Compare commits

..

2 Commits

Author SHA1 Message Date
Guilherme Vieira
30aa52096e Fix langchain at 0.1.0 2024-01-29 19:23:28 -03:00
Guilherme Vieira
6c711db409 Test 2024-01-29 19:16:43 -03:00
2059 changed files with 18171 additions and 375748 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

File diff suppressed because it is too large Load Diff

View File

@@ -1,14 +0,0 @@
# .editorconfig
root = true
# All files
[*]
charset = utf-8
end_of_line = lf
insert_final_newline = true
trim_trailing_whitespace = true
# Python files
[*.py]
indent_style = space
indent_size = 2

View File

@@ -1,115 +0,0 @@
name: Bug report
description: Create a report to help us improve CrewAI
title: "[BUG]"
labels: ["bug"]
assignees: []
body:
- type: textarea
id: description
attributes:
label: Description
description: Provide a clear and concise description of what the bug is.
validations:
required: true
- type: textarea
id: steps-to-reproduce
attributes:
label: Steps to Reproduce
description: Provide a step-by-step process to reproduce the behavior.
placeholder: |
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
validations:
required: true
- type: textarea
id: expected-behavior
attributes:
label: Expected behavior
description: A clear and concise description of what you expected to happen.
validations:
required: true
- type: textarea
id: screenshots-code
attributes:
label: Screenshots/Code snippets
description: If applicable, add screenshots or code snippets to help explain your problem.
validations:
required: true
- type: dropdown
id: os
attributes:
label: Operating System
description: Select the operating system you're using
options:
- Ubuntu 20.04
- Ubuntu 22.04
- Ubuntu 24.04
- macOS Catalina
- macOS Big Sur
- macOS Monterey
- macOS Ventura
- macOS Sonoma
- Windows 10
- Windows 11
- Other (specify in additional context)
validations:
required: true
- type: dropdown
id: python-version
attributes:
label: Python Version
description: Version of Python your Crew is running on
options:
- '3.10'
- '3.11'
- '3.12'
validations:
required: true
- type: input
id: crewai-version
attributes:
label: crewAI Version
description: What version of CrewAI are you using
validations:
required: true
- type: input
id: crewai-tools-version
attributes:
label: crewAI Tools Version
description: What version of CrewAI Tools are you using
validations:
required: true
- type: dropdown
id: virtual-environment
attributes:
label: Virtual Environment
description: What Virtual Environment are you running your crew in.
options:
- Venv
- Conda
- Poetry
validations:
required: true
- type: textarea
id: evidence
attributes:
label: Evidence
description: Include relevant information, logs or error messages. These can be screenshots.
validations:
required: true
- type: textarea
id: possible-solution
attributes:
label: Possible Solution
description: Have a solution in mind? Please suggest it here, or write "None".
validations:
required: true
- type: textarea
id: additional-context
attributes:
label: Additional context
description: Add any other context about the problem here.
validations:
required: true

View File

@@ -1 +0,0 @@
blank_issues_enabled: false

View File

@@ -1,65 +0,0 @@
name: Feature request
description: Suggest a new feature for CrewAI
title: "[FEATURE]"
labels: ["feature-request"]
assignees: []
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this feature request!
- type: dropdown
id: feature-area
attributes:
label: Feature Area
description: Which area of CrewAI does this feature primarily relate to?
options:
- Core functionality
- Agent capabilities
- Task management
- Integration with external tools
- Performance optimization
- Documentation
- Other (please specify in additional context)
validations:
required: true
- type: textarea
id: problem
attributes:
label: Is your feature request related to a an existing bug? Please link it here.
description: A link to the bug or NA if not related to an existing bug.
validations:
required: true
- type: textarea
id: solution
attributes:
label: Describe the solution you'd like
description: A clear and concise description of what you want to happen.
validations:
required: true
- type: textarea
id: alternatives
attributes:
label: Describe alternatives you've considered
description: A clear and concise description of any alternative solutions or features you've considered.
validations:
required: false
- type: textarea
id: context
attributes:
label: Additional context
description: Add any other context, screenshots, or examples about the feature request here.
validations:
required: false
- type: dropdown
id: willingness-to-contribute
attributes:
label: Willingness to Contribute
description: Would you be willing to contribute to the implementation of this feature?
options:
- Yes, I'd be happy to submit a pull request
- I could provide more detailed specifications
- I can test the feature once it's implemented
- No, I'm just suggesting the idea
validations:
required: true

27
.github/security.md vendored
View File

@@ -1,27 +0,0 @@
## CrewAI Security Vulnerability Reporting Policy
CrewAI prioritizes the security of our software products, services, and GitHub repositories. To promptly address vulnerabilities, follow these steps for reporting security issues:
### Reporting Process
Do **not** report vulnerabilities via public GitHub issues.
Email all vulnerability reports directly to:
**security@crewai.com**
### Required Information
To help us quickly validate and remediate the issue, your report must include:
- **Vulnerability Type:** Clearly state the vulnerability type (e.g., SQL injection, XSS, privilege escalation).
- **Affected Source Code:** Provide full file paths and direct URLs (branch, tag, or commit).
- **Reproduction Steps:** Include detailed, step-by-step instructions. Screenshots are recommended.
- **Special Configuration:** Document any special settings or configurations required to reproduce.
- **Proof-of-Concept (PoC):** Provide exploit or PoC code (if available).
- **Impact Assessment:** Clearly explain the severity and potential exploitation scenarios.
### Our Response
- We will acknowledge receipt of your report promptly via your provided email.
- Confirmed vulnerabilities will receive priority remediation based on severity.
- Patches will be released as swiftly as possible following verification.
### Reward Notice
Currently, we do not offer a bug bounty program. Rewards, if issued, are discretionary.

10
.github/workflows/black.yml vendored Normal file
View File

@@ -0,0 +1,10 @@
name: Lint
on: [push, pull_request]
jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: psf/black@stable

View File

@@ -1,46 +0,0 @@
name: Build uv cache
on:
push:
branches:
- main
paths:
- "uv.lock"
- "pyproject.toml"
workflow_dispatch:
permissions:
contents: read
jobs:
build-cache:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13"]
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
- name: Install dependencies and populate cache
run: |
echo "Building global UV cache for Python ${{ matrix.python-version }}..."
uv sync --all-groups --all-extras --no-install-project
echo "Cache populated successfully"
- name: Save uv caches
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}

View File

@@ -1,102 +0,0 @@
# For most projects, this workflow file will not need changing; you simply need
# to commit it to your repository.
#
# You may wish to alter this file to override the set of languages analyzed,
# or to provide custom queries or build logic.
#
# ******** NOTE ********
# We have attempted to detect the languages in your repository. Please check
# the `language` matrix defined below to confirm you have the correct set of
# supported CodeQL languages.
#
name: "CodeQL Advanced"
on:
push:
branches: [ "main" ]
paths-ignore:
- "lib/crewai/src/crewai/cli/templates/**"
pull_request:
branches: [ "main" ]
paths-ignore:
- "lib/crewai/src/crewai/cli/templates/**"
jobs:
analyze:
name: Analyze (${{ matrix.language }})
# Runner size impacts CodeQL analysis time. To learn more, please see:
# - https://gh.io/recommended-hardware-resources-for-running-codeql
# - https://gh.io/supported-runners-and-hardware-resources
# - https://gh.io/using-larger-runners (GitHub.com only)
# Consider using larger runners or machines with greater resources for possible analysis time improvements.
runs-on: ${{ (matrix.language == 'swift' && 'macos-latest') || 'ubuntu-latest' }}
permissions:
# required for all workflows
security-events: write
# required to fetch internal or private CodeQL packs
packages: read
# only required for workflows in private repositories
actions: read
contents: read
strategy:
fail-fast: false
matrix:
include:
- language: actions
build-mode: none
- language: python
build-mode: none
# CodeQL supports the following values keywords for 'language': 'actions', 'c-cpp', 'csharp', 'go', 'java-kotlin', 'javascript-typescript', 'python', 'ruby', 'rust', 'swift'
# Use `c-cpp` to analyze code written in C, C++ or both
# Use 'java-kotlin' to analyze code written in Java, Kotlin or both
# Use 'javascript-typescript' to analyze code written in JavaScript, TypeScript or both
# To learn more about changing the languages that are analyzed or customizing the build mode for your analysis,
# see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/customizing-your-advanced-setup-for-code-scanning.
# If you are analyzing a compiled language, you can modify the 'build-mode' for that language to customize how
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
steps:
- name: Checkout repository
uses: actions/checkout@v4
# Add any setup steps before running the `github/codeql-action/init` action.
# This includes steps like installing compilers or runtimes (`actions/setup-node`
# or others). This is typically only required for manual builds.
# - name: Setup runtime (example)
# uses: actions/setup-example@v1
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v3
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# For more details on CodeQL's query packs, refer to: https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning#using-queries-in-ql-packs
# queries: security-extended,security-and-quality
# If the analyze step fails for one of the languages you are analyzing with
# "We were unable to automatically build your code", modify the matrix above
# to set the build mode to "manual" for that language. Then modify this step
# to build your code.
# Command-line programs to run using the OS shell.
# 📚 See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstepsrun
- if: matrix.build-mode == 'manual'
shell: bash
run: |
echo 'If you are using a "manual" build mode for one or more of the' \
'languages you are analyzing, replace this with the commands to build' \
'your code, for example:'
echo ' make bootstrap'
echo ' make release'
exit 1
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v3
with:
category: "/language:${{matrix.language}}"

View File

@@ -1,68 +0,0 @@
name: Lint
on: [pull_request]
permissions:
contents: read
jobs:
lint:
runs-on: ubuntu-latest
env:
TARGET_BRANCH: ${{ github.event.pull_request.base.ref }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Fetch Target Branch
run: git fetch origin $TARGET_BRANCH --depth=1
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py3.11-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py3.11-
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: "3.11"
enable-cache: false
- name: Install dependencies
run: uv sync --all-groups --all-extras --no-install-project
- name: Get Changed Python Files
id: changed-files
run: |
merge_base=$(git merge-base origin/"$TARGET_BRANCH" HEAD)
changed_files=$(git diff --name-only --diff-filter=ACMRTUB "$merge_base" | grep '\.py$' || true)
echo "files<<EOF" >> $GITHUB_OUTPUT
echo "$changed_files" >> $GITHUB_OUTPUT
echo "EOF" >> $GITHUB_OUTPUT
- name: Run Ruff on Changed Files
if: ${{ steps.changed-files.outputs.files != '' }}
run: |
echo "${{ steps.changed-files.outputs.files }}" \
| tr ' ' '\n' \
| grep -v 'src/crewai/cli/templates/' \
| xargs -I{} uv run ruff check "{}"
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py3.11-${{ hashFiles('uv.lock') }}

35
.github/workflows/mkdocs.yml vendored Normal file
View File

@@ -0,0 +1,35 @@
name: Deploy MkDocs
on:
workflow_dispatch:
push:
branches:
- main
permissions:
contents: write
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install Requirements
run: |
sudo apt-get update &&
sudo apt-get install pngquant &&
pip install mkdocs-material
env:
GH_TOKEN: ${{ secrets.GH_TOKEN }}
- name: Build and deploy MkDocs
run: mkdocs gh-deploy --force

View File

@@ -1,33 +0,0 @@
name: Notify Downstream
on:
push:
branches:
- main
permissions:
contents: read
jobs:
notify-downstream:
runs-on: ubuntu-latest
steps:
- name: Generate GitHub App token
id: app-token
uses: tibdex/github-app-token@v2
with:
app_id: ${{ secrets.OSS_SYNC_APP_ID }}
private_key: ${{ secrets.OSS_SYNC_APP_PRIVATE_KEY }}
- name: Notify Repo B
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ steps.app-token.outputs.token }}
repository: ${{ secrets.OSS_SYNC_DOWNSTREAM_REPO }}
event-type: upstream-commit
client-payload: |
{
"commit_sha": "${{ github.sha }}"
}

View File

@@ -1,71 +0,0 @@
name: Publish to PyPI
on:
release:
types: [ published ]
workflow_dispatch:
jobs:
build:
if: github.event.release.prerelease == true
name: Build packages
runs-on: ubuntu-latest
permissions:
contents: read
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
- name: Install uv
uses: astral-sh/setup-uv@v4
- name: Build packages
run: |
uv build --all-packages
rm dist/.gitignore
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: dist
path: dist/
publish:
if: github.event.release.prerelease == true
name: Publish to PyPI
needs: build
runs-on: ubuntu-latest
environment:
name: pypi
url: https://pypi.org/p/crewai
permissions:
id-token: write
contents: read
steps:
- uses: actions/checkout@v4
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: "3.12"
enable-cache: false
- name: Download artifacts
uses: actions/download-artifact@v4
with:
name: dist
path: dist
- name: Publish to PyPI
env:
UV_PUBLISH_TOKEN: ${{ secrets.PYPI_API_TOKEN }}
run: |
for package in dist/*; do
echo "Publishing $package"
uv publish "$package"
done

