLSearchTool",
"YoutubeChannelSearchTool",
"YoutubeVideoSearchTool",
"ZapierActionTool",
"ZapierActionTools",
]
__version__ = "1.0.0a2"

View File

@@ -1,269 +0,0 @@
"""Adapter for CrewAI's native RAG system."""
import hashlib
from pathlib import Path
from typing import Any, TypeAlias, TypedDict
from crewai.rag.config.types import RagConfigType
from crewai.rag.config.utils import get_rag_client
from crewai.rag.core.base_client import BaseClient
from crewai.rag.factory import create_client
from crewai.rag.types import BaseRecord, SearchResult
from pydantic import PrivateAttr
from typing_extensions import Unpack
from crewai_tools.rag.data_types import DataType
from crewai_tools.rag.misc import sanitize_metadata_for_chromadb
from crewai_tools.tools.rag.rag_tool import Adapter
ContentItem: TypeAlias = str | Path | dict[str, Any]
class AddDocumentParams(TypedDict, total=False):
"""Parameters for adding documents to the RAG system."""
data_type: DataType
metadata: dict[str, Any]
website: str
url: str
file_path: str | Path
github_url: str
youtube_url: str
directory_path: str | Path
class CrewAIRagAdapter(Adapter):
"""Adapter that uses CrewAI's native RAG system.
Supports custom vector database configuration through the config parameter.
"""
collection_name: str = "default"
summarize: bool = False
similarity_threshold: float = 0.6
limit: int = 5
config: RagConfigType | None = None
_client: BaseClient | None = PrivateAttr(default=None)
def model_post_init(self, __context: Any) -> None:
"""Initialize the CrewAI RAG client after model initialization."""
if self.config is not None:
self._client = create_client(self.config)
else:
self._client = get_rag_client()
self._client.get_or_create_collection(collection_name=self.collection_name)
def query(
self,
question: str,
similarity_threshold: float | None = None,
limit: int | None = None,
) -> str:
"""Query the knowledge base with a question.
Args:
question: The question to ask
similarity_threshold: Minimum similarity score for results (default: 0.6)
limit: Maximum number of results to return (default: 5)
Returns:
Relevant content from the knowledge base
"""
search_limit = limit if limit is not None else self.limit
search_threshold = (
similarity_threshold
if similarity_threshold is not None
else self.similarity_threshold
)
results: list[SearchResult] = self._client.search(
collection_name=self.collection_name,
query=question,
limit=search_limit,
score_threshold=search_threshold,
)
if not results:
return "No relevant content found."
contents: list[str] = []
for result in results:
content: str = result.get("content", "")
if content:
contents.append(content)
return "\n\n".join(contents)
def add(self, *args: ContentItem, **kwargs: Unpack[AddDocumentParams]) -> None:
"""Add content to the knowledge base.
This method handles various input types and converts them to documents
for the vector database. It supports the data_type parameter for
compatibility with existing tools.
Args:
*args: Content items to add (strings, paths, or document dicts)
**kwargs: Additional parameters including data_type, metadata, etc.
"""
import os
from crewai_tools.rag.base_loader import LoaderResult
from crewai_tools.rag.data_types import DataType, DataTypes
from crewai_tools.rag.source_content import SourceContent
documents: list[BaseRecord] = []
data_type: DataType | None = kwargs.get("data_type")
base_metadata: dict[str, Any] = kwargs.get("metadata", {})
for arg in args:
source_ref: str
if isinstance(arg, dict):
source_ref = str(arg.get("source", arg.get("content", "")))
else:
source_ref = str(arg)
if not data_type:
data_type = DataTypes.from_content(source_ref)
if data_type == DataType.DIRECTORY:
if not os.path.isdir(source_ref):
raise ValueError(f"Directory does not exist: {source_ref}")
# Define binary and non-text file extensions to skip
binary_extensions = {
".pyc",
".pyo",
".png",
".jpg",
".jpeg",
".gif",
".bmp",
".ico",
".svg",
".webp",
".pdf",
".zip",
".tar",
".gz",
".bz2",
".7z",
".rar",
".exe",
".dll",
".so",
".dylib",
".bin",
".dat",
".db",
".sqlite",
".class",
".jar",
".war",
".ear",
}
for root, dirs, files in os.walk(source_ref):
dirs[:] = [d for d in dirs if not d.startswith(".")]
for filename in files:
if filename.startswith("."):
continue
# Skip binary files based on extension
file_ext = os.path.splitext(filename)[1].lower()
if file_ext in binary_extensions:
continue
# Skip __pycache__ directories
if "__pycache__" in root:
continue
file_path: str = os.path.join(root, filename)
try:
file_data_type: DataType = DataTypes.from_content(file_path)
file_loader = file_data_type.get_loader()
file_chunker = file_data_type.get_chunker()
file_source = SourceContent(file_path)
file_result: LoaderResult = file_loader.load(file_source)
file_chunks = file_chunker.chunk(file_result.content)
for chunk_idx, file_chunk in enumerate(file_chunks):
file_metadata: dict[str, Any] = base_metadata.copy()
file_metadata.update(file_result.metadata)
file_metadata["data_type"] = str(file_data_type)
file_metadata["file_path"] = file_path
file_metadata["chunk_index"] = chunk_idx
file_metadata["total_chunks"] = len(file_chunks)
if isinstance(arg, dict):
file_metadata.update(arg.get("metadata", {}))
chunk_id = hashlib.sha256(
f"{file_result.doc_id}_{chunk_idx}_{file_chunk}".encode()
).hexdigest()
documents.append(
{
"doc_id": chunk_id,
"content": file_chunk,
"metadata": sanitize_metadata_for_chromadb(
file_metadata
),
}
)
except Exception: # noqa: S112
# Silently skip files that can't be processed
continue
else:
metadata: dict[str, Any] = base_metadata.copy()
if data_type in [
DataType.PDF_FILE,
DataType.TEXT_FILE,
DataType.DOCX,
DataType.CSV,
DataType.JSON,
DataType.XML,
DataType.MDX,
]:
if not os.path.isfile(source_ref):
raise FileNotFoundError(f"File does not exist: {source_ref}")
loader = data_type.get_loader()
chunker = data_type.get_chunker()
source_content = SourceContent(source_ref)
loader_result: LoaderResult = loader.load(source_content)
chunks = chunker.chunk(loader_result.content)
for i, chunk in enumerate(chunks):
chunk_metadata: dict[str, Any] = metadata.copy()
chunk_metadata.update(loader_result.metadata)
chunk_metadata["data_type"] = str(data_type)
chunk_metadata["chunk_index"] = i
chunk_metadata["total_chunks"] = len(chunks)
chunk_metadata["source"] = source_ref
if isinstance(arg, dict):
chunk_metadata.update(arg.get("metadata", {}))
chunk_id = hashlib.sha256(
f"{loader_result.doc_id}_{i}_{chunk}".encode()
).hexdigest()
documents.append(
{
"doc_id": chunk_id,
"content": chunk,
"metadata": sanitize_metadata_for_chromadb(chunk_metadata),
}
)
if documents:
self._client.add_documents(
collection_name=self.collection_name, documents=documents
)