View File

@@ -1,29 +0,0 @@
name: Mark stale issues and pull requests
permissions:
contents: write
issues: write
pull-requests: write
on:
schedule:
- cron: '10 12 * * *'
workflow_dispatch:
jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v9
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
stale-issue-label: 'no-issue-activity'
stale-issue-message: 'This issue is stale because it has been open for 30 days with no activity. Remove stale label or comment or this will be closed in 5 days.'
close-issue-message: 'This issue was closed because it has been stalled for 5 days with no activity.'
days-before-issue-stale: 30
days-before-issue-close: 5
stale-pr-label: 'no-pr-activity'
stale-pr-message: 'This PR is stale because it has been open for 45 days with no activity.'
days-before-pr-stale: 45
days-before-pr-close: -1
operations-per-run: 1200

View File

@@ -1,118 +1,32 @@
name: Run Tests
on: [pull_request]
on: [push, pull_request]
permissions:
contents: read
contents: write
env:
OPENAI_API_KEY: fake-api-key
PYTHONUNBUFFERED: 1
BRAVE_API_KEY: fake-brave-key
SNOWFLAKE_USER: fake-snowflake-user
SNOWFLAKE_PASSWORD: fake-snowflake-password
SNOWFLAKE_ACCOUNT: fake-snowflake-account
SNOWFLAKE_WAREHOUSE: fake-snowflake-warehouse
SNOWFLAKE_DATABASE: fake-snowflake-database
SNOWFLAKE_SCHEMA: fake-snowflake-schema
EMBEDCHAIN_DB_URI: sqlite:///test.db
jobs:
tests:
name: tests (${{ matrix.python-version }})
deploy:
runs-on: ubuntu-latest
timeout-minutes: 15
strategy:
fail-fast: true
matrix:
python-version: ['3.10', '3.11', '3.12', '3.13']
group: [1, 2, 3, 4, 5, 6, 7, 8]
steps:
- name: Checkout code
uses: actions/checkout@v4
uses: actions/checkout@v2
- name: Setup Python
uses: actions/setup-python@v4
with:
fetch-depth: 0 # Fetch all history for proper diff
python-version: '3.10'
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py${{ matrix.python-version }}-
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
- name: Install the project
run: uv sync --all-groups --all-extras
- name: Restore test durations
uses: actions/cache/restore@v4
with:
path: .test_durations_py*
key: test-durations-py${{ matrix.python-version }}
- name: Run tests (group ${{ matrix.group }} of 8)
- name: Install Requirements
run: |
PYTHON_VERSION_SAFE=$(echo "${{ matrix.python-version }}" | tr '.' '_')
DURATION_FILE="../../.test_durations_py${PYTHON_VERSION_SAFE}"
sudo apt-get update &&
pip install poetry &&
poetry lock &&
poetry install
# Temporarily always skip cached durations to fix test splitting
# When durations don't match, pytest-split runs duplicate tests instead of splitting
echo "Using even test splitting (duration cache disabled until fix merged)"
DURATIONS_ARG=""
# Original logic (disabled temporarily):
# if [ ! -f "$DURATION_FILE" ]; then
# echo "No cached durations found, tests will be split evenly"
# DURATIONS_ARG=""
# elif git diff origin/${{ github.base_ref }}...HEAD --name-only 2>/dev/null | grep -q "^tests/.*\.py$"; then
# echo "Test files have changed, skipping cached durations to avoid mismatches"
# DURATIONS_ARG=""
# else
# echo "No test changes detected, using cached test durations for optimal splitting"
# DURATIONS_ARG="--durations-path=${DURATION_FILE}"
# fi
cd lib/crewai && uv run pytest \
--block-network \
--timeout=30 \
-vv \
--splits 8 \
--group ${{ matrix.group }} \
$DURATIONS_ARG \
--durations=10 \
-n auto \
--maxfail=3
- name: Run tool tests (group ${{ matrix.group }} of 8)
run: |
cd lib/crewai-tools && uv run pytest \
--block-network \
--timeout=30 \
-vv \
--splits 8 \
--group ${{ matrix.group }} \
--durations=10 \
-n auto \
--maxfail=3
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
- name: Run tests
run: poetry run pytest

View File

@@ -1,101 +0,0 @@
name: Run Type Checks
on: [pull_request]
permissions:
contents: read
jobs:
type-checker-matrix:
name: type-checker (${{ matrix.python-version }})
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13"]
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0 # Fetch all history for proper diff
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py${{ matrix.python-version }}-
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
- name: Install dependencies
run: uv sync --all-groups --all-extras
- name: Get changed Python files
id: changed-files
run: |
# Get the list of changed Python files compared to the base branch
echo "Fetching changed files..."
git diff --name-only --diff-filter=ACMRT origin/${{ github.base_ref }}...HEAD -- '*.py' > changed_files.txt
# Filter for files in src/ directory only (excluding tests/)
grep -E "^src/" changed_files.txt > filtered_changed_files.txt || true
# Check if there are any changed files
if [ -s filtered_changed_files.txt ]; then
echo "Changed Python files in src/:"
cat filtered_changed_files.txt
echo "has_changes=true" >> $GITHUB_OUTPUT
# Convert newlines to spaces for mypy command
echo "files=$(cat filtered_changed_files.txt | tr '\n' ' ')" >> $GITHUB_OUTPUT
else
echo "No Python files changed in src/"
echo "has_changes=false" >> $GITHUB_OUTPUT
fi
- name: Run type checks on changed files
if: steps.changed-files.outputs.has_changes == 'true'
run: |
echo "Running mypy on changed files with Python ${{ matrix.python-version }}..."
uv run mypy ${{ steps.changed-files.outputs.files }}
- name: No files to check
if: steps.changed-files.outputs.has_changes == 'false'
run: echo "No Python files in src/ were modified - skipping type checks"
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
# Summary job to provide single status for branch protection
type-checker:
name: type-checker
runs-on: ubuntu-latest
needs: type-checker-matrix
if: always()
steps:
- name: Check matrix results
run: |
if [ "${{ needs.type-checker-matrix.result }}" == "success" ] || [ "${{ needs.type-checker-matrix.result }}" == "skipped" ]; then
echo "✅ All type checks passed"
else
echo "❌ Type checks failed"
exit 1
fi

View File

@@ -1,71 +0,0 @@
name: Update Test Durations
on:
push:
branches:
- main
paths:
- 'tests/**/*.py'
workflow_dispatch:
permissions:
contents: read
jobs:
update-durations:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ['3.10', '3.11', '3.12', '3.13']
env:
OPENAI_API_KEY: fake-api-key
PYTHONUNBUFFERED: 1
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Restore global uv cache
id: cache-restore
uses: actions/cache/restore@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}
restore-keys: |
uv-main-py${{ matrix.python-version }}-
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
version: "0.8.4"
python-version: ${{ matrix.python-version }}
enable-cache: false
- name: Install the project
run: uv sync --all-groups --all-extras
- name: Run all tests and store durations
run: |
PYTHON_VERSION_SAFE=$(echo "${{ matrix.python-version }}" | tr '.' '_')
uv run pytest --store-durations --durations-path=.test_durations_py${PYTHON_VERSION_SAFE} -n auto
continue-on-error: true
- name: Save durations to cache
if: always()
uses: actions/cache/save@v4
with:
path: .test_durations_py*
key: test-durations-py${{ matrix.python-version }}
- name: Save uv caches
if: steps.cache-restore.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
~/.cache/uv
~/.local/share/uv
.venv
key: uv-main-py${{ matrix.python-version }}-${{ hashFiles('uv.lock') }}

22
.gitignore vendored
View File

@@ -5,24 +5,4 @@ dist/
.env
assets/*
.idea
test/
docs_crew/
chroma.sqlite3
old_en.json
db/
test.py
rc-tests/*
*.pkl
temp/*
.vscode/*
crew_tasks_output.json
.codesight
.mypy_cache
.ruff_cache
.venv
test_flow.html
crewairules.mdc
plan.md
conceptual_plan.md
build_image
chromadb-*.lock
test.py

View File

@@ -1,21 +1,21 @@
repos:
- repo: local
- repo: https://github.com/psf/black-pre-commit-mirror
rev: 23.12.1
hooks:
- id: ruff
name: ruff
entry: uv run ruff check
language: system
types: [python]
exclude: ^lib/crewai/
- id: ruff-format
name: ruff-format
entry: uv run ruff format
language: system
types: [python]
exclude: ^lib/crewai/
- id: mypy
name: mypy
entry: uv run mypy
language: system
types: [python]
exclude: ^lib/crewai/
- id: black
language_version: python3.11
files: \.(py)$
- repo: https://github.com/pycqa/isort
rev: 5.13.2
hooks:
- id: isort
name: isort (python)
args: ["--profile", "black", "--filter-files"]
- repo: https://github.com/PyCQA/autoflake
rev: v2.2.1
hooks:
- id: autoflake
args: ['--in-place', '--remove-all-unused-imports', '--remove-unused-variables', '--ignore-init-module-imports']

View File

@@ -1,4 +1,4 @@
Copyright (c) 2025 crewAI, Inc.
Copyright (c) 2018 The Python Packaging Authority
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