View File

@@ -1,428 +0,0 @@
import json
import os
import re
from typing import Any, Literal, Optional, Union, cast, get_origin
import warnings
from crewai.tools import BaseTool
from pydantic import Field, create_model
import requests
def get_enterprise_api_base_url() -> str:
"""Get the enterprise API base URL from environment or use default."""
base_url = os.getenv("CREWAI_PLUS_URL", "https://app.crewai.com")
return f"{base_url}/crewai_plus/api/v1/integrations"
ENTERPRISE_API_BASE_URL = get_enterprise_api_base_url()
class EnterpriseActionTool(BaseTool):
"""A tool that executes a specific enterprise action."""
enterprise_action_token: str = Field(
default="", description="The enterprise action token"
)
action_name: str = Field(default="", description="The name of the action")
action_schema: dict[str, Any] = Field(
default={}, description="The schema of the action"
)
enterprise_api_base_url: str = Field(
default=ENTERPRISE_API_BASE_URL, description="The base API URL"
)
def __init__(
self,
name: str,
description: str,
enterprise_action_token: str,
action_name: str,
action_schema: dict[str, Any],
enterprise_api_base_url: str | None = None,
):
self._model_registry = {}
self._base_name = self._sanitize_name(name)
schema_props, required = self._extract_schema_info(action_schema)
# Define field definitions for the model
field_definitions = {}
for param_name, param_details in schema_props.items():
param_desc = param_details.get("description", "")
is_required = param_name in required
try:
field_type = self._process_schema_type(
param_details, self._sanitize_name(param_name).title()
)
except Exception:
field_type = str
# Create field definition based on requirement
field_definitions[param_name] = self._create_field_definition(
field_type, is_required, param_desc
)
# Create the model
if field_definitions:
try:
args_schema = create_model(
f"{self._base_name}Schema", **field_definitions
)
except Exception:
args_schema = create_model(
f"{self._base_name}Schema",
input_text=(str, Field(description="Input for the action")),
)
else:
# Fallback for empty schema
args_schema = create_model(
f"{self._base_name}Schema",
input_text=(str, Field(description="Input for the action")),
)
super().__init__(name=name, description=description, args_schema=args_schema)
self.enterprise_action_token = enterprise_action_token
self.action_name = action_name
self.action_schema = action_schema
self.enterprise_api_base_url = (
enterprise_api_base_url or get_enterprise_api_base_url()
)
def _sanitize_name(self, name: str) -> str:
"""Sanitize names to create proper Python class names."""
sanitized = re.sub(r"[^a-zA-Z0-9_]", "", name)
parts = sanitized.split("_")
return "".join(word.capitalize() for word in parts if word)
def _extract_schema_info(
self, action_schema: dict[str, Any]
) -> tuple[dict[str, Any], list[str]]:
"""Extract schema properties and required fields from action schema."""
schema_props = (
action_schema.get("function", {})
.get("parameters", {})
.get("properties", {})
)
required = (
action_schema.get("function", {}).get("parameters", {}).get("required", [])
)
return schema_props, required
def _process_schema_type(self, schema: dict[str, Any], type_name: str) -> type[Any]:
"""Process a JSON schema and return appropriate Python type."""
if "anyOf" in schema:
any_of_types = schema["anyOf"]
is_nullable = any(t.get("type") == "null" for t in any_of_types)
non_null_types = [t for t in any_of_types if t.get("type") != "null"]
if non_null_types:
base_type = self._process_schema_type(non_null_types[0], type_name)
return Optional[base_type] if is_nullable else base_type # noqa: UP045
return cast(type[Any], Optional[str]) # noqa: UP045
if "oneOf" in schema:
return self._process_schema_type(schema["oneOf"][0], type_name)
if "allOf" in schema:
return self._process_schema_type(schema["allOf"][0], type_name)
json_type = schema.get("type", "string")
if "enum" in schema:
enum_values = schema["enum"]
if not enum_values:
return self._map_json_type_to_python(json_type)
return Literal[tuple(enum_values)] # type: ignore[return-value]
if json_type == "array":
items_schema = schema.get("items", {"type": "string"})
item_type = self._process_schema_type(items_schema, f"{type_name}Item")
return list[item_type]
if json_type == "object":
return self._create_nested_model(schema, type_name)
return self._map_json_type_to_python(json_type)
def _create_nested_model(
self, schema: dict[str, Any], model_name: str
) -> type[Any]:
"""Create a nested Pydantic model for complex objects."""
full_model_name = f"{self._base_name}{model_name}"
if full_model_name in self._model_registry:
return self._model_registry[full_model_name]
properties = schema.get("properties", {})
required_fields = schema.get("required", [])
if not properties:
return dict
field_definitions = {}
for prop_name, prop_schema in properties.items():
prop_desc = prop_schema.get("description", "")
is_required = prop_name in required_fields
try:
prop_type = self._process_schema_type(
prop_schema, f"{model_name}{self._sanitize_name(prop_name).title()}"
)
except Exception:
prop_type = str
field_definitions[prop_name] = self._create_field_definition(
prop_type, is_required, prop_desc
)
try:
nested_model = create_model(full_model_name, **field_definitions)
self._model_registry[full_model_name] = nested_model
return nested_model
except Exception:
return dict
def _create_field_definition(
self, field_type: type[Any], is_required: bool, description: str
) -> tuple:
"""Create Pydantic field definition based on type and requirement."""
if is_required:
return (field_type, Field(description=description))
if get_origin(field_type) is Union:
return (field_type, Field(default=None, description=description))
return (
Optional[field_type], # noqa: UP045
Field(default=None, description=description),
)
def _map_json_type_to_python(self, json_type: str) -> type[Any]:
"""Map basic JSON schema types to Python types."""
type_mapping = {
"string": str,
"integer": int,
"number": float,
"boolean": bool,
"array": list,
"object": dict,
"null": type(None),
}
return type_mapping.get(json_type, str)
def _get_required_nullable_fields(self) -> list[str]:
"""Get a list of required nullable fields from the action schema."""
schema_props, required = self._extract_schema_info(self.action_schema)
required_nullable_fields = []
for param_name in required:
param_details = schema_props.get(param_name, {})
if self._is_nullable_type(param_details):
required_nullable_fields.append(param_name)
return required_nullable_fields
def _is_nullable_type(self, schema: dict[str, Any]) -> bool:
"""Check if a schema represents a nullable type."""
if "anyOf" in schema:
return any(t.get("type") == "null" for t in schema["anyOf"])
return schema.get("type") == "null"
def _run(self, **kwargs) -> str:
"""Execute the specific enterprise action with validated parameters."""
try:
cleaned_kwargs = {}
for key, value in kwargs.items():
if value is not None:
cleaned_kwargs[key] = value # noqa: PERF403
required_nullable_fields = self._get_required_nullable_fields()
for field_name in required_nullable_fields:
if field_name not in cleaned_kwargs:
cleaned_kwargs[field_name] = None
api_url = (
f"{self.enterprise_api_base_url}/actions/{self.action_name}/execute"
)
headers = {
"Authorization": f"Bearer {self.enterprise_action_token}",
"Content-Type": "application/json",
}
payload = cleaned_kwargs
response = requests.post(
url=api_url, headers=headers, json=payload, timeout=60
)
data = response.json()
if not response.ok:
error_message = data.get("error", {}).get("message", json.dumps(data))
return f"API request failed: {error_message}"
return json.dumps(data, indent=2)
except Exception as e:
return f"Error executing action {self.action_name}: {e!s}"
class EnterpriseActionKitToolAdapter:
"""Adapter that creates BaseTool instances for enterprise actions."""
def __init__(
self,
enterprise_action_token: str,
enterprise_api_base_url: str | None = None,
):
"""Initialize the adapter with an enterprise action token."""
self._set_enterprise_action_token(enterprise_action_token)
self._actions_schema = {}