823
README.md
View File

@@ -1,566 +1,183 @@
<p align="center">
<a href="https://github.com/crewAIInc/crewAI">
<img src="docs/images/crewai_logo.png" width="600px" alt="Open source Multi-AI Agent orchestration framework">
</a>
</p>
<p align="center" style="display: flex; justify-content: center; gap: 20px; align-items: center;">
<a href="https://trendshift.io/repositories/11239" target="_blank">
<img src="https://trendshift.io/api/badge/repositories/11239" alt="crewAIInc%2FcrewAI | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/>
</a>
</p>
THIS IS A TEST
<p align="center">
<a href="https://crewai.com">Homepage</a>
·
<a href="https://docs.crewai.com">Docs</a>
·
<a href="https://app.crewai.com">Start Cloud Trial</a>
·
<a href="https://blog.crewai.com">Blog</a>
·
<a href="https://community.crewai.com">Forum</a>
</p>
# crewAI
<p align="center">
<a href="https://github.com/crewAIInc/crewAI">
<img src="https://img.shields.io/github/stars/crewAIInc/crewAI" alt="GitHub Repo stars">
</a>
<a href="https://github.com/crewAIInc/crewAI/network/members">
<img src="https://img.shields.io/github/forks/crewAIInc/crewAI" alt="GitHub forks">
</a>
<a href="https://github.com/crewAIInc/crewAI/issues">
<img src="https://img.shields.io/github/issues/crewAIInc/crewAI" alt="GitHub issues">
</a>
<a href="https://github.com/crewAIInc/crewAI/pulls">
<img src="https://img.shields.io/github/issues-pr/crewAIInc/crewAI" alt="GitHub pull requests">
</a>
<a href="https://opensource.org/licenses/MIT">
<img src="https://img.shields.io/badge/License-MIT-green.svg" alt="License: MIT">
</a>
</p>
![Logo of crewAI, tow people rowing on a boat](./docs/crewai_logo.png)
<p align="center">
<a href="https://pypi.org/project/crewai/">
<img src="https://img.shields.io/pypi/v/crewai" alt="PyPI version">
</a>
<a href="https://pypi.org/project/crewai/">
<img src="https://img.shields.io/pypi/dm/crewai" alt="PyPI downloads">
</a>
<a href="https://twitter.com/crewAIInc">
<img src="https://img.shields.io/twitter/follow/crewAIInc?style=social" alt="Twitter Follow">
</a>
</p>
🤖 Cutting-edge framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.
### Fast and Flexible Multi-Agent Automation Framework
> CrewAI is a lean, lightning-fast Python framework built entirely from scratch—completely **independent of LangChain or other agent frameworks**.
> It empowers developers with both high-level simplicity and precise low-level control, ideal for creating autonomous AI agents tailored to any scenario.
- **CrewAI Crews**: Optimize for autonomy and collaborative intelligence.
- **CrewAI Flows**: Enable granular, event-driven control, single LLM calls for precise task orchestration and supports Crews natively
With over 100,000 developers certified through our community courses at [learn.crewai.com](https://learn.crewai.com), CrewAI is rapidly becoming the
standard for enterprise-ready AI automation.
# CrewAI AMP Suite
CrewAI AMP Suite is a comprehensive bundle tailored for organizations that require secure, scalable, and easy-to-manage agent-driven automation.
You can try one part of the suite the [Crew Control Plane for free](https://app.crewai.com)
## Crew Control Plane Key Features:
- **Tracing & Observability**: Monitor and track your AI agents and workflows in real-time, including metrics, logs, and traces.
- **Unified Control Plane**: A centralized platform for managing, monitoring, and scaling your AI agents and workflows.
- **Seamless Integrations**: Easily connect with existing enterprise systems, data sources, and cloud infrastructure.
- **Advanced Security**: Built-in robust security and compliance measures ensuring safe deployment and management.
- **Actionable Insights**: Real-time analytics and reporting to optimize performance and decision-making.
- **24/7 Support**: Dedicated enterprise support to ensure uninterrupted operation and quick resolution of issues.
- **On-premise and Cloud Deployment Options**: Deploy CrewAI AMP on-premise or in the cloud, depending on your security and compliance requirements.
CrewAI AMP is designed for enterprises seeking a powerful, reliable solution to transform complex business processes into efficient,
intelligent automations.
## Table of contents
- [Why CrewAI?](#why-crewai)
- [Getting Started](#getting-started)
- [Key Features](#key-features)
- [Understanding Flows and Crews](#understanding-flows-and-crews)
- [CrewAI vs LangGraph](#how-crewai-compares)
- [Examples](#examples)
- [Quick Tutorial](#quick-tutorial)
- [Write Job Descriptions](#write-job-descriptions)
- [Trip Planner](#trip-planner)
- [Stock Analysis](#stock-analysis)
- [Using Crews and Flows Together](#using-crews-and-flows-together)
- [Connecting Your Crew to a Model](#connecting-your-crew-to-a-model)
- [How CrewAI Compares](#how-crewai-compares)
- [Frequently Asked Questions (FAQ)](#frequently-asked-questions-faq)
- [Contribution](#contribution)
- [Telemetry](#telemetry)
- [License](#license)
- [crewAI](#crewai)
- [Why CrewAI?](#why-crewai)
- [Getting Started](#getting-started)
- [Key Features](#key-features)
- [Examples](#examples)
- [Code](#code)
- [Video](#video)
- [Quick Tutorial](#quick-tutorial)
- [Trip Planner](#trip-planner)
- [Stock Analysis](#stock-analysis)
- [Connecting Your Crew to a Model](#connecting-your-crew-to-a-model)
- [How CrewAI Compares](#how-crewai-compares)
- [Contribution](#contribution)
- [Installing Dependencies](#installing-dependencies)
- [Virtual Env](#virtual-env)
- [Pre-commit hooks](#pre-commit-hooks)
- [Running Tests](#running-tests)
- [Packaging](#packaging)
- [Installing Locally](#installing-locally)
- [Hire CrewAI](#hire-crewai)
- [License](#license)
## Why CrewAI?
<div align="center" style="margin-bottom: 30px;">
<img src="docs/images/asset.png" alt="CrewAI Logo" width="100%">
</div>
The power of AI collaboration has too much to offer.
CrewAI is designed to enable AI agents to assume roles, share goals, and operate in a cohesive unit - much like a well-oiled crew. Whether you're building a smart assistant platform, an automated customer service ensemble, or a multi-agent research team, CrewAI provides the backbone for sophisticated multi-agent interactions.
CrewAI unlocks the true potential of multi-agent automation, delivering the best-in-class combination of speed, flexibility, and control with either Crews of AI Agents or Flows of Events:
- **Standalone Framework**: Built from scratch, independent of LangChain or any other agent framework.
- **High Performance**: Optimized for speed and minimal resource usage, enabling faster execution.
- **Flexible Low Level Customization**: Complete freedom to customize at both high and low levels - from overall workflows and system architecture to granular agent behaviors, internal prompts, and execution logic.
- **Ideal for Every Use Case**: Proven effective for both simple tasks and highly complex, real-world, enterprise-grade scenarios.
- **Robust Community**: Backed by a rapidly growing community of over **100,000 certified** developers offering comprehensive support and resources.
CrewAI empowers developers and enterprises to confidently build intelligent automations, bridging the gap between simplicity, flexibility, and performance.
- 🤖 [Talk with the Docs](https://chatg.pt/DWjSBZn)
- 📄 [Documentation Wiki](https://joaomdmoura.github.io/crewAI/)
## Getting Started
Setup and run your first CrewAI agents by following this tutorial.
[![CrewAI Getting Started Tutorial](https://img.youtube.com/vi/-kSOTtYzgEw/hqdefault.jpg)](https://www.youtube.com/watch?v=-kSOTtYzgEw "CrewAI Getting Started Tutorial")
###
Learning Resources
Learn CrewAI through our comprehensive courses:
- [Multi AI Agent Systems with CrewAI](https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/) - Master the fundamentals of multi-agent systems
- [Practical Multi AI Agents and Advanced Use Cases](https://www.deeplearning.ai/short-courses/practical-multi-ai-agents-and-advanced-use-cases-with-crewai/) - Deep dive into advanced implementations
### Understanding Flows and Crews
CrewAI offers two powerful, complementary approaches that work seamlessly together to build sophisticated AI applications:
1. **Crews**: Teams of AI agents with true autonomy and agency, working together to accomplish complex tasks through role-based collaboration. Crews enable:
- Natural, autonomous decision-making between agents
- Dynamic task delegation and collaboration
- Specialized roles with defined goals and expertise
- Flexible problem-solving approaches
2. **Flows**: Production-ready, event-driven workflows that deliver precise control over complex automations. Flows provide:
- Fine-grained control over execution paths for real-world scenarios
- Secure, consistent state management between tasks
- Clean integration of AI agents with production Python code
- Conditional branching for complex business logic
The true power of CrewAI emerges when combining Crews and Flows. This synergy allows you to:
- Build complex, production-grade applications
- Balance autonomy with precise control
- Handle sophisticated real-world scenarios
- Maintain clean, maintainable code structure
### Getting Started with Installation
To get started with CrewAI, follow these simple steps:
### 1. Installation
Ensure you have Python >=3.10 <3.14 installed on your system. CrewAI uses [UV](https://docs.astral.sh/uv/) for dependency management and package handling, offering a seamless setup and execution experience.
First, install CrewAI:
1. **Installation**:
```shell
pip install crewai
```
If you want to install the 'crewai' package along with its optional features that include additional tools for agents, you can do so by using the following command:
The example below also uses duckduckgo, so also install that
```shell
pip install 'crewai[tools]'
pip install duckduckgo-search
```
The command above installs the basic package and also adds extra components which require more dependencies to function.
### Troubleshooting Dependencies
If you encounter issues during installation or usage, here are some common solutions:
#### Common Issues
1. **ModuleNotFoundError: No module named 'tiktoken'**
- Install tiktoken explicitly: `pip install 'crewai[embeddings]'`
- If using embedchain or other tools: `pip install 'crewai[tools]'`
2. **Failed building wheel for tiktoken**
- Ensure Rust compiler is installed (see installation steps above)
- For Windows: Verify Visual C++ Build Tools are installed
- Try upgrading pip: `pip install --upgrade pip`
- If issues persist, use a pre-built wheel: `pip install tiktoken --prefer-binary`
### 2. Setting Up Your Crew with the YAML Configuration
To create a new CrewAI project, run the following CLI (Command Line Interface) command:
```shell
crewai create crew <project_name>
```
This command creates a new project folder with the following structure:
```
my_project/
├── .gitignore
├── pyproject.toml
├── README.md
├── .env
└── src/
└── my_project/
├── __init__.py
├── main.py
├── crew.py
├── tools/
│ ├── custom_tool.py
│ └── __init__.py
└── config/
├── agents.yaml
└── tasks.yaml
```
You can now start developing your crew by editing the files in the `src/my_project` folder. The `main.py` file is the entry point of the project, the `crew.py` file is where you define your crew, the `agents.yaml` file is where you define your agents, and the `tasks.yaml` file is where you define your tasks.
#### To customize your project, you can:
- Modify `src/my_project/config/agents.yaml` to define your agents.
- Modify `src/my_project/config/tasks.yaml` to define your tasks.
- Modify `src/my_project/crew.py` to add your own logic, tools, and specific arguments.
- Modify `src/my_project/main.py` to add custom inputs for your agents and tasks.
- Add your environment variables into the `.env` file.
#### Example of a simple crew with a sequential process:
Instantiate your crew:
```shell
crewai create crew latest-ai-development
```
Modify the files as needed to fit your use case:
**agents.yaml**
```yaml
# src/my_project/config/agents.yaml
researcher:
role: >
{topic} Senior Data Researcher
goal: >
Uncover cutting-edge developments in {topic}
backstory: >
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
goal: >
Create detailed reports based on {topic} data analysis and research findings
backstory: >
You're a meticulous analyst with a keen eye for detail. You're known for
your ability to turn complex data into clear and concise reports, making
it easy for others to understand and act on the information you provide.
```
**tasks.yaml**
```yaml
# src/my_project/config/tasks.yaml
research_task:
description: >
Conduct a thorough research about {topic}
Make sure you find any interesting and relevant information given
the current year is 2025.
expected_output: >
A list with 10 bullet points of the most relevant information about {topic}
agent: researcher
reporting_task:
description: >
Review the context you got and expand each topic into a full section for a report.
Make sure the report is detailed and contains any and all relevant information.
expected_output: >
A fully fledge reports with the mains topics, each with a full section of information.
Formatted as markdown without '```'
agent: reporting_analyst
output_file: report.md
```
**crew.py**
2. **Setting Up Your Crew**:
```python
# src/my_project/crew.py
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List
import os
from crewai import Agent, Task, Crew, Process
@CrewBase
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
agents: List[BaseAgent]
tasks: List[Task]
os.environ["OPENAI_API_KEY"] = "YOUR KEY"
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'],
verbose=True,
tools=[SerperDevTool()]
)
# You can choose to use a local model through Ollama for example. See ./docs/llm-connections.md for more information.
# from langchain.llms import Ollama
# ollama_llm = Ollama(model="openhermes")
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'],
verbose=True
)
# Install duckduckgo-search for this example:
# !pip install -U duckduckgo-search
@task
def research_task(self) -> Task:
return Task(
config=self.tasks_config['research_task'],
)
from langchain.tools import DuckDuckGoSearchRun
search_tool = DuckDuckGoSearchRun()
@task
def reporting_task(self) -> Task:
return Task(
config=self.tasks_config['reporting_task'],
output_file='report.md'
)
# Define your agents with roles and goals
researcher = Agent(
role='Senior Research Analyst',
goal='Uncover cutting-edge developments in AI and data science',
backstory="""You work at a leading tech think tank.
Your expertise lies in identifying emerging trends.
You have a knack for dissecting complex data and presenting
actionable insights.""",
verbose=True,
allow_delegation=False,
tools=[search_tool]