self._tools = None
self.enterprise_api_base_url = (
enterprise_api_base_url or get_enterprise_api_base_url()
)
def tools(self) -> list[BaseTool]:
"""Get the list of tools created from enterprise actions."""
if self._tools is None:
self._fetch_actions()
self._create_tools()
return self._tools or []
def _fetch_actions(self):
"""Fetch available actions from the API."""
try:
actions_url = f"{self.enterprise_api_base_url}/actions"
headers = {"Authorization": f"Bearer {self.enterprise_action_token}"}
response = requests.get(actions_url, headers=headers, timeout=30)
response.raise_for_status()
raw_data = response.json()
if "actions" not in raw_data:
return
parsed_schema = {}
action_categories = raw_data["actions"]
for action_list in action_categories.values():
if isinstance(action_list, list):
for action in action_list:
action_name = action.get("name")
if action_name:
action_schema = {
"function": {
"name": action_name,
"description": action.get(
"description", f"Execute {action_name}"
),
"parameters": action.get("parameters", {}),
}
}
parsed_schema[action_name] = action_schema
self._actions_schema = parsed_schema
except Exception:
import traceback
traceback.print_exc()
def _generate_detailed_description(
self, schema: dict[str, Any], indent: int = 0
) -> list[str]:
"""Generate detailed description for nested schema structures."""
descriptions = []
indent_str = " " * indent
schema_type = schema.get("type", "string")
if schema_type == "object":
properties = schema.get("properties", {})
required_fields = schema.get("required", [])
if properties:
descriptions.append(f"{indent_str}Object with properties:")
for prop_name, prop_schema in properties.items():
prop_desc = prop_schema.get("description", "")
is_required = prop_name in required_fields
req_str = " (required)" if is_required else " (optional)"
descriptions.append(
f"{indent_str} - {prop_name}: {prop_desc}{req_str}"
)
if prop_schema.get("type") == "object":
descriptions.extend(
self._generate_detailed_description(prop_schema, indent + 2)
)
elif prop_schema.get("type") == "array":
items_schema = prop_schema.get("items", {})
if items_schema.get("type") == "object":
descriptions.append(f"{indent_str} Array of objects:")
descriptions.extend(
self._generate_detailed_description(
items_schema, indent + 3
)
)
elif "enum" in items_schema:
descriptions.append(
f"{indent_str} Array of enum values: {items_schema['enum']}"
)
elif "enum" in prop_schema:
descriptions.append(
f"{indent_str} Enum values: {prop_schema['enum']}"
)
return descriptions
def _create_tools(self):
"""Create BaseTool instances for each action."""
tools = []
for action_name, action_schema in self._actions_schema.items():
function_details = action_schema.get("function", {})
description = function_details.get("description", f"Execute {action_name}")
parameters = function_details.get("parameters", {})
param_descriptions = []
if parameters.get("properties"):
param_descriptions.append("\nDetailed Parameter Structure:")
param_descriptions.extend(
self._generate_detailed_description(parameters)
)
full_description = description + "\n".join(param_descriptions)
tool = EnterpriseActionTool(
name=action_name.lower().replace(" ", "_"),
description=full_description,
action_name=action_name,
action_schema=action_schema,
enterprise_action_token=self.enterprise_action_token,
enterprise_api_base_url=self.enterprise_api_base_url,
)
tools.append(tool)
self._tools = tools
def _set_enterprise_action_token(self, enterprise_action_token: str | None):
if enterprise_action_token and not enterprise_action_token.startswith("PK_"):
warnings.warn(
"Legacy token detected, please consider using the new Enterprise Action Auth token. Check out our docs for more information https://docs.crewai.com/en/enterprise/features/integrations.",
DeprecationWarning,
stacklevel=2,
)
token = enterprise_action_token or os.environ.get(
"CREWAI_ENTERPRISE_TOOLS_TOKEN"
)
self.enterprise_action_token = token
def __enter__(self):
return self.tools()
def __exit__(self, exc_type, exc_val, exc_tb):
pass