# You can pass an optional llm attribute specifying what mode you wanna use.
# It can be a local model through Ollama / LM Studio or a remote
# model like OpenAI, Mistral, Antrophic or others (https://python.langchain.com/docs/integrations/llms/)
#
# Examples:
# llm=ollama_llm # was defined above in the file
# llm=OpenAI(model_name="gpt-3.5", temperature=0.7)
# For the OpenAI model you would need to import
# from langchain_openai import OpenAI
)
writer = Agent(
role='Tech Content Strategist',
goal='Craft compelling content on tech advancements',
backstory="""You are a renowned Content Strategist, known for
your insightful and engaging articles.
You transform complex concepts into compelling narratives.""",
verbose=True,
allow_delegation=True,
# (optional) llm=ollama_llm
)
@crew
def crew(self) -> Crew:
"""Creates the LatestAiDevelopment crew"""
return Crew(
agents=self.agents, # Automatically created by the @agent decorator
tasks=self.tasks, # Automatically created by the @task decorator
process=Process.sequential,
verbose=True,
)
# Create tasks for your agents
task1 = Task(
description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
Identify key trends, breakthrough technologies, and potential industry impacts.
Your final answer MUST be a full analysis report""",
agent=researcher
)
task2 = Task(
description="""Using the insights provided, develop an engaging blog
post that highlights the most significant AI advancements.
Your post should be informative yet accessible, catering to a tech-savvy audience.
Make it sound cool, avoid complex words so it doesn't sound like AI.
Your final answer MUST be the full blog post of at least 4 paragraphs.""",
agent=writer
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
verbose=2, # You can set it to 1 or 2 to different logging levels
)
# Get your crew to work!
result = crew.kickoff()
print("######################")
print(result)
```
**main.py**
Currently the only supported process is `Process.sequential`, where one task is executed after the other and the outcome of one is passed as extra content into this next.
```python
#!/usr/bin/env python
# src/my_project/main.py
import sys
from latest_ai_development.crew import LatestAiDevelopmentCrew
def run():
"""
Run the crew.
"""
inputs = {
'topic': 'AI Agents'
}
LatestAiDevelopmentCrew().crew().kickoff(inputs=inputs)
```
### 3. Running Your Crew
Before running your crew, make sure you have the following keys set as environment variables in your `.env` file:
- An [OpenAI API key](https://platform.openai.com/account/api-keys) (or other LLM API key): `OPENAI_API_KEY=sk-...`
- A [Serper.dev](https://serper.dev/) API key: `SERPER_API_KEY=YOUR_KEY_HERE`
Lock the dependencies and install them by using the CLI command but first, navigate to your project directory:
```shell
cd my_project
crewai install (Optional)
```
To run your crew, execute the following command in the root of your project:
```bash
crewai run
```
or
```bash
python src/my_project/main.py
```
If an error happens due to the usage of poetry, please run the following command to update your crewai package:
```bash
crewai update
```
You should see the output in the console and the `report.md` file should be created in the root of your project with the full final report.
In addition to the sequential process, you can use the hierarchical process, which automatically assigns a manager to the defined crew to properly coordinate the planning and execution of tasks through delegation and validation of results. [See more about the processes here](https://docs.crewai.com/core-concepts/Processes/).
## Key Features
CrewAI stands apart as a lean, standalone, high-performance multi-AI Agent framework delivering simplicity, flexibility, and precise control—free from the complexity and limitations found in other agent frameworks.
- **Role-Based Agent Design**: Customize agents with specific roles, goals, and tools.
- **Autonomous Inter-Agent Delegation**: Agents can autonomously delegate tasks and inquire amongst themselves, enhancing problem-solving efficiency.
- **Flexible Task Management**: Define tasks with customizable tools and assign them to agents dynamically.
- **Processes Driven**: Currently only supports `sequential` task execution but more complex processes like consensual and hierarchical being worked on.
- **Works with Open Source Models**: Run your crew using Open AI or open source models refer to the [Connect crewAI to LLMs](./docs/llm-connections.md) page for details on configuring you agents' connections to models, even ones running locally!
- **Standalone & Lean**: Completely independent from other frameworks like LangChain, offering faster execution and lighter resource demands.
- **Flexible & Precise**: Easily orchestrate autonomous agents through intuitive [Crews](https://docs.crewai.com/concepts/crews) or precise [Flows](https://docs.crewai.com/concepts/flows), achieving perfect balance for your needs.
- **Seamless Integration**: Effortlessly combine Crews (autonomy) and Flows (precision) to create complex, real-world automations.
- **Deep Customization**: Tailor every aspect—from high-level workflows down to low-level internal prompts and agent behaviors.
- **Reliable Performance**: Consistent results across simple tasks and complex, enterprise-level automations.
- **Thriving Community**: Backed by robust documentation and over 100,000 certified developers, providing exceptional support and guidance.
Choose CrewAI to easily build powerful, adaptable, and production-ready AI automations.
![CrewAI Mind Map](./docs/crewAI-mindmap.png "CrewAI Mind Map")
## Examples
You can test different real life examples of AI crews [in the examples repo](https://github.com/joaomdmoura/crewAI-examples?tab=readme-ov-file)
You can test different real life examples of AI crews in the [CrewAI-examples repo](https://github.com/crewAIInc/crewAI-examples?tab=readme-ov-file):
### Code
- [Trip Planner](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner)
- [Stock Analysis](https://github.com/joaomdmoura/crewAI-examples/tree/main/stock_analysis)
- [Landing Page Generator](https://github.com/joaomdmoura/crewAI-examples/tree/main/landing_page_generator)
- [Having Human input on the execution](./docs/how-to/Human-Input-on-Execution.md)
- [Landing Page Generator](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/landing_page_generator)
- [Having Human input on the execution](https://docs.crewai.com/how-to/Human-Input-on-Execution)
- [Trip Planner](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/trip_planner)
- [Stock Analysis](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/stock_analysis)
### Video
#### Quick Tutorial
[![CrewAI Tutorial](https://img.youtube.com/vi/tnejrr-0a94/0.jpg)](https://www.youtube.com/watch?v=tnejrr-0a94 "CrewAI Tutorial")
### Quick Tutorial
#### Trip Planner
[![Trip Planner](https://img.youtube.com/vi/xis7rWp-hjs/0.jpg)](https://www.youtube.com/watch?v=xis7rWp-hjs "Trip Planner")
[![CrewAI Tutorial](https://img.youtube.com/vi/tnejrr-0a94/maxresdefault.jpg)](https://www.youtube.com/watch?v=tnejrr-0a94 "CrewAI Tutorial")
### Write Job Descriptions
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/job-posting) or watch a video below:
[![Jobs postings](https://img.youtube.com/vi/u98wEMz-9to/maxresdefault.jpg)](https://www.youtube.com/watch?v=u98wEMz-9to "Jobs postings")
### Trip Planner
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/trip_planner) or watch a video below:
[![Trip Planner](https://img.youtube.com/vi/xis7rWp-hjs/maxresdefault.jpg)](https://www.youtube.com/watch?v=xis7rWp-hjs "Trip Planner")
### Stock Analysis
[Check out code for this example](https://github.com/crewAIInc/crewAI-examples/tree/main/crews/stock_analysis) or watch a video below:
[![Stock Analysis](https://img.youtube.com/vi/e0Uj4yWdaAg/maxresdefault.jpg)](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")
### Using Crews and Flows Together
CrewAI's power truly shines when combining Crews with Flows to create sophisticated automation pipelines.
CrewAI flows support logical operators like `or_` and `and_` to combine multiple conditions. This can be used with `@start`, `@listen`, or `@router` decorators to create complex triggering conditions.
- `or_`: Triggers when any of the specified conditions are met.
- `and_`Triggers when all of the specified conditions are met.
Here's how you can orchestrate multiple Crews within a Flow:
```python
from crewai.flow.flow import Flow, listen, start, router, or_
from crewai import Crew, Agent, Task, Process
from pydantic import BaseModel
# Define structured state for precise control
class MarketState(BaseModel):
sentiment: str = "neutral"
confidence: float = 0.0
recommendations: list = []
class AdvancedAnalysisFlow(Flow[MarketState]):
@start()
def fetch_market_data(self):
# Demonstrate low-level control with structured state
self.state.sentiment = "analyzing"
return {"sector": "tech", "timeframe": "1W"} # These parameters match the task description template
@listen(fetch_market_data)
def analyze_with_crew(self, market_data):
# Show crew agency through specialized roles
analyst = Agent(
role="Senior Market Analyst",
goal="Conduct deep market analysis with expert insight",
backstory="You're a veteran analyst known for identifying subtle market patterns"
)
researcher = Agent(
role="Data Researcher",
goal="Gather and validate supporting market data",
backstory="You excel at finding and correlating multiple data sources"
)
analysis_task = Task(
description="Analyze {sector} sector data for the past {timeframe}",
expected_output="Detailed market analysis with confidence score",
agent=analyst
)
research_task = Task(
description="Find supporting data to validate the analysis",
expected_output="Corroborating evidence and potential contradictions",
agent=researcher
)
# Demonstrate crew autonomy
analysis_crew = Crew(
agents=[analyst, researcher],
tasks=[analysis_task, research_task],
process=Process.sequential,
verbose=True
)
return analysis_crew.kickoff(inputs=market_data) # Pass market_data as named inputs
@router(analyze_with_crew)
def determine_next_steps(self):
# Show flow control with conditional routing
if self.state.confidence > 0.8:
return "high_confidence"
elif self.state.confidence > 0.5:
return "medium_confidence"
return "low_confidence"
@listen("high_confidence")
def execute_strategy(self):
# Demonstrate complex decision making
strategy_crew = Crew(
agents=[
Agent(role="Strategy Expert",
goal="Develop optimal market strategy")
],
tasks=[
Task(description="Create detailed strategy based on analysis",
expected_output="Step-by-step action plan")
]
)
return strategy_crew.kickoff()
@listen(or_("medium_confidence", "low_confidence"))
def request_additional_analysis(self):
self.state.recommendations.append("Gather more data")
return "Additional analysis required"
```
This example demonstrates how to:
1. Use Python code for basic data operations
2. Create and execute Crews as steps in your workflow
3. Use Flow decorators to manage the sequence of operations
4. Implement conditional branching based on Crew results
#### Stock Analysis
[![Stock Analysis](https://img.youtube.com/vi/e0Uj4yWdaAg/0.jpg)](https://www.youtube.com/watch?v=e0Uj4yWdaAg "Stock Analysis")
## Connecting Your Crew to a Model
CrewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
crewAI supports using various LLMs through a variety of connection options. By default your agents will use the OpenAI API when querying the model. However, there are several other ways to allow your agents to connect to models. For example, you can configure your agents to use a local model via the Ollama tool.
Please refer to the [Connect CrewAI to LLMs](https://docs.crewai.com/how-to/LLM-Connections/) page for details on configuring your agents' connections to models.
Please refer to the [Connect crewAI to LLMs](./docs/how-to/llm-connections.md) page for details on configuring you agents' connections to models.
## How CrewAI Compares
**CrewAI's Advantage**: CrewAI combines autonomous agent intelligence with precise workflow control through its unique Crews and Flows architecture. The framework excels at both high-level orchestration and low-level customization, enabling complex, production-grade systems with granular control.
- **Autogen**: While Autogen excels in creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
- **LangGraph**: While LangGraph provides a foundation for building agent workflows, its approach requires significant boilerplate code and complex state management patterns. The framework's tight coupling with LangChain can limit flexibility when implementing custom agent behaviors or integrating with external systems.
*P.S. CrewAI demonstrates significant performance advantages over LangGraph, executing 5.76x faster in certain cases like this QA task example ([see comparison](https://github.com/crewAIInc/crewAI-examples/tree/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/QA%20Agent)) while achieving higher evaluation scores with faster completion times in certain coding tasks, like in this example ([detailed analysis](https://github.com/crewAIInc/crewAI-examples/blob/main/Notebooks/CrewAI%20Flows%20%26%20Langgraph/Coding%20Assistant/coding_assistant_eval.ipynb)).*
- **Autogen**: While Autogen excels at creating conversational agents capable of working together, it lacks an inherent concept of process. In Autogen, orchestrating agents' interactions requires additional programming, which can become complex and cumbersome as the scale of tasks grows.
- **ChatDev**: ChatDev introduced the idea of processes into the realm of AI agents, but its implementation is quite rigid. Customizations in ChatDev are limited and not geared towards production environments, which can hinder scalability and flexibility in real-world applications.
**CrewAI's Advantage**: CrewAI is built with production in mind. It offers the flexibility of Autogen's conversational agents and the structured process approach of ChatDev, but without the rigidity. CrewAI's processes are designed to be dynamic and adaptable, fitting seamlessly into both development and production workflows.
## Contribution
CrewAI is open-source and we welcome contributions. If you're looking to contribute, please:
@@ -572,16 +189,14 @@ CrewAI is open-source and we welcome contributions. If you're looking to contrib
- We appreciate your input!
### Installing Dependencies
```bash
uv lock
uv sync
poetry lock
poetry install
```
### Virtual Env
```bash
uv venv
poetry shell
```
### Pre-commit hooks
@@ -591,187 +206,23 @@ pre-commit install
```
### Running Tests
```bash
uv run pytest .
```
### Running static type checks
```bash
uvx mypy src
poetry run pytest
```
### Packaging
```bash
uv build
poetry build
```
### Installing Locally
```bash
pip install dist/*.tar.gz
```
## Telemetry
CrewAI uses anonymous telemetry to collect usage data with the main purpose of helping us improve the library by focusing our efforts on the most used features, integrations and tools.
It's pivotal to understand that **NO data is collected** concerning prompts, task descriptions, agents' backstories or goals, usage of tools, API calls, responses, any data processed by the agents, or secrets and environment variables, with the exception of the conditions mentioned. When the `share_crew` feature is enabled, detailed data including task descriptions, agents' backstories or goals, and other specific attributes are collected to provide deeper insights while respecting user privacy. Users can disable telemetry by setting the environment variable OTEL_SDK_DISABLED to true.
Data collected includes:
- Version of CrewAI
- So we can understand how many users are using the latest version
- Version of Python
- So we can decide on what versions to better support
- General OS (e.g. number of CPUs, macOS/Windows/Linux)
- So we know what OS we should focus on and if we could build specific OS related features
- Number of agents and tasks in a crew
- So we make sure we are testing internally with similar use cases and educate people on the best practices
- Crew Process being used
- Understand where we should focus our efforts
- If Agents are using memory or allowing delegation
- Understand if we improved the features or maybe even drop them
- If Tasks are being executed in parallel or sequentially
- Understand if we should focus more on parallel execution
- Language model being used
- Improved support on most used languages
- Roles of agents in a crew
- Understand high level use cases so we can build better tools, integrations and examples about it
- Tools names available
- Understand out of the publicly available tools, which ones are being used the most so we can improve them
Users can opt-in to Further Telemetry, sharing the complete telemetry data by setting the `share_crew` attribute to `True` on their Crews. Enabling `share_crew` results in the collection of detailed crew and task execution data, including `goal`, `backstory`, `context`, and `output` of tasks. This enables a deeper insight into usage patterns while respecting the user's choice to share.
## Hire CrewAI
We're a company developing crewAI and crewAI Enterprise, we for a limited time are offer consulting with selected customers, to get them early access to our enterprise solution
If you are interested on having access to it and hiring weekly hours with our team, feel free to email us at [sales@crewai.io](mailto:sales@crewai.io)
## License
CrewAI is released under the [MIT License](https://github.com/crewAIInc/crewAI/blob/main/LICENSE).
## Frequently Asked Questions (FAQ)
### General
- [What exactly is CrewAI?](#q-what-exactly-is-crewai)
- [How do I install CrewAI?](#q-how-do-i-install-crewai)
- [Does CrewAI depend on LangChain?](#q-does-crewai-depend-on-langchain)
- [Is CrewAI open-source?](#q-is-crewai-open-source)
- [Does CrewAI collect data from users?](#q-does-crewai-collect-data-from-users)
### Features and Capabilities
- [Can CrewAI handle complex use cases?](#q-can-crewai-handle-complex-use-cases)
- [Can I use CrewAI with local AI models?](#q-can-i-use-crewai-with-local-ai-models)
- [What makes Crews different from Flows?](#q-what-makes-crews-different-from-flows)
- [How is CrewAI better than LangChain?](#q-how-is-crewai-better-than-langchain)
- [Does CrewAI support fine-tuning or training custom models?](#q-does-crewai-support-fine-tuning-or-training-custom-models)
### Resources and Community
- [Where can I find real-world CrewAI examples?](#q-where-can-i-find-real-world-crewai-examples)
- [How can I contribute to CrewAI?](#q-how-can-i-contribute-to-crewai)
### Enterprise Features
- [What additional features does CrewAI AMP offer?](#q-what-additional-features-does-crewai-amp-offer)
- [Is CrewAI AMP available for cloud and on-premise deployments?](#q-is-crewai-amp-available-for-cloud-and-on-premise-deployments)
- [Can I try CrewAI AMP for free?](#q-can-i-try-crewai-amp-for-free)
### Q: What exactly is CrewAI?
A: CrewAI is a standalone, lean, and fast Python framework built specifically for orchestrating autonomous AI agents. Unlike frameworks like LangChain, CrewAI does not rely on external dependencies, making it leaner, faster, and simpler.
### Q: How do I install CrewAI?
A: Install CrewAI using pip:
```shell
pip install crewai
```
For additional tools, use:
```shell
pip install 'crewai[tools]'
```
### Q: Does CrewAI depend on LangChain?
A: No. CrewAI is built entirely from the ground up, with no dependencies on LangChain or other agent frameworks. This ensures a lean, fast, and flexible experience.
### Q: Can CrewAI handle complex use cases?
A: Yes. CrewAI excels at both simple and highly complex real-world scenarios, offering deep customization options at both high and low levels, from internal prompts to sophisticated workflow orchestration.
### Q: Can I use CrewAI with local AI models?
A: Absolutely! CrewAI supports various language models, including local ones. Tools like Ollama and LM Studio allow seamless integration. Check the [LLM Connections documentation](https://docs.crewai.com/how-to/LLM-Connections/) for more details.
### Q: What makes Crews different from Flows?
A: Crews provide autonomous agent collaboration, ideal for tasks requiring flexible decision-making and dynamic interaction. Flows offer precise, event-driven control, ideal for managing detailed execution paths and secure state management. You can seamlessly combine both for maximum effectiveness.
### Q: How is CrewAI better than LangChain?
A: CrewAI provides simpler, more intuitive APIs, faster execution speeds, more reliable and consistent results, robust documentation, and an active community—addressing common criticisms and limitations associated with LangChain.
### Q: Is CrewAI open-source?
A: Yes, CrewAI is open-source and actively encourages community contributions and collaboration.
### Q: Does CrewAI collect data from users?
A: CrewAI collects anonymous telemetry data strictly for improvement purposes. Sensitive data such as prompts, tasks, or API responses are never collected unless explicitly enabled by the user.
### Q: Where can I find real-world CrewAI examples?
A: Check out practical examples in the [CrewAI-examples repository](https://github.com/crewAIInc/crewAI-examples), covering use cases like trip planners, stock analysis, and job postings.
### Q: How can I contribute to CrewAI?
A: Contributions are warmly welcomed! Fork the repository, create your branch, implement your changes, and submit a pull request. See the Contribution section of the README for detailed guidelines.
### Q: What additional features does CrewAI AMP offer?
A: CrewAI AMP provides advanced features such as a unified control plane, real-time observability, secure integrations, advanced security, actionable insights, and dedicated 24/7 enterprise support.
### Q: Is CrewAI AMP available for cloud and on-premise deployments?
A: Yes, CrewAI AMP supports both cloud-based and on-premise deployment options, allowing enterprises to meet their specific security and compliance requirements.
### Q: Can I try CrewAI AMP for free?
A: Yes, you can explore part of the CrewAI AMP Suite by accessing the [Crew Control Plane](https://app.crewai.com) for free.
### Q: Does CrewAI support fine-tuning or training custom models?
A: Yes, CrewAI can integrate with custom-trained or fine-tuned models, allowing you to enhance your agents with domain-specific knowledge and accuracy.
### Q: Can CrewAI agents interact with external tools and APIs?
A: Absolutely! CrewAI agents can easily integrate with external tools, APIs, and databases, empowering them to leverage real-world data and resources.
### Q: Is CrewAI suitable for production environments?
A: Yes, CrewAI is explicitly designed with production-grade standards, ensuring reliability, stability, and scalability for enterprise deployments.
### Q: How scalable is CrewAI?
A: CrewAI is highly scalable, supporting simple automations and large-scale enterprise workflows involving numerous agents and complex tasks simultaneously.
### Q: Does CrewAI offer debugging and monitoring tools?
A: Yes, CrewAI AMP includes advanced debugging, tracing, and real-time observability features, simplifying the management and troubleshooting of your automations.
### Q: What programming languages does CrewAI support?
A: CrewAI is primarily Python-based but easily integrates with services and APIs written in any programming language through its flexible API integration capabilities.
### Q: Does CrewAI offer educational resources for beginners?
A: Yes, CrewAI provides extensive beginner-friendly tutorials, courses, and documentation through learn.crewai.com, supporting developers at all skill levels.
### Q: Can CrewAI automate human-in-the-loop workflows?
A: Yes, CrewAI fully supports human-in-the-loop workflows, allowing seamless collaboration between human experts and AI agents for enhanced decision-making.
CrewAI is released under the MIT License

View File

@@ -1463,11 +1463,11 @@
"locked": false,
"fontSize": 20,
"fontFamily": 3,
"text": "Agents have the innate ability of\nreach out to another to delegate\nwork or ask questions.",
"text": "Agents have the inert ability of\nreach out to another to delegate\nwork or ask questions.",
"textAlign": "right",
"verticalAlign": "top",
"containerId": null,
"originalText": "Agents have the innate ability of\nreach out to another to delegate\nwork or ask questions.",
"originalText": "Agents have the inert ability of\nreach out to another to delegate\nwork or ask questions.",
"lineHeight": 1.2,
"baseline": 68
},
@@ -1734,4 +1734,4 @@
"viewBackgroundColor": "#ffffff"
},
"files": {}
}
}

View File

@@ -1,18 +0,0 @@
(function() {
if (typeof window === 'undefined') return;
if (typeof window.signals !== 'undefined') return;
var script = document.createElement('script');
script.src = 'https://cdn.cr-relay.com/v1/site/883520f4-c431-44be-80e7-e123a1ee7a2b/signals.js';
script.async = true;
window.signals = Object.assign(
[],
['page', 'identify', 'form'].reduce(function (acc, method){
acc[method] = function () {
signals.push([method, arguments]);
return signals;
};
return acc;
}, {})
);
document.head.appendChild(script);
})();

View File

@@ -0,0 +1,90 @@
# What is a Tool?
A tool in CrewAI is a function or capability that an agent can utilize to perform actions, gather information, or interact with external systems, behind the scenes tools are [LangChain Tools](https://python.langchain.com/docs/modules/agents/tools/).
These tools can be as straightforward as a search function or as sophisticated as integrations with other chains or APIs.
## Key Characteristics of Tools
- **Utility**: Tools are designed to serve specific purposes, such as searching the web, analyzing data, or generating content.
- **Integration**: Tools can be integrated into agents to extend their capabilities beyond their basic functions.
- **Customizability**: Developers can create custom tools tailored to the specific needs of their agents or use pre-built LangChain ones available in the ecosystem.
# Creating your own Tools
You can easily create your own tool using [LangChain Tool Custom Tool Creation](https://python.langchain.com/docs/modules/agents/tools/custom_tools).
Example:
```python
import json
import requests
from crewai import Agent
from langchain.tools import tool
from unstructured.partition.html import partition_html
class BrowserTools():
@tool("Scrape website content")
def scrape_website(website):
"""Useful to scrape a website content"""
url = f"https://chrome.browserless.io/content?token={config('BROWSERLESS_API_KEY')}"
payload = json.dumps({"url": website})
headers = {
'cache-control': 'no-cache',
'content-type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
elements = partition_html(text=response.text)
content = "\n\n".join([str(el) for el in elements])
# Return only the first 5k characters
return content[:5000]
# Create an agent and assign the scrapping tool
agent = Agent(
role='Research Analyst',
goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.',
tools=[BrowserTools().scrape_website]
)
```
# Using Existing Tools
Check [LangChain Integration](https://python.langchain.com/docs/integrations/tools/) for a set of useful existing tools.
To assign a tool to an agent, you'd provide it as part of the agent's properties during initialization.
```python
from crewai import Agent
from langchain.agents import Tool
from langchain.utilities import GoogleSerperAPIWrapper
# Initialize SerpAPI tool with your API key
os.environ["OPENAI_API_KEY"] = "Your Key"
os.environ["SERPER_API_KEY"] = "Your Key"
search = GoogleSerperAPIWrapper()
# Create tool to be used by agent
serper_tool = Tool(
name="Intermediate Answer",
func=search.run,
description="useful for when you need to ask with search",
)
# Create an agent and assign the search tool
agent = Agent(
role='Research Analyst',
goal='Provide up-to-date market analysis',
backstory='An expert analyst with a keen eye for market trends.',
tools=[serper_tool]
)
```
# Tool Interaction
Tools enhance an agent's ability to perform tasks autonomously or in collaboration with other agents. For instance, an agent might use a search tool to gather information, then pass that data to another agent specialized in analysis.
# Conclusion
Tools are vital components that expand the functionality of agents within the CrewAI framework. They enable agents to perform a wide range of actions and collaborate effectively with one another. As you build with CrewAI, consider the array of tools you can leverage to empower your agents and how they can be interwoven to create a robust AI ecosystem.

View File

@@ -0,0 +1,50 @@
# What is a Task?
A Task in CrewAI is essentially a job or an assignment that an AI agent needs to complete. It's defined by what needs to be done and can include additional information like which agent should do it and what tools they might need.
# Task Properties
- **Description**: A clear, concise statement of what the task entails.
- **Agent**: Optionally, you can specify which agent is responsible for the task. If not, the crew's process will determine who takes it on.
- **Tools**: These are the functions or capabilities the agent can utilize to perform the task. They can be anything from simple actions like 'search' to more complex interactions with other agents or APIs.
# Integrating Tools with Tasks
In CrewAI, tools are functions from the `langchain` toolkit that agents can use to interact with the world. These can be generic utilities or specialized functions designed for specific actions. When you assign tools to a task, they empower the agent to perform its duties more effectively.