View File

@@ -1,56 +0,0 @@
from collections.abc import Callable
from pathlib import Path
from typing import Any
from lancedb import DBConnection as LanceDBConnection, connect as lancedb_connect
from lancedb.table import Table as LanceDBTable
from openai import Client as OpenAIClient
from pydantic import Field, PrivateAttr
from crewai_tools.tools.rag.rag_tool import Adapter
def _default_embedding_function():
client = OpenAIClient()
def _embedding_function(input):
rs = client.embeddings.create(input=input, model="text-embedding-ada-002")
return [record.embedding for record in rs.data]
return _embedding_function
class LanceDBAdapter(Adapter):
uri: str | Path
table_name: str
embedding_function: Callable = Field(default_factory=_default_embedding_function)
top_k: int = 3
vector_column_name: str = "vector"
text_column_name: str = "text"
_db: LanceDBConnection = PrivateAttr()
_table: LanceDBTable = PrivateAttr()
def model_post_init(self, __context: Any) -> None:
self._db = lancedb_connect(self.uri)
self._table = self._db.open_table(self.table_name)
super().model_post_init(__context)
def query(self, question: str) -> str:
query = self.embedding_function([question])[0]
results = (
self._table.search(query, vector_column_name=self.vector_column_name)
.limit(self.top_k)
.select([self.text_column_name])
.to_list()
)
values = [result[self.text_column_name] for result in results]
return "\n".join(values)
def add(
self,
*args: Any,
**kwargs: Any,
) -> None:
self._table.add(*args, **kwargs)