## Example of Creating a Task with Tools
```python
from crewai import Task
from langchain.agents import Tool
from langchain.utilities import GoogleSerperAPIWrapper
# Initialize SerpAPI tool with your API key
os.environ["OPENAI_API_KEY"] = "Your Key"
os.environ["SERPER_API_KEY"] = "Your Key"
search = GoogleSerperAPIWrapper()
# Create tool to be used by agent
serper_tool = Tool(
name="Intermediate Answer",
func=search.run,
description="useful for when you need to ask with search",
)
# Create a task with a description and the search tool
task = Task(
description='Find and summarize the latest and most relevant news on AI',
tools=[serper_tool]
)
```
When the task is executed by an agent, the tools specified in the task will override the agent's default tools. This means that for the duration of this task, the agent will use the search tool provided, even if it has other tools assigned to it.
# Tool Override Mechanism
The ability to override an agent's tools with those specified in a task allows for greater flexibility. An agent might generally use a set of standard tools, but for certain tasks, you may want it to use a particular tool that is more suited to the task at hand.
# Conclusion
Creating tasks with the right tools is crucial in CrewAI. It ensures that your agents are not only aware of what they need to do but are also equipped with the right functions to do it effectively. This feature underlines the flexibility and power of the CrewAI system, where tasks can be tailored with specific tools to achieve the best outcome.

View File

@@ -0,0 +1,42 @@
# Overview of a Task
In the CrewAI framework, tasks are the individual assignments that agents are responsible for completing. They are the fundamental units of work that your AI crew will undertake. Understanding how to define and manage tasks is key to leveraging the full potential of CrewAI.
A task in CrewAI encapsulates all the information needed for an agent to execute it, including a description, the agent assigned to it, and any specific tools required. Tasks are designed to be flexible, allowing for both simple and complex actions depending on your needs.
# Properties of a Task
Every task in CrewAI has several properties:
- **Description**: A clear and concise statement of what needs to be done.
- **Agent**: The agent assigned to the task (optional). If no agent is specified, the task can be picked up by any agent based on the process defined.
- **Tools**: A list of tools (optional) that the agent can use to complete the task. These can override the agent's default tools if necessary.
# Creating a Task
Creating a task is straightforward. You define what needs to be done and, optionally, who should do it and what tools they should use. Heres a conceptual guide:
```python
from crewai import Task
# Define a task with a designated agent and specific tools
task = Task(description='Generate monthly sales report', agent=sales_agent, tools=[reporting_tool])
```
# Task Assignment
Tasks can be assigned to agents in several ways:
- Directly, by specifying the agent when creating the task.
- [WIP] Through the Crew's process, which can assign tasks based on agent roles, availability, or other criteria.
# Task Execution
Once a task has been defined and assigned, it's ready to be executed. Execution is typically handled by the Crew object, which manages the workflow and ensures that tasks are completed according to the defined process.
# Task Collaboration
Tasks in CrewAI can be designed to require collaboration between agents. For example, one agent might gather data while another analyzes it. This collaborative approach can be defined within the task properties and managed by the Crew's process.
# Conclusion
Tasks are the driving force behind the actions of agents in CrewAI. By properly defining tasks, you set the stage for your AI agents to work effectively, either independently or as a collaborative unit. In the following sections, we will explore how tasks fit into the larger picture of processes and crew management.

View File

@@ -0,0 +1,26 @@
# How Agents Collaborate:
In CrewAI, collaboration is the cornerstone of agent interaction. Agents are designed to work together by sharing information, requesting assistance, and combining their skills to complete tasks more efficiently.
- **Information Sharing**: Agents can share findings and data amongst themselves to ensure all members are informed and can contribute effectively.
- **Task Assistance**: If an agent encounters a task that requires additional expertise, it can seek the help of another agent with the necessary skill set.
- **Resource Allocation**: Agents can share or allocate resources such as tools or processing power to optimize task execution.
Collaboration is embedded in the DNA of CrewAI, enabling a dynamic and adaptive approach to problem-solving.
# Delegation: Dividing to Conquer
Delegation is the process by which an agent assigns a task to another agent, or just ask another agent, it's an intelligent decision-making process that enhances the crew's functionality.
By default all agents can delegate work and ask questions, so if you want an agent to work alone make sure to set that option when initializing an Agent, this is useful to prevent deviations if the task is supposed to be straightforward.
## Implementing Collaboration and Delegation
When setting up your crew, you'll define the roles and capabilities of each agent. CrewAI's infrastructure takes care of the rest, managing the complex interplay of agents as they work together.
## Example Scenario:
Imagine a scenario where you have a researcher agent that gathers data and a writer agent that compiles reports. The writer can autonomously ask question or delegate more in depth research work depending on its needs as it tries to complete its task.
# Conclusion
Collaboration and delegation are what transform a collection of AI agents into a unified, intelligent crew. With CrewAI, you have a framework that not only simplifies these interactions but also makes them more effective, paving the way for sophisticated AI systems that can tackle complex, multi-dimensional tasks.

View File

@@ -0,0 +1,49 @@
# Managing Processes in CrewAI
Processes are the heart of CrewAI's workflow management, akin to the way a human team organizes its work. In CrewAI, processes define the sequence and manner in which tasks are executed by agents, mirroring the coordination you'd expect in a well-functioning team of people.
## Understanding Processes
A process in CrewAI can be thought of as the game plan for how your AI agents will handle their workload. Just as a project manager assigns tasks to team members based on their skills and the project timeline, CrewAI processes assign tasks to agents to ensure efficient workflow.
## Process Implementations
- **Sequential (Supported)**: This is the only process currently implemented in CrewAI. It ensures tasks are handled one at a time, in a given order, much like a relay race where one runner passes the baton to the next.
- **Consensual (WIP)**: Envisioned for a future update, the consensual process will enable agents to make joint decisions on task execution, similar to a team consensus in a meeting before proceeding.
- **Hierarchical (WIP)**: Also in the pipeline, this process will introduce a chain of command to task execution, where some agents may have the authority to prioritize tasks or delegate them, akin to a traditional corporate hierarchy.
These additional processes, once implemented, will offer more nuanced and sophisticated ways for agents to interact and complete tasks, much like teams in complex organizational structures.
## Defining a Sequential Process
Creating a sequential process in CrewAI is straightforward and reflects the simplicity of coordinating a team's efforts step by step. In this process the outcome of the previous task is sent into the next one as context that I should use to accomplish it's task
```python
from crewai import Process
# Define a sequential process
sequential_process = Process.sequential
```
# The Magic of Sequential Processes
The sequential process is where much of CrewAI's magic happens. It ensures that tasks are approached with the same thoughtful progression that a human team would use, fostering a natural and logical flow of work while passing on task outcome into the next.
## Assigning Processes to a Crew
To assign a process to a crew, simply set it during the crew's creation. The process will dictate the crew's approach to task execution.
```python
from crewai import Crew
# Create a crew with a sequential process
crew = Crew(agents=my_agents, tasks=my_tasks, process=sequential_process)
```
## The Role of Processes in Teamwork
The process you choose for your crew is critical. It's what transforms a group of individual agents into a cohesive unit that can tackle complex projects with the precision and harmony you'd find in a team of skilled humans.
## Conclusion
Processes bring structure and order to the CrewAI ecosystem, allowing agents to collaborate effectively and accomplish goals systematically. As CrewAI evolves, additional process types will be introduced to enhance the framework's versatility, much like a team that grows and adapts over time.

View File

@@ -0,0 +1,41 @@
# What is an Agent?
In CrewAI, an agent is an autonomous unit programmed to perform tasks, make decisions, and communicate with other agents. Think of an agent as a member of a team, with specific skills and a particular job to do. Agents can have different roles like 'Researcher', 'Writer', or 'Customer Support', each contributing to the overall goal of the crew.
# Key Properties of an Agent
- **Role**: Defines the agent's function within the crew. It determines the kind of tasks the agent is best suited for.
- **Goal**: The individual objective that the agent aims to achieve. It guides the agent's decision-making process.
- **Backstory**: Provides context to the agent's role and goal, enriching the interaction and collaboration dynamics.
- **Tools**: A set of capabilities or functions that the agent can use to perform tasks. Tools can be shared or exclusive to specific agents.
- **Verbose**: This allow you to actually see what is going on during the Crew execution.
- **Allow Delegation**: Agents can delegate tasks or questions to one another, ensuring that each task is handled by the most suitable agent.
# Agent Lifecycle
1. **Initialization**: An agent is created with a defined role, goal, backstory, and set of tools.
2. **Task Assignment**: The agent is assigned tasks either directly or through the crew's process management.
3. **Execution**: The agent performs the task using its available tools and in accordance with its role and goal.
4. **Collaboration**: Throughout the execution, the agent can communicate with other agents to delegate, inquire, or assist.
# Creating an Agent
To create an agent, you would typically initialize an instance of the `Agent` class with the desired properties. Here's a conceptual example:
```python
from crewai import Agent
# Create an agent with a role and a goal
agent = Agent(
role='Data Analyst',
goal='Extract actionable insights',
verbose=True,
backstory="You'er a data analyst at a large company. I am responsible for analyzing data and providing insights to the business. I am currently working on a project to analyze the performance of our marketing campaigns. I have been asked to provide insights on how to improve the performance of our marketing campaigns."
)
```
# Agent Interaction
Agents can interact with each other using the CrewAI's built-in delegation and communication mechanisms. This allows for dynamic task management and problem-solving within the crew.
# Conclusion
Agents are the building blocks of the CrewAI framework. By understanding how to define and interact with agents, you can create sophisticated AI systems that leverage the power of collaborative intelligence.

View File

Before

Width:  |  Height:  |  Size: 427 KiB

After

Width:  |  Height:  |  Size: 427 KiB

BIN
docs/crewai_logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

File diff suppressed because it is too large Load Diff

View File

@@ -1,8 +0,0 @@
---
title: "GET /inputs"
description: "Get required inputs for your crew"
openapi: "/enterprise-api.en.yaml GET /inputs"
mode: "wide"
---

View File

@@ -1,120 +0,0 @@
---
title: "Introduction"
description: "Complete reference for the CrewAI AMP REST API"
icon: "code"
mode: "wide"
---
# CrewAI AMP API
Welcome to the CrewAI AMP API reference. This API allows you to programmatically interact with your deployed crews, enabling integration with your applications, workflows, and services.
## Quick Start
<Steps>
<Step title="Get Your API Credentials">
Navigate to your crew's detail page in the CrewAI AMP dashboard and copy your Bearer Token from the Status tab.
</Step>
<Step title="Discover Required Inputs">
Use the `GET /inputs` endpoint to see what parameters your crew expects.
</Step>
<Step title="Start a Crew Execution">
Call `POST /kickoff` with your inputs to start the crew execution and receive a `kickoff_id`.
</Step>
<Step title="Monitor Progress">
Use `GET /status/{kickoff_id}` to check execution status and retrieve results.
</Step>
</Steps>
## Authentication
All API requests require authentication using a Bearer token. Include your token in the `Authorization` header:
```bash
curl -H "Authorization: Bearer YOUR_CREW_TOKEN" \
https://your-crew-url.crewai.com/inputs
```
### Token Types
| Token Type | Scope | Use Case |
|:-----------|:--------|:----------|
| **Bearer Token** | Organization-level access | Full crew operations, ideal for server-to-server integration |
| **User Bearer Token** | User-scoped access | Limited permissions, suitable for user-specific operations |
<Tip>
You can find both token types in the Status tab of your crew's detail page in the CrewAI AMP dashboard.
</Tip>
## Base URL
Each deployed crew has its own unique API endpoint:
```
https://your-crew-name.crewai.com
```
Replace `your-crew-name` with your actual crew's URL from the dashboard.
## Typical Workflow
1. **Discovery**: Call `GET /inputs` to understand what your crew needs
2. **Execution**: Submit inputs via `POST /kickoff` to start processing
3. **Monitoring**: Poll `GET /status/{kickoff_id}` until completion
4. **Results**: Extract the final output from the completed response
## Error Handling
The API uses standard HTTP status codes:
| Code | Meaning |
|------|:--------|
| `200` | Success |
| `400` | Bad Request - Invalid input format |
| `401` | Unauthorized - Invalid bearer token |
| `404` | Not Found - Resource doesn't exist |
| `422` | Validation Error - Missing required inputs |