View File

@@ -1,163 +0,0 @@
"""MCPServer for CrewAI."""
from __future__ import annotations
import logging
from typing import TYPE_CHECKING, Any
from crewai.tools import BaseTool
from crewai_tools.adapters.tool_collection import ToolCollection
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from mcp import StdioServerParameters
from mcpadapt.core import MCPAdapt
from mcpadapt.crewai_adapter import CrewAIAdapter
try:
from mcp import StdioServerParameters
from mcpadapt.core import MCPAdapt
from mcpadapt.crewai_adapter import CrewAIAdapter
MCP_AVAILABLE = True
except ImportError:
MCP_AVAILABLE = False
class MCPServerAdapter:
"""Manages the lifecycle of an MCP server and make its tools available to CrewAI.
Note: tools can only be accessed after the server has been started with the
`start()` method.
Attributes:
tools: The CrewAI tools available from the MCP server.
Usage:
# context manager + stdio
with MCPServerAdapter(...) as tools:
# tools is now available
# context manager + sse
with MCPServerAdapter({"url": "http://localhost:8000/sse"}) as tools:
# tools is now available
# context manager with filtered tools
with MCPServerAdapter(..., "tool1", "tool2") as filtered_tools:
# only tool1 and tool2 are available
# context manager with custom connect timeout (60 seconds)
with MCPServerAdapter(..., connect_timeout=60) as tools:
# tools is now available with longer timeout
# manually stop mcp server
try:
mcp_server = MCPServerAdapter(...)
tools = mcp_server.tools # all tools
# or with filtered tools and custom timeout
mcp_server = MCPServerAdapter(..., "tool1", "tool2", connect_timeout=45)
filtered_tools = mcp_server.tools # only tool1 and tool2
...
finally:
mcp_server.stop()
# Best practice is ensure cleanup is done after use.
mcp_server.stop() # run after crew().kickoff()
"""
def __init__(
self,
serverparams: StdioServerParameters | dict[str, Any],
*tool_names: str,
connect_timeout: int = 30,
) -> None:
"""Initialize the MCP Server.
Args:
serverparams: The parameters for the MCP server it supports either a
`StdioServerParameters` or a `dict` respectively for STDIO and SSE.
*tool_names: Optional names of tools to filter. If provided, only tools with
matching names will be available.
connect_timeout: Connection timeout in seconds to the MCP server (default is 30s).
"""
super().__init__()
self._adapter = None
self._tools = None
self._tool_names = list(tool_names) if tool_names else None
if not MCP_AVAILABLE:
import click
if click.confirm(
"You are missing the 'mcp' package. Would you like to install it?"
):
import subprocess
try:
subprocess.run(["uv", "add", "mcp crewai-tools[mcp]"], check=True) # noqa: S607
except subprocess.CalledProcessError as e:
raise ImportError("Failed to install mcp package") from e
else:
raise ImportError(
"`mcp` package not found, please run `uv add crewai-tools[mcp]`"
)
try:
self._serverparams = serverparams
self._adapter = MCPAdapt(
self._serverparams, CrewAIAdapter(), connect_timeout
)
self.start()
except Exception as e:
if self._adapter is not None:
try:
self.stop()
except Exception as stop_e:
logger.error(f"Error during stop cleanup: {stop_e}")
raise RuntimeError(f"Failed to initialize MCP Adapter: {e}") from e
def start(self):
"""Start the MCP server and initialize the tools."""
self._tools = self._adapter.__enter__()
def stop(self):
"""Stop the MCP server."""
self._adapter.__exit__(None, None, None)
@property
def tools(self) -> ToolCollection[BaseTool]:
"""The CrewAI tools available from the MCP server.
Raises:
ValueError: If the MCP server is not started.
Returns:
The CrewAI tools available from the MCP server.
"""
if self._tools is None:
raise ValueError(
"MCP server not started, run `mcp_server.start()` first before accessing `tools`"
)
tools_collection = ToolCollection(self._tools)
if self._tool_names:
return tools_collection.filter_by_names(self._tool_names)
return tools_collection
def __enter__(self):
"""Enter the context manager. Note that `__init__()` already starts the MCP server.
So tools should already be available.
"""
return self.tools
def __exit__(self, exc_type, exc_value, traceback):
"""Exit the context manager."""
return self._adapter.__exit__(exc_type, exc_value, traceback)

View File

@@ -1,38 +0,0 @@
from typing import Any
from crewai_tools.rag.core import RAG
from crewai_tools.tools.rag.rag_tool import Adapter
class RAGAdapter(Adapter):
def __init__(
self,
collection_name: str = "crewai_knowledge_base",
persist_directory: str | None = None,
embedding_model: str = "text-embedding-3-small",
top_k: int = 5,
embedding_api_key: str | None = None,
**embedding_kwargs,
):
super().__init__()
# Prepare embedding configuration
embedding_config = {"api_key": embedding_api_key, **embedding_kwargs}
self._adapter = RAG(
collection_name=collection_name,
persist_directory=persist_directory,
embedding_model=embedding_model,
top_k=top_k,
embedding_config=embedding_config,
)
def query(self, question: str) -> str:
return self._adapter.query(question)
def add(
self,
*args: Any,
**kwargs: Any,
) -> None:
self._adapter.add(*args, **kwargs)

View File

@@ -1,77 +0,0 @@
from collections.abc import Callable
from typing import Generic, TypeVar
from crewai.tools import BaseTool
T = TypeVar("T", bound=BaseTool)
class ToolCollection(list, Generic[T]):
"""A collection of tools that can be accessed by index or name.
This class extends the built-in list to provide dictionary-like
access to tools based on their name property.
Usage:
tools = ToolCollection(list_of_tools)
# Access by index (regular list behavior)
first_tool = tools[0]
# Access by name (new functionality)
search_tool = tools["search"]
"""
def __init__(self, tools: list[T] | None = None):
super().__init__(tools or [])
self._name_cache: dict[str, T] = {}
self._build_name_cache()
def _build_name_cache(self) -> None:
self._name_cache = {tool.name.lower(): tool for tool in self}
def __getitem__(self, key: int | str) -> T:
if isinstance(key, str):
return self._name_cache[key.lower()]
return super().__getitem__(key)
def append(self, tool: T) -> None:
super().append(tool)
self._name_cache[tool.name.lower()] = tool
def extend(self, tools: list[T]) -> None:
super().extend(tools)
self._build_name_cache()
def insert(self, index: int, tool: T) -> None:
super().insert(index, tool)
self._name_cache[tool.name.lower()] = tool
def remove(self, tool: T) -> None:
super().remove(tool)
if tool.name.lower() in self._name_cache:
del self._name_cache[tool.name.lower()]
def pop(self, index: int = -1) -> T:
tool = super().pop(index)
if tool.name.lower() in self._name_cache:
del self._name_cache[tool.name.lower()]
return tool
def filter_by_names(self, names: list[str] | None = None) -> "ToolCollection[T]":
if names is None:
return self
return ToolCollection(
[
tool
for name in names
if (tool := self._name_cache.get(name.lower())) is not None
]
)
def filter_where(self, func: Callable[[T], bool]) -> "ToolCollection[T]":
return ToolCollection([tool for tool in self if func(tool)])
def clear(self) -> None:
super().clear()
self._name_cache.clear()

Some files were not shown because too many files have changed in this diff Show More