| `500` | Server Error - Contact support |
## Interactive Testing
<Info>
**Why no "Send" button?** Since each CrewAI AMP user has their own unique crew URL, we use **reference mode** instead of an interactive playground to avoid confusion. This shows you exactly what the requests should look like without non-functional send buttons.
</Info>
Each endpoint page shows you:
- ✅ **Exact request format** with all parameters
- ✅ **Response examples** for success and error cases
- ✅ **Code samples** in multiple languages (cURL, Python, JavaScript, etc.)
- ✅ **Authentication examples** with proper Bearer token format
### **To Test Your Actual API:**
<CardGroup cols={2}>
<Card title="Copy cURL Examples" icon="terminal">
Copy the cURL examples and replace the URL + token with your real values
</Card>
<Card title="Use Postman/Insomnia" icon="play">
Import the examples into your preferred API testing tool
</Card>
</CardGroup>
**Example workflow:**
1. **Copy this cURL example** from any endpoint page
2. **Replace `your-actual-crew-name.crewai.com`** with your real crew URL
3. **Replace the Bearer token** with your real token from the dashboard
4. **Run the request** in your terminal or API client
## Need Help?
<CardGroup cols={2}>
<Card title="Enterprise Support" icon="headset" href="mailto:support@crewai.com">
Get help with API integration and troubleshooting
</Card>
<Card title="Enterprise Dashboard" icon="chart-line" href="https://app.crewai.com">
Manage your crews and view execution logs
</Card>
</CardGroup>

View File

@@ -1,8 +0,0 @@
---
title: "POST /kickoff"
description: "Start a crew execution"
openapi: "/enterprise-api.en.yaml POST /kickoff"
mode: "wide"
---

View File

@@ -1,8 +0,0 @@
---
title: "GET /status/{kickoff_id}"
description: "Get execution status"
openapi: "/enterprise-api.en.yaml GET /status/{kickoff_id}"
mode: "wide"
---

File diff suppressed because it is too large Load Diff

View File

@@ -1,691 +0,0 @@
---
title: Agents
description: Detailed guide on creating and managing agents within the CrewAI framework.
icon: robot
mode: "wide"
---
## Overview of an Agent
In the CrewAI framework, an `Agent` is an autonomous unit that can:
- Perform specific tasks
- Make decisions based on its role and goal
- Use tools to accomplish objectives
- Communicate and collaborate with other agents
- Maintain memory of interactions
- Delegate tasks when allowed
<Tip>
Think of an agent as a specialized team member with specific skills, expertise, and responsibilities. For example, a `Researcher` agent might excel at gathering and analyzing information, while a `Writer` agent might be better at creating content.
</Tip>
<Note type="info" title="Enterprise Enhancement: Visual Agent Builder">
CrewAI AMP includes a Visual Agent Builder that simplifies agent creation and configuration without writing code. Design your agents visually and test them in real-time.
![Visual Agent Builder Screenshot](/images/enterprise/crew-studio-interface.png)
The Visual Agent Builder enables:
- Intuitive agent configuration with form-based interfaces
- Real-time testing and validation
- Template library with pre-configured agent types
- Easy customization of agent attributes and behaviors
</Note>
## Agent Attributes
| Attribute | Parameter | Type | Description |
| :-------------------------------------- | :----------------------- | :---------------------------- | :------------------------------------------------------------------------------------------------------------------- |
| **Role** | `role` | `str` | Defines the agent's function and expertise within the crew. |
| **Goal** | `goal` | `str` | The individual objective that guides the agent's decision-making. |
| **Backstory** | `backstory` | `str` | Provides context and personality to the agent, enriching interactions. |
| **LLM** _(optional)_ | `llm` | `Union[str, LLM, Any]` | Language model that powers the agent. Defaults to the model specified in `OPENAI_MODEL_NAME` or "gpt-4". |
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | Capabilities or functions available to the agent. Defaults to an empty list. |
| **Function Calling LLM** _(optional)_ | `function_calling_llm` | `Optional[Any]` | Language model for tool calling, overrides crew's LLM if specified. |
| **Max Iterations** _(optional)_ | `max_iter` | `int` | Maximum iterations before the agent must provide its best answer. Default is 20. |
| **Max RPM** _(optional)_ | `max_rpm` | `Optional[int]` | Maximum requests per minute to avoid rate limits. |
| **Max Execution Time** _(optional)_ | `max_execution_time` | `Optional[int]` | Maximum time (in seconds) for task execution. |
| **Verbose** _(optional)_ | `verbose` | `bool` | Enable detailed execution logs for debugging. Default is False. |
| **Allow Delegation** _(optional)_ | `allow_delegation` | `bool` | Allow the agent to delegate tasks to other agents. Default is False. |
| **Step Callback** _(optional)_ | `step_callback` | `Optional[Any]` | Function called after each agent step, overrides crew callback. |
| **Cache** _(optional)_ | `cache` | `bool` | Enable caching for tool usage. Default is True. |
| **System Template** _(optional)_ | `system_template` | `Optional[str]` | Custom system prompt template for the agent. |
| **Prompt Template** _(optional)_ | `prompt_template` | `Optional[str]` | Custom prompt template for the agent. |
| **Response Template** _(optional)_ | `response_template` | `Optional[str]` | Custom response template for the agent. |
| **Allow Code Execution** _(optional)_ | `allow_code_execution` | `Optional[bool]` | Enable code execution for the agent. Default is False. |
| **Max Retry Limit** _(optional)_ | `max_retry_limit` | `int` | Maximum number of retries when an error occurs. Default is 2. |
| **Respect Context Window** _(optional)_ | `respect_context_window` | `bool` | Keep messages under context window size by summarizing. Default is True. |
| **Code Execution Mode** _(optional)_ | `code_execution_mode` | `Literal["safe", "unsafe"]` | Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct). Default is 'safe'. |
| **Multimodal** _(optional)_ | `multimodal` | `bool` | Whether the agent supports multimodal capabilities. Default is False. |
| **Inject Date** _(optional)_ | `inject_date` | `bool` | Whether to automatically inject the current date into tasks. Default is False. |
| **Date Format** _(optional)_ | `date_format` | `str` | Format string for date when inject_date is enabled. Default is "%Y-%m-%d" (ISO format). |
| **Reasoning** _(optional)_ | `reasoning` | `bool` | Whether the agent should reflect and create a plan before executing a task. Default is False. |
| **Max Reasoning Attempts** _(optional)_ | `max_reasoning_attempts` | `Optional[int]` | Maximum number of reasoning attempts before executing the task. If None, will try until ready. |
| **Embedder** _(optional)_ | `embedder` | `Optional[Dict[str, Any]]` | Configuration for the embedder used by the agent. |
| **Knowledge Sources** _(optional)_ | `knowledge_sources` | `Optional[List[BaseKnowledgeSource]]` | Knowledge sources available to the agent. |
| **Use System Prompt** _(optional)_ | `use_system_prompt` | `Optional[bool]` | Whether to use system prompt (for o1 model support). Default is True. |
## Creating Agents
There are two ways to create agents in CrewAI: using **YAML configuration (recommended)** or defining them **directly in code**.
### YAML Configuration (Recommended)
Using YAML configuration provides a cleaner, more maintainable way to define agents. We strongly recommend using this approach in your CrewAI projects.
After creating your CrewAI project as outlined in the [Installation](/en/installation) section, navigate to the `src/latest_ai_development/config/agents.yaml` file and modify the template to match your requirements.
<Note>
Variables in your YAML files (like `{topic}`) will be replaced with values from your inputs when running the crew:
```python Code
crew.kickoff(inputs={'topic': 'AI Agents'})
```
</Note>
Here's an example of how to configure agents using YAML:
```yaml agents.yaml
# src/latest_ai_development/config/agents.yaml
researcher:
role: >
{topic} Senior Data Researcher
goal: >
Uncover cutting-edge developments in {topic}
backstory: >
You're a seasoned researcher with a knack for uncovering the latest
developments in {topic}. Known for your ability to find the most relevant
information and present it in a clear and concise manner.
reporting_analyst:
role: >
{topic} Reporting Analyst
goal: >
Create detailed reports based on {topic} data analysis and research findings
backstory: >
You're a meticulous analyst with a keen eye for detail. You're known for
your ability to turn complex data into clear and concise reports, making
it easy for others to understand and act on the information you provide.
```
To use this YAML configuration in your code, create a crew class that inherits from `CrewBase`:
```python Code
# src/latest_ai_development/crew.py
from crewai import Agent, Crew, Process
from crewai.project import CrewBase, agent, crew
from crewai_tools import SerperDevTool
@CrewBase
class LatestAiDevelopmentCrew():
"""LatestAiDevelopment crew"""
agents_config = "config/agents.yaml"
@agent
def researcher(self) -> Agent:
return Agent(
config=self.agents_config['researcher'], # type: ignore[index]
verbose=True,
tools=[SerperDevTool()]
)
@agent
def reporting_analyst(self) -> Agent:
return Agent(
config=self.agents_config['reporting_analyst'], # type: ignore[index]
verbose=True
)
```
<Note>
The names you use in your YAML files (`agents.yaml`) should match the method names in your Python code.
</Note>
### Direct Code Definition
You can create agents directly in code by instantiating the `Agent` class. Here's a comprehensive example showing all available parameters:
```python Code
from crewai import Agent
from crewai_tools import SerperDevTool
# Create an agent with all available parameters
agent = Agent(
role="Senior Data Scientist",
goal="Analyze and interpret complex datasets to provide actionable insights",
backstory="With over 10 years of experience in data science and machine learning, "
"you excel at finding patterns in complex datasets.",
llm="gpt-4", # Default: OPENAI_MODEL_NAME or "gpt-4"
function_calling_llm=None, # Optional: Separate LLM for tool calling
verbose=False, # Default: False
allow_delegation=False, # Default: False
max_iter=20, # Default: 20 iterations
max_rpm=None, # Optional: Rate limit for API calls
max_execution_time=None, # Optional: Maximum execution time in seconds
max_retry_limit=2, # Default: 2 retries on error
allow_code_execution=False, # Default: False
code_execution_mode="safe", # Default: "safe" (options: "safe", "unsafe")
respect_context_window=True, # Default: True
use_system_prompt=True, # Default: True
multimodal=False, # Default: False
inject_date=False, # Default: False
date_format="%Y-%m-%d", # Default: ISO format
reasoning=False, # Default: False
max_reasoning_attempts=None, # Default: None
tools=[SerperDevTool()], # Optional: List of tools
knowledge_sources=None, # Optional: List of knowledge sources
embedder=None, # Optional: Custom embedder configuration
system_template=None, # Optional: Custom system prompt template
prompt_template=None, # Optional: Custom prompt template
response_template=None, # Optional: Custom response template
step_callback=None, # Optional: Callback function for monitoring
)
```
Let's break down some key parameter combinations for common use cases:
#### Basic Research Agent
```python Code
research_agent = Agent(
role="Research Analyst",
goal="Find and summarize information about specific topics",
backstory="You are an experienced researcher with attention to detail",
tools=[SerperDevTool()],
verbose=True # Enable logging for debugging
)
```
#### Code Development Agent
```python Code
dev_agent = Agent(
role="Senior Python Developer",
goal="Write and debug Python code",
backstory="Expert Python developer with 10 years of experience",
allow_code_execution=True,
code_execution_mode="safe", # Uses Docker for safety
max_execution_time=300, # 5-minute timeout
max_retry_limit=3 # More retries for complex code tasks
)
```
#### Long-Running Analysis Agent
```python Code
analysis_agent = Agent(
role="Data Analyst",
goal="Perform deep analysis of large datasets",
backstory="Specialized in big data analysis and pattern recognition",
memory=True,
respect_context_window=True,
max_rpm=10, # Limit API calls
function_calling_llm="gpt-4o-mini" # Cheaper model for tool calls
)
```
#### Custom Template Agent
```python Code
custom_agent = Agent(
role="Customer Service Representative",
goal="Assist customers with their inquiries",
backstory="Experienced in customer support with a focus on satisfaction",
system_template="""<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>""",
prompt_template="""<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>""",
response_template="""<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>""",
)
```
#### Date-Aware Agent with Reasoning
```python Code
strategic_agent = Agent(
role="Market Analyst",
goal="Track market movements with precise date references and strategic planning",
backstory="Expert in time-sensitive financial analysis and strategic reporting",
inject_date=True, # Automatically inject current date into tasks
date_format="%B %d, %Y", # Format as "May 21, 2025"
reasoning=True, # Enable strategic planning
max_reasoning_attempts=2, # Limit planning iterations
verbose=True
)
```
#### Reasoning Agent
```python Code
reasoning_agent = Agent(
role="Strategic Planner",
goal="Analyze complex problems and create detailed execution plans",
backstory="Expert strategic planner who methodically breaks down complex challenges",
reasoning=True, # Enable reasoning and planning
max_reasoning_attempts=3, # Limit reasoning attempts
max_iter=30, # Allow more iterations for complex planning
verbose=True
)
```
#### Multimodal Agent
```python Code
multimodal_agent = Agent(
role="Visual Content Analyst",
goal="Analyze and process both text and visual content",
backstory="Specialized in multimodal analysis combining text and image understanding",
multimodal=True, # Enable multimodal capabilities
verbose=True
)
```
### Parameter Details
#### Critical Parameters
- `role`, `goal`, and `backstory` are required and shape the agent's behavior
- `llm` determines the language model used (default: OpenAI's GPT-4)
#### Memory and Context
- `memory`: Enable to maintain conversation history
- `respect_context_window`: Prevents token limit issues
- `knowledge_sources`: Add domain-specific knowledge bases
#### Execution Control
- `max_iter`: Maximum attempts before giving best answer
- `max_execution_time`: Timeout in seconds
- `max_rpm`: Rate limiting for API calls
- `max_retry_limit`: Retries on error
#### Code Execution
- `allow_code_execution`: Must be True to run code
- `code_execution_mode`:
- `"safe"`: Uses Docker (recommended for production)
- `"unsafe"`: Direct execution (use only in trusted environments)
<Note>
This runs a default Docker image. If you want to configure the docker image, the checkout the Code Interpreter Tool in the tools section.
Add the code interpreter tool as a tool in the agent as a tool parameter.
</Note>
#### Advanced Features
- `multimodal`: Enable multimodal capabilities for processing text and visual content
- `reasoning`: Enable agent to reflect and create plans before executing tasks
- `inject_date`: Automatically inject current date into task descriptions
#### Templates
- `system_template`: Defines agent's core behavior
- `prompt_template`: Structures input format
- `response_template`: Formats agent responses
<Note>
When using custom templates, ensure that both `system_template` and `prompt_template` are defined. The `response_template` is optional but recommended for consistent output formatting.
</Note>
<Note>
When using custom templates, you can use variables like `{role}`, `{goal}`, and `{backstory}` in your templates. These will be automatically populated during execution.
</Note>
## Agent Tools
Agents can be equipped with various tools to enhance their capabilities. CrewAI supports tools from:
- [CrewAI Toolkit](https://github.com/joaomdmoura/crewai-tools)
- [LangChain Tools](https://python.langchain.com/docs/integrations/tools)
Here's how to add tools to an agent:
```python Code
from crewai import Agent
from crewai_tools import SerperDevTool, WikipediaTools
# Create tools
search_tool = SerperDevTool()
wiki_tool = WikipediaTools()
# Add tools to agent
researcher = Agent(
role="AI Technology Researcher",
goal="Research the latest AI developments",
tools=[search_tool, wiki_tool],
verbose=True
)
```
## Agent Memory and Context
Agents can maintain memory of their interactions and use context from previous tasks. This is particularly useful for complex workflows where information needs to be retained across multiple tasks.
```python Code
from crewai import Agent
analyst = Agent(
role="Data Analyst",
goal="Analyze and remember complex data patterns",
memory=True, # Enable memory
verbose=True
)
```
<Note>
When `memory` is enabled, the agent will maintain context across multiple interactions, improving its ability to handle complex, multi-step tasks.
</Note>
## Context Window Management
CrewAI includes sophisticated automatic context window management to handle situations where conversations exceed the language model's token limits. This powerful feature is controlled by the `respect_context_window` parameter.
### How Context Window Management Works
When an agent's conversation history grows too large for the LLM's context window, CrewAI automatically detects this situation and can either:
1. **Automatically summarize content** (when `respect_context_window=True`)
2. **Stop execution with an error** (when `respect_context_window=False`)
### Automatic Context Handling (`respect_context_window=True`)
This is the **default and recommended setting** for most use cases. When enabled, CrewAI will:
```python Code
# Agent with automatic context management (default)
smart_agent = Agent(
role="Research Analyst",
goal="Analyze large documents and datasets",
backstory="Expert at processing extensive information",
respect_context_window=True, # 🔑 Default: auto-handle context limits
verbose=True
)
```
**What happens when context limits are exceeded:**
- ⚠️ **Warning message**: `"Context length exceeded. Summarizing content to fit the model context window."`
- 🔄 **Automatic summarization**: CrewAI intelligently summarizes the conversation history
- ✅ **Continued execution**: Task execution continues seamlessly with the summarized context
- 📝 **Preserved information**: Key information is retained while reducing token count
### Strict Context Limits (`respect_context_window=False`)
When you need precise control and prefer execution to stop rather than lose any information:
```python Code
# Agent with strict context limits
strict_agent = Agent(
role="Legal Document Reviewer",
goal="Provide precise legal analysis without information loss",
backstory="Legal expert requiring complete context for accurate analysis",
respect_context_window=False, # ❌ Stop execution on context limit
verbose=True
)
```
**What happens when context limits are exceeded:**
- ❌ **Error message**: `"Context length exceeded. Consider using smaller text or RAG tools from crewai_tools."`
- 🛑 **Execution stops**: Task execution halts immediately
- 🔧 **Manual intervention required**: You need to modify your approach
### Choosing the Right Setting
#### Use `respect_context_window=True` (Default) when:
- **Processing large documents** that might exceed context limits
- **Long-running conversations** where some summarization is acceptable
- **Research tasks** where general context is more important than exact details
- **Prototyping and development** where you want robust execution
```python Code
# Perfect for document processing
document_processor = Agent(
role="Document Analyst",
goal="Extract insights from large research papers",
backstory="Expert at analyzing extensive documentation",
respect_context_window=True, # Handle large documents gracefully
max_iter=50, # Allow more iterations for complex analysis
verbose=True
)
```
#### Use `respect_context_window=False` when:
- **Precision is critical** and information loss is unacceptable
- **Legal or medical tasks** requiring complete context
- **Code review** where missing details could introduce bugs
- **Financial analysis** where accuracy is paramount
```python Code
# Perfect for precision tasks
precision_agent = Agent(
role="Code Security Auditor",
goal="Identify security vulnerabilities in code",
backstory="Security expert requiring complete code context",
respect_context_window=False, # Prefer failure over incomplete analysis
max_retry_limit=1, # Fail fast on context issues
verbose=True
)
```
### Alternative Approaches for Large Data
When dealing with very large datasets, consider these strategies:
#### 1. Use RAG Tools
```python Code
from crewai_tools import RagTool
# Create RAG tool for large document processing
rag_tool = RagTool()
rag_agent = Agent(
role="Research Assistant",
goal="Query large knowledge bases efficiently",
backstory="Expert at using RAG tools for information retrieval",
tools=[rag_tool], # Use RAG instead of large context windows
respect_context_window=True,
verbose=True
)
```
#### 2. Use Knowledge Sources
```python Code
# Use knowledge sources instead of large prompts
knowledge_agent = Agent(
role="Knowledge Expert",
goal="Answer questions using curated knowledge",
backstory="Expert at leveraging structured knowledge sources",
knowledge_sources=[your_knowledge_sources], # Pre-processed knowledge
respect_context_window=True,
verbose=True
)
```
### Context Window Best Practices
1. **Monitor Context Usage**: Enable `verbose=True` to see context management in action
2. **Design for Efficiency**: Structure tasks to minimize context accumulation
3. **Use Appropriate Models**: Choose LLMs with context windows suitable for your tasks
4. **Test Both Settings**: Try both `True` and `False` to see which works better for your use case
5. **Combine with RAG**: Use RAG tools for very large datasets instead of relying solely on context windows
### Troubleshooting Context Issues
**If you're getting context limit errors:**
```python Code
# Quick fix: Enable automatic handling
agent.respect_context_window = True
# Better solution: Use RAG tools for large data
from crewai_tools import RagTool
agent.tools = [RagTool()]
# Alternative: Break tasks into smaller pieces
# Or use knowledge sources instead of large prompts
```
**If automatic summarization loses important information:**
```python Code
# Disable auto-summarization and use RAG instead
agent = Agent(
role="Detailed Analyst",
goal="Maintain complete information accuracy",
backstory="Expert requiring full context",
respect_context_window=False, # No summarization
tools=[RagTool()], # Use RAG for large data
verbose=True
)
```
<Note>
The context window management feature works automatically in the background. You don't need to call any special functions - just set `respect_context_window` to your preferred behavior and CrewAI handles the rest!
</Note>
## Direct Agent Interaction with `kickoff()`
Agents can be used directly without going through a task or crew workflow using the `kickoff()` method. This provides a simpler way to interact with an agent when you don't need the full crew orchestration capabilities.
### How `kickoff()` Works
The `kickoff()` method allows you to send messages directly to an agent and get a response, similar to how you would interact with an LLM but with all the agent's capabilities (tools, reasoning, etc.).
```python Code
from crewai import Agent
from crewai_tools import SerperDevTool
# Create an agent
researcher = Agent(
role="AI Technology Researcher",
goal="Research the latest AI developments",
tools=[SerperDevTool()],
verbose=True
)
# Use kickoff() to interact directly with the agent
result = researcher.kickoff("What are the latest developments in language models?")
# Access the raw response
print(result.raw)
```
### Parameters and Return Values
| Parameter | Type | Description |
| :---------------- | :---------------------------------- | :------------------------------------------------------------------------ |
| `messages` | `Union[str, List[Dict[str, str]]]` | Either a string query or a list of message dictionaries with role/content |
| `response_format` | `Optional[Type[Any]]` | Optional Pydantic model for structured output |
The method returns a `LiteAgentOutput` object with the following properties:
- `raw`: String containing the raw output text
- `pydantic`: Parsed Pydantic model (if a `response_format` was provided)
- `agent_role`: Role of the agent that produced the output
- `usage_metrics`: Token usage metrics for the execution
### Structured Output
You can get structured output by providing a Pydantic model as the `response_format`:
```python Code
from pydantic import BaseModel
from typing import List
class ResearchFindings(BaseModel):
main_points: List[str]
key_technologies: List[str]
future_predictions: str
# Get structured output
result = researcher.kickoff(
"Summarize the latest developments in AI for 2025",
response_format=ResearchFindings
)
# Access structured data
print(result.pydantic.main_points)
print(result.pydantic.future_predictions)
```
### Multiple Messages
You can also provide a conversation history as a list of message dictionaries:
```python Code
messages = [
{"role": "user", "content": "I need information about large language models"},
{"role": "assistant", "content": "I'd be happy to help with that! What specifically would you like to know?"},
{"role": "user", "content": "What are the latest developments in 2025?"}
]
result = researcher.kickoff(messages)
```
### Async Support
An asynchronous version is available via `kickoff_async()` with the same parameters:
```python Code
import asyncio
async def main():
result = await researcher.kickoff_async("What are the latest developments in AI?")
print(result.raw)
asyncio.run(main())
```
<Note>
The `kickoff()` method uses a `LiteAgent` internally, which provides a simpler execution flow while preserving all of the agent's configuration (role, goal, backstory, tools, etc.).
</Note>
## Important Considerations and Best Practices
### Security and Code Execution
- When using `allow_code_execution`, be cautious with user input and always validate it
- Use `code_execution_mode: "safe"` (Docker) in production environments
- Consider setting appropriate `max_execution_time` limits to prevent infinite loops
### Performance Optimization
- Use `respect_context_window: true` to prevent token limit issues
- Set appropriate `max_rpm` to avoid rate limiting
- Enable `cache: true` to improve performance for repetitive tasks
- Adjust `max_iter` and `max_retry_limit` based on task complexity
### Memory and Context Management
- Leverage `knowledge_sources` for domain-specific information
- Configure `embedder` when using custom embedding models
- Use custom templates (`system_template`, `prompt_template`, `response_template`) for fine-grained control over agent behavior
### Advanced Features
- Enable `reasoning: true` for agents that need to plan and reflect before executing complex tasks
- Set appropriate `max_reasoning_attempts` to control planning iterations (None for unlimited attempts)
- Use `inject_date: true` to provide agents with current date awareness for time-sensitive tasks
- Customize the date format with `date_format` using standard Python datetime format codes
- Enable `multimodal: true` for agents that need to process both text and visual content
### Agent Collaboration
- Enable `allow_delegation: true` when agents need to work together
- Use `step_callback` to monitor and log agent interactions
- Consider using different LLMs for different purposes:
- Main `llm` for complex reasoning
- `function_calling_llm` for efficient tool usage
### Date Awareness and Reasoning
- Use `inject_date: true` to provide agents with current date awareness for time-sensitive tasks
- Customize the date format with `date_format` using standard Python datetime format codes
- Valid format codes include: %Y (year), %m (month), %d (day), %B (full month name), etc.
- Invalid date formats will be logged as warnings and will not modify the task description
- Enable `reasoning: true` for complex tasks that benefit from upfront planning and reflection
### Model Compatibility
- Set `use_system_prompt: false` for older models that don't support system messages
- Ensure your chosen `llm` supports the features you need (like function calling)
## Troubleshooting Common Issues
1. **Rate Limiting**: If you're hitting API rate limits:
- Implement appropriate `max_rpm`
- Use caching for repetitive operations
- Consider batching requests
2. **Context Window Errors**: If you're exceeding context limits:
- Enable `respect_context_window`
- Use more efficient prompts
- Clear agent memory periodically
3. **Code Execution Issues**: If code execution fails:
- Verify Docker is installed for safe mode
- Check execution permissions
- Review code sandbox settings
4. **Memory Issues**: If agent responses seem inconsistent:
- Check knowledge source configuration
- Review conversation history management
Remember that agents are most effective when configured according to their specific use case. Take time to understand your requirements and adjust these parameters accordingly.

Some files were not shown because too many files have changed in this diff Show